ANALYSIS OF HONEY BUZZARD FLIGHT DIRECTIONS

AT BUSKETT

11. A. THAKE

Abstract

Analysis of autumn sightings of Honey Buzzard Pernis apivorus at Buskett made during the period 1974 - 1978 suggested the existence of a leading line effect in Honey Buzzard migration through Malta. It was hypothesised that more Honey Buzzards follow the southwestern coast as the day progresses. In addition, there was evidence which suggested that southerly winds increase the proportion of Honey Buzzards which follows the coast, even if the southerly winds are of a purely local nature, generated by a sea breeze system (Thake 1980b \& 1983).

In this paper, angular data accumulated during the 1974-78 study period and during sporadic onservations in subsequent vears (1980-1982) are analysec. A kimited amount of supporting evidence for the above hypothesis is presented.

Methods
Detailed descriptions of the methods employed may be found in earlier papers (7hake 1977, 1980a \& 1980b). The flight directions of Honey Buzzard flocks flying within 200 m of the observer were determined ($\pm 10^{\circ}$) by reference to known compass points, represented by distant landmarks. A bearing compass was in use from 1978 onwards, allowing more accurate flight directions to be obtained when the birds flew directly overhead. Directional data were obtained most frequentiy in 1975.

Calculations were performed using ad hoc BASIC computor programs desianed for use on the Casio FX 801 p programmable calculator.

Results

In fig. 1, variation of the mean length of the resultant vector of flignt directions is plotted against time of day. The mean length of the resultant vector is an index of the degree of scatter of the flight directlons; the closer the mean length is to 1 , the smaller the scatter of the flight directions. Fig. 1 clearly shows an increase ir the scatter of flight directions as the day progresses. Ihis is consistent with the interpretation that the Honey Buzzards' motivation to fly in a civen compass direction decreases in the course of the day.

Fig.1. Variation of the length of the mean resultant vector with time of day. Angular data obtained during each hourly interval yielded the basic angular statistics. The mean length of the resultant vector (R) is plotted against time of day (C.F.T.). Correlation coefficient $=$ $-0.8980, \mathrm{p}>.01$.

Fig. 2 depicts changes in the direction of the resultant vector with time of day. 7 he few Honey Buzzards sighted defore noon fly mostly south. The tendency to fly towards southeast increases towards mid-day, peaking between 12.00 and 13.00 C.E.7. As the afternoon progresses, the resultant vector shifts towards south until approximately 15.00 , after which it returns to southeast. The following interpretation is offerred: The thermal Low over the istands is best developed around mid-day. This coincides witn a tendency for the Honey Buzzards to follow the coast to a greater extent, and the resultant vector

Fig. 2. Variation of the direction of the resultant vector with time of day.
The ordinates represent $\theta-135^{\circ}$, where θ is the direction of the resultant vector in degrees. Southwest lies above the top of the diagram; southeast at the bottom. South lies at 45° on the ordinates.
shifts towards the southeast. In the mid-afternoon, the weakening thermal bow over Malta produces lighter winds which induce less coasting than at mid-day. Towards the tate afternoon, the direction of the mean vector veers towards the southeast as the amount of coasting increases once again.

If coasting during contrary winds is an important factor in Honey Buzzard migration through Malta, one would expect an increase in the amount of coasting in moderate southerlies. Fig. 3 presents appropriate data. Although there is an increase in the number of Honey Buzzard flocks flying southeast in moderate winds, the directional shift of the mean vector towards the southeast in diegram B : s not significant (Watson and Williams two sample test : $F_{1,78}=2.13, p>.05$). The decrease in scatter with moderate contrary winds is also consistent with the hypothesis, but again the effect is not significant (tested after Mardia 1972, 0 162: $\mathrm{F}_{22}, 56=0.5185, \mathrm{p}>.05$).
thereased coasting in moderate southerlies would be expecied to cause more flocking, giving rise to a higher mean flock size. This was foum to be the case (see lable 1).

Fig. 3. Scatter diagrams of flight directions of flocks sighted in light (A) and moderate (B) southerly winds. Southerlies (from east-southeast to west-southwest) were grouped according to wind strength as indicated in the table below.

| Category | includes winds | R | θ |
| :--- | :--- | :--- | :--- | :--- |
| Light (A) | 3 to 7 knots | .7714 | 165.47° |
| Moderate (B) | 8 to 17 knots | .8846 | 152.08° |

The direction, length and 95% confidence limits of the mean resultant vector are shown on each diagram. The direction of geographical north is marked at the top of each diagram. Both scatter diagrams differ significantly from a uniform distribution (Rayleigh test : $p<.001$).

TABLE 1 : Variation of mean flock size with wind strength

southerly wind strength category	mean flock size	sample standard deviation
Light	2.23	2.12
Moderate	4.70	5.58
Anova (Single classification) $: F_{1,77}=7.6736 ; p>.01$.		

Conclusions
The results presented in this paper provide limited further support for the hypothesis of a leading line effect in Honey Buzzard migration through Malta. The tests described above should be repeated when a more extensive set of anoular data becomes available.

References
MARDIA, K. V. 1972. Statistics of directionab data. Academic Press : Loncion \& New York. 1HAKE, M. A. 1977. Synoptic scale weather and Honey Buzzerd migration across the centrat Nediterranean. Il-Merill 18:19-25.
?HAKE, M.A. 1980a. Greaarious behaviour among migrating Honey Suzzards. Ibis 122:500-505. THAKE, M.A. 19806. Autumn migration of the Honey Buzzard througt Malta in relation to weather. 11-Merill 21:13-17.
THAKE,M.A. 1983. Evidence for the existence of a leading line effect in Honey Buzzard migration through Maita. Il-Merill 22:8-9.
M.A. Thake - 169, Fleur-de-Iys Road, B'Kara, Malta.

MIGRATION OF THE SANDWICH TERN IN EAST SIGILY

SARHFLO IANICHIMA

The Sandwich tern Sterna sandricensis is a scerce autumn migrant to Halta kultana \&

On the other hand, dong the nearby south east sicilian coest it is a very eommen autum visitior with a definite, and sometimes huge, suthward movement. A good eounting station atong the egst sicilian eoast is Gapo hurmo di poreo (135 km forth-wogt of Matta) near Syratuse, where barge numbers of Sandwich Terns nowing to the south are recorded every year from eat hy nugut to late November, with peaks in the last ten days of oetober. He 1980 the author counted 348 birds durine 78 ooservation hours from 8 th october to 11 th November; and in 1901 , 297 from 23 re August to $22 n d$ Hovember during 22 observation hours. A nore sistematic count in 1992 totalled 1,403 during si observation hours from ist September to 28 th November, with peaks of 334 on 25 th Dotober during 150 observation minutes and 195 on 31 st Detober durine 140 observation mimutes.

Table 1 inchutes att the 2,148 birds counted in the three wutums and shows the percentage of terns thot passect singly or in flocks of ifferont sizes fiurgost flock eountod was of 63 birds).

Table I	Flock size	1	$2-10$	$11-20$	$21-30$	$31-63$
	Pereentige	2.33	51.23	24.09	10.52	11.80

[^0]
[^0]: No definite relation with weather was neted, but most of the largest sounts were on days with elear sky, south or south-west tight winds and smooth sea. Onily a fow wintering birds were reeorded from kie November.

 Spring passage is not so weil jefined. He tate February, but mestly from mid-March to eorly Aoril, t fecorded mall flocks or singte bircs, most moving to the north, but come to the south the tast ore grobably terns that wintered in the Tyrrhentan Sea and that fly south before moving to the east, erossing the Messing strait,. Spring passage is probably more motket nel of fshore and involves targe floeks, tike the one of $100+$ recorded near Gomino on 20 Aprit ig6? (subtañ \% Sauei 1902). Migrating Sandwich Terns qenerally pass very close to 300 m . They fly tow (below 20 m . bbove the sea) in toose flocics with the birds, at least णाe जा two, coting incessontly. Sometimes, espectatly with strong side winds, they prefor to fly in compact ine formations, very ctose to the surface of sea.

