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Introduction
Soils constitute a significant non-renewable geo-resource. Soil resources produce 

various ecosystem goods and services, chief amongst which are food production and the 
recycling or assimilation of wastes and other by-products (Arrouays, Marchant, Saby, 
Meersmans, Orton & Martin, 2012; deGroot, Wilson and Boumans., 2002). Healthy soils 
are therefore the foundation of our food system and merit our attention (Bot & Benites, 
2005). Over the past few decades, various anthropogenic factors have increased the 
pressures on soil systems and associated ecosystem services. Amongst these pressures is a 
growth in global population and standards of living as well as climate change. These factors 
have significantly increased the global demand for food and have led to a widespread 
process of land use intensification.

Agricultural land use intensification may adversely affect soil physical, chemical and 
biological properties. The intensification process has occurred throughout the entire 
world and has lead to a significant decline in soil quality (Van Camp, Camp, Bujjarabal, 
Gentile, Jones, Montanarella, Olazabal & Selvaradjou., 2004). Supporting this claim is 
Steer’s (1998) work that demonstrates that approximately 23% of the Earth’s agricultural 
lands, pastures, forests and wild native lands have been degraded in the last decades of the 
last century. Soil erosion is a significant contributor towards soil quality loss and has been 
identified as a major threat to European agricultural soils (Virto et al., 2015). It is estimated 
12% (115 million hectares) of Europe’s total land area is affected by water erosion, a major 
threat to agricultural soil quality.

Soil degradation, which is a decline in soil quality, constitutes a serious global problem 
with important environmental and socio-economic consequences. Soil degradation 
limits soil’s capacity to perform various ecosystem services, namely the provision of 
food, water, biodiversity and energy (Brevik et al., 2015). Consequently, soil quality is 
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inexorably tied to national and global food safety, human health and sustainable economic 
and social development (Cheng, 2003; Liu, Herbert, Hashemi, Zhang & Ding, 2006). The 
increased awareness that soil is of critical importance has led to an interest in evaluating 
and monitoring its quality (Glanz, 1995; Doran & Parkin, 1996). Soil quality and its 
monitoring are a useful management tool through which soil conservation and sustainable 
development may be achieved (Banwart, 2011).

Soil management: policy, monitoring and selection of crops
Various soil management measures, falling under the description of “sustainable 

agriculture”, have been proposed (Matson et al., 1997). These fundamentally seek to 
maintain high crop yields while preserving soil quality in agricultural areas. Such 
measures include: organic farming (van Leeuwen et al., 2015); terracing (Zhao, Mu, 
Wen & Wangand Gao, 2013); crop residue retention (Pittelkow et al., 2014); diversified 
crop rotations (Bhattacharyya, Prakash, Kundu & Gupta., 2006; Pittelkow et al., 2014; 
Abdollahi, Hansen, Rickson & Munkholm, 2015) and conservation tillage systems that 
include no-tillage (Kahlon & Ann-Varughese, 2013). These practices have been successful 
in reversing declines in soil organic matter and increasing soil fertility, water infiltration 
and water holding capacity.

Conservation and no-tillage practices preserve the soil quality by reducing soil 
erosion (Lal, 1993) and increasing the soil organic carbon content (Zotarelli et al., 2012), 
aggregate stability (Alvarez & Steinbach, 2009), biodiversity (Adl, Coleman & Read, 2005) 
and biological activity (Anken, Weisskopf, Zihlmann, Forrer, Jansa & Perhacova, 2004; 
Babujia, Hungria, Franchini & Brookes, 2010). In view of these benefits, conservation 
tillage is considered as on of the most important management practices enabling 
sustainable agricultural production. McGarry & Sharp (2001) support this claim. The 
authors measured a 47 and 40% increase in organic matter in the 20 to 30cm and 50 
to 60cm layer of a field that had been under no-till for 12 years, relative to an adjacent 
conventionally tilled field. The relative increase in organic matter was matched with a 
measured decline in bulk density (23%) and an increase in water infiltration on the 0 to 
5cm layer.

Since 1999 there has been a 250% increase in the agricultural areas applying no-tillage 
management measures; from 45million ha in 1999 to 111 million ha in 2009 (Derpsch 
et al., 2010). The rapid rise in global adoption of no-tillage by farmers may be tied to a 
number of significant advantages, namely; a reduction in fuel and labour consumption 
and soil erosion control (Lal, 1993).

The effects of tillage on soil physical properties are time, space and management 
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dependent. In view of this, despite wide investigations on the impacts of no-tillage and 
other tillage systems on soil physical quality, correlations are highly variable and at times 
contradictory (Alvarez and Steinbach, 2009; Tangyuan et al., 2009; Wang and Shao, 2013; 
Munkholm, Heck & Deen, 2013; Derpsch, Friedrich,  Kassam & Hongwen, 2014). Excessive 
soil compaction in untilled areas is still a concern in various agricultural regions, such as 
Europe (Anken et al., 2004; Soane., Ball, Arvidsson, Baschd, Moreno & Roger-Estrade, 
2012; Dal Ferro, Sartori, Simonetti, Berti & Morari, 2014; López-Garrido, Madejón, León-
Camacho, Girón, Moreno & Murillo, 2014). Soil compaction is undesired in agricultural 
areas since it leads to a reduction in total porosity, water infiltration capacity and hydraulic 
conductivity (Silva, Reichert, Reinert & Bortoluzzi, 2009). 

An increase in soil bulk density also hinders root penetration capacity (Moraes, 
Debiasi, Carlesso, Franchini & Silva., 2014), which in turn limits the volume of soil roots 
have access to and reduces access to water and nutrients (Li et al., 2007). These changes 
may reduce crop yields, especially in dry years (Franchini et al., 2012). In this context of 
uncertainty of tillage system of soil quality, the use of crop rotations including plants with 
high potential for shoot and root biomass production has been suggested (Calonego & 
Rosolem, 2010; Munkholm et al., 2013; Silva et al., 2014). Such measures will prevent the 
formation of compacted layers and improve soil physical quality.

Soil management: soil quality indicators
The multidimensional concept of soil quality emerged as a result of the growing 

holistic approaches to land management and sustainable use systems (Mairura, Mugendi, 
Mwanje, Ramisch, Mbugua & Chianu, 2007; Villamil, Miguez & Bollero, 2008). The 
evaluation of soil quality is based on the use of indicators (Moebius-Clune, et al., 2011; 
Toledo, Galantini, Dalurzo, Vazquez & Bollero, 2013). The selection of soil quality 
indicators and their associated threshold values, maintained for the sustained functioning 
of soil, provides an ability to monitor changes and identify trends of improvement or 
deterioration in agro-ecological zones at various geographical and time scales. 

Soil quality indicators should be selected according to the scope of, the monitoring 
programme, the environmental context and the soil types of the region under study 
(Cantú, Becker, Bedano & Schiavo, 2007). It is essential to check the utility of soil quality 
indicators for each local agricultural ecosystem to prevent improper practices (Dalurzo, 
2002). Productivity has traditionally been the indicator selected to quantify soil quality 
(Karlen, Mausbach, Doran, Cline, Harris & Schuman, 1997). Recently, however, soil 
quality indicators have been tied to aspects of soil sustainability. In particular, indicators 
should quantify the capacity of soil to absorb, store and recycle water, minerals and energy 
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in such away that production of crops can be maximised and environmental degradation 
minimised (Tóth, Stolbovoy, V., & Montanarella, 2007). To this extent, typical soil quality 
indicators and monitoring programmes include soil organic matter, bulk density, electric 
conductivity, moisture content, pH, nitrates, phosphates and potassium, heavy metal 
concentrations and soil depth (Gao, Wang, Xu, Kong, Zhao & Zeng, 2013).

Soil monitoring and the early detection of changes in soil quality are essential to conserve 
soil for sustainable use. Soil quality monitoring are thus an effective method for evaluating 
the environmental sustainability of land use and management activities (Hamblin, 1991). 
Various countries have identified the benefits of soil monitoring and have introduced 
various monitoring programs. In fact, Europe has carried out a number of official soil 
monitoring frameworks for several years (such as the soil monitoring network, SMN). 
European SMNs include soil fertility monitoring, heavy metal monitoring, environmental 
soil surveys, soil erosion surveys, soil organic matter monitoring assessed through a 
variety of sampling strategies (Morvan, Saby, Arrouays, Le Bas, Jones & Verheijen, 2008).

In his report on Agriculture in Malta, Shepherd (1920) remarks that a precise national 
soil survey is not available. Lang (1960) later carried out a detailed survey where differences 
in soil chemistry, physical properties and biology constituents were mapped. The study by 
Lang (1960) provided a detailed description of the soils types and their distribution that 
aimed to facilitate agricultural planning.

Due to the rapid increase in urban areas since the 1960’s and the shift of topsoil within 
and around new urban areas, the Lang (1960) map was considered as unsatisfactory for 
contemporary use. As a result, the Malta Soil Information System (MALSIS) project was 
carried out in 2003. Through MALSIS Malta – which until that point in time did not 
have a tradition of soil survey and monitoring – sought to describe, assess, monitor and 
manage National soils in a sustainable way (Vella, 2003). MALSIS consists of a national 
grid-based soil inventory at 1km intervals. A total of 280 sites were assessed between June 
2002 and August 2003 in Malta, Gozo and Comino. The surveying methodology followed 
the FAO Guidelines for Soil Description. Sites were assessed in terms of agricultural land 
use, height of terrace, cropping pattern, irrigation, slope and soil chemical and physical 
properties. The MALSIS results identify six soil reference groups; leptosols, vertisols, 
calcisols, luvisols, cambisols and regosols. Calcisols were recognised as the dominant 
soil group. Results also demonstrate that National spatial patterns of soil types are very 
intricate. In fact, different soil types were often observed to occur within a single field 
or within a distance of a few metres (Vella, 2003). Refer to MEPA website (https://www.
mepa.org.mt/soil-definition).
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The study presented here assesses various soil chemical properties for sites 
corresponding to those studied in the 2003 MALSIS survey. The chemical properties – 
indicators of soil quality – obtained in this study may be directly compared against the 
MALSIS results. This allows a 10-year assessment in soil quality to be appraised. This 
information may serve to highlight important changes in soil quality and potential 
ecosystem functioning, all of which are important for National sustainable agricultural 
management.

Materials and Methods
Sampling methods and indicators
The sampling locations identified for this study are the same as those studied in 

MALSIS (2003) and are based on a 1km spaced grid distribution across Malta and Gozo. 
All grid points located within soil containing natural and agricultural areas were sampled 
in this study. The study present involved the survey of 280 sites across Malta and Gozo 
(Figures 1 to 6). The sampling of soils at the pre-selected geo-referenced target sites was 
initiated in June 2013 and was completed in September 2013. The timing of sampling 
is therefore similar to that of the MALSIS survey and corresponds to the Maltese dry 
season. Soil samples were gathered from a 0.2 meter depth below the soil surface.  As with 
the MALSIS study, the soil survey methodology followed in this work follow the FAO 
Guidelines for Soil Description with minor adaptations to reflect local conditions.

The tools for assessing soil properties and health are taken from the VS-Fast 
methodology (McGarry, 1996) and selected VSA methods of Shepherd (2000). During 
field visits emphasis was placed on the qualitative and quantitative assessment of soil 
physical condition. The soil properties assessed in for each site in this study include 
the soil chemical measurements; organic carbon, pH, electrical conductivity and the 
soil physical measurements; bulk density, moisture and depth. The aforementioned soil 
properties were also assessed in the MALSIS study. Three results were calculated for each 
soil quality indicator in each site with the aim of obtaining average, range and standard 
deviation values. A justification for the choice of the aforementioned soil quality indicators 
is provided below.

Bulk density
Soil bulk density directly quantifies soil compaction and provides information on soil 

texture, organic matter levels, porosity and aggregation (Hernanz et al., 2000). In view of 
this, soil bulk density is a very useful parameter describing soil quality. Volumetric pore 
space is essential for sustainable soil use, both in terms of productivity and environmental 
well-being. Soil pores contain and allow the movement of water and air. Both of which are 
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necessary for processes that produce and sustain the production of biomass. It is important 
to note that crop yields and the sustainability of farming families’ livelihoods, are also 
closely linked with soil porosity (Shaxson & Barber, 2003). A change in bulk density is also 
a direct indicator suggesting change in other soil parameters. For instance, an increased 
soil organic carbon improves soil structure, which in turn leads to a decrease in bulk 
density, improves aggregate stability, increases pore size and increases the proportion of 
air and water filled pore space (Loveland & Webb, 2002).

Soil bulk density may increase when the total porosity is reduced. This may occur 
through a variety of compaction processes, either through direct compaction or through 
mechanical, chemical or biological breakdown of soil aggregates. The consequences of an 
increase in soil bulk density are numerous and significant. Severely compacted soil leads 
to a reduction in macropore volume, with a consequent reduction in water availability 
and poorer aeration. Compacted soils also slow drainage (hydraulic conductivity) which 
in turn reduces infiltration rates and water storage capacity, which increases overland flow, 
leads to the erosion of fertile topsoil  and reduces crop production potential (biomass 
yields) (Li et al., 2007; Hernanz, Peixoto, Cerisola & Sanchez-Giron, 2000; Neves, Feller, 
Guimaraes, Medina, Tavares & Fortier, 2003). At the other extreme, soils with low bulk 
density and strength are susceptible to rapid soil erosion rates, a poor capacity to retain 
water and are subject to accelerated oxidation of soil organic matter with consequent loss 
of soil organic carbon (Sparling, Lilburne & Vojvodic-Vukovic, 2003).

The methods and standards followed in this study to obtain dry bulk density measures 
are that same as those adopted in MALSIS’s (2003); Determination of dry bulk density 
British Standard 7755 – 5.6: 1999.

Electrical conductivity
Electrical conductivity of soil is a measure of the concentration of ions in solution. 

Electric conductivity is most often used as an indicator of salinity. It is however important 
to note that where soil nitrate levels are high, electric conductivity is also an indicator of 
soil nitrate status (Lewandowski, Zumwinkle & Fish, 1999).

The methods and standards followed in this study to obtain electrical conductivity 
measures are that same as those adopted in MALSIS’s (2003); Determination of the specific 
electric conductivity ISO 11265 Soil Quality. This procedure specifies an instrumental 
method for the routine determination of the specific electrical conductivity in a water 
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extract of soil samples. The determination is carried out to get an indication of the content 
of water-soluble electrolytes in a soil.

Organic carbon
Soil organic matter is soil material that originates from organisms that were once or 

are currently living (Magdoff, 2004). Soil organic matter is comprised of approximately 
50% carbon and is rich in various nutrients including nitrogen and phosphorus. Soil 
organic matter content is dependent on a variety of parameters, namely; organic matter 
inputs and decomposition, temperature, aeration, physical and chemical properties and 
leaching. Soil organic matter strongly influences most of the functions associated with soil 
quality (Weil, Islam, Stine & Samson-Liebig, 2003). Organic carbon rapidly decreases with 
cultivation and cropping (Su, Zhao, Zhang & Zhao, 2004; Bot & Benites, 2005). A decrease 
in organic carbon has negative effects on various soil properties necessary to maintain 
soil quality and crop productivity and leads to an increase in bulk density, a decrease in 
water infiltration and water holding capacity and a decrease in aggregate stability (Matson, 
Parton, Power & Swift, 1997).

There are many advantages to increasing or maintaining high levels of soil organic 
matter, namely; reducing bulk density, increasing soil resistance to erosion and reducing 
green house gasses by carbon sequestration. Soil organic matter and agricultural 
productivity potential have also been directly and positively correlated.  Soil organic 
matter and by extension soil fertility, is increased in most agricultural soils by retaining 
crop residue on the soil surface, by rotating crops with pasture or perennials, or by adding 
organic residues (Krull, Skjemstad & Baldock, 2004). Levels of soil organic carbon reflect 
the total quantity of soil organic matter. 

The methods and standards followed in this study to obtain organic carbon measures 
are that same as those adopted in MALSIS (2003). Determination of Organic Matter 
according to Walkley & Black (Nelson & Sommers, 1982) quantifies organic carbon in soil 
samples according to a wet oxidation procedure.  This procedure is applicable to all types 
of air-dry soil samples pre-treated according to PROT 003.

pH 
The analysis of mixed soil pH is necessary in soil quality assessment. The chemical 

reactions that occur in soil are significantly influenced by soil pH. Nutrients demonstrate 
diverse ranges of pH thresholds within which the highest proportion of nutrients are in a 
plat-available form. Optimal pH ranges exist for each crop and soil inhabiting organism. 
Various parameters influence soil pH, key amongst these are climate, parent material and 



 274 Emergent Realities for Social Wellbeing: Environmental, Spatial and Social Pathways

fertiliser use. pH significantly influences various soil processes, key amongst these are; 
nutrient availability, biogeochemical cycling, contaminant sorption, structural stability 
and biological activity (scho0306bkiq-e-e pp14). Base saturation quantifies the percentage 
of the total cation exchange capacity occupied by the basic cations, calcium, magnesium, 
potassium and sodium. Base saturation is positively correlated to pH; with an increase 
in pH there is an increase in the amount of basic cations (Lewandowski et al., 1999). The 
methods and standards followed in this study to obtain pH measures are that same as 
those adopted in MALSIS (2003). The procedure followed is an instrumental method for 
the routine determination of pH using a glass electrode in a 1:5 (V/V) suspension of soil 
in water (pH-H2O); ISOIDIS 10390 Soil quality - Determination of pH.

Moisture content 
Plants can use water holding capacity is the quantity of water soil can retain that. Water 

holding capacity is influenced by soil texture, structure and organic matter (Lewandowski 
et al., 1999). The amount of water present in soil is referred to as soil moisture content. 
Soil moisture is not constant with time  and may vary. The management of soil moisture 
is important for sustained and improved crop productivity and water supply (Shaxson & 
Barber, 2003). The methods and standards followed in this study to obtain soil moisture 
measures are that same as those adopted in MALSIS (2003). The procedure followed is 
the determination of moisture in soil by oven drying; PROT 003, preparation and pre-
treatment of soil samples for physico-chemical analysis.

Soil depth 
Soil depth measures the depth from soil surface to a root restrictive layer, typically 

stone, water table, or hardpan. Shallow soils reduce water holding capacity and root 
development (Lewandowski et al., 1999).

The soil depth indicator was not assessed in MALSIS (2003). In this study, soil depth 
measures depth from surface to bedrock. The depth was measured at a grid distribution 
of between 0.5 to 1km (Figure 6) using soil augers in a total of three hundred and thirty 
locations. Due to significant differences in soil depth within the same sampling location, 
soil depth was measured three to four times; each measure was spaced 1meter east of 
the previously sampled point. The soil depth vales for each location are presented as an 
average of the four soil depth values (Figure 6).

Results Andand Discussions 
Bulk density (g/cm3)
The average soil bulk density for the 254 assessed Maltese soils in 2003 (MALSIS 1) 

fell within the following ranges; ≤0.5g/cm3, 0%; 0.51 to 1.00g/cm3, 16%; 1.01 to 1.25g/
cm3, 65%; 1.26 to 1.50g/cm3, 18%; 1.51 to 2.00g/cm3, 1%; ≥2.01g/cm3, 0%. The average 
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soil bulk density for the 109 assessed Maltese soils in 2013 (MALSIS 2) fell within the 
following ranges; ≤0.5g/cm3, 0%, 0.51 to 1.00g/cm3, 11%; 1.01 to 1.25g/cm3, 70%; 1.26 to 
1.50g/cm3, 18%; 1.51 to 2.50g/cm3, 0%; 2.51 to 3.00g/cm3, 1%; >3.00g/cm3, 0% (Figure 
1a).

Change in soil bulk density was also assessed for sites where measures in bulk 
density were carried out in 2003 (MALSIS 1) and 2013 (MALSIS 2). MALSIS 2 values 
were subtracted from MALSIS 1, such that a positive change demonstrates an increase 
in soil bulk density and a negative change suggests a fall in soil bulk density. Bulk density 
change has been calculated in 97sites and exists within the following ranges; ≤ -0.40g/cm3, 
1%; -0.39 to -0.2g/cm3, 6%, -0.19 to -0.01g/cm3, 32%; 0 g/cm3, 2%; 0.01 to 0.20g/cm3, 
58%; 0.21 to 0.40g/cm3, 6%; 0.41 to 0.60g/cm3, 3%; 0.61 to 1.00g/cm3, 0%; >1.00g/cm3, 
1% (Figure 1b). Results suggest that 59% of the locations assessed in 2013 had a greater 
average bulk soil density than the same locations in 2003 i.e. soil compaction is prevalent. 
It is worth noting that 82% of the locations subject to compaction have an increase in soil 
bulk density within the range of 0.01 to 0.20g/cm3; 0.01 to 0.1g/cm3, 44% and 0.11 to 
0.2g/cm3, 38%.

Figure 1a: Average bulk density values for M1 (2003) as the smaller circles and M2 (2013) 
values as the larger circles surrounding the smaller (M1) circles
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Figure 1b: Change in bulk density between 2003 and 2013 (M2-M1)
 
  

The average bulk density of all the sites assessed in 2003 is 1.14g/cm3. The average soil 
bulk density for the sites assessed in both 2003 and 2013 (97 sites in total) was of 1.12g 
cm3 for 2003 and 1.17g cm3 for 2013. In view of the national average soil bulk density, the 
increase in soil bulk density observed in 59% of the studied sites is significant. An increase 
in soil bulk density over time signifies soil compaction. This leads to a decrease in total 
soil porosity (macro-porosity in particularly) and hydraulic conductivity which influences 
the water release curve. Various chemical and biological parameters, namely soil organic 
carbon and mineralisable nitrogen, are also influenced by a change in soil bulk density 
(scho0306bkiq-e-e pp36).

3.1.2. Electrical conductivity (uS-1) (at 25°C)
The average electrical conductivity (uS-1) for the 270 assessed Maltese soils in 2003 

(MALSIS 1) fell within the following ranges; ≤400uS-1 (non-saline), 53%, >400 to 800uS-
1 (slightly saline), 33%; >800 to 1600uS-1  (moderately saline), 11%; >1600 to 2400uS-
1 (moderately saline), 1%; >2400 to 3200uS-1 (very saline), 1%; >3200uS-1 (extremely 
saline), 0%. The average electrical conductivity for the 143 assessed Maltese soils in 2013 
(MALSIS 2) fell within the following ranges; ≤400uS-1, 69%, >400 to 800uS-1, 22%; >800 
to 1600uS-1, 6%; >1600 to 2400uS-1, 3%; >2400uS-1, 0% (Figure 2a).
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Change in soil electrical conductivity was also assessed for sites where measures in 
electrical conductivity were carried out in 2003 (MALSIS 1) and 2013 (MALSIS 2). MALSIS 
2 values were subtracted from MALSIS 1, such that a positive change demonstrates an 
increase in electrical conductivity and a negative change suggests a decrease in electrical 
conductivity. Change in electrical conductivity has been calculated in 141 sites and exists 
within the following ranges; ≤ -2500uS-1, 1%; >-2500 to -200uS-1, 0%, >-2000 to -1500uS-
1, 1%; >-1500 to -1000 uS-1, 1%; >-1000 to -500uS-1, 9%; >-500 to -250uS-1, 13%; >-250 
to -1uS-1, 42%; 0uS-1, 0%; 1 to 250uS-1, 20%; >250 to 500uS-1, 7%; >500 to 1000uS-1, 
3%; >1000 to 1500uS-1, 0%; >1500uS-1, 3% (figure 2.B). Results suggest that 67% of the 
locations assessed in 2013 had a lower electrical conductivity than the same locations in 
2003. It is worth noting that 82% of the locations subject to reduced conductivity levels 
have a decrease in electrical conductivity within the range of -1 to -500uS-1.

Figure 2a: Average electrical conductivity values for M1 (2003) as the smaller circles and 
M2 (2013) values as the larger circles surrounding the smaller (M1) circles.
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Figure 2b: Change in electrical conductivity between 2003 and 2013 (M2-M1)
 
  

The average electrical conductivity of all the sites assessed in 2003 is 518uS-1. The 
average electrical conductivity for the sites assessed in both 2003 and 2013 (141 sites 
in total) was of 512uS-1 for 2003 and 430uS-1 for 2013. In view of the national average 
electrical conductivity, the decline in electrical conductivity observed in 67% of the 
studied sites is significant. Electrical conductivity is a measure of salinity and is also 
influenced by soil nitrate levels (Lewandowski et al., 1999). Maltese aquifers are subject to 
seawater intrusion that results in high levels of chloride concentrations in aquifers (MRA, 
2005). Thirteen of the fifteen aquifers have also been reported as being heavily polluted 
by nitrates, sourced primarily from the excessive use of natural and artificial fertilisers in 
arable agricultural practices (WCMP for the Maltese Islands, 2011). In view of the treat to 
aquifer water quality, various programmes were established with the aim of achieving good 
water quality status. Key amongst these programmes is the Nitrates Action Programme 
(2011), which proposes various measures that seek to govern the period during which 
fertilisers are applied and reduce the quantity of fertilisers used in the agricultural sector. 
Such initiatives may, in part, be an explanation for lower soil electrical conductivity 
recorded in 2013.
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Organic carbon (%)
The organic carbon (%) for the 271 assessed Maltese soils in 2003 (MALSIS 1) fell 

within the following ranges; ≤1% (very low), 13%; >1 to 1.5 (low), 25%; >1.5 to 2%, 24%; 
>2 to 5.5% (moderate), 37%; >5.5%, 1%. The average organic carbon for the 70 assessed 
Maltese soils in 2013 (MALSIS 2) fell within the following ranges; ≤1% (very low), 4%; >1 
to 1.5 (low), 17%; >1.5 to 2%, 30%; >2 to 5.5% (moderate), 45%; >5.5%, 4% (Figure 3a).

Change in organic carbon was also assessed for sites where measures in organic 
carbon were carried out in 2003 (MALSIS 1) and 2013 (MALSIS 2). MALSIS 2 values 
were subtracted from MALSIS 1, such that a positive change demonstrates an increase 
in organic carbon and a negative change suggests a decrease in organic carbon. Change 
in organic carbon has been calculated in 70 sites and exists within the following ranges; 
≥2.19%, 3%; <2.19 to 1.20%, 6%, <1.2 to 0.6%, 19%; <0.6 to 0.01%, 31%; 0%, 0%; -0.01 to 
>-0.6%, 27%; -0.06 to >-1.2%, 9%; -1.2 to >-2.2%, 4%; ≤-2.2%, 1% (Figure 3b). Results 
suggest that 59% of the locations assessed in 2013 had higher organic carbon content than 
the same locations in 2003. The average organic carbon of all the sites assessed in 2003 is 
1.98%. The average for soil organic carbon content for the sites assessed in both 2003 and 
2013 (70 sites in total) was of 2.11% for 2003 and 2.30% for 2013. 

Figure 3a: Average organic carbon values for M1 (2003) as the smaller circles and M2 
(2013) values as the larger circles surrounding the smaller (M1) circles
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Figure 3b: Change in organic carbon between 2003 and 2013 (M2-M1)
 
  

The increase in soil organic carbon strongly and positively influences most of 
the functions associated with soil quality (Weil et al., 2003). The Rural Development 
Programme for Malta proposes a number of measures that aim to combat soil degradation, 
especially in terms of the decline of organic matter  and to reduce the level of input of 
chemical fertiliser. The observed increase in soil organic matter may in part be the result 
of such initiatives. An additional benefit of an increase in soil organic carbon is that, 
through carbon sequestration, soil represents a significant sink for atmospheric carbon 
dioxide (CO2). Climate change mitigation may be enhanced by storing carbon in plant 
biomass and soils and by reducing emissions from agriculture (Jenkinson & Johnston, 
1977; Schlesinger, 1990).

pH (1:5)
Soil pH (1:5) for the 270 assessed Maltese soils in 2003 (MALSIS 1) fell within the 

following ranges; >8.5 (alkaline), 1%; 8.5 to >8 (slightly alkaline), 56%; 8 to >7.5, 43%; 
<7.5, 1%. The average organic carbon for the 41 assessed Maltese soils in 2013 (MALSIS 
2) fell within the following ranges; >8.5 (alkaline), 0%; 8.5 to >8 (slightly alkaline), 39%; 8 
to >7.5, 61%; <7.5, 0% (Figure 4a).
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Figure 4: Average pH values for M1 (2003) as the smaller circles and M2 (2013) values as 
the larger circles surrounding the smaller (M1) circles

 
  

Change in pH was also assessed for sites where measures in pH were carried out in 
2003 (MALSIS 1) and 2013 (MALSIS 2). MALSIS 2 values were subtracted from MALSIS 
1, such that a positive change demonstrates an increase in pH (becoming alkaline) and 
a negative change suggests a decrease in pH (becoming acidic). Change in pH has been 
calculated in 40 sites and exists within the following ranges; ≥0.3%, 3%; <0.3 to 0.2, 8%, 
<0.2 to 0.12, 5%; <0.12 to 0.01, 20%; 0 to -0.06, 13%, <0.06 to -15, 10%; <-0.15 to -0.24, 
18%; <-0.24 to -0.33, 8%; <-0.33, 18%. Results suggest that 65% of the locations assessed 
in 2013 were more acidic than the same locations in 2003. The average pH (1.5) of all the 
sites assessed in 2003 is 8.02. The pH (1:5) for the sites assessed in both 2003 and 2013 (40 
sites in total) was of 8.01 for 2003 and 7.92 for 2013 (Figure 4b).
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Figure 4b: Change in pH between 2003 and 2013 (M2-M1)
 
  

Moisture content (%)
Soil moisture for the 270 assessed Maltese soils in 2003 (MALSIS 1) fell within the 

following ranges; 0 to 2%, 9%; >2 to 4%, 52%; >4 to 6%, 30%; >6 to 10%, 9%; >10%, 0% 
(Figure 5a). The average organic carbon for the 41 assessed Maltese soils in 2013 (MALSIS 
2) fell within the following ranges; 0 to 2%, 1%; >2 to 4%, 42%; >4 to 6%, 39%; >6 to 10%, 
15%; >10%, 3% (Figure 5a).

Change in moisture content was also assessed for sites where measures in moisture 
content were carried out in 2003 (MALSIS 1) and 2013 (MALSIS 2). MALSIS 2 values 
were subtracted from MALSIS 1, such that a positive change demonstrates an increase 
in moisture and a negative change suggests a decrease in moisture. Change in moisture 
content has been calculated in 148 sites and exists within the following ranges; ≥9.2%, 1%; 
<9.2 to 8%, 1%, <8 to 4, 5%; <4 to 2%, 14%; <2 to 0%, 40%, <-0.01 to -2%, 29%; <-2 to -4%, 
9%; <4%, 1% (Figure 5b). Results suggest that 61% of the locations assessed in 2013 had 
higher soil moisture content than the same locations in 2003. The average soil moisture of 
all the sites assessed in 2003 is 3.77%. The soil moisture for the sites assessed in both 2003 
and 2013 (148 sites in total) was of 3.97% for 2003 and 4.50% for 2013.
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Figure 5a: Average moisture content values for M1 (2003) as the smaller circles and M2 
(2013) values as the larger circles surrounding the smaller (M1) circles
 

  

Figure 5b: Change in moisture content between 2003 and 2013 (M2-M1)
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Soil depth
Soil depth was not measured in Maltese 2003 (MALSIS 1). In view of the significant 

lack of systematic quantitative National soil depth data, soil depth was assessed in 343 sites 
in 2013 (MALSIS 2). The recoded average values fell within the following ranges; 0cm, 2%; 
>0 to 10cm, 9%; >10 to 20cm, 12%, >20 to 40cm, 20%; >40 to 60cm, 17%; >60 to 100cm, 
17%; >100 to <200cm, 7%; >200cm, 17% (Figure 6).

Figure 6: Top figure displays average soil depth values established in M2 (soil depth not 
calculated in M1)
 

  

The average National soil depth in areas where soil was recoded and did not exceed 200cm, 
was of 47.76cm. Shallow soils, less than 10cm in depth, are often associated with plateaus 
and surfaces subject to soil erosion (e.g. inclined valley sides). Deeper soils, ranging from 
10 to 100cm depth, are typically associated with agricultural areas on relatively flat and 
moderately include surfaces. Agricultural areas containing soil within the aforementioned 
depth range, located in included valley sides, often retain soil through the construction and 
maintenance of soil retaining rubble walls. These structures are paramount to maintain 
soil in place and where absent or not restored, rapid soil erosion ensues (Sultana, 2015). 
As suggested by Lang (1960), in this study soils deeper than 100cm were only observed in 
areas associated with valley beds where material eroded in with the catchment is deposited.
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Statistical significance (paired t-test)
The paired t-test calculates the difference within each before-and-after pair of 

measurements, determines the mean of these changes and reports whether this mean of 
the differences is statistically significant. A paired t-test is used to compare two population 
means where you have two samples in which observations in one sample can be paired 
with observations in the other sample. In this study the paired t-test is applied to assess 
statistical significance of before (M1, 2003) and-after (M2, 2013) observations for each 
assessed soil indicator. The difference in soil bulk density results is statistically significant, 
for electrical conductivity is is not quite statistically significant, for organic carbon it is not 
statistically significant, and for moisture content it is very statistically significant. Results 
are displayed in Table 1.

Table 1: Statistical significance with the paired-t test

  

Conclusions
The sampling locations identified for this study are the same as those studied in 

MALSIS (2003) and are based on a 1km spaced grid distribution across Malta and Gozo. 
All grid points located within soil containing natural and agricultural areas were sampled 
in this study. The study present involved the survey of 280 sites across Malta and Gozo 
(Figures 1 to 6).

Bulk density change has been calculated in 97sites. Results suggest that 59% of the 
locations assessed in 2013 had a greater average bulk soil density than the same locations 
in 2003 i.e. soil compaction is prevalent. The average soil bulk density for the sites assessed 
in both 2003 and 2013 (97 sites in total) was of 1.12g cm3 for 2003 and 1.17g cm3 for 2013.

Change in electrical conductivity has been calculated in 141 sites. Results suggest 
that 67% of the locations assessed in 2013 had a lower electrical conductivity than the 
same locations in 2003. The average electrical conductivity for the sites assessed in 
both 2003 and 2013 (141 sites in total) was of 512uS-1 for 2003 and 430uS-1 for 2013. 
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Electrical conductivity is a measure of salinity and is also influenced by soil nitrate levels 
(Lewandowski et al., 1999). A number of national initiatives, key amongst which may 
be the Nitrates Action Programme (2011), may, in part, be an explanation for lower soil 
electrical conductivity recorded in 2013.

Change in organic carbon has been calculated in 70 sites. Results suggest that 59% of 
the locations assessed in 2013 had higher organic carbon content than the same locations 
in 2003. The average for soil organic carbon content for the sites assessed in both 2003 
and 2013 (70 sites in total) was of 2.11% for 2003 and 2.30% for 2013. The increase in soil 
organic carbon strongly and positively influences most of the functions associated with 
soil quality (Weil et al., 2003). An additional benefit of an increase in soil organic carbon 
is that, through carbon sequestration, soil represents a significant sink for atmospheric 
carbon dioxide (CO2).

Change in pH has been calculated in 40 sites. Results suggest that 65% of the locations 
assessed in 2013 were more acidic than the same locations in 2003. The average pH (1.5) 
of all the sites assessed in 2003 is 8.02.

Change in moisture content has been calculated in 148 sites. Results suggest that 61% 
of the locations assessed in 2013 had higher soil moisture content than the same locations 
in 2003. The soil moisture for the sites assessed in both 2003 and 2013 (148 sites in total) 
was of 3.97% for 2003 and 4.50% for 2013.

Average National soil depth in areas where soil was recoded and did not exceed 200cm, 
was of 47.76cm. Shallow soils, less than 10cm in depth, are often associated with plateaus 
and surfaces subject to soil erosion (e.g. inclined valley sides). Deeper soils, ranging from 
10 to 100cm depth, are typically associated with agricultural areas on relatively flat and 
moderately include surfaces. Agricultural areas containing soil within the aforementioned 
depth range, located in included valley sides, often retain soil through the construction 
and maintenance of soil retaining rubble walls.
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