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Abstract  

Mechanical metamaterials are man-made systems having anomalous macroscopic mechanical 

properties originating primarily from the geometry of the subunits rather than composition of 

the material at the molecular level. Even though, over the years, mechanical metamaterials have 

been thoroughly studied, it does not mean that there are not any new aspects related to their 

behaviour which remain to be discovered such as the capability of these systems to induce their 

own rotational motion as a result of internal deformation. In this thesis, this novel phenomenon 

was analysed, optimised and confirmed both by means of a theoretical model and experimental 

prototype for particular mechanical metamaterials deforming via the rotation of their subunits. 

It was also proposed that potential prototypes utilising this concept could prove to be useful in 

applications where control over the rotational motion of the system is of particular importance.  

The role of magnetic inclusions inserted into standard mechanical metamaterials was also 

thoroughly investigated. It is proposed that, as a result of the interaction between subunits 

constituting the system, such magnetic inclusions have a very important role in modifying the 

stiffness characteristics of the systems. More specifically, it was shown via a theoretical model 

as well as by means of experimental testing that the smart insertion of magnetic inclusions 

permits control of the mechanical behaviour of such metamaterials as these inclusions interact 

with each other as the system deforms. Results suggest that the considered system may not only 

exhibit negative Poisson’s ratio but also negative stiffness, which effect could not be possible 

without the use of magnetic inclusions. In order to further investigate different physical 

phenomena which can be exhibited by mechanical metamaterials with magnetic inclusions, 

through the use of the Ising model, it was shown that such systems make it possible to induce 

the magnetocaloric effect even in the absence of an external magnetic field. By means of 

computer simulations, it was also shown that the rate at which such systems are deformed has 

a large impact on the evolution of magnetic domains within the system. It is also proposed that 

magnetic inclusions could be useful in inducing the deformation process instead of the 

‘standard’ external forces.  

In addition to all this, this thesis has also looked into two metamaterials constructs which are 

particularly amenable to negative properties. In particular, a mechanical system incorporating 

a hierarchical design which was investigated through a dynamics approach, where it was shown 

that such a system makes it possible to obtain a wide range of mechanical properties and 

deformation patterns solely as a result of the control over the resistance of structural units to 

the motion promoting the deformation process. Also studied was a novel structure composed 

of appropriately connected generic triangles which system was reported to exhibit both negative 

linear compressibility and negative thermal expansion.  
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Figure 2-3 A diagram showing different possible connectivities of rotating rigid units systems 

constructed by means of different type of quadrilaterals, namely squares, rhombi, rectangles 

and parallelograms. 
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proposed by Shen et al.. 
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rotating rigid units systems. 

Figure 2-8 Graphical representation of different mechanical metamaterials corresponding to a 

common deformation mechanism. 

1F
0l l 2F

,1RF ,2RF 1F

2F



 

xi 
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proposed by Mousanezhad et al.. 
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honeycombs. Panels show: (a) unit-cells corresponding to different levels of hierarchy, (b), (c) 
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Figure 2-12 Panels show: (a) a conceptual representation of the wine-rack structure, (b) 
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Figure 2-16 Panels show: (a) theoretical concept of the buckled beam, (b) carbon nanotube 

exhibiting analogical behaviour to the buckled beam, (c) a buckled beam with an additional 
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like mechanism submerged into a polymer matrix. 

Figure 2-17 Panels show: (a) figure of the composite investigated by Jaglinski et al., where 

black dots indicate negative stiffness inclusions and the remaining grey-scale background is a 

positive stiffness matrix, (b) cylindrical composite proposed by Kochmann et al., (c) model 

investigated by Dyskin et al. and (d) composite proposed by Chronopoulos et al.). 

Figure 2-18 Panels show: (a) uniaxial attracting magnets with an additional spring offering 

positive stiffness to the system, (b) model composed of uniaxial magnets proposed by 

Robertson et al., (c) concept corresponding to uniaxial magnetic rings proposed by Ravaud et 

al., (d) structure acting as magnetic spring and (e) examples of structures investigated 

experimentally by Shi et al.. 
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Figure 2-19 Systems of thin magnetic films having a potential to exhibit auxetic behaviour 

shown schematically in the case of (a) a theoretical work reported in and (b) experimental work 

involving the use of CoFe2O4. 

Figure 2-20 Panels show: (a) different examples of mechanical metamaterials which are 

potentially suitable to host magnetic inclusions, (b) the model investigated and (c) experimental 

realisation of the theoretical concept proposed on panel (b). 

Figure 2-21 Panels show: (a) elastic Euler beam with a magnet at one of its ends which is being 

attracted by an external magnet, (b) kagome lattice with magnetic inclusions and (c) cellular 

structure with magnetic inclusions deformed by an external magnetic field. 

Figure 2-22 Different examples of magneto-elastic lattices with magnetic moments represented 

by blue or red points being oriented in the perpendicular direction to the plane of the figure. 

Figure 2-23 Panels show: (a) model of a magnetic vibration damper operating through the 

principle of negative stiffness and (b) an experimental example of the mechanical metamaterial 

exhibiting negative stiffness. 

Figure 4-1 The panels show (a) the model of the discussed system with schematically drawn 

blue arrows indicating the positioning of linear actuators inducing a deformation of the system 

(black arrows indicate all types of rotations exhibited by the system), (b) a diagram presenting 

a possible connection of the discussed system with an external body, (c) diagrams depicting the 

concept of global rotation of the system in which the rotation of rigid units results with a 

decrease of the angle  and a change in the value of . The change in the value of  

corresponds to the rotation of the structure with respect to its centre of mass. 

Figure 4-2 The panels show (a) comparison of the behaviour of systems consisting of a 

different number of rigid units and (b) the change in the behaviour of the system upon varying 

the magnitude of the ratio of densities of heavy and light units for a system with a conserved 

mass. The point where the system stops exhibiting the global rotation, i.e. the values of  

stop changing, corresponds to the conformation of the system where . 

Figure 5-1 The experimental prototype used in order to investigate the potential of mechanical 

metamaterials to induce their own rotational motion as the result of the rotation of their subunits. 

Figure 5-2 Panels show: (a) the evolution of the system in time from the moment when it was 

released to the moment when the rigid units collided for the first time and (b) pictures 

corresponding to (i) the initial configuration assumed by the system and (ii) the configuration 

assumed by the system at the moment when rigid units collided for the first time. In the case of 

panel (b), the auxiliary lines indicating the orientation of the system connect two particular 

points within the structure at different stages of the deformation. 

Figure 5-3 The variation in the angle  corresponding to the behaviour of of the system after 

the first collision between the rigid units. 

Figure 5-4 Behaviour of the system after the first collision between the rigid units. 

Figure 6-1 Panels show: (a) Type I and (b) Type II rotating rectangles systems investigated in 

this Chapter. Red and blue colours correspond to a different densities of units rotating in the 
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opposite directions in the case of each of the structures. Note that these systems have different 

symmetries and profile of pores which result from the different manner how the rectangles are 

connected together to form the network. In particular, in the Type I four  rectangles are 

connected in such a way that the empty spaces between the rectangles form rhombi of size  

and  whilst the Type II network has parrallelogramic pores of the same size  

Figure 6-2 A diagram presenting the concept of the global rotation of the Type I rotating 

rectangle system induced by the rotation of its subunits. 

Figure 6-3 Panels (a) and (b) show the variation in the angle of aperture between rigid units 

 plotted with respect to time for Type I and Type II rotating rectangle systems composed of 

rectangular units associated with different values of the aspect ratio . Panels (c) and (d) 

show the variation in the extent of the global rotation exhibited by Type I and Type II 

respectively for deformation process from panels (a) and (b). 

Figure 6-4 Panels (a) and (b) show the variation in  for Type I and Type II rotating rectangle 

systems during the process of mechanical deformation. Panels (c) and (d) show the variation in 

the parameter  for Type I and Type II systems associated with different values of 

 ratio respectively. 

Figure 6-5 A diagram presenting the hypothetical concept of the deformation of the rotating 

square system having electromagnetic hinges connecting adjacent units at vertices. Those pairs 

of the vertices which form a hinge as a result of the mutual interaction (for example induced by 

electromagnets or other devices) are highlighted by means of the connected red arrows. It 

should also be noted that the concept of the global rotation is not shown in this diagram. 

Figure 7-1 The panels in this figure present (a) the two-level hierarchical auxetic system with 

four square-like units corresponding to Level 1 of the structure, where each unit consists of 

 (in the provided example ) Level 0 repeat units (bright green), (b) an example 

of the structure corresponding to  and (c) the permissible angles for  and , which 

conditions ensure that the squares do not overlap with each other and the system retains the 

same connectivity. This is attained when conditions  and  are 

satisfied. 

Figure 7-2 Plots showing the variation in (a)  (b)  and (c) Poisson's ratio  as a function 

of time t for loading in the x direction for systems with  values ranging from 

 to  and (d) the relation of to  for a deforming 

structure having the motion of the hinges governed by harmonic potential. Similarly, plots (e), 

(f) and (g) show the variation in ,  and  respectively as a function of time in the case 

of friction-based hinges corresponding to the value of f ranging between  and 

. (h) shows the relation of to  for a deforming structure having the motion of the hinges 

governed by friction. In all cases considered,  and F=500 N. It is important to note that 

in the case of (c) and (g), the scale in the y-axis (incremental Poisson’s ratio) was arbitrarily 

stopped at -2, since this value of the Poisson’s ratio tends to upon approaching the maximum 

a bl l

a al l

b bl l .a bl l

02

/a bl l

1I

  15 4 /H LI I I

/a bl l

0 0N N 0 3N 

0 1N  0 1

1 0  1 02 2 0      

1 0 xy

hK

-10.035 N m deg  -12.093 N m deg  1 0

1 0 xy

0 N m 3.5 N m

1 0

0 1N 





 

xiv 

 

deformation. A cut-off value of -2 is appropriate in view of the fact that the part of the 

deformation which is not included in panels (c) and (g) is relatively small, as shown in Table 

7-1. An analogical set of results, plotted with respect to applied strain, is provided in Appendix 

III. 

Figure 7-3 Diagrams showing the final state of the deformation of two systems, where the 

hinging process is governed by friction, with  values of  and 

. 

Figure 7-4 A plot showing a comparison of the Poisson’s ratios obtained from the numerical 

solutions presented here for f = 0.5 Nm and f = 3.5 Nm with those calculated from analytical 

models for uni-level rotating rigid rectangle and square systems. 

Figure 8-1 (a) A generalised structure based on Milton’s expanders (b) the unit cell of a typical 

form of the systems studied here. 

Figure 8-2 Variation in mechanical properties for three different types of systems. Panels show 

results for systems where the unit-cell is composed of (a) equilateral triangles having 

dimensions a = 1 nm, b = 1 nm and c = 1 nm, (b) isosceles triangles corresponding to dimensions 

a = 1 nm, b = 2 nm and c = 2 nm and (c) scalene triangles where a = 6 nm, b = 3 nm and c = 4 

nm. Solid red and dashed blue lines indicate mechanical properties exhibited by the system in 

the Ox1 and Ox2 directions respectively. Different colours on of the background helps to make 

a distinction between different forms assumed by considered systems. 

Figure 8-3 Variation in geometric dimensions of the unit-cell for three different types of 

systems. Solid red and dashed blue lines indicate mechanical properties exhibited by the system 

in the Ox1 and Ox2 directions respectively. The black dashed line represents the area of the 

unit-cell corresponding to a given system.  

Figure 8-4 Variation of the range of angles in which NLC is exhibited for a particular form on 

changing the b:a ratio of an isosceles triangle. 

Figure 8-5 Variation of the thermal expansion coefficient with the aspect ratio of isosceles 

triangles for systems where  having a form that exists for  and 

vibrating about an equilibrium angle of . The temperature was set to be equal to T = 293 K 

and the value of  was set to be equal to . 

Figure 8-6 Panels show: (a) a visualisation of the hypothetical concept related to the self-

induced global rotation of mechanical metamaterials composed of triangle motifs having 

different masses and (b) expected behaviour of the rotating rigid triangle systems with magnetic 

inclusions. 

Figure 9-1 Panels show: (a) the considered system composed of a number of arrowhead units 

with magnetic inclusions, (b) a single unit of the system, (c)(i) stages of the mechanical 

deformation in the system with attracting magnets in each unit (ii) stages of the mechanical 

deformation in the system with attracting magnets in each unit and (d) experimental prototype 

used in order to investigate mechanical properties of the considered system. 

Figure 9-2 Panels show: (a) different stages of the deformation of the experimental prototype 

associated with: (i) initial, (ii) threshold and (iii) final configuration, (b) Poisson’s ratio 
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exhibited by the system for loading in the vertical direction, (c) force recorded by the tensile 

loader throughout the entire process of deformation of the experimental prototype, (d) stiffness 

exhibited by the prototype with attracting and repelling magnets, (e) theoretical results 

corresponding to the force required to deform the system analogical to the experimental 

prototype and (f) stiffness exhibited by the system according to the theoretical model. 

Figure 9-3 Panels show: (a) the variation in the Poisson’s ratio in the loading direction for 

systems corresponding to a different value of , (b) variation in the (i) magnetic potential 

energy per unit and (ii) stiffness of the system with attracting magnets for structures 

corresponding to different values of  and (c) graphs analogical to those from panel (b) but 

generated for systems with repelling magnets. 

Figure 9-4 Panels show: (a) the variation in the Poisson’s ratio in the loading direction for 

system with magnets corresponding to different values of , (b) variation in (i) magnetic 

potential energy per unit and (ii) stiffness of the system with attracting magnets for structures 

corresponding to different values of  and (c) results analogical to those shown on panel (b) 

but generated for systems with repelling magnets within structural units. 

Figure 10-1 Magneto-auxetic system of  squares of dimension  with the exemplary 

configuration of Ising spins  denoted by “+” and “-” respectively, located at centre of 

mass of the squares.  and  denote linear dimensions of the system in the x and y directions 

respectively. 

Figure 10-2 Temperature dependence of the isothermal entropy change for MAS deformed 

from  to  at zero magnetic field. The plots representing deformations , 

, ,  are shown (units in degrees). The vertical lines indicate 

location of for a given value of and . 

Figure 11-1 The model represented by a set of rigid squares connected at vertices. In this case, 

signs “+” and “-” located at the centre of each unit, correspond to opposite orientations of 

magnetic moments within the system. In this diagram, the number of squares was set in a way 

allowing to conveniently visualise the introduced variables. 

Figure 11-2 The panels present (a) the change in the correlation length r during the deformation 

process for different values of  and (b) the comparison of the evolution of the system 

corresponding to  to the behaviour of systems in which the distance between the 

neighbouring spins is not being changed throughout the simulation, i.e. the simulation takes 

place for a fixed value of . The correlation length r is expressed in terms of the distance d. 

Figure 11-3 The panels present (a) diagrams visualising the configuration of the magnetic 

auxetic system corresponding to a particular value of the angle  (red lines are used in order 

to highlight edges forming the aperture of the unit-cell), (b) evolution of magnetic domains for 

a system in which the angle  is being changed with the constant angular velocity 

 (relatively low value of ) and (c) visualisation of the evolution of magnetic 

domains in the system corresponding to  (relatively high value of ). In order 
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to better visualise the domains in the system on panels (b) and (c), only a fragment (

units) of the larger square lattice considered in this work was selected. 

Figure 11-4 Energy of spins at the domain boundary per spin for different values of .   
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1. Introduction 

1.1 Mechanical Metamaterials 

Mechanical metamaterials, which term was probably first formally defined by Grima et 

al. [1], are a class of systems where the macroscopic mechanical properties originate primarily 

from the geometry of the subunits constituting a given system and not from the composition of 

the material at the molecular level, i.e. systems exhibiting unusual properties which are 

composed of standard material components which do not have a propensity to exhibit such 

characteristic. It also means that in theory, mechanical metamaterials may be constructed at any 

scale as long as a particular shape of the subunit can be achieved. It also indicates that these 

systems, irrespective of their size, may exhibit an arbitrary mechanical behaviour including 

anomalous properties such as negative Poisson’s ratio, negative thermal expansion, negative 

compressibility and negative stiffness which properties are going to be described in the 

following subsections of this Introduction.  

Due to their versatility, mechanical metamaterials may be designed in a variety of 

conformations to exhibit particular mechanical behaviour. Consequently, over the years, 

scientists working in the field of materials science have proposed a number of different classes 

of mechanical metamaterials. Some of the most studied examples of such classes include 

rotating rigid unit systems [2-4], perforated systems (macro-scale) [5-13], re-entrant [14-23] 

and chiral honeycomb [24-30] structures (macro-scale) as well as foams (micro-scale) [31-33]. 

Studies related to these systems are described in more detail in the Literature review section of 

this thesis. 

At this point, it should be highlighted that mechanical metamaterials should not be 

confused with optical (which include photonic) metamaterials which in literature are also often 

referred to as metamaterials [34-36]. The latter systems are normally investigated in terms of 
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their electro-magnetic properties and the way how they interact with different waves. 

Furthermore, despite the fact that mechanical deformation has been reported to affect properties 

of optical metamaterials, these systems are not usually the subject of studies related to their 

mechanical properties. Some excellent reviews on optical metamaterials are given in [37, 38].  

Before proceeding any further and discussing the historical progress made in the field of 

mechanical metamaterials having a propensity to exhibit unusual mechanical properties, it is 

useful to define some of the basic mechanical properties which are going to be used in order to 

describe the behaviour of systems investigated in this work, namely: (1) Auxetic Behaviour 

(Negative Poisson’s ratios); (2) Negative thermal expansion; (3) Negative compressibility, and 

(4) Negative stiffness. 

1.2 Different types of mechanical behaviour which may be 

exhibited by mechanical metamaterials 

1.2.1 Auxetic behaviour 

Auxetic [39] systems exhibit the counter-intuitive property of expanding laterally when 

being subjected to a uniaxial strain (see Figure 1-1). On the other hand, in the case of 

conventional (non-auxetic) materials, the contrary behaviour is expected with these structures 

getting thinner when uniaxially stretched. The two effects described above, may be quantified 

by means of the Poisson’s ratio, ij , which quantity if measured in the i jOx Ox plane (see 

Figure 1-1), with iOx  being the loading direction, may be expressed by means of the formula 

[40]: 

j

ij

i





 

 

 

1-1 

where i  and j  are the axial and transverse strain in the iOx  and jOx  direction respectively. 
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Figure 1-1 A diagram showing the deformation of three different materials, having the same 

initial shape subjected to a uniaxial load. 

 

Through this definition, a material that exhibits auxetic behaviour would have a negative 

ij .  It is also known that in the case of three-dimensional isotropic materials (mechanical 

properties of a given structure are the same in all directions), the Poisson’s ratio assumes a value 

from the interval: 1 0.5ij    [40]. However, for two-dimensional isotropic materials, the 

value of the Poisson’s ratio ranges between -1 and 1 [41]. It is also important to note that 

anisotropic systems may have an arbitrary value of the Poisson’s ratio in any direction [43]. 

Furthermore, in recent years, apart from studies related to the possible extent of the Poisson’s 

ratio, a classification [42, 43] was also proposed in order to distinguish between different types 

of systems with a propensity to exhibit auxetic and conventional behaviour. More specifically, 

it was proposed that systems exhibiting negative Poisson’s ratio in all directions may be referred 

to as complete auxetics while systems exhibiting negative Poisson’s ratio only in specific 

direction may be called partial auxetics [44, 45]. From this, it follows that materials which 

exhibit positive Poisson’s ratio in all directions should be referred to as non-auxetics.   
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1.2.2 Thermal expansion 

Apart from the negative Poisson’s ratio, another unusual macroscopic property exhibited 

by a number of materials or structures is negative thermal expansion [46-60] (NTE), i.e. 

shrinkage of the system in at least one dimension when subjected to an increase in temperature. 

In the case of conventional thermal expansion materials, the contrary is observed with these 

systems expanding upon being subjected to an increase in temperature (see Figure 1-2). The 

latter behaviour is typically observed for a majority of materials. The variation in size of the 

system when subjected to a change in temperature can be quantified by means of the coefficient 

of thermal expansion (CTE). This quantity assumes either negative or positive values depending 

on whether the considered system shrinks or expands upon being subjected to an increase in 

temperature. 

 

Figure 1-2 A diagram presenting thermal expansion of materials corresponding to different 

values of CTE. The dashed outline corresponds to the initial shape of the system subjected to 

an increase in temperature. 

The coefficient of thermal expansion corresponding to a deformation of the system in one 

dimension ( L ) or in the volume of the system ( V ) may be defined as follows [61]: 
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dL dV

L dT V dT
 

   
    

   
 

1-2 

where, L  is the linear dimension of the system in the direction where the thermal expansion is 

being measured, whilst V , T and p stand for the volume, temperature and pressure 

respectively. In general, the volumetric coefficient of thermal expansion V may be defined 

both for isotropic as well as for anisotropic systems, in which case, 1 2 3V       where 

1,  2  and 3  are the linear thermal expansion coefficients for three mutually orthogonal 

directions. On the other hand, in the particular case of isotopic materials, 3 .V L   

In recent years, scientists have been devoting a lot of attention to materials capable of 

exhibiting negative thermal expansion. This increasing interest in the field was mostly driven 

by the large number of potential applications of NTE materials some of which could have an 

impact on industry and engineering. These studies show that there is a wide range of systems 

with a propensity to exhibit NTE characteristics, including amongst others: systems made from 

biomaterials [62], metal-organic frameworks [63-66] (MOFs), metal oxides [46, 48-50, 67-71], 

zeolites [74-79] and polymers [80, 81]. In a number of these systems, the NTE was explained 

in terms of rotating rigid units which upon heating rotate to a greater extent relative to each 

other with the net result that their overall linear dimensions are observed to shrink upon heating. 

1.2.3 Linear compressibility 

Compressibility is another property of materials which defines the way how systems 

deform upon being subjected to a hydrostatic pressure p . According to the definition stated by 

Baughman et al. [72], in the case of a constant temperature T , a volumetric compressibility 

may be defined in the following manner: 

1
V

T

V

V p


 
   

   

1-3 

 



 

6 

 

Analogically, the area and linear compressibility ( A  and L respectively) are defined by:  

1 1
                .A L

T T

A L

A p L p
 

    
      

    
 

1-4 

 

To understand better the concept of ‘compressibility’, one could visualise the volume of 

the system (or area in the case of two-dimensional structures) as decreasing, remaining the same 

or increasing when subjected to a hydrostatic pressure. These three different hypothetical 

scenarios are schematically shown in Figure 1-3. It may also happen that instead of manifesting 

the particular compressibility in all directions, the system exhibits a given type of 

compressibility only in a particular direction in which case it is said that it corresponds to a 

specific linear compressibility. This means that the linear compressibility for a given system 

may be different depending on the direction in which it is measured. Similar arguments can be 

made for the area compressibility which can be measured in some particular cross-sectional 

plane of a three-dimensional system. 

In recent years it has been proved that the compressibility might assume negative values 

even though materials exhibiting such characteristics are still not frequently encountered. The 

first examples of this phenomenon were reported by Baughman et al. [72]. In his work it was 

shown that certain rare crystal phases may exhibit negative linear (NLC) and negative area 

compressibility (NAC). Another example is the work of Moore and Lakes [73, 74] on open cell 

foams. Their work was soon followed by Lakes and Wojciechowski [75] in an attempt of 

showing that the bulk modulus of an arbitrary system does not have to assume a positive value. 
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Figure 1-3 A diagram presenting the behaviour of a cross-section of a material corresponding 

to different values of area compressibility upon being subjected to a hydrostatic pressure.  

 

Here it must be mentioned that Grima et al. made the distinction between solid non-porous 

and porous systems which exhibit negative compressibility. In the first scenario, the system 

cannot exhibit negative volumetric compressibility as this would be thermodynamically 

prohibited. However, if the system is porous and the fluid exerting the pressure is entering the 

system so that the pressure is ‘felt’ both from the ‘inside’ and ‘outside’, then the system could, 

if smartly designed as in the case of the bimaterial systems [76], manifest an apparent increase 

in its overall dimension (the equivalent of an overall negative V ) even if the solid portion of 

the system would have shrunk (i.e. intrinsically exhibit conventional positive V ). In other 

words, the internal components of such a system correspond to a positive compressibility while 

at the same time the whole system exhibits an apparent negative volumetric compressibility. 

This is in sharp contrast with nonporous systems where the negative compressibility is not 
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exhibited as negative V but only in specific directions. In order to ensure that scientists working 

in the field of materials science do not confuse the above concept, the scientific community 

proposed the distinction between effective volumetric compressibility and volumetric 

compressibility. As written above, in the case of porous materials, it may happen that a system 

subjected to a hydrostatic pressure expands in all directions (effective negative compressibility) 

but its constituting components shrink which corresponds to non-negative compressibility. 

1.2.4 Stiffness  

Stiffness (often referred to as tangent or tangential stiffness) is a mechanical property 

describing the way a system responds to deformation. More specifically, when the system is 

being extended, it is said that it exhibits conventional positive stiffness when it becomes more 

difficult to deform it further. Conversely, the system exhibits negative stiffness [77-85] when it 

becomes simpler to continue the extension. This concept is explained schematically in Figure 

1-4, where in the case of panel (a), the force required to hold the system at rest at a particular 

extension equal to 0l , must be increased in order for the system to assume a configuration 

corresponding to a larger extension equal to 0l l , i.e. the systems exhibits positive stiffness. 

On the other hand, on panel (b) the magnitude of such a force decreases as the material is being 

extended which according to the above definition means that the system exhibits negative 

stiffness. 
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Figure 1-4 Panels show (a) a material exhibiting positive stiffness and (b) a material exhibiting 

negative stiffness. In both cases, on subpanel the material is extended to a length of (i) l0 by 

force 1F  with one side of this material being fixed to the wall and (ii) 0l l by force 2F . 

Quantities ,1RF and ,2RF are reaction forces which in terms of the magnitude are equal to 1F and 

2F respectively. The length of the arrows reflect schematically the magnitude of the applied 

force. 

 

The stiffness of a system in a particular i-th direction is defined as the rate of change in the 

force iF  required to deform the structure by a displacement il . Hence it can be written down as 

follows: stiffness = /i idF dl . In order to explain how to interpret this quantity based on a graph 

of force F plotted with respect to distance d, a hypothetical graph is provided in Figure 1-5. In 

this figure, one can note that between points A and B, the magnitude of the force decreases as 

the structure is extended, indicating that over this interval, the system exhibits negative 

stiffness. On the other hand, over the interval between points B and C the contrary is observed, 

i.e. the system exhibits positive stiffness. In other words, upon extending the system over the 

interval between points A and B it becomes simpler to stretch and subsequently becomes more 

difficult over the interval between points B and C. 
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Figure 1-5 A hypothetical auxiliary graph of force F plotted with respect to extension length d 

measured in the direction in which the force is applied. 

 

1.3 Current state of the art 

As discussed in detail in the next chapter which reviews the historical progress made in the 

field of mechanical metamaterials, in particular those aspects which are closely related to this 

thesis, there have been several important discoveries which have transformed the field of 

mechanical metamaterials and other systems with a potential to exhibit unusual mechanical 

behaviour. However, despite of these discoveries, there are a number of aspects related to these 

systems, which as discussed in more detail in the Scope of this Work (see section 3), still remain 

to be explored. Some of these aspects correspond to different effects which may be observed 

upon studying the dynamic behaviour of these systems as well as the effect which the use of 

magnetic inclusions may have on properties of mechanical metamaterials. 

1.4 Layout of the thesis 

This thesis is divided into twelve chapters meant to describe the state of art in the discussed 

field as well as the conducted research. More specifically, in Chapter 1, some of the most 

fundamental of the unusual mechanical properties which are of particular interest from the point 

of view of this thesis are defined and briefly discussed. In Chapter 2, the Literature Review 

meant to present the historical progress made in those areas of science which are particularly 
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related to topics investigated in this thesis is provided. In Chapter 3, the Scope of work is 

presented in order to state clearly the motivation behind the conducted research. Chapter 4 is 

the first chapter where original scientific results are being reported. More specifically, in this 

chapter, the novel concept relating to the potential of mechanical metamaterials to induce their 

global rotation as a result of the rotation of their subunits is proposed. In Chapter 5, the 

theoretical concept from Chapter 4 is verified experimentally. In Chapter 6, the theoretical 

concept from Chapter 4 is further extended to other systems. In chapter 7, the concept of 

hierarchy is incorporated with rotating square systems in order to analyse their dynamic 

behaviour. In Chapter 8, the possibility of designing novel mechanical metamaterials composed 

of triangular units with the propensity to exhibit unusual mechanical behaviour is discussed. In 

chapter 9, the potential of mechanical metamaterials with magnetic inclusions to exhibit 

negative stiffness as well as other types of unusual mechanical behaviour is discussed. In 

Chapter 10, the possibility of inducing the magnetocaloric effect solely as a result of the 

mechanical deformation of magneto-mechanical systems is analysed. In the last of the chapters 

related to the original research, i.e. in Chapter 11, the magnetic domain evolution in magneto-

mechanical systems at the nano-scale is investigated by means of the Monte Carlo Metropolis 

algorithm. Finally, in Chapter 12, final conclusions as well as general discussion of all of the 

reported results are provided. 
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2. Literature review 

As mentioned in the previous chapter, this thesis will focus on novel systems having a 

potential to exhibit unusual mechanical properties as well as other types of anomalous 

behaviour. In view of this, the first objective of the literature review will be to discuss the 

historical development associated with those of the mechanical properties which are going to 

be the main subject of discussion in the following research chapters, i.e. negative Poisson’s 

ratio, negative compressibility and negative stiffness. In the second part of the literature review, 

the historical development of mechanical metamaterials and other systems with magnetic 

inclusions is going to be discussed. 

2.1 Unusual mechanical properties 

2.1.1 Systems exhibiting auxetic behaviour 

General overview 

Even though the field of auxetics (negative Poisson’s ratio) is still considered to be 

relatively new, the first mention of systems exhibiting negative Poisson's ratio was reported as 

early as 1928 by Professor Voigt [86]. The term ‘auxetic’ itself, originating from the Greek 

word ‘auxetos’ meaning ‘to be increased’ was first proposed many years later in 1991 by 

Professor Kenneth E. Evans [39]. In the work published by Prof. Voigt [86], it was proposed 

that iron pyrites might exhibit auxetic behaviour, which result was proven to be incorrect in 

subsequent experimental work conducted by Simmons [87] and Benbattouche [88]. In these 

studies it was argued that in the case of the initial result reported by Voigt, the measured 

negative Poisson’s ratio was a result of crystal twinning. In the following years, a number of 

independent studies were conducted resulting in numerous publications relating to the 

auxeticity of various crystalline structures, such as cadmium [89], barium titanite [90], α-quartz 
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[91, 92], rare gas solids [93-95], face centered cubic (fcc) crystals [93], arsenic [96], metals [94, 

95], α-cristobalite [97] and thermally-cracked granite [98]. All of these naturally-occurring 

structures were a proof to the scientific community that materials exhibiting negative Poisson's 

ratio indeed exist and thus are worth being investigated. This belief led to further studies on 

materials with a propensity to exhibit negative Poisson’s ratio. One such class of systems are 

biological structures, amongst which the most representative examples are those of cellulose 

[99-101], cow teat skin [102, 103] and animal shells [104]. It was also reported that certain 

parts of a human body may exhibit the discussed characteristics with cancellous bone and a 

variety of tissues and dentin [105-111] being the most investigated examples. In the following 

years, thanks to a continuation of these studies, auxeticity was proven to be a property of 

numerous elements and compounds (including amongst others carbon [112], graphite, graphene 

[113], calcium carbonate [114], black phosphorus [115-117], molybdenum sulphide and zinc) 

as well as a wide variety of alloys [118-126] and composites [127, 128]. 

As described in the above paragraph, despite the fact that the concept of auxetic behaviour 

might seem to be counter-intuitive as it is not normally observed in the case of materials 

available in our everyday life, it is possible to find a number of materials exhibiting negative 

Poisson’s ratio in the environment. However, the fact that it is possible to find examples of 

auxetic materials in the environment does not mean that it is simple to exploit the benefits of 

auxeticity in real practical applications at an industrial scale. In a majority of cases, in order to 

use a particular class of materials in the industry, a very large versatility of these systems is 

required. This in turn is usually reserved for man-made systems where the properties of the 

given system may be tailored during a production process. A pioneer in this field is Prof. 

Roderic Lakes who was one of the first scientists to purposely produce a material with a 

negative Poisson’s ratio, i.e. auxetic foam [129]. His discovery was not only of great importance 

due to its novelty but also because of numerous interesting properties which were later reported 
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by scientists investigating these materials. Amongst the most significant ones, one should 

mention increased indentation resistance [32, 130-137], shape memory [148-152], shear 

stiffness and a potential to be used for damping applications [33, 138-144]. Auxetic foams were 

also thoroughly investigated from the point of view of a manufacturing process as it could affect 

the mechanical properties of the material. The approach proposed initially by Lakes et al. [129] 

was associated with the application of pressure (in all three directions of the Cartesian 

coordinate system) to an open-cell foam while increasing the temperature to soften the material. 

In the following years, this method was modified in order to allow for a production of larger, 

more complex foams capable of exhibiting negative Poisson’s ratio [13, 145-151]. Amongst 

the most notable approaches in this respect, it is worth to mention the work of Alderson et al. 

[152] who reported a possibility of fabrication of auxetic open-cell foams in a continuous 

manner. Some of the other achievements in this field include the work of Friis et al. [130] on 

the fabrication of auxetic metallic foams and the technique proposed by Alderson [153] and 

Grima [154] to convert a nonauxetic foam into an auxetic one. The last method is analogical to 

the one reported by Lakes et al., with chemical treatment being used to soften a conventional 

foam instead of an increase in temperature. Numerous attempts were also made in order to 

distinguish and quantify a particular mechanism leading to auxetic behaviour of these systems 

[155-166]. 

Another important direction of studies on materials exhibiting negative Poisson’s ratio was 

in the field of polymers. The first reports in this field were focused on polytetrafluoroethylene 

(often referred to as PTFE) which was proven to have a propensity to exhibit auxetic behaviour 

as early as 1989 [167, 168]. This result was later used by Professors Andrew Alderson, Kim 

Alderson and Kenneth E. Evans, to lay foundations for the following studies on auxeticity of 

polymers and materials exhibiting negative Poisson’s ratio in general. In the following years, a 

number of studies relating to these systems were focused on the optimization of the production 
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process [169-172], mechanisms governing deformation behaviour and a possible range of 

mechanical properties [173-178]. 

In addition to the classes of systems described above, another very interesting area of 

studies on auxetic materials relates to nano-level systems. A pioneer in this field is Professor 

Anselm C. Griffin whose work was initially focused on the synthesis of liquid crystalline 

polymers [179-185]. Its significance was magnified by numerous studies conducted in the field 

of nanotechnology at that time. Over the years, a lot of attention was also devoted to finding a 

connection between the deformation mechanisms governing the behaviour of systems at nano-

scale and at a macro-scale [39, 186-190]. Some of the most prominent examples of systems at 

nano-level having a capability to exhibit auxetic behaviour are carbon allotropes as well as 

related structures amongst which it is worth to particularly highlight systems such as benzene, 

graphene, graphene oxide, a variety of carbon nanotubes and prismanes [191-201]. Over the 

years, a lot of attention of scientists working in the field of material science who were pursuing 

novel systems with the propensity to exhibit auxetic behaviour was also devoted to crystalline 

structures, in particular those occurring naturally. Some of the most studied examples of these 

systems are zeolites and silicates [189, 202-213] as well as zeolite-type frameworks, 

frameworks of oxides [91, 92, 97, 153, 214-218] and body centred cubic metals [94]. 

Last but not least it is important to note that there is a wide range of mechanical 

metamaterials and related devices which can exhibit auxetic behaviour. Many of these man-

made systems were designed based on the theoretical concepts which provided an insight into 

the possibility of achieving different types of unusual mechanical behaviour. A pioneer in the 

field of such theoretical models is Prof. Wojciechowski with one of the first examples of system 

investigated by his group being hard disks [24, 219-232]. Based on his work and subsequent 

studies of researchers working in this field, various systems have been applied in different 

branches of the industry. 
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Different mechanisms leading to auxetic behaviour 

Over the years, the rapid development of mechanical metamaterials resulted in a number 

of separate directions of studies focused on particular types of these systems. Different classes 

of mechanical metamaterials can be primarily distinguished between each other based on the 

geometry of the system and the mechanism governing their deformation. Some of the most 

studied examples of such classes of auxetic mechanical metamaterials include re-entrant 

structures, chiral and antichiral systems, rotating rigid unit systems, hierarchical structures and 

mechanical metamaterials with magnetic inclusions. The last three classes of mechanical 

metamaterials listed above are going to be discussed separately in more detail in the following 

sections of this thesis. This stems from the fact that these particular systems are closely related 

to studies conducted as a part of this thesis. 

It seems that systems composed of re-entrant honeycombs (see Figure 2-1(a)) are the most 

studied examples of re-entrant mechanical metamaterials. These systems were proven to have 

a propensity to exhibit auxetic behaviour as early as 1979 when Abd el-Sayed et al. published 

[233] their novel work. This study was soon followed by Gibson et al. [234] who through the 

theoretical model describing re-entrant honeycombs with a deformation mechanism governed 

by flexure of ligaments managed to show that such systems indeed exhibit negative Poisson’s 

ratio. In the following years, an attempt was made by a number of researchers to propose a 

model which would serve as an even more reliable representation of these systems in reality. 

Of particular importance is here the work published by Masters et al. [235], Evans et al. [236] 

and Gibson et al. [237], in which studies it was assumed that investigated structures deform via 

hinging and elongation of ligaments which mechanisms allow to realistically describe the 

discussed systems. Based on the initial work on re-entrant honeycombs which has formed a 

foundation for understanding their unusual behaviour, numerous studies were conducted over 
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the years where these systems were investigated from the point of view of their out-of-plane 

behaviour [238-241], off-axis mechanical properties [235, 242-246], various geometric designs 

[247-251] and the way how they respond to the application of a large stress [19, 252, 253]. 

Apart from re-entrant honeycombs there are also other types of re-entrant systems which 

may exhibit auxetic behaviour. One such example are structures which are often referred to as 

STAR-n systems with Attenborough et al. [254] being a scientist who initially proposed this 

concept (see Figure 2-1(b) for an example of such system). In the following years, these 

structures composed of star-shaped units were investigated in a number of different studies 

[270-274] where they were primarily used in order to design systems with a potential to exhibit 

negative Poisson’s ratio and negative compressibility. Another interesting example of re-entrant 

system which can exhibit auxetic behaviour is a so-called arrow-head system proposed by 

Larsen et al. [255] in 1997 (see Figure 2-1(c)). Properties of this system were validated 

experimentally in a number of studies [255-259] which indicate that this design is also suitable 

for a design of more complex mechanical metamaterials. It is also worth mentioning that there 

is a variety of other re-entrant mechanisms which have a propensity to exhibit negative 

Poisson’s ratio. As a matter of fact, such systems can also be designed in three-dimensions with 

some examples of this approach being studies on a re-entrant version of the tetrakaidecahedron 

system [139] (see Figure 2-1(d)) and a modified version of hexagonal honeycombs [260-265] (see 

Figure 2-1(e)). Another type of re-entrant system which can exhibit auxetic behaviour is the so-

called “fibril and node” system which concept was initially proposed by Alderson et al. [169, 266] 

in 1993. In the following years, it was reported in a number of studies [267-269] that similarly to 

their two-dimensional counterparts, these systems can exhibit similar characteristic in three 

dimensions (see Figure 2-1(f) for an example of such a system).  
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Figure 2-1 Examples of re-entrant systems. Panels show: (a) re-entrant honeycomb system 

[233], (b) STAR-4 system [254], (c) arrow-head system [255], (d) re-entrant configuration of 

the tetrakaidecahedron system, (e) a 3D arrangement of re-entrant honeycomb cells [Replicated 

from [260]] and (f) an example of the so-called “fibril and node” system [267]. 

 

Apart from systems described above, there are also other classes of structures which were 

proven to have a potential to exhibit auxetic behaviour and have been of particular interest 

among scientists working in the field of material science. One such class of systems corresponds 

to chiral re-entrant honeycombs which concept was initially proposed by Prof. Wojciechowski 

in 1989 [24]. These systems are composed of units (commonly they have a cylindrical shape 

but in general these units may also assume other shapes) which are connected to each other by 

means of ligaments with these ligaments being tangent to the surface of each of the units to 

which they are connected. The deformation mechanism associated with these systems is 

normally related to the flexure of ligaments where the extent of this effect depends on the 

geometry of a given structure.  
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In the pioneering work of Prof. Wojciechowski [24], the concept of the particular chiral 

system having a six-fold symmetry was proposed (see Figure 2-2(c)). In the years following 

this publication, this system, which is commonly referred to as a hexachiral system, was 

investigated experimentally by Lakes [25] and Prall et al. [26] in order to verify its potential to 

exhibit auxetic behaviour. As a result of these studies, it was proven that this system exhibits 

an isotropic Poisson’s ratio equal to -1. Another fundamental development in this field was 

made by Sigmund et al. [27, 28], who proposed a novel system where square-like units were 

connected by means of ligaments in a way resembling the diagram shown in Figure 2-2(e). This 

geometry, despite being seemingly similar to the structure mentioned above, deforms in a way 

resulting in units assuming alternate positions within the system rotating in opposite directions. 

This is very different from the behaviour observed in the case of the hexachiral system described 

above where all of the units rotate in the same direction during the process of deformation. In 

order to make a distinction between these two types of structures, more specifically systems 

corresponding to one of the two types of deformation described above, in 2000 it was proposed 

by Prof. Grima to refer to such systems as anti-chiral systems. At this point it is also worth to 

mention that in addition to geometries described above, the concept of trichiral and anti-trichiral 

re-entrant honeycombs (see Figure 2-2) was proposed in 2010 by Alderson et al. [29]. 
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Figure 2-2 All of the possible space-filling configurations of chiral and anti-chiral honeycomb 

systems. More specifically, panels (a), (b) and (c) show tri-, tetra- and hexachiral honeycomb 

systems. Panels (d) and (e) correspond to anti-trichiral and anti-tetrachiral structures. 

   

Even though both chiral and anti-chiral systems may assume complex shapes, there is a 

very limited number of designs of these systems which may form space-filling configurations. 

As a matter of fact, as discussed by Alderson et al. [270], space-filling chiral systems may only 

assume n-fold symmetries which correspond to n = 3, 4, 6 (see Figure 2-2(a)). On the other 

hand, as discussed by Grima et al. [271], the anti-chiral systems may only form a space-filling 

configuration for n = 3, 4. 

Apart from the studies on the design of chiral and anti-chiral honeycomb systems, these 

structures were also a subject of numerous [26, 270-275] studies focused on the analysis of their 

potential to exhibit auxetic behaviour. Another aspect which was thoroughly investigated is the 

effect which the variation in the thickness of ligaments and other geometric parameters has on 

mechanical properties of discussed systems [270-273]. Chiral honeycomb systems were also 

analysed in terms of their out-of-plane mechanical properties. This direction of studies turned 

out to be very successful as among other results it was reported that the discussed systems 

possess an enhanced resistance to transverse shear [276] and that due to the presence of nodes 
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they also exhibit a large resistance to the in-plane compression as their ligaments buckle out of 

plane [277-280]. In 2012, it was also reported that these systems have a propensity to exhibit 

negative Poisson’s ratio in the case of large strains [281]. This result indicates that the unusual 

mechanical properties of chiral systems can be utilised in a variety of applications requiring 

both small and large extent of deformation. At this point, it is also worth to mention some of 

the more recent studies relating to chiral and anti-chiral honeycomb systems which were 

primarily focused on the connectivity within the structure [282] and the effect which the 

introduction of the disorder to the system has on its properties [283]. 

 

Rotating rigid unit systems 

According to the currently accepted definition, rotating rigid unit systems (RUMs) consist 

of a set of perfectly rigid elements connected at vertices by means of point-like hinges. It is 

assumed that the shape of these units cannot be distorted during the process of deformation 

which manifests itself by a change in the angle of aperture between adjacent units. This in turn 

results in a rotation of rigid units. 

In recent years it was proven that rotating rigid unit systems may exhibit auxetic behaviour, 

which result was first reported by Professor Ole Sigmund [284]. In his work, it was shown that 

periodic systems constructed both in two and three dimensions may lead to a wide range of 

Poisson’s ratio. The model initially proposed by Sigmund consisted of two squares rotating in 

opposite directions, which was supposed to represent the behaviour of the auxetic structure. In 

the following years, a more simplified and hence more applicable approach was proposed by 

pioneers in the field of auxetic systems, namely Professors Joseph N. Grima and Kenneth E. 

Evans [202] as well as Professors Yoshihiro Ishibashi and Makoto Iwata [285]. In these models, 

it was assumed that the adjacent rigid units were connected at vertices by means of hinges. It 
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was also shown that the hinging process could be governed by a harmonic potential, which in 

practise could be realized throughout the use of springs attached to appropriate vertices of the 

structure. 

The first studies on rotating rigid unit systems were focused on two-dimensional periodic 

systems having a simple polygon as an elementary rigid unit of the system which in turn was 

used to form a unit-cell of a theoretical crystal. One of the first models corresponding to such 

systems was based on squares [2]. This work turned out to be of great significance as it was 

shown that the investigated model is an isotropic structure with a Poisson’s ratio of -1 which 

(as it was already mentioned) is the lowest possible value for isotropic materials. This result 

was soon followed by similar models addressing different types of polygons used as an 

elementary rigid unit. Some of the most studied examples of this approach are based on 

rectangles [3, 286, 287], triangles [288-292], parallelograms [202, 293, 294] and rhombi [287, 

295, 296]. 

 

Figure 2-3 A diagram showing different possible connectivities of rotating rigid units systems 

constructed by means of different type of quadrilaterals, namely squares, rhombi, rectangles 

and parallelograms [Replicated from  [297]]. 
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Besides different geometries of individual units, another important aspect associated with 

rigid unit systems is their connectivity within the structure. Of particular importance is the work 

of Professor Joseph Grima [287], where it was shown that the particular way how the rigid 

elements are connected at vertices may significantly affect the mechanical properties of the 

investigated system. In other words, the same set of rigid units connected in a different manner 

may lead to different values of the Poisson’s ratio. A very good example of this are systems 

constructed by means of rotating rigid rectangles referred to as Type I and Type II (see Figure 

2-3). Mathematical models established to assess their mechanical properties show that Type I 

structures are anisotropic and may exhibit Poisson's ratios ranging between negative and 

positive values depending on the angle of aperture within the system. This is in sharp contrast 

to the Type II system found to be isotropic with a Poisson's ratio equal to -1 irrespective of the 

value of the angle between the rigid units. This study was later extended to other rotating rigid 

unit systems such as ones constructed from parallelograms and rhombi [293, 297] to deduce the 

effect of the various possible connectivites of the units constituting these networks. A similar 

approach concerning changes in the connectivity of the rotating rigid unit system (having a 

particular type of polygon as an elementary unit) in order to alter mechanical properties of the 

system, was later applied in the case of geometries such as parallelograms and rhombi [203, 

293, 297]. It is also interesting to note that elementary rigid units having a very simple geometry 

may in general lead to a wide variety of connectivities. A good example are systems constructed 

from parallelograms, in which case the structure composed of such simple quadrilaterals can be 

connected in four different ways. 
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Figure 2-4 Panels show: (a) a system consisting of two types of differently-sized squares 

connected at vertices proposed by Grima et al. [2] [diagram adapted from [2]] (b) a system 

constituted by two types of differently-sized rigid rectangles connected at vertices proposed by 

Grima et al. [298]  [Taken from  [298]]. 

 

Another interesting direction of studies on rotating rigid unit systems relates to the use of 

differently-sized units within the same system. The first person to propose this concept was 

Professor Joseph Grima in his paper [2] published back in 2000. In his work it was shown that 

one may construct a system exhibiting negative Poisson’s ratio upon connecting differently-

sized squares at their vertices (see Figure 2-4(a)). A similar concept involving the use of two 

types of differently-sized rotating rectangles [298] was proposed in 2011 (see Figure 2-4 (b)) 

in which work it was reported that the investigated system exhibits an on-axis auxetic behaviour 

irrespective of the size and shape of rectangles. Moreover, upon changing the relative shape of 

rectangles one may change the mechanical properties (their magnitude) for loading in a 

particular direction. This work was of great significance as it showed that it is possible to alter 

the system in a way which would make it mimic the geometry of certain types of crystalline 

structures. This was not possible in the strongly idealised unimode rotating rigid systems having 

only one type of elementary unit constituting the system. Another approach aimed towards 

increasing the versatility of rigid unit systems was proposed by Professor Holger Mitschke. The 

main objective of his work [299-301] was to come up with different periodic systems exhibiting 

negative Poisson’s ratio with such structures being constructed by means of two or more 

different types of rigid units (see Figure 2-5). Moreover, in his work it was shown how the solid 
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rigid units can be replaced by rigid rods forming an analogical shape, which approach may 

prove to be particularly useful in computational studies involving molecular dynamics. 

 

Figure 2-5 A diagram presenting the use of a few different types of polygons to form a periodic 

system capable to exhibit a negative Poisson’s ratio [Adapted from [299]].    

 

Even though the rotating rigid unit systems are usually associated with two-dimensional 

structures, it is also possible to design analogical structures in three dimensions. Some of the 

first models describing this concept were proposed by Alderson et al. [91, 214, 215, 302] with 

these studies being focused on the deformation of tetrahedral frameworks. In another work, 

Attard et al. [303] proposed a mechanical metamaterial composed of cubic rigid units (see 

Figure 2-6(a)) which was proven to have a potential to exhibit auxetic behaviour. This work 

may also serve as a blueprint showing that it is possible to implement the concept commonly 

used in two dimensions in order to design three-dimensional counterparts of these systems. It 

is also worth to highlight the fact that there is a number of papers [304, 305] where analogical 

systems are constructed by means of elastic materials. A good example of this approach is the 

work by Shen et al. [304]. In his study, a cellular three-dimensional material was investigated 

(see Figure 2-6(b)) which, despite the use of an elastic material, deforms primarily via rotation 

of its units (especially for relatively small deformations). It was also reported that even in the 
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case of very simple geometries used to produce a periodic three-dimensional structure, it is 

possible to model a system exhibiting negative Poisson’s ratio in all three main directions. 

Another interesting approach associated with three-dimensional auxetic structures corresponds 

to the use of two-dimensional rotating rigid unit systems arranged in a non-planar conformation. 

A very good example of this concept is the work by Gatt et al. [306], where the system of 

rotating squares (analogical to the one proposed by Grima et al.) was folded into a tubular stent-

like conformation. 

 

 

Figure 2-6 Panels show: (a) a model composed of rotating rigid unit cubes arranged in a 3D 

configuration [Taken from [303]] and (b) an experimental realisation of the three-dimensional 

cellular structure proposed by Shen et al. [304]. 

 

Despite their relative simplicity, over the years, systems constructed from rigid units 

connected at their vertices were proven to provide a reliable description of real (more complex) 

systems. It was also reported that these systems may mimic the behaviour of real systems with 

sizes ranging between nano and macro-scale, which makes them a perfect tool to simulate a 

large variety of materials used in industry.  

One of the most common examples of this approach at micro-scale is associated with the 

use of RUMs as the most significant mechanism governing deformation of foams [291, 307]. 

This concept stems from the fact that in foam cells, in the vicinity of joints, one can observe a 
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significantly larger amount of material than is the case for ribs. Thus, the joints tend to be stiffer 

than the rest of the cell structure, and behave as quasi-rigid units during the deformation 

process. As a result, the ribs within the cells start to buckle as schematically shown in Figure 

2-7. In this case, the behaviour of the system can be loosely described by means of a theoretical 

system of rotating triangles, which proves that even complex systems might be modelled by 

means of rigid units systems. A confirmation of this result (involving the use of 3D X-ray micro-

tomography) was provided by McDonald et al. [163, 308]. 

 

Figure 2-7 A diagram showing that a deformation of a foam might be modelled by means of 

rotating rigid units systems [Adapted from [307]]. 

 

As described in the section devoted to a general overview of auxetic systems, there is a 

large number of systems at the nano-scale [202-205, 209, 214-216, 309-316] which can exhibit 
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negative Poisson’s ratio. As a matter of fact, it was also proven that the behaviour of a number 

of these systems can be represented by rotating rigid unit systems with some of the most studied 

examples being silicates, zeolites and various zeolite-based frameworks. Another interesting 

direction of studies relating to this concept is associated with the use of rigid units to model 

thermal expansion of these structures [46-51, 289, 317]. This was possible due to the fact that 

vibrations of respective units within molecules of crystalline structures tend to be highly 

symmetric which process resembles rotations of rotating rigid units with respect to a certain 

equilibrium angle.  

In recent years, mostly due to rapid developments in 3D-printing and experimental 

techniques [9, 318, 319], a lot of attention was devoted to auxetic perforated materials [5, 9]. 

These macroscopic structures are often designed in a similar manner to rigid unit systems 

known from the literature. The main difference between theoretical rotating rigid unit and 

perforated systems is the fact that in the case of the latter class of materials, the units constituting 

the system cannot be connected by means of point-like hinges. Instead, the adjacent units are 

connected with each other by means of an additional amount of material which makes it more 

difficult for the units to rotate. Moreover, it was reported that the smaller the amount of material 

used to connect respective units, the easier it is for the system to deform [320]. It was also 

shown that upon decreasing the amount of material used to connect neighbouring units, a 

description of the system by means of theoretical rigid units becomes more reliable. 

Last but not least it is also important to mention that similarly to systems at different scales 

described above, rotating rigid unit systems may also be used in order to mimic the deformation 

mechanism associated with other types of mechanical metamaterials (e.g. chirals, perforated 

materials etc.). This concept was thoroughly investigated by Professor Lim, who is one of the 

pioneers in the field of auxetic materials and related systems, in his recent work [321], where 

analogies between the deformation mechanism corresponding to different types of mechanical 
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metamaterials such as: rotating rigid units, perforated materials and chiral structures etc. were 

presented. 

 

Figure 2-8 Graphical representation of different mechanical metamaterials corresponding to a 

common deformation mechanism [Taken from [321]]. 

 

Hierarchical systems 

Over the years, the concept of hierarchy in nature has been investigated by numerous 

scientists. It is normally assumed that a given system is a hierarchical one if it consists of 

substructures having their own structure. This concept was first proposed by Professor Roderic 

Lakes in his famous paper published back in 1993 [322]. In his work, a convention for the way 

how the respective levels of the hierarchical system should be referred to was proposed (Level 

0 corresponds to the most elementary unit constituting the system). Furthermore, according to 

recent studies, one may find examples of hierarchical systems occurring naturally in our 

environment. Some of the more studied examples of such structures are wood [323] (tree trunks, 

branches etc.), insect wings [324] (in particular dragonfly wings were investigated) and bones 

[325]. 



 

30 

 

 

Figure 2-9 Hierarchical systems composed of honeycomb units forming elementary building 

blocks of the structure. Panels shown: (a) model proposed by Oftadeh et al. [Taken from [326]] 

and (b) model proposed by Mousanezhad et al.  [Taken from [327]]. 

 

In the last couple of years, a lot of attention was devoted to two-dimensional hierarchical 

systems constructed by means of simple elementary units corresponding to known designs of 

non-hierarchical mechanical metamaterials. One of the first examples of such systems was 

proposed by Oftadeh et al. in his paper [326] published in 2014. In his work, the system 

composed of simple hexagonal units [326, 328] forming larger triangular motifs was discussed 

(see Figure 2-9(a)). It was shown that upon increasing the level of hierarchy such system may 

result in a fractal-like geometry (see Figure 2-9(a)). The process of increasing the hierarchy of 

the system was also reported to increase the effective elastic modulus of the structure without 

an increase in the density. A similar concept was published one year later by Mousanezhad et 

al. [327] for the system shown in Figure 2-9(b) where the considered structure could deform 

both via the rotation of subunits and buckling of the material. Another interesting work 

associated with hierarchical materials was the study published by Cho et al. [329]. In this work, 

it was shown that perforated materials can be used to design systems where the geometry of 

subunits resembles rigid units systems (see Figure 2-10(a)). It was also discussed that the use 

of hierarchy allows the fully-stretched system to achieve significantly larger area than would 

be the case for a similar system which does not utilise this concept.  Another work where a 

similar structure was investigated was published by Gatt et al. [330]. In this work, it was shown 
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that one may design a hierarchical structure upon connecting rigid squares at vertices in a 

manner shown in Figure 2-10(b). This work also investigated different types of connectivities 

of subunits that can be used to construct the hierarchical system. All of the discussed structures 

were investigated numerically by means of Materials Studio software which led to the 

conclusion that such systems, similarly to unimode rotating squares, can exhibit auxetic 

behaviour. It was also proposed that hierarchical systems may be used in a variety of biomedical 

applications ranging from stents to skin grafts which utilise their enhanced mechanical 

properties. 

 

 

Figure 2-10 Panels show: (a) a diagram presenting a perforated fractal-cut model of the 

hierarchical mechanical metamaterial proposed by Cho et al. [Taken from [329]] and (b) 

different models proposed by Gatt et al. which present different ways of how elementary units 

consisting of rigid squares may form a hierarchical system [Taken from [330]]. On panel (b) 

different colours were used in order to highlight different levels of hierarchy within the 

structure. 

 

The work of Cho et al. and Gatt et al. commenced a series of studies [320, 331-333] on 

similar systems to those shown in Figure 2-10(b) where similarly to the conclusions raised by 

the aforementioned authors it was confirmed that these systems can be expanded to a 
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particularly large extent while exhibiting negative Poisson’s ratio. In addition to that, in the 

recent work by Seifi et al. [333], the possible extent of deformation of the discussed system 

was specified. Furthermore, in the paper published by Kunin et al. [320] it was reported that 

angles corresponding to respective levels of the hierarchical system are mutually independent. 

This means that based on a particular angle associated with a particular level of the structure it 

is not possible to determine the geometric configuration associated with the remaining levels. 

This observation is of great significance as it indicates that one cannot use a static approach in 

order to investigate the deformation process of analogical hierarchical systems. At this point, it 

is also worth to mention that these systems were investigated [320, 331-332] from the point of 

view of analysis of phonon dispersion graphs in order to evaluate their suitability for wave 

propagation. Last but not least it is important to mention the work published recently by Li et 

al. [334] where the potential of a novel hierarchical mechanical metamaterial composed of 

honeycomb-based unit cells to exhibit energy absorption and related properties was 

investigated. More specifically, depending on the level of hierarchy of the structure (see Figure 

2-11(a)), it was shown that the system responds differently to a collision with an external body 

(see Figure 2-11(b)). This in turn, as reported by Li et al. [334] could lead to a design of acoustic 

dampers and tunable membrane filters. 
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Figure 2-11 A hierarchical structure composed of elementary units in the form of re-entrant 

honeycombs. Panels show: (a) unit-cells corresponding to different levels of hierarchy, (b), (c) 

and (d) reaction of the hierarchical structure corresponding to different levels of hierarchy (n) 

upon being subjected to the collision with the external body [Taken from [334]]. 

 

 

2.1.2 Systems exhibiting negative compressibility 

Even though compressibility is one of the most fundamental mechanical properties, the 

existence of materials exhibiting negative compressibility has not been reported until 1972. In 

this year, Gunton et al. published an article where it was stated that negative area 

compressibility can be observed in the case of the trigonal phase of arsenic [335]. This result 
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was soon reported to be incorrect. As explained in the following years by Morosin et al. [336], 

this incorrect result was caused by an inaccurate measurement. Soon afterwards, a number of 

papers were released where the presence of negative linear compressibility in the case of 

crystals such as cesium dihydrogen phosphate [337] and phase 5 of an orthorhombic 

paratellurite at high pressure (TeO2) [338] was reported. Despite these studies, the person who 

is considered as a pioneer in the field is Prof. Ray H. Baughman who in 1998 published a 

famous work [72] where it was reported that rare crystal phases may exhibit both negative linear 

and area compressibility. The work of Prof. Baughman resulted in further studies by scientists 

from the field of material science on systems having a potential to exhibit negative 

compressibility in at least one direction (as discussed in the Introduction, in general materials 

cannot exhibit negative volumetric compressibility), with some examples being systems such 

as zinc dicyanoaurate [339], KMn[Ag(CN)2]3 [340] and methanol monohydrate [341]. 

Apart from studies on negative compressibility systems such as crystals and different 

chemical compounds, a new direction of studies in this field lies in the design of mechanical 

metamaterials to exhibit such a characteristic. This concept is of particular importance, as 

similarly as in the case of other mechanical properties, mechanical metamaterials may be tailor-

made in order to exhibit a particular type of compressibility which makes them suitable to be 

used in industry. One of the most studied examples of these systems which have a potential to 

exhibit negative compressibility in at least one direction are wine-rack systems. These systems 

are based on the concept of rigid rods connected to each other with hinging being the 

mechanism governing their deformation. The first work where this concept was proposed was 

published by Weng et al. [342] (see Figure 2-12(a)), with this idea being further developed by 

Grima et al. [343]. Apart from deriving analytical expressions describing negative linear 

compressibility of the wine-rack system [344, 345], Grima et al. has also reported [343] this 

effect in the case of honeycombs (see Figure 2-12(b)). Furthermore, one year later he extended 
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this concept to the three-dimensional model of dodecahedron [261] (as shown in Figure 2-12(c)) 

which is an example of a cellular structure. Other three-dimensional cellular systems which 

were recently reported to exhibit negative linear and area compressibility and deform 

analogically to the wine-rack mechanism include the hexahedron (see Figure 2-12(d-i)) and the 

octahedron model [346] (see Figure 2-12(d-ii)). It is also worth to mention a recent work by 

Lim et al. [347] where two types of mechanical metamaterials deforming analogically through 

the wine-rack mechanism were reported to have a potential to exhibit negative area 

compressibility. One should also note that analogical behaviour to the wine-rack system can be 

also observed at the molecular level with one of the most recent examples being the work by 

Grima et al. [348].  

 

Figure 2-12 Panels show: (a) a conceptual representation of the wine-rack structure [Taken from 

[342]], (b) hexagonal structure exhibiting NLC [Taken from [343]], (c) a 3D model of 

dodecahedron [Taken from [261]], (d) cellular systems capable of exhibiting NLC [Adapted 

from [346]] and (e) novel system having a potential to exhibit NAC [Adapted from [347]]. 
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Another important recent study is that by Qu et al. where the novel concept of mechanical 

metamaterials exhibiting negative effective compressibility is proposed [349]. This statement 

may seem to be confusing at first as in general materials cannot exhibit negative static 

volumetric compressibility with the justification being provided in the Introduction section of 

this thesis. On the other hand, one should distinguish between effective negative compressibility 

and negative compressibility as even though very similar, both of these quantities are different. 

Effective compressibility is defined as: 
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where, p stands for the external hydrostatic pressure, T represents temperature and Veff is the 

effective volume. This expression is almost identical to the definition of the static volumetric 

compressibility with the only difference being the fact that the volume V is replaced by Veff. 

The difference between V and Veff can be particularly visible in the case of porous materials 

where the size of pores can be too small to be visible with the naked eye. In such cases, it is 

possible that the material seemingly experiences a decrease in its perceived volume Veff while 

at the same time the actual volume V corresponding to the constituent material is being 

decreased. In the situation described above, Veff can assume negative values without 

contradicting the conservation of energy principle. This concept was proposed and validated 

numerically for a model shown in Figure 2-13. An additional confirmation was provided by 

these authors in their recent experimental study [350].  
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Figure 2-13 Panels show: (a) a unit-cell and the structure before an increase in the hydrostatic 

pressure and (b) the analogical system after an increase in the hydrostatic pressure [Taken from 

[349]].  

 

Apart from systems deforming solely as a result of the hinging of connected perfectly rigid 

rods there are also other types of systems which can exhibit negative compressibility. One such 

example are truss-type systems composed of several types of materials which respond 

differently to a change in pressure. The first work utilizing this concept was published by Grima 

et al. [351]. In this work, it was shown that different Young’s moduli of constituent materials 

may affect the compressibility exhibited by the system. This effect was investigated both for 

two (see Figure 2-14(a)) and three-dimensional models (see Figure 2-14(b)) being composed 

of a varying number of materials. Based on the presented results it was concluded that these 

system may exhibit both negative linear as well as area compressibility with the possibility of 

controlling the magnitude of both of these effects by means of appropriate parameters. In 

another work [76], Gatt et al. reported that it is also possible to use bimaterial constituents in 

order to design mechanical metamaterials exhibiting the discussed characteristic. Another class 

of systems with a propensity to exhibit negative compressibility and numerous other types of 

negative behaviour was proposed by Prof. Lakes and Prof. Wojciechowski in 2008. In their 
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work [75], it was first shown using a simple model composed of uniaxial pistons connected by 

springs that systems analogical to the structure presented in Figure 2-14(c) may exhibit negative 

compressibility as well as other types of unusual mechanical properties including negative 

thermal expansion. In the same work, it was also shown that this simple one-dimensional model 

can be extended in order to design a two-dimensional mechanical metamaterial exhibiting 

similar characteristics. In a more recent study [352], Hewage et al. used the concept proposed 

by Prof. Lakes and Prof. Wojciechowski to experimentally investigate properties of an 

analogical system for a variety of interactions between neighbouring units. 

 

Figure 2-14 Different systems having a propensity to exhibit negative compressibility in at least 

one direction. Panels show: (a) a two-dimensional truss-type structure composed of two 

different materials [Taken from [351]], (b) an equivalent concept presented in 3D [Taken from 

[351]], (c) One dimensional model composed of pistons connected to each other by springs 

[Taken from [75] and [347]], (d) a two-dimensional model which is equivalent to the model 

shown on panel (c) [Taken from [75]] and (e) an experimental model working on a similar 

principle as the model shown on panel (d) [Taken from [352]]. 
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In this thesis, it was already discussed that rotating rigid units systems may exhibit 

anomalous mechanical behaviour in the form of the negative Poisson’s ratio. As it turns out, 

these systems if appropriately designed may also exhibit negative compressibility in at least 

one direction. The first example of this approach was reported by Grima et al. [290] where the 

system of generic rigid triangles connected at vertices was investigated (see Figure 2-15(a)). In 

the more recent study [353], it was also shown that negative compressibility is possible for 

different quadrilaterals connected to each other at vertices as shown in Figure 2-15(b) taking 

type I rotating rectangles as an example. It was also reported that the extent of NLC in such 

systems depends on geometric parameters describing a given structure. 

 

Figure 2-15 Different types of rotating rigid unit systems which are known to have a propensity 

to exhibit negative linear compressibility. Panels show: (a) generic rotating rigid triangles 

[Taken from [290]] and (b) Type I rotating rigid rectangles [Taken from [353]]. 

 

 

2.1.3 Systems exhibiting negative stiffness 

Even though studies associated with systems exhibiting negative stiffness were started as 

early as 1957 [354] it had been many years until research in this area provided results which 

could be applied in industry. The mathematical formulation of negative tangent (incremental) 

stiffness was proposed several years later by Cenap Oran [355] whose research paved the way 

for a number of studies that pointed to several mechanisms associated with negative stiffness 

materials. One of the first studies in this field was commenced by Thompson et al. in 1979 
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[356] who proposed that systems of constrained buckled beams are unstable. Many years later, 

this concept was confirmed by Chan et al. [357] who also observed that such behaviour may 

lead to negative stiffness. This study was soon followed by that of Wang and Lakes [77] who 

showed that buckled beams (see Figure 2-16(a)) may use their stored energy to contribute to 

the deformation rather than oppose it. This in turn, as discussed by these authors, is a 

manifestation of negative stiffness. In their work, it was also observed that systems exhibiting 

negative stiffness are unstable and should one remove the constraints then they would try to 

assume one of the energetically favourable conformations. This mechanism is the origin of the 

discussed mechanical property. Also, as stated by Falk et al. [358], negative stiffness in elastic 

materials may be observed only if the energy plotted with respect to displacement has at least 

two local minima. Wang and Lakes also reported that it is possible to replace the buckled beam 

with pre-loaded connected springs in order to observe an analogical characteristic. In the 

following years, many scientists continued efforts associated with studies on pre-buckled beams 

having a propensity to exhibit negative stiffness. Most notably, in 2008 Yap et al. [78] showed 

that negative stiffness can be achieved in multiwalled carbon nanotubes (see Figure 2-16(b)). 

In this work, apart from verifying the results observed at the macroscopic level it was also 

suggested that these nanotubes can be used to design composites at the nano-scale which would 

have a potential to exhibit anomalous mechanical behaviour such as negative stiffness. Another 

interesting study was reported by Kashdan et al. [359] where it was shown that the concept of 

the constrained buckled beam may be modified by an addition of another spring (see Figure 

2-16(c)). It is also important to mention the work by Coulais et al. [79] where the concept of 

the pre-buckled beam exhibiting negative stiffness was modified by the introduction of evenly-

distributed apertures on the beam itself (see Figure 2-16(d)). Last but not least, the most recent 

contribution to the field of pre-buckled beam-like systems exhibiting negative stiffness was 

reported by Cortes et al. [360]. In this work, it was shown that a pre-buckled beam may be used 
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in order to design a piston-like subunit. It was also discussed what would happen with properties 

of such system should one insert it into a polymer matrix (see Figure 2-16(e)). A similar concept 

associated with honeycomb-like materials was also reported in [361, 362]. 

 

Figure 2-16 Panels show: (a) theoretical concept of the buckled beam [Taken from [77]], (b) 

carbon nanotube exhibiting analogical behaviour to the buckled beam [Taken from [78]], (c) a 

buckled beam with an additional spring [Taken from [359]], (d) a buckled beam with additional 

apertures [Taken from [79]] and (e) buckled beam forming a piston-like mechanism submerged 

into a polymer matrix [Taken from [360]] . 

 

Another area of study where the use of the concept of negative stiffness has been of great 

significance are composites with negative stiffness inclusions. The pioneer in this field is Prof. 

Lakes and his group who in 2001 published an experimental paper [363] where it was shown 

that it is possible to achieve a stable positive stiffness composite upon inserting negative 

stiffness inclusions into a matrix despite the fact that such inclusions would be unstable if 
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considered separately. To achieve this effect, Lakes et al. inserted negative stiffness inclusions 

in the form of ferroelastic vanadium dioxide into a positive stiffness tin matrix. It was also 

reported that introducing such inclusions in the system makes it possible to increase the stiffness 

of the whole composite [364] with the extent of this effect being even greater than in the case 

of diamond inclusions. This in turn, as suggested by these authors, could make such materials 

suitable for applications such as superior vibration damping devices. A similar suggestion was 

also made by Lakes et al. in his following papers [365-368] which discussed extreme damping 

observed in composites with negative stiffness inclusions. In the same year, Wang et al. [369] 

suggested that composites with negative stiffness inclusions may lead to anomalous coupled 

field properties such as piezoelectricity and negative thermal expansion.  In 2007 Jaglinski et 

al. [370] went as far as to show experimentally that the effect of stiffening of the resultant 

composite may lead to a stiffness greater than that of diamond (it was also shown that a similar 

effect of stiffening may be achieved upon combining elements with negative and positive 

Poisson’s ratio [371, 372]). This novel result (up to this point it has not been confirmed 

experimentally) was obtained for a composite composed of a metal matrix with barium-titanate 

inclusions (see Figure 2-17(a)). In the following years, the concept of stiffening of a composite 

as a result of the introduction of negative stiffness elements to the system was described and 

quantified by means of a theoretical model proposed by Drugan in 2007 [373]. Another 

interesting work [374] in this field was published by Kochmann et al. who showed that similar 

behaviour may be observed should one consider a negative stiffness cylinder with a positive 

stiffness coating (see Figure 2-17(b)). This concept was developed even further by these authors 

in their next study on this subject [375] where they showed that it is possible to achieve an 

arbitrarily large value of positive stiffness for the analogical system upon allowing it to rotate. 

A few years later, Dyskin et al. [376] proposed a concept of an elastic composite where isotropic 

negative stiffness inclusions having a cylindrical shape are inserted into an isotropic matrix 
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with a positive stiffness (see Figure 2-17(c)). In this work, it was shown that depending on the 

concentration of such inclusions within the matrix, the resultant composite may exhibit very 

different types of behaviour in terms of stiffness. More specifically, by means of the theoretical 

model, it was shown that if the number of cylindrical inclusions does not exceed a particular 

threshold value then the whole composite exhibits positive stiffness having its value enhanced 

in comparison to the stiffness of the matrix. On the other hand, if this threshold value is 

exceeded the contrary is observed, with the system exhibiting unstable behaviour corresponding 

to negative stiffness. At this point, it is also worth to mention that the studies described above 

were followed by a number of different research projects [377-380] associated with the use of 

negative stiffness inclusions in mechanical systems at different scales (see Figure 2-17(d) for 

an example of such system [379]). 

 

Figure 2-17 Panels show: (a) figure of the composite investigated by Jaglinski et al. [370], 

where black dots indicate negative stiffness inclusions and the remaining grey-scale 

background is a positive stiffness matrix [Taken from [370]], (b) cylindrical composite 

proposed by Kochmann et al. [Taken from [374]], (c) model investigated by Dyskin et al. 

[Taken from [376]] and (d) composite proposed by Chronopoulos et al. [Taken from [379]]). 
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Negative stiffness is a property which is particularly required in the case of vibration 

damping devices. As a result, there has been a large number of studies [381-387], where a 

variety of mechanical devices were reported to have a propensity to exhibit such a 

characteristic. From the point of view of this thesis, of particular interest are those devices 

which make use of magnetic interactions in order to induce a required type of stiffness as 

opposed to other types of physical interactions. As reported by Feldman [388], negative 

stiffness can also be achieved as a result of interaction of attracting magnets. Over the years, 

this concept has resulted in a number of studies where different configurations of magnets were 

used in vibration damping devices which exhibit the required properties. One of the prime 

examples of this approach is the work by Carrella et al. [381] (see Figure 2-18(a)) where the 

proposed damper was composed of three uniaxial magnets with an additional spring being the 

source of the positive stiffness. In this work it was shown that, depending on the ratio of the 

strength of magnets with respect to the stiffness constant associated with springs, such a 

structure may exhibit positive or negative stiffness. It was also reported that this system may 

undergo a transition from one type of stiffness to another during the process of mechanical 

deformation which corresponds to a change in the distance between respective magnets. A 

similar concept was reported one year later by Robertson et al. [389], with the difference being 

lack of springs in the design of the mechanism (see Figure 2-18(b)). In the same year, Ravaud 

et al. [390] showed that it is also possible to arrange magnets in a way shown in Figure 2-18(c) 

in order for the structure to exhibit negative stiffness (a similar more recent concept can be 

found in [391]). As reported by the authors of this work, such a configuration may also serve 

as a bearing in the case of devices which require near zero friction on their axis of rotation in 

order to operate. Some other more complex devices [392-394] were also proven to have a 

potential to exhibit negative stiffness in the following years. Amongst more recent studies in 

this field, it is worth to mention the work by Wu et al. [395] who in 2014 proposed a novel 
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concept concerning the magnetic “spring-like” mechanism which was reported to exhibit 

negative stiffness (see Figure 2-18(d)). One year later, Shi et al. [396, 397] managed to 

construct experimental prototypes of magnetic vibration damping devices which are based on 

some of the concepts proposed in previous years (see Figure 2-18(e)). According to his study, 

analytical predictions made in the past were indeed correct where the considered systems 

showed a propensity to exhibit negative stiffness. 

 

Figure 2-18 Panels show: (a) uniaxial attracting magnets with an additional spring offering 

positive stiffness to the system [Taken from [381]], (b) model composed of uniaxial magnets 

proposed by Robertson et al. [Taken from [389]], (c) concept corresponding to uniaxial 

magnetic rings proposed by Ravaud et al. [Taken from [390]], (d) structure acting as magnetic 

spring [Taken from [395]] and (e) examples of structures investigated experimentally by Shi et 

al. [Taken from [396]]. 
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At this point it is also worth to mention the recent work published by Hewage et al. [352], 

where using an experimental prototype motivated by the concept proposed initially by Prof. 

Lakes and Prof. Wojciechowski [75], it was shown that it is possible to design complex 

mechanical metamaterials which can exhibit several unusual mechanical properties (including 

negative stiffness) at the same time. This indicates, that soon it may become possible to combine 

the benefits associated with negative stiffness and other unusual materials such as auxetics at 

the industrial scale in order propose novel applications which could lead to a potential 

breakthrough in the field of material engineering. As a matter of fact, even nowadays when 

negative stiffness devices do not normally exhibit several other anomalous properties, these 

systems are very useful in a number of everyday applications such as isolation of vehicle seat 

vibrations [398], isolation of vibrations in railroads [387] and minimisation of the seismic 

response of a building [399, 400]. 

 

2.2 Mechanical metamaterials and other systems with magnetic 

inclusions 

As discussed in the former chapters, despite a significant number of conducted studies, 

materials exhibiting anomalous auxetic behaviour constitute a still relatively new branch of 

material science. One of the most recent directions of studies in this field is associated with 

materials having magnetic inclusions where the behaviour of the system can be influenced by 

internal magnetic interactions between inclusions or the interaction of inclusions with an 

external magnetic field. One of the first studies involving the concept of magnetic inclusions in 

auxetic systems was the work of Scarpa et al. [401] where the suitability of polyurethane foam 

for sound absorption was discussed. More specifically, it was shown that the potential of 

investigated foams to exhibit acoustic absorption properties becomes additionally enhanced by 
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the insertion of micro-sized carbonyl iron particles into the system in the presence of an external 

magnetic field. In another study conducted by this author [402], mechanical, acoustic and 

electromagnetic properties of polyurethane foams with magnetic inclusions were analysed 

experimentally. Among other results, in this work it was reported that as in conventional foams, 

the insertion of magnetic particles into the system results in an increase in the refractive index. 

Another work relating to electromagnetism in the case of mechanical metamaterials is the work 

published by Smith et al. [403] where electromagnetic properties of re-entrant dielectric 

honeycombs were discussed. More specifically, it was shown that the permittivity of the system 

changes upon varying the geometric parameters of the structure which as suggested by the 

authors, may prove to be useful in electromagnetic window applications. 

 

 

Figure 2-19 Systems of thin magnetic films having a potential to exhibit auxetic behaviour 

shown schematically in the case of (a) a theoretical work reported in [404] [Adapted from [404]] 

and (b) experimental work involving the use of CoFe2O4 [Taken from [123]]. 
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The above studies conducted by the group led by Prof. Scarpa were soon followed by other 

researchers who shared the interest in the possibility of controlling / affecting the properties of 

a system by the use of magnetic inclusions. One such direction of studies was the work 

conducted by Prof. Dudek and Prof. Wojciechowski where the potential of ferrogels to exhibit 

auxetic behaviour was investigated by means of computer simulations (molecular dynamics 

simulations) [405]. In their work, the investigated structure was represented by a nonmagnetic 

polymer with magnetic grains having their motion governed by Landau-Lifshitz-Gilbert 

equation [482]. In the following study [404], these authors investigated mechanical properties 

of a thin magnetic film exposed to an external magnetic field. In this work, the structure 

consisted of hexagonal units with inclusions in the form of magnetic nanoparticles where the 

units were connected to each other by springs corresponding to chemical bonds (see Figure 

2-19(a)). Amongst other results, the authors proved that such system may indeed exhibit auxetic 

behaviour. In the more recent experimental work on thin magnetic films, Valant et al. reported 

a negative Poisson’s ratio equal to -0.85 for CoFe2O4 thin film subjected to a compressive axial 

strain (see Figure 2-19(b)) [123]. This result was explained based on the observation that the 

bonds in the unit cell of the investigated material form a honeycomb-like shape which is known 

to exhibit auxetic behaviour. 
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Figure 2-20 Panels show: (a) different examples of mechanical metamaterials which are 

potentially suitable to host magnetic inclusions, (b) the model investigated and (c) experimental 

realisation of the theoretical concept proposed on panel (b) [Adapted from [406]]   

 

After the initial success of theoretical and experimental studies on systems at the nano and 

micro scale with magnetic inclusions, researchers working in the field of material science 

started working on projects where the magnetic inclusions could be utilised in macroscopic 

systems to control their motion. One of the first studies where such an attempt was made was 

the work by Prof. Grima et al. [406] where it was proposed that even at the macroscopic scale, 

one can place magnets on the structural units of the mechanical metamaterial in order to control 

its mechanical behaviour. This concept can be visualised with the help of a number of simple 

diagrams as shown in Figure 2-20(a). Furthermore, based on the theoretical model and the 

experiment, it was shown that one can indeed control the mechanical properties and the 

configuration of such systems through a variation in the external magnetic field which in the 
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case of this study was applied by means of magnets placed outside the system (see Figure 2-20 

(b-c)). In the following years, it was reported that this approach can be also used in elastic 

materials with magnetic inclusions. In such systems, mechanical properties may be fined-tuned 

by the interplay between the elastic behaviour of the material and magnetic interactions between 

magnetic inclusions and the external magnetic field. One of the first conceptual papers reporting 

this effect was published by Singh et al. [407], where the magneto-elastic buckling of a beam 

was investigated. In this work, it was shown that the magnetic interaction between the magnet 

set at one end of the beam and the external magnet may overcome the elastic forces within the 

material so that the beam could be bended to an arbitrary extent (see Figure 2-21(a)). This work 

was soon followed by studies on more complex magneto-elastic systems such as the kagome 

lattice with magnetic inclusions in the work published by Schaeffer at al. [408] (see Figure 

2-21(b)). In this work, amongst other results, it was shown that the discussed system can deform 

to a significant extent upon being subjected to an external magnetic field. It was also observed 

that the stiffness of the investigated lattice may be fine-tuned as a result of the deformation. In 

recent years, the concept of the deformation of magneto-elastic systems caused by the 

application of an external magnetic field was also applied to different cellular structures with 

the first example of this approach being the work by Tipton et al. [409] where it was proposed 

that the discussed effect is scalable and could potentially become an actuation mechanism for a 

change in the topology of a given structure. After a few years, a similar result was also reported 

by Harne et al. [410] in which work it was additionally shown that the magnetically-induced 

deformation of the magneto-elastic cellular system may lead to auxetic behaviour (see Figure 

2-21(c)).       
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Figure 2-21 Panels show: (a) elastic Euler beam with a magnet at one of its ends which is being 

attracted by an external magnet [Taken from [407]], (b) kagome lattice with magnetic inclusions 

[Adapted from [408]] and (c) cellular structure with magnetic inclusions deformed by an 

external magnetic field [Adapted from [410]]. 

 

Having established that the deformation process of mechanical metamaterials with 

magnetic inclusions can be controlled via an external magnetic field, it is useful to consider 

different applications that make use of such systems. One branch of material science where 

these structures have been successfully used are studies on wave propagation phenomena in 

magneto-elastic mechanical metamaterials. A pioneer in this field is Prof. Ruzzene with his 

group who has proposed a number of theoretical models focusing on the control of wave 

propagation properties. One of the first papers where this phenomenon was thoroughly 

investigated is the work by Schaeffer et al. [411]. In this work, different multistable one and 

two-dimensional magneto-elastic lattices were investigated by means of dispersion diagrams 

and numerical simulations. In the case of each of the investigated systems, it was assumed that 

the structure is composed of axial and torsional springs with magnets represented by individual 

magnetic moments being located at intersections between respective springs (see Figure 2-22 

for examples of such systems). Based on the obtained results, it was concluded that the band 
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gap formation is strongly affected by the choice of the investigated geometry. Upon minimizing 

the potential energy of the considered structures, it was also shown which types of stable 

configurations can be assumed by respective systems. A similar work devoted solely to the 

search for energetically-optimal configurations of one and two-dimensional magneto-elastic 

lattices was published a few months later by the same group [412]. It is also worth to note that 

in one of their recent studies, this group has also investigated wave propagation properties in 

magneto-elastic kagome lattices [408]. 

 

Figure 2-22 Different examples of magneto-elastic lattices with magnetic moments represented 

by blue or red points being oriented in the perpendicular direction to the plane of the figure 

[Taken from [412]]. 

 

The class of mechanical systems which perhaps finds the largest number of applications in 

the industry are vibration dampers with magnetic inclusions. As reported by Feldman et al. 

[413] and Carrella et al. [414], attracting magnets have a potential to exhibit negative stiffness. 

This mechanical property is in turn known to be essential in the case of materials used to 

construct devices meant for vibration isolation and vibration damping. One of the prime 

examples of this approach is the work by Shi et al. [396] where a set of three uniaxial magnets 

composes a device exhibiting negative stiffness (see Figure 2-23(a)). At this point it is also 

important to highlight the fact that it is possible to design more complex periodic mechanical 

metamaterial systems exhibiting this characteristic as a result of magnetic interaction between 

constituting elements with a good example being the work published by Hewage et al. (see 

Figure 2-23(b)) [352]. 
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Figure 2-23 Panels show: (a) model of a magnetic vibration damper operating through the 

principle of negative stiffness  [Taken from [396]] and (b) an experimental example of the 

mechanical metamaterial exhibiting negative stiffness [Taken from [352]]. 
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3. Scope of this Work and Topics Addressed  

As discussed in the preceding Literature Review, over the years, mechanical metamaterials 

have been proven to have a potential to exhibit unusual mechanical properties such as negative 

Poisson’s ratio, negative stiffness, negative compressibility and negative thermal expansion. 

The possibility of achieving these anomalous properties has been the main focus of scientists 

working on mechanical metamaterials as such properties may be used in a variety of 

applications ranging from impact-resistant devices to sound-proofing and biomedical devices.  

However, even though several forms of mechanical metamaterials have been thoroughly 

investigated from the point of view of achieving the above properties, the field is still 

expanding. It is likely that there are still a number of mechanisms which can result in unusual 

properties that have yet to be identified and / or studied further. For example, although there 

have been many developments on systems which incorporate within them some form of rotating 

rigid units, there are various aspects and properties that these systems may have which have 

never been investigated or their development is still in its infancy. These include the dynamic 

aspects associated with auxetic mechanisms, the behaviour of mechanical metamaterials with 

magnetic inclusions and other different physical phenomena which have not yet been 

investigated vis-à-vis the mechanical metamaterials. 

In view of the above, this thesis will take as a starting point the classical ‘rotating squares’ 

concept and develop it so as to examine how some interesting effects can be achieved if one 

had to take a different approach at how these systems operate. In particular, through a dynamics 

approach, the thesis will first look at how the rotation of the subunits constituting rotating rigid 

units structures may in general lead to the overall rotational motion of the system. More 

specifically, the methodology is developed and applied on finite fragments of the rotating 

squares system with the scope of developing the theoretical framework to examine how rotating 



 

55 

 

squares systems may induce their own rotation. This is followed by a qualitative experimental 

verification of this phenomenon so as to confirm in a definite manner that this effect may be 

indeed observed in reality. The theory behind the concept is then further extended to examine 

how this effect can be enhanced and generalised through the use of systems where the squares 

are replaced with rectangles which can be considered as more general analogues of squares. 

Following this, using a similar dynamic approach the behaviour of a two-level hierarchical 

system composed of rotating squares is re-examined in an attempt to address an important 

unanswered question, more specifically why in real experimental scenarios the higher level of 

a hierarchical system tends to open up to a significantly greater extent than the lower levels of 

the system. 

Even though all of the systems mentioned above make use of square/rectangle-like motifs, 

it does not mean that novel types of mechanical behaviour cannot be exhibited by other systems 

which have not yet been proposed. As a matter of fact, due to the possible versatility of 

mechanical metamaterials, one can expect that there is a plethora of such systems. Thus, this 

thesis will attempt to show that even though mechanical metamaterials have been extensively 

studied, it is still possible to design novel types of these systems with a potential to exhibit 

unusual mechanical behaviour. More specifically, an original design of a mechanical 

metamaterial composed of rigid triangles will be proposed and analysed in detail so as to assess 

its Poisson’s ratio, compressibility and thermal expansion properties.  

Following the above studies, this thesis will look at another aspect of mechanical 

metamaterials, namely the behaviour of mechanical metamaterials having their behaviour 

governed by magnetic interactions. In particular, mechanical metamaterials with magnetic 

inclusions will be studied through both theory and experiment in an attempt to show that the 

use of magnetic inclusions may enhance anomalous mechanical properties exhibited by the 

system as well as make it exhibit mechanical properties which would not be manifested without 
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the use of such inclusions. In particular, it will be shown that, at the macroscopic scale, it is 

possible to insert magnets / electromagnets into the mechanical metamaterials in order to make 

them exhibit a desired type of stiffness whose effect may be accompanied by other unusual 

mechanical properties related to the geometric design of the system. Using a theoretical model, 

it will be also shown that mechanical metamaterials with magnetic inclusions may exhibit novel 

physical phenomena which are not necessarily related to mechanical properties. More 

specifically, a hypothetical mechanical metamaterial with magnetic inclusions at the nanoscale 

will be used to examine how one may induce a magnetocaloric effect solely as a result of the 

mechanical deformation even though normally the presence of an external magnetic field would 

be necessary to observe this phenomenon. This is followed by an investigation on the rate of 

growth of magnetic domains in magneto-mechancial systems represented by the Ising model 

defined on the nonmagnetic mechanical system with magnetic inclusions and how this rate of 

growth depends on the rate at which the system is deformed. 
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4. Self-induced global rotation of mechanical metamaterials: 

Theory1 

 

Highlights 

 The concept of the self-induced global rotation of mechanical metamaterials is 

introduced; 

 A model allowing to analyse the extent of the global rotation of the particular 

mechanical metamaterials, i.e. the rotating square system, is formulated and analysed; 

 It is shown that extent of self-induced global rotation depends on the mass distribution 

and the number of units constituting the system; 

 It is proposed and discussed that the mechanical deformation leading to the global 

rotation of the considered system could be induced upon incorporating magnetic 

inclusions into some of the units constituting the system.  

 

4.1 Introduction 

In the literature, there are several examples of systems which can induce their own global 

rotation as the result of the rotation of their components. One of the prime examples of this 

approach are spacecrafts where the attitude control (control over the orientation in space) is 

attained via the use of reaction wheels [415, 416]. Such reaction wheels can be described as 

rigid bodies having normally a cylindrical geometry which rotate in a particular direction in 

order to induce the rotation of the spacecraft in which they are located in the opposite direction 

                                                 
1 The content of this chapter has already been published in the peer-reviewed journal  AIP Advances: K. K. Dudek, 

R. Gatt, L. Mizzi, M. R. Dudek, D. Attard, J. N. Grima, Global rotation of mechanical metamaterials induced by 

their internal deformation AIP Adv. 7 095121 (2017) 
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which effect can be explained by means of the angular momentum conservation principle. 

However, the fact that reaction wheels normally have a cylindrical geometry does not mean that 

one cannot consider the use of another geometry in order to observe a similar effect. In fact, it 

is even possible to consider the system analogous to the aforementioned reaction wheels which 

is not a rigid body. Such a system, apart from rotating as the result of the direct application of 

the torque to the structure by an external motor, may also induce its own global rotation via the 

rotation of its components.  

A perfect candidate to design such a device is the use of mechanical metamaterials which 

are known to have a potential to deform via rotation of their subunits. As discussed in the 

previous chapters (Introduction and the Literature Review), over the years, mechanical 

metamaterials have been thoroughly investigated from the point of view of their potential to 

exhibit unusual thermo-mechanical behaviour with some of the most studied examples of such 

properties being negative Poisson’s ratio, negative thermal expansion, negative compressibility 

and negative stiffness. In an attempt of designing mechanical metamaterials capable of 

exhibiting such properties, many separate directions of studies related to different classes of 

mechanical metamaterials have been commenced. These studies resulted in the rapid increase 

of the interest of scientists working in the field of materials science in these systems as well as 

provided a platform allowing to introduce some of the most interesting concepts reported in this 

field to different branches of the industry ranging from medicine to civil engineering. However, 

despite all of the progress made in the field of mechanical metamaterials there are still different 

aspects related to these systems which remain to be discovered. One such aspect is the effect 

which the rotation of subunits has on the global rotation of the whole system. 

In view of this, in this chapter, the potential of mechanical metamaterials to induce their 

own global rotation was investigated for one of the most fundamental examples of such 

systems, i.e. the rotating square system. More specifically, in this chapter, the concept 
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corresponding to a potential of the rotating square system to induce its own global rotational 

motion is going to be discussed. This effect can be set into action through the use of magnetic 

inclusions. Another aspect which will be investigated is the effect which the number of subunits 

composing the structure and the mass distribution have on the extent of rotation of the whole 

system. This chapter also discusses how the novel concept reported here may lead to potentially 

new uses of mechanical metamaterials in applications such as telescopes employed in space 

and wind turbines.   

4.2 Model 

A model designed to induce and control its own rotational motion based on the two-

dimensional rotating rigid squares mechanism will be presented in this section. This auxetic 

mechanism, which is one of the earliest systems studied with respect to its potential to exhibit 

a negative Poisson’s ratio, consists of square units connected to each other at their corners 

through hinges (see Figure 4-1(a)). When the rotating squares structure is uniaxially stretched, 

the individual squares constituting the structure rotate relative to each other in order to attain a 

more open conformation, with every square rotating in the opposite direction to the one adjacent 

to it. 

At this point, it is important to note that rigid units which in this work are referred to as 

squares, in reality represent cuboids connected in exactly the same manner as squares shown in 

Figure 4-1(a). This nomenclature is used in order not to confuse the discussed structure with 

the other well-known mechanical metamaterial which is often referred to as rotating cuboids 

system [303] which system corresponds to a completely different deformation mechanism. 
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Figure 4-1 The panels show (a) the model of the discussed system with schematically drawn 

blue arrows indicating the positioning of linear actuators inducing a deformation of the system 

(black arrows indicate all types of rotations exhibited by the system), (b) a diagram presenting 

a possible connection of the discussed system with an external body, (c) diagrams depicting the 

concept of global rotation of the system in which the rotation of rigid units results with a 

decrease of the angle 0  and a change in the value of 1 . The change in the value of 1  

corresponds to the rotation of the structure with respect to its centre of mass.  

 

In this chapter, a three-dimensional system whose cross-section may be described as a finite 

rotating rigid square system made up of S SN N  squares will be considered where the rigid 

units are connected at vertices acting as hinges. Deformation of the system is assumed to occur 

only through opening and closing of these hinges, with squares themselves remaining perfectly 

rigid. The cross-sectional dimensions of the rotating units, i.e. the lengths of their sides, are 

defined by the parameter a, while their thickness or depth is denoted by z. Consequently, their 

mass, M, may be defined in terms of these dimensions and the density of the rotating units,  , 

as: 
2M za . 
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It shall be assumed that a deformation which results in a relative rotation of respective rigid 

units in the way described above is achieved as a deformation induced internally within the 

structure, i.e. in a manner other than pulling of the system. This can be achieved, for example, 

via the use of a set of linear actuators embedded in a system in a way so that the opposite ends 

of diagonals of apertures formed between the adjacent units would be either brought closer or 

farther from each other (see Figure 4-1(a)). As a result of the action of such actuators (or some 

other alternative means to achieve the same net effect), the rigid units constituting the system 

will rotate. So as to avoid undue complexity, it will be further assumed that, throughout the 

process the rigid units are rotating with a constant angular acceleration 0  which results in a 

change in the angle between the adjacent units. This angle is denoted as 02  (see Figure 4-1(a)) 

which means that in terms of magnitude, all of the units rotate with the same angular velocity 

0
0

d

dt


   which stems from the particular geometry of the system. It is also worth to note that 

the rigid units may rotate within the limits of geometric constraints of the system, i.e. as long 

as the condition  0 0 ,90     is satisfied. It should be also noted that it shall be assumed that 

the considered system is isolated which means that the effect of external forces on its behaviour 

will not be taken into consideration. 

As mentioned above, it is assumed that the respective rigid units within the system rotate 

with an angular velocity changing accordingly with a constant angular acceleration. This 

process leads to the change in their angular momentum in time which results with a generation 

of a torque by each of the units. Since in a rotating square system each square rotates in the 

direction opposite to the one next to it, the net torque of a system made up of an even number 

of identical rotating units should be equal to zero, as the opposing rotations of the adjacent 

individual units comprising the system would cancel each other out. However, if SN  is an odd 

number, the number of squares rotating in one direction will be greater by one in comparison 
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to those rotating in the opposite direction. In view of this, systems considered in this work will 

only correspond to odd values of SN  as such systems have the potential to generate a larger 

overall torque than their even-numbered counterparts which would result with a greater extent 

of rotation. Another way of amplifying the net torque generated by the system corresponds to 

the differentiation of the mass of two sets of units rotating in the opposite directions, with 

squares in different sets being equally-sized but having a different density. The masses of these 

squares will be denoted by HM  and LM respectively, where HM  and LM  correspond to units 

with larger ( H ) and lower density ( L ) respectively. The square at the centre of the system 

will always be assumed to have a mass of HM  and therefore the system will in all cases be 

made up of 

2 1

2

SN 
  heavy rotating units and 

2 1

2

SN 
 light rotating units. Furthermore, the 

extent of rotation of the whole system with respect to its centre of mass and an external global 

axis will be denoted by 1 , where initially the unrotated system has a 1  value of 0 . 

As it was mentioned above, the accelerated motion of respective heavy and light units 

results in a generation of the net torque  0 0 0    , which quantity may be defined in the 

following manner: 

0
obH L

dLdL dL

dt dt dt
     

4-1 

where, HL  and LL  stand for a sum of angular momenta coming from all of the heavy and light 

units respectively. obL  represents the magnitude of the angular momentum associated with an 

external body attached to the centre of the square located in the middle of the system (it is not 

related to HL  nor LL ). As shown in Figure 4-1, the centre of the square in the middle of the 

system also corresponds to the axis of rotation of the whole system. The third term in equation 

4-1 has the same sign as the term corresponding to the rotation of heavy units, which stems 
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from the fact that the external body is attached to the heavy square. As a result, it must also 

rotate with the same angular velocity as heavy units which rotate with respect to their own 

centres (see Figure 4-1(a)). At this point, one should note that in the case when there is no 

external body attached to the system constituted by rigid squares, the last term in the above 

equation assumes the value of 0. Equation 4-1 may also be written down in a discrete form in 

terms of parameters corresponding to the mass distribution and geometry of the system [417]. 

Torque 0  contributes to the overall rotation of the system with respect to its centre of mass, 

which in turn is associated with the change in the angle 1 . Taking all of this into consideration, 

an overall rotation of the discussed system, induced by the opening / closing of the rotating 

units, can be expressed through the rotational analog of Newton's equation of motion in the 

following manner: 

  1
0 1ext ob

dd
I I

dt dt


 

 
    

 
 

4-2 

where the negative sign in front of 0  arises due to Newton's third law for rotational motion as 

the magnitude of reaction torque has the same magnitude as torque 0  generated by individual 

units but the opposite orientation. Torque ext  is associated with any additional factors which 

may affect the overall rotational motion of the system, i.e. factors such as an additional motor 

located on the main axis of rotation which directly induces a rotation of the system, wind, air 

resistance etc. Assuming that there are not any additional factors contributing to the global 

rotation of the system, the term ext  would assume the value of 0. The moment of inertia 1I , 

corresponds to the rotation of all of the rigid units with respect to the centre of mass of the 

whole system and may be defined as follows (see Appendix I for the full derivation): 

   

 

2 2 2

1

2 2
2 2

1
1 1
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where, d stands for the distance between centres of adjacent squares and can be expressed by 

means of the following equation: 02 sin
4

d a



 

  
 

. 

From these expressions, it is possible to simulate the behaviour of such systems as a 

function of time by solving numerically the differential equation 4-2 as discussed below. 

4.3 Simulation Details, Results and Discussion 

In order to analyse the behaviour of the discussed system, equation 4-2 was solved 

numerically by means of the fourth-order Runge Kutta algorithm [418]. In this work, all of the 

results, summarised in Figure 4-2, were generated under the assumption that the auxetic system 

defined in the model section is being deformed from its fully-open to the fully-closed 

conformation, which corresponds to the change in the value of 02  from 90  to 0 . These 

results clearly show that this phenomenon of the global rotation is indeed manifested by the 

systems considered in this study as evidenced by a nonzero value of 1 which is being induced 

solely from a change in 0 . Note that for the purpose of this work, it is being assumed that a 

system stops deforming when 0  reaches 0 , i.e. it is being assumed that the rigid units are 

colliding in a fully inelastic manner. 

The parameters used in order to generate these results, which were the same for all 

considered sets of results, were set to be the following: 0 Nmext  , 0.33 ma  , 0.02 mz  , 

-38000 kg mH  , 17.78 kgHM  , 
-32000 kg mL  , 4.44 kgLM  , 

20 kg mobI  , 

-2

0 0.5 rad s   ,   -1

0 0 0 rad st   . 
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Figure 4-2 The panels show (a) comparison of the behaviour of systems consisting of a different 

number of rigid units and (b) the change in the behaviour of the system upon varying the 

magnitude of the ratio H L  associated with densities of heavy ( H ) and light ( L ) units for 

a system with a conserved mass. The point where the system stops exhibiting the global 

rotation, i.e. the values of 1  do not change in time anymore, corresponds to the conformation 

of the system where 02 0   . In the case of the above graphs, t stands for the time 

corresponding to a deformation process. 

 

Results shown in Figure 4-2(a) were generated in order to determine which value of SN  

results with the maximum enhancement of the extent of rotation of the investigated system with 

respect to its centre of mass. In order to do that, the value of SN  was set to assume the respective 

values from the given set of odd numbers {3, 5, 7, 9} with the remaining parameters being set 
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to be the following:  0.33,0.20,0.14,0.11a m, 
-38000 kg mH  , 

 17.78,6.40,3.265,1.975HM  kg, 
-32000 kg mL  ,  4.44,1.6,0.816,0.494LM  kg. Note 

that the values of the length a where such that for all systems, all systems had the same area of 

1m2 when they were in their fully-closed conformation ( 02 0   ).  

Furthermore, results shown in Figure 4-2(b) were generated in order to investigate a change 

in the behaviour of the system upon varying the magnitude of /H L   ratio assuming that 

3SN  . In the case of all of the considered values of these ratios, the total mass of the system 

and dimensions of rigid units were kept constant. The remaining parameters used in order to 

generate these results were set as follows:  / 1, 2,3, 4,5,H L    , H 

{5333.33,6857.14,7578.95,8000.0,8275.86,9600.0}
-3kg m , HM {11.852, 15.24, 16.84, 

17.77, 18.39, 21.33} kg, L {5333.33, 3428.57, 2526.32, 2000.0, 1655.17, 0.0} 
-3kg m , 

LM {11.85, 7.62, 5.61, 4.44, 3.67, 0.0} kg. Note that systems with sub-units having zero mass 

are obviously theoretical constructs as in reality, such units are not realisable. 

As mentioned earlier, based on Figure 4-2, one may note that the rotation of respective 

rigid units may result with the global rotation of the whole system. Such behaviour is clearly 

manifested by nonzero values of 1  and 1  on the graphs. This means that in order to induce 

the rotation of the system, there is no need for the external application of the force to the system 

which process would result with the generation of the torque. This stems from the fact that the 

torque contributing to the rotation of the system with respect to its centre of mass may be 

generated by the change in the angular velocity 0  of its constituents as explained in the model 

section. 

Apart from the fact that the rotation of respective rigid units constituting the discussed 

system may result with its overall rotation, it is also interesting to consider an optimisation of 
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this effect. More specifically, it is interesting to check which parameters associated with the 

geometry and mass distribution within the system could enhance the extent of rotation of the 

investigated system. 

As discussed previously in the model section, variation of the mass of the two sets of 

rotating units rotating in opposite directions also affects the torque experienced by the whole 

system when subjected to a linear deformation resulting in the rotation of the respective units. 

In Figure 4-2(b), results are shown for systems having the same total mass as well as a size and 

angular velocity of rigid units (associated with a constant value of 0 ), with different density 

ratios, /H L  . It is evident from the plots that the larger the difference between the masses of 

the two sets of rotating units, the greater the extent of rotation of the system. However, while 

there is a large difference between plots of the angular velocity generated for systems where the 

/H L   ratio is 1 and 2, the difference between systems corresponding to consecutive values of 

/H L   decreases significantly, indicating that the effect of this parameter on the extent of 

rotation of the system tends to a constant for relatively large values. Another parameter that has 

a significant effect on the magnitude of the discussed effect, is the value of SN . As shown in 

the plots in Figure 4-2(a), the maximum extent of rotation and the corresponding angular 

velocity were generated by the system with the smallest number of rotating units, i.e. 3SN  . 

This is very convenient since it means that there is no need to design a structure with a large 

number of rotating units and hence, a large number of small actuators, which could make the 

system more prone to malfunctions and defects, in order to generate a large reaction torque. 

At this point it is also important to highlight the fact that the discussed system may also 

influence the rate of rotation of the external system without being deformed, i.e. when the 

respective rigid units constituting the system are not rotating ( 0 0  ). This result, which is not 

normally observed in the case of other devices allowing to induce the rotation of the external 
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system such as reaction wheels, stems from the fact that even when the respective units stop 

rotating the new configuration of rotating squares varies from the initial one. This means that 

the whole system corresponds to a different moment of inertia. This in turn can make it either 

simpler or more difficult to rotate the system depending on the value of the moment of inertia. 

All this is very significant, since these results show that the novel metamaterial-based 

device presented here, besides being an effective alternative method to attain the control over 

the rotation of the system, is also extremely versatile since it allows the fine-tuning of the extent 

of rotation of the system by varying a number of parameters. Moreover, the rotation of the entire 

system is induced through the application of tensile force on the sub-structure of the mechanical 

metamaterial rather than through a direct application of a torque to the rigid body. At this point 

it must be emphasized that the mathematical model presented in this work is merely one 

example of this new class of rotational motion controllers and in general one could use other 

mechanical metamaterials deforming via the rotation of its subunits [277, 320, 329]. 

Furthermore, it should be noted that although in this work it was tacitly assumed that the 

squares are made from a single material, it is possible to manufacture the structure in a manner 

where the added mass in the heavier units is imparted as a result of inclusions incorporated into 

such units. Whilst such inclusions could simply act as an entity to add weight, it is also possible 

to incorporate within the system more complex devices which may range from simple magnets 

to micro-electronic devices. Should one consider the use of inclusions being in the form of 

magnets or electromagnets, then apart from the obvious advantage of adding the extra mass to 

the system, one could also acquire the possibility of deforming the system as a result of 

interactions between such inclusions. For example, one can imagine the scenario where 

electromagnets having the identical orientation would be set at the centre of units corresponding 

to a larger mass while on the lighter units there would be no inclusions. Then as a result of their 

interactions, the distance between the adjacent inclusions would be either decreased or 
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increased which process corresponds to the mechanical deformation of the considered system. 

Also, as already discussed in this chapter, mechanical deformation of the system composed of 

units having a different mass which rotate in the opposite directions, leads to the global rotation 

of the entire system. Thus one can conclude that the use of magnetic inclusions could induce 

this effect in a controllable manner as the magnitude of interaction between the magnetic 

inclusions could be fine-tuned via the intensity of the current provided to respective 

electromagnets. It should be also noted that such a solution offers another advantage as it does 

not require the use of any additional devices which are not an integral part of the rigid units 

used to deform the structure.    

Before concluding, it is important to highlight the potential applicability of these systems. 

As mentioned previously, the control over the rotational motion is one of the most important 

factors in attitude control (control over the orientation in space) of spacecraft. Moreover, these 

mechanical metamaterial-based systems could also be employed in concert with other systems 

to fine-tune the orientation of objects such as telescopes. Another potential use for these systems 

is in wind turbines (see Figure 4-1(b)). The efficacy of wind turbines for the production of 

energy depends strongly on the angular velocity of the system, with maximum efficiency being 

achieved if the optimal angular velocity is maintained at all times. However, in reality, shifting 

wind currents make this extremely difficult, and thus the discussed device could be 

implemented within the turbine in a manner such as that shown in Figure 4-1(b) in order to 

increase / decrease the moment of inertia depending on the strength of wind. This in turn would 

make it significantly simpler for rotating blades to maintain a particular value of the angular 

velocity of the wind turbine. Obviously there are still a number of additional aspects which 

should be considered prior to the practical large-scale implementation of the concept of the self-

induced global rotation of mechanical metamaterials in industry. Amongst other things, it is 

essential to confirm experimentally that this phenomenon may indeed be observed in reality. 
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Also, since in this chapter the concept was developed only for rotating squares, it would be 

beneficial to assess whether other geometries may be more amenable to induce global rotation. 

These aspects will be discussed in the following chapters.    

 

4.4 Conclusions 

In this chapter, the novel concept corresponding to the global rotation of mechanical 

metamaterials induced by the rotation of their subunits was proposed. In order to investigate 

this effect, the theoretical model associated with a particular system, i.e. the rotating square 

system, was introduced. Through this model, it was confirmed that the phenomenon of the 

global rotation induced solely via a rotation of the subunits in the system is indeed being 

manifested and that the extent of the global rotation of the system depends on parameters 

associated with its mass distribution and geometry thus making it possible to fine-tune the 

extent of the discussed phenomenon. It was also shown that the concept proposed here may be 

employed in a number of practical applications. In particular, in this chapter the possibility of 

controlling the magnitude of the angular velocity of the external system such as a wind turbine 

upon changing the moment of inertia of the discussed structure which would be connected to 

the external body was discussed. All of these results suggest that the concept reported in this 

chapter might prove to be important in the case of potential applications such as telescopes 

employed in space and wind turbines where the control over the rotational motion is known to 

be of great significance.  
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5. Self-induced global rotation of mechanical metamaterials: 

Experimental verification of the concept2 

 

HIGHLIGHT 

 The theoretical concept corresponding to the possibility of inducing the global rotation 

of mechanical metamaterials solely as a result of the rotation of their subunits was 

confirmed using an experimental prototype corresponding to the rotating square system.  

 

5.1 Introduction 

In the previous chapter, the novel concept corresponding to the induction of the global 

rotation of mechanical metamaterials solely as a result of the rotation of their subunits was 

proposed. This concept was investigated through a theoretical model for the particular case of 

the rotating square system. In Chapter 4, it was also discussed that this concept may potentially 

prove to be useful in the case of applications such as wind turbines and spacecraft where the 

control over the rotational motion is very important. However, before attempting to optimise 

the system so as to maximise global rotation as a result of internal rotations, it would be useful 

to first experimentally verify whether the discussed effect can indeed be observed in reality. In 

view of this, in this chapter, the semi-qualitative results corresponding to the experimental 

prototype of the device analogous to the rotating square system discussed in the last chapter are 

going to be presented.  

                                                 
2 The content of this chapter has been published in the peer-reviewd journal Smart Materials and Structures:  

K. K. Dudek, K. W. Wojciechowski, M. R. Dudek, R. Gatt, L. Mizzi, J. N. Grima, Potential of mechanical 

metamaterials to induce their own global rotational motion Smart Mater. Struct. (2018) DOI: 10.1088/1361-

665X/aabbf6 
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5.2 Experimental Model  

5.2.1 General description 

The prototype shown in Figure 5-1 was constructed in order to experimentally confirm the 

potential of mechanical metamaterials to induce their own rotational motion as the result of the 

rotation of their subunits. The considered system corresponds to the rotating square system 

composed of two different types of equally-sized square units having the linear dimension a, 

where in this case a = 7 cm. The entire structure consists of 3 3 such units which can rotate 

with respect to their centres which process corresponds to the deformation of the whole system. 

The out of plane thickness z of each of the units was the same and was approximately equal to 

2 cm. The respective unis were produced by means of the 3D extrusion printer (equipped with 

ABS plastic) and connected to each other by means of cylindrical hinges which were supposed 

to ensure that the system would not buckle out-of-plane. 

 

Figure 5-1 The experimental prototype used in order to investigate the potential of mechanical 

metamaterials to induce their own rotational motion as the result of the rotation of their subunits. 
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As discussed in the last chapter, it is possible to enhance the extent of the global rotation 

of the system upon increasing the mass of one class of units rotating in a specific direction with 

respect to remaining units rotating in the opposite directions. In view of this, in the case of the 

considered prototype, 5 units corresponding to the blue colour on Figure 5-1 were made heavier 

than the remaining four units associated with the red colour. More specifically, the mass of the 

heavy ( HM ) and light ( LM ) units was estimated to be in the vicinity of 121 g and 37 g 

respectively. In order to differentiate the mass of these two types of units, metal discs were 

inserted into the units corresponding to the mass HM . These discs had an outer and inner 

diameter equal to approximately 4 cm and 9 mm respectively. This means that the mass 

distribution within the units constituting the discussed system was not uniform. It should be 

also highlighted that metal discs inserted into the aforementioned units were oriented in a way 

so that their faces were parallel to the base of each of the units and their centres corresponded 

to centres of units. This means that the axis of symmetry associated with the discussed units 

was not only passing through their geometric centres but it was also passing through their centre 

of mass. It should be also mentioned that as shown in Figure 5-1, the angle of aperture between 

adjacent rigid units was denoted as 02 .  

The discussed system was set on a bearing passing through the centre of mass of the entire 

system which in the case of this particular prototype was associated with the geometric centre 

of the heavy unit located in the middle of the structure. As a result, the entire system was free 

to rotate only with respect to its centre of mass which behaviour should be expected if one were 

to consider employment of such a system in space where the effect of external forces on its 

behaviour would be negligible.  
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5.2.2 Technique used in order to induce the deformation 

As discussed in the previous chapter, in order to analyse the discussed phenomenon, a key 

aspect which need to be ensured is that the deformation of the discussed system should be solely 

as a result of internal rotations of the subunits i.e. the deformation must be induced internally 

within the structure. Ideally, such effect should be achieved through a mechanism where the 

action on the system can be applied in a repeatable and quantifiable manner for example through 

the use of actuators located appropriately within the system, or as discussed in the previous 

chapter through the use of electromagnetic inclusions. However, it is beyond the scope of this 

work to use such complex devices to induce the deformation when the same effect can be 

induced, albeit not in a fully-repeatable nor quantifiable manner, in a much simpler manner. In 

this particular case, in order to induce the deformation of the considered experimental 

prototype, rubber bands were attached to opposite vertices in one of the apertures within the 

structure (see Figure 5-1). The particular positioning of rubber bands results in the situation 

where the change in their extension leads to the rotation of respective rigid units constituting 

the system which as discussed in the last chapter, would be expected to lead to the global 

rotation of the system which stems from the conservation of the angular momentum principle. 

In order to release the system, the thread which was holding the system at rest (as it prevents 

vertices from moving further apart under the influence of the force applied by rubber bands) at 

the initial configuration corresponding to 02 134.1 1.7     was being burned. At this point, 

it should be noted that as opposed to any other approach involving the use of the external body 

to hold the structure at the initial conformation, this particular technique allowing to release the 

system ensures that there is no external interference which could affect the investigated 

phenomenon. Furthermore, it should be mentioned that in the case of the considered prototype, 

upon releasing the system, the respective units start rotating up to the moment when the system 
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assumes the configuration associated with the angle 
02 22.3 1.6     at which point the units 

composing the structure collide. 

5.2.3 Technique used in order to calculate the extent of the global rotation 

of the system 

In order to analyse the behaviour of the prototype discussed in this work, the motion of the 

system was recorded by means of the camera capable of recording 240 frames per second. Such 

a large number of recorded frames in each second was required in order to ensure that all stages 

of the deformation could be analysed. Of particular importance was here the possibility of 

attaining the information about the configuration assumed by the system at the moment when 

the structure was released and when the rigid units collided for the first time respectively. This 

stems from the fact that pictures extracted from the recorded video which corresponded to these 

two particular stages of the deformation were used in order to calculate the total extent of the 

global rotation of the discussed system, i.e. 1 . 

As mentioned in the above paragraph, two particular pictures were selected for a given 

experiment in order to calculate the extent of the global rotation exhibited by the considered 

experimental prototype. For each of those pictures, a number of easily distinguishable points 

such as centres of hinges or centres of rigid units were selected in order to check their 

coordinates by means of the appropriate graphical software (in the case of this work InkscapeTM 

[483]). Based on such coordinates, it was possible to define vectors describing the global 

orientation of the system. Subsequently, upon using vectors associated with the same two points 

within the structure at the different stage of the deformation, it was possible to calculate the 

angle between such vectors by means of the sine rule. At this point, it should be noted that in 

the case of pictures corresponding to the two aforementioned stages of the deformation, such 

angle between vectors could be interpreted as 1 . Furthermore, in order to determine the 
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extent of the global rotation exhibited by the system, the experiment was repeated ten times 

where each time the structure was released from approximately the same initial configuration 

corresponding to 
02 134.1 1.7    . For each experiment, the above procedure corresponding 

to the measurement of 1  was repeated 3-4 times for different pairs of points. This number 

was not exactly the same for all of the conducted experiments as some of the points on analysed 

pictures were too blurred to obtain a reliable reading. 

5.3 Results and Discussion 

A representative sample of the images recorded in the experiment are shown in Figure 5-2 

where one can clearly observe that the system is indeed globally rotating as the internal 

components rotate thus confirming the potential of mechanical metamaterials to induce their 

global rotation as the result of the rotation of their subunits, which effect was predicted from 

theoretical studies presented in the previous chapter.  

In fact, as shown in Figure 5-2(a), upon releasing the system, the respective units start 

rotating which process corresponds to the decrease in the value of 02 . More specifically, heavy 

units rotate in the anticlockwise direction while light units rotate in the clockwise direction 

which behaviour is continued up to the moment when units collide. It is important to note that 

as individual units start rotating, the entire system starts rotating with respect to its centre of 

mass. Moreover, as expected based on theoretical predictions which are primarily based on the 

conservation of the angular momentum principle, the system rotates in the clockwise direction 

which is an opposite direction of rotation to that exhibited by heavy units. 
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Figure 5-2 Panels show: (a) the evolution of the system in time from the moment when it was 

released to the moment when the rigid units collided for the first time and (b) pictures 

corresponding to (i) the initial configuration assumed by the system and (ii) the configuration 

assumed by the system at the moment when rigid units collided for the first time. In the case of 

panel (b), the auxiliary lines indicating the orientation of the system connect two particular 

points within the structure at different stages of the deformation. 
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As discussed in the Experimental Model section, the extent of the global rotation exhibited 

by the system may be calculated based on the configuration assumed by the system at two 

different stages of the deformation, i.e. at the moment when the system was released and when 

rigid units collided for the first time. An example of such configurations can be seen in Figure 

5-2(b) where in order to better visualise the concept of the change in the orientation of the 

system, two auxiliary lines connecting the same two points within the structure were drawn for 

the considered stages of deformation. In the case of this work, such extent of the global rotation 

corresponding to 1  was approximately equal to 0.97 0.24  .    

One should also highlight the fact that as discussed in the Experimental Model section, this 

experiment was repeated ten times where apart from rotating each time in the same direction, 

which is in agreement with theoretical predictions, the considered system exhibited the rotation 

of the very similar magnitude in the case of all of the conducted experiments thus giving more 

credibility to the obtained results. 

As discussed in this and in the former chapter, due to the conservation of the angular 

momentum, the discussed system may induce its own global rotational motion as long as 

individual units are rotating. Assuming that before the process of deformation the entire system 

was at rest, this means had the collisions been perfectly inelastic (as it was assumed in the 

previous chapter), once the rigid units reach the locked configuration where they cannot rotate 

any further, the whole system would stop rotating as well. However, in reality very few 

collisions may be considered as perfectly inelastic in which case at the moment when units 

collide all of the kinetic energy would have to be converted into other types of energy such as 

heat etc. In view of this, in the case of the experimental prototype considered in this chapter, as 

the result of the elastic collision, the respective rigid units are expected to start rotating in the 

opposite direction to the direction in which they were rotating before the collision. Such recoil 
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effect could be prevented should one for example consider the use of appropriately located 

electromagnets preventing the structure from reopening. However, in the case of the discussed 

experiment, there is no mechanism preventing such behaviour other than rubber bands. In view 

of this, as may be seen in Figure 5-3 and Figure 5-4, after the initial collision, the structure starts 

reopening which process corresponds to the increase in the value of 
02 . In theory, if one were 

to consider a hypothetical system where there is no loss of the energy as the units collide and 

no friction, then after the collision the units would be expected to rotate backwards up to the 

moment when the system would assume the initial configuration. As a result, the entire system 

would act as the harmonic oscillator. Nonetheless, in the considered experiment, both friction 

and loss of the energy are not negligible which results in the system reopening to the smaller 

extent than the initial configuration after which point the units are brought back by the rubber 

bands to the locked conformation. As can be seen based on Figure 5-3 and Figure 5-4, such 

recoil effect occurred once more after the initial collision although the loss of the energy was 

so large that the extent of rotation of respective units can be assumed to be negligible. It should 

be also noted that at the end of such process the system remains at rest at the configuration 

which approximately corresponds to the minimum value of 02 .  

 

Figure 5-3 The variation in the angle 02  corresponding to the behaviour of of the system after 

the first collision between the rigid units. 
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Figure 5-4 Behaviour of the system after the first collision between the rigid units. 

Before concluding, it should be highlighted that all of the results reported in this chapter 

confirm theoretical predictions corresponding to the potential of mechanical metamaterials to 

induce their own rotational motion as the result of the rotation of their subunits. These results 

also indicate which type of the behaviour should be expected upon constructing the device 

meant to utilise this concept in reality. This in turn could encourage scientists to implement this 

concept in the case of applications such as wind turbines, telescopes employed in space etc. 

where the control over the rotational motion is of great importance. It should also be noted that 
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up to now, only a particular type of the mechanical metamaterial system, i.e. the rotating square 

system, was investigated from the point of view of its propensity to exhibit the discussed 

characteristic. However, this does not mean that it is the most suitable geometry to induce the 

global rotation of mechanical metamaterials. In view of this, before potentially considering the 

implementation of the discussed concept in the case of applications such as telescopes 

employed in space or wind turbines, it should be analysed whether there are other geometries 

which are more conducive to the discussed phenomenon. 

5.4 Conclusions 

In this chapter, the theoretical concept proposed in the last chapter corresponding to the 

potential of mechanical metamaterials to induce their own global rotational motion was 

confirmed experimentally. More specifically, through the use of the experimental prototype of 

the rotating square system composed of two different types of units, it was shown that as a 

result of the rotation of individual units constituting the system, the entire structure rotates in 

the direction opposite to the direction of rotation of heavy units. This in turn confirms 

theoretical predictions made for this system in the previous chapter. It was also discussed what 

type of behaviour of the system should be expected in the case of real life experimental 

realisations of the considered concept. One may note that such observations may help to assess 

the suitability of different prototypes utilising the considered concept in the case of specific 

applications.   
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6. Self-induced global rotation of mechanical metamaterials: 

different geometries3 

HIGHLIGHTS 

 A more generic version of the model proposed in the former chapters is presented where 

different rotating rectangular systems are analysed in order to assess their propensity to 

exhibit self-induced global rotation; 

 It is shown that the use of rectangles permits control of the extent of the observed 

phenomenon where, for certain types of connectivity between rigid units of rotating 

rectangle systems, the variation in the aspect ratio of rigid rectangles constituting the 

system significantly affects the extent of the global rotation, whilst, for the other types 

of connectivity, the analogical change in the geometry of the rigid units does not affect 

the behaviour of the system; 

 It is proposed that hypothetically one may design hinges of the rotating rigid unit 

system, possibly using electromagnets, in a way so that the considered phenomenon of 

the self-induced global rotation could be maintained after the point where upon reaching 

the final configuration the respective rigid units collide with each other.   

6.1 Introduction 

In the last two chapters, the novel concept corresponding to the potential of mechanical 

metamaterials to induce their own rotational motion solely as a result of the rotation of their 

subunits was proposed and studied through a theoretical model and experiment though the 

specific example of the rotating squares system. However, as noted earlier, whilst this was 

                                                 
3 The content of this chapter has been published in the peer-reviewd journal Smart Materials and Structures:  

K. K. Dudek, K. W. Wojciechowski, M. R. Dudek, R. Gatt, L. Mizzi, J. N. Grima, Potential of mechanical 

metamaterials to induce their own global rotational motion Smart Mater. Struct. (2018) 
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sufficient to prove the idea that rotating rigid unit mechanical metamaterials are suitable 

candidates to induce the global rotation as a result of its internal deformation, the particular 

geometry studies may not necessarily be the most suitable system to exhibit the discussed effect. 

In view of this, it would be interesting to analyse the propensity of different mechanical 

metamaterials to induce their own rotational motion in an attempt of determining the system 

which could exhibit the largest extent of rotation as it could enhance the efficiency of devices 

based on this concept in the case of potential applications. 

Based on very promising results associated with systems composed of rigid squares, the 

natural candidate to further investigate the potential of mechanical metamaterials to induce their 

own rotational motion are rotating rigid rectangle systems. Structures composed of rectangular 

units not only allow for a simple comparison of the obtained results with those associated with 

squares but also offer a wide range of different geometric shapes which they can assume. This 

stems from the fact that the particular geometric configuration which can be assumed by these 

systems does not only depend on the aspect ratio of respective units, but as discussed in the 

Literature Review, it also depends on the connectivity between adjacent units. In view of this, 

in this chapter, the potential of different rotating rigid rectangle mechanical metamaterials to 

induce their global rotation as a result of the rotation of their subunits is going to be discussed 

in an attempt to generalise the work present in the earlier chapters.  

6.2 Model 

6.2.1 Considered systems 

In this work, the systems which were chosen in order to evaluate their suitability to induce 

their own global rotation may be described as finite fragments from periodic rotating rigid 

rectangles [286, 287]. As discussed in [287], depending on the manner how the different 

rectangular units are connected, such systems, may be classified as either Type I or Type II (see 
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Figure 6-1(a) and Figure 6-1(b) respectively), where as illustrated in Figure 6-1, the symmetry 

is different as a result of the different types of pores present. More specifically, in Type I 

rotating rectangle system, there are always two types of pores assuming the shape of the 

rhombus having linear dimensions equal either to 
al  or 

bl  where different pores assume 

alternate positions within the system. On the other hand, in the case of Type II rotating rectangle 

system, there is always only one type of pore which has the same linear dimensions as rectangles 

constituting the system, i.e. two sides having a length of al  and 
bl  respectively. Despite the fact 

that in terms of geometry both systems consist of identical rigid units, the difference in the 

shape of pores of both of the considered systems leads to a very different deformation pattern 

of the entire structure. This in turn, results in a very different profile of mechanical properties 

with different Poisson's ratios. In fact, although both systems have the potential of exhibiting 

negative Poisson's ratios, the system characterised as Type II exhibits isotropic Poisson's ratio 

of -1 irrespective of the shape of the rectangles or the angles between them whilst in the case 

of the Type I system, the Poisson's ratio, which can be negative or positive, is anisotropic and 

dependent on both the shape of the rectangles and their relative orientation.  

 
Figure 6-1 Panels show: (a) Type I and (b) Type II rotating rectangles systems investigated in 

this Chapter. Red and blue colours correspond to different densities of units rotating in the 

opposite directions in the case of each of the structures. Note that these systems have different 

symmetries and profile of pores which result from the different manner how the rectangles are 

connected together to form the network. In particular, in the Type I four 
a bl l  rectangles are 

connected in such a way that the empty spaces between the rectangles form rhombi of size a al l  

and b bl l  whilst the Type II network has parrallelogramic pores of the same size .a bl l  
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As shown in Figure 6-1, linear dimensions of rectangular units constituting both types of 

considered systems are denoted as 
al  and 

bl . The angle of aperture between adjacent rigid units 

is denoted as 02 . Furthermore, similarly to the assumptions made in Chapter 4, it is assumed 

that the structure can deform only via the respective rotation of rigid units, during which 

process, dimensions of rectangular units remain constant. It should be also noted that such 

process of deformation corresponds to the change in the value of 0 . Due to the particular 

geometry of considered systems, both in the case of Type I and Type II system, 02  may 

assume any value from the range  0 ,180  , where the minimum and the maximum value from 

this interval correspond to the geometric lockage of the structure at which point rigid units 

cannot rotate any further as they are touching their neighbours. It is also assumed that, as shown 

in Figure 6-1, both of the considered systems consist of 3 3 rigid units as such a system offers 

a number of practical advantages as discussed below. 

In the case of rigid unit systems considered in this Chapter, rigid units may rotate in the 

clockwise or anticlockwise direction depending on their position within the system. As in the 

case of the rotating squares (see Chapter 4), a net torque resulting in a global rotation would 

arise if there is a difference in the magnitude of torques associated with both of these groups of 

rigid units. Such a difference in torque would arise if the total mass of the units which rotate in 

the clockwise direction is different from the total mass of the units rotating in the anticlockwise 

direction, or vice versa. This difference in mass may be brought about by using an odd number 

of equally heavy sub-units, or through the use of sub-units which would have the same in-plane 

size so as to fulfil the required geometric constraints for connectivity, but have different masses 

which could be brought about by using a different amount of material to manufacture the sub-

units and/or using materials of different densities. In this present Chapter, it shall be assumed 

that all of the units are equally-sized and have a continuous mass distribution, where, in an 
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attempt to enhance the extent of the global rotation of the system, the five units rotating in a 

specific direction are made to be heavier than the other four remaining units rotating in the 

opposite direction by setting H , the density of the heavier units (shown in blue in Figure 6-1) 

to be larger than L , the density of the four lighter units (shown in red in Figure 6-1). Although 

in theory, there is no restriction on the materials that one may use to construct such systems, in 

this work, in order to make a reliable comparison of the potential of all of the discussed systems 

to induce their own rotational motion, it was assumed that the total mass M of all of the systems 

is the same and may be defined as follows:  5 4H L a b zM l l l   , where zl  is the out-of-plane 

thickness of the system. It is also worth to note, that in the case of such systems, the centre of 

mass of the given structure always corresponds to the centre of the unit located in the middle 

of the system, which in this case is one of the heavier units (shown in blue). As before, it should 

also be noted that for both of the systems, the centre of mass of the whole structure corresponds 

to the centre of the heavy unit located in the middle of the system. 

 
As discussed in Chapter 4, upon comparing structures having exactly the same size for a 

locked conformation  0 0    and being constructed by means of the same two types of 

materials corresponding to units rotating in the opposite directions, systems composed of 3 3

units are the most suitable to induce their own global rotation as a result of the rotation of their 

subunits. This stems from the fact that for such systems, heavy units constitute the largest 

possible percentage of the area of the entire system. One may note that upon increasing the 

number of units constituting such N N  lattices, the ratio of the area associated with heavy 

and light units would start approaching the value of 1/2. However, for 3N  , such ratio is equal 

to 5/9. Note that as discussed in Chapter 4, the aforementioned variation in weight can be 

achieved by having magnetic inclusions, in which case the aspects discussed in Chapter 4 also 

apply here.  
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6.2.2 Motion exhibited by the system 

As it was discussed in Chapter 4, in order to investigate the potential of discussed systems 

to induce their global rotational motion with respect to the centre of mass as a result of the 

rotation of their subunits, it is assumed that they deform in the following manner: 

 The system which is initially at rest is being deformed from the initial to the final 

configuration associated with 02  equal to 0 and 180  respectively; 

 In terms of magnitude, all of the rigid units rotate at a given time with the same angular 

velocity 0   0 0  which condition stems from the geometry; 

  It is assumed that in terms of magnitude, all of the rigid units constituting the system 

rotate with a constant angular acceleration 0  0 0  ; 

 It is assumed that upon reaching the final configuration, irrespective of the type of the 

system and the mass of rigid units, the rigid units do not rotate backwards as a result of 

the collision, i.e. inelastic collision is assumed. It should also be noted, that in this 

chapter, the potential effect of the elastic collision between rigid units on the behaviour 

of the system is not taken into consideration. Hypothetically, one could achieve a similar 

effect through the use of magnets located on neighbouring rigid units which would 

prevent them from reopening after the collision; 

 It is assumed that considered systems are isolated.   

According to the above assumptions, all of the rigid units within the system rotate with a 

constant angular acceleration which means that in time they experience a change in the angular 

momentum which leads to the generation of the torque by each of the units. Thus, the net torque 

0  associated with the rotation of all of the units within the system may be calculated as 

follows: 
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0
H LdL dL

dt dt
    

6-1 

where, 
0 ( 5 )H H HL L I   and 

0 ( 4 )L L LL L I   stand for a sum of the angular momenta associated with 

all of the heavy and light units respectively (all of the angular momenta were calculated with 

respect to the centre of mass of the entire system). At this point, it should also be noted that due 

to a particular geometry of considered systems, the angular momentum of respective units 

depends solely on the angular velocity associated with the rotation of rigid units with respect to 

their centres and does not depend on their linear velocity (see Appendix I). One should also 

note that in general, one may design a variety of systems where the angular momentum 

associated with linear velocity of individual units would make a non-zero contribution to the 

net angular momentum corresponding to all of the subunits.  

 

Figure 6-2 A diagram presenting the concept of the global rotation of the Type I rotating 

rectangle system induced by the rotation of its subunits. 

 

As shown schematically in Figure 6-2, the resultant non-zero torque 0  associated with 

the rotation of individual units contributes to the rotation of the whole system with respect to 

its centre of mass as a result of the conservation of angular momentum principle. Similarly to 

the notation introduced in the preceding chapters, it is assumed that the extent of such global 

rotation corresponds to the change in the angle 1 , which means that the extent of the global 

rotation can be denoted as 1 . In view of this, in order to investigate the rotation of the whole 

system with respect to its centre of mass, it is sufficient to solve the following equation of 

motion: 
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1
0 1

dd
I

dt dt




 
   

 
 

6-2 

where, 1I  stands for the moment of inertia associated with the rotation of the whole system 

with respect to its centre of mass. One should note that this quantity changes as the structure 

deforms, i.e. when the value of 02  is being changed. On the other hand, 1d

dt


corresponds to 

the angular velocity associated with the rotation of the system with respect to its centre of mass 

(for the sake of the simplicity 1d

dt


will be also referred to as 1 ). The negative sign on the left 

hand side of equation 6-2 is associated with the third Newton's law of motion. More specifically, 

the net torque 0 being the result of the rotation of respective units induces the rotation of the 

whole system through the application of a torque having the same magnitude as 0  but the 

opposite orientation. 

6.2.3 Parameters 

In order to analyse the propensity of considered systems to exhibit the discussed 

phenomenon, the respective parameters were set to be the following: 
-38000 kg mH  , 

-32000 kg mL  , al ={0.316, 0.707, 1.0, 3.162} m, bl ={0.316, 0.141, 0.1, 0.032} m, zl =0.02 m 

and -1400 rad s  . Furthermore, in the case of each of the considered systems, equation 6-2 

which describes the rotational motion of the whole system with respect to its centre of mass 

was solved numerically by means of the classical fourth-order Runge-Kutta method [418] 

where the time step was constant throughout the entire simulation and was set to be equal to 

82 10 s. 
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6.3 Results and Discussion 

The results of the calculations for the type I and type II rotating rectangles systems are 

summarised in Figure 6-3 which shows plots (against time) of (a-b) the angle of aperture 02  

and (c-d) the extent of global rotation, 1 . These plots clearly show that all of the systems are 

capable of inducing their own global rotation the extent of which, for the Type I systems but 

not the Type II, can be fine-tuned by changing the aspect ratios of the rectangles. 

 

Figure 6-3 Panels (a) and (b) show the variation in the angle of aperture between rigid units 02  

plotted with respect to time for Type I and Type II rotating rectangle systems composed of 

rectangular units associated with different values of the aspect ratio /a bl l . Panels (c) and (d) 

show the variation in the extent of the global rotation exhibited by Type I and Type II 

respectively for deformation process from panels (a) and (b).  
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Based on Figure 6-3(c), one may note that upon elongating the units corresponding to type 

I rotating rectangles system, i.e. upon increasing /a bl l  ratio, the system may rotate to a greater 

extent than is the case for lower values of /a bl l . It is also evident that in the case of considerably 

large values of /a bl l , the relative change in the extent of rotation of the investigated system 

becomes negligible. This result suggests that in reality, there is no need to construct the system 

corresponding to extreme values of /a bl l  in order to maximise the global rotation of the 

considered structure. Furthermore, according to Figure 6-3(d), type II rotating rectangles 

system exhibits a different behaviour than was the case for type I rotating rectangles systems. 

In this case, the extent of rotation of the whole system is not affected by the variation in the 

magnitude of /a bl l  ratio. This result could prove to be useful in the case of applications 

concerning devices employed in space where the deformation of the structure would not have 

to lead to the undesired type of rotation of the whole system. On the other hand, should one be 

interested in inducing the maximal rotation of the system by means of rectangle-based system 

then it would be more plausible to consider the use of type I rotating rectangles system as it 

allows to induce the greater extent of rotation than type II rotating rectangles system for any 

value of /a bl l  greater than 1. In other words, irrespective of the ratio of sides of its units, the 

Type II system always exhibits the same rotational behaviour. This in turn could allow to 

change the dimensions of the structure used to induce the rotation of the external body without 

altering its dynamics. 

In order to better understand the results observed for both types of systems composed of 

rigid rectangles, one may analyse the variation in the moment of inertia of the whole system 

 1I , which is an interesting result in its own accord, as well as moments of inertia of individual 

units which change accordingly to the aspect ratio of linear dimensions of rigid units. As stems 

from the parallel axes theorem, the moment of inertia 1I  depends on the distance of each of the 
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units constituting the system from its centre. This means that as the system deforms, this 

quantity would be expected to change which effect can be seen in the case of both of the 

considered systems in Figure 6-4(a-b). Furthermore, due to a different deformation pattern 

which is the result of a difference in the connectivity between rigid units in the investigated 

structures, the distances between the respective units and the centre of the system change very 

differently for both types of systems. Thus, the variation in 1I  is not the same in the case of 

both types of rotating rectangle systems. At the same time, the moment of inertia of individual 

rigid units ( HI and LI ) is not only the same for both systems (assuming the same aspect ratio of 

rigid units) but also remains constant throughout the process of deformation. At this point, one 

can note that in order to justify the results observed in Figure 6-3(c-d), one can use the principle 

of angular momentum conservation as well as the above information related to effect which the 

deformation of the considered systems has on their moment of inertia. This stems from the fact 

that at any point of the discussed process, the angular momentum of the whole system must be 

conserved, which in the case of the considered highly-symmetric systems leads to the following 

expression:  1 1 05 4H LI I I    (as mentioned in the model section, due to the particular 

geometry, the net angular momentum associated with the rigid units does not depend on their 

linear velocity). Based on this equation, one may conclude that in the case of the particular 

model considered in this work, in order for a system to exhibit a different type of behaviour for 

different types of rectangles composing the structure, the factor   15 4 /H LI I I  must change for 

systems consisting of rectangles having different aspect ratio. As the matter of fact, based on 

Figure 6-4(c), one may note that this type of the variation in the aforementioned parameter can 

be observed for Type I rotating rectangles which explains why the extent of rotation of the 

whole system was changing for different types of rectangles. Conversely, in the case of systems 

where the global rotation does not depend on the ratio of linear dimensions of rigid units, the 
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factor   15 4 /H LI I I  should assume the same values for a given value of 02  irrespective of the 

aspect ratio of rigid units. In fact, as shown in Figure 6-4(d), this very effect can be observed 

for Type II rotating rectangles which also explains the unusual behaviour observed in the case 

of this system. At this point, one should also note that in all of the considered cases, the moment 

of inertia 1I  changes symmetrically throughout the process of deformation as expected based 

on the geometry of considered systems. 

 

Figure 6-4 Panels (a) and (b) show the variation in 
1I  for Type I and Type II rotating rectangle 

systems during the process of mechanical deformation. Panels (c) and (d) show the variation in 

the parameter   15 4 /H LI I I  for Type I and Type II systems associated with different values of 

/a bl l  ratio respectively.  

 



 

94 

 

As discussed above, based on the theoretical model it was shown that investigated systems 

may induce their own global rotation as a result of the rotation of their subunits. At the same 

time, it is important to note that for the sake of simplicity, the model used in order to describe 

the discussed phenomenon was relatively simple and does not apply to all possible scenarios 

where the similar concept could be applied. For example, in this chapter (and in Chapter 4 

where the concept was first presented),  it is assumed that all of the units are perfectly rigid 

which, amongst other things, means that the moment of inertia associated with the rotation of 

individual units with respect to their centres is constant. A more complex mathematical 

description could, in theory, be used, so as to consider systems composed of units which are 

not perfectly rigid and may change their shape throughout the process of deformation. In such 

cases, the variation in the shape of the units is expected to affect the extent of the global rotation. 

Another assumption made in this chapter corresponds to the lack of resistance between hinges 

connecting respective units (e.g. friction, use of a spring-like hinge, etc.) as well as to the lack 

of friction on the main axis of rotation passing through the centre of mass of the whole system. 

Any resistance between adjacent units would affect the magnitude of the generated torque if 

one was to use a particular force to deform the system. However, should one consider the use 

of actuators to deform the structure at a given rate irrespective of the resistance between units, 

then this effect would be made negligible. Also, should one attempt to implement the considered 

concept in conditions other than those in space, then it would be difficult to completely avoid 

the effect associated with certain resistance of the whole system to the rotational motion. 

Furthermore, due to the assumption that considered structures are isolated systems, the effect 

of external forces such as the gravitational force etc. is not taken into account where such forces 

could in general significantly affect the discussed phenomenon. 

Before concluding, it should be noted that there are still various aspects of the concept being 

presented here which would benefit from further development. For example, with the present 
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design, mechanical metamaterials may only induce their own rotational motion as long as the 

rigid units constituting the given system are rotating. Once the system reaches the configuration 

corresponding to the maximal value of
02 , the units must either cease to rotate or start rotating 

in the opposite direction which would result in the reversed direction of the global rotation. This 

limitation imposed by geometry may be overcome if the design is modified so that the units 

constituting the system would be physically able to continuously rotate in the same direction. 

Whilst this is not possible for systems where the connectivity of rigid units cannot be changed, 

one could consider the replacement of standard hinges with devices that may enable a change 

in the topology in order to be able continue the internal rotations of subunits and hence 

perpetuate the global rotational motion of the whole structure in a particular direction. For 

example, this could be achieved with the use of hinges having embedded electromagnetic 

components. A diagram presenting this concept upon taking the system of rotating squares 

(which is the special case of the Type I and Type II rectangles with a bl l ) as an example is 

shown in Figure 6-5. Based on this diagram, one can note than in the case of the fully-closed 

configuration of the considered system, the connectivity between the adjacent units is 

indistinguishable. This means that in theory, if one was to consider the hypothetical use of the 

electromagnet-based hinges, one could switch the electric current in a way so that at a given 

time it would run through specific ‘vertices’. As a result, it would be possible to form an 

arbitrary type of the connectivity between ‘vertices’ of rigid units. This in turn would allow the 

system to undergo a transition in the connectivity of neighbouring units upon reaching the 

threshold configuration, hence it would be possible for respective units to continue their rotation 

in the same direction as was the case before reaching the ‘locked’ configuration. 
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Figure 6-5 A diagram presenting the hypothetical concept of the deformation of the rotating 

square system having electromagnetic hinges connecting adjacent units at vertices. Those pairs 

of the vertices which form a hinge as a result of the mutual interaction (for example induced by 

electromagnets or other devices) are highlighted by means of the connected red arrows. It 

should also be noted that the concept of the global rotation is not shown in this diagram.  

 

Finally it should be mentioned that all of the results discussed in this and in the preceding 

chapters, i.e. self-induced global rotation and self-induced variation of moment of inertia, 

besides being interesting from the theory point of view, may also be used in the case of a variety 

of applications where the control over the rotational motion of the system is of great importance. 

As discussed in the former chapters, some of the potential applications of these concepts include 

wind turbines, spacecraft, satellites and telescopes employed in space where the need for 

various attitude control devices is historically known (currently reaction wheels are used to 

control the rotation of such objects).  

At this point, one should mention that one of the main motivations behind studying novel 

types of behaviour which might be exhibited by mechanical metamaterials (such as the 

aforementioned potential of mechanical metamaterials to induce their own global rotational 

motion) was to potentially introduce these system to novel branches of the industry which could 

lead to interesting applications. However, the fact that it is possible to propose novel concepts 

associated with the behaviour of mechanical metamaterials does not mean that the studies 

related to their better-known aspects such as the potential of these systems to exhibit unusual 

mechanical properties should be neglected. As the matter the fact, further studies on different 

anomalous mechanical properties which may be exhibited by mechanical metamaterials could 
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eventually lead to the application of some of the interesting concepts related to these system in 

the case of everyday materials in order to enhance their properties. One very interesting class 

of mechanical metamaterials where the studies on mechanical properties are still in their infancy 

and the results reported up to date indicate the potential of these systems to exhibit superior 

counter-intuitive mechanical properties are hierarchical mechanical metamaterials. In view of 

this, in the following chapter, the potential of these systems to exhibit unusual mechanical 

behaviour is going to be investigated.      

6.4 Conclusions 

In this chapter, it was shown that different mechanical metamaterials may induce their own 

rotational motion as a result of the rotation of their subunits. Upon analysing the propensity of 

considered systems to exhibit the discussed phenomenon it was also shown that different 

mechanical metamaterials may in general induce their global rotational motion to a varying 

extent depending on their geometric parameters. It was also discussed that in theory, one may 

construct the system similar to those discussed in this chapter where all of the units could 

indefinitely rotate in the same direction which would also make it possible for the entire system 

to rotate for an arbitrarily long period of time. All of the reported results could also be used in 

order to implement the discussed concept of the self-induced global rotation of mechanical 

metamaterials in the case of various applications such as spacecraft, satellites, telescopes 

employed in space and wind turbines.  
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7. Control over mechanical properties of hierarchical rotating 

rigid unit auxetics4 

 

CHAPTER HIGHLIGHTS: 

 In hierarchical systems composed of rigid units connected via hinges, both lower and 

higher levels of the hierarchical system may deform; 

 Deformation pattern of the hierarchical system can be controlled via the resistance of 

hinges connecting rigid units to the rotational motion, i.e. systems with the same initial 

geometry having different resistance associated with the hinges will deform differently; 

 A change in the Poisson’s ratio need not be imparted through a change in the geometry 

of the system, as is normally the case, but may be also achieved through a change in the 

‘stiffness’ of the hinges; 

 It is proposed that the control over the resistance of hinges to the rotational motion 

which can lead to the behaviour discussed in this chapter can be achieved via the use of 

magnetic inclusions located on rigid units constituting the system. 

7.1 Introduction 

As discussed in the Literature Review, over the years, mechanical metamaterials have been 

extensively studied from the point of view of their potential to exhibit unusual mechanical 

properties such as negative Poisson’s ratio. As the results of such studies, these systems were 

proven to be useful in the case of the variety of applications such as in the manufacture of 

                                                 
4 The content of this chapter has already been published in the peer-reviewed journal Scientific Reports: K. K. 

Dudek, R. Gatt, L. Mizzi, M. R. Dudek, D. Attard, K. E. Evans, J. N. Grima, On the dynamics and control of 

mechanical properties of hierarchical rotating rigid unit auxetics Sci. Rep. 7 46529 (2017) 
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impact resistant, sound-proofing and/or biomedical devices. In an attempt of introducing 

mechanical metamaterials to new sectors of industry, more properties of such metamaterials are 

being studied, such as the novel effect corresponding to the propensity of these systems to 

induce their own global rotational motion, which was proposed and analysed in the last three 

chapters of this thesis. However, the fact that it is worth to investigate novel aspects associated 

with mechanical metamaterials does not mean that the studies related to more fundamental 

aspects of design and mechanical properties of mechanical metamaterials are completed. As the 

matter of fact, now that systems exhibiting anomalous mechanical properties are starting to 

prove their usefulness in everyday applications (e.g. sports shoes, gloves and helmets [419]), it 

is even more important to intensify efforts aimed towards enhancing their properties in order to 

try to reach their full potential. 

One very interesting class of mechanical metamaterials are hierarchical mechanical 

metamaterials. As discussed in detail in the Literature Review, the studies related to 

incorporating the concept of hierarchy in the case of these systems were commenced very 

recently with some of the first papers being published on the verge of the year 2014 and 2015 

by Cho et al. [329] and Gatt et al. [330]. These studies were primarily focused on systems 

composed of rotating square motifs and different geometries which such systems can attain. In 

those studies, it was also reported that during the deformation process of such system, units 

corresponding to lower levels of hierarchy tend to open to a significantly lower extent than is 

the case for higher levels. However, this interesting observation was not followed by the 

proposal of any model nor other form of justification which would allow to explain the observed 

phenomenon. In view of this, in this chapter, an attempt is going to be made in order determine 

the mechanism leading to this particular type of behaviour. In order to do that, a particular two-

level hierarchical mechanical metamaterial is going to be analysed through the dynamics 

approach meant to primarily qualitatively asses the behaviour of the considered system. By 
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means of the very simplified theoretical model, it is also going to be analysed whether it is 

possible to attain the control over the deformation and mechanical properties which may be 

exhibited for such system through the variation in certain parameters defining the structure. 

7.2  Model 

In this chapter, a model specifically designed to describe the dynamic behaviour and predict 

the mechanical properties of the hierarchical system shown in Figure 7-1(b) will be presented 

and discussed. This may be described as a finite two-level hierarchical system having four 

square-like units in the upper level (corresponding to Level 1 of the structure) each of which is 

made from four other squares (the Level 0) having a linear dimension of l. This system is a 

particular case of a more general two-level hierarchical system where  each of the Level 1 

building blocks consists of 0, 0,2 2x yN N  squares, where 0,xN  and 0, yN  stand for the number of 

Level 0 units in the two orthogonal directions associated with a Level 1 building block, see 

Figure 7-1(a). Note that if 0, 0, 0x yN N N  , the Level 0 would approximately assume the shape 

of a square (as is the case in the this chapter) whilst if 0, 0,x yN N , the Level 0 would assume 

the shape of a rectangle. 

Variables 
0  and 

1  correspond to angles between the adjacent units of the zeroth and first 

level respectively. These quantities can in turn be used in order to determine the linear 

dimensions (
xL and yL ) of the discussed system (see Appendix III). It is also very important to 

note that the hierarchical systems considered in this study cannot be constructed for an arbitrary 

combination of 
0  and 

1 . The possible values of these angles are given in Figure 7-1 (c). 
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Figure 7-1 The panels in this figure present (a) the two-level hierarchical auxetic system with four square-like units corresponding to Level 1 of 

the structure, where each unit consists of 
0 0N N  (in the provided example 

0 3N  ) Level 0 repeat units (bright green), (b) an example of the 

structure corresponding to 
0 1N   and (c) the permissible angles for 

0  and 
1 , which conditions ensure that the squares do not overlap with each 

other and the system retains the same connectivity. This is attained when conditions 
1 0   and 

1 02 2 0        are satisfied. 
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This model operates under the assumption that the Level 0 rotating square units of the 

system are completely rigid and cannot distort or change shape in any way during deformation. 

The validity or otherwise of this assumption for a real physical system will depend on how the 

real system is constructed. For example, this model derived here is likely to be valid for systems 

constructed from stiff units (e.g. metal) connected through hinges, i.e. a system which is 

purposely constructed to satisfy these assumptions of the model. For small strains, the ‘rigid 

units’ assumption is also expected to be applicable to other systems, such as perforated systems 

as described in Cho et al. [329] and Grima et al. [420], where previous studies have shown that 

the smaller the ‘connection’ between the squares in relation to the size of the units (e.g. squares) 

themselves, the more valid the assumption is [420]. Furthermore, the Level 0 squares and Level 

1 building blocks will be assumed to be connected together through hinges which permit 

relative rotation of two connected units. In order to further simplify the description of the very 

complex system discussed in this chapter, it is also going to be assumed that the variation in the 

moment of inertia of respective units / building blocks constituting the system is relatively 

small. The symmetry of the system, as well as its geometric constraints result in a system which 

only has few degrees of freedom. In particular, under the condition of uniaxial on-axis loading, 

all of the units constituting the i-th level of the system are geometrically constrained to rotate 

by the same angle, while the 0-th level squares remain rigid, i.e. they do not distort or change 

shape in any way. Under these conditions, for a given value of l (size of the length of a single 

square), the geometry of the whole system can be described through just two independent 

variables, angles 
0  and 

1 . This means that it is sufficient to investigate the rotation of 

individual units in both levels in order to obtain a complete picture of the deformation 

mechanism of the considered structure, i.e. the dynamics of the system may be fully described 

through a set of equations which are the rotational analogues of Newton’s equation of motion, 

which equations may be solved numerically. In other words, the deformation through time, of 
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the whole system may be established by solving the equations governing the changes in the 

angles 
i  at a given time, an approach which allows for perfect rigidity of the 0-th level rotating 

units and  is highly efficient from a computational time point of view, as the number of 

equations which must be solved at a given time corresponds to the number of levels within the 

system and is nearly independent of the number of units constituting a given level. This stems 

from the fact that the number of rigid units corresponding to the i-th level is only a number 

parameter in the equation describing the dynamics of the angle 
i , as will be discussed later in 

this paper. 

In order to induce a deformation in the systems discussed in this work, a force F  (the same 

in terms of magnitude) is applied on each of the leftmost and rightmost vertices of the system, 

as shown in Figure 7-1(a) (or topmost and bottommost, depending on the direction of loading). 

At this point, it should be noted that even though in former chapters the resistance of hinges 

connecting the respective vertices of rigid units to the rotational motion was not taken into 

consideration as it would affect the discussed phenomenon only quantitatively, in general it 

does not have to be the case. As a matter of fact, there is a variety of systems where the 

resistance of hinges to the rotational motion may qualitatively affect the investigated behaviour. 

One such example is the system analysed in this chapter, where the resistance of the hinge to 

rotation may be defined in a number of ways depending on the way how the hinges within the 

considered system are constructed. A very well-known approach makes use of a harmonic 

potential in order to describe the hinging process, an approach which can mimic a number of 

realistic scenarios, including the behaviour at small strains of perforated and other similar 

systems corresponding to an analogical geometry. 

In the considered model, based on a harmonic potential, it is assumed that resistance to 

rotation is solely due to a restoring force associated with hinges. In other words, apart from 

assuming that Newton’s equations are adequate to describe the dynamics of the discussed 
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system, it is also being assumed that the system is just being uniaxially stretched and not being 

subjected to additional factors (magnetic field, medium viscosity etc.). The approach used here 

is expected to be valid only for certain macroscale systems present in a medium with relatively 

low viscosity which are not subjected to additional environmental factors such as gravitational 

force etc. At this point it is important to note that, in the case of this particular potential, even 

if all of the hinges within the system were the same, the restoring force corresponding to hinges 

from Level 0 and Level 1 may vary as angles 
0  and 

1  might be opened to a different extent 

with respect to equilibrium angles 0,2 eq  and 1,2 eq  respectively. In such a case, the resistance 

to rotation associated with individual hinges may be quantified in terms of torques as 

   1 0 1, 0,2 h eq eqK       
   or  0 0,2 h eqK    depending on the position within the system. 

In this case 
hK  stands for a stiffness constant associated with the harmonic potential resistance 

torque. Furthermore, based on Figure 7-1(b), one may note that for the considered structure 

there are always four hinges corresponding to Level 1 of the system and by extension to the 

torque    1 0 1, 0,2 h eq eqK       
  . However, in the case of Level 0 of the system, all of the 

hinges within the structure correspond to this level. 

Under the assumptions made in this chapter, for a given level to keep expanding, the 

resultant resistance torque associated with this level has to be overcome by the torque 

corresponding to the force applied to the system at all times. This means, that in general, one 

can describe the motion of units constituting the i-th level of the structure by means of the of 

the following equation of motion:  

2

2

i
i i i

d
I B

dt


   

7-1 

where, 
iI  stands for the collective moment of inertia of all of the units within the system and 

2

2

id

dt


is the angular acceleration associated with the rate of change in the angle 

i . The 
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remaining variables in the above equation, i.e. 
i  and 

iB , stand for the magnitude of the torque 

induced by the application of the external forces (having a magnitude of F) to the leftmost and 

rigtmost vertices of the structure  and the resistance torque associated with hinges. Upon 

follwing this general formulation, the deformation of the system can then be established through 

the rotation of the units found in each level, by means of the rotational analog of Newton's 

equation of motion: 

     
2

1
1 1 1 1 0 1, 0,2

8 sin , 8 h eq eq

d
I r F r F K

dt


       

 
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         
2

0
0 0 0 1 0 1, 0, 0 0,2

8 sin , 8 2 4h eq eq i h eq

d
I r F r F K n K

dt


           

 
 

7-3 

where, 
in , is the number of hinges corresponding to Level i of the system, 

ir , is the distance 

between the vertex where the force is applied and the centre of mass of the Level i building 

block. Since in this study, a two-level system is being considered, and hence i=0,1. Here, 
0I  

corresponds to the rotation of individual squares with respect to their own centres and 
1I  is 

associated with the rotation of the Level 1 building blocks with respect to their centres of mass. 

The information concerning the way how these quantities were calculated can be found in 

Appendix III. 

The signs in equations 7-2 and 7-3, are set in a way so that the resultant resistance torque 

always opposes the rotational motion of units corresponding to the i-th level. Furthermore, the 

factor 8 in equations 7-2 and 7-3 is associated with the way the force is being applied to the 

system and the resulting reaction forces as described in [421]. 

It is important to note that the methodology developed here can be applied to various other 

analogous constructs including other hierarchical system composed of an arbitrary type of 

rotating rigid units. Furthermore, it is important to highlight the fact that although the model 

proposed above is based on a specific type of hinge in which the rotational motion is governed 
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by harmonic potential, the derived model can be used for an arbitrary potential or type of 

interaction. A very good example can be hinges where the rotational motion is governed by 

friction. In this case, one can assume that for a considered model, a resistance to rotation is 

solely due to friction from all the hinges in the system, which are identical to each other 

irrespective of their position within the system. In this case, the resistance to rotation may be 

quantified in terms of a friction torque  ( 0,1)if f i   resulting from the friction caused by the 

rotational motion of the hinge, where the value of f remains constant regardless of changes in 

angular velocity and angle of aperture of the subunit. Under such assumptions, for a given level 

to start deforming, the resultant friction torque associated with this level has to be overcome by 

the torque corresponding to the force applied to the system. In this case, the Newton's equation 

of motion describing a rotational motion of the i-th level, can be written in an analogical manner 

as it was the case for the harmonic potential as follows: 

 
2

2
8 sin ,  .i

i i i i

d
I r F r F n f

dt


  

7-4 

Systems having hinges governed by friction, apart from being indisputably simple to 

describe mathematically, are a very good representation of macroscopic pin-jointed structures 

where the resistance to rotation of the hinge is associated with the friction governing the hinging 

process. 

Calculation of the Poisson’s ratio 

In general, for loading in the x direction, the Poisson’s ratio can be expressed as follows:  

yy

xy

xx





   

7-5 

where 
xx  and yy  are the strains in the x and y directions respectively. In this work, the value 

of xy  at a given time was calculated using the following formula:    
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Parameters 

In order to investigate the deformation behaviour of the discussed system for loading in the 

x-direction, a structure consisting of  0 01 1 N N   Level 0 building blocks was used. The 

constants characterising this system were set as follows: F = 500 N, l = 0.05 m, 

-23000 kg m   (area density of the material making up the Level 0 subunits), 
1  and 

-1

0 0 deg s   (the initial angular velocity of the rotating units in the respective first and zeroth 

levels), 710t   s. In addition, the initial geometric parameters of the system were set as: 

12 20   , 
02 10   , which in the case of 

0 1N   leads to, 
xL = 0.248 m and yL = 0.234 m. 

Furthermore, in order to show how the deformation of the system changes upon varying the 

value of 
hK , 

hK was set to be equal to {0.035, 0.174, 0.349, 0.698, 1.396, 2.093} -1N m deg 

. In the case of the structure constructed by means of hinges governed by friction, all of the 

parameters, with exception for f, were kept fixed. In the considered cases f assumed the values 

of {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5} Nm. 
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7.3 Results and Discussion 

Numerical solutions of the model presented above suggest that irrespective of the hinge 

being used, a tensile force results in the system deforming through a relative rotation of the 

constituent units where, for a given initial structure, the actual manner of deformation, and 

hence the Poisson’s ratio, is dependent on the resistance to motion offered by the hinges. This 

means that if the magnitude of the resistance to rotational motion offered by the hinges could 

be controlled, then it would be possible to control the mechanical behaviour of the system 

without altering its geometry. Such control over the resistance to the rotational motion of the 

hinges can be achieved through the use of magnetic fields (which concept was first proposed 

by Grima et al. [406]) or thermal expansion of hinges. This is very significant as it is the first 

time that a change in the Poisson’s ratio is not being imparted through a change in the geometry 

of the system, as is normally the case, but merely due to a change in the resistance associated 

with the hinges of the hierarchical system. This is clearly shown by the results plotted in for 

systems with the same initial geometry, set to l = 0.05 m, 
0 1N  , 

02 10    and 
12 20   , 

having hinges which offer different resistance to motion. Here it is important to note that the 

changes in the mechanical properties of the hierarchical systems occur while the system is still 

deforming via the rotating mechanism. This is completely different from the effect observed in 

other auxetic systems such as hexagonal re-entrant honeycombs [15, 235, 236], where the 

mechanical properties depend on the interplay between the three main deformation mechanisms 

present in these systems, i.e. the stretching, hinging and flexing mechanisms. For such re-

entrant systems one could alter the mechanical properties by changing the ratio of their 

respective stiffness constants. However in our case, there is no such interplay of mechanisms 

and the change in mechanical properties was obtained solely as a result of the relative rotations 

of Level 0 and Level 1elements.
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Figure 7-2 Plots showing the variation in (a) 
1  (b) 

0  and (c) Poisson's ratio 
xy  as a function of time t for loading in the x direction for systems 

with 
hK  values ranging from -10.035 N m deg   to -12.093 N m deg   and (d) the relation of 

1 to 
0  for a deforming structure having the motion 

of the hinges governed by harmonic potential. Similarly, plots (e), (f) and (g) show the variation in 
1 , 

0  and 
xy  respectively as a function of 

time in the case of friction-based hinges corresponding to the value of f ranging between 0 N m  and 3.5 N m . (h) shows the relation of 
1 to 

0  

for a deforming structure having the motion of the hinges governed by friction. In all cases considered, 
0 1N   and F=500 N. It is important to note 

that in the case of (c) and (g), the scale in the y-axis (incremental Poisson’s ratio) was arbitrarily stopped at -2, since this value of the Poisson’s 

ratio tends to  upon approaching the maximum deformation. A cut-off value of -2 is appropriate in view of the fact that the part of the deformation 

which is not included in panels (c) and (g) is relatively small, as shown in Table 7-1. An analogical set of results, plotted with respect to applied 

strain, is provided in Appendix III.
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f [Nm] 
xy  ,x final  -1N m deghK    

 

xy  ,x final  

0.0 -0.508 at 0.157x   0.157 0.035 -0.543 at 0.162x   0.162 

0.5 -0.640 at 0.194x   0.194 0.174 -2.0 at 0.253x   0.271 

1.0 -2.0 at 0.289x   0.303 0.349 -2.0 at 0.199x   0.212 

1.5 -2.0 at 0.273x   0.291 0.698 -2.0 at 0.134x   0.143 

2.0 -2.0 at 0.246x   0.266 1.396 -2.0 at 0.181x   0.086 

2.5 -2.0 at 0.211x   0.234 2.096 -2.0 at 0.057x   0.062 

3.5 -2.0 at 0.183x   0.187 - - - 

Table 7-1 Values of the strain (
x ) corresponding to the minimum value of the Poisson's ratio 

presented in Figure 7-2 in comparison to the final value of the strain ( ,x final ) associated with 

the geometric lockage of the system. 

 

-1 [J deg ]hK  0.035 0.174 0.349 0.698 1.396 2.093 

0, 0,2 2  [deg]final initial   20.811 29.766 17.233 8.600 3.780 2.231 

1, 1,2 2  [deg]final initial   10.812 38.101 29.261 20.175 12.661 9.302 

Table 7-2 Difference between the final and initial value of the angle 
i  for particular values of 

hK . In all of the considered cases, the system was subjected to a constant force having a 

magnitude F=500 N throughout the whole process of deformation, i.e. from 
,i initial  up to 

,i final

, when the system goes to the locked conformation. 

 

Figure 7-2 (a)-(d) show the results for systems where the resistance to motion is governed 

through a harmonic potential associated with every hinge within the system. These different 

structures have the same initial geometry but different values of a stiffness constant 
hK  ranging 

from -10.035 N m deg   to -12.093 N m deg  . In all cases, the system was subjected to a 

constant force having a magnitude of 500 N until it was geometrically locked i.e. until the 

system could not continue to deform through rotations of the level 1 and / or level 0 

quadrilaterals. A detailed analysis of these results indicates that in the case of the hierarchical 
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systems having relatively high values of 
hK , Level 1 opens to a greater extent than Level 0 of 

the structure. This can be concluded from the fact that angle 
1  opens to a greater extent than 

angle 
0  as shown in Figure 7-2 and Table 7-2. This is in accordance with the numerical and 

experimental work conducted by Gatt et al. [330] and Tang et al. [331] concerning the 

deformation of hierarchical perforated materials. However this deformation behaviour is not 

observed for all systems with the equivalent initial geometric configuration.  In fact, for systems 

having relatively low values of 
hK , the opposite behaviour is observed, with the Level 0 

squares opening to a greater extent than the larger Level 1 units. Therefore, these results suggest 

that the deformation behaviour depends on the magnitude of the 
hK  coefficient (or other 

parameter depending on the type of hinge). This is very important as it indicates that for a given 

initial conformation, the final loaded structure depends upon the value of the hinge resistance 

to the rotational motion coefficient, as indicated in Figure 7-2. It is also important to note that 

although 
1  always increases, for relatively low values of 

hK , referring to Figure 7-1(a) and 

Figure 7-2, angle 
1  becomes smaller with time whilst for relatively large values of 

hK this 

angle becomes increasingly larger. It is also important to note that the deformation behaviour 

(and hence mechanical properties) of this hierarchical system can also be controlled through 

the magnitude of the force applied. In particular, for a system having a constant resistance to 

rotational motion, an increase in the magnitude of the force results in level 0 quadrilaterals 

opening to a greater extent in comparison to level 1 quadrilaterals, without changing the 

structure itself i.e. without having to deconstruct and re-construct the structure with different 

hinges. Additional fine-tuning may also be achieved by applying a force which changes in 

magnitude with time (see Appendix III). 
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Figure 7-3 Diagrams showing the final state of the deformation of two systems, where the 

hinging process is governed by friction, with 
hK  values of -10.035 N m deg   and 

-11.396 N m deg  . 

 

This difference in the deformation mechanisms upon altering the 
hK  coefficient may be 

explained if one considers the number of hinges present within each level of the system. The 

deformation of the rotating units in the respective levels is governed by the ratio of the resultant 

friction torque in the zeroth and first level of system. For the hierarchical structure considered 

above, the total number of hinges present in Level 0 (
0n ) is equal to 20 whilst the total number 

of hinges present in Level 1 (
1n ), is equal to 4. Based on equations 7-2 and 7-3, the resultant 

resistance torque, which the system has to overcome in order to expand, depends on a number 

of hinges present within each level of the system. Hence, in the considered case of 
0 1N  , the 

corresponding resistance torque of the zeroth level of the structure is significantly larger than 

in the case of the first level, which stems from the fact that a number of hinges corresponding 

to Level 0 is five times greater than it is the case for Level 1. Thus for relatively large values of 

hK , for example 
-11.396 N m deghK    , the magnitude of the resultant resistance torque 

corresponding to Level 0 is relatively large when compared to that of the torque associated with 

the applied force. At the same time, Level 1 units are not as affected by the value of 
hK  (see 

Figure 7-2(a)) due to the fact that in this case, the resistance torque associated with only 4 hinges 

has to be overcome. This results in a greater deformation of the Level 1 units. However, in cases 

where the 
hK  constant assumes a relatively small value (such as in the case of 
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-10.035 N m deghK    ), the resultant resistance torque becomes insignificant in comparison 

to the one associated with an applied force and the distance 
ir  becomes the governing factor for 

the deformation of the system. This means that the Level 0 units deform to a greater extent in 

the case of a relatively small value of 
hK . The effect which the value of 

hK  has on the 

deformation of the system is clearly shown in Figure 7-2(d) and Figure 7-3 where the final 

configuration of the system corresponding to both of the discussed values of 
hK  is presented. 

Based on Figure 7-2(b), one can note that Level 0 starts closing during the process of 

deformation. This result is associated with the fact that the resultant restoring force (for this 

level) is greater than in the case of Level 1 (number of hinges is greater for Level 0 than it is 

the case for Level 1), hence it is more prone to exceed the torque corresponding to the external 

force. In order to better understand the extent of deformation for each of the considered 

parameters, the analogical set of results plotted with respect to strain is provided in Appendix 

III. 

The above results indicate that one may control the deformation behaviour of the system 

simply by changing the magnitude of the coefficient corresponding to the resistance to the 

rotational motion (such as 
hK  in the case of a harmonic potential). This also suggests that for 

any two-level hierarchical rotating squares geometry (assuming that both levels open at the 

same time), there is a specific value of 
hK  where the rate of angle opening of 

0  and 
1  is 

equal. Such a threshold value of 
hK  can be denoted as ,h TK . It can be obtained by means of 

equations 7-2 and 7-3, where by assuming that 
1 0  , the value of ,h TK  can be found once 

the condition 
2 2

0 1

2 2

d d

dt dt

 
  is satisfied. It is also important to note that the value ,h TK , can be 

determined only for a given time since it varies as the angles change. 
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Figure 7-2(c), shows the change in the incremental Poisson’s ratio with time for the 

hierarchical structure under consideration having different values of 
hK . The incremental 

Poisson’s ratio [422], also known as the Poisson’s function [423] was used in this study as it 

gives a much better indication of changes in the lateral dimension of the system as a measure 

of applied stress (i.e. during the deformation) when compared to the engineering Poisson’s ratio. 

From Figure 7-2(c), it is clear that the value of the Poisson’s ratio at a particular time, depends 

on the value of 
hK . This stems from the fact that the geometry of Level 1 units (defined by 

1u  

and 
1  in Figure 7-1(a)) can be described as rectangles rather than as squares, with 

1 0.1083u 

m and 
1 0.0996  m. For relatively large values of 

hK , 
0  changes to a small extent, meaning 

that the dimensions of the Level 1 units remain roughly constant throughout the deformation of 

the hierarchical structure. It is well known that the Poisson’s ratios of the rotating rectangles 

model is dependent on the dimensions of the rectangles and the angle between them, where the 

incremental Poisson’s ratio exhibit an asymptote-like behaviour ( xy  ) upon approaching 

the locking conformation, i.e. upon reaching the maximum applied strain in the loading 

direction. For relatively small values of 
hK , (for example 

-10.035 N m deghK    ) 
0  changes 

to a large extent, meaning that the dimensions of the Level 1 units change throughout the 

deformation of the hierarchical structure. This means that in this case, the Poisson’s ratio of the 

hierarchical system will depend on the relative changes of 
0  and 

1 . Furthermore, one may 

note that the initial value of the Poisson’s ratio is the same for all the systems considered 

(governed by a harmonic potential) irrespective of the value of the stiffness constant. This effect 

can be explained by the fact that in the case of the harmonic potential, at the time equal to zero, 

the term corresponding to the restoring torque (see equations 7-2 and 7-3) assumes a value of 

zero as the hinges are in their equilibrium states. 
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At this point, it is important to note that the results presented above relate only to a hinge 

governed by the harmonic potential, but the findings that the deformation pathway and 

mechanical properties are affected by the properties of the hinges is a general result. As an 

example, a similar set of results was produced for structures in which the hinging process is 

governed by a friction rather than a harmonic potential. The values of f (associated with the 

friction of a hinge) for these structures were set in the range between 0 N m  and 3.5 N m , 

while the same geometric parameters considered for the hinges governed by harmonic potential 

were used. From the results obtained, see Figure 7-2(e)-(h), one can note that even though the 

deformation patterns are slightly different than it was the case for Figure 7-2 (a)-(d) (which 

stems from a different nature of the hinging process), both of the systems lead to the same 

conclusions as analogical trends can be observed in both sets of figures. For example, for 

relatively high values of f, Level 0 of the hierarchical system opens to a greater extent than 

Level 1 and, vice-versa, for relatively low values of f, Level 0 opens to a greater extent than 

Level 1 (see Table 7-3). Furthermore, in the case of the friction-based hinges, the initial 

Poisson's ratio is not the same for different values of f, which was not the case for the hinges 

governed by harmonic potential (see Figure 7-2 (c), (g)). This is due to the fact that the initial 

system varies for different values of f as a different resistance to motion has to be overcome 

from the beginning of the deformation. In fact, referring to Figure 7-4, it can be shown that for 

the hierarchical system having 3.5 Nmf  , the Poisson's ratio follows the same profile as the 

rigid rotating rectangles model proposed by Grima et al. [286]. This result also proves the 

suitability of this dynamics method to model systems based on rigid rotating units. 
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Figure 7-4 A plot showing a comparison of the Poisson’s ratios obtained from the numerical 

solutions presented here for f = 0.5 Nm and f = 3.5 Nm with those calculated from analytical 

models for uni-level rotating rigid rectangle and square systems. 

 

 

 [Nm]f  0.0 0.5 1.0 1.5 2.0 2.5 3.5 

0, 0,2 2  [deg]final initial   20.133 24.686 47.658 35.075 22.869 12.176 0.034 

1, 1,2 2  [deg]final initial   10.134 14.688 46.793 50.492 55.351 59.799 65.182 

Table 7-3 Difference between the final and initial value of the angle 
i  for particular values of 

f. In all of the considered cases, the system was subjected to a constant force having a magnitude 

F=500 N throughout the whole process of deformation, i.e. from ,2 i initial  up to ,2 i final , when 

the system goes to the locked conformation. 

 

Also, although the results discussed here are specific to a particular geometry, the same 

trends in deformation and Poisson's ratios are expected to occur for other initial geometric 

conformations of the hierarchical system (see [424]). Furthermore, this result is expected to be 

valid for larger values of 
0N . However, one may presume that as 

0N  increases, Level 0 

becomes increasingly rigid meaning that the Poisson's ratio would increasingly depend on the 

deformation of the Level 1 units. Moreover, as 
0N  , the geometry of Level 1 units 

resembles more closely that of a square and thus the Poisson's ratio of the system would 

approach  -1 as expected for the rotating squares model [2]. 
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All this is very significant, since the work presented here shows that it is possible to alter 

the deformation mechanism, and hence the mechanical properties of a hierarchical rotating rigid 

unit system simply by changing the resistance to rotational motion of all the hinges in an even 

manner. This property is not observed in currently known non-hierarchical rotating rigid unit 

systems and adds another element of versatility to this class of auxetic structures, which has 

already been shown through previous studies to possess the potential to exhibit a considerable 

range of mechanical properties through geometric variation alone [329-331].  This means that 

if, for example, one were to build a hierarchical system where the Level 0 squares are connected 

together through ‘smart/intelligent’ hinges with tuneable friction coefficients, one could 

achieve a considerable range of negative Poisson’s ratio without altering the initial geometry 

of the system. Moreover, the examples discussed here only provide a glimpse of the true 

potential of these systems.  A greater degree of versatility is envisaged if other geometries 

besides the rotating square motif are employed and if the number of hierarchical levels in the 

system is increased.  This increased versatility could make these systems ideal for a number of 

niche applications such as smart filters, where the friction coefficients of 'intelligent' hinges 

may be customized according to the required pore sizes. This way, one filter may be used to 

filter a range of substances with different parameters, hence reducing material costs. Also, such 

a filter would be much easier to clean than a normal filter due to the adjustable pore size. Such 

systems with tunable porosity could also find applications in the design and manufacture of 

smart dressings as discussed elsewhere [330, 425]. 

Before concluding, it is important to highlight the fact that whenever there is an even 

number of units, as a result of the particular design, the considered hierarchical system cannot 

induce the effect discussed in former chapters, i.e. it cannot induce its global rotation as a result 

of the rotation of its subunits. However, should one for example change the mass distribution 

within the structure, so that units rotating in a specific direction would be heavier than units 
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rotating in the opposite direction, then in theory it should be possible to observe the effect of 

the self-induced global rotation. Nonetheless, in order for this phenomenon to be manifested, 

the structure should be deformed internally as opposed to the external application of forces to 

the system as is the case in this chapter. Such internal deformation could be induced through 

the appropriate use of actuators located between the adjacent units within the system. It could 

also be achieved through the use of magnets / electromagnets located on neighbouring rigid 

units which could change the angle of aperture between the rigid units as a result of mutual 

interaction. Both of these solutions make it possible to deform different levels of the 

hierarchical structure independently which effect, as discussed in this chapter, is very difficult 

to be achieved upon applying external forces to the system. In view of this, it may be expected 

that the internal deformation of the system allows for a greater control over the deformation 

pattern of the entire structure and hence it may prove to be useful in the case of applications 

where one wants the hierarchical structure to assume the particular configuration.  

As mentioned in this chapter, in order to achieve the control over the resistance of 

respective hinges to the rotational motion, one can use the magnetic field which could be 

induced by magnets which would be appropriately inserted into the system. This means that 

magnetic inclusions inserted into mechanical metamaterial systems could be expected to affect 

their mechanical properties. As the matter of fact, as discussed in the Literature Review, there 

are already a few studies where it was shown that the use of magnetic inclusions could lead to 

the design of mechanical metamaterials exhibiting anomalous mechanical behaviour which 

otherwise would not be possible. Also, as recently reported [352], the use of magnetic 

inclusions may also lead to the design of mechanical metamaterials exhibiting several unusual 

mechanical properties at the same time which effect is very rarely observed in other classes of 

mechanical metamaterials. However, despite the potential of mechanical metamaterials with 

magnetic inclusions to exhibit enhanced unusual mechanical behaviour, the studies related to 
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this concept are still in their infancy. In view of this, in future chapters, the concept 

corresponding to the mechanical system with magnetic inclusions exhibiting a number of 

anomalous properties will be proposed. 

Furthermore, up to this point of the thesis, all of the novel types of mechanical behaviour 

or unusual mechanical properties were exhibited by mechanical metamaterials composed of 

square/rectangle-like motifs having parallelogram-shaped pores. However, this does not mean 

that mechanical metamaterials exhibiting counterintuitive properties need to be necessarily 

built from rigid squares/rectangles. In fact, it has already been amply demonstrated that other 

motifs built from triangles, rods, etc. can also exhibit unusual mechanical behaviour, as 

discussed in Chapter 2. One may also argue that it is more than likely that many other new 

metamaterials constructs will be discovered in the future. The next chapter will look at one such 

novel motifs, namely simple systems which are built from rigid triangles connected at their 

vertices, where, like the rotating square/rectangle systems discussed so far, also have 

parallelogram-shaped pores. 

 

7.4 Conclusions 

In conclusion, through a dynamics approach, a simple model was designed to predict the 

Poisson's ratio and approximately quantify the relative rotations of the units at each hierarchical 

level for the hierarchical rotating rigid unit systems. It was shown that unlike unilevel systems, 

the Poisson's ratios and deformation patterns for a given applied load of such hierarchical 

structures may be altered solely by changing the relative resistance to the rotational motion of 

the hinges of the systems. This contrasts sharply with the behaviour of other auxetic systems 

where, unless the geometry of the system is altered, changes in the mechanical properties can 

only be attained through changes in the interplay of different deformation mechanisms. This is 
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very significant as it suggests that if one were to construct such a system through the use of 

hinges where the resistance to the rotational motion could be fine-tuned, then in theory it would  

possible to control relative deformations of the various hierarchical levels and hence the overall 

macroscopic and mechanical properties of the system.  
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8. Mechanical metamaterial composed of generic triangles with the 

potential to exhibit negative compressibility and negative 

thermal expansion5 

 

HIGHLIGHTS 

 Novel design of the mechanical metamaterial system composed of generic rigid 

triangles connected at vertices is proposed; 

 The considered system has a propensity to exhibit negative linear compressibility in at 

least one direction irrespective of the stage of the mechanical deformation or the type 

of rigid units constituting the system; 

 It is shown that apart from the negative linear compressibility, the proposed system may 

also exhibit negative thermal expansion. 

8.1 Introduction 

In this thesis, it was already shown that despite the fact that mechanical metamaterials have 

been thoroughly studied over the last two decades, it is still possible to propose novel concepts 

leading either to anomalous mechanical properties or to other types of interesting behaviour. It 

might be also noted that all of the novel systems discussed in this dissertation, which were 

capable of exhibiting unusual type of behaviour as the result of their geometry, consisted of 

rotating rigid square/rectangles motifs. However, this does not mean that it is not possible to 

propose other types of novel designs of mechanical metamaterials which could have the 

                                                 
5 The content of this chapter has already been published in the peer-reviewed journal Smart Materials and 

Structures: K. K. Dudek, D. Attard, R. Caruana-Gauci, K. W. Wojciechowski, J. N. Grima, Unimode 

metamaterials exhibiting negative linear compressibility and negative thermal expansions Smart Mater. Struct. 25 

025009 (2016) 
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propensity to exhibit unusual characteristic. As the matter of fact, as discussed in the Literature 

Review, there is a plethora of novel mechanical metamaterials which in recent years were 

reported to have a potential of exhibiting unusual mechanical and other types of behaviour. In 

view of this, in this chapter, a novel type of such system, which was inspired by the work of 

Prof. Milton [426], will be proposed and analysed in order to assess its mechanical properties.    

Milton proposed and generalised various periodic unimode structures (structures that have 

a single easy mode of deformation [427]) built from rigid bars and pivots [426, 428], including 

ones built from connected triangles which behave as rotating rigid units [426]. One such system 

can be described through a sub-structure composed of four triangles which are connected 

together. Milton regards this structure, which should not be confused with other triangular 

lattices and geometries which have been extensively studied [255, 288, 290, 300, 301, 429-

431], as an expander since an application of a small strain in one direction may result in a 

considerable enhancement of the strain in the orthogonal direction [426]. In fact, it may be 

shown that such a structure may lead to very high positive Poisson’s ratios in particular 

directions, which as discussed in this chapter may in turn give rise to NLC. 

Milton’s work has clearly confirmed that the systems he considers exhibit high 

expandability. However, generalised mathematical models describing the mechanical 

behaviour of these systems and similar ones have not yet been established in terms of geometry. 

In this respect, it would be useful to develop a model which can quantify not only the 

expandability and expected Poisson’s ratios of such systems but also other thermo-mechanical 

properties, such as thermal expansion or compressibility properties, which could also be of 

interest. 

In view of this, and the important role that the relative rotation of rigid units has in 

generating anomalous thermomechanical properties, this chapter will look into more general 

systems which could be potentially constructed from Milton’s expander, with the aim of 
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formulating an analytical model which can predict the Poisson’s ratios, compressibility 

properties and thermal expansion behaviour of such construct. 

8.2 The model 

Before examining the mechanical properties of these systems, it is useful to discuss their 

geometries, which are essentially generalisations and variations of Milton’s expanders 

implemented as tessellations. One can establish a basic unit cell for such networks, consisting 

of two sets of two non-equivalent scalene triangles, as illustrated in Figure 8-1(a). In such a 

case the shape of the system is describable through seven independent geometric parameters, 

six of which relate to the shape of the triangles of dimensions of a b c   and d e f   and one 

which relates to the degree of aperture of the system, angle  . If one assumes that the triangles 

are rigid constructs, then the shape and size of this system rely on only one degree of freedom, 

the angle of aperture, thus qualifying it as a unimode system. 

 

Figure 8-1 (a) A generalised structure based on Milton’s expanders (b) the complement unit 

cell of a typical form of the systems studied here [Taken from [432]]. 

 

In this chapter, a simpler case is studied, where only one type of triangle making up the 

unit cell is considered. The sides of the triangle are denoted as a, b and c which subsequently 

define the interior angles of the triangle  ,   and  . The angle of aperture is defined by the 
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angle   which is twice the angle subtended between the side of length a and the 1Ox direction. 

The triangles are connected in such a manner that sides of the same length make up the 

perimeter of the resulting pores (see Figure 8-1(b)). Typically a triangle has all three vertices 

connected resulting in pores which are rhombic in shape. However there are some cases, in 

which the triangle has only two connections leaving a free vertex and as a consequence of this, 

a more complex pore shape is observed. The resulting unit cell always has two lines of 

symmetry. 

For a given triangle the system may be connected together in a tessellatable manner in a 

number of ways, henceforth referred to as forms. As a result of the geometry, although the 

different forms are very similar to each other, it is not possible to move from one form to another 

without permitting overlap of the triangles which de facto means that systems would be 

constrained to exist in only one of these forms unless the system is dismantled and re-

assembled. In other words, depending on the value of   and the dimensions a b c  , only one 

of the six forms is permissible, i.e. a form may only exist in a bound range of angles, whose 

limits are henceforth referred to as transition angles * . The transition angles occur whenever 

one of the three pores in the unit cell assumes a fully closed position. Since each pore has two 

different closed configurations, a total of six transition angles occur. These transition angles for 

0 * 360    are a function of the interior angles of the triangle and are given by; 

 * 2 ,180 2 ,180 ,180 2 ,360 2 ,360              
 

8-1 

Note that the order of occurrence of the transition angles is not always the same and is 

dependent on the parameters describing the shape of the triangle. As a consequence of this, it 

is a futile exercise to name the different forms occurring for a general case of a b c  . 

The dimensions of the unit cell (in this case a width and length of the unit cell respectively) 

are also a function of the parameters a, b, c and θ and can be expressed as: 
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1 2 max 0, cos , cos min 0, cos , cos
2 2 2 2

X a b a b
   

 
           

              
           
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2 2 max 0, sin , sin min 0, sin , sin  .
2 2 2 2

X a b a b
   

 
           

              
           
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Equations describing linear dimensions were obtained by considering a single triangle from 

the unit cell, calculating the co-ordinates of each of its vertices when the side a is aligned 

horizontally and then performing a rotation transformation by an angle  / 2  to get the co-

ordinates of the triangle when the degree of aperture of the system is  . By subtracting the 

minimum X and Y co-ordinates from the maximum co-ordinates one can find the dimensions of 

the unit cell (an example concerning the dimensions of the unit-cell can be found in Appendix 

IV). 

 

 

8.2.1 Mechanical properties 

Using the obtained expressions for the dimensions of the unit cell, following the 

methodology discussed elsewhere [202, 287, 288, 290, 430], one can then calculate the 

Poisson’s ratio for each form using: 

1

2 1 2 1
12

21 1 2

1
 .

X dX dX

X d d




   



  
       

  
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The Young’s moduli, assuming a unit thickness z (where z is of the same order of 

magnitude of the parameters a, b and c), can be obtained using an energy approach. If the unit 

cell has an overall stiffness of hK  (which relates to the work required to change the angle of 

aperture) then the strain energy stored per unit cell, U is given by: 

 
2

1 2

 .
2

hK
U d

X X z
  
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The Young’s modulus is related to the strain energy by: 

22

2

1 2

2
        where 1,2 .i i

i h

i

X dXU
E K i

X X z d 



 
   

 
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One may also write expressions for the linear compressibilities along the 
1Ox  and 

2Ox  

directions [433] in terms of the Young’s moduli and Poisson’s ratios: 

  21
1

1 2

1
L Ox

E E


    
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  12
2

2 1

1
 .L Ox

E E


    
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The area compressibility can be found from the linear compressibilities through: 

   1 2  .A L LOx Ox     
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8.2.2 Thermal properties 

Apart from the mechanical properties of the model under consideration, one could also 

investigate the thermal expansion properties of the presented system, based on the work on 

RUMs (Rigid Unit Modes) which has already been done in the field of thermal expansion [434-

437]. If the system is in a conformation having a maximum area when in its cold state 

(corresponding to the temperature in the vicinity of 0 K), where the angle between the units is 

0  , then it is possible for it to exhibit a NTE (negative thermal expansion) upon heating as 

the units vibrate with an amplitude of   about 0 . 

To simplify the analysis, based on previous work [434, 438], the following assumptions 

will be made, namely that (i) the units are rigid so that the only mode of deformation is through 

rotation; (ii) the rigid units behave as harmonic oscillators so that the thermal average of   at 

a given temperature T, i.e. 
T

  is zero; (iii) the amplitude of oscillations is small so as to 

allow for small angle approximations for terms involving  . 
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For the sake of simplicity, systems constructed from isosceles triangles with b c a   shall 

be used as an example to illustrate this NTE effect. For such a case, as discussed in further detail 

in the discussion, the form which occurs in the range of 180 2 2      is one of the most 

predominant forms and also has the maximum area for the system. For such a form, the unit 

cell dimensions can be expressed by means of the following equations: 

1 2cos cos          and         sin  .
2 2 2

X a b X b
  


     

        
     

 
 

8-10 

Thus the area of the unit-cell may be defined as a product of the above quantities, hence: 

  1 2 cos sin cos sin  .
2 2 2 2

A X X b a b
   

   
        

              
        
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From this equation it can be shown that the maximum area of the unit-cell occurs at 0
2


   

about which point it is also symmetric such that    0 0A A       . Subsequently, the 

area can be expressed in terms of the equilibrium angle 
0  and its change   as follows (see 

Appendix IV for the derivation): 

 

 
2

sin sin sin 2
2 2 2 2 2 2

                   cos cos sin sin sin
2 2

                      cos 2 cos sin 2 sin
2

a a b
A b

ba ba

b

  
     

    

   

      
                

      

    

   
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Assuming the change in angle,  , is small, this equation can be further simplified, using 

the Taylor series 

2

cos 1  and sin 0
2

T


  
 
       
 
 

, so that the thermal average of the 

area can be expressed by: 

2 2

cos 1 sin cos 2 1  .
2 2 2 2 2

T T

T

a a b
A b

 
  

     
        

    
    
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In order to express 2

T
  in terms of the temperature T one could use the approach 

proposed in [434] which is based on the principle of the equipartition of the energy, which states 
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that every mode, of which there is only one in this case, is provided with the energy equal to 

1

2
Bk T  where 

Bk  is the Boltzmann constant ( 23 -11.38 10  J K ). Thus: 

2 21 1

2 2
BT

I k T    
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where I  is the moment of inertia of the rotating rigid units and   is the frequency by which 

the units oscillate. This gives a thermal expansion coefficient 
A  of: 

    
         2 2 2

cos 2 cos
 .

2 sin 2 cos 2 cos 2

B

A

B B

k b a

aI a I k T b I k T

 


     




   
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8.3 Results and Discussion 

Plots for the dimensions and mechanical properties of three particular cases of triangles 

(equilateral, isosceles and scalene) are presented in Figure 8-2 and Figure 8-3. The plots are 

divided into regions corresponding to different forms of the triangles (diagrams representing 

these three types of triangles and their respective forms and transitions can be found in 

Appendix IV). It is evident that on changing the geometry of the triangle, the mechanical 

properties change accordingly. However, before discussing the actual mechanical properties of 

the systems, it is useful to first discuss the constructability or otherwise of these systems, i.e. 

the number of forms that such systems can have and the angle range over which these forms 

occur. This will be followed by a discussion of thermomechanical properties afforded by these 

systems. 
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Figure 8-2 Variation in mechanical properties for three different types of systems. Panels show results for systems where the unit-cell is composed 

of (a) equilateral triangles having dimensions a = 1 nm, b = 1 nm and c = 1 nm, (b) isosceles triangles corresponding to dimensions a = 1 nm, b = 

2 nm and c = 2 nm and (c) scalene triangles where a = 6 nm, b = 3 nm and c = 4 nm. Solid red and dashed blue lines indicate mechanical properties 

exhibited by the system in the Ox1 and Ox2 directions respectively. Different colours on of the background helps to make a distinction between 

different forms assumed by considered systems [Taken from [432]]. 
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Figure 8-3 Variation in geometric dimensions of the unit-cell for three different types of 

systems. Solid red and dashed blue lines indicate mechanical properties exhibited by the system 

in the Ox1 and Ox2 directions respectively. The black dashed line represents the area of the unit-

cell corresponding to a given system [Taken from [432]]. 

 

 

Looking at the constructability of these systems, it should be noted that the range of angles 

over which the different forms occur changes with the shape of the triangle, even though there 

are always six of such forms. For an equilateral triangle, all six forms will each have a range of 

60°, whilst for an isosceles triangle, four forms will have the same extent of range and two 

forms will have the same extent of range, which range is different from the other four forms. 

On the other hand, a scalene triangle will have three pairs of forms where each pair has the 

same extent of range, which extent is different from that of other pairs. This pairing up of forms 

occurs since these forms are a 90  rotation of each other. Thus on considering all types of 

triangles, it becomes evident that the change in the extent of the ranges is related to the ratio of 

the sides of the triangles. On increasing the disparity of the sides (and hence changing their 

ratio), the extent of the ranges changes accordingly. This can be observed, especially for 

isosceles triangles, from figures Figure 8-2, Figure 8-3 and Figure 8-4. This kind of behaviour 

is reflected in all the mechanical properties of the systems. It must be mentioned that if one 

were to increase the sides of the triangle in such a manner so as to keep the same ratio, the 
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extent of the ranges will remain unchanged but the magnitude of the mechanical properties is 

affected except for the Poisson’s ratio since this is scale independent. 

 

Figure 8-4 Variation of the range of angles in which NLC is exhibited for a particular form on 

changing the b:a ratio of an isosceles triangle. 

 

In terms of the mechanical properties, a look at the plots shown in Figure 8-2 will reveal 

that the mechanical properties afforded by the systems are highly dependent on the form in 

which the system exists, with a marked discontinuity in the mechanical properties between one 

region and the next. This is because at the transition angles, the forms are in a locked 

conformation and hence the mechanical properties at that particular angle cannot be defined. 

This is in contrast to the behaviour of the unit cell dimensions which are characterised by a 

continuous transition from one form to the next. This implies that at the transition angles, both 

forms have the same dimensions. 

On examining the Poisson’s ratio for all three different types of triangles presented, it is 

evident that the Poisson’s ratio is positive for all values of   and can have large values, i.e. 

there is no auxetic behaviour. These large values tend to occur when the derivative of the 

dimension along which the system is being loaded tends to zero. In the case of the equilateral 

and isosceles triangles, such behaviour is observed at the vicinity of each transition angle. A 

similar behaviour is also observed for the Young’s moduli. 
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It is also evident from the plots in Figure 8-2 and Figure 8-3 that all the systems considered 

exhibit NLC. In fact, for the whole range of  -values the systems exhibit NLC along 
1Ox  or 

2Ox  but never in both directions simultaneously. This ensures that the area compressibility 
A  

is never negative, so that on application of a hydrostatic pressure, the area of the system always 

decreases, resulting in densification of the system, even though one dimension may increase in 

size. Thus the 2D equivalent of the bulk modulus of these systems is always positive. It is 

interesting to note that the total range over which NLC is observed along the 
1Ox  direction is 

equal to that over which NLC is observed along the 2Ox  direction. In other words, NLC is 

observed in the 1Ox  and 2Ox  over a total range of almost 180  for each direction (except for 

values at the transition angles, at which values, compressibility is undefined). 

On further examination of the plots, it can be observed that for each form, the range in 

which NLC occurs is bound. The bounds correspond to the instance where the unit cell of that 

form has a maximum area and by the instance when the form is fully opened in one of its major 

axis which occurs at the transition angle. When the area of a form is close to its maximum, 

applying a hydrostatic pressure causes it to decrease. Since the Poisson’s ratio of the system is 

positive for all angles, then on application of a hydrostatic pressure, one of the unit cell 

dimension increases in length exhibiting NLC whilst the other unit cell dimension decreases in 

length, exhibiting positive linear compressibility. This effect is observed until the unit cell 

dimension which is increasing in length achieves a fully extended position, at which point the 

transition angle would have been reached. 

Another way of describing the range in which NLC is observed is through the Poisson’s 

ratios. It can be shown that in cases where deformation occurs through a unimode hinging 

mechanism, as in the systems described here, typically, the Poisson’s ratio fulfils the relation 

 
1

12 21 


 . In such cases, it follows from equations 8-4 and 8-6 that the occurrence of NLC 
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along 
1Ox  direction (equation 8-7) can be expressed by the requirement that the strains along 

the 
1Ox  and 

2Ox  directions, 
1  and 

2  respectively, must satisfy the condition 2

1 1 2 0    , 

i.e. 1 2 0    and 
2

1 2 1   . This condition is satisfied whenever 2 1   and the Poisson’s 

ratios are positive (see Appendix IV for a detailed derivation). Thus, when 
12 1  , 

 1 0.L Ox   In a more general manner, this means that whenever one of the Poisson’s ratios 

for loading in one direction is greater than +1 (and hence larger than the Poisson’s ratio for 

loading along the other direction because of their inverse relation), NLC is observed in that 

direction. 

It should also be mentioned here that the magnitude of NLC is affected by the shape and 

size of the triangles. Considering an isosceles triangle (b=c) for the sake of simplicity (but 

similar arguments may also hold for scalene triangles), on increasing the sides but keeping the 

same aspect ratio, the magnitude of the compressibilities increases accordingly, while the range 

over which NLC is exhibited for a particular form remains unchanged. On the other hand, if the 

b:a ratio of the isosceles triangles increases from 1, NLC values become more negative and one 

of the forms becomes increasingly more predominant. In the limit that this ratio approaches 

infinity, when virtually only one form is possible, the triangles become flattened to a line, and 

geometry wise, the structure becomes similar to a wine-rack. As illustrated in Figure 8-4, on 

increasing the b:a ratio, the angles at which the most NLC values occur tend to that of 128.17  

or 51.83  (corresponding to  1L Ox  and  2L Ox respectively) which angles are identical to 

that at which the wine-rack-type mechanism exhibits minimum (most negative) linear 

compressibility [439]. These angles do not seem to have any particular geometrical significance 

but are obtained on solving for the minimum compressibilities. In fact, in the particular cases 

where b > a, the form with the widest extent of range and which exhibits the most negative 

values for linear compressibility has the cell parameters: 
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1 2 cos 2 cos
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X a b
 


   

     
   

 
 

8-16 

 

2 2 sin  .
2

X b



 

  
 
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In the limit that b a , 90    and hence the above equations may be expressed by: 

1 22 sin          and         X 2bsin +  
2 2

X b
 


   

    
   
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which equations correspond to that of the wine-rack-like [439] structure after recognising the 

differences in orientation. 

In terms of the thermal expansion properties, the equations derived above, particularly 

equation 8-15 suggests that the system presented here may also exhibit NTE, that is, it decreases 

in size along one or more directions on the application of heat. From the plots of the unit-cell 

parameters (see Figure 8-2) it is evident that at certain angles of aperture the unit-cell has a 

maximum area. If on heating, the system oscillates about a point of maximum area 

configuration via a ‘RUM’, as discussed in various works [434-436]  its area will decrease. This 

is of particular significance as it suggests that the presented system may exhibit both NLC 

(Negative Linear Compressibility) and NTE. 

Moreover, as evident from equation 8-15, the magnitude of the coefficient of thermal 

expansion is dependent on the shape of the isosceles triangles, i.e. on the ratio of the side 

dimensions. This is illustrated more clearly in Figure 8-5 which shows how the coefficient of 

thermal expansion for a system of isosceles triangles vibrating about an equilibrium angle of 

90° (which angle, as illustrated in Figure 8-3, is a point of maximum area) changes with the 

shape of the isosceles triangles. In the cases considered the temperature was set to be equal to 

T = 293 K and the value of 2I  was set to be equal to 75 Bk T . In general the dimensions of the 

triangular units could be assigned arbitrary values in the nano-scale. In these cases the value of 

a was kept constant at 0.5 nm whilst the lengths of sides b and c were increased up to 50 nm in 
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steps of 0.001 nm. The plot in Figure 8-5 suggests that, in this case, the magnitude of NTE 

increases as the triangles become more slender, as was the case for the compressibility. Here, 

it should be highlighted that the plot only represents one of the six forms in which the system 

can exist. There may be other forms which also give rise to NTE, albeit to a different extent, as 

is clear from the plot of area against   in Figure 8-3, where for any type of triangle, more than 

one area maximum occur. 

 

Figure 8-5 Variation of the thermal expansion coefficient with the aspect ratio of isosceles 

triangles for systems where 1b c a    having a form that exists for 180 2 2      and 

vibrating about an equilibrium angle of 90 . The temperature was set to be equal to T = 293 K 

and the value of 2I  was set to be equal to 75 Bk T . The provided results were generated by 

means of the expression for the area thermal expansion coefficient A , which expression was 

derived based on the procedure proposed by Welche et al. [434]. 

 

All this is very significant because the system studied here can be used as a blueprint to 

design materials that not only have NLC but also NTE concurrently. Also significant is the 

finding made through this work that although networks constructed from rotating rigid triangles 

are usually closely associated with auxeticity, this may not always be the case as clearly 

illustrated by the systems considered here which instead can exhibit giant positive Poisson’s 

ratio properties which are conducive to NLC. This highlights the versatility of these systems 

which when designed in a specific geometric conformation have the potential to exhibit tailored 
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negative properties. Possible applications for systems which exhibit NLC include their use in 

high pressure environments and as sensitive interferometric pressure sensors [433]. NTE 

materials are sought for their use in obtaining composites with tailored coefficients of thermal 

expansion. Such composites could be used in a variety of ways ranging from dental fillings 

[440] to solar arrays in telescopes [441] and other applications which involve large fluctuations 

in temperature that could lead to thermal cracking. 

Before concluding one should mention that although a prima facie both equations 

describing the compressibility and thermal expansion of the systems seem to be only dependent 

on the ratios of the sides of the triangles, the NLC and NTE effects described here are likely to 

manifest themselves only if the system is at a molecular scale. For the thermal expansion 

analysis described here to apply, the structural features must be small enough for thermal 

vibrational motion to be present. One would not expect such thermal vibrations, and hence such 

a mechanism, to occur on a macro-scale structure. Similarly, the mechanism responsible for 

NLC in the model presented here is such that the hydrostatic pressure is only exerted on the 

outside of the system, that is, the fluid particles exerting the hydrostatic pressure on the system 

should not permeate through the system (as discussed in [439]). Thus it may be difficult for 

such a mechanism to operate at a macroscale, however, it may manifest itself at a nano level, 

providing the material has the necessary geometric features which allow this mechanism to 

occur, which ideally is also the only mechanism of deformation. Other modes of deformation 

acting concurrently with the hinging mechanism may in fact diminish the effect of NLC where 

it exists [439], although, they may themselves cause NLC in particular directions to be exhibited 

over a larger range of angles. 

8.4 Future perspectives  

In this chapter, it was shown that despite thorough studies on mechanical metamaterials, it 

is still possible to design novel systems with the potential to exhibit anomalous mechanical 
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behaviour. In order to do that, a particular mechanical metamaterial system composed or rigid 

triangles connected at vertices was investigated in terms of its propensity to exhibit unusual 

mechanical behaviour such as negative linear compressibility and negative thermal expansion. 

However, the fact that such system has a potential to exhibit unusual mechanical properties 

does not mean that it cannot manifest other type of behaviour which is discussed in this thesis. 

For example, in theory, as shown schematically in Figure 8-6(a), one could consider the 

use of the mechanical metamaterial consisting of rigid triangles in order to induce its global 

rotation as a result of the rotation of its subunits. This stems from the fact that the only condition 

required in order to observe the discussed phenomenon is a non-zero net angular momentum 

associated with the motion of subunits which effect similarly as was the case for rigid squares 

could be achieved for example by the variation in the mass of units rotating in opposite 

directions.  

 

Figure 8-6 Panels show: (a) a visualisation of the hypothetical concept related to the self-

induced global rotation of mechanical metamaterials composed of triangle motifs having 

different masses and (b) expected behaviour of the rotating rigid triangle systems with magnetic 

inclusions. In the case of diagrams shown on panel (b), the blue and red colour were used in 

order to indicate the north and south pole of magnets. 
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It is also possible to consider the use of magnetic inclusions in such systems in order to 

change the way how they deform which concept is shown schematically in Figure 8-6(b). 

Depending on the position and orientation of magnetic inclusions within the system, one could 

also expect that it would be possible to control the stiffness exhibited by the structure. One can 

also note that the behaviour of such system can be controlled solely as a result of magnetic 

interactions between magnetic inclusions which concept may lead to a design of programmable 

magneto-mechanical systems. For example, shown schematically in Figure 8-6(b) are the same 

mechanical systems with two different conformations of magnets. The system on the left has 

the magnets impregnated within it in a manner where the adjacent magnets tend to repel each 

other with the result that the system would prefer to adopt a conformation where the angle 0  

tends to decrease. On the other hand, the system on the right hand side has the magnets inserted 

into the structure in a different manner with the result that the system would prefer to increase 

the angle 
0 . This shows that metamaterials with magnetic inclusions merit to be further studied 

in view of the properties they may achieve as a result of magnetic interactions. In view of this, 

the next chapters will look more closely at systems with magnetic inclusions. 

 

8.5 Conclusions 

In this chapter, it was shown that mechanical metamaterials composed of rigid triangles 

have a potential to exhibit negative linear compressibility in at least one direction irrespective 

of the type of the system or stage of a deformation. This stems from the high positive Poisson’s 

ratio which is always exhibited by this system in the considered directions. As a matter of fact, 

it was even shown that there is a link between the negative compressibility and the value of the 

Poisson’s ratio, i.e. whenever the value of the Poisson’s ratio exceeds one then the system 

exhibits negative compressibility in this particular direction. Furthermore, upon analysing the 
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results presented in this chapter, it was also clear that the extent of investigated mechanical 

properties changes depending on the particular geometry of the system. Another interesting 

result reported in this chapter is associated with the propensity of the discussed system to exhibit 

negative thermal expansion. Finally, the potential of the proposed model to utilise some of the 

other concepts which are studied in this thesis was also discussed which hopefully will lead to 

the further interest of the scientific community in this system as well as in mechanical 

metamaterials in general.   
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9. Mechanical metamaterials with magnetic inclusions with the 

potential to exhibit both negative stiffness and auxetic behaviour 

simultaneously6 

 

HIGHLIGHTS 

 It is shown both by means of the theoretical model and experimental testing that 

magnetic inclusions can be used to alter the stiffness, where, depending on the 

orientation of magnets within the system, the considered mechanical metamaterial with 

magnetic inclusions may exhibit either positive or negative stiffness; 

 The discussed magneto-mechanical system (metamaterial) is capable of exhibiting two 

different anomalous mechanical properties, i.e. negative stiffness and negative 

Poisson’s ratio, at the same time; 

 It is shown that the magnitude of the stiffness exhibited by the system may be controlled 

via the variation in the magnetic moment of magnets (which would not change the 

Poisson’s ratio) or the change in the geometric parameters (which could change the 

Poisson’s ratio). 

 

9.1 Introduction 

As discussed in the earlier chapters and literature review, scientists working in the field of 

materials science are becoming increasingly more interested in the concept of mechanical 

                                                 
6 The content of this chapter is currently under review in the peer-reviewed journal Proceedings of the Royal 

Society A: K. K. Dudek, R. Gatt, M. R. Dudek, J. N. Grima, Negative and positive stiffness in auxetic magneto-

mechanical metamaterials Proc. Royal Soc. A (2018) 
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metamaterials with magnetic inclusions [401, 406, 411, 442, 443]. This stems from the fact that, 

for example, as mentioned at the end of the last chapter, the use of magnetic inclusions may not 

only further enhance mechanical properties exhibited by the system but also potentially lead to 

the control over them. Some of the most promising studies related to this concept correspond 

to the possibility of incorporating magnetic inclusions into the system in a way resulting in the 

structure exhibiting negative stiffness which property as discussed in the Introduction and in 

the Literature review is highly desired due to potential applications where it can be implemented 

(variety of vibration damping devices etc.). 

Despite the fact that it is known that negative stiffness can be exhibited by attracting 

magnets, which concept was confirmed both through theory and experimental studies [381, 

413, 444], scientists working in the field of mechanical metamaterials have been primarily 

focused on the potential of mechanical metamaterials to exhibit negative stiffness as the result 

of their geometry. However, as shown in the recent work by Hewage et al. [352], the use 

magnetic inclusions may allow mechanical metamaterials to exhibit several anomalous 

characteristics at the same time. More specifically, it was shown that a particular mechanical 

metamaterial may simultaneously exhibit negative Poisson’s ratio and negative stiffness. 

Studies on such systems are very important as they may lead to the implementation of 

mechanical metamaterials with magnetic inclusions in novel branches of the industry where the 

use of materials exhibiting several anomalous properties at the same time would be required. 

In this chapter, the particular mechanical metamaterial system [445] which is historically 

known to exhibit negative Poisson’s ratio, will be investigated from the point of view of its 

potential to exhibit negative stiffness after the insertion of magnetic inclusions in the form of 

magnets into it. Based both on theoretical studies and the experimental results, the effect of the 

orientation of magnets within the system on its stability and mechanical properties will be 

analysed. In this chapter, it will be also discussed that the use of magnetic inclusions may lead 



 

142 

 

to the negative stiffness in the case of otherwise conventional systems exhibiting positive 

stiffness.  

 

9.2 Concept 

The mechanical system investigated in this work corresponds to the mechanical 

metamaterial composed of “arrow head” units which was proposed by Larsen and Sigmund et 

al. [445]. This system is historically known to have a propensity to exhibit negative Poisson’s 

ratio in the case when it deforms solely via the hinging of rigid bars having a length of al and 

bl  (see Figure 1-2) which constitute the structure. In the case of this work, for all of the 

considered cases a bl l . Furthermore, as shown in Figure 9-1, the angle between ligaments 

corresponding to lengths al and bl is denoted by  , where it may be noted that the angle   is 

the only parameter describing the configuration assumed by the system, hence the entire process 

of the mechanical deformation can be discussed in terms of the variation in this parameter. As 

the matter of fact, it might be even shown that for such system deforming solely as the result of 

hinging of rigid bars, the in-plane Poisson’s ratio corresponding to loading in the vertical 

direction may be defined as follows: 

  
2

cos cos

sin

a b b a

yx

a b

l l l l

l l

 




 
  
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where for a particular system it will only depend on the variation in  . 
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Figure 9-1 Panels show: (a) the considered system composed of a number of arrowhead units 

with magnetic inclusions, (b) a single unit of the system, (c)(i) stages of the mechanical 

deformation in the system with attracting magnets in each unit (ii) stages of the mechanical 

deformation in the system with attracting magnets in each unit and (d) experimental prototype 

used in order to investigate mechanical properties of the considered system. 

 

As shown in Figure 9-1(b), within each unit of the considered mechanical system, there are 

magnetic inclusions in the form of magnets corresponding to linear dimensions ad  and bd . 

These magnetic inclusions are located in the middle of bars having a length of al with their 

orientation being such that the magnetic dipole moment  associated with each of the magnets 

is always orthogonal to the bar on which the given magnet is located. It is assumed that all of 

the magnets within the system are identical and that there is no other source of the magnetic 

field within the system. It is also assumed that the rigid bars constituting the system are made 

of the non-magnetic material as otherwise the interaction between magnets and rigid bars 

should be taken into consideration. 

Due to the particular geometry of the considered system, upon being extended in the 

vertical direction from the configuration corresponding to the angle min to the threshold 
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configuration associated with the angle 
0 , the system shown in Figure 9-1 would deform in a 

way resulting in the increase in the separation distance between magnets within a given unit. 

Upon assuming that magnets within the system are oriented as shown in Figure 9-1(a) and 

Figure 9-1(c-i), then their interaction offering the resistance to the vertical deformation of the 

system assumes the maximum value at the initial configuration associated with 
min  . This 

means that as the distance between neighbouring magnets increases as the result of vertical 

pulling, the strength of interaction between magnets decreases which in turn decreases the 

resistance which must be overcome in order to deform the system. In other words, throughout 

the deformation from the configuration corresponding to min   to the threshold configuration 

 0  , it becomes increasingly simpler do deform the system. After surpassing the threshold 

configuration in an attempt to extend the system to the final configuration associated with the 

angle max  , the distance between the magnets starts decreasing and hence the magnitude of 

interaction between magnets increases. However, upon surpassing the threshold conformation, 

the interaction between attracting magnets promotes the deformation of the system in the 

vertical direction. In view of this, throughout the entire process of mechanical deformation from 

the configuration corresponding to the angle min   to the configuration associated with the 

angle max  , it becomes increasingly simpler to overcome the resistance offered by the 

magnets and deform the system. According to the definition provided in this thesis, such 

anomalous behaviour is an indication of the negative stiffness (negative tangent / incremental 

stiffness). In terms of the force   F F F  which should be applied to the topmost and 

bottommost part of the structure (see Figure 9-1(d)) in order to induce the vertical extension of 

the system at the constant rate, its magnitude would initially assume large positive values (in 

the vicinity of min  ) in order to keep decreasing up to the end of the deformation process 
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where the system assumes the conformation corresponding to 
max  . Conversely, upon 

changing the orientation of magnets within the system so that within each of the units they 

would be repelling each other (see Figure 9-1(c-ii)), the opposite behaviour should be expected 

with the system exhibiting positive stiffness throughout the whole process of deformation as a 

result of magnetic interaction between magnets. 

At this point, it is also important to note that the analogical behaviour of the system would 

be observed should the deformation process be reversed. This means that for example in the 

case of the system with attracting magnets within the unit, the system would also exhibit 

negative stiffness upon being deformed from the configuration corresponding to max   to the 

configuration associated with 
min  .     

9.3 Simulations  

In order to investigate the considered system by means of the theoretical model, it is 

assumed that rigid bars constituting the system are highly idealised and apart from being 

perfectly rigid they also do not offer any resistance to the hinging process, which is the only 

mechanism corresponding to the deformation of the structure. It is also assumed that magnets 

inserted into the system are uniformly magnetised and have a magnetic dipole moment  . Due 

to the fact that in this work, that size of magnets is not expected to be negligible in comparison 

to the distance between neighbouring magnets, it is assumed that each magnet can be 

represented by an array of a bN N  magnetic dipoles having a magnitude int which can be 

defined as follows [406]: 

int

1

N
   
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where, N represents the number of magnetic dipoles constituting a given magnet  a bN N N 

. In the case of this chapter, quantities 
aN  and 

bN  were set to be equal to 20 and 10 respectively. 

The separation distances between respective magnetic dipoles are defined in the following 

manner: 

        and          .
1 1

a b
a b

a b

d d
s s

N N
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In order to analyse stability of the considered system at a particular configuration, it is first 

necessary to calculate its magnetic potential energy. To calculate such energy for individual 

magnets, one must determine the energy of interaction of individual magnetic dipoles located 

on the considered magnet with all of the magnetic dipoles associated with remaining magnets 

within the system. As shown in the literature [406, 446], the potential energy of an arbitrary i-

th magnetic dipole interacting with the j-th magnetic dipole located on an arbitrary 

neighbouring magnet, can be defined as shown below: 

 ,

MAG

i j i jU B    
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where, jB represents the magnetic field associated with the aforementioned  j-th magnetic 

dipole measured at the point where the i-th magnetic dipole is located  inti j    . Such 

magnetic field can be defined as follows [406, 446]: 
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where, r  is the position vector pointing from the j-th magnetic dipole to the i-th magnetic 

dipole on the considered magnet. This also means that r  stands for a distance between the two 

magnetic dipoles. At this point, it should be noted that due to the particular geometry of the 

system, the only possible difference between vectors i  and j  corresponding to the i-th and 

j-th magnetic dipole respectively is the sign. It should also be highlighted that in this work, the 
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interactions of magnetic dipoles located on the same magnet with each other are not taken into 

consideration.  

Based on equations 9-4 and 9-5, and upon taking all of the dipole-dipole interactions for 

each of the magnetic dipoles from the considered magnet into consideration, it is possible to 

write down the expression corresponding to the total magnetic potential energy of the single 

magnet within the discussed system MAGU  in the following manner: 

,

1 1

 .
N N

MAG MAG

i j

neighbours i j

U U
 

 
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 
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The first sum in the above equation corresponds to a number of neighbours of a single 

magnet. It should be noted that in the particular case when the system would consist of only 

one arrowhead unit (see Figure 9-1(b-d)), the first summation would disappear as there would 

be only one magnet apart from the magnet for which the energy would be calculated. One can 

also consider whether for a hypothetical very large or infinite system it is necessary to calculate 

the energy of a particular magnet based on all of the magnets within the system. As shown in 

equation 9-5, the magnitude of the magnetic field corresponding to the interaction between any 

two magnets decreases proportionally to their separation distance raised to the power of -3. This 

means that very distant magnets would make a negligible contribution to the energy of the given 

magnet. Thus, in order to obtain a reliable information regarding the magnetic potential energy 

associated with a single magnet, it should be sufficient to calculate the magnitude of the 

interaction of the considered magnets with those of its neighbours which make a significant 

contribution to its energy. The extent of such neighbourhood can be established by means of 

the appropriate convergence test (see Appendix V).  

In order to investigate mechanical properties and stability of the discussed system, the 

considered structure was deformed from the initial to the final configuration corresponding to 

angles min   and max   respectively. At one point of such process corresponding to the 



 

148 

 

vertical extension, the system assumes the threshold triangle-like conformation where the 

separation distance between the magnets within the same unit assumes the maximum value. 

This means that at this stage of the process, the magnetic interaction between adjacent magnets 

is the weakest and one should expect the extremum in the energy profile (both for attracting 

and repelling magnets) to be observed. At this point, it should be also noted that in the case of 

the discussed theoretical model, it is also possible to calculate the stiffness exhibited by the 

system throughout the deformation. In order to do that, one may assume that the change in the 

energy of the system to undergo a transition from one configuration to another corresponds to 

the work W which must be done in order to extend the structure by a certain distance dy in the 

vertical direction. In view of this, the vertical force F required to extend the system can be 

determined based on these two quantities.   

9.4 Construction of the Prototype and Experimental Testing 

Apart from theoretical studies, the concept corresponding to the possibility of achieving 

negative stiffness in the discussed magneto-mechanical system was also confirmed 

experimentally. In order to do that, an experimental prototype consisting of a single unit (see 

Figure 9-1) having linear dimensions 10 cmal  and 3.5 cmbl  was constructed by means of 

the 3D extrusion printer (using ABS plastic). The magnets which were inserted into the system 

were cylindrical neodymium magnets corresponding to the estimated magnetic dipole moment 

of 
21.656 Am  . Each of those magnets had a radius of 1 cm  2 cmad   and the out-of-

plane thickness equal to 1 cm  1 cmbd  . In order to investigate the potential of the discussed 

system to exhibit different types of stiffness, analogically to the concept shown schematically 

in Figure 9-1(c), two scenarios were analysed where the facing magnets were either attracting 

or repelling each other depending on the change in the orientation of one of them. It should also 

be noted that in the case of the experiment, the considered magnets were shifted inwards the 
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unit by 5 mm in the orthogonal direction to the linear dimension of rigid bars having a length 

of 
al . 

In order to investigate the stiffness exhibited by the experimental prototype, the 

deformation of the considered system was induced by means of the Testometric universal 

loading machine (M350-20CT) equipped with a 1000 N load cell. More specifically, the 

considered prototype was subjected to the vertical displacement at a constant rate of 1 cm / min. 

It should be also noted that before recording any of the results, the force and displacement 

measured by the loading machine were zeroed at the moment when the system was assuming a 

threshold configuration corresponding to 
0  .  

In order to analyse properties of the experimental prototype, the system was deformed from 

the initial configuration corresponding to the angle min 32.6    (see Figure 9-2(a-i)) to the 

final configuration associated with the angle max 117    (see Figure 9-2(a-iii)).  

9.5 Results and Discussion 

Based on Figure 9-2(a), one can clearly see that as the system is being pulled in the vertical 

direction at the range of   between min  and 0 , the structure expands in the horizontal 

direction which behaviour is an indication of the negative Poisson’s ratio. This observation is 

also in accordance with the predictions made by Larsen and Sigmund et al. [445]. However, 

upon surpassing the threshold configuration, the system starts exhibiting positive Poisson’s 

ratio as its horizontal dimension is decreasing. The variation in the value of the Poisson’s ratio 

can be seen in Figure 9-2(b). It is also important to note that the force F recorded by the load 

cell during the experiment is plotted with respect to the vertical displacement in Figure 9-2(c). 

The stiffness corresponding to this experiment is presented in Figure 9-2(d). 
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As shown in Figure 9-2(c), as expected based on theoretical predictions, the force measured 

by the load cell for the system with attracting magnets was decreasing throughout the entire 

process of mechanical deformation corresponding to the change in   from 
min  to 

max . Such 

behaviour, as already discussed in this chapter and in the Introduction of the thesis, is an 

indication of the negative stiffness. As the matter of fact, the negative values of the stiffness 

corresponding to this system are shown in Figure 9-2(d). Conversely, in the case of the system 

with repelling magnets, the opposite behaviour of the system can be observed, i.e. the force F 

is continuously increasing throughout the entire process of deformation. This in turn, as shown 

in Figure 9-2(d), leads to the positive stiffness which result is in accordance with predictions 

made in this chapter. As already mentioned in the thesis, it is very unusual to design mechanical 

metamaterials which can exhibit numerous anomalous mechanical properties at the same time. 

As shown while discussing the results from Figure 9-2(b), irrespective of the orientation of 

magnets, the considered system exhibits negative Poisson’s ratio at the range of   between 

min  and 0  (Poisson’s ratio would be the same even for the system without magnets as it 

depends solely on the geometry). This stems from the fact that throughout this part of the 

process of deformation, the horizontal dimension of the structure increases up the point when 

the system reaches the threshold configuration. However, as the system is further extended in 

the vertical direction, it starts exhibiting positive Poisson’s ratio  0 max,   . It should also 

be noted that, as discussed in the above paragraph, the stiffness exhibited by the system varies 

significantly depending on the orientation of magnets within the system. In particular, it was 

shown that in the case of the structure with attracting magnets inserted into it, the negative 

stiffness can be exhibited at the range of   between min  and max (entire deformation). Thus, 

it may be concluded that the considered system with magnets oriented in a way as shown in 

Figure 9-1(c-i), may exhibit highly unusual negative Poisson’s ratio and negative stiffness at 
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the same time while being deformed from the initial (
min  ) to the threshold configuration (

0  ). 

 

Figure 9-2 Panels show: (a) different stages of the deformation of the experimental prototype 

associated with: (i) initial, (ii) threshold and (iii) final configuration, (b) Poisson’s ratio 

exhibited by the system for loading in the vertical direction, (c) force recorded by the tensile 

loader throughout the entire process of deformation of the experimental prototype, (d) stiffness 

exhibited by the prototype with attracting and repelling magnets, (e) theoretical results 

corresponding to the force required to deform the system analogical to the experimental 

prototype and (f) stiffness exhibited by the system according to the theoretical model. 
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As shown in Figure 9-2(e-f), the experimental results obtained in this work were also 

analysed by means of the theoretical model where all of the parameters were set in a way to 

closely resemble the experimental prototype in order to compare both sets of results. Based on 

generated results, one may note that the theoretical model leads to the same conclusions 

regarding the mechanical properties of the considered system. It may also be noted that in terms 

of the magnitude, there is a very good agreement between both sets of results which increases 

the credibility of the reported results. Of course, despite the fact that theoretical and 

experimental results reported in this work are very similar, they are not exactly the same as is 

normally the case upon comparing theoretical model to the experiment. One source of a small 

discrepancy between both sets of results could be the fact that due to a very strong interaction 

at small distances, the magnets in the experimental prototype were not perfectly aligned with 

the rigid bars having a length of al . In addition to that, it should be noted that the standard 

analytical expression used in order to calculate the magnetic field between any two magnetic 

dipole moments is expected to provide only approximated results especially with this 

approximation being less accurate for configurations where the distance between the magnets 

was relatively small.  

Apart from results generated for systems composed of a single structural unit with two 

magnets (see Figure 9-1(b)), it is also possible to consider more complex systems with a large 

number of units (see Figure 9-1(a)). More specifically, in the case of this chapter a hypothetical 

large system was taken into consideration where the neighbourhood of each of the magnets 

similarly to infinite systems could be assumed to be the same for each of the magnets (see 

Model section). Furthermore, with the help of the appropriate convergence test (see Appendix 

V), the energy per magnet in such system was calculated in order to discuss the stability of the 

structure and later determine its stiffness. 
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Figure 9-3 Panels show: (a) the variation in the Poisson’s ratio in the loading direction for 

systems corresponding to a different value of bl , (b) variation in the (i) magnetic potential 

energy per unit and (ii) stiffness of the system with attracting magnets for structures 

corresponding to different values of bl  and (c) graphs analogical to those from panel (b) but 

generated for systems with repelling magnets.   

 

As shown in Figure 9-3(b-i), the magnetic potential energy of the system per structural unit 

with magnets oriented as in Figure 1-2(a), resembles the reversed parabola with the maximum 

at the threshold configuration where 0  . The extremum at this particular configuration is 
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associated with the fact that it corresponds to the largest possible distance between the magnets 

within each of the units. This particular energy profile also indicates that such system is unstable 

which behaviour as shown in Figure 9-3(b-ii) is an indication of the negative stiffness. Thus, 

should one set the system in a way so that at a given moment it would assume the threshold 

configuration, then in an attempt of reaching a more energetically favourable configuration, the 

system would want to assume the conformation corresponding to 
min   or 

max  . 

However, should one change the orientation of one magnet in each of the structural units (see 

Figure 9-1(c-ii)), then a very different behaviour of the system in terms of its stability would be 

observed. Based on Figure 9-3(c-i), one may note that the profile of the energy of the system 

per structural unit resembles a parabola with a minimum corresponding to the threshold 

configuration (
0  ). This means that the system would not want to leave this particular 

conformation as it is the most favourable from the energy point of view. This in turn indicates 

that the system is stable which behaviour is also normally expected to lead to the positive 

stiffness which as shown in Figure 9-3(c-ii) was also the case for the considered model. 

Another interesting aspect of the discussed system which remains to be discussed is the 

effect which the geometry of the structure has on its behaviour. In view of this, in this chapter, 

the behaviour of the considered model was analysed for different values of bl  which quantity 

stands for a length of some of the ligaments within structural units (see Figure 9-1(b)). Based 

on Figure 9-3(a), one can note that the values of the Poisson’s ratio exhibited by the system 

throughout the process of deformation are strongly affected by the variation in bl . This should 

be expected as the Poisson’s ratio depends solely on the geometry of the system. One can also 

note that in terms of the absolute magnitude, the lower the values of bl , the larger the values of 

the Poisson’s ratio for analogical values of the vertical displacement. Based on remaining panels 

in Figure 9-3, it can be concluded that the variation in the geometric parameter bl  does 
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significantly affect the energy of the system and it stiffness. More specifically, it may be noted 

that in terms of the absolute magnitude, irrespective of the stage of the deformation, the lower 

the values of 
bl  the larger the energy and stiffness of the system. This result may be easily 

understood should one realise that for small values of 
bl , magnets are being brought closer to 

each other and hence the energy associated with their magnetic interaction is being increased. 

The stronger interaction between magnets makes it also more difficult (or conversely simpler) 

to deform the system which results in the increase in the magnitude of the stiffness. 

Apart from the effect which the geometry of the system has on its behaviour, it is also 

possible to investigate the effect which the strength of magnets has on the energy and 

mechanical properties exhibited by the system. This can be achieved through the analysis of 

results corresponding to exactly the same systems in terms of their geometry but corresponding 

to different values of  . As shown in Figure 9-4(a), the Poisson’s ratio exhibited by considered 

systems is not affected by a type of the magnets inserted into the structure. However, according 

to the remaining panels from Figure 9-4, it may be noted that both the energy and the stiffness 

are significantly affected by the variation in  . More specifically, as should be expected, one 

can see that the stronger the magnets the larger the absolute values of the energy and stiffness 

exhibited by the system. It should be also emphasised that the variation in  does not change 

any of the trends exhibited by considered systems. At this point, it should be mentioned that in 

reality, the variation in the value of  could be achieved upon replacing magnets with 

electromagnets in which case the strength of their interaction could be controlled by the 

intensity of the provided current. This in turn means that one could conveniently fine-tune the 

magnitude of the stiffness exhibited by the system. By changing the direction of the current, it 

could be also possible to change the stiffness of the system from positive to negative and vice-

versa without the necessity of reconstructing the structure. 
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As discussed above, the possibility of replacing magnets with electromagnets in the case 

of the considered system would potentially make it possible to conveniently change the stiffness 

of the structure from positive to negative and vice-versa as well as to fine-tune its magnitude. 

It should be also emphasised that the potential of such system to exhibit a versatile stiffness 

could also be utilised together with the effect of auxetic behaviour which was also reported in 

this chapter as one of the characteristics of this system. Such control over the type of the 

stiffness exhibited by the system as well as the potential to exhibit other types of anomalous 

mechanical behaviour may lead to the proposal of novel types of applications where such 

versatility would be essential.  One could for example consider the use of devices based on this 

concept as smart filtration devices where the size of the pore could be controlled by the electric 

current. It could also be potentially applied in the case of a variety of protective and vibration 

damping devices where both negative Poisson’s ratio and negative stiffness are historically 

known to be of great importance. 

Apart from considering mechanical metamaterials at the macroscale where such systems 

are normally investigated from the point of view of their mechanical properties, it would be 

also very interesting to consider such systems with magnetic inclusions at significantly lower 

scales such as the nano- or microscale. This stems from the fact that due to the relative ease 

with which mechanical metamaterials can be deformed, these systems could be considered as 

very interesting candidates to investigate different physical phenomena where the variation in 

the distance between magnetic inclusions is significant from the point of view of the exhibited 

effect. In view of this, in the following chapter, the propensity of the particular mechanical 

metamaterial system to enhance unusual physical phenomena at the nanoscale as the result of 

its deformation will be discussed. 
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Figure 9-4 Panels show: (a) the variation in the Poisson’s ratio in the loading direction for 

system with magnets corresponding to different values of  , (b) variation in (i) magnetic 

potential energy per unit and (ii) stiffness of the system with attracting magnets for structures 

corresponding to different values of   and (c) results analogical to those shown on panel (b) 

but generated for systems with repelling magnets within structural units. 
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9.6 Conclusions  

In this chapter, the particular mechanical metamaterial with magnetic inclusions was 

proven to be capable of exhibiting both negative Poisson’s ratio and negative stiffness at the 

same time. This highly unusual behaviour was analysed both by means of the theoretical model 

and experiment where both of these approaches were shown to lead to analogical results. It was 

also shown that different orientation of magnets within the structure may change the stiffness 

of the system from positive (repelling magnets) to negative (attracting magnets) and vice versa. 

Such variation in the orientation of magnets was also reported to lead to a different behaviour 

of the system in terms of its stability. All of these results indicate that the investigated system 

may prove to be useful upon designing novel vibration damping devices where apart from 

normally desired negative stiffness one could further enhance the properties of the system by 

the manifestation of the auxetic behaviour. 
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10. Potential of mechanical metamaterials with magnetic 

inclusions to exhibit magnetocaloric effect7 

 

HIGHLIGHTS 

 The potential of rotating square system with magnetic inclusions to exhibit 

magnetocaloric effect was investigated though a model where the system was 

represented by means of the Ising model (ferromagnetic interactions) defined on the 

square lattice as such approach allows to determine the exact expression for entropy of 

the system by means of the famous Onsager’s solution. It is also discussed that the 

considered model may represent an array of magnetic particles arranged on the square 

lattice where Ising spins represent magnetic moments of individual particles;   

 It was shown that this particular magneto-mechanical system may induce the 

magnetocaloric effect solely as a result of the mechanical deformation and without the 

presence of an external magnetic field; 

 The magnitude of the magnetocaloric effect induced for the considered system during 

the isothermal process can be very large even in the vicinity of the room temperature. 

10.1 Motivation 

As discussed in the last chapter, apart from investigating the potential of macroscopic 

mechanical metamaterials with magnetic inclusions to exhibit anomalous mechanical 

behaviour, it would be also interesting to consider such systems at the nano-scale. This stems 

from the fact that as a result of the deformation of these systems it would be possible to change 

                                                 
7 The content of this chapter has already been published in the peer-reviewed journal Smart Materials and 

Structures: M. R. Dudek, K. W. Wojciechowski, J. N. Grima, R. Caruana-Gauci, K. K. Dudek, Colossal 

magnetocaloric effect in magneto-auxetic systems Smart Mater. Struct. 24 085027 (2015) 
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the magnitude of magnetic interaction between magnetic particles inserted into the mechanical 

structure. This in turn could prove to be useful in the case of different physical phenomena 

under the assumption that the system would consist of a large number of densly-packed 

magnetic nanoparticles where such change could be significant. One very interesting effect 

which could be expected to be affected by the variation in the distance between magnetic 

inclusions and is historically-known to be an intrinsic property of all of the magnetic systems 

subjected to a change in the magnetic field is the magnetocaloric effect. This phenomenon, 

which is explained and discussed in relation to the already existing studies in the following 

section, corresponds to the change in the temperature of the magnetic system as the result of 

the external stimuli and has been proven to be useful in the case of magnetic refrigeration 

techniques. More specifically, this effect is normally induced as a result of the change in the 

externally applied magnetic field or originates from the movement of the magnetic system in 

the magnetic field. However, one could also consider the possibility of inducing the analogical 

effect as a result of mechanical deformation of the magneto-mechanical system which concept 

despite being initially proposed [447, 448] has not been thoroughly investigated and many of 

its aspects still remain to be discovered. In view of this, the possibility of designing a 

hypothetical mechanical metamaterial with magnetic inclusions which would be capable to 

exhibit a strong magnetocaloric effect without the presence of the external magnetic field is 

going to be investigated in this chapter. It should be also noted that for a majority of magnetic 

materials, unless a very strong magnetic field is applied, the magnetocaloric effect induced by 

the application of the external magnetic field is very weak in the vicinity of the room 

temperature. Thus it would be interesting to analyse the propensity of mechanical metamaterials 

with magnetic inclusions at the wide range of temperatures including the room temperature 

where the considered effect could prove to be the most important from the point of view of 

potential applications. 
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10.2 Introduction 

The magnetocaloric effect (MCE) is a phenomenon related to the heating of a magnetic 

material upon the application of a magnetic field, and conversely, its cooling after the removal 

of a magnetic field. MCE was first discovered in iron by Warburg in 1881 [449] and since then, 

a vast number of studies have been carried out on this phenomenon [450, 451]. MCE is an 

intrinsic property of magnetic materials but it is usually too weak to be used in everyday 

magnetic cooling applications operating at around room temperature. Some of the exceptions 

which correspond to systems where MCE under similar conditions can be significant include 

gadolinium (Gd), which has a critical temperature of 294cT K , various compounds based on 

manganites, and related compounds of rare earth metals [451]. It should also be noted that a 

significant progress associated with the proposal of new MCE materials has been noted since 

the discovery of giant MCE in Gd5(Si2Ge2) by Pecharsky and Gschneidner [452] which study 

encouraged other scientists to investigate the considered phenomenon. 

As discussed above, the magnetocaloric effect for an arbitrary magnetic system is normally 

induced through the change in the external magnetic field or the movement of such system at 

the constant magnetic field. However, it does not mean that it is not possible to induce this 

effect by means of other techniques. In this thesis, it was already discussed that the mechanical 

deformation of the mechanical system with magnetic inclusions results in the change in the 

distance between respective magnetic inclusions which in turn affects the strength of their 

interaction. Thus, this process, which is very similar to the change in the external magnetic 

field, may be also expected to affect or even possibly induce the magnetocaloric effect in the 

case of mechanical systems with magnetic inclusions. As the matter of fact, despite being in its 

infancy and lacking more thorough analysis which could lead to potential applications, the 
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concept of inducing the magnetocaloric effect at the zero external magnetic field [451] as well 

as the possibility of affecting the magnetocaloric effect as a result of the mechanical 

deformation of the magnetic system [447, 448] have already been proposed. In particular, 

Tishin and Spichin introduced the concept of an elastocaloric effect which arises by changing 

the external pressure at a constant (or zero) magnetic field [451]. This study was followed by 

Mosca et al. who showed that strain can tune MCE related to the magneto-structural phase 

transition in MnAs [448]. In their work, it was also shown that the critical temperature of the 

strained epilayers of MnAs depends on the mean strain   as  0 1 2cT T   for some 

adjustable parameters 0T  and  . Among some of the more recent studies related to this concept 

it is also worth to mention the work by Paes and Mosca [447] where the effect of an applied 

mechanical stress on galfenol was discussed and it was shown that magnetostriction and 

magnetoelastic interactions can be responsible for auxeticity in galfenol. 

At this point, it is worth to mention that the recent trend which may be observed in the field 

of research related to the magnetocaloric effect indicates that scientists are increasingly more 

interested in finding novel materials capable to exhibiting a desired type of the magnetocaloric 

effect instead of fine-tuning the currently known solutions. In particular, single-domain 

magnetic nanoparticles have been found to be promising candidates to design such materials 

which stems from their potential to exhibit superparamagnetic behaviour above the blocking 

temperature bT , their large area for heat exchange as well as the possibility of placing them into 

another host material which material can be non-magnetic [453]. In the system composed of 

such particles, each magnetic nanoparticle acts as a single superspin which can interact with the 

surrounding superspins through dipolar interactions [453]. In the relatively dense ensemble of 

magnetic nanoparticles they can show collective behaviour typical for spin-glass or 

superferromagnetic systems [453-456]. In particular, in the work by Petracic et al. [453] , where 
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thin layers of Co80Fe20 nanoparticles which are embedded in a diamagnetic Al2O3 matrix were 

investigated, it was shown that when the nominal thickness of the nanoparticles concentration 

exceeds the value of 1.1 nm, superferromagnetic ordering can be observed (such creation of 

magnetic domains is analogous to the behaviour observed in ferromagnets). In view of this, it 

would be very interesting to design a novel systems conducive to the magnetocaloric effect 

which could allow for interactions of single domain magnetic inclusions.  

In this chapter, in view of the studies mentioned above, an attempt is made to investigate 

the possibility of inducing the magnetocaloric effect in the case of the particular hypothetical 

mechanical metamaterial system with magnetic inclusions without the presence of the external 

magnetic field. It will also be analysed whether the mechanically-driven magnetocaloric effect 

which is expected to be observed for the considered system may assume significant values at 

temperatures in the vicinity of the room temperature. Should it be the case, this result could 

prove to be important in the case of potential applications such as magnetic refrigerators which 

would ideally be able to operate at the room temperature. Note that for the sake of simplicity 

the considered magneto-auxetic system is going to be referred to as MAS in the remaining part 

of this chapter. 

10.3 Concept 

In this chapter, the possibility of inducing the magnetocaloric effect solely as a result of 

the mechanical deformation by the considered magneto-mechanical system is going to be 

investigated in the case of the isothermal process without the presence of the external magnetic 

field. In the case of such process, the magnetocaloric effect is manifested by the change in the 

magnetic entropy of the system. Upon representing magnetic inclusions within the considered 

system by means of the Ising model defined on a square lattice, the change in the magnetic 

entropy for such system can be determined by means of the famous Onsager’s solution [457-
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459]. More specifically, through the use of this solution, one may find the entropy of the system 

at a given configuration (particular arrangement of Ising spins in space governed by mechanical 

deformation). Thus, upon calculating the entropy of the system at two different configurations, 

it is possible to calculate the change in the magnetic entropy (a difference between entropies 

corresponding to the system at two different geometric configurations) corresponding to the 

deformation of the system from one configuration to another as discussed in more detail in the 

following sections of this chapter.  

10.4 Model 

The considered system corresponds to the non-magnetic matrix in a form of the rotating 

square system where at the centre of each of the rigid units there is a magnetic inclusion located. 

This model is inspired by the novel work by Grima et al. [406] where, as discussed in the 

Literature Review, a similar system with magnetic inclusions in the form of permanent magnets 

located at the centre of respective rectangular units was considered. In this chapter, it is assumed 

that the considered non-magnetic matrix consists of N N identical perfectly rigid square-like 

units connected at vertices with each of the units having the linear dimension a. The angle of 

aperture between the adjacent rigid units is denoted as 2 . Furthermore, all of the magnetic 

inclusions in the system are represented by means of the Ising model defined on the square 

lattice which means that the considered system is assumed to be the microscopic spin 1/2 system 

which can exhibit phase transitions. In such system, magnetic moments are represented by Ising 

spins 1ijs    which are located at the centre of mass ijr of the squares (i, j) where 

, 1,2,...,i j N . A schematic representation of a MAS consisting of 3 3  square units is 

presented in Figure 4-2. It should be noted that for the considered system, the centres of mass 

of the squares create a two-dimensional square lattice where  cos sinx yL L L Na      .  
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Figure 10-1 Magneto-auxetic system of 3 3  squares of dimension a a  with the exemplary 

configuration of Ising spins 1s    denoted by “+” and “-” respectively, located at centre of 

mass of the squares. xL  and yL  denote linear dimensions of the system in the x and y directions 

respectively. 

 

In general, the nearest-neighbour Ising model Hamiltonian [460] is used to describe 

magnetic interactions between Ising spins in the following manner: 

, ,

, , 1

N
IM

exact ij kl ij kl B i j

ij kl i j

H J s s H s


     
10-1 

where the angular brackets denote summation over the nearest-neighbour lattice pairs, H is the 

external magnetic field measured in Teslas, B is the Bohr magneton (constant corresponding 

to the magnetic moment of an electron), ,ij klJ  is the coupling constant which depends on the 

distance ,ij klr  between the nearest-neighbour sites (i, j) and (k, l). In this chapter, it is assumed 

that 
3

, 0 ,/ij kl ij klJ J r  and 0 0J   (ferromagnetic interaction). It should also be noted that, for the 

considered system (see Figure 10-1), the distance between centres of adjacent rigid units can 

be expressed as follows: , 2 sin
4

ij klr a



 

  
 

. Furthermore, as a result of the mechanical 
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deformation of the considered auxetic system, the symmetry of the magnetic Hamiltonian is not 

being changed because the centres of mass of the rotating squares are represented by a square 

lattice for an arbitrary value of   which is permitted by the geometry of the system, i.e. 

 0,   rad. 

In a closed thermodynamic system of localized magnetic moments, the total entropy S 

depends on temperature T, pressure p, and external magnetic field H. In view of this, the full 

differential of the entropy can be written as: 

, ,,

 .
p H T pT H

S S S
dS dT dp dH

T p H

      
      

      
 10-2 

It should be noted that the magnetocaloric phenomenon investigated in this chapter is 

represented by the isobaric-isothermal process (dp = 0, dT = 0) which leads to the following 

expression: 

,

 .
T p

S
dS dH

H

 
  

 
 

10-3 

It is also important to highlight the fact that the magnetocaloric effect can be expressed in 

two different ways: 

(i) by the temperature increase 0f iT T T     of the magnetic material 

after a change in the magnetic field 0f iH H H    , from the initial 

value iH  to the final value fH . In this case, the magnetic field is applied 

adiabatically through a thermodynamically reversible process; 

(ii) by the decrease of the magnetic part MS  of the total entropy S  after the 

magnetic field fH  ( f iH H ) is applied isothermally to the system at 

temperature T, that is: 
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   , , 0 .M M f M iS S T H S T H     
10-4 

In view of the latter approach leading to the magnetocaloric effect, it may be noted that 

there is another possibility of obtaining the change in entropy (see equation 10-2) which is 

possible through the isothermal process at constant magnetic field (dT = 0, dH = 0): 

,

 .
T H

S
dS dp

p

 
  

 
 10-5 

As reported by Tishin et al. [451], an example of such process can be the elastocaloric 

effect. In the case of the considered magneto-mechanical system, the infinitesimally small 

uniaxial stress id  for loading in the direction i (e.g. x or y) substitutes the infinitesimally small 

isotropic pressure change dp in equation 10-5. The stress id  can be expressed in terms of 

Young’s modulus iE  and the strain i  for loading in the direction i, i.e., i i id E d  . In the 

particular case of the considered system which is shown in Figure 10-1, id  in the above 

expression assumes the same value for loading in the x and y direction, i.e.

yx
i

x y

dLdL dL
d

L L L
     , where  cos sindL a d    . Thus, the full differential of the 

entropy from equation 10-5 can be expressed as follows: 

,

 .
T H

S
dS d



 
  

 
 

10-6 

A more general process is also possible if the external magnetic field was to be changed 

from the initial value iH  to the final value   f i fH H H   concurrently to an applied strain. 

In the case of this chapter, the entropy decrease MS being the result of the magnetocaloric 

effect during the isothermal process is given by: 

   , , , , 0M M f f M i iS S T H S T H      
10-7 
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where i  and f  represent the initial and final values of  for which the distance between the 

magnetic moments decreases. 

In this chapter, in order to be close to the experimental values concerning materials with 

an MCE (Magneto Caloric Effect) near room temperature [451], the value of 0J  in the 

Hamiltonian expressed by equation 4-2 is chosen to be equal to 0.01116 eV. This value is such 

that 293.9 KcT   for 90    and 103.9 KcT   for 45   , where cT  stands for the critical 

temperature. As mentioned before, the isothermal magnetic entropy change MS  after the 

mechanical deformation f i      can be easily determined with the help of the well-known 

Onsager solution [457-459] for the two-dimensional Ising model defined on the square lattice 

at zero magnetic field  0H  . In such the case, in order to determine the extent of the observed 

magnetocaloric effect, the entropy per site M
M

B

S
s

k
  is calculated as   ,0Ms u F T  (see 

Appendix VII for the implementation). Based on the above expression, one may note that in 

order to find the reduced entropy for a given configuration of the considered system, it is first 

necessary to determine its free energy per site u and the free energy per site reduced by 

temperature f . As shown in the literature [458], for the Ising model, these quantities may be 

expressed as follows: 
f

u



 


 and  ,0f F T (see Appendix VI for the explicit form). At 

this point, it must be noted that in this chapter, the rotating squares system is used in order to 

have the exact Onsager solution for the Ising model, however there are other rotating rigid units 

or other mechanical systems which can be effectively used as a non-magnetic matrix. This 

means that even though, in general, one can use an arbitrary geometry to construct the system 

capable of inducing the discussed phenomenon, the extent of this effect could not be estimated 

for such systems by means of the exact analytical expressions known from the literature. It 
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should also be noted that should one try to apply the considered approach to real systems which 

have the analogical geometry, it would be valid only in the case of systems composed of a very 

large number of magnetic inclusions forming a particular square lattice and would not be 

expected to work for other systems.  

It should also be noted that in the considered model, 

3

/ 2 sin
4

sq

c cT T a



  

   
  

where 

sq

cT  is the critical temperature for the Ising model defined on the square lattice with the unit 

lattice constant. This means that throughout the process of the mechanical deformation 

(followed by the change in  ) the critical temperature of the system 
cT  changes accordingly. 

Hence, there is a direct analogy between the considered model and the model proposed by Bean 

and Rodbell [461] where the dependence of the critical temperature on strain [448] was 

assumed. 

 

10.5 Results and Discussion 

In Figure 10-2, the dependence of M
M

B

S
s

k


   per site on temperature is shown for 

different values of i and f  (corresponding to a different extent of the mechanical 

deformation) with no presence of the external magnetic field. The characteristic feature of the 

plotted magnetic entropy difference Ms  is that the concavity of this function changes (point 

of inflection) at temperatures corresponding to the critical temperature associated with the 

initial ( i  ) and final ( f  ) configuration of the considered system subjected to the 

mechanical deformation.  
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Figure 10-2 Temperature dependence of the isothermal entropy change Ms for MAS deformed 

from i  to f  at zero magnetic field. The plots representing deformations 89 90  , 

80 90  , 70 90  , 45 90   are shown (units in degrees). The vertical lines indicate 

location of cT for a given value of i and f .    

 

In the case of a spin 1/2 model taken into consideration, the maximum value of the reduced 

magnetic entropy Ms  cannot exceed the value of  log 2 0.693  as for the Ising model (see 

Appendix VI for a detailed description corresponding to the calculation of Ms ). As can be 

seen in Figure 10-2, the largest value of the change in magnetic entropy is observed for the 

deformation from 45i    to 90f    where it is about 85% of the maximum possible value. 

This stems from the fact that for such system, during the process of deformation, the separation 

distance between the neighbouring Ising spins is changed from the maximum to the minimum 

distance which can be achieved for the considered system. Also, as shown in Figure 10-2, upon 

reducing the extent of mechanical deformation, the values corresponding to the change in the 

reduced magnetic entropy assume increasingly lower values (in terms of the absolute 

magnitude). However, it may be noted that even in the case of the relatively small deformation 
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by 1  from 89i    to 90f    (or equivalently from 1i    to 0f   ), the observed 

variation in Ms  corresponds approximately to 15% of the maximum entropy. It should also 

be noted that even in the vicinity of the room temperature, the change in the reduced magnetic 

entropy is relatively close to the maximum value of Ms exhibited by each of the considered 

types of deformation. This in turn indicates that one could expect to observe a strong 

mechanically-driven magnetocaloric effect in the case of applications involving the use of this 

concept at temperatures in the vicinity of the room temperature. 

In order to compare the obtained results with the results known from literature, one can 

hypothetically assume that Ising spins are replaced with some atoms. If for example Gd atoms 

(where the total angular momentum of an atom is equal to 7 / 2 ) were substituted for the Ising 

“atoms”, then, the maximum change in the magnetic entropy cannot exceed the value of 

 log 8 2.079 . After the multiplication of this number with the gas constant 

 1 18.314 J mol  KR    for Gd atoms, this maximum value of the change in the magnetic 

entropy would correspond to -117.3 J mol  K  or 
-1110.02 J kg  K  [451]. In view of this, in the 

case of the results shown in this chapter, the entropy change by 15% of the maximum entropy 

value would result in 
-116.50 J kg  K . This value is more than three times larger than the 

maximum entropy change for Gd after an application of the external magnetic field of 

 2T 0T, 2Ti fH H   and it is of the same order of magnitude as in Gd5(Si2Ge2) for the same 

parameters (refer to figure 4 in the paper by Pecharsky and Gschneidner [452]). This means 

that solely mechanically-driven magnetocaloric effect which was observed for the considered 

hypothetical system can be very strong and as mentioned above, it may also exhibit large values 

in the vicinity of the room temperature.  
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In view of the very promising results discussed above, the question arises whether other 

currently known MCE (Magneto Caloric Effect) materials offer a similar level of expandability 

as the considered system which is clearly the reason behind the extent of the observed 

phenomenon. Due to a particular design of the non-magnetic matrix, the linear dimension L of 

the discussed system can increase up to 41% under a uniaxial strain applied in the x or y 

direction while the corresponding increase in area could reach up to 100% of the initial value. 

It may also be mentioned that for the hypothetical three-dimensional equivalent of the 

considered auxetic system, the volume could increase up to approximately 180% . This 

enormous expandability can be compared to present MCE materials where often only a small 

volume expansion / 0.1%V V   is observed at CT  due to a magnetoelastic transition. 

However, there are several materials known to lead to MCE which can deform to a relatively 

large extent. One such example can be intermetallic compound MnAs, which has a first-order 

phase transition, where the volume expansion can be of the order of 2% [462]. Another example 

can be samarium where in the case of the phase transition from fcc to dhcp after an application 

of a pressure of 87 10 Pa at room temperature [451], a volume decrease of approximately 8% 

can observed. Thus, upon comparing the volume changes of the already known MCE materials 

with that of the considered system it may be noted that the discussed model expands to a 

significantly larger extent than is the case for other materials which are known to exhibit MCE. 

This also indicates that the use of mechanical metamaterials with magnetic inclusions which 

systems are known from their capability to significantly change the distance between their 

constituents as a result of mechanical deformation could lead to a further progress related to the 

studies on MCE.   

In order to better visualise the extent of MCE in the considered system, one could substitute 

the Ising spins found at the nodes of the lattice with magnetic moments of single-domain 

magnetic nanoparticles of Fe3O4.  This, as mentioned in the introduction of this chapter, is one 
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of the most promising approaches related to the MCE materials. For such system, the magnetic 

moment per f.u. (formula unit) of the compound Fe3O4 is equal to / f.u. 4.33 B   [463]. Thus, 

if for example the magnetic nanoparticles were considered to have a dimension of 5 nm, then 

the magnetic moment of nanoparticles could be estimated as 3831 B  . Moreover, if the 

centre-to-centre distance between two adjacent magnetic moments (or superspins as they may 

be also referred to [453]) is defined as d, then the potential energy of the superspin–superspin 

interaction can be determined as a function of d. Thus, assuming that d = 5 nm (i.e. the 

nanoparticles are touching each other) the interaction potential energy between two superspins 

can be estimated as: / 73KBE k   (see Appendix VI for more details). Furthermore, upon 

considering the four-nearest-neighbours interaction approach (i.e. the given superspin interacts 

with its four nearest neighbours as is normally the case for the Ising model) for d = 5 nm, then 

the total value of dipolar interaction energy is equal is approximately equal to: / 293KBE k  . 

On the other hand, if the distance d was set to equal to 10 nm, the value of the energy including 

the four-nearest-neighbours interaction drastically would decrease drastically to the level of: 

/ 37KBE k  . This result clearly indicates that a change in energy occurs on changing the 

distance between the magnetic nanoparticles and that it can be significant at room temperature. 

It should also be noted that as already discussed, an analogical change in the separation distance 

between magnetic nonoparticles arises when modifying the geometry of the considered system. 

Before concluding, one can note that the magnetic entropy in the Ising system depends on 

the orientation of Ising spins and the distribution of spins having the same orientation within 

the system, where as shown in this chapter the orientation of spins may be expected to change 

as a result of the mechanical deformation. Furthermore, it should also be noted that in this 

chapter, only specific configurations of the system were taken into consideration in order to 

calculate their entropy, i.e. two configurations represented by specific angles   associated with 
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initial and final configuration of the deformed system. However, it would be also very 

interesting to investigate the evolution of magnetic domains in the magneto-mechanical systems 

and the effect which the rate of the mechanical deformation could have on their evolution. 

 

10.6 Conclusions 

In this chapter, the rotating square system with magnetic inclusions located at centres of 

respective units was modelled by means of the Ising model defined on the square lattice where 

the distance between the Ising spins can be changed as the result of the variation in the angle 

 . Through the use of the exact Onsager’s solution for the square lattice, it was shown that 

such a system, upon undergoing the transition from one configuration corresponding to a 

particular value of i  to another configuration  f , may experience a significant change in 

the magnetic entropy during the isothermal process which result is an indication of the 

magnetocaloric effect (MCE). It was also shown that extent of this phenomenon may be very 

large at room temperature even without the presence of the external magnetic field which 

stimulus could potentially further enhance the magnitude of the discussed phenomenon. In view 

of this, the proposed concept corresponding to the use of mechanical metamaterials to induce a 

mechanically-driven magnetocaloric effect may prove to be useful in the case of rapidly 

developing magnetic refrigeration techniques where the possibility of inducing this effect in the 

vicinity of the room temperature is of great importance. 
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11. Magnetic domain evolution in magneto-auxetic systems8 

 

HIGHLIGHTS 

 Through the use of simulations involving the use of the Monte Carlo Metropolis 

algorithm, it was shown than one may control the evolution of magnetic domains in the 

considered magneto-mechanical system (which system similarly to the last chapter is 

represented by means of the Ising model) upon changing the rate at which the system is 

deformed; 

 It was shown that the average size of magnetic domains within the system (r) does not 

increase in time (t) proportionally to the factor t1/2 , which is normally expected for the 

Ising system where the distance between the Ising spins is constant; 

 The energy of the system corresponding to Ising spins located at boundaries of magnetic 

domains can be controlled via the variation in the rate of deformation of the system. 

11.1 Motivation 

In the last chapter, the Ising model defined on the lattice corresponding to the rotating 

square system was used in order to investigate the potential of such system with magnetic 

inclusions to induce the magnetocaloric effect. To asses its suitability the exhibit the 

aforementioned phenomenon, the entropy S was calculated  with the help of the Helmholtz’s 

free energy, F U TS  , for different configurations of the system subjected to mechanical 

deformation at the constant temperature T, where U represents internal energy.  As discussed 

in the previous chapter, the change S  between the entropies calculated for different 

                                                 
8 The content of this chapter has already been published in the peer-reviewed journal Physics Status Solidi – Rapid 

Research Letters: K. K. Dudek, W. Wolak, M. R. Dudek, R. Caruana-Gauci, R. Gatt, K. W. Wojciechowski, J. 

N. Grima, Programmable magnetic domain evolution in magnetic auxetic systems Phys. Status Solidi RRL 11 

1700122 (2017) 
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configurations at a given value of T can be interpreted as the extent of the magnetocaloric effect 

in the case of the isothermal process. However, in the case of the procedure employed in the 

case of the last chapter, only the initial and final configuration of the system were taken into 

consideration in order to investigate the discussed physical phenomenon. Thus, it would be very 

interesting to analyse the evolution of clusters of magnetic moments having the same 

orientation throughout the whole process of mechanical deformation corresponding to the 

change in the distance between Ising spins. It would be also interesting to investigate the effect 

which the rate of such mechanical deformation has on the behaviour of the system. In view of 

this, in this chapter, both of these aspects related to the magnetic domain evolution in magneto-

mechanical systems as going to be analysed.   

11.2 Introduction 

Over the years, the Ising model [464] has been proven to be a great tool in order to 

investigate a wide range of physical phenomena. In particular, based on the famous Onsager 

solution [465-466] for the two-dimensional square lattice at zero magnetic field, this model 

allowed to gain a fundamental understanding of critical phenomena. It also led to numerous 

discoveries in areas such as social physics [467], modelling of neural networks [468] and 

economy [469]. The interest of scientists in this particular technique resulted in numerous 

studies in which it was shown that in the systems modelled with the Ising model, the mean size 

of magnetic domains (after a temperature quench of the system from a disordered to an ordered 

phase) increases in time accordingly to a particular power law. More specifically, it changes 

proportionally to the evolution time raised to the power of 1/2 or 1/3 for systems with a non-

conserved [470, 471] or conserved [472, 473] order parameter respectively. A detailed 

mathematical description of different laws governing a domain growth in various systems can 

be found in papers by Bray [474] and Rutenberg [475]. At this point, it is important to note that 

the results discussed above were obtained for systems in which the distances between the 
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neighbouring spins within the system were fixed. These rules regarding the rate of growth of 

domains in magnetic systems do not have to apply to systems in which the distances between 

the neighbouring spins change in time. In fact, over the years, numerous attempts [476, 477] 

have been made to analyse various physical phenomena associated with the deformed Ising 

model (e.g. compressed) with one of the most promising studies being the work of Cirillo et al. 

[478] where it was shown that the above characteristics are not valid for the Ising model 

subjected to a shear flow. This also suggests that if one was to be able to control the distance 

between the neighbouring Ising spins then it might be possible to observe a completely new 

type of evolution of magnetic domains in time. 

As discussed in this thesis, mechanical metamaterials are a class of systems which as 

already discussed in this thesis may exhibit unusual behaviour upon being subjected to a 

mechanical deformation. These systems may be used to conveniently change the distance 

between the elements constituting the structure in a rather unusual pattern which would not be 

possible for conventional systems. Some of the most studied mechanical metamaterials are 

rotating rigid unit systems with one of the prime examples being ‘rotating squares system’ with 

a Poisson's ratio of -1. This particular system deforms in a highly symmetric manner which 

permits specific distances within the model, e.g. the distances between the centres of all of the 

neighbouring units, to change by exactly the same amount. This in turn makes this system to be 

a perfect candidate to alter the geometry of the Ising model throughout the process of 

simulation. 

11.3 Model 

In this chapter, the two-dimensional model based on a set of x xN N  rigid squares 

connected at vertices is going to be discussed (see Figure 11-1). It is assumed that each square 

has a side length of a. The angle between the adjacent units is denoted as 2  and due to 
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geometric constraints its value lies within the interval between 0  and 180 . Furthermore, in 

order to analyse the evolution of magnetic domains in time in such system, it is assumed that 

located at the centre of each square there is an Ising spin (see Figure 11-1). These spins assume 

one of the two possible orientations, i.e. either “up” or “down” which states correspond to 

values 1 and 1  respectively. One may note that Ising spins in such system form a square lattice 

with the distance d separating each pair of neighbouring spins which also means that d stands 

for a distance between the centres of adjacent squares. 

 

Figure 11-1 The model represented by a set of rigid squares connected at vertices. In this case, 

signs “+” and “-” located at the centre of each unit, correspond to opposite orientations of 

magnetic moments within the system. In this diagram, the number of squares was set in a way 

allowing to conveniently visualise the introduced variables. 

 

Evolution of magnetic domains (collection of spins having the same orientation) is going 

to be investigated through the use of the well-known Metropolis algorithm [479] (with periodic 

boundary conditions imposed on the discussed system) in which case the energy of interaction 

between the neighbouring spins may be defined in the following manner (see Appendix VIII): 

,

pN

i j

i j

H J      
11-1 

where, J is the coupling constant, the angular brackets denote summation over the pN  nearest-

neighbour square pairs  with Ising spins  i  and j . Similarly as in the previous chapter, the 



 

179 

 

value of J  depends on a distance d as shown in the following equation: 
3

0 /J J d  [480]. At 

this point one may also note that the value of d depends on the extent of the angle 2  and may 

be expressed as follows: 

2 sin
4

d a



 
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11-2 

It means that the energy of interaction between the adjacent magnetic moments changes 

accordingly to the value of the angle  . It also means that the critical temperature cT  changes 

with the value of  which stems from the fact that this particular quantity depends on 

 .J J  Thus, analogically to the last chapter, the value of cT  is given by: 

 
3

02.269
2 sin  .

4
c

B

J
T a

k


 


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11-3 

In order to ensure that the initial state of the system resembles the situation which one 

would expect in reality, the fully-closed system  2 0    is initially subjected to the relatively 

high temperature hT  (significantly above the value of  cT  ) for a duration of initialN  Monte 

Carlo steps. After this pre-heating procedure, the evolution of magnetic domains in the system 

is investigated in the case of a deformation process corresponding to the change in the value of 

2  angle from 0  to 180  at a certain temperature T. At this point, one should note that a 

change in the value of the angle 2  from 0  to 90  (maximal distance between adjacent spins) 

corresponds to an increase in the distance between the neighbouring spins by 41% which is 

associated with a significant change in the magnitude of J. 

In order to analyse the evolution of magnetic domains, the discussed system was 

mechanically deformed at a temperature of 77.35 KT   with the angle 2  being changed 

from 0  to 180 . The value of T was chosen in a way which for different values of   results 

in it being both greater and lower than the value of cT  (see equation 11-3) throughout the 



 

180 

 

deformation process. More specifically, the value of / cT T  is equal to 2.142 and 0.963 in the 

case of 2  assuming the value of 0  and 90  respectively. The process of deformation of the 

discussed system was investigated for different rates of opening of the angle 2 , i.e.  ={0.5, 

1.0, 10, 100} / MCs  ( / MCs  - degree per Monte Carlo step). The remaining parameters 

defined in this Model section were set to be the following: 500 500x xN N   , a = 18.475 

nm, hT  = 800 K, 5initialN   and 
3

0 50.42 eV nmJ  . At this point it is worth to note that before 

the pre-heating procedure, which procedure took place before the beginning of the deformation, 

the orientation of spins within the system was selected randomly. Furthermore, in order to 

ensure high quality of the generated results, each set of results was averaged 10 times. 

11.4 Results and Discussion 

Based on Figure 11-2(a), one can note that throughout the process of mechanical 

deformation, the change in size of magnetic domains (represented by means of the correlation 

length r) does not follow the well-known power law corresponding to Ising systems with a non-

conserved order parameter, i.e. is not proportional to the time raised to the power of 1/2. Instead, 

the correlation length of the deformed system exhibits a more complex behaviour with two local 

extrema being observed. More specifically, at the range of   between 0  and 30  the value of 

r increases in order to subsequently start decreasing upon surpassing the configuration 

corresponding to 2 30   . This trend is continued up to the point where the local minimum of 

r is reached, i.e. around 90 100  . During the remaining part of the mechanical deformation 

of the discussed system the angle 2  is being changed from 90  to 180  (this process 

corresponds to a decrease of the distance between the adjacent spins) which results with an 

increase of the magnitude of the correlation length. This novel behaviour can be easily 

understood if one was to analyse the evolution of magnetic domains in time in the case of the 

analogical system in which the distance between the adjacent units does not change throughout 
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the simulation, i.e. .const   (see Figure 11-2(b)). From Figure 11-2(b), one can note that in 

the case of these systems, the lower the distance between the neighbouring units the larger the 

value of r throughout the simulation. On the other hand, the model discussed in this work is 

deformed in a way so that the value of 2  changes from 0  to 180 . This in turn means that 

the value of d increases at the interval between 0  and 90  and analogically decreases at the 

interval between 90  and 180 . In view of this, one may imagine that the evolution of domains 

in the system in which the value of 2  is being changed throughout the simulation can be 

approximately visualised as the function connecting different points at the consecutive time 

steps from functions corresponding to systems in which the distance between the neighbouring 

spins remains constant. In other words, according to Figure 10-2(b), the process discussed in 

this work can be approximated by the procedure in which we "move" in time from the line 

corresponding to 0  to the line corresponding to 90  (in the case of systems where the distance 

between spins is fixed) and then back from 90  to 0 . Furthermore, in the case of Figure 

11-2(b), the plots associated with relatively small values of   correspond to the situation where 

CT T . In such cases the emergence of the formerly discussed power law is expected ( r t , 

where 1/ 2  ), which trend may be easily observed taking the system corresponding to 

2 0    as an example. In this particular case, the exponent   associated with the system is 

equal to 0.49913   0.00098. 
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Figure 11-2 The panels present (a) the change in the correlation length r during the deformation process for different values of   and (b) the 

comparison of the evolution of the system corresponding to 1 / MCs    to the behaviour of systems in which the distance between the 

neighbouring spins is not being changed throughout the simulation, i.e. the simulation takes place for a fixed value of  . The correlation length r 

is expressed in terms of the distance d (see equation 11-2). 
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Another interesting result corresponds to the effect which the rate of opening of the angle 

2  has on the evolution of magnetic domains in the discussed system. As shown in Figure 

10-2(a), a variation in the magnitude of the angular velocity   allows to control the growth of 

domains within the system. In particular, it may be noted that the lower the magnitude of  , 

the larger the value of r (average size of magnetic domains). Based on Figure 11-2(a) one can 

also see that there is a certain threshold value of   below which value the system does exhibit 

the characteristics described above. In the case of results presented in Figure 11-2 (a) such 

threshold value would may be found in the vicinity of 10 / MCs   . Above this value, 

magnetic domains do not have enough time to evolve during the deformation process which 

leads to significantly lower values of r. Moreover, in the case of relatively high values of  , 

the local minimum of the function of r, which might be observed in the vicinity of 90 , 

disappears. A clear difference between the evolution of domain in systems deformed with 

relatively high and relatively low value of   is visualised in Figure 11-3. 

It is also possible to analyse the change in energy during the deformation of the discussed 

system. In particular, the change in the energy E associated with spins at the boundaries of 

respective domains. Based on Figure 11-4, one can note that the change in   results with 

qualitatively different results in terms of the energy E for systems corresponding to relatively 

large and small values of  .   

In this chapter, in order to generate the results discussed above, we consider the use of 

magnetic rigid units constituting the system of rotating squares. In reality, the behaviour of such 

theoretical structure could be represented by a non-magnetic system of rotating squares with 

magnetic nanoparticles embedded at the centre of each unit as discussed in the former chapter. 

Furthermore, in order to ensure that the discussed results could be obtained in reality, all of the 

parameters used in this work were set in a way so that the system behaves as if magnetic 

nanoparticles of the size of 10 nm were embedded on top of non-magnetic units.  
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Figure 11-3 The panels present (a) diagrams visualising the configuration of the magnetic auxetic system corresponding to a particular value of the 

angle   (red lines are used in order to highlight edges forming the aperture of the unit-cell), (b) evolution of magnetic domains for a system in 

which the angle   is being changed with the constant angular velocity 0.5 / MCs    (relatively low value of  ) and (c) visualisation of the 

evolution of magnetic domains in the system corresponding to 10 / MCs    (relatively high value of  ). In order to better visualise the domains 

in the system on panels (b) and (c), only a fragment (100 100 units) of the larger square lattice considered in this work was selected. 
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Figure 11-4 Energy of spins at the domain boundary per spin for different values of  . 

 

All of this is very important as it is shown that it is possible to control the evolution of 

domains upon changing the magnitude of the angular velocity  . It is also shown that the 

variation in the value of   leads to very different results in terms of the energy E. This control 

over the change in the value of the energy throughout the process of deformation may be used 

in order to control the magnitude of the mechanically-driven magnetocaloric effect as shown in 

the last chapter. This in turn would allow to increase or decrease the value of temperature of 

the system in a controllable manner without the presence of the external magnetic field. This 

result could prove to be very important for scientists working on novel techniques associated 

with magnetic refrigeration particularly in view of the recent wide interest in magnetic 

metamaterials and other systems. It is also hoped that this work may contribute to the further 

discussion concerning the use of the Ising model in the case of hierarchical systems which could 

possibly lead to novel applications of such systems.  

At this point, it should be highlighted that even though in the case of this chapter a 

particular type of the non-magnetic matrix was chosen, magnetic inclusions could also be 
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inserted into a different mechanical system in order to analyse the effect of the magnetic domain 

evolution. However, for an arbitrary system there would not be any analytical expression 

allowing to determine the value of the critical temperaure corresponding to a given system. It 

should also be noted that the considered effect of the magnetic domain evolution can only be 

analysed in the case of large systems. This means that the behaviour of the hypothetical 

magneto-mechanical system which is discussed in this chapter is not expected to be observed 

in the case of real relatively large systems which despite the analogical geometry do not consist 

of a large number of magnetic inclusions.       

11.5 Conclusions    

In conclusion, in this chapter, it was shown that the evolution of magnetic domains in the 

Ising model associated with the magnetic system of rotating squares does not follow a well-

known power law which is valid for systems in which the distance between the neighbouring 

units remains constant throughout the simulation. It was also shown that the evolution of 

magnetic domains can be controlled upon altering the magnitude of the angular velocity of rigid 

units constituting the system. Another result obtained through this study shows that upon 

changing the value of the angular velocity of rigid units, it is possible to control the energy of 

the system. It should also be noted that all of the discussed results could potentially prove to be 

useful in the case of applications related to the magnetic refrigeration.     
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12. General Discussion, Conclusions and Future Perspective 

As said by Albert Einstein, “To raise new questions, new possibilities, to regard old 

problems from a new angle, requires creative imagination and marks real advance in science”. 

This famous quote suggests that sometimes in order to make a true contribution to science it is 

necessary to think “out of the box” and approach some of the problems from a new angle. 

Inspired by this approach, in this thesis an attempt was made to investigate some aspects of 

mechanical metamaterials which have never been studied or studies related to them are still in 

their infancy and should be further developed before proving to be useful in practise.  

Over the years, mechanical metamaterials have been extensively investigated from the point 

of view of their capability to exhibit unusual mechanical properties such as negative Poisson’s 

ratio, negative thermal expansion, negative compressibility and negative stiffness. Thanks to 

their potential to exhibit such anomalous mechanical behaviour, these systems were found to 

be suitable for a variety of applications in different branches of industry. As discussed in the 

Literature Review, studies related to mechanical metamaterials have been primarily focused on 

the design of new types of such systems which could exhibit counterintuitive mechanical 

behaviour. As a result of these studies, over the years, many new classes of mechanical 

metamaterials have been proposed with some of the most studied examples being rotating rigid 

unit systems, perforated systems, re-entrant and chiral honeycomb structures as well as foams. 

One of the reasons behind the existence of numerous systems could be the fact that in the 

majority of cases, new systems have been proposed and analysed analytically and 

experimentally in an attempt to achieve novel behaviour. However, in theory, novel behaviour 

can also be obtained from already known systems by appropriately modifying them without the 

need to actually design a completely new geometry. For example, it might be possible to 

achieve unusual mechanical properties simply by using different materials to construct the 

system. However, the use of different constituent materials does not ensure that the resultant 
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structure would exhibit significantly different unusual mechanical properties than the original 

system composed of a single material. One may also expect that for such a system, it would be 

difficult to observe a novel mechanical behaviour which is not observed for its mono-material 

counterpart. Nevertheless, a new type of mechanical behaviour could be manifested should it 

be assumed that some of the constituents in a newly constructed system can interact with each 

other. It would be particularly interesting if one were to consider a system where constituents 

can interact with each other without the need of being physically connected with each other. 

One type of interaction which is known to satisfy this condition is magnetic interaction between 

magnetic entities where, in this work, this type of interaction between constituents was achieved 

through the introduction of magnetic inclusions to the mechanical metamaterial. Consequently, 

one can expect that the resultant magneto-mechanical system may possess superior mechanical 

properties in comparison to its non-magnetic mono-material counterpart where, as discussed in 

the Literature Review, the resultant structure may even exhibit anomalous mechanical 

behaviour which cannot be observed for a similar system without magnetic inclusions. At the 

same time, it is very important to highlight the fact that the concept based on the use of magnetic 

inclusions in the case of mechanical metamaterials is still relatively new and the research related 

to this topic is in its infancy. In addition to this, one should also note that as discussed in this 

thesis, the novel type of mechanical behaviour observed for already known mechanical 

metamaterials does not have to be induced by the use of magnetic inclusions and in general one 

could consider the use of a variety of different approaches such as the variation in the mass 

distribution of the system. In view of the above, this thesis focused primarily on the potential 

of already proposed mechanical metamaterials to exhibit novel types of mechanical behaviour 

or counterintuitive mechanical properties as a result of modifications made to historically-

known mechanical metamaterials composed of a single material.          
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One of many interesting aspects related to the possible behaviour which can be exhibited 

by mechanical metamaterials which still remains to be explored corresponds to the capability 

of these systems to induce their own global rotation as a result of the rotation of their subunits. 

One of the possible reasons why this effect has not been yet studied by scientists working in 

this field might be the fact that normally in order to investigate mechanical metamaterials, these 

systems are being constrained which makes it impossible for the system to exhibit the discussed 

phenomenon. In view of this, in this thesis, the possibility of achieving this effect was 

investigated for a particular type of a mechanical metamaterial system composed of square-like 

rigid units which was free to rotate with respect to its centre of mass. More specifically, in 

Chapter 4 of the thesis, this novel concept was analysed through a theoretical model describing 

the dynamics of deformation of such a system for which the results suggest that the considered 

effect can be not only observed but its extent may also be controlled via the variation in the 

mass distribution.  

In order to verify the possibility of achieving the self-induced global rotation of mechanical 

metamaterials in practise, in Chapter 5, an analogical system was also investigated through the 

use of an experimental prototype which study led to similar conclusions suggested by the 

theoretical predictions. More specifically, it was shown that as expected based on the 

conservation of angular momentum principle, the rotation of individual units constituting the 

system results in the rotation of the entire structure in the opposite direction to the rotation of 

heavy units. In this chapter, the behaviour of the system after the collision between the rigid 

units was also described which makes it easier to predict the behaviour of devices based on the 

proposed concept in reality. In the chapter following these results, i.e. in Chapter 6, it was 

shown that even though mechanical systems composed of rigid square-like units show great 

promise to induce their global rotation as a result of mechanical deformation, it is not the only 

geometry which might be conducive to this phenomenon. In view of this, to gain a better 
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understanding of the effect of the variation in geometry on the behaviour of the system, the 

aforementioned model was replaced with a similar system composed of rectangular units as it 

is significantly more versatile in terms of its geometry. More specifically, in this chapter, it was 

shown that depending on their connectivity, upon being subjected to mechanical deformation, 

different rotating rectangle systems exhibit a very different extent of global rotation which, for 

some of these systems, also depends on the aspect ratio of the structural units. However, despite 

these differences, it should be highlighted that nonetheless this phenomenon was observed in 

all of the considered systems. In view of this, it should be mentioned that all of the reported 

results relating to the ability of mechanical metamaterials to exhibit the discussed characteristics 

indicate that this concept may prove to be useful in a variety of applications. One type of such 

applications could be wind turbines where the ease with which these mechanical systems can 

be deformed could be used to fine-tune the moment of inertia of the entire wind turbine. This 

in turn, would allow the control of the reaction of the wind turbine to the wind having a 

particular strength, thus allowing increase in the efficiency of the device. Another broad class 

of applications where the considered concept of self-induced global rotation of mechanical 

metamaterials could be utilised relates to devices employed in space such as satellites, 

spacecraft or telescopes. Due to the fact that in space there is no medium to interact with, the 

only way for such systems to induce their own rotation is to change their mass (e.g. through gas 

jets) or change the angular momentum of one or more of their components, which process 

would lead to a change in the angular momentum of the entire system in a way that the angular 

momentum of the whole system would be conserved. The concept proposed in this work utilises 

the latter approach where through the rotation of subunits, one can induce and control the 

rotation of the whole system employed in space. However, it should be noted that before 

implementing the considered concept in industry one should conduct studies related to the fault 

control and cost analysis which are beyond the scope of this thesis. 
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As discussed in this thesis, even though novel types of behaviour which can be exhibited 

by mechanical metamaterials might be attractive enough to introduce them to new branches of 

industry, the research related to these systems is still primarily focused on the possibility of 

obtaining anomalous mechanical properties. In particular, in recent years, the scientific 

community working in this field devoted a lot of attention to the possibility of enhancing 

anomalous mechanical properties of mechanical metamaterials so that these systems could be 

even more efficient in various applications. One class of mechanical metamaterials which was 

recently reported to exhibit such a characteristic are hierarchical mechanical metamaterials, 

where it was shown that the resultant negative Poisson’s ratio can assume lower values than 

would be the case for analogical systems which do not incorporate the concept of hierarchy. In 

those studies, it was also reported that lower levels of such multi-level systems tend to open up 

to a significantly lower extent than higher levels which do not allow the systems to achieve 

their full potential. In order to address this observation, in Chapter 7 of the thesis, a particular 

two-level hierarchical system composed of rigid squares connected at vertices was investigated 

through a dynamics approach. For this system, it was shown that the deformation pattern 

exhibited by the structure depends on the magnitude of the resistance of respective units to the 

rotational motion, which in turn is related to the number of hinges associated with each of the 

levels. Thus, as shown in this chapter, upon changing the magnitude of such resistance it is 

possible to open both levels of the considered system to a different extent, which also leads to 

a different value of the Poisson’s ratio. This result is interesting as it shows that the exact same 

system (at least in terms of geometry), can deform differently and exhibit different mechanical 

properties solely as a result of the variation in the resistance of hinges connecting the structural 

units to rotational motion.  However, this does not mean that a similar or greater level of control 

over the deformation pattern cannot be achieved by means of a different approach. As a matter 

of fact, as discussed in Chapter 7, even though the deformation of the considered hierarchical 
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system was induced through the application of external forces to the structure, it does not mean 

that one cannot deform it through the use of internal forces which could for example be applied 

by means of actuators or magnets / electromagnets appropriately located on adjacent rigid units. 

It should also be noted that the latter approach would be expected to make it possible to open a 

given level of the hierarchical structure to an arbitrary extent irrespective of the deformation of 

other levels.  

One can note that in Chapters 4-7 of the thesis, novel mechanical behaviour, such as the 

self-induced global rotation of mechanical metamaterials, and unusual mechanical properties 

were reported for systems composed of square/rectangle-like motifs. However, this does not 

mean that one cannot propose novel mechanical systems capable of exhibiting such counter-

intuitive behaviour. As a matter of fact, in view of the versatility that mechanical metamaterials 

afford, one can expect that there is a plethora of such systems which still remain to be 

discovered. As discussed in Chapter 8, an example of such a system is a mechanical 

metamaterial composed of generic rigid triangles connected at vertices. In this thesis it was 

shown that irrespective of the stage of the deformation and the shape of the structural units, 

such a system has the potential to exhibit negative linear compressibility in at least one 

direction. It was also reported that the considered system exhibits this particular characteristic 

whenever it also assumes a positive Poisson’s ratio that exceeds the value of one for loading in 

the same direction. In addition to negative linear compressibility, this novel mechanical 

metamaterial was also reported to have a propensity to exhibit negative thermal expansion. It 

should also be highlighted that even though this system can exhibit anomalous mechanical 

properties solely as a result of its geometric design, its properties can be further enhanced and 

controlled through the use of magnetic inclusions. This in turn could allow the design of a 

device based on a such concept in a way which would make it act as a smart filtration device.       
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Deformation of mechanical metamaterials can in general be controlled or influenced 

through a variety of different techniques. One of the most common approaches to affect 

deformation in such systems is through the use of hinge-like elements whose deformation is 

governed by a harmonic potential, which normally would cause a given system to assume a 

particular conformation. However, such an approach does not provide a true control over the 

deformation of the given system. In addition to this, once such a system is produced, it is very 

difficult to change its properties. It seems that the most promising concept that provides a 

solution to both of these problems, thereby allowing one to acquire the desired level of control 

over the behaviour of the system, relies on the use of magnetic inclusions. This stems from the 

fact that, through mutual interactions, such inclusions may control the behaviour of the structure 

at any stage of the deformation. It should also be noted that as reported in the literature (see 

Literature Review), interactions between magnetic inclusions may also lead to anomalous 

mechanical properties which would be no longer observed upon removing such inclusions from 

the structure. Nonetheless, despite their great potential, studies related to mechanical 

metamaterials with magnetic inclusions are still in their infancy.  

In view of the above, in Chapter 9 of this thesis, in an attempt to gain a better understanding 

of the behaviour of these systems, the potential of a particular mechanical metamaterial with 

magnetic inclusions in the form of magnets was investigated vis-à-vis its ability to exhibit 

unusual mechanical behaviour. More specifically, through a theoretical model as well as 

experimental testing, it was shown that the considered system may exhibit either positive or 

negative stiffness depending solely on the orientation of magnets within the system, where it 

should be noted that results generated by means of both of the techniques were in a very good 

agreement. In this chapter, it was also shown that a system composed of arrowhead structural 

units may also exhibit other unusual mechanical properties. More specifically, it was shown 

that throughout a significant part of the deformation process, the discussed system is capable 
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of exhibiting both negative Poisson’s ratio and negative stiffness at the same of time, where the 

magnitude of these effects could be fine-tuned via the variation in geometric parameters 

defining the geometry of the structure. All of these results indicate that apart from smart 

filtration devices, the considered concept could prove to be useful in a variety of vibration 

damping devices where negative stiffness is normally required. These results also suggest that 

it may be possible to propose novel types of applications where materials exhibiting several 

anomalous mechanical properties simultaneously would be essential.    

As discussed in Chapter 10 of the thesis, the concept of mechanical metamaterials with 

magnetic inclusions could also be used in order to investigate physical phenomena which are 

not directly related to mechanical properties. An example of a very interesting physical effect 

which is an intrinsic property of magnetic systems is the magnetocaloric effect, which is 

normally observed in the presence of an external magnetic field. However, in the literature there 

are a few studies which suggest that in addition to the variation in the magnetic field, this effect 

could also be achieved as a result of a deformation of the magnetic system (for example as a 

result of a compression of the system with magnetic inclusions). In order to investigate the 

possibility of observing such phenomenon for magneto-mechanical systems, a particular 

hypothetical system was considered where magnetic inclusions were set at the centres of 

respective units in a rotating square system at a constant temperature. This means that 

irrespective of the stage of the mechanical deformation of such a system, magnetic inclusions 

would always form a square lattice. Thus, as discussed in Chapter 10, the extent of the 

magnetocaloric effect for the considered system could be calculated as a change in the magnetic 

entropy upon deforming the system from one configuration to another. In view of this, in order 

to determine the possibility of generating the magnetocaloric effect (and its magnitude) for 

different ranges of mechanical deformation, the considered system was approximated by means 

of the Ising model without the presence of an external magnetic field. Furthermore, through the 
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use of this model, the entropy assumed by the system for each of the configurations was 

determined by means of the famous Onsager’s solution. The generated results clearly indicate 

that the discussed phenomenon can indeed occur without the external magnetic field and that 

its magnitude can be large even at room temperature. In this chapter, it was also shown that the 

extent of the magnetocaloric effect can be controlled by adjusting the range of the mechanical 

deformation corresponding to the change in the distance between the magnetic inclusions. 

In addition to the possibility of inducing the magnetocaloric effect, it could be also very 

interesting to analyse the process of magnetic domain evolution throughout the deformation of 

the magneto-mechanical system. In view of this, in Chapter 11, this phenomenon was simulated 

for a system analogical to that of Chapter 10 by means of the Monte Carlo Metropolis algorithm. 

According to the generated results, it may be concluded that the rate at which such magneto-

mechanical systems are deformed affects the way how magnetic domains are evolving. It should 

be also noted that the variation in the mean size of magnetic domains in such systems subjected 

to mechanical deformation does not follow a well-known power law which normally 

characterises the evolution of magnetic domains in the Ising model. This result could encourage 

scientists working on critical phenomena to investigate such physical processes in systems 

subjected to mechanical deformation as they clearly show a potential to exhibit very interesting 

behaviour. Furthermore, keeping in mind the results proposed in chapters 10 and 11, it might 

be also possible that hypothetical mechanical metamaterial systems with magnetic inclusions 

constructed at the nanoscale may potentially be used to design magnetic refrigerators. In order 

to make such devices available to the general public, they should be able to operate at room 

temperature which normally is very difficult to achieve. However, as discussed in Chapter 10, 

the extent of the magnetocaloric effect for the considered system can assume large values at 

room temperature which makes it to be a very interesting candidate to further investigate its 

potential from the point of view of its applicability in the industry.  
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It is worth mentioning that the results presented and discussed in this thesis were generated 

by means of different approaches depending on the type of the investigated phenomenon. More 

specifically, in chapters 4-7, the dynamic behaviour of particular rotating rigid unit systems 

composed or square-like motifs was analysed by means of theoretical models where their 

evolution in time was described by means of appropriate equations of motion. Such approach 

was very convenient because of its relative simplicity. Also, unlike some other techniques, it 

made the obtained results easily reproducible for researchers who may want to further develop 

some of the ideas proposed in this thesis. However, it should be emphasised that should one 

consider a different set of assumptions than those made in the aforementioned chapters, then it 

might be necessary to consider the use of other methods. Furthermore, in chapters 8, 9 and 10, 

some of the standard theoretical models which are commonly used in the considered fields of 

science were used in order to analyse concepts proposed in these chapters. Such approach apart 

from being very reliable, also allows for a simple assessment of limitations of each of the 

considered theoretical models as in a majority of cases they have been already discussed in the 

literature. In chapter 11, in order to analyse the evolution of the Ising model defined in a way 

allowing to represent a particular magneto-mechanical system, the Monte Carlo Metropolis 

algorithm was used which is a standard tool used to minimise the free energy of the considered 

system. This approach is well-known to correctly describe the evolution of a variety of systems 

including magnetic inclusions which can be represented by the Ising model as is the case in this 

thesis. It should also be mentioned that in the case of chapters 5 and 9, the results obtained 

through the use of theoretical models were additionally verified by experiments involving the 

use of prototypes constructed by a 3D extrusion printer. 

At this point, it should be noted that all of the concepts proposed in this thesis were 

discussed for two-dimensional systems. However, this does not mean that these concepts cannot 

be observed in three dimensional mechanical metamaterials. As discussed in the literature (see 
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Literature Review), planar mechanical metamaterials such as rotating square systems have their 

three-dimensional counterparts which are capable of exhibiting unusual mechanical properties 

in three dimensions as is the case for the rotating cuboid system [303]. It has also been already 

reported that two-dimensional planar mechanical metamaterials can be arranged into three-

dimensional tubular configurations to utilise their unusual properties in applications such as 

stents etc. It is also worth to mention that one can design the considered systems in a way so 

that they would be capable of deforming from a planar to non-planar conformation and vice-

versa. Such behaviour could for example be achieved as a result of magnetic interactions 

between magnetic inclusions implemented within the system. 

Another aspect related to systems considered in this thesis which could benefit from being 

further investigated is the subject of order and disorder within the structure. All of the 

considered systems were designed in a manner so that one could distinguish a particular element 

within each of the structures which could be tessellated in order to reproduce the entire system. 

This means that all of these systems were ordered. However, this does not mean that it is not 

possible to design similar constructs incorporating the concept of disorder. As a matter of fact, 

in general, the behaviour of such systems would be expected to be different from their ordered 

counterparts which means that such systems could potentially exhibit very interesting 

behaviour. One could for example consider studies related to stiffness exhibited by disordered 

systems with magnetic inclusions where the emergence of regions of particularly large or small 

positive/negative stiffness could be expected. 

At this point, it is important to mention that the majority of results discussed in this thesis, 

especially those related to the self-induced global rotation of mechanical metamaterials and the 

possibility of inducing either negative or positive stiffness in magneto-mechanical systems, are 

seemingly scale independent. This stems from the fact that such phenomena are expected to be 

observed as long as the considered systems can be constructed, which in theory does not depend 
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significantly on the scale of the system. However, one should note that upon decreasing the size 

of such systems, so that they would be in the vicinity of the nanoscale, their behaviour would 

no longer be governed by classical mechanics and instead one should consider the use of 

quantum mechanics to describe them. On the other hand, the magnetocaloric effect for the 

considered hypothetical magneto-mechanical systems would be observed only at the nanoscale 

as it requires a very large number of densely packed interacting magnetic particles to be 

manifested.      

Finally, it can be concluded that despite numerous studies related to mechanical 

metamaterials, there are still many aspects of these systems which are worth being investigated. 

For example, despite the fact that all of the unusual effects discussed in this thesis were obtained 

for structures based mostly on historically-known mechanical metamaterials, it is still possible 

to propose novel designs of mechanical metamaterials which are capable of exhibiting 

anomalous mechanical and other types of behaviour with or without magnetic inclusions 

enhancing their properties. It is also important to note that concepts discussed in this thesis are 

not limited to particular geometries and in general they may be expected to be applicable for a 

variety of systems. In view of this, it is hoped that concepts discussed in this thesis will 

contribute to further studies related to mechanical metamaterials and will hopefully one day 

lead to their implementation in novel applications improving the standard of our lives. It is also 

worth to mention that some of the concepts reported in this thesis have already been followed 

by other researchers with one of the examples being the results from Chapter 8. More 

specifically, in his recent work [292], Zhou et al. studied the potential of the system composed 

of generic rigid triangles to exhibit negative linear compressibility for which a concept of a 

similar model was proposed in an aforementioned chapter in this thesis.  

 

 



 

199 

 

13. References 

 

[1]  J. N. Grima and R. Caruana-Gauci, “Mechanical metamaterials: Materials that push 

back”, Nat. Mater., vol. 11, pp. 565-566, 2012.  

[2]  J. N. Grima and K. E. Evans, “Auxetic behavior from rotating squares”, J. Mater. Sci. 

Lett., vol. 19, pp. 1563-1565, 2000.  

[3]  J. N. Grima, A. Alderson and K. E. Evans, “Negative Poisson’s ratio from rotating 

rectangles”, Comput. Methods Sci. Technol., vol. 10, pp. 137-145, 2004.  

[4]  J. N. Grima, E. Manicaro and D. Attard, “Auxetic behaviour from connected different-

sized squares and rectangles”, Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 467, 

2010.  

[5]  R. Bailey and R. Hicks, “Behaviour of perforated plates under plane stress”, Arch. J. 

Mech. Eng. Sci., Vols. 1-23, pp. 143-165, 1960.  

[6]  J. Porowski and W. J. O’Donnell, “Effective Plastic Constants for Perforated 

Materials”, J. Press. Vessel Technol., vol. 96, p. 234, 1974.  

[7]  W. J. O’Donnell, “Effective Elastic Constants for the Bending of Thin Perforated 

Plates With Triangular and Square Penetration Patterns”, J. Eng. Ind., vol. 95, p. 121, 

1973.  

[8]  M. Forskitt, J. R. Moon and P. A. Brook, “Elastic properties of plates perforated by 

elliptical holes”, Appl. Math. Model., vol. 15, pp. 182-190, 1991.  



 

200 

 

[9]  K. Bertoldi, P. M. Reis, S. Willshaw and T. Mullin, “Negative Poisson’s Ratio 

Behavior Induced by an Elastic Instability”, Adv. Mater., vol. 22, p. 361–366, 2010.  

[10]  T. Mullin, S. Deschanel, K. Bertoldi and M. C. Boyce, “Pattern Transformation 

Triggered by Deformation”, Phys. Rev. Lett., vol. 99, p. 84301, 2007.  

[11]  K. Bertoldi, M. C. Boyce, S. Deschanel, S. M. Prange and T. Mullin, “Mechanics of 

deformation-triggered pattern transformations and superelastic behavior in periodic 

elastomeric structures”, J. Mech. Phys. Solids, vol. 56, pp. 2642-2668, 2008.  

[12]  J. Li et al., “Switching periodic membranes via pattern transformation and shape 

memory effect”, Soft Matter, vol. 8, p. 10322, 2012.  

[13]  R. Gatt, New structures and materials exhibiting negative Poisson’s ratios and negative 

compressibility, University of Malta: Ph.D. thesis, 2010.  

[14]  F. K. Abd El-Sayed, R. Jones and I. W. Burgess, “A theoretical approach to the 

deformation of honeycomb based composite materials”, Composites, vol. 10, pp. 209-

214, 1979.  

[15]  L. J. Gibson, M. F. Ashby, G. S. Schajer and C. I. Robertson, “The Mechanics of Two-

Dimensional Cellular Materials”, Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 

382, 1982.  

[16]  M. A. Grediac, “finite element study of the transverse shear in honeycomb cores”, Int. 

J. Solids Struct., vol. 30, pp. 1777-1788, 1993.  



 

201 

 

[17]  F. Scarpa, P. Panayiotou and G. Tomlinson, “Numerical and experimental uniaxial 

loading on in-plane auxetic honeycombs”, J. Strain Anal. Eng. Des., vol. 35, pp. 383-

388, 2000.  

[18]  F. Scarpa and G. Tomlinson, “Theoretical Characteristics of the vibration of sandwich 

plates with in-plane negative Poisson’s ratio values”, J. Sound Vib., vol. 230, pp. 45-

67, 2000.  

[19]  J. P. M. Whitty, A. Alderson, P. Myler and B. Kandola, “Towards the design of 

sandwich panel composites with enhanced mechanical and thermal properties by 

variation of the in-plane Poisson’s ratios”, COMPOS. PART A-APPL. S., vol. 34, pp. 

525-534, 2003.  

[20]  M. Ruzzene and F. Scarpa, “Control of Wave Propagation in Sandwich Beams with 

Auxetic Core”, J. Intell. Mater. Syst. Struct., vol. 14, pp. 443-453, 2003.  

[21]  M. Ruzzene, L. Mazzarella, P. Tsopelas and F. Scarpa, “Wave Propagation in 

Sandwich Plates with Periodic Auxetic Core”, J. Intell. Mater. Syst. Struct., vol. 13, 

pp. 587-597, 2002.  

[22]  A. Alderson et al., “Modelling of the mechanical and mass transport properties of 

auxetic molecular sieves: an idealised organic (polymeric honeycomb) host–guest 

system”, Mol. Simul., vol. 31, pp. 897-905, 2005.  

[23]  D. Li, J. Yin, L. Dong and R. S. Lakes, “Strong re-entrant cellular structures with 

negative Poisson’s ratio”, J. Mater. Sci., vol. 53, pp. 3493-3499, 2018.  

[24]  K. W. Wojciechowski, “Two-dimensional isotropic system with a negative Poisson 

ratio”, Phys. Lett. A, vol. 137, pp. 60-64, 1989.  



 

202 

 

[25]  R. S. Lakes, “Deformation mechanisms in negative Poisson’s ratio materials – 

Structural aspects”, J. Mater. Sci., vol. 26, pp. 2287-2292, 1991.  

[26]  D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a Poisson’s ratio of -

1”, INT. J. MECH. SCI., vol. 39, pp. 305-314, 1997.  

[27]  O. Sigmund, S. Torquato and I. A. Aksay, “On the design of 1-3 piezo-composites 

using topology optimisation”, J. MATER. RES., vol. 13, pp. 1038-1048, 1998.  

[28]  O. Sigmund and S. Torquato, “Design of smart composite materials using topology 

optimization”, Smart Mater. Struct., vol. 8, pp. 365-379, 1999.  

[29]  A. Alderson, K. L. Alderson, G. Chirima, N. Ravirala and K. M. Zied, “The in-plane 

linear elastic constants and out-of-plane bending of 3-connected ligament and cylinder-

ligament honeycombs”, Composite Science and Technology, vol. 70, pp. 1034-1041, 

2010.  

[30]  X. Ren, J. Shen, P. Tran, T. D. Ngo and Y. Min Xie, “Design and characterisation of a 

tuneable 3D buckling-induced auxetic metamaterial”, Mater. Des., vol. 139, pp. 336-

342, 2018.  

[31]  R. S. Lakes and K. Elms, “Indentability of Conventional and Negative Poisson’s Ratio 

Foams”, J. Compos. Mater., vol. 27, p. 1193–1202, 1993.  

[32]  N. Chan and K. E. Evans, “Indentation Resilience of Conventional and Auxetic 

Foams”, J. Cell. Plast., vol. 34, pp. 231-260, 1998.  



 

203 

 

[33]  Y. Scarpa, J. R. Yates, L. G. Ciffo and S. Patsias, “Dynamic crushing of auxetic open-

cell polyurethane foam”, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 216, 

pp. 1153-1156, 2002.  

[34]  A. V. Shalaev, W. Cai, U. K. Chettiar, H.-. K. Yuan, A. K. Sarychev, V. P. Drachev 

and A. V. Kildishev, “Negative index of refraction in optical metamaterials”, Optics 

letters, vol. 30, pp. 3356-3358, 2005.  

[35]  C. M. Soukoulis, S. Linden and M. Wegener, “Negative Refractive Index at Optical 

Wavelengths”, Science, vol. 315, pp. 47-49, 2007.  

[36]  R. A. Shelby, D. R. Smith and S. Schultz, “Experimental Verification of a Negative 

Index of Refraction”, Science, vol. 292, pp. 77-79, 2001.  

[37]  V. M. Shalaev, “Optical negative-index metamaterials”, Nat. Photonics, vol. 1, pp. 41-

48, 2007.  

[38]  D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, “Metamaterials and Negative 

Refractive Index”, Science, vol. 305, pp. 788-792, 2004.  

[39]  K. E. Evans, I. J. Hutchinson and S. C. Rogers, “Molecular network design.,” Nature, 

vol. 353, p. 124, 1991.  

[40]  B. M. Lempiere, “Poisson’s ratio in orthotropic materials.”, AIAA J., vol. 6, p. 2226–

2227, 1968.  

[41]  K. W. Wojciechowski, “Remarks on ‘Poisson Ratio beyond the Limits of the Elasticity 

Theory’”, J. Phys. Soc. Japan, vol. 72, pp. 1819-1820, 2003.  



 

204 

 

[42]  A. Branka, D. Heyes and K. Wojciechowski, “Auxeticity of cubic materials”, Phys. 

Status Solidi B, vol. 246, pp. 2063-2071, 2009.  

[43]  R. V. Goldstein, V. A. Gorodtsov and D. S. Lisovenko, “Classification of cubic 

auxetics”, Phys. Status Solidi B, vol. 250, pp. 2038-2043, 2013.  

[44]  C. Jasiukiewicz, T. Paszkiewicz and S. Wolski, “Auxetic properties and anisotropy of 

elastic material constants of 2D crystalline media”, Phys. Status Solidi B, vol. 245, p. 

562, 2008.  

[45]  T. Paszkiewicz and S. Wolski, “Anisotropic properties of mechanical characteristics 

and auxeticity of cubic crystalline media”, Phys. Status Solidi B, vol. 244, p. 966–977, 

2007.  

[46]  A. K. A. Pryde et al., “Simulation studies of at high pressure”, J. Phys. Condens. 

Matter, vol. 10, pp. 8417-8428, 1998.  

[47]  M. A. White, Physical properties of materials, CRC Press, 2012.  

[48]  T. A. Mary, J. S. O. Evans, T. Vogt and A. W. Sleight, “Negative thermal expansion 

from 0.3 to 1050 kelvin in ZrW2O8”, Science, vol. 272, pp. 90-92, 1996.  

[49]  T. G. Amos and A. W. Sleight, “Negative Thermal Expansion in Orthorhombic 

NbOPO4”, J. Solid State Chem., vol. 160, pp. 230-238, 2001.  

[50]  J. Tao and A. Sleight, “The role of rigid unit modes in negative thermal expansion”, J. 

Solid State Chem., vol. 173, pp. 442-448, 2003.  



 

205 

 

[51]  C. P. Romao et al., “Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 

and their relations to negative thermal expansion”, Phys. Rev. B, vol. 90, p. 24305, 

2014.  

[52]  R. Lakes, “Cellular solids with tunable positive or negative thermal expansion of 

unbounded magnitude”, Appl. Phys. Lett., vol. 90, p. 221905, 2007.  

[53]  J. N. Grima, P. S. Farrugia, R. Gatt and V. Zammit, “A system with adjustable positive 

or negative thermal expansion”, Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 

463, 2007.  

[54]  A. L. Goodwin, “Colossal Positive and Negative Thermal Expansion in the Framework 

Material Ag3[Co(CN)6]”, Science, vol. 319, pp. 794-797, 2008.  

[55]  A. Fedorova, L. Michelsen and M. Scheffler, “Polymer-derived ceramic tapes with 

small and negative thermal expansion coefficients”, J. Eur. Ceram. Soc., vol. 38, pp. 

719-725, 2018.  

[56]  L. Wu, B. Li and J. Zhou, “Enhanced thermal expansion by micro-displacement 

amplifying mechanical metamaterial”, MRS Advances, 2018.  

[57]  T.-C. Lim, “Negative thermal expansion structures constructed from positive thermal 

expansion trusses”, Journal of Materials Science, vol. 47, p. 368–373, 2012.  

[58]  J. Qu, M. Kadic, A. Naber and M. Wegener, “Micro-Structured Two-Component 3D 

Metamaterials with Negative Thermal-Expansion Coefficient from Positive 

Constituents”, Sci. Rep., vol. 7, p. 40643 , 2017.  



 

206 

 

[59]  K. Takenaka, Y. Okamoto, T. Shinoda, N. Katayama and Y. Sakai, “Colossal negative 

thermal expansion in reduced layered ruthenate”, Nat. Commun., vol. 8, p. 14102, 

2017.  

[60]  B. Singh et al., “Role of phonons in negative thermal expansion and high pressure 

phase transitions in β-eucryptite: An ab-initio lattice dynamics and inelastic neutron 

scattering study”, J. Appl. Phys., vol. 121, p. 085106, 2017.  

[61]  J. F. Nye, Physical Properties of Crystals, Clarendon Press, 1957.  

[62]  R. Gatt and J. N. Grima, “Negative compressibility”, Phys. status solidi - Rapid Res. 

Lett., vol. 2, pp. 236-238, 2008.  

[63]  O. M. Yaghi, H. Li, M. Eddaoudi and M. O'Keeffe, “Design and synthesis of an 

exceptionally stable and highly porous metal-organic framework”, Nature, vol. 402, 

pp. 276-279, 1999.  

[64]  W. Zhou, H. Wu, T. Yildirim, J. R. Simpson and A. R. H. Walker, “Origin of the 

exceptional negative thermal expansion in metal-organic framework-5 Zn4O(1 , 4 - 

benzenedicarboxylate )3”, Phys. Rev. B, vol. 78, p. 54114, 2008.  

[65]  L. H. N. Rimmer, “Framework flexibility and the negative thermal expansion 

mechanism of copper(I) oxide Cu2O”, Phys. Rev. B, vol. 89, p. 214115, 2014.  

[66]  A. Schneemann et al., “Flexible metal-organic frameworks”, Chem. Soc. Rev., vol. 43, 

pp. 6062-6096, 2014.  



 

207 

 

[67]  C. P. Romao, K. J. Miller, M. B. Johnson, J. W. Zwanziger, B. A. Marinkovic and M. 

A. White, “Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their 

relations to negative thermal expansion”, Phys. Rev. B, vol. 90, p. 024305, 2014.  

[68]  J. S. O. Evans, T. A. Mary and A. W. Sleight, “Negative Thermal Expansion in 

Sc2(WO4)3”, J. Solid State Chem., vol. 137, pp. 148-160, 1998.  

[69]  J. S. O. Evans, “Negative thermal expansion materials?”, J. Chem. Soc. Dalt. Trans., p. 

3317–3326, 1999.  

[70]  R. Mittal, S. L. Chaplot, H. Schober and T. A. Mary, “Origin of negative thermal 

expansion in cubic ZrW 2 O 8”, Neutron News, vol. 13, pp. 33-35, 2002.  

[71]  S. Allen and J. S. O. Evans, “Negative thermal expansion and oxygen disorder in cubic 

ZrMo2O8”, Phys. Rev. B, vol. 68, p. 134101, 2003.  

[72]  R. H. Baughman, S. Stafstrom, C. Cui and S. O. Dantas, “Materials with Negative 

Compressibilities in One or More Dimensions”, Science, vol. 279, pp. 1522-1524, 

1998.  

[73]  B. Moore, T. Jaglinski, D. S. Stone and R. S. Lakes, “Negative incremental bulk 

modulus in foams”, Philos. Mag. Lett., vol. 86, pp. 651-659, 2006.  

[74]  B. Moore, T. Jaglinski, D. S. Stone and R. S. Lakes, “On the Bulk Modulus of Open 

Cell Foams”, Cell. Polym., vol. 26, pp. 1-10, 2007.  

[75]  R. Lakes and K. W. Wojciechowski, “Negative compressibility, negative Poisson’s 

ratio, and stability”, Phys. Status Solidi B, vol. 245, pp. 545-551, 2008.  



 

208 

 

[76]  R. Gatt and J. N. Grima, “Negative compressibility”, Phys. Status Solidi RRL, vol. 2, 

pp. 236-238, 2008.  

[77]  Y. C. Wang and R. S. Lakes, “Extreme stiffness systems due to negative stiffness 

elements”, Am. J. Phys., vol. 72, pp. 40-50, 2004.  

[78]  H. W. Yap, R. S. Lakes and R. W. Carpick, “Negative stiffness and enhanced damping 

of individual multiwalled carbon nanotubes”, Phys. Rev. B, vol. 77, p. 045423, 2008.  

[79]  C. Coulais, J. T. B. Overvelde, L. A. Lubbers, K. Bertoldi and M. van Hecke, 

“Discontinuous Buckling of Wide Beams and Metabeams”, Phys. Rev. Lett., vol. 115, 

p. 044301, 2015.  

[80]  X. Shi, S. Zhu and B. F. Spencer Jr., “Experimental Study on Passive Negative 

Stiffness Damper for Cable Vibration Mitigation”, Journal of Engineering Mechanics, 

vol. 143, 2017.  

[81]  N. Attary, M. Symans and S. Nagarajaiah, “Development of a rotation-based negative 

stiffness device for seismic protection of structures”, J. Vib. Control, vol. 23, pp. 853-

867, 2017.  

[82]  G. Dong, X. Zhang, S. Xie, B. Yan and Y. Luo, “Simulated and experimental studies 

on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness 

spring”, Mech. Syst. Signal Process., vol. 86, pp. 188-203, 2017.  

[83]  W. J. Drugan, “Wave propagation in elastic and damped structures with stabilized 

negative-stiffness components”, J. Mech. Phy. Solids, vol. 106, pp. 34-45, 2017.  



 

209 

 

[84]  J. Zhao, X. Li, Y. Wang, W. Wang, B. Zhang and X. Gai, “Membrane acoustic 

metamaterial absorbers with magnetic negative stiffness”, J. Acoust. Soc. Am., vol. 

141, p. 840, 2017.  

[85]  B. M. Goldsberry and M. R. Haberman, “Negative stiffness honeycombs as tunable 

elastic metamaterials”, J. Appl. Phys., vol. 123, p. 091711, 2018.  

[86]  W. Voigt, Lehrbuch der Kristallphysik, publisher: Elsevier, Leipzig 1928.  

[87]  G. Simmons and F. Birch, “Elastic Constants of Pyrite.”, J. Appl. Phys., vol. 34, p. 

2736, 1963.  

[88]  N. Benbattouche et al., “The dependences of the elastic stiffness moduli and the 

Poisson ratio of natural iron pyrites FeS 2 upon pressure and temperature.”, J. Phys. D. 

Appl. Phys., vol. 22, pp. 670-675, 1989.  

[89]  Y. Li, “The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear 

modulus in hexagonal materials.”, Phys. Status Solidi, vol. 38, pp. 171-175, 1976.  

[90]  D. Berlincourt and H. Jaffe, “Elastic and Piezoelectric Coefficients of Single-Crystal 

Barium Titanate.”, Phys. Rev., vol. 111, pp. 143-148, 1958.  

[91]  A. Alderson et al., “Deformation mechanisms leading to auxetic behaviour in the α-

cristobalite and α-quartz structures of both silica and germania.”, J. Phys. Condens. 

Matter, vol. 21, p. 25401, 2009.  

[92]  E. Kittinger, J. Tichy and E. Bertagnolli, “Example of a Negative Effective Poisson’s 

Ratio.”, Phys. Rev. Lett., vol. 47, pp. 712-714, 1981.  



 

210 

 

[93]  F. Milstein and K. Huang, “Existence of a negative Poisson ratio in fcc crystals.”, 

Phys. Rev. B, vol. 19, pp. 2030-2033, 1979.  

[94]  R. H. Baughman, J. M. Shacklette, A. A. Zakhidov and S. Stafström, “Negative 

Poisson’s ratios as a common feature of cubic metals.”, Nature, vol. 392, pp. 362-365, 

1998.  

[95]  D. T. Ho et al., “Negative Poisson’s ratios in metal nanoplates.”, Nat. Commun., vol. 5, 

pp. 1038-1040, 2014.  

[96]  D. J. Gunton and G. A. Saunders, “The Young’s modulus and Poisson’s ratio of 

arsenic, antimony and bismuth.”, J. Mater. Sci., vol. 7, pp. 1061-1068, 1972.  

[97]  A. Yeganeh-Haeri, D. J. Weidner and J. B. Parise, “Elasticity of αcristobalite: A 

silicon dioxide with a negative Poisson’s ratio.”, Science, vol. 257, pp. 650-652, 1992.  

[98]  F. Homand-Etienne and R. Houpert, “Thermally induced microcracking in granites: 

characterization and analysis.”, Int. J. Rock Mech. Min. Sci., vol. 26, pp. 125-134, 

1989.  

[99]  M. Peura et al., “Negative Poisson Ratio of Crystalline Cellulose in Kraft Cooked 

Norway Spruce.”, Biomacromolecules, vol. 7, pp. 1521-1528, 2006.  

[100]  K. Nakamura, M. Wada, S. Kuga and T. Okano, “Poisson’s ratio of cellulose I? and 

cellulose II.”, J. Polym. Sci. Part B Polym. Phys., vol. 42, pp. 1206-1211, 2004.  

[101]  Y. T. Yao, A. Alderson and K. L. Alderson, “Towards auxetic nanofibres: Molecular 

modelling of auxetic behaviour in cellulose II.”, in Behav. Mech. Multifunct. Mater. 

Compos. Proc. SPIE 8342, 2012.  



 

211 

 

[102]  D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin—Finite 

deformations.”, J. Biomech., vol. 3, pp. 111-124, 1970.  

[103]  C. Lees, J. F. V. Vincent and J. E. Hillerton, “Poisson’s Ratio in Skin.”, Biomed. 

Mater. Eng., vol. 1, pp. 19-23, 1991.  

[104]  F. Song, J. Zhou, X. Xu, Y. Xu and Y. Bai, “Effect of a Negative Poisson Ratio in the 

Tension of Ceramics”, Phys. Rev. Lett., vol. 100, p. 245502, 2008.  

[105]  J. L. Williams and J. L. Lewis, “Properties and an Anisotropic Model of Cancellous 

Bone From the Proximal Tibial Epiphysis.”, J. Biomech. Eng., vol. 104, p. 50, 1982.  

[106]  C. E. Renson and M. Braden, “Experimental determination of the rigidity modulus, 

poisson’s ratio and elastic limit in shear of human dentine.”, Arch. Oral Biol., vol. 20, 

p. 43, 1975.  

[107]  C. F. Schmidt, K. Svoboda, N. Lei, I. B. Petsche, L. E. Berman, C. R. Safinya and G. 

Grest, “Existence of a flat phase in red cell membrane skeletons.”, Science, vol. 259, 

pp. 952-955, 1993.  

[108]  X. Chen and G. W. Brodland, “Mechanical determinants of epithelium thickness in 

early-stage embryos.”, J. Mech. Behav. Biomed. Mater., vol. 2, pp. 494-501, 2009.  

[109]  L. H. Timmins et al., “Structural inhomogeneity and fiber orientation in the inner 

arterial media.”, Am. J. Physiol. Heart Circ. Physiol., vol. 298, pp. H1537-45, 2010.  

[110]  K. Patten and T. Wess, “Suprafibrillar structures of collagen, evidence for local 

organization and auxetic behaviour in architectures.”, J. Biophys. Chem., vol. 4, pp. 

103-109, 2013.  



 

212 

 

[111]  S. Pagliara et al., “Auxetic nuclei in embryonic stem cells exiting pluripotency.”, Nat. 

Mater., vol. 13, pp. 638-44, 2014.  

[112]  S. P. Tokmakova, “Stereographic projections of Poisson’s ratio in auxetic crystals.”, 

Phys. status solidi, vol. 242, pp. 721-729, 2005.  

[113]  J. N. Grima et al., “Tailoring Graphene to Achieve Negative Poisson’s Ratio 

Properties.”, Adv. Mater., vol. 27, pp. 1455-1459, 2015.  

[114]  N. Aouni and L. Wheeler, “Auxeticity of Calcite and Aragonite polymorphs of CaCO 

3 and crystals of similar structure.”, Phys. status solidi, vol. 245, pp. 2454-2462, 2008.  

[115]  J.-. W. Jiang et al., “Negative poisson’s ratio in single-layer black phosphorus”, Nat. 

Commun., vol. 5, p. 126–128, 2014.  

[116]  J. W. Jiang et al., “A Stillinger–Weber potential for single-layered black phosphorus, 

and the importance of cross-pucker interactions for a negative Poisson’s ratio and edge 

stress-induced bending”, Nanoscale, vol. 7, p. 6059–6068, 2015.  

[117]  J.-. W. Jiang et al., “Thermal conduction in single-layer black phosphorus: highly 

anisotropic?”, Nanotechnology, vol. 26, p. 55701, 2015.  

[118]  M. Rovati, “On the negative Poisson’s ratio of an orthorhombic alloy”, Scr. Mater., 

vol. 48, pp. 235-240, 2003.  

[119]  R. A. Kellogg, A. M. Russell, T. A. Lograsso, A. B. Flatau, A. E. Clark and M. Wun-

Fogle, “Mechanical properties of magnetostrictive iron-gallium alloys in Smart 

Structures and Materials”, Active Materials: Behaviour and Mechanics , pp. 534-543, 

2003.  



 

213 

 

[120]  R. A. Kellogg et al., “Tensile properties of magnetostrictive iron–gallium alloys”, Acta 

Mater., vol. 52, pp. 5043-5050, 2004.  

[121]  G. Petculescu, K. B. Hathaway, T. A. Lograsso, M. Wun-Fogle and A. E. Clark, 

“Magnetic field dependence of galfenol elastic properties”, J. Appl. Phys., vol. 97, p. 

10M315, 2005.  

[122]  H. M. Schurter and A. B. Flatau, “Elastic properties and auxetic behavior of Galfenol 

for a range of compositions in Magnetostrictive Materials I”, Proc. SPIE, 2008.  

[123]  M. Valant, A.-K. Axelsson, F. Aguesse and N. M. Alford, “Molecular Auxetic 

Behavior of Epitaxial Co-Ferrite Spinel Thin Film”, Adv. Funct. Mater., vol. 20, pp. 

644-647, 2010.  

[124]  Y. Zhang, R. Wu, H. M. Schurter and A. B. Flatau, “Understanding of large auxetic 

properties of iron-gallium and iron-aluminum alloys”, J. Appl. Phys., vol. 108, p. 

23513, 2010.  

[125]  D. Li, T. Jaglinski, D. S. Stone and R. S. Lakes, “Temperature insensitive negative 

Poisson’s ratios in isotropic alloys near a morphotropic phase boundary”, Appl. Phys. 

Lett., vol. 101, p. 251903, 2012.  

[126]  X. F. Wang, T. E. Jones, W. Li and Y. C. Zhou, “Extreme Poisson’s ratios and their 

electronic origin in B2 CsCl-type AB intermetallic compounds”, Phys. Rev. B, vol. 85, 

p. 134108, 2012.  

[127]  T.-. C. Lim, “On simultaneous positive and negative Poisson's ratio laminates”, Phys. 

Status Solidi B, vol. 244, pp. 910-918, 2007.  



 

214 

 

[128]  T.-. C. Lim, “Mixed auxeticity of auxetic sandwich structures”, Phys. Status Solidi B, 

vol. 249, pp. 1366-1372, 2012.  

[129]  R. Lakes, “Foam Structures with a Negative Poisson’s Ratio”, Science, vol. 235, pp. 

1038-40, 1987.  

[130]  E. A. Friis, R. S. Lakes and J. B. Park, “Negative Poisson’s ratio polymeric and 

metallic foams”, J. Mater. Sci., vol. 23, pp. 4406-4414, 1988.  

[131]  C. P. Chen and R. S. Lakes, “Micromechanical Analysis of Dynamic Behavior of 

Conventional and Negative Poisson’s Ratio Foams”, J. Eng. Mater. Technol., vol. 118, 

p. 285, 1996.  

[132]  N. Chan and K. E. Evans, “The Mechanical Properties of Conventional and Auxetic 

Foams. Part I: Compression and Tension”, J. Cell. Plast., vol. 35, pp. 130-165, 1999.  

[133]  N. Chan and K. E. Evans, “The Mechanical Properties of Conventional and Auxetic 

Foams. Part II: Shear”, J. Cell. Plast., vol. 35, pp. 166-183, 1999.  

[134]  A. Bezazi and F. Scarpa, “Mechanical behaviour of conventional and negative 

Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading”, 

Int. J. Fatigue, vol. 29, pp. 922-930, 2007.  

[135]  A. Bezazi and F. Scarpa, “Tensile fatigue of conventional and negative Poisson’s ratio 

open cell PU foams”, Int. J. Fatigue, vol. 31, pp. 488-494, 2009.  

[136]  A. Bezazi, W. Boukharouba and F. Scarpa, “Mechanical properties of auxetic 

carbon/epoxy composites: static and cyclic fatigue behaviour”, Phys. status solidi, vol. 

246, pp. 2102-2110, 2009.  



 

215 

 

[137]  T. C. Lim, A. Alderson and K. L. Alderson, “Experimental studies on the impact 

properties of auxetic materials”, Phys. Status Solidi B, vol. 251, pp. 307-313, 2014.  

[138]  F. Scarpa, J. Giacomin, Y. Zhang and P. Pastorino, “Mechanical performance of 

auxetic polyurethane foam for antivibration glove applications”, Cell. Polym., vol. 24, 

pp. 1-16, 2005.  

[139]  J. B. Choi and R. Lakes, “Analysis of elastic modulus of conventional foams and of re-

entrant foam materials with a negative Poisson’s ratio”, Int. J. Mech. Sci., vol. 37, pp. 

51-59, 1995.  

[140]  J. Giacomin, F. Scarpa, A. Bezazi and W. Bullough, “Dynamic behavior and damping 

capacity of auxetic foam pads”, in Proceedings of Smart Structures and Materials 

Conference, San Diego, 2006.  

[141]  P. Pastorino et al., “Strain rate dependence of stiffness and Poisson’s ratio of auxetic 

open cell PU foams”, Phys. status solidi, vol. 244, pp. 955-965, 2007.  

[142]  M. Ramirez et al., “Enhancement of Young’s moduli and auxetic windows in 

laminates with isotropic constituents”, Int. J. Eng. Sci., vol. 58, pp. 95-114, 2012.  

[143]  A. Lowe et al., “Negative Poisson’s Ratio Foam as Seat Cushion Material”, Cell. 

Polym., vol. 19, pp. 157-167, 2000.  

[144]  T-. C. Lim, “Auxeticity of Concentric Auxetic-Conventional Foam Rods with High 

Modulus Interface Adhesive”, Materials, vol. 11, p. 223, 2018.  

[145]  E. O. Martz, T. Lee, R. S. Goel, V. K. Park and R. Lakes, “Re-entrant transformation 

methods in closed cell foams”, Cellular Polymers, vol. 15, pp. 229-249, 1996.  



 

216 

 

[146]  N. Chan and K. E. Evans, “Fabrication methods for auxetic foams”, J. Mater. Sci., vol. 

32, pp. 5945-5953, 1997.  

[147]  B. Brandel and R. S. Lakes, “Negative Poisson’s ratio polyethylene foams”, J. Mater. 

Sci., vol. 36, pp. 5885-5893, 2001.  

[148]  A. M. Strek, “Production and study of polyether auxetic foam”, Mech. Control, vol. 

29, pp. 78-87, 2010.  

[149]  M. Bianchi, F. Scarpa, M. Banse and C. W. Smith, “Novel generation of auxetic open 

cell foams for curved and arbitrary shapes”, Acta Mater., vol. 59, pp. 686-691, 2011.  

[150]  M. Bianchi, S. Frontoni, F. Scarpa and C. W. Smith, “Density change during the 

manufacturing process of PU-PE open cell auxetic foams”, Phys. Status Solidi B, vol. 

248, pp. 30-38, 2011.  

[151]  K. Alderson, A. Alderson, N. Ravirala, V. Simkins and P. Davies, “Manufacture and 

characterisation of thin flat and curved auxetic foam sheets”, Phys. status solidi B, vol. 

249, pp. 1315-1321, 2012.  

[152]  A. Alderson and K. L. Alderson, “Developments in Auxetic Foams”, in International 

Conference and 7 th International Workshop on Auxetics and Related Systems, 2010.  

[153]  A. Alderson, K. L. Alderson, K. E. Evans, J. N. Grima, M. R. Williams and P. J. 

Davies, “ Modelling the deformation mechanisms, structure-property relationships and 

applications of auxetic nanomaterials”, Phys. Status Solidi B, vol. 242, pp. 499-508 , 

2005.  

[154]  J. N. Grima, D. Attard and R. Gatt, “On foams exhibiting negative Poisson’s ratio: 

New manufacturing methods for making auxetic foams and for their re-conversion to 



 

217 

 

conventional foams”, in 6 th International Workshop on Auxetics and Related Systems 

and 6 th Annual AuxetNet Young Researchers Forum, 2009.  

[155]  K. E. Evans, M. A. Nkansah and I. J. Hutchinson, “Auxetic foams: Modelling negative 

Poisson’s ratios”, Acta Metall. Mater., vol. 42, pp. 1289-1294, 1994.  

[156]  N. Chan and K. E. Evans, “Microscopic examination of the microstructure and 

deformation of conventional and auxetic foams”, J. Mater. Sci., vol. 32, pp. 5725-

5736, 1997.  

[157]  D. W. Overaker, A. M. Cuitino and N. A. Langrana, “Effects of morphology and 

orientation on the behavior of two-dimensional hexagonal foams and application in a 

re-entrant foam anchor model”, Mech. Mater., vol. 29, pp. 43-52, 1998.  

[158]  V. Shulmeister, M. W. D. Van der Burg, E. Van der Giessen and R. Marissen, “A 

numerical study of large deformations of low-density elastomeric open-cell foams”, 

Mech. Mater., vol. 30, pp. 125-140, 1998.  

[159]  J. N. Grima, R. Gatt, N. Ravirala, A. Alderson and K. E. Evans, “Negative Poisson’s 

ratios in cellular foam materials”, Mater. Sci. Eng. A, vol. 423, pp. 214-218, 2006.  

[160]  M. Doyoyo and J. Wan Hu, “Plastic failure analysis of an auxetic foam or inverted 

strut lattice under longitudinal and shear loads”, J. Mech. Phys. Solids, vol. 54, pp. 

1479-1492, 2006.  

[161]  N. Gaspar, C. W. Smith, E. A. Miller, G. T. Seidler and K. E. Evans, “Quantitative 

analysis of the microscale of auxetic foams”, Phys. status solidi B, vol. 242, pp. 550-

560, 2005.  



 

218 

 

[162]  F. Cadamagnani, S. Frontoni, M. Bianchi and F. Scarpa, “Compressive uniaxial 

properties of auxetic open cell PU based foams”, Phys. status solidi B, vol. 246, pp. 

2118-2123, 2009.  

[163]  S. A. McDonald, N. Ravirala, P. J. Withers and A. Alderson, “In situ three-

dimensional X-ray microtomography of an auxetic foam under tension”, Scr. Mater., 

vol. 60, pp. 232-235, 2009.  

[164]  Z.-. X. Lu, Q. Liu and Z.-. Y. Yang, “Predictions of Young’s modulus and negative 

Poisson’s ratio of auxetic foams”, Phys. status solidi B, vol. 248, pp. 167-174, 2011.  

[165]  R. Panowicz and D. Miedzinska, “Numerical and experimental research on 

polyisocyanurate foam”, Comput. Mater. Sci., vol. 64, pp. 126-129, 2012.  

[166]  A. A. Pozniak et al., “Computer simulations of auxetic foams in two dimensions”, 

Smart Mater. Struct., vol. 22, p. 84009, 2013.  

[167]  B. D. Caddock et al., “Microporous materials with negative Poisson’s ratios. I. 

Microstructure and mechanical properties.”, J. Phys. D. Appl. Phys., vol. 22, pp. 1877-

1882, 1989.  

[168]  K. E. Evans, “Microporous materials with negative Poisson’s ratios. II. Mechanisms 

and interpretation.”, J. Phys. D. Appl. Phys., vol. 22, p. 13, 1989.  

[169]  K. L. Alderson and K. E. Evans, “Strain-dependent behaviour of microporous 

polyethylene with a negative Poisson’s ratio”, J. Mater. Sci., vol. 28, pp. 4092-4098, 

1993.  



 

219 

 

[170]  K. L. Alderson, A. Alderson, R. S. Webber and K. E. Evans, “Evidence for Uniaxial 

Drawing in the Fibrillated Microstructure of Auxetic Microporous Polymers”, J. 

Mater. Sci. Lett., vol. 17, pp. 1415-1419, 1998.  

[171]  A. P. Pickles, R. S. Webber, K. L. Alderson, P. J. Neale and K. E. Evans, “The effect 

of the processing parameters on the fabrication of auxetic polyethylene”, J. Mater. Sci., 

vol. 30, pp. 4059-4068, 1995.  

[172]  K. L. Alderson, R. S. Webber and K. E. Evans, “Microstructural evolution in the 

processing of auxetic microporous polymers”, Phys. status solidi B, vol. 244, pp. 828-

841, 2007.  

[173]  N. Ravirala, A. Alderson, K. L. Alderson and P. J. Davies, “Auxetic polypropylene 

films”, Polym. Eng. Sci., vol. 45, pp. 517-528, 2005.  

[174]  N. Ravirala, K. L. Alderson, P. J. Davies, V. R. Simkins and A. Alderson, “Negative 

Poisson’s Ratio Polyester Fibers”, Text. Res. J., vol. 76, pp. 540-546, 2006.  

[175]  G. T. Chirima, K. M. Zied, N. Ravirala, K. L. Alderson and A. Alderson, “Numerical 

and analytical modelling of multi-layer adhesive-film interface systems”, Phys. status 

solidi B, vol. 246, pp. 2072-2082, 2009.  

[176]  K. E. Evans, “Auxetic polymers: a new range of materials”, Endeavour, vol. 15, pp. 

170-174, 1991.  

[177]  K. L. Alderson, A. P. Pickles, P. J. Neale and K. E. Evans, “Auxetic polyethylene: The 

effect of a negative poisson’s ratio on hardness”, Acta Metall. Mater., vol. 42, pp. 

2261-2266, 1994.  



 

220 

 

[178]  M. Franke and R. Magerle, “Locally Auxetic Behavior of Elastomeric Polypropylene 

on the 100 nm Length Scale”, ACS Nano, vol. 5, pp. 4886-4891, 2011.  

[179]  J. Baker, A. Douglass and A. Griffin, “Trimeric Liquid-Crystals - Model Compounds 

for Auxetic Polumers”, Abstr. Pap. Am. Chem. Soc., vol. 210, p. 146, 1995.  

[180]  P. Liu, C. He and A. Griffin, “Liquid crystalline polymers as potential auxetic 

materials: Influence of transverse rods on the polymer mesophase”, Abstr. Pap. Am. 

Chem. Soc., vol. 216, p. 108, 1998.  

[181]  C. He, P. Liu and A. Griffin, “Toward negative Poisson ratio polymers through 

molecular design”, Macromolecules, vol. 31, pp. 3145-3147, 1998.  

[182]  C. He, P. Liu, A. C. Griffin, C. W. Smith and K. E. Evans, “Morphology and 

Deformation Behaviour of a Liquid Crystalline Polymer Containing Laterally Attached 

Pentaphenyl Rods”, Macromol. Chem. Phys., vol. 206, pp. 233-239, 2005.  

[183]  C. He, P. Liu, P. J. McMullan and A. C. Griffin, “Toward molecular auxetics: Main 

chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls”, 

Phys. status solidi B, vol. 242, pp. 576-584, 2005.  

[184]  C. Li, X. Xie and S. Cao, “Synthesis and characterization of liquid crystalline 

copolyesters containing horizontal and lateral rods in main chain”, Polym. Adv. 

Technol., vol. 13, pp. 178-187, 2002.  

[185]  S. Dey et al., “Soft Elasticity in Main Chain Liquid Crystal Elastomers”, Crystals, vol. 

3, pp. 363-390, 2013.  



 

221 

 

[186]  R. H. Baughman and D. S. Galvao, “Crystalline networks with unusual predicted 

mechanical and thermal properties”, Nature, vol. 365, pp. 735-737, 1993.  

[187]  R. Baughman, D. Galvao, C. Cui and S. Dantas, “Hinged and chiral polydiacetylene 

carbon crystals”, Chem. Phys. Lett., vol. 269, pp. 356-364, 1997.  

[188]  M. A. Nkansah et al., “Modelling the mechanical properties of an auxetic molecular 

network”, Model. Simul. Mater. Sci. Eng., vol. 2, pp. 337-352, 1994.  

[189]  J. N. Grima and K. E. Evans, “Self-expanding molecular networks”, Chem. Comm., pp. 

1531-1532 , 2000.  

[190]  J. N. Grima et al., “On the mechanical properties and auxetic potential of various 

organic networked polymers”, Mol. Simul., vol. 34, pp. 1149-1158, 2008.  

[191]  X. Wen, C. W. Garland, T. Hwa, M. Kardar, E. Kokufuta, Y. Li, M. Orkisz and T. 

Tanaka, “Crumpled and collapsed conformation in graphite oxide membranes”, 

Nature, vol. 355, pp. 426-428, 1992.  

[192]  N. Pour, L. Itzhaki, B. Hoz, E. Altus, H. Basch and S. Hoz, “Auxetics at the Molecular 

Level: A Negative Poisson’s Ratio in Molecular Rods”, Angew. Chemie, vol. 118, pp. 

6127-6129, 2006.  

[193]  N. Pour, E. Altus, H. Basch and S. Hoz, “The Origin of the Auxetic Effect in 

Prismanes: Bowtie Structure and the Mechanical Properties of Biprismanes”, J. Phys. 

Chem. C, vol. 113, pp. 3467-3470, 2009.  



 

222 

 

[194]  L. J. Hall, V. R. Coluci, D. S. Galvao, M. E. Kozlov, S. O. Dantas and R. H. 

Baughman, “Sign Change of Poisson's Ratio for Carbon Nanotube Sheets”, Science, 

vol. 320, pp. 504-507, 2008.  

[195]  Y. T. Yao, A. Alderson and K. L. Alderson, “Can nanotubes display auxetic 

behaviour?”, Phys. status solidi B, vol. 245, pp. 2373-2382, 2008.  

[196]  L. Chen, C. Liu, J. Wang, W. Zhang, C. Hu and S. Fan, “Auxetic materials with large 

negative Poisson’s ratios based on highly oriented carbon nanotube structures”, Appl. 

Phys. Lett., vol. 94, p. 253111, 2009.  

[197]  F. Scarpa, S. Adhikari and A. Srikantha Phani, “Effective elastic mechanical properties 

of single layer graphene sheets”, Nanotechnology, vol. 20, p. 65709, 2009.  

[198]  F. L. Braghin and N. Hasselmann, “Thermal fluctuations of free-standing graphene”, 

Phys. Rev. B, vol. 82, p. 35407, 2010.  

[199]  E. Cadelano, P. L. Palla, S. Giordano and L. Colombo, “Elastic properties of 

hydrogenated graphene”, Phys. Rev. B, vol. 82, p. 235414, 2010.  

[200]  S. Sihn, V. Varshney, A. K. Roy and B. L. Farmer, “Prediction of 3D elastic moduli 

and Poisson’s ratios of pillared graphene nanostructures”, Carbon, vol. 50, pp. 603-

611, 2012.  

[201]  P. Koskinen, “Graphene cardboard: From ripples to tunable metamaterial”, Appl. Phys. 

Lett., vol. 104, p. 101902, 2014.  

[202]  J. N. Grima, R. Jackson, A. Alderson and K. E. Evans, “ Do zeolites have negative 

Poisson’s ratios?”, Adv. Mater., vol. 12, pp. 1912-1928, 2000.  



 

223 

 

[203]  J. N. Grima, New auxetic materials Ph.D Thesis, University of Exeter, Exeter, UK, 

2000.  

[204]  C. Sanchez-Valle, S. V. Sinogeikin, Z. A. D. Lethbridge, R. I. Walton, C. W. Smith, K. 

E. Evans and J. D. Bass, “Brillouin scattering study on the single-crystal elastic 

properties of natrolite and analcime zeolites”, J. Appl. Phys., vol. 98, p. 053508, 2005.  

[205]  Z. A. D. Lethbridge, J. J. Williams, R. I. Walton, C. W. Smith, R. M. Hooper and K. E. 

Evans, “ Direct, static measurement of single-crystal Young’s moduli of the zeolite 

natrolite: Comparison with dynamic studies and simulations”, Acta Mater., vol. 54, pp. 

2533-2545, 2006.  

[206]  C. W. Smith, K. E. Evans, Z. A. D. Lethbridge and R. I. Walton, “ An analytical model 

for producing negative Poisson’s ratios and its application in explaining off-axis elastic 

properties of the NAT-type zeolites”, Acta Mater., vol. 55, pp. 5697-5707, 2007.  

[207]  J. J. Williams, C. W. Smith, K. E. Evans, Z. A. D. Lethbridge and R. I. Walton, “ Off-

axis elastic properties and the effect of extraframework species on structural flexibility 

of the NATtype zeolites: Simulations of structure and elastic properties”, Chem. 

Mater., vol. 19, pp. 2423-2434 , 2007.  

[208]  J. N. Grima, R. Gatt, V. Zammit, J. J. Williams, A. Alderson and R. I. Walton, “ 

Natrolite: A zeolite with negative Poisson’s ratios”, J. Appl. Phys., vol. 101, p. 86102, 

2007.  

[209]  J. N. Grima, V. Zammit, R. Gatt, A. Alderson and K. E. Evans, “Auxetic behaviour 

from rotating semi-rigid units”, Phys. Status Solidi B, vol. 224, pp. 866-882, 2007.  



 

224 

 

[210]  J. N. Grima, R. Gatt and E. Chetcuti, “On the behaviour of natrolite under hydrostatic 

pressure”, J. Non-Cryst. Solids, vol. 356, pp. 1881-1887, 2010.  

[211]  A. Kremleva, T. Vogt and N. Rosch, “ Monovalent cationexchanged natrolites and 

their behaviour under pressure. A computational study”, J. Phys. Chem. C, vol. 117, 

pp. 19020-19030, 2013.  

[212]  E. D. Manga, H. Blasco, P. Da-Costa, M. Drobek, A. Ayral, E. Le Clezio, G. Despaux, 

B. Coasne and A. Julbe, “ Effect of gas adsorption on acoustic wave propagation in 

MFI zeolite membrane materials: Experiment and molecular simulation”, Langmuir, 

vol. 30, pp. 10336-10343, 2014.  

[213]  M. Siddorn, F. X. Coudert, K. E. Evans and A. A. Marmier, “A systematic typology 

for negative Poisson’s ratio materials and the prediction of complete auxeticity in pure 

silica zeolite JST”, Phys. Chem. Chem. Phys., vol. 17, p. 17927, 2015.  

[214]  A. Alderson and K. E. Evans, “ Molecular origin of auxetic behaviour in tetrahedral 

framework silicates”, Phys. Rev. Lett., vol. 89, p. 225503, 2002.  

[215]  A. Alderson, K. L. Alderson, K. E. Evans, J. N. Grima, M. R. Williams and P. J. 

Davies, “Molecular modelling of the deformation mechanisms acting in auxetic silica”, 

CMST, vol. 10, pp. 117-126, 2004.  

[216]  A. Alderson, K. L. Alderson, K. E. Evans, J. N. Grima and M. Williams, “ Modelling 

of negative Poisson’s ratio nanomaterials: Deformation mechanisms, structure-

property relationships and applications”, J. METASTAB. NANOCRYST., vol. 23, pp. 

55-58, 2005.  



 

225 

 

[217]  R. Gatt, L. Mizzi, K. M. Azzopardi and J. N. Grima, “ A force-field based analysis of 

the deformation in α-cristobalit”, Phys. Status Solidi B, vol. 5, p. 8395, 2015.  

[218]  F. Nazare and A. Alderson, “ Models for the prediction of Poisson’s ratio in the α-

cristobalite tetrahedral framework”, Phys. Status Solidi B, vol. 252, pp. 1465-1478, 

2015.  

[219]  K. W. Wojciechowski, A. C. Branka and M. Parrinello, “ Monte Carlo study of the 

phase diagram of a two dimensional system of hard cyclic hexamers”, Mol. Phys., vol. 

53, pp. 1541-1545, 1984.  

[220]  K. W. Wojciechowski, “ Constant thermodynamic tension Monte Carlo studies of 

elastic properties of a two-dimensional system of hard cyclic hexamers”, Mol. Phys., 

vol. 61, pp. 1247-1258, 1987.  

[221]  K. W. Wojciechowski and A. C. Branka, “Negative Poisson ratio in a two-dimensional 

"isotropic" solid”, Phys. Lett. A, vol. 40, pp. 7222-7225, 1989.  

[222]  K. W. Wojciechowski and A. C. Branka, “ Auxetics: Materials and models with 

negative Poisson’s ratios”, MOLECUL. PHYS. REP., vol. 6, p. 71, 1994.  

[223]  K. V. Tretiakov and K. W. Wojciechowski, “ Orientational phase transition between 

hexagonal solids in planar systems of hard cyclic pentamers and heptamers”, J. PHYS.-

CONDENS. MAT., vol. 14, pp. 1261-1273, 2002.  

[224]  K. V. Tretiakov and K. W. Wojciechowski, “Monte Carlo simulation of two-

dimensional hard body systems with extreme values of the Poisson’s ratio”, Phys. 

Status Solidi B, vol. 242, pp. 730-741 , 2005.  



 

226 

 

[225]  K. V. Tretiakov and K. W. Wojciechowski, “Elastic properties of the degenerate 

crystalline phase of two-dimensional hard dimers”, J. NON.-CRYST. SOLIDS, vol. 

352, pp. 4221-4228 , 2006.  

[226]  K. V. Tretiakov and K. W. Wojciechowski, “Poisson’s ratio of simple planar 

"isotropic" solids in two dimensions”, Phys. Status Solidi B, vol. 244, pp. 1038-1046, 

2007.  

[227]  J. W. Narojczyk and K. W. Wojciechowski, “ Elastic properties of two-dimensional 

soft polydisperse trimers at zero temperature”, Phys. Status Solidi B, vol. 244, pp. 943-

954, 2007.  

[228]  J. W. Narojczyk, A. Alderson, A. R. Imre, F. Scarpa and K. W. Wojciechowski, “ 

Negative Poisson’s ratio behaviour in the planar model of asymmetric trimers at zero 

temperature”, J. NON.-CRYST. SOLIDS, vol. 354, pp. 4242-4248 , 2008.  

[229]  J. W. Narojczyk and K. W. Wojciechowski, “ Elasticity of periodic and aperiodic 

structures of polydisperse dimers in two dimensions at zero temperature”, Phys. Status 

Solidi B, vol. 245, pp. 2453-2468 , 2008.  

[230]  J. W. Narojczyk and K. W. Wojciechowski, “ Elastic properties of degenerate f.c.c. 

crystal of polydisperse soft dimers at zero temperature”, J. NON.-CRYST. SOLIDS, 

vol. 256, pp. 2026-2032 , 2010.  

[231]  J. W. Narojczyk, P. M. Piglowski, K. W. Wojciechowski and K. V. Tretiakov, “ 

Elastic properties of mono and polydisperse two dimensional crystals of hard core 

repulsive Yukawa particles”, Phys. Status Solidi B, p. 1508–1513, 2015.  



 

227 

 

[232]  K. V. Tretiakov, P. M. Piglowski, K. Hyzorek and K. W. Wojciechowski, “Enhanced 

auxeticity in Yukawa systems due to introduction of nanochannels in-direction”, Smart 

Mater. Struct., vol. 25, p. 054007, 2016.  

[233]  A. el-Sayed, F. K. Jones and I. W. Burgess, “A theoretical approach to the deformation 

of honeycomb based composite materials”, Composites, vol. 10, pp. 209-214, 1979.  

[234]  L. J. Gibson, M. F. Ashby, G. S. Schajer and C. I. Robertson, “The mechanics of two-

dimensional cellular materials”, Proc. Royal Soc. A, vol. 382, pp. 25-42, 2008.  

[235]  I. G. Masters and K. E. Evans, “Models for the elastic deformation of honeycombs”, 

Comp. Struct., vol. 35, pp. 404-422, 1996.  

[236]  K. E. Evans, A. Alderson and F. R. Christian, “Auxetic twodimensional polymer 

networks: An example of tailoring geometry for specific mechanical properties”, J. 

Chem. Soc. Faraday Trans., vol. 91, pp. 2671-2680, 1995.  

[237]  L. J. Gibson and M. F. Ashby, Cellular solids structure and properties, Cambridge 

University Press, 1997.  

[238]  K. E. Evans, “Design of doubly-curved sandwich panels with honeycomb cores”, 

Comp. Struct., vol. 17, pp. 95-111, 1991.  

[239]  F. Scarpa and G. Tomlinson, “Theoretical characteristics of the vibration of sandwich 

plates with in-plane negative Poisson’s ratio values”, J. Sound Vib., vol. 230, pp. 45-

67, 2000.  



 

228 

 

[240]  F. Scarpa, F. C. Smith, B. Chambers and G. Burriesci, “Mechanical and 

electromagnetic behaviour of auxetic honeycomb structure”, The Aeronautical 

Journal, vol. 107, pp. 175-183, 2002.  

[241]  D. H. Chen and S. Ozaki, “Analysis of in-plane elastic modulus for a hexagonal 

honeycomb core: Effect of core height and proposed analytical method”, Comp. 

Struct., vol. 88, pp. 17-25, 2009.  

[242]  M. A. Grediac, “A finite element study of the transverse shear in honeycomb cores”, 

International Journal of Solids and Structures, vol. 30, pp. 1777-1788, 1993.  

[243]  F. Scarpa, P. Panayiotou and G. Tomlinson, “Numerical and experimental uniaxial 

loading on in-plane auxetic honeycombs”, J. STRAIN ANAL. ENG., vol. 35, pp. 383-

388, 2000.  

[244]  J. Ju and J. D. Summers, “Hyperelastic constitutive modeling of hexagonal 

honeycombs subjected to in-plane shear loading”, J. ENG. MATER.-T. ASME, vol. 

133, p. 011005, 2010.  

[245]  J. Ju and J. D. Summers, “Compliant hexagonal periodic lattice structures having both 

high shear strength and high shear strain”, Materials and Design, vol. 32, pp. 512-524, 

2011.  

[246]  J. Ju, J. D. Summers, J. Ziegert and G. Fadel, “Design of honeycombs for modulus and 

yield strain in shear”, J. ENG. MATER.-T. ASME, vol. 134, p. 011002, 2011.  

[247]  A. Bezazi, F. Scarpa and C. Remillat, “A novel centresymmetric honeycomb 

composite structure”, Compos. Struct., vol. 71, pp. 356-364, 2005.  



 

229 

 

[248]  J. S. Huang and F. M. Chang, “Effects of curved cell edges on the stiffness and 

strength of two-dimensional cellular solids”, Compos. Struct., vol. 69, pp. 183-191, 

2005.  

[249]  M. Y. Yang, J. S. Huang and J. W. Hu, “Elastic buckling of hexagonal honeycombs 

with dual imperfections”, Compos. Struct., vol. 82, pp. 326-335, 2008.  

[250]  C. Lira, P. Innocenti and F. Scarpa, “Transverse elastic shear of auxetic multi re-

entrant honeycombs”, Compos. Struct., vol. 90, pp. 314-322, 2009.  

[251]  L. Mizzi, D. Attard, A. Casha, J. N. Grima and R. Gatt, “On the suitability of 

hexagonal honeycombs as stent geometries”, Phys. Status Solidi B, vol. 251, pp. 328-

337, 2014.  

[252]  H. Ohtaki, G. Hu, Y. Nagasaka and S. Kotosaka, “Analysis of negative Poisson’s ratios 

of re-entrant honeycombs”, JSME. INT. J. A-MECH. M., vol. 47, pp. 113-121, 2004.  

[253]  H. Wan, H. Ohtaki, S. Kotosaka and G. M. Hu, “A study of negative Poisson’s ratios 

in auxetic honeycombs based on a large deflection model”, European Journal of 

Mechanics A - Solids, pp. 95-106, 2004.  

[254]  F. R. Attenborough, The modelling of auxetic polymers, Ph.D Thesis, United 

Kingdom: University of Liverpool, 1997.  

[255]  U. D. Larsen, O. Sigmund and S. Bouwstra, “Design and fabrication of compliant 

micromechanics and structures with negative Poisson’s ratio”, J. 

MICROELECTROMECH. S., vol. 6, pp. 99-106, 1997.  



 

230 

 

[256]  A. T. Crumm and J. W. Halloran, “Negative Poisson’s ratio structures produced from 

zirconia and nickel using coextrusion”, J. Mater. Sci, vol. 42, pp. 1336-1342, 2007.  

[257]  J. X. Qiao and C. Q. Chen, “Impact resistance of uniform and functionally graded 

auxetic double arrowhead honeycombs”, INT. J. IMPACT. ENG., vol. 83, pp. 47-58, 

2015.  

[258]  A. Rafsanjani, A. Akbarzadeh and D. Pasini, “Snapping mechanical metamaterials 

under tension”, Adv. Mater., vol. 27, pp. 5931-5935, 2015.  

[259]  A. Spagnoli, R. Brighenti, M. Lanfranchi and F. Soncini, “On the auxetic behaviour of 

metamaterials with re-entrant cell structures”, PROCEDIA ENGINEER., vol. 109, pp. 

410-417, 2015.  

[260]  K. E. Evans, M. A. Nkansah and I. J. Hutchinson, “Auxetic foams: Modelling negative 

Poisson’s ratios”, ACTA METALL. MATER., vol. 42, pp. 1289-1294, 1994.  

[261]  J. N. Grima, R. Caruana-Gauci, D. Attard and R. Gatt, “Three-dimensional cellular 

structures with negative Poisson's ratio and negative compressibility properties”, Proc. 

Royal Soc. A, vol. 468, p. 3121, 2012.  

[262]  J. Schwerdtfeger, F. Schury, M. Stingl, F. Wein, R. F. Singer and C. Komer, 

“Mechanical characterisation of a periodic auxetic”, Phys. Status Solidi B, vol. 249, pp. 

1347-1352, 2012.  

[263]  S. Krodel, T. Delpero, A. Bergamini, P. Ermanni and D. M. Kochmann, “3D auxetic 

microlattices with independently controllable acoustic band gaps and quasi-static 

elastic moduli”, ADV. ENG. MATER., vol. 16, pp. 357-363, 2014.  



 

231 

 

[264]  M. S. Rad, Y. Prawato and Z. Ahmad, “Analytical solution and finite element 

approach to the 3D re-entrant structures of auxetic materials”, MECH. MATER., vol. 

74, pp. 76-87, 2014.  

[265]  K. Wang, Y. H. Chang, Y. W. Chen, C. Zhang and B. Wang, “Designable dual-

material auxetic metamaterials using three dimensional printing”, Materials and 

Design, vol. 67, pp. 159-164, 2015.  

[266]  K. L. Alderson, A. Alderson and K. E. Evans, “The interpretation of the strain-

dependent Poisson’s ratio in auxetic polyethylene”, J. STRAIN ANAL. ENG., vol. 32, 

pp. 201-212, 1997.  

[267]  N. Gaspar, C. W. Smith, A. Alderson, J. N. Grima and K. E. Evans, “A generalized 

three dimensional tethered-nodule model for auxetic materials”, J. Mater. Sci., vol. 46, 

pp. 372-384, 2011.  

[268]  Z. K. Zhang, H. Hu, S. Liu and B. G. Xu, “Study of an auxetic structure made of tubes 

and corrugated sheets”, Phys. Status Solidi B, vol. 250, pp. 1996-2001, 2013.  

[269]  Z. K. Zhang, H. Hu and B. G. Xu, “An elastic analysis of a honeycomb structure with 

negative Poisson's ratio”, Smart Mater. Struct., vol. 22, p. 084006, 2013.  

[270]  A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller, 

N. Ravirala, C. W. Smith and K. M. Zied, “Elastic constants of 3-, 4- and 6-connected 

chiral and anti-chiral honeycombs subject to uniaxial in-plane loading”, Composite 

Science and Technology, vol. 70, pp. 1042-1048, 2010.  

[271]  J. N. Grima, R. Gatt and P. S. Farrugia, “On the properties of auxetic meta-tetrachiral 

structures”, Phys. Status Solidi B, vol. 245, pp. 521-529, 2008.  



 

232 

 

[272]  A. Spadoni and M. Ruzzene, “Elasto-static micropolar behaviour of a chiral auxetic 

lattice”, J. Mech. Phys. Solids, vol. 60, pp. 156-171, 2012.  

[273]  A. Bacigalupo and L. Gambarotta, “Homogenization of periodic hexa- and tetrachiral 

cellular solids”, Compos. Struct., vol. 116, pp. 461-476, 2014.  

[274]  R. Gatt, D. Attard, P. S. Farrugia, K. M. Azzopardi, L. Mizzi, J. P. Brincat and J. N. 

Grima, “A realistic generic model for antitetrachiral systems”, Phys. Status Solidi B, 

vol. 250, pp. 2012-2019, 2013.  

[275]  Y. Chen, X. Liu and G. Hu, “Micropolar modelling of planar orthotropic rectangular 

chiral lattices”, Comptes Rendus Mecanique, vol. 342, pp. 273-283, 2014.  

[276]  A. Lorato, P. Innocenti, F. Scarpa, A. Alderson, K. L. Alderson, K. M. Zied, N. 

Ravirala, W. Miller, C. W. Smith and K. E. Evans, “The transverse elastic properties of 

chiral honeycombs”, Compos. Sci. Technol., vol. 70, pp. 1057-1063, 2010.  

[277]  F. Scarpa, S. Blain, T. Lew, D. Perrott, M. Ruzzene and J. R. Yates, “Elastic buckling 

of hexagonal chiral cell honeycomb”, Composites Part A, vol. 38, pp. 280-289, 2007.  

[278]  A. Spadoni, M. Ruzzene and F. Scarpa, “Global and local linear buckling behaviour of 

a chiral cellular structure”, Phys. Status Solidi B, vol. 242, pp. 695-709, 2005.  

[279]  W. Miller, C. W. Smith, F. Scarpa and K. E. Evans, “Flatwise buckling optimization of 

hexachiral and tetrachiral honeycombs”, Compos. Sci. Technol., vol. 70, pp. 1049-

1059, 2010.  



 

233 

 

[280]  G. Cicala, G. Recca, L. Oliveri, Y. Perikleous, F. Scarpa, C. Lira, A. Lorato, D. J. 

Grube and G. Ziegmann, “Hexachiral truss-core with twisted hemp yarns: Out-of-plane 

shear properties”, Compos. Struct., vol. 94, pp. 3556-3562, 2012.  

[281]  J. Dirrenberger, S. Forest and D. Jeulin, “Elastoplasticity of auxetic materials”, 

Comput. Mater. Sci., vol. 64, pp. 57-61, 2012.  

[282]  R. Gatt, J. P. Brincat, K. M. Azzopardi, L. Mizzi and J. N. Grima, “On the effect of the 

mode of connection between the node and the ligaments in anti-tetrachiral systems”, 

Adv. Eng. Mater., vol. 17, p. 189–198, 2014.  

[283]  A. A. Pozniak and K. W. Wojciechowski, “Poisson’s ratio of rectangular anti-chiral 

structures with size dispersion of circular nodes”, Phys. Status Solidi B, vol. 251, pp. 

367-374, 2014.  

[284]  O. Sigmund, “Tailoring materials with prescribed elastic properties”, Mech. Mater., 

vol. 20, pp. 351-368, 1995.  

[285]  Y. Ishibashi and M. Iwata, “A Microscopic Model of a Negative Poisson’s Ratio in 

Some Crystals”, J. Phys. Soc. Japan, vol. 69, pp. 2702-2703, 2000.  

[286]  J. N. Grima, A. Alderson and K. E. Evans, “Auxetic behaviour from rotating rigid 

units”, Phys. status solidi B, vol. 242, pp. 561-575, 2005.  

[287]  J. N. Grima, R. Gatt, A. Alderson and K. E. Evans, “On the Auxetic Properties of 

`Rotating Rectangles’ with Different Connectivity”, J. Phys. Soc. Japan, vol. 74, pp. 

2866-2867, 2005.  



 

234 

 

[288]  J. N. Grima and K. E. Evans, “Auxetic behavior from rotating triangles”, J. Mater. 

Sci., vol. 41, pp. 3193-3196, 2006.  

[289]  J. N. Grima, P.-. S. Farrugia, R. Gatt and V. Zammit, “Connected Triangles Exhibiting 

Negative Poisson’s Ratios and Negative Thermal Expansion”, J. Phys. Soc. Japan, vol. 

76, p. 25001, 2007.  

[290]  J. N. Grima, E. Chetcuti, E. Manicaro, D. Attard, M. Camilleri, R. Gatt and K. E. 

Evans, “On the auxetic properties of generic rotating rigid triangles”, Proc. Royal Soc. 

A, vol. 468, pp. 810-830, 2011.  

[291]  E. Chetcuti et al., “Modeling auxetic foams through semi‐rigid rotating triangles”, 

Phys. status solidi B, vol. 251, pp. 297-306, 2014.  

[292]  X.-. Q. Zhou, L. Zhang and L. Yang, “Negative linear compressibility of generic 

rotating rigid triangles”, Chin. Phys. B, vol. 26, 2017.  

[293]  J. J. Williams, C. W. Smith, K. E. Evans, Z. A. D. Lethbridge and R. I. Walton, “An 

analytical model for producing negative Poisson’s ratios and its application in 

explaining off-axis elastic properties of the NAT-type zeolites”, Acta Mater., vol. 55, 

pp. 5697-5707, 2007.  

[294]  D. Attard, E. Manicaro and J. N. Grima, “On rotating rigid parallelograms and their 

potential for exhibiting auxetic behaviour”, Phys. Status Solidi B, vol. 246, pp. 2033-

2044, 2009.  

[295]  J. N. Grima, P.-. S. Farrugia, R. Gatt and D. Attard, “On the auxetic properties of 

rotating rhombi and parallelograms: A preliminary investigation”, Phys. Status Solidi 

B, vol. 245, pp. 521-529, 2008.  



 

235 

 

[296]  J. N. Grima, M. Bajada, S. Scerri, D. Attard, K. K. Dudek and R. Gatt, “Maximizing 

negative thermal expansion via rigid unit modes: a geometry-based approach”, Proc. 

R. Soc. A, vol. 471, 2015.  

[297]  D. Attard, Investigation on materials and structures exhibiting negative mechanical 

properties, University of Malta, 2011.  

[298]  J. N. Grima, E. Manicaro and D. Attard, “Auxetic behaviour from connected different-

sized squares and rectangles”, Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 467, 

2010.  

[299]  H. Mitschke et al., “ Finding Auxetic Frameworks in Periodic Tessellations”, Adv. 

Mater., vol. 23, pp. 2669-2674, 2011.  

[300]  H. Mitschke, V. Robins, K. Mecke and G. E. Schröder-Turk, “Finite auxetic 

deformations of plane tessellations”, Proc. R. Soc. London A Math. Phys. Eng. Sci., 

vol. 469, 2012.  

[301]  H. Mitschke et al., “Symmetry detection of auxetic behaviour in 2D frameworks”, 

Europhysics Lett., vol. 102, p. 66005, 2013.  

[302]  A. Alderson and K. E. Evans, “Rotation and dilation deformation mechanisms for 

auxetic behaviour in the α-cristobalite tetrahedral framework structure”, Phys. Chem. 

Miner., vol. 28, pp. 711-718, 2001.  

[303]  D. Attard and J. N. Grima, “A three-dimensional rotating rigid units network 

exhibiting negative Poisson’s ratios”, Phys. Status Solidi B, pp. 1-9, 2012.  



 

236 

 

[304]  J. Shen, S. Zhou, X. Huang and Y. M. Xie, “Simple cubic three-dimensional auxetic 

metamaterials”, Phys. Status Solidi B, vol. 251, pp. 1515-1522, 2014.  

[305]  T. Bückmann et al., “ On three-dimensional dilational elastic metamaterials”, New J. 

Phys., vol. 16, p. 33032, 2014.  

[306]  R. Gatt, R. Caruana‐Gauci, D. Attard, A. R. Casha, W. Wolak, K. Dudek, L. Mizzi and 

J. N. Grima, “On the properties of real finite‐sized planar and tubular stent‐like auxetic 

structures”, Phys. Status Solidi B, vol. 251, pp. 321-327, 2014.  

[307]  J. N. Grima, A. Alderson and K. E. Evans, “An Alternative Explanation for the 

Negative Poisson’s Ratios in Auxetic Foams”, J. Phys. Soc. Japan, vol. 74, pp. 1341-

1342, 2005.  

[308]  S. A. McDonald, G. Dedreuil-Monet, Y. T. Yao, A. Alderson and P. J. Withers, “In 

situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric 

foams under tension”, Phys. Status Solidi B, vol. 248, pp. 45-51, 2011.  

[309]  R. Cauchi, Modelling of the mechanical and thermal properties in zeolites and related 

frameworks, Ph.D. Thesis, 2013.  

[310]  R. Cauchi and J. N. Grima, “Modelling of the static and dynamic properties of THO-

type silicates”, TASK Q., vol. 18, pp. 5-65, 2014.  

[311]  J. N. Grima, R. N. Cassar and R. Gatt, “On the effect of hydrostatic pressure on the 

auxetic character of NAT-type silicates”, J. Non. Cryst. Solids, vol. 355, pp. 1307-

1312, 2009.  



 

237 

 

[312]  J. N. Grima et al., “On the origin of auxetic behaviour in the silicate α-cristobalite”, J. 

Mater. Chem., vol. 15, p. 4003, 2005.  

[313]  J. N. Grima, R. Gatt, A. Alderson and K. E. Evans, “An alternative explanation for the 

negative Poisson’s ratios in α-cristobalite”, Mater. Sci. Eng. A, vol. 423, pp. 219-224, 

2006.  

[314]  K. E. Evans and A. Alderson, “Rotation and dilation deformation mechanisms for 

auxetic behaviour in the α-cristobalite tetrahedral framework structure”, Phys. Chem. 

Miner., vol. 28, pp. 711-718, 2001.  

[315]  A. Alderson, J. Rasburn, K. E. Evans and J. N. Grima, “Auxetic polymeric filters 

display enhanced de-fouling and pressure compensation properties”, Membr. Technol., 

vol. 2001, pp. 6-8, 2001.  

[316]  R. Gatt, V. Zammit, C. Caruana and J. N. Grima, “On the atomic level deformations in 

the auxetic zeolite natrolite”, Phys. status solidi B, vol. 245, pp. 502-510, 2008.  

[317]  J. N. Grima, M. Bajada, S. Scerri, D. Attard, K. K. Dudek and R. Gatt, “Maximizing 

negative thermal expansion via rigid unit modes: a geometry-based approach”, Proc. 

R. Soc. A, vol. 471, 2015.  

[318]  T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. 

Eberl, M. Thiel and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by 

Dip‐in Direct‐Laser‐Writing Optical Lithography”, Adv. Mater., vol. 24, pp. 2710-

2714, 2012.  



 

238 

 

[319]  G. Cicala, G. Recca, L. Oliveri, Y. Perikleous, F. Scarpa, C. Lira, A. Lorato, D. J. 

Grube and G. Ziegmann, “Hexachiral truss-core with twisted hemp yarns: Out-of-plane 

shear properties”, Compos. Struct., vol. 94, pp. 3556-3562, 2012.  

[320]  V. Kunin, S. Yang, Y. Cho, P. Deymier and D. J. Srolovitz, “Static and dynamic 

elastic properties of fractal-cut materials”, Extreme Mechanics Letters, vol. 6, pp. 103-

114, 2016.  

[321]  T.-C. Lim, “Analogies across auxetic models based on deformation mechanism”, Phys. 

Status Solidi RRL, vol. 11, p. 1600440, 2017.  

[322]  R. Lakes, “Materials with structural hierarchy”, Nature, vol. 361, pp. 511-515, 1993.  

[323]  K. E. Easterling, R. Harrysson, L. J. Gibson and M. F. Ashby, “On the Mechanics of 

Balsa and Other Woods”, Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 383, 

1982.  

[324]  Y. Chen, X. Wang, H. Ren, H. Yin and S. Jia, “Hierarchical Dragonfly Wing: 

Microstructure-Biomechanical Behavior Relations”, J. Bionic Eng., vol. 9, pp. 185-

191, 2012.  

[325]  J.-. Y. Rho, L. Kuhn-Spearing and P. Zioupos, “ Mechanical properties and the 

hierarchical structure of bone”, Med. Eng. Phys., vol. 20, pp. 92-102, 1998.  

[326]  R. Oftadeh, B. Haghpanah, D. Vella, A. Boudaoud and A. Vaziri, “Optimal Fractal-

Like Hierarchical Honeycombs”, Phys. Rev. Lett., vol. 113, p. 104301, 2014.  



 

239 

 

[327]  D. Mousanezhad, S. Babaee, H. Ebrahimi, R. Ghosh, A. S. Hamouda, K. Bertoldi and 

A. Vaziri, “Hierarchical honeycomb auxetic metamaterials”, Sci. Rep., vol. 5, p. 

18306, 2015.  

[328]  Y. Sun and N. M. Pugno, “In plane stiffness of multifunctional hierarchical 

honeycombs with negative Poissonâ€TMs ratio sub-structures”, Compos. Struct., vol. 

106, pp. 681-689, 2013.  

[329]  Y. Cho, Y.-H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, S. Y. Lee, S. Yang, H.-N. 

Han, I.-S. Choi and D. J. Srolovitz, “Engineering the shape and structure of materials 

by fractal cut”, Proc. Natl. Acad. Sci., vol. 111, pp. 17390-17395, 2014.  

[330]  R. Gatt, L. Mizzi, J. I. Azzopardi, K. M. Azzopardi, D. Attard, A. Casha, J. Briffa and 

J. N. Grima, “Hierarchical Auxetic Mechanical Metamaterials”, Sci. Rep., vol. 5, p. 

8395, 2015.  

[331]  Y. Tang, G. Lin, L. Han, S. Qiu, S. Yang and J. Yin, “Design of Hierarchically Cut 

Hinges for Highly Stretchable and Reconfigurable Metamaterials with Enhanced 

Strength”, Adv. Mater., vol. 27, pp. 7181-7190, 2015.  

[332]  K. Billon, M. Ouisse, E. Sadoulet-Reboul, F. Scarpa and M. Collet, “Parametric Study 

of Wave Propagation in Hierarchical Auxetic Perforated Metamaterials”, Active and 

Passive Smart Structures and Integrated Systems, vol. 9799, p. 979906, 2016.  

[333]  H. Seifi, A. R. Javan, A. Ghaedizadeh, J. Shen, S. Xu and Y. M. Xie , “Design of 

Hierarchical Structures for Synchronized Deformations”, Sci. Rep., vol. 7, p. 41183, 

2017.  



 

240 

 

[334]  D. Li, J. Yin, L. Dong and R. S. Lakes, “Numerical analysis on mechanical behaviors 

of hierarchical cellular structures with negative Poisson’s ratio”, Smart Mater. Struct., 

vol. 26, p. 025014, 2017.  

[335]  D. J. Gunton and G. A. Saunders, “The Young's modulus and Poisson's ratio of 

arsenic, antimony and bismuth”, J. Mater. Sci., vol. 7, p. 1061, 1972.  

[336]  B. Morosin and J. E. Schirber, “Linear compressibilities and the pressure dependence 

of the atomic positional parameter of As”, Solid State Commun., vol. 10, p. 249, 1972.  

[337]  S. Prawer, T. F. Smith and T. R. Finlayson, “The Room Temperature Elastic 

Behaviour of CsH2PO4”, Aust. J. Phys., vol. 38, p. 63, 1985.  

[338]  E. F. Skelton, J. L. Feldman, C. Y. Liu and I. L. Spain, Phys. Rev. B, vol. 13, p. 2605, 

1976.  

[339]  A. B. Cairns, J. Catafesta, C. Levelut, J. Rouqette, A. van der Lee, L. Peters, A. L. 

Thompson, V. Dmitriev, J. Haines and A. L. Goodwin, “Giant negative linear 

compressibility in zinc dicyanoaurate”, Nature Mater., vol. 12, p. 212, 2013.  

[340]  A. B. Cairns, A. L. Thompson, M. G. Tucker, J. Haines and A. L. Goodwin, “Rational 

Design of Materials with Extreme Negative Compressibility: Selective Soft-Mode 

Frustration in KMn[Ag(CN)2]3”, J. Am. Chem. Soc., vol. 134, p. 4454, 2012.  

[341]  A. D. Fortes, E. Suard and K. S. Knight, “Negative linear compressibility and massive 

anisotropic thermal expansion in methanol monohydrate”, Science, vol. 331, p. 742, 

2011.  



 

241 

 

[342]  C. N. Weng, K. T. Wang and T. Chen, “Design of microstructures and structures with 

negative linear compressibility in certain directions”, Adv. Mat. Res., Vols. 33-37, pp. 

807-814, 2008.  

[343]  J. N. Grima, D. Attard, R. Caruana-Gauci and R. Gatt, “Negative linear compressibility 

of hexagonal honeycombs and related systems”, Scr. Mater., vol. 65, pp. 565-568, 

2011.  

[344]  R. Caruana-Gauci, E. P. Degabriele, D. Attard and J. N. Grima, “Auxetic 

metamaterials inspired from wine-racks”, J. Mater. Sci., vol. 53, pp. 5079-5091, 2018.  

[345]  Y. Yan, A. E. O’Connor, G. Kanthasamy, G. Atkinson, D. R. Allan, A. J. Blake and 

M. Schroder, “Unusual and Tunable Negative Linear Compressibility in the Metal–

Organic Framework MFM-133(M) (M = Zr, Hf)”, J. Am. Chem. Soc., vol. 140, pp. 

3952-3958, 2018.  

[346]  X. Zhou, L. Zhang, H. Zhang, Q. Liu and T. Ren, “3D cellular models with negative 

compressibility through the wine-rack-type mechanism”, Phys. Status Solidi B, pp. 1-

17, 2016.  

[347]  T.-C. Lim, “2D Structures Exhibiting Negative Area Compressibility”, Phys. Status 

Solidi B, vol. 254, p. 1600682, 2017.  

[348]  J. N. Grima, E. P. Degabriele and D. Attard, “Nano networks exhibiting negative linear 

compressibility”, phys. status solidi b, vol. 253, pp. 1419-1427, 2016.  

[349]  J. Qu, M. Kadic and M. Wegener, “Poroelastic metamaterials with negative effective 

static compressibility”, Appl. Phys. Lett., vol. 110, p. 171901, 2017.  



 

242 

 

[350]  J. Qu, A. Gerber, F. Mayer, M. Kadic and M. Wegener, “Experiments on 

Metamaterials with Negative Effective Static Compressibility”, Phys. Rev. X, vol. 7, p. 

041060, 2017.  

[351]  J. N. Grima, D. Attard and R. Gatt, “Truss-type systems exhibiting negative 

compressibility”, Phys. Status Solidi B, vol. 245, pp. 2405-2414, 2008.  

[352]  T. A. M. Hewage, K. L. Alderson, A. Alderson and F. Scarpa, “Double-Negative 

Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative 

Poisson's Ratio Properties”, Adv. Mater., vol. 28, pp. 10323-10332, 2016.  

[353]  D. Attard, R. Caruana-Gauci, R. Gatt and J. N. Grima, “Negative linear compressibility 

from rotating rigid units”, Phys. Status Solidi B, vol. 253, pp. 1410-1418, 2016.  

[354]  W. Molyneaux, Supports for vibration isolation, Great Britain: Aeronautical, 1957.  

[355]  C. Oran, “Tangent stiffness in space frames”, J. Struct. Div., vol. 99, pp. 987-1001, 

1973.  

[356]  J. M. T. Thompson, “Stability predictions through a succession of folds”, Philos. 

Trans. Royal Soc. A, vol. 292, pp. 1-23, 1979.  

[357]  S.-L. Chan and J.-X. Gu, “Exact Tangent Stiffness for Imperfect Beam-Column 

Members”, Journal of Structural Engineering, vol. 126, pp. 1094-1102, 2000.  

[358]  F. Falk, “Model free-energy, mechanics and thermodynamics of shape-memory 

alloys”, Acta Metall., vol. 28, p. 1773, 1980.  



 

243 

 

[359]  L. Kashdan, C. C. Seepersad, M. Haberman and P. S. Wilson, “Design, fabrication, 

and evaluation of negative stiffness elements using SLS”, Rapid Prototyping Journal, 

vol. 18, pp. 194-200, 2012.  

[360]  S. Cortes, J. Allison, C. Morris, M. R. Haberman, C. C. Seepersad and D. Kovar, 

“Design, manufacture and quasi-static testing of metallic negative stiffness structures 

within a polymer matrix”, Experimental Mechanics, vol. 57, pp. 1183-1191, 2017.  

[361]  D. M. Correa, C. C. Seepersad and M. R. Haberman, “Mechanical design of negative 

stiffness honeycomb materials”, Integrating Materials and Manufacturing Innovation, 

vol. 4, p. 10, 2015.  

[362]  D. M. Correa, T. Klatt, S. Cortes, M. Haberman, D. Kovar and C. Seepersad, 

“Negative stiffness honeycombs for recoverable shock isolation”, Rapid Prototyping 

Journal, vol. 21, pp. 193-200, 2015.  

[363]  R. S. Lakes, T. Lee, A. Bersie and Y. C. Wang, “Extreme damping in composite 

materials with negative-stiffness inclusions”, Nature, vol. 410, pp. 565-567, 2001.  

[364]  T.-. C. Lim, “In-Plane Stiffness of Semiauxetic Laminates”, Journal of Engineering 

Mechanics, vol. 136, 2010.  

[365]  R. S. Lakes, “Extreme Damping in Composite Materials with a Negative Stiffness 

Phase”, Phys. Rev. Lett., vol. 86, pp. 2897-2900, 2001.  

[366]  R. S. Lakes, “Extreme damping in compliant composites with a negative-stiffness 

phase”, Philos. Mag. Lett., vol. 81, pp. 95-100, 2001.  



 

244 

 

[367]  R. S. Lakes and W. J. Drugan, “Dramatically stiffer elastic composite materials due to 

a negative stiffness phase?”, J. Mech. Phys. Solids, vol. 50, pp. 979-1009, 2002.  

[368]  Y. C. Wang, “Extreme thermal expansion, piezoelectricity, and other coupled field 

properties in composites with a negative stiffness phase”, J. Appl. Phys., vol. 90, p. 

6458, 2001.  

[369]  Y. C. Wang and R. S. Lakes, “Extreme thermal expansion, piezoelectricity, and other 

coupled field properties in composites with a negative stiffness phase”, J. Appl. Phys., 

vol. 90, p. 6458, 2001.  

[370]  T. Jaglinski, D. Kochmann, D. Stone and R. S. Lakes, “Composite Materials with 

Viscoelastic Stiffness Greater Than Diamond”, Science, vol. 315, pp. 620-622, 2007.  

[371]  T-. C. Lim and U. R. Acharya, “Counterintuitive modulus from semi-auxetic 

laminates”, Phys. Status Solidi B, vol. 248, pp. 60-65, 2011.  

[372]  T. C. Lim, “Out-of-plane modulus of semi-auxetic laminates”, European Journal of 

Mechanics - A/Solids, vol. 28, pp. 752-756, 2009.  

[373]  W. J. Drugan, “Composite Materials Having a Negative Stiffness Phase Can Be 

Stable”, Phys. Rev. Lett., vol. 98, p. 055502, 2007.  

[374]  D. M. Kochmann and W. J. Drugan, “Dynamic stability analysis of an elastic 

composite material having negative-stiffness phase”, Journal of Mechanics and 

Physics of Solids, vol. 57, pp. 1122-1138, 2009.  

[375]  D. M. Kochmann and W. J. Drugan, “Infinitely stiff composite via a rotation-stabilized 

negative-stiffness phase”, Appl. Phys. Lett., vol. 99, p. 011909, 2011.  



 

245 

 

[376]  A. V. Dyskin and E. Pasternak, “Elastic composite with negative stiffness inclusions in 

antiplane strain International”, Journal of Engineering Science, vol. 58, pp. 45-56, 

2012.  

[377]  K. C. Jajam and H. V. Tippur, “Role of inclusion stiffness and interfacial strength on 

dynamic matrix crack growth: An experimental study”, International Journal of Solids 

and Structures, vol. 49, pp. 1127-1146, 2012.  

[378]  Y.-C. Wang and C.-C. Ko, “Stability of viscoelastic continuum with negative-stiffness 

inclusions in the low-frequency range”, Phys. Status Solidi B, vol. 250, p. 2070–2079, 

2013.  

[379]  D. Chronopoulos, I. Antoniadis and T. Ampatzidis, “Enhanced acoustic insulation 

properties of composite metamaterials having embedded negative stiffness inclusions”, 

Extreme Mechanics Letters, vol. 12, pp. 48-54, 2017.  

[380]  T. Klatt and M. R. Haberman, “A nonlinear negative stiffness metamaterial unit cell 

and small-on-large multiscale material model”, J. Appl. Phys., vol. 114, p. 033503, 

2013.  

[381]  A. Carrella, M. J. Brennan and T. P. Waters, “On the design of a high-static–low-

dynamic stiffness isolator using linear mechanical springs and magnets”, J. Sound 

Vibr., vol. 315, pp. 712-720, 2008.  

[382]  C.-M. Lee, V. N. Goverdovskiy and A. I. Temnikov, “Design of springs with 

”negative" stiffness to improve vehicle driver vibration isolation”, J. Sound Vibr., vol. 

302, pp. 865-874, 2007.  



 

246 

 

[383]  R. A. Ibrahim, “Recent advances in nonlinear passive vibration isolators”, J. Sound 

Vibr., vol. 314, pp. 371-452, 2008.  

[384]  F. Weber, C. Boston and M. Maslanka, “An adaptive tuned mass damper based on the 

emulation of positive and negative stiffness with an MR damper”, Smart Mater. 

Struct., vol. 20, 2010.  

[385]  L. Dong and R. Lakes, “Advanced damper with negative structural stiffness”, Smart 

Mater. Struct., vol. 21, 2012.  

[386]  L. Dong and R. Lakes, “Advanced damper with high stiffness and high hysteresis”, Int. 

J. Solids Struct., vol. 50, pp. 2416-2423, 2013.  

[387]  C.-M. Lee and V. N. Goverdovskiy, “A multi-stage high-speed railroad vibration 

isolation system with "negative" stiffness”, J. Sound Vibr., vol. 331, pp. 914-921, 

2012.  

[388]  M. Feldman, “Non-linear free vibration identification via the Hilbert transform”, J. 

Sound Vibr., vol. 208, pp. 475-489, 1997.  

[389]  W. S. Robertson, M. R. F. Kidner, B. S. Cazzolato and A. C. Zander, “Theoretical 

design parameters for a quasi-zero stiffness magnetic spring for vibration isolation”, J. 

Sound Vibr., vol. 326, pp. 88-103, 2009.  

[390]  R. Ravaud, G. Lemarquand and V. Lemarquand, “Force and Stiffness of Passive 

Magnetic Bearings Using Permanent Magnets. Part 2: Radial Magnetization”, IEEE 

TRANSACTIONS ON MAGNETICS, vol. 45, pp. 3334-3342, 2009.  



 

247 

 

[391]  Y. Zheng, X. Zhang, Y. Luo, Y. Zhang and S. Xie, “Analytical study of a quasi-zero 

stiffness coupling using a torsion magnetic spring with negative stiffness”, Mech. Syst. 

Signal Process., vol. 100, pp. 135-151, 2018.  

[392]  N. Zhou and K. Liu, “A tunable high-static–low-dynamic stiffness vibration isolator”, 

J. Sound Vibr., vol. 329, pp. 1254-1273, 2010.  

[393]  D. Xu, Q. Yu, J. Zhou and S. R. Bishop, “Theoretical and experimental analyses of a 

nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic”, J. Sound 

Vibr., vol. 332, pp. 3377-3389, 2013.  

[394]  Q. Li, Y. Zhu, D. Xu, J. Hu, W. Min and L. Pang, “A negative stiffness vibration 

isolator using magnetic spring combined with rubber membrane”, J. Sound Vibr., vol. 

27, pp. 813-824, 2013.  

[395]  W. Wu, X. Chen and Y. Shan, “Analysis and experiment of a vibration isolator using a 

novel magnetic spring with negative stiffness”, J. Sound Vibr., vol. 333, pp. 2958-

2970, 2014.  

[396]  X. Shi and S. Zhu, “Magnetic negative stiffness dampers”, Smart Mater. Struct., vol. 

24, p. 072002, 2015.  

[397]  X. Shi and S. Zhu, “Simulation and optimization of magnetic negative stiffness 

dampers”, Sens. Actuator A-Phys., vol. 259, pp. 14-33, 2017.  

[398]  T. D. Le and K. K. Ahn, “A vibration isolation system in low frequency excitation 

region using negative stiffness structure for vehicle seat”, J. Sound Vibration, vol. 330, 

pp. 6311-6335, 2011.  



 

248 

 

[399]  T. D. R. Pasala, A. A. Sarlis, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou and 

D. Taylor, “Adaptive negative stiffness: new structural modification approach for 

seismic protection”, J. Struct. Eng., vol. 139, pp. 1112-23, 2012.  

[400]  S. Nagarajaiah, T. D. R. Pasala, A. Reinhorn, M. Constantinou, A. A. Sirilis and D. 

Taylor, “Adaptive Negative Stiffness: A New Structural Modification Approach for 

Seismic Protection”, Advances in Civil Infrastructure Engineering, vol. 639, pp. 54-66, 

2013.  

[401]  F. Scarpa, W. A. Bullough and P. Lumley, “Trends in acoustic properties of iron 

particle seeded auxetic polyurethane foam”, Proc. Inst. Mech. Eng. C, vol. 218, pp. 

241-244, 2004.  

[402]  F. Scarpa and F. C. Smith, “Passive and MR fluid-coated auxetic PU foam-mechanical, 

acoustic, and electromagnetic properties”, J. Intell. Mater. Syst. Struct., vol. 15, pp. 

973-979, 2004.  

[403]  F. C. Smith, F. Scarpa and B. Chambers, “The electromagnetic properties of re-entrant 

dielectric honeycombs”, IEEE Microw. Guided Wave Lett, vol. 10, pp. 451-453, 2000.  

[404]  M. R. Dudek and K. W. Wojciechowski, “Magnetic films of negative Poisson's ratio in 

rotating magnetic fields”, Journal of Non-Crystalline Solids, vol. 354, pp. 4304-4308, 

2008.  

[405]  M. R. Dudek, B. Grabiec and K. W. Wojciechowski, “MOLECULAR DYNAMICS 

SIMULATIONS OF AUXETIC FERROGEL”, Rev. Adv. Mater. Sci., vol. 14, pp. 167-

173, 2007.  



 

249 

 

[406]  J. N. Grima, R. Caruana-Gauci, M. R. Dudek, K. W. Wojciechowski and R. Gatt, 

“Smart metamaterials with tunable auxetic and other properties”, Smart Mater. Struct., 

vol. 22, p. 084016, 2013.  

[407]  K. Singh, C. R. Tipton, E. Han and T. Mullin, “Magneto-elastic buckling of an Euler 

beam”, Proc. Royal Soc. A, vol. 469, p. 20130111, 2013.  

[408]  M. Schaeffer and M. Ruzzene, “Wave propagation in reconfigurable magneto-elastic 

kagome lattice structures”, J. Appl. Phys, vol. 117, p. 194903, 2015.  

[409]  C. R. Tipton, E. Han and T. Mullin, “Magneto-elastic buckling of a soft cellular solid”, 

Soft Matter, vol. 8, pp. 6880-6883, 2012.  

[410]  R. L. Harne, Z. Deng and M. J. Dapino, “Characterization of adaptive magnetoelastic 

metamaterials under applied magnetic fields”, in Proceedings of the ASME 2016 

Conference on Smart Materials, Adaptive Structures and Intelligent Systems 

SMASIS2016, 2016.  

[411]  M. Schaeffer and M. Ruzzene, “Wave propagation in multistable magneto-elastic 

lattices”, Int. J. Solid. Struct., Vols. 56-57, pp. 78-95, 2015.  

[412]  M. Schaeffer and M. Ruzzene, “Homogenization of 1D and 2D magnetoelastic 

lattices”, EPJ Applied Metamaterials, vol. 2, p. 13, 2015.  

[413]  M. Feldman, “Non-linear free vibration identification via the Hilbert transform”, J. 

Sound Vibr., vol. 208, pp. 475-489, 1997.  



 

250 

 

[414]  A. Carrella, M. J. Brennan and T. P. Waters, “Demonstrator to show the effects of 

negative stiffness on the natural frequency of a simple oscillator”, Proc. Inst. Mech. 

Eng. C, vol. 222, pp. 1189-1192, 2008.  

[415]  A. M. Bloch and J. E. Marsden, “Stabilization of rigid body dynamics by the Energy-

Casimir method”, Syst. Control Lett., vol. 14, pp. 341-346, 1990.  

[416]  Z. Ismail and R. Varatharajoo, “A study of reaction wheel configurations for a 3-axis 

satellite attitude control”, Adv. Space Res., vol. 45, pp. 750-759, 2010.  

[417]  K. K. Dudek, R. Gatt, L. Mizzi, M. R. Dudek, D. Attard and J. N. Grima, “Global 

rotation of mechanical metamaterials induced by their internal deformation”, AIP Adv., 

vol. 7, p. 095121, 2017.  

[418]  R. L. Burden and J. D. Faires, Numerical Analysis, PWS Publishers, 1985, p. 220. 

[419]  M. Sanami, N. Ravirala, K. Alderson and A. Alderson, “Auxetic Materials for Sports 

Applications”, Procedia Engineering, vol. 72, pp. 453-458, 2014.  

[420]  J. N. Grima and R. Gatt, “Perforated Sheets Exhibiting Negative Poisson’s Ratios”, 

Adv. Eng. Mater., vol. 12, pp. 460-464, 2010.  

[421]  D. Attard, E. Manicaro, R. Gatt and J. N. Grima, “On the properties of auxetic rotating 

stretching squares”, Phys. Status Solidi B, vol. 246, pp. 2045-2054, 2009.  

[422]  N. H. Scott, “The incremental bulk modulus, young’s modulus and Poisson’s ratio in 

nonlinear isotropic elasticity: physically”, Math. Mech. Solids, vol. 12, pp. 526-542, 

2007.  



 

251 

 

[423]  C. W. Smith, R. J. Wootton and K. E. Evans, “Interpretation of experimental data for 

Poisson’s ratio of highly nonlinear materials”, Exp. Mech., vol. 39, pp. 356-362, 1999.  

[424]  K. K. Dudek, R. Gatt, L. Mizzi, M. R. Dudek, D. Attard, K. E. Evans and J. N. Grima, 

“On the dynamics and control of mechanical properties of hierarchical rotating rigid 

unit auxetics”, Sci. Rep., vol. 7, p. 46529, 2017.  

[425]  A. Alderson et al., “An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size 

Selectivity or Defouling Properties”, Ind. Eng. Chem. Res., vol. 39, pp. 654-665, 2000.  

[426]  G. W. Milton, “Complete characterization of the macroscopic deformations of periodic 

unimode metamaterials of rigid bars and pivots”, J. Mech. Phys. Solids, vol. 61, pp. 

1543-60, 2013.  

[427]  G. W. Milton and A. V. Cherkaev, “Which elasticity tensors are realizable?”, J. Eng. 

Mater. Technol., vol. 117, pp. 483-93, 1995.  

[428]  G. W. Milton, “New examples of three-dimensional dilational materials”, Phys. Status 

Solidi B, vol. 252, pp. 1426-30, 2015.  

[429]  R. G. Hutchinson and N. A. Fleck, “The structural performance of the periodic truss”, 

J. Mech. Phys. Solids, vol. 54, pp. 756-82, 2006.  

[430]  V. Kapko, M. M. J. Treacy, M. F. Thorpe and S. D. Guest, “On the collapse of locally 

isostatic networks”, Proc. R. Soc. A, vol. 465, p. 3517–30, 2009.  

[431]  L. Cabras and M. Brun, “Auxetic two-dimensional lattice with Poisson’s ratio 

arbitrarily close to -1”, Proc. R. Soc. A, vol. 470, p. 20140538, 2014.  



 

252 

 

[432]  K. K. Dudek, D. Attard, R. Caruana-Gauci, K. W. Wojciechowski and J. N. Grima, 

“Unimode metamaterials exhibiting negative linear compressibility and negative 

thermal expansion”, Smart Mater. Struct., vol. 25, p. 025009, 2016.  

[433]  R. H. Baughman, S. Stafstrom, C. Cui and S. O. Dantas, “Materials with negative 

compressibilities in one or more dimensions”, Science, vol. 279, pp. 1522-4, 1998.  

[434]  P. R. L. Welche, V. Heine and M. T. Dove, “Negative thermal expansion in beta-

quartz”, Phys. Chem. Miner., vol. 26, pp. 63-77, 1998.  

[435]  F. S. Tautz, V. Heine, M. T. Dove and X. Chen, “Rigid unit modes in the molecular 

dynamics simulation of quartz and the incommensurate phase transition”, Phys. Chem. 

Miner., vol. 18, pp. 326-336, 1991.  

[436]  A. K. A. Pryde, K. D. Hammonds, M. T. Dove, V. Heine, J. D. Gale and M. C. 

Warren, “Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7”, J. Phys.: 

Condens. Matter, vol. 8, pp. 10973-82, 1996.  

[437]  W. Miller, C. W. Smith, D. S. Mackenzie and K. E. Evans, “Negative thermal 

expansion: a review”, J. Mater. Sci., vol. 44, pp. 5441-51, 2009.  

[438]  J. N. Grima, M. Bajada, S. Scerri, D. Attard, K. K. Dudek and R. Gatt, “Maximizing 

negative thermal expansion via rigid unit modes: a geometry-based approach”, Proc. 

R. Soc. A, vol. 471, p. 20150188, 2015.  

[439]  J. N. Grima, D. Attard, R. Caruana-Gauci and R. Gatt, “Negative linear compressibility 

of hexagonal honeycombs and related systems”, Scr. Mater, vol. 65, pp. 565-8, 2011.  



 

253 

 

[440]  A. Versluis, W. H. Douglas and R. L. Sakaguchi, “Thermal expansion coefficient of 

dental composites measured with strain gauges”, Dent. Mater., vol. 12, pp. 290-4, 

1996.  

[441]  O. Sigmund and S. Torquato, “Design of materials with extreme thermal expansion 

using a three-phase topology optimization method”, J. Mech. Phys. Solids, vol. 45, pp. 

1037-67, 1997.  

[442]  F. Scarpa, G. Tagliafico and L. A. Tagliafico, “Classification proposal for room 

temperature”, Int. J. Refrig., vol. 35, pp. 453-458, 2011.  

[443]  M. Kadic, R. Schittny, T. Bückmann, C. Kern and M. Wegener, “Hall-Effect Sign 

Inversion in a Realizable 3D Metamaterial”, Phys. Rev. X, vol. 5, p. 021030, 2015.  

[444]  D. Restrepo, N. D. Mankame and P. D. Zavattieri, “Phase transforming cellular 

materials”, Extreme Mechanics Letters, vol. 4, pp. 52-60, 2015.  

[445]  U. D. Larsen, O. Signund and S. Bouwsta, “Design and fabrication of compliant 

micromechanisms and structures with negative Poisson's ratio”, J. Microelectromech. 

Syst., vol. 6, pp. 99-106, 1997.  

[446]  J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge: Cambridge University 

Press, 2010.  

[447]  V. Z. C. Paes and D. H. Mosca, “Magnetostrictive contribution to Poisson ratio of 

galfenol”, J. Appl. Phys., vol. 22, p. 084016, 2013.  

[448]  D. H. Mosca, F. Vidal and V. H. Etgens, “Strain engineering of the magnetocaloric 

effect in MnAs epilayers”, Phys. Rev. Lett., vol. 101, p. 125503, 2008.  



 

254 

 

[449]  E. Warburg, “Über einige Wirkungen der Coërcitivkraft”, Ann. Phys., vol. 13, p. 141, 

1881.  

[450]  A. de Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect”, 

Phys. Rep., vol. 489, pp. 89-159, 2010.  

[451]  A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications, 

Bristol: IOP Publishing, 2003.  

[452]  V. K. Pecharsky and K. A. Gschneidner, “Giant magnetocaloric effect in 

Gd5(Si2Ge2)”, Phys. Rev. Lett., vol. 78, pp. 4494-7, 1997.  

[453]  O. Petracic, X. Chen, S. Bedanta, W. Kleemann, S. Sahoo, S. Cardoso and P. P. 

Freitas, “Collective states of interacting ferromagnetic nanoparticles”, J. Magn. Magn. 

Mater., vol. 300, pp. 192-7, 2006.  

[454]  V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, D. Mogilyansky, P. Iwanowski, P. 

Dluzewski and G. Gorodetsky, “Nanometer size effect on magnetic properties of 

Sm0.8Ca0.2MnO3 Nanoparticles”, J. Phys. Chem. C, vol. 116, pp. 435-47, 2012.  

[455]  D. Parker, I. Lisiecki and M. P. Pileni, “Do 8 nm Co nanocrystals in long-range-

ordered face-centered cubic (fcc) supracrystals show superspin glass behavior?”, J. 

Phys. Chem. Lett., vol. 1, pp. 1139-42, 2010.  

[456]  E. Skoropata, R. D. Desautels, B. W. Southern and J. van Lierop, “Comment on 

colossal reduction in Curie temperature due to finite-size effects in CoFe2O4 

nanoparticles”, Chem. Mater., vol. 25, pp. 1998-2000, 2013.  



 

255 

 

[457]  L. Onsager, “Crystal statistics: I. A two-dimensional model with an order-disorder 

transition”, Phys. Rev., vol. 65, p. 117–49, 1944.  

[458]  K. Huang, Statistical Mechanics, New York: Wiley, 1987.  

[459]  R. J. Baxter, Exactly Solved Models in Statistical Mechanics, New York: Academic, 

1982.  

[460]  H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford: 

Oxford University Press, 1971.  

[461]  C. P. Bean and D. S. Rodbell, “Magnetic disorder as a first-order phase 

transformation”, Phys. Rev., vol. 126, pp. 104-15, 1962.  

[462]  V. I. Mitsiuk, N. Y. Pankratov, G. A. Govor, S. A. Nikitin and A. I. Smarzhevskaya, 

“Magnetostructural phase transitions in manganese arsenide single crystals”, Phys. 

Solid State, vol. 54, pp. 1988-95, 2012.  

[463]  D. J. Huang, C. F. Chang, H.-. T. Jeng, G. Y. Guo, H.-. J. Lin, W. B. Wu, H. C. Ku, A. 

Fujimori, Y. Takahashi and C. T. Chen, “Spin and orbital magnetic moments of 

Fe3O4”, Phys. Rev. Lett., vol. 93, p. 077204, 2004.  

[464]  E. Ising, Z. Physik, vol. 31, p. 253, 1925.  

[465]  L. Onsager, Z. Physik, vol. 31, p. 253, 1925.  

[466]  R. J. Baxter, Exactly Solved Models in Statistical Mechanics, New York: Academic, 

1982.  



 

256 

 

[467]  D. Stauffer, “Social applications of two-dimensional Ising models”, Am. J. Phys., vol. 

76, pp. 470-473, 2008.  

[468]  J. J. Hopfield, “Neural networks and physical systems with emergent collective 

computational abilities”, Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2254-2558, 1982.  

[469]  S. Bornholdt and F. Wagner, “Stability of money: phase transitions in an Ising 

economy”, Physica A, vol. 316, pp. 453-468, 2002.  

[470]  S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase boundary motion and 

its application to antiphase domain coarsening”, Acta Metall., vol. 27, pp. 1085-1095, 

1979.  

[471]  K. Humayun and A. J. Bray, “Non-equilibrium dynamics of the Ising model for T less-

than/equal-toTc”, J. Phys. A: Math. Gen., vol. 24, p. 1915, 1991.  

[472]  I. M. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated 

solid solutions”, J. Phys. Chem. Solids, vol. 19, pp. 35-50, 1961.  

[473]  J. G. Amar, F. E. Sullivan and R. D. Mountain, “Monte Carlo study of growth in the 

two-dimensional spin-exchange kinetic Ising model”, Phys. Rev. B , vol. 37, pp. 196-

208, 37.  

[474]  A. J. Bray, “Theory of phase-ordering kinetics”, Adv. Phys., vol. 43, p. 357, 1994.  

[475]  A. D. Rutenberg and A. J. Bray, “Energy-scaling approach to phase-ordering growth 

laws”, Phys. Rev. E, vol. 51, p. 5499, 1995.  

[476]  G. A. Baker Jr. and J. W. Essam, “Effects of lattice compressibility on critical 

behavior”, Phys. Rev. Lett., vol. 24, pp. 447-449, 1970.  



 

257 

 

[477]  B. B. Machta, R. Chachra, M. K. Transtrum and J. P. Sethna, “Parameter space 

compression underlies emergent theories and predictive models”, Science, vol. 342, pp. 

604-607, 2013.  

[478]  E. N. M. Cirillo, G. Gonnella and G. P. Saracco, “Monte Carlo results for the Ising 

model with shear”, Phys. Rev. E, vol. 72, p. 026139, 2005.  

[479]  N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, “Equation of 

state calculations by fast computing machines”, J. Chem. Phys., vol. 21, pp. 1087-

1092, 1953.  

[480]  K. Binder and A. P. Young, “Spin glasses: Experimental facts, theoretical concepts, 

and open questions”, Rev. Mod. Phys., vol. 58, pp. 801-976, 1986.  

[481]  D. J. Huang, C. F. Chang, H.-. T. Jeng, G. Y. Guo, H.-. J. Lin, W. B. Wu, H. C. Ku, A. 

Fujimori, Y. Takahashi and C. T. Chen, “Spin and Orbital Magnetic Moments of 

Fe3O4”, Phys. Rev. Lett., vol. 93, p. 077204, 2004.  

[482] T. L. Gilbert, "A phenomenological theory of damping in ferromagnetic materials", 

IEEE Transactions of Magnetics, vol. 40, pp. 3443-3449, 2004 

[483] D. Kirsanov, "The book of Inkscape", publisher: William Pollock, 2009 

 

 

 

  



 

258 

 

Appendix I: Additional information related to the self-induced 

global rotation of the rotating square system 

 

A) Derivation of the analytical formula allowing to determine moment of 

inertia of the system of rotating squares rotating with respect to its 

centre of mass 

In this work, the general expression for moment of inertia of the discussed system 

rotating with respect to its centre of mass was defined as follows:  
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A1-1 

The above expression was derived by means of the induction procedure during which 

process certain number of initial values of SN  was taken under consideration. In order to further 

explain the way how equation A1-1 was derived, the expression for 1I  is going to be calculated 

for a few values of SN  (see Fig. A1-1). 

 

Figure A1-1 The system corresponding to 1SN  , 3 and 5. The black point at the centre of the 

square is associated with the axis of rotation of the whole system. 
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Expression for I1 calculated for the system corresponding to Ns=1 

According to the assumption stated in the main text, the square corresponding to the centre 

of mass of the whole system is always associated with 
HM . This means that the system 

corresponding to NS=1 consists of only one square. Moreover, in this particular case, the axis 

of rotation of the whole system corresponds to the centre of the square (see Figure A1-1). In 

view of this, the moment of inertia I1 can be written down as follows: 

2

1

1
 .

6
HI M a  

A1-2 

At this point one may realise that upon substituting the variable SN  with 1 in equation A1-

1 it is possible to obtain equation A1-2. 

 

Expression for I1 calculated for the system corresponding to Ns=3 

  

Based on Figure A1-2, one can note that in the case of the system corresponding to 3SN 

, the moment of inertia associated with the centre square is the same as it was the case for the 

system in which 1SN  . This means that in order to find the expression for 1I  it is sufficient to 

establish the contribution to its final value based on 8 remaining squares (highlighted part in 

Figure A1-2). This can be done by means of the parallel axes theorem in the following manner: 
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A1-3 

This means that in the case of this system, the final expression for 1I  can be expressed in 

the following manner: 
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At this point one may note that upon substituting the 
SN  variable in equation A1-1, the 

obtained expression is identical to equation A1-4. 

 

Figure A1-2 The system corresponding to 3SN  . The highlighted part corresponds to the units 

which have not yet been considered in terms of their contribution to the final value of 1I . 

 

Expression for I1 calculated for the system corresponding to Ns=5 

 

Analogically to the system corresponding to 3SN  , in order to determine the expression 

for 1I  it is sufficient to calculate the moment of inertia associated with squares which were not 

present in the system corresponding to lower values of SN . Such expression would assume the 

following form: 

   

 

222 2

1, 5 contr

2
2

1 1
4 2 4 2 2

6 6

1
                  +8 5  .

6

sN H H H H

L L

I M a M d M a M d

M a M d



   
       

   

 
 

 

 
A1-5 

In view of this, the expression for 1I  can be expressed as shown in equation A1-6. 
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 2 2 2 2
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44 56
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A1-6 

After substituting the 
SN  variable with 5 in equation A1-6, it is easy to show that the 

obtained expression is identical to the one presented above. 

 

Figure A1-3 The system corresponding to 3SN  . The highlighted part corresponds to the units 

which have not yet been considered in terms of their contribution to the final value of 1I . 

 

Verification of the expression for I1 for an arbitrary value of Ns 

 

In order to show that the expression shown in equation A1-1 applies to an arbitrary value 

of SN , the computer script was written in order to calculate the value of 1I  accordingly to the 

above procedure. The comparison of the results obtained by means of the script and analytical 

expression may be found in Figure A1-4. This graph was generated for an arbitrary set of 

parameters set to be: a = 5.16 m, LM =1.2 kg, HM = 3.4 kg and d = 4.17 m. 
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Figure A1-4 The system corresponding to 3SN  . The highlighted part corresponds to the units 

which have not yet been considered in terms of their contribution to the final value of 1I . 

 

Based on Figure A1-4, one may note that there is a perfect agreement between the values 

of 1I  generated by means of the analytical expression provided in the main text and the script. 

 

B) Angular momentum associated with rigid units constituting the 

system  

 

Before discussing a particular form of the angular momentum associated with rigid units 

constituting discussed systems, it is worth to write down a general expression for the angular 

momentum of the rigid body  L moving with respect to an arbitrary point O. This can be done 

by means of the following formula: 

L I mr     
A1-7 

where, I and  stand for the moment of inertia and the angular velocity associated with the 

rotation of the rigid body with respect to its own centre of mass. The remaining quantities on 

the right hand side of the above equation represent the following: m is the mass, r  stands for 
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the distance between point O and the centre of mass of the considered body and   represents 

the linear velocity measured with respect to the point O. Based on the above equation, one can 

easily note that the first term on the right hand side corresponds to the rotation of the body with 

respect to its own centre while the second term is associated with the translational motion. It 

should be highlighted that depending on the type of the exhibited motion, either first, second, 

both or none of these terms may assume the value of zero. At this point, one may also note that 

rigid unit systems considered in this thesis are a collection of rigid bodies where the angular 

momentum can be calculated separately for each of the units by means of the expression 

analogical to equation A1-7. 

As discussed in this thesis, all of the considered systems are highly symmetric and due to 

their geometry the resultant angular momentum (calculated with respect to the centre of mass 

of the entire structure) associated with all of the units constituting the system does not depend 

on the linear velocity of respective units. This means that, upon denoting the respective 

quantities corresponding to one of the units within the system by means of the index i, the 

angular momentum L  corresponding to the whole system may be rewritten from: 

 

 
 2 21 / 2 1 / 2

0 , 0 ,

1 1

S SN N

H H H i i L L L j j

i j

L I m r I m r   

 

 

   
         
   
   

   
A1-8 

to the following form: 

 

 
 2 21 / 2 1 / 2

0 0

1 1

S SN N

H L

i j

L I I 

 

 

   
     
   
   

   
A1-9 

where, ,H ir  and ,L jr correspond to the distance of centres of the respective heavy and light units 

from the centre of mass of the entire structure. Analogically, i and j stand for linear velocities 

associated with these units. One should note that the negative sign in front of 0 in the second 
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term of the above equation stems from the fact that one group of rigid units rotates in the 

clockwise direction while all of the remaining units rotate in the anticlockwise direction. 
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Appendix II: Solving differential equations by means of the fourth-

order Runge-Kutta algorithm 

 

In this thesis, there are a few chapters where it is necessary to solve a differential equation 

in order to describe the motion of the investigated system. In the literature, there are numerous 

algorithms which depending on the particular problem allow to estimate the exact solution of a 

differential equation with a varying accuracy. In the case of this thesis, a particular algorithm, 

i.e. the fourth-order Runge-Kutta method was selected in order to solve all of the differential 

equations (which could not be solved exactly) as it is normally considered as a stable method 

providing reliable results for a variety of different physical problems. However, it should be 

noted that due to a relative simplicity of considered problems and small time steps t , one 

could consider the use of lower order techniques which would also allow to correctly estimate 

the behaviour of investigated systems. 

Before applying the Runge-Kutta method to a particular physical problem it is necessary 

to express equations of motion corresponding to a given system in terms of the velocity   and 

acceleration a. It is also necessary to define initial parameters describing the system, i.e. 

  0 0 0x x x t   and   0 0 0t    , where x stands for the position of the system at a time 

t. In general, upon providing such information, the set of equations of motion corresponding to 

an arbitrary physical system could be solved by means of the fourth-order Runge-Kutta method 

in the following manner: 
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 1 1

1 1 1
2 1/ 2 2

2 2 2
3 1/ 2 3

4 3 3
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A2-1 

where, nt , nx  and n  stand for time, position and velocity of a system at the n-th time step 

respectively. 

Some examples of systems which in the case of this thesis were investigated from the point 

of view of their dynamic behaviour could be the rotating squares system and rotating rectangle 

systems. In both of those cases, the potential to induce a global rotational motion as a result of 

the rotation of their subunits was investigated which effect originates from the principle of the 

conservation of angular momentum. This means that in the case of the system which was 

initially at rest, one should expect that the net angular momentum would be always equal to 

zero irrespective of the stage of deformation. In order for that to happen, the resultant angular 

momentum associated with the motion of respective units would have to be equal to the angular 

momentum associated with the global rotation in terms of magnitude and have an opposite 

orientation. As the matter of fact, in order to verify whether the differential equations of motion 

describing the behaviour of the system are solved correctly, one could check whether the 

aforementioned conservation law is satisfied throughout the simulation. An example of such 

validation procedure is presented below for a particular example of the Type I rotating 

rectangles system with all of the parameters being the same as in the case of Chapter 6.  

Based on equation A2-1, one may note that before applying the fourth-order Runge-Kutta 

method to a particular system, it is necessary to rewrite Newton’s equations of motion in a 
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manner allowing to express them in terms of the acceleration and velocity. In the particular case 

of the Type I rotating rectangles system inducing its own global rotational motion, in order to 

describe the global rotation of the system, these quantities may be expressed as follows: 

1
2 0

1 1
1 1 2

1

         .

dI

d d dt

dt dt I


 

 

 
 

    
 
 

 
A2-2 

It should be noted that all of the quantities used in the above equation were already defined 

in Chapter 4 and Chapter 6 of the thesis. It is also important to remember that in the case of this 

particular study, equations describing the movement of individual units constituting the system 

were solved exactly, hence only equations corresponding to the global rotation had to be solved 

numerically. 

Based on Figure A2-1, one can clearly note that the angular momenta corresponding to the 

individual units composing the system and the entire system almost exactly cancel each other 

out which results in the system having the same net angular momentum at all times. This result 

confirms that the principle of the conservation of angular momentum is satisfied and proves the 

suitability of the considered numerical method to describe the motion of systems discussed in 

this thesis.     

 

Figure A2-1 Panels show the variation in the magnitude of angular momenta associated with 

the rotation of individual units constituting the system and the global rotation of the system.        
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Appendix III: Additional results corresponding to the 

deformation of the hierarchical mechanical metamaterial system 

composed of rigid squares 

 

A) Expressions for Lx and Ly 

 

The geometry of a two-level hierarchical rotating square system may be described by the 

aperture between the Level 0 squares  02 , the aperture between the Level 1 square-like units 

 12  and the number of Level 0 repeat units  0N . This means that the Level 1 building block 

is made up of 0 0N N  Level 0 repeat units which corresponds to 0 02 2N N  squares. These 

parameters may be used to define the linear dimensions of the Level 1 square-like units, 1u  and 

1 , as follows:      1 0 0 0 02 cos 2 1 sinu N l N l     and     1 0 0 02 cos sinN l    , where 

l stands for the length of the sides of the Level 0 squares. These dimensions can in turn be used 

to define the overall on-axis dimensions of the system: 

    1 1 1 12 cos sinxL u      
A3-1 

 

    1 1 1 12 cos sinyL u     
A3-2 
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B) Calculation of the moment of inertia corresponding to Level 0 and 

Level 1 of the system  

 

The moment of inertia 
0I associated with Level 0 of the structure can be considered as the 

sum of moments of inertia of all of the Level 0 squares rotating with respect to their centres. 

Assuming that the rotating rigid units are made of a material having a surface density  , the 

moment of inertia of a single square can be expressed as 
41

6
sqI l . In such a case, 

0I can be 

calculated by means of the following expression: 
2

0 016 sqI N I . 

The moment of inertia 1I , can be defined as four times the moment of inertia corresponding 

to the Level 1 building block  1,BBI rotating with respect to its centre of mass (there are 4 Level 

1 building blocks). The moment of inertia 1,BBI  depends on the contribution from each of the 

Level 0 squares, constituting the Level 1 building block and the distance from the centre of 

mass of the Level 1 building block to the centre of the particular square within the considered 

Level 1 unit md . Thus, 1I  can be expressed as follows: 

24
2 2

1 1,4 4  .
N

BB sq m

m

I I I l d
 

   
 
  

A3-3 
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C) Dependence of values of angles defining the considered system on 

strain 

 

 

Figure A3-1 Behaviour of the system plotted with respect to strain  x . Panels (a)-(c) correspond to 

the results where the resistance to the rotational motion of hinges was governed by the harmonic 

potential while panels (d)-(f) correspond to friction-based hinges. All of these results were generated for 

the analogical parameters as it was the case in Chapter 7. 
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D) The effect of the variation in the magnitude of the applied force in 

time on the behaviour of the system 

 

The effect of a non-constant force on the deformation of the considered hierarchical system 

was also investigated. This was done by changing the magnitude of the force F  as shown in 

Figure A3-2(a-e) and Figure A3-3 (a-e). These results indicate that although there are similar 

trends to the results obtained for the system subjected to the constant force  500 NF  , in 

this case, Level 0 opens to a greater extent for the same coefficients corresponding to the 

resistance to the rotational motion (See Figure A3-2). This stems from the fact that in this case, 

the initial force is very large and thus, the ratio of the torque generated by the applied force and 

the resistance torque is significantly greater than was the case for a constant force. This also 

indicates that in the case of the considered hierarchical system, one may apply a force to its 

vertices which changes in magnitude in time in order to gain an additional way of controlling 

the behaviour of the system. 
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Figure A3-2 Deformation of the system (expressed in terms of the change in strain) subjected 

to the force F having its magnitude gradually changed from 2000N to 500N (which value was 

considered in Chapter 7). Panels (a)-(d) correspond to the system with hinges having their 

rotational motion governed by the harmonic potential while panels (e)-(h) correspond to 

friction-based hinges. 
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Figure A3-3 Deformation of the system (expressed in terms of the change in time) subjected to 

the force F having its magnitude gradually changed from 2000N to 500N (which value was 

considered in Chapter 7). Panels (a)-(d) correspond to the system with hinges having their 

rotational motion governed by the harmonic potential while panels (e)-(h) correspond to 

friction-based hinges. 
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E) Dependence of strain on time for all of the considered types of hinges 

 

Figure A3-4 Dependence of the value of the strain on time for the considered types of hinges. 

Results shown in panel (a) correspond to hinges in which the resistance to the rotational motion 

is governed by friction whereas the results shown in panel (b) are associated with the harmonic 

potential. 

 

 

F) Different loading directions 

 

In Chapter 7, only loading in the x-direction (see Figure A3-5(a)) was discussed. This stems 

from the fact that for this type of connectivity, upon subjecting the structure to the uniaxial 

tensile load, both levels can open simultaneously. On the other hand, for loading in the y-

direction, Level 0 squares tend to close when subjected to the same tensile load, while at the 

same time, Level 1 building blocks rotate in a way promoting the expansion of the structure in 

the loading direction. This effect can be explained based on the orientation of vectors ir and .F  

Based on Figure A3-5(a), one can note that in the case of the vast majority of permissible 

values of 0  and 1 , the torque corresponding to Level 1 building block and Level 0 squares to 

which the force is applied, has the same orientation. Based on the right hand rule, it is easy to 
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note that in both cases a clockwise rotation will occur. This in turn leads to the opening of both 

levels upon the application of the tensile load. In the case of connectivity II (see Figure A3-

5(b)), in the majority of cases, the right hand rule implies that Level 0 and Level 1 building 

blocks will close and open respectively. 

 

Figure A3-5 The system considered in this study for loading (a) in the x-direction and (b) in the 

y-direction. 

 

In Figure A3-6, one may also note results associated with the considered system subjected 

to the loading in the y direction.  

 

Figure A3-6 Plots show a variation in (a) 0 , (b) 1  and (c) Poisson's ratio xy  as a function of 

time measured in the loading direction for systems corresponding to type II connectivity with f 

values ranging between 0.5 Nm and 2.5 Nm. Graphs shown here were generated for initial 

angles 02 and 12  set to be equal to 10and 20  respectively. 
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Appendix IV: Details corresponding to the analysis of mechanical 

properties of unimode mechanical metamaterials composed of 

generic rigid triangles 

 

A) Analytical transformation of the expression representing the unit-cell 

of the system required to determine the thermal expansion coefficient 

 

The area of the unit-cell of the structure analysed in Chapter 8 from the point of view of its 

propensity to exhibit negative thermal expansion was expressed as follows: 

  1 2 cos sin cos sin  .
2 2 2 2

A X X b a b
   

   
        

              
        

 
 

A4-1 

 

In this chapter, it was also mentioned that based on the assumption that vibrations of 

adjacent rigid units constituting the system are symmetric with respect to the equilibrium 

configuration associated with the angle 0
2


   (which implies that    0 0A A      

), it is possible to rewrite equation A4-1 in the form of equation A4-2, however the steps 

required to obtain the aforementioned expression were not provided.   

sin sin sin 2
2 2 2 2 2 2

a a b
A b

  
     

      
                

      
 

 

A4-2 

Upon substituting    0 0A A        and 0
2


  into equation A4-1, it is possible 

to rewrite it as follows: 
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  0 0
0

2 0 0

cos sin
2 2

                      cos sin
2 2

A ba

b

   
  

   
 

      
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   

      
     
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A4-3 

As shown in equation A4-4, the above expression can be divided into two parts denoted as 

term1 and term2 in order to consider them separately.  

 term1 term2
2

A b



 

    
 

 
A4-4 

Expression denoted by term1 may be subsequently rearranged by means of the following 

trigonometric identity  sin sin cos cos sinx y x y x y   : 

1 1 1
term1 cos sin cos cos sin

2 2 2 2 2 2
a

  
    

           
                

           
 

A4-5 

 

2 1 1 1
term1 sin cos cos cos sin  .

2 2 2 2 2 2
a a

  
    

          
                 

          
 

A4-6 

Equation A4-6 can be further subdivided into terms term1a and term1b which leads to the 

following: 

term1 term1a term1b .   
A4-7 

At this point one can use the following identity: 2 1 cos
cos

2 2

x x
 to rewrite term1a into 

the following expression: 

1 cos
2

term1a sin  .
2

a






  
    

  
 
 
 

 A4-8 

It is also possible to rewrite term1b by means of the following identity 

 
1

sin 2 sin cos
2

x x x  in order to express it as follows: 
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term1b cos sin  .
2 2

a 
 

 
   

 
 

A4-9 

In view of this, term1 can be written down in terms of new expressions associated with 

term1a and term1b in the following manner: 

1 1
term1 sin sin cos cos sin  .

2 2 2 2
a a

 
    

    
          

    
 

A4-10 

As the result of the above transformations, and while remembering that 

term2 sin 2
2 2

b 
 

 
    

 
, it is possible to obtain the desired form of the expression 

(equation A4-2) representing the area of the investigated unit-cell. 

 

B) Transformations of systems composed of different types of triangles 

which were analysed in order to investigate their mechanical 

properties 

As discussed in Chapter 8, three different types of triangles (i.e. equilateral, isosceles and 

scalene triangles) were selected in order to analyse mechanical properties of systems composed 

of such units. It was also discussed that in order for these systems to undergo a transformation 

at the whole range of  between 0and 360 such systems would have to undergo six transitions 

in their connectivity. In order to better visualise this concept, a diagram was prepared were the 

deformation of the systems considered in this work is presented.  
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Figure A4-1 Transformation of different systems at the range of   between 0  and 360 . Each row corresponds to a different form of a given 

structure. Panels show examples of systems composed of: (a) equilateral, (b) isosceles and (c) scalene triangles.
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C) Derivation of the relationship between the value of the Poisson’s ratio 

and linear compressibility in a given direction  

As discussed in Chapter 8, upon analysing the results generated for the considered systems, 

it was observed that whenever the value of the Poisson’s ratio in a specific direction was 

exceeding the value of 1, then the system was also exhibiting negative linear compressibility in 

the same direction. This interesting observation can be confirmed analytically as shown below.  

As written in Chapter 8, some of the general expressions describing mechanical properties of 

the discussed class of mechanical metamaterials can be defined as follows: 

 
22

2 12
12 L 2

21 1 1 2 2 1

1 1
                 .h i

i

K X dX
E Ox

X X z d E E

 
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  



 
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 
 

A4-11 

Based on these expressions one can show that in order for a linear compressibility in a 

given direction to assume negative values (for example in the 
2Ox direction), the condition 

which can be obtained as the result of the following operations must be satisfied: 

 
2 2

12 12 2 2 1
2 12 122 2

2 1 2 1 1 2 1

1 1
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Appendix V: Convergence test used in order to determine the size 

of the neighbourhood of the magnet in the considered magneto-

mechanical system which is required to estimate its potential 

energy 

As discussed in Chapter 9, in order to calculate the magnetic potential energy of a single 

magnet in the very large or infinite system, it is sufficient to consider the contribution made 

only by those of the magnets which are relatively close to the considered magnet for which the 

energy is being calculated. This stems from the fact that the magnitude of magnetic interactions 

between any two magnets decreases proportionally to their separation distance raised to the 

power of -3. In order to establish the size of such neighbourhood, one may conduct an 

appropriate convergence test as shown below. 

Before conducting the convergence test, it is first necessary to define a particular 

nomenclature allowing to refer to a specific region within the system which consists of a certain 

number of magnets. One such approach is shown in Fig A5-1, where the auxiliary reference 

magnet for which the magnetic potential energy is being calculated is surrounded by a red 

dashed line. The highlighted background corresponds to the smallest possible neighbourhood 

considered in this chapter where magnets form a rectangle-like region composed of 3 3

magnets. In view of this, this type of neighbourhood will be referred to as 3MN  . Should one 

consider extending this neighbourhood both in the horizontal and in the vertical direction by 

one “row of magnets”, then the considered region would consist of 5 5 magnets and hence it 

would be referred to as 5MN  . 
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Figure A5-1 A fragment of the large / infinite system where the reference magnet for which the 

magnetic potential energy is calculated is encircled by means of the red dashed line. According 

to the proposed nomenclature, the highlighted background indicates the neighbourhood of the 

size 3 3M MN N   .  

 

In order to verify the sufficient size of the neighbourhood to calculate the energy of a given 

magnet, the energy MAGU was calculated for different values of MN . Based on Figure A5-2, 

one may clearly note that the neighbourhood composed of 7 7  magnets already gives a good 

estimation of the real value of the energy. However, in order to make the results even more 

reliable, in the case of all of results presented in Chapter 9, MN was set to be equal to 15.   

 

Figure A5-2 The results of the convergence test showing the magnetic potential energy of the 

system throughout the deformation process for the neighbourhood if a single magnet 

corresponding to different values of MN .   
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Appendix VI: Details corresponding to the calculation of the 

extent of the magnetocaloric effect for the considered magneto-

mechanical system 

 

A) Change in entropy in the magneto-mechanical auxetic system 
 

The extent of the magnetocaloric effect in the isothermal process corresponds to the change 

in the reduced magnetic entropy of the system ( Ms ). In order to calculate this quantity in the 

case of the system undergoing the transition from the configuration associated with a particular 

value of i  to the conformation corresponding to f , it is first necessary to determine the 

reduced magnetic entropy Ms  of these systems  at certain temperature T. In order to do that, one 

must calculate reduced internal energy u and reduced Helmholtz free energy f associated with 

these configurations.  

In Chapter 10, Ising spins defined on the matrix related to the particular mechanical 

metamaterial were defined on the square lattice at all times. The only geometric parameter 

which was changing as the system was undergoing the transition from configuration 

corresponding to one value of   to another was the distance between Ising spins. In view of 

this, the reduced entropy s  for the magneto-mechanical system discussed in Chapter 10, can be 

determined by means of the famous Onsager solution corresponding to the square lattice. 

According to this solution, both the reduced Helmholtz free energy and reduced internal energy 

can be expressed by means of the following expressions: 

 2 2

0

1
ln 2cosh 2 ln 1 1 sin

2B

J
f d

k T



  


  
       

  
  

A6-1 



 

284 

 

   

/ 2

2 2

0

2 2
2 tanh 1 sin

B

J d
u J d

k T dT




  


 
    

 
  

A6-2 

where the parameter   and its derivative with respect to the temperature T are defined as 

follows: 
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Upon substituting parameters provided in Chapter 10 into above equations, it is possible to 

calculate the reduced entropy s by means of equation A6-4. 
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A6-4 

Based on Figure A6-1, one can see that for a given temperature T, different systems 

correspond to very different values of the reduced entropy. The only exception are systems 

where 0    and 90   , where as the result of the particular geometry of the considered 

system, the distance between Ising spins is exactly the same.  It may also be noted that despite 

significant difference in the value of s associated with different system at a given temperature, 

the extent of the change in s for the entire range of temperature is approximately the same. It is 

also worth to highlight the fact that the maximum value of s assumed by each of the system 

does not exceed the value of  ln 2 which condition must be satisfied for the Ising model. 



 

285 

 

 

Figure A6-1 The variation of the reduced entropy in temperature for systems corresponding to 

different values of  .    

 

In order to determine the change in the magnetic entropy corresponding to the transition of 

the system from the configuration associated with the angle i  to the configuration associated 

with the angle f , it is sufficient to subtract values corresponding to arbitrary two graphs from 

Figure A6-1. As the result of such subtraction, one can obtain results presented in Figure A6-2. 

 

Figure A6-2 The variation of the reduced magnetic entropy in temperature for systems 

corresponding to different values of  . 
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B) The extent of the magnetocaloric effect for the hypothetical 

experimental realisation of the considered theoretical model 

 

As discussed in Chapter 10, the considered magneto-mechanical system was represented 

by means of the Ising model solely due to the fact that such approach made it possible to obtain 

exact results corresponding to the magnetic entropy of the system. Nonetheless, this does not 

mean that one cannot consider the use of actual magnetic nanoparticles to represent magnetic 

inclusions within the system. As the matter of fact, as discussed in Chapter 10, the extent of the 

magnetocaloric effect for the discussed hypothetical magneto-mechanical system can be better 

visualised upon considering the scenario where the Ising spins within the system would be 

replaced with magnetite nanoparticles  3 4Fe O . In this chapter, it was also mentioned that even 

very small magnetic Fe3O4 nanoparticles with a diameter of 5 nm (radius R=2.5 nm) can be 

sufficient for ordering processes at room temperature. However, in order to estimate the extent 

of the magnetocaloric effect for such a system, it is first necessary to determine the magnetic 

moment associated with each of the nanoparticles which can be achieved based on information 

regarding the considered compound as shown below. 

A single unit cell of the magnetite ( 3 4Fe O  which can be represented by formula 

2 3

4Fe Fe O )  
 consists of 32 Oxygen atoms which based on the chemical formula of this 

compound means that there are eight formula units (f. u.) per unit cell. The linear dimension of 

such unit cell a is equal to 8.397 Å which means that the volume of the entire unit cell 

 3 u uV V a  is approximately equal to 592.07 Å. Furthermore, based on the volume of a single 

unit cell  uV  and the volume of an entire nanoparticle  V , it is possible to find a number of 

unit cells in a nanoparticle  N  in the following manner: 



 

287 

 

34 1
/ 110 .

3
u

u

N V V R
V

    A6-5 

As already discussed, in each of the nanoparticles there would be 8N  magnetic moments, 

which according to the above equation is approximately equal to 880. Furthermore, as reported 

by Huang et al. [481], the magnetic moment per formula unit  fu  is equal to 4.33 B . Thus, 

the magnetic moment corresponding to the considered nanoparticle    can be expressed as 

fu B8 3830N    . 

Once when knowing the magnetic moment      associated with each of the 

magnetite nanoparticles, it is possible to determine the magnetic interaction energy for two 

adjacent nanoparticles having a magnetic moment   where the distance between their centres 

d  is assumed to be equal to 5 nm (nanoparticles are touching each other). In general, the energy 

E of interaction between two magnetic moments can be described by means of the following 

expression:   
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where, 0   6 2

0 1.257 10  NA     stands for vacuum permeability and r  is the position 

vector (in this case, r d ). One should note that in the case of the Ising model, the adjacent 

magnetic moments are always either parallel or antiparallel which means that the above 

equation can be simplified to the following form: 

20

3
 .

4
E

r


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
  A6-7 

It should be noted that upon substituting the above numbers into equation A6-7 and 

dividing both of its sides by the Boltzmann constant Bk  23 1

B 1.38 10  JKk    , the reduced 

energy B/E k  describing the interaction between two particles is approximately equal to 
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73.1 K.  Based on the fact that in the case of the considered two-dimensional square lattice each 

of the nanoparticles interacts with four of its nearest neighbours, the energy B/E k  per 

nanoparticle can be estimated as 292.3 K.  It may be noted that this value is very close to the 

room temperature which suggests that magnetic dipole-dipole interactions in the considered 

system can be sufficiently large at such temperature to induce the ordering process if the 

magnetic inclusions on the non-magnetic matrix are densely packed.  

It should be noted that the magnitude of the magnetocaloric effect depends on the strength 

of interaction between magnetic inclusions. This in turn means that the results corresponding 

to the hypothetical theoretical system discussed in chapter 10 of the thesis should be expected 

to be observed in reality only if sufficiently strong magnetic interactions between magnetic 

inclusions within the system could be achieved.  In view of this, the fact that in this appendix it 

is shown that very strong interaction can be observed in the vicinity of the room temperature 

for a particular experimental realisation of the considered model indicates that the considered 

concept may indeed prove to be useful in the case of real life applications.      
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Appendix VII: Python script used in order to calculate the 

entropy of the investigated system 

1. #!/usr/bin/env python   
2. from scipy.interpolate import interp1d   
3. from scipy.integrate import quad   
4.    
5. import numpy as np   
6. import sys   
7.    
8.        
9.        
10. if __name__ == '__main__':   
11.      
12.     kB=8.617342e-5 #eV/K   
13.     J=0.01116#eV   
14.     a_latt=1.0   
15.     teta= 90.0/180.0*np.pi   
16.     dist=(2*a_latt*a_latt)**0.5*np.sin(teta+np.pi/4.0)   
17.        
18.     J=J/dist**3   
19.        
20.        
21.     Tstart=30.0# K   
22.     Tstop=600.0# K   
23.     nT=100.0   
24.     dT=(Tstop-Tstart)/nT   
25.        
26.     nphi=1000   
27.        
28.        
29.     x = np.linspace(0.0,np.pi,nphi)   
30.     y = np.linspace(0.0,np.pi,nphi)   
31.        
32.     xx = np.linspace(0.0,np.pi/2,nphi)   
33.     yy = np.linspace(0.0,np.pi/2,nphi)   
34.        
35.        
36.        
37.     T=Tstart   
38.         
39.     with open('entropy_theta90', 'w') as g:   
40.         while T<=Tstop:   
41.             kBT=kB*T   
42.                
43.             wyraz0=-np.log(2*np.cosh(2*J/kBT))   
44.                
45.             for i in range(nphi):   
46.                 a=np.float64(x[i])   
47.                 K=2*np.sinh(2*J/kBT)/(np.cosh(2*J/kBT)*np.cosh(2*J/kBT))   
48.                 K2=K*K   
49.                 wyraz=(1.0-K2*np.sin(a)*np.sin(a))   
50.                    
51.                 y[i]=np.log((1.0+np.sqrt(wyraz))/2)   
52.                    
53.                    
54.             f = interp1d(x, y)   
55.             ans, err = quad(f, 0.0, np.pi)   
56.                
57.             #free energy   
58.             free_energy=wyraz0-ans/(2*np.pi)   



 

290 

 

59.             print free_energy, "free_energy"   
60.            
61.                
62.                
63.                
64.             K=2*np.sinh(2*J/kBT)/(np.cosh(2*J/kBT)*np.cosh(2*J/kBT))   
65.             K2=K*K   
66.             dK=-J*(np.sinh(2*J/kBT)*np.sinh(2*J/kBT)-

1.0)/(np.sinh(2*J/kBT)*np.cosh(2*J/kBT))   
67.                                                        
68.                
69.             u0=-2*J*np.tanh(2*J/kBT)   
70.                
71.             for i in range(nphi):   
72.                 a=np.float64(xx[i])   
73.                 delta=np.sqrt(1.0-K2*np.sin(a)*np.sin(a))   
74.                    
75.                 yy[i]=1/(delta)   
76.                    
77.                    
78.             f = interp1d(xx,yy)   
79.             ans, err = quad(f, 0.0, np.pi/2)   
80.                
81.             energy=u0+dK*(ans*2/np.pi-1.0)   
82.             print energy, "U"   
83.                
84.             entropy=-(free_energy-energy/kBT)   
85.                
86.             g.write(str(T))   
87.             g.write(" ")   
88.             g.write(str(entropy))   
89.             g.write('\n')   
90.                
91.             print T”, ",entropy   
92.             T+=dT   
93.        
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Appendix VIII: Python script allowing to generate all of the 

results related to the magnetic domain evolution in magneto-

auxetic system associated with the rotating squares system  

1. import numpy as np   
2. import random   
3. import time   
4.    
5.    
6. class Initial_high_T():   
7.     def __init__(self, l, J0, T, beta, Nx, N, N_monte_initial, theta_0):   
8.         self.l = l   
9.         self.J0 = J0   
10.         self.Nx = Nx   
11.         self.N = N   
12.         self.theta_0 = theta_0   
13.         self.N_monte_initial = N_monte_initial   
14.         self.beta = beta   
15.            
16.         lattice = self.initial_assignment()   
17.         self.algorithm_input(lattice)   
18.        
19.        
20.        
21.     def initial_assignment(self):   
22.                
23.         lattice = np.zeros((self.Nx, self.Nx))   
24.            
25.         for i in range(self.Nx):   
26.             for j in range(self.Nx):   
27.                            
28.                 possibilities = [-1, 1]   
29.                 spin = random.choice(possibilities)   
30.                            
31.                 lattice[i][j] = spin   
32.            
33.         return lattice   
34.    
35.    
36.    
37.     def algorithm_input(self, lattice):   
38.            
39.         r = self.l * ((2**0.5) / 2.0)   
40.         d = 2.0 * r * np.sin(np.pi / 4.0 + self.theta_0 / 2.0)   
41.            
42.         self.J = self.J0 / (d**3)   
43.         lattice_old = lattice   
44.            
45.         for i in range(int(self.N_monte_initial)):   
46.             lattice_new = self.algorithm(lattice_old)   
47.                
48.             lattice_old = lattice_new   
49.            
50.         self.lattice_final_high_T = lattice_new   
51.        
52.        
53.        
54.     def algorithm(self, lattice):   
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55.            
56.         for i in range(int(self.N)):   
57.             x_i = random.randint(0, self.Nx - 1)     #The x coordinate of the i-

th spin is selected randomly from the given interval.   
58.             y_i = random.randint(0, self.Nx - 1)   
59.                
60.             boundary_cond = self.periodic_boundary_conditions(x_i, y_i)   
61.                
62.             xl = boundary_cond[0]   
63.             xr = boundary_cond[1]   
64.             yt = boundary_cond[2]   
65.             yb = boundary_cond[3]   
66.                
67.             nn_sum = lattice[x_i][y_i] * ( lattice[x_i][yb] + lattice[xl][y_i] + lat

tice[x_i][yt] + lattice[xr][y_i] )   
68.                
69.             E1 = -self.J * nn_sum   
70.             E2 = self.J * nn_sum    #The energy calculated for considered spins base

d on the fact that the i-th spin changed its orientation    
71.                                                                                      
72.             dE = E2 - E1   
73.                
74.             if dE < 0:   
75.                 lattice[x_i][y_i] = lattice[x_i][y_i] * (-1) #flipping a spin   
76.                                        
77.             else:   
78.                 r = random.random()     #A random number from the interval [0; 1)   
79.                    
80.                 Boltzman_factor = np.exp(-self.beta * dE)   
81.                    
82.                 if r < Boltzman_factor:   
83.                     lattice[x_i][y_i] = lattice[x_i][y_i] * (-1) #flip the spin   
84.                 else:   
85.                     None   
86.        
87.         return lattice   
88.        
89.    
90.    
91.     def periodic_boundary_conditions(self, x_i, y_i):   
92.         yt = y_i + 1   
93.         yb = y_i - 1   
94.         xr = x_i + 1   
95.         xl = x_i - 1   
96.            
97.         if xl == -1:   
98.             xl = self.Nx - 1   
99.            
100.         if xr == self.Nx:   
101.             xr = 0   
102.            
103.         if yt == self.Nx:   
104.             yt = 0   
105.                    
106.         if yb == -1:   
107.             yb = self.Nx -1   
108.                    
109.         return xl, xr, yt, yb   
110.        
111.        
112.        
113.     def results(self):   
114.         return self.lattice_final_high_T   
115.    
116.    
117.    
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118.    
119.    
120.    
121.    
122.    
123. class Deformation():   
124.     def __init__(self, theta_0, theta_f, delta_theta, J0, l, T, beta, Nx, N, 

N_monte, lattice_initial, speed_factor):   
125.         self.theta_0 = theta_0   
126.         self.theta_f = theta_f   
127.         self.delta_theta = delta_theta   
128.            
129.         self.iterations(J0, l, T, beta, Nx, N, N_monte, lattice_initial, spee

d_factor)   
130.            
131.            
132.            
133.     def iterations(self, J0, l, T, beta, Nx, N, N_monte, lattice_initial, spe

ed_factor):   
134.            
135.         lattice_old = lattice_initial   
136.         self.list_of_lattices = []   
137.         self.list_of_angles = []   
138.         self.list_of_time = []   
139.            
140.         counter_time = 0   
141.            
142.         for theta in np.arange(theta_0, theta_f, delta_theta):   
143.             print theta * (180.0 / np.pi), "theta"   
144.             constructor = Spins(lattice_old, l, J0, T, beta, Nx, N, N_monte, 

theta, theta_0, speed_factor)   
145.             lattice_new = constructor.results()   
146.                
147.             self.list_of_lattices.append(lattice_new * 1.0)   
148.             self.list_of_angles.append(theta * 1.0)   
149.             self.list_of_time.append(N_monte * speed_factor * counter_time)   
150.             lattice_old = lattice_new   
151.             counter_time += 1   
152.        
153.        
154.     def results(self):   
155.         return self.list_of_angles, self.list_of_time, self.list_of_lattices  

 
156.                
157.    
158.    
159.    
160.    
161.    
162. class Spins():   
163.     def __init__(self, lattice_theta, l, J0, T, beta, Nx, N, N_monte, theta, 

theta_0, speed_factor):   
164.         self.J0 = J0   
165.         self.beta = beta   
166.         self.theta = theta   
167.         self.Nx = Nx   
168.         self.N = N   
169.         self.l = l   
170.         self.theta_0 = theta_0   
171.         self.speed_factor = speed_factor   
172.            
173.         self.metropolis_process(lattice_theta, N_monte)   
174.        
175.        
176.        
177.     def metropolis_process(self, lattice_old, N_monte):   
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178.                
179.         r = self.l * ((2**0.5) / 2.0)   
180.         d = 2.0 * r * np.sin(np.pi / 4.0 + self.theta / 2.0)   
181.            
182.         self.J = self.J0 / (d**3)   
183.            
184.         for i in range(N_monte):   
185.             lattice_new = self.algorithm(lattice_old)   
186.             lattice_old = lattice_new   
187.            
188.         self.final_lattice = lattice_new   
189.        
190.        
191.        
192.     def algorithm(self, lattice):   
193.                
194.         for i in range(int(self.N * self.speed_factor)):   
195.             x_i = random.randint(0, self.Nx - 1)     #The x coordinate of the 

i-th spin is selected randomly fron the given interval.   
196.             y_i = random.randint(0, self.Nx - 1)   
197.                
198.             boundary_cond = self.periodic_boundary_conditions(x_i, y_i)   
199.                
200.             xl = boundary_cond[0]   
201.             xr = boundary_cond[1]   
202.             yt = boundary_cond[2]   
203.             yb = boundary_cond[3]   
204.                
205.             nn_sum = lattice[x_i][y_i] * ( lattice[x_i][yb] + lattice[xl][y_i

] +    
206.                             lattice[x_i][yt] + lattice[xr][y_i] )   
207.                
208.             E1 = -self.J * nn_sum   
209.             E2 = self.J * nn_sum    #The energy calculated for considered spi

ns based on the fact that the i-th spin changed its orientation 
with respect to the former definition. The surrounding spins retain their orientatio
n.   

210.             dE = E2 - E1   
211.                
212.             if dE < 0:   
213.                 lattice[x_i][y_i] = lattice[x_i][y_i] * (-1) #flip a spin   
214.                                        
215.             else:   
216.                 r = random.random() #A random number from the interval [0; 1) 
217.                    
218.                 Boltzman_factor = np.exp(-self.beta * dE)   
219.                    
220.                 if r < Boltzman_factor:   
221.                     lattice[x_i][y_i] = lattice[x_i][y_i] * (1)#flip the spin 
222.                 else:   
223.                     None   
224.            
225.         return lattice   
226.    
227.    
228.    
229.     def periodic_boundary_conditions(self, x_i, y_i):   
230.         yt = y_i + 1   
231.         yb = y_i - 1   
232.         xr = x_i + 1   
233.         xl = x_i - 1   
234.            
235.         if xl == -1:   
236.             xl = self.Nx - 1   
237.            
238.         if xr == self.Nx:   
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239.             xr = 0   
240.            
241.         if yt == self.Nx:   
242.             yt = 0   
243.                    
244.         if yb == -1:   
245.             yb = self.Nx -1   
246.                    
247.         return xl, xr, yt, yb   
248.        
249.            
250.        
251.     def results(self):   
252.         return self.final_lattice 
253.    
254.    
255.    
256.    
257.    
258.    
259. class Correlation_length():   
260.     def __init__(self, list_of_lattices, Nx, N):   
261.         self.list_of_lattices = list_of_lattices   
262.         self.Nx = Nx   
263.         self.N = N   
264.            
265.         self.initial_procedure()   
266.        
267.        
268.        
269.     def initial_procedure(self):   
270.            
271.         self.list_corr_lengths = []   
272.            
273.         for i in range(len(self.list_of_lattices)):   
274.             avg_corr_length = self.procedure(self.list_of_lattices[i])   
275.             self.list_corr_lengths.append(avg_corr_length)   
276.        
277.        
278.        
279.     def procedure(self, lattice):   
280.            
281.         corr_length_given_time_step = []   
282.            
283.         for i in range(self.Nx):   
284.             for j in range(self.Nx):   
285.                    
286.                 counter_left = 0   
287.                 counter_right = 0   
288.                 counter_top = 0   
289.                 counter_bottom = 0   
290.                    
291.                 validator_r = 0   
292.                 validator_l = 0   
293.                 validator_t = 0   
294.                 validator_b = 0   
295.                    
296.                 while validator_r == 0:   
297.                     index_right = j + counter_right   
298.                     indices_right_element = self.periodic_boundary_conditions

_right(index_right)   
299.                     right_elem_x = indices_right_element   
300.                        
301.                     index_more_to_the_right = self.periodic_boundary_conditio

ns_right(j + counter_right + 1)   
302.                     more_to_the_right_x = index_more_to_the_right   
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303.                        
304.                     if lattice[right_elem_x][i] == lattice[more_to_the_right_

x][i]:   
305.                         counter_right += 1   
306.                     else:   
307.                         validator_r = 1   
308.                     if counter_right >= self.Nx - 1:   
309.                         validator_r = 1   
310.                    
311.                 while validator_l == 0:   
312.                     index_left = j - counter_left   
313.                     indices_left_element = self.periodic_boundary_conditions_

left(index_left)   
314.                     left_elem_x = indices_left_element   
315.                        
316.                     if lattice[j - counter_left][i] == lattice[j - counter_le

ft - 1][i]:   
317.                         counter_left += 1   
318.                     else:   
319.                         validator_l = 1   
320.                     if counter_left >= self.Nx - 1:   
321.                         validator_l = 1   
322.                        
323.    
324.                 while validator_t == 0:   
325.                     index_top = i + counter_top   
326.                     indices_top_element = self.periodic_boundary_conditions_t

op(index_top)   
327.                     top_elem_y = indices_top_element   
328.                        
329.                     index_higher_top = i + counter_top + 1   
330.                     indices_higher_top_element = self.periodic_boundary_condi

tions_top(index_higher_top)   
331.                     higher_top_elem_y = indices_higher_top_element   
332.                        
333.                     if lattice[j][top_elem_y] == lattice[j][higher_top_elem_y

]:   
334.                         counter_top += 1   
335.                     else:   
336.                         validator_t = 1   
337.                     if counter_top >= self.Nx - 1:   
338.                         validator_t = 1   
339.                            
340.                            
341.                 while validator_b == 0:   
342.                     index_bottom = i - counter_bottom   
343.                     indices_bottom_element = self.periodic_boundary_condition

s_bottom(index_bottom)   
344.                     bottom_elem_y = indices_bottom_element   
345.                        
346.                     index_below_bottom = i - counter_bottom - 1   
347.                     indices_below_bottom_element = self.periodic_boundary_con

ditions_bottom(index_below_bottom)   
348.                     below_bottom_elem_y = indices_below_bottom_element   
349.                        
350.                     if lattice[j][bottom_elem_y] == lattice[j][below_bottom_e

lem_y]:   
351.                         counter_bottom += 1   
352.                     else:   
353.                         validator_b = 1   
354.                     if counter_bottom >= self.Nx - 1:   
355.                         validator_b = 1   
356.                    
357.                 corr_length_given_item_avg = (counter_right + counter_left + 

counter_top + counter_bottom) / 4.0   
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358.                 corr_length_given_time_step.append(corr_length_given_item_avg
)   

359.            
360.         corr_length_final = sum(corr_length_given_time_step) / len(corr_lengt

h_given_time_step)   
361.            
362.         return corr_length_final   
363.            
364.    
365.    
366.     def periodic_boundary_conditions_right(self, xr):   
367.         if xr >= self.Nx:   
368.             xr = xr - self.Nx   
369.         else:   
370.             None   
371.            
372.         return xr   
373.        
374.        
375.     def periodic_boundary_conditions_left(self, xl):   
376.         if xl <= -1:   
377.             xl = self.Nx + xl   
378.         else:   
379.             None   
380.            
381.         return xl   
382.        
383.        
384.     def periodic_boundary_conditions_top(self, yt):   
385.         if yt >= self.Nx:   
386.             yt = yt - self.Nx   
387.         else:   
388.             None   
389.            
390.         return yt   
391.        
392.        
393.     def periodic_boundary_conditions_bottom(self, yb):   
394.         if yb <= -1:   
395.             yb = self.Nx + yb   
396.         else:   
397.             None   
398.            
399.         return yb   
400.        
401.        
402.        
403.     def results(self):   
404.         return self.list_corr_lengths   
405.    
406.    
407.    
408.    
409.    
410. class Energy_calculation():   
411.     def __init__(self, list_of_lattices, Nx, N, list_of_angles, J0, l):   
412.         self.list_of_lattices = list_of_lattices   
413.         self.Nx = Nx   
414.         self.N = N   
415.         self.list_of_angles = list_of_angles   
416.         self.J0 = J0   
417.         self.l = l   
418.            
419.         self.change_in_angle()   
420.            
421.            
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422.            
423.     def change_in_angle(self):   
424.            
425.         self.list_of_energies = []   
426.            
427.         for i in range(len(self.list_of_angles)):   
428.             r = self.l * ((2**0.5) / 2.0)   
429.             theta = self.list_of_angles[i]   
430.             d = 2.0 * r * np.sin(np.pi / 4.0 + theta / 2.0)   
431.             J = self.J0 / (d**3)   
432.    
433.             energy = self.calculation(i, J)   
434.             self.list_of_energies.append(energy / self.N)   
435.    
436.        
437.     def calculation(self, i, J):   
438.         lattice = self.list_of_lattices[i]   
439.            
440.         temporary_energy = 0   
441.         for m in range(Nx):   
442.             for n in range(Nx):   
443.                 indices = self.periodic_boundary_conditions(n, m)   
444.                 y_bottom = indices[0]   
445.                 x_right = indices[1]   
446.                    
447.                 if lattice[n][m] * lattice[x_right][m] < 0:   
448.                     energy_right = -

J * (lattice[n][m] * lattice[x_right][m])   
449.                 else:   
450.                     energy_right = 0   
451.                    
452.                 if lattice[n][m] * lattice[n][y_bottom] < 0:   
453.                     energy_bottom = -

J * (lattice[n][m] * lattice[n][y_bottom])   
454.                 else:   
455.                     energy_bottom = 0   
456.                        
457.                 temporary_energy += (energy_right + energy_bottom)   
458.            
459.         return temporary_energy   
460.        
461.        
462.        
463.     def periodic_boundary_conditions(self, x_i, y_i):   
464.         yb = y_i - 1   
465.         xr = x_i + 1   
466.            
467.         if xr == self.Nx:   
468.             xr = 0   
469.                    
470.         if yb == -1:   
471.             yb = self.Nx -1   
472.                    
473.         return yb, xr   
474.        
475.        
476.     def results(self):   
477.         return self.list_of_energies   
478.        
479.        
480.        
481.        
482.            
483.    
484.    
485. class Visualization():   
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486.     def __init__(self, lattices_for_all_angles):   
487.         self.lattices = lattices_for_all_angles   
488.            
489.         self.new_files()   
490.                
491.                
492.     def new_files(self):   
493.         for i in range(len(self.lattices)):   
494.             np.savetxt("Ising_"+str(i)+".txt", self.lattices[i])   
495.    
496.    
497.    
498. class Graphs():   
499.     def __init__(self, time_list, list_of_angles, corr_lengths_list, list_of_

energies):   
500.            
501.         self.time_list = time_list   
502.         self.corr_lengths_list = corr_lengths_list    
503.         self.list_of_angles = list_of_angles   
504.         self.list_of_energies = list_of_energies   
505.            
506.         self.generation()   
507.        
508.     def generation(self):   
509.         with open('avg_corr_length_speed_fac_0_1.dat', 'w') as g:   
510.             for i in range(len(self.time_list)):   
511.                 g.write(str(self.time_list[i]))   
512.                 g.write(" ")   
513.                 g.write(str(self.list_of_angles[i]))   
514.                 g.write(" ")   
515.                 g.write(str(self.corr_lengths_list[i]))   
516.                 g.write(" ")   
517.                 g.write(str(self.list_of_energies[i]))   
518.                 g.write('\n')   
519.         print "BBB"   
520.    
521.    
522.    
523. class Average():   
524.     def __init__(self, all_list_of_time, all_lists_of_angle, all_lists_of_cor

r_lengths, all_lists_of_energy, n_aux):     
525.         self.all_lists_of_corr_lengths = all_lists_of_corr_lengths   
526.         self.all_lists_of_energy = all_lists_of_energy   
527.         self.all_list_of_time = all_list_of_time   
528.         self.all_lists_of_angle = all_lists_of_angle   
529.         self.n_aux = n_aux   
530.            
531.         self.calculation()   
532.            
533.            
534.     def calculation(self):   
535.         n_internal = len(self.all_lists_of_energy[0])   
536.         self.corr_lengths = np.zeros(n_internal)   
537.         self.energies = np.zeros(n_internal)   
538.         self.angles = np.zeros(n_internal)   
539.         self.times = np.zeros(n_internal)   
540.            
541.         for j in range(n_internal):   
542.             for i in range(self.n_aux):   
543.                 self.corr_lengths[j] += self.all_lists_of_corr_lengths[i][j]  

 
544.                 self.energies[j] += self.all_lists_of_energy[i][j]   
545.                 self.angles[j] += self.all_lists_of_angle[i][j]   
546.                 self.times[j] += self.all_list_of_time[i][j]    
547.             self.corr_lengths[j] = self.corr_lengths[j] / self.n_aux   
548.             self.energies[j] = self.energies[j] / self.n_aux   
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549.             self.angles[j] = self.angles[j] / self.n_aux   
550.             self.times[j] = self.times[j] / self.n_aux   
551.        
552.        
553.     def results(self):   
554.         return self.corr_lengths, self.energies, self.angles, self.times   
555.        
556.        
557.        
558. if __name__ == '__main__':   
559.        
560.     Nx = 500   
561.     N = Nx**2#number of units   
562.     N_monte = 1#1   
563.     l = 1.0#linear dimension of a square   
564.     n_avg = 4   
565.     J0 = 1.2   
566.     T = 1.0#Tc=2.269 [J / kB]   
567.     k_B = 1.0#1.38 * 10**(-23)   
568.     beta = 1.0 / (k_B * T)   
569.     theta_0 = 0.0 * (np.pi / 180.0)   
570.     theta_f = 180.0 * (np.pi / 180.0)   
571.     delta_theta = 1.0 * (np.pi / 180.0)#speed   
572.        
573.     speed_factor = 0.1   
574.     print speed_factor, "speed_factor"   
575.        
576.     n_avg = 10   
577.        
578.     all_lists_of_angle = []   
579.     all_list_of_time = []   
580.     all_lists_of_corr_lengths = []   
581.     all_lists_of_energy = []   
582.        
583.     for i in range(n_avg):   
584.             print i   
585.             T_initial_high = 10.0   
586.             beta_initial = 1.0 / (k_B * T_initial_high)   
587.             N_monte_initial = 5.0   
588.                
589.             constructor_init_T = Initial_high_T(l, J0, T_initial_high, beta_i

nitial, Nx, N, N_monte_initial, theta_0)   
590.             lattice_initial = constructor_init_T.results()   
591.        
592.             constructor_deform = Deformation(theta_0, theta_f, delta_theta, J

0, l, T, beta, Nx, N, N_monte, lattice_initial, speed_factor)   
593.             results_for_diff_angles = constructor_deform.results()   
594.             list_of_angles = results_for_diff_angles[0]   
595.             list_of_time = results_for_diff_angles[1]   
596.             list_of_lattices = results_for_diff_angles[2]   
597.                
598.             if i == 0:   
599.                 constr_vis = Visualization(list_of_lattices)   
600.             else:   
601.                 None   
602.        
603.             constructor_corr_length = Correlation_length(list_of_lattices, Nx

, N)   
604.             list_of_corr_lengths = constructor_corr_length.results()   
605.        
606.             constructor_energy = Energy_calculation(list_of_lattices, Nx, N, 

list_of_angles, J0, l)   
607.             list_of_energies = constructor_energy.results()   
608.                
609.             all_lists_of_corr_lengths.append(list_of_corr_lengths)   
610.             all_lists_of_energy.append(list_of_energies)   
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611.             all_lists_of_angle.append(list_of_angles)   
612.             all_list_of_time.append(list_of_time)   
613.                
614.        
615.     constr_avg = Average(all_list_of_time, all_lists_of_angle, all_lists_of_c

orr_lengths, all_lists_of_energy, n_avg)   
616.     avg_results = constr_avg.results()   
617.     avg_list_corr_lengths = avg_results[0]   
618.     avg_list_energies = avg_results[1]   
619.     avg_list_angles = avg_results[2]   
620.     avg_list_times = avg_results[3]   
621.        
622.     constr_graps = Graphs(avg_list_times, avg_list_angles, avg_list_corr_leng

ths, avg_list_energies)   
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