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We present the exact neutral black string solution in locally conformal invariant Weyl gravity. As a

special case, the general relativity analogue still can be attained; however, only as a subfamily of

solutions. Our solution contains a linear term that would thus result in a potential that grows linearly over

large distances. This may have implications for exotic astrophysical structures as well as matter fields on

the extremely small scale.
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I. INTRODUCTION

There is a broad consensus in the community that
Einstein’s theory of general relativity describes well the
behavior of gravitating bodies in the solar system. This
arose partly because of the remarkable successes of general
relativity in predicting the outcomes of the classical tests.
However, when the galactic scale and beyond is consid-
ered, there has been a divide; in particular, the split can be
classified into two broad categories. One method advanced
is that of mass inference, where dark matter and then dark
energy is placed in the galactic and then the cosmological
scale such that the observations are an outcome of the
theory using standard Newtonian dynamics. The other,
which has received much attention in recent years, [1] is
where the model of gravity is modified in some way such
that either no or little dark matter is added. The proviso of
these models is, however, that in the solar system scale and
up to current testability, the theories must agree with gen-
eral relativity in order to preserve the gains made thus far.

The choice of the Einstein-Hilbert action, which pro-
duces general relativity, is constrained by the requirement
that the resulting equations of motion be no higher than
second order. This renders field equations that are rela-
tively simple compared with other theories, but which fail
to describe observations on scales much higher than the
solar system without placing a large amount of dark matter
to account for the resulting galactic rotational curves. For
this reason, a growing number of alternative actions are
being pursued, some driven by observation, others by
foundational development. One such model of the latter
type is conformal Weyl gravity, introduced in Refs. [2–4].
This theory employs the principle of local conformal in-
variance of the spacetime manifold as the supplementary
condition that fixes the gravitational action, instead of the
requirement that the equations of motion be no higher than

second order. This leads to fourth-order equations of mo-
tion for the gravitational field. Nonetheless, the assumption
of the local invariance principle, besides being in line with
the way actions are chosen in field theory, leads to a unique
action of conformal Weyl gravity among all other fourth-
order theory actions. Furthermore, this invariance principle
may also provide a better link with the fundamental quan-
tum nature of reality due to the added symmetry inherent in
the model.
The outline of the paper is as follows. In Sec. II, we give

an introduction of the field equations of conformal Weyl
gravity with a brief review of the work done on the spheri-
cally symmetric case. In Sec. III, we derive a static and
cylindrically symmetric solution to the field equations in
Weyl gravity and compare it with the static cylindrically
symmetric solution in general relativity obtained in
Ref. [5]. Some characteristics of this new solution, such
as the temperature and surface gravity of the cylindrical
event horizon, are obtained in Sec. IV. Finally, we end in
Sec. V with a discussion and some conclusions. Note that
we use units where G ¼ 1 ¼ c.

II. CONFORMAL GRAVITY

The action for general relativity is given by

S ¼ � 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ; (1)

where the action for the observer is suppressed, g is the
determinant of the metric tensor, and R is the Ricci scalar.
Despite passing the classical tests and every observation to
date, an issue naturally arises in the derivation of this
action: Namely, why should the condition that the resulting
equations of motion be second-order guide the choice of
action for gravity? That is, should not the order cutoff be
chosen in accordance with some postulate of nature? One
possible alternative, that when constrained appropriately
can still comply with the classical tests, is one based on a
local invariance principle. Besides the local gauge invari-
ance to which general relativity is subject, we consider the
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singular restriction of local conformal invariance in choos-
ing the action for our gravity theory. This means that the
manifold ðM; gÞ which emerges must be invariant to local
stretchings [6]

g��ðxÞ ! ~g��ðxÞ ¼ �2ðxÞg��ðxÞ; (2)

where x represents spacetime positions on the manifold,
and where the argument is not suppressed to emphasize
that the conformal invariance takes place locally.

One of the immediate consequences of this postulate is
that the artificially implanted cosmological constant, �,
present in the action for general relativity in Eq. (1), must
be withdrawn, since not to do so would introduce a length
scale and thus break the conformal symmetry in the theory.
However, as will be shown later, the same term naturally
emerges out of the metric, which provides further circum-
stantial evidence for the effectiveness of the principle
under consideration.

Turning now to the Weyl tensor

C����¼R�����1

2
ðg��R���g��R���g��R��þg��R��Þ

þ1

6
Rðg��g���g��g��Þ; (3)

which satisfies the conformal invariance condition [7]

C���� ! ~C���� ¼ �2ðxÞC����; (4)

necessary to render a theory in the first place. Hence, this
can be safely taken to be the unique Lagrangian density
for Weyl gravity, since due to its very locally conformal
invariant nature, it must be unique up to such
transformations.

The consequence of this is that the Weyl action then
becomes [3]

IW ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L ¼ ��

Z
d4x

ffiffiffiffiffiffiffi�g
p

C����C
����

¼ �2�
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R��R

�� � 1

3
R2

�
; (5)

where the last equality is the simplest representation of the
action, obtained by applying the Lanczos identity [8] to the
Weyl tensor. Also, � is a dimensionless parameter which is
usually chosen to be positive in order to satisfy the
Newtonian lower limit. This parameter is the coupling
constant of conformal gravity.

It has become quite popular recently to take the
Einstein-Hilbert action present in Eq. (1) and add terms
which then vanish as the scale of the phenomena is reduced
so that they take place within the solar system. This method
of generating extra fields that make part of gravity comes
in various forms, among which are [9] fðRÞ and [10] fðTÞ
gravity, where T is the torsion scalar. However, the dis-
tinction between these additional terms andWeyl gravity is
that the action itself is different; that is, the driving force
of change is the additional local conformal invariance

postulate in the theory. Thus, instead of implanting a
term in the action to explain new phenomenology at higher
scales, in Weyl gravity the conformal constraint results as
an outcome in the theory that only predicts divergences
from Einstein-Hilbert theory when scales greater than the
solar system are considered, closing at least one chapter in
general relativity—that of the order of the theory.
Taking now the variation of the action in Eq. (5) with

respect to the metric leads to the field equations [6]

ffiffiffiffiffiffiffi�g
p

g��g��
�IW
�g��

¼ �2�W�� ¼ � 1

2
T��; (6)

where T�� is the stress-energy tensor and

W�� ¼ 2C�
��

�
;�� þ C�

��
�R�� (7)

is the Bach tensor. Incidentally, due to the form of the field
equations, whenever the Ricci tensor R�� vanishes W��

also vanishes, so that every vacuum solution of Einstein-
Hilbert gravity also leads to a solution of Weyl gravity, and
thus all the work done carries on into Weyl gravity natu-
rally and without the need of alteration. Given, however,
the increase in complexity in Weyl gravity, the converse
does not automatically follow, meaning that not every
vacuum solution from Weyl gravity implies a solution
for general relativity, so that a new class of solutions are
borne out.
This property emerges from the fact that W�� vanishes

not only when the Ricci tensor vanishes, but also by other
means, which can be seen by looking at Eqs. (6) and (7).
Hence, the tensor that now characterizes the geometry,
W��, will not exactly replace the Ricci tensor.

Furthermore, in general, the fourth-order equations that
make upW�� contain a several-fold increase in complexity

for the field equations, which calls into question whether it
will indeed be possible to find a solution with more gen-
erality than those found in general relativity.
For the task at hand and the problem addressed in this

paper—that of determining the vacuum cylindrical space-
time line element—we consider the metric tensor in its
most general form possible, g�� ¼ diagð�bð	Þ;
að	Þ; cð	Þ; dð	ÞÞ, with the only further condition imposed
being that the spacetime is static, since we are interested
currently in the simpler case of a neutral nonrotating
spacetime.
At present, a number of conformal solutions have been

found [3,11–18] and studied in quite some detail. The case
of spherical symmetry was studied by Mannheim and
Kazanas in Ref. [3], where the initial problem seemed
intractable but after a number of coordinate transforma-
tions a solution was indeed found. This exact static and
spherically symmetric vacuum solution is given, up to a
conformal factor, by the metric

ds2 ¼ �BðrÞdt2 þ dr2

BðrÞ þ r2ðd
2 þ sin2
d�2Þ; (8)
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where

BðrÞ ¼ 1� �ð2� 3��Þ
r

� 3��þ �r� kr2; (9)

and �, �, and k are integration constants. This solution
encompasses the Schwarzschild solution (� ¼ k ¼ 0) and
the Schwarzschild-de Sitter solution (� ¼ 0) as special
cases. In this solution, the parameter �measures the depar-
ture ofWeyl theory from general relativity, and so for small
enough �, both theories have similar predictions. This
parameter has dimensions of acceleration, and so Eq. (9)
provides a characteristic, constant acceleration, which may
be associated (in a nonobvious way) with the cosmological
setting. Given the asymptotically nonflat character of the
solution, the parameter � has been associated [3] with the
inverse Hubble length, i.e., � ’ 1=RH, which for a typical
galaxy implies that the effects from the linear�r term in the
metric become comparable to those due to the Newtonian
potential term 2�=r on distance scales roughly equal to the
size of the galaxy—a fact that led Mannheim and Kazanas
to produce fits to the galactic rotation curves. The effect of
the linear term �r in the metric on classical tests, particu-
larly the bending of light, has been studied in detail in
Refs. [19–23]. The solution Eq. (9) was also generalized
both to rotating and charged solutions in Ref. [11], herald-
ing the complete generalization of spherical symmetry from
general relativity into Weyl gravity.

Following the success of spherical symmetry in confor-
mal gravity, research shifted to topological black holes,
which culminated in Refs. [15,16], where the question of
conformal topological black holes was explored in general
terms. Besides providing new solutions, these works
showed that in conformal gravity, topological black hole
solutions with non-negative scalar curvature k at infinity
are possible, unlike general relativity where only asymp-
totically anti-de Sitter (AdS) topological black holes are
possible. The only exception is the toroidal case, S1 � S1,
where the black hole interpretation is only possible for
k < 0 as in AdS gravity.

Besides compact spacetimes, cosmological effects have
also been studied. Indeed, in Ref. [24] cosmological con-
formal gravity fluctuations were studied and the dark en-
ergy problem is discussed in this setting. In particular, the
theory is put in a different setting so that it can be set
against cosmological data, thus providing the way forward
for further study into the local divergences from the iso-
tropic and homogenous cosmos.

We now focus on the class of spacetimes in Weyl gravity
with cylindrical symmetry. A number of analytic and nu-
merical solutions were presented in Refs. [17,18], includ-
ing a generalization of the Melvin solution, as well as a
study of the magnetic properties of conformal cylindrical
solutions. However, the cylindrical solutions were obtained
in a gauge that did not naturally generalize the well-known
black string solution in general relativity, given by the
Lemos metric [5]

ds2 ¼ �
�
�2r2 � b

�r

�
dt2 þ dr2

�2r2 � ðb=�rÞ
þ r2d�2 þ �2r2dz2; (10)

with the coordinate ranges

�1< t <1; 0 � r <1;

0 � �< 2�; �1< z <1; (11)

and with � ¼
ffiffiffiffiffiffiffiffi
� �

3

q
, b ¼ M=2, and M being mass.

Our aim is to find a Lemos-like black string solution in
Weyl gravity similar to what Mannheim and Kazanas did in
the spherically symmetric case discussed above, and then
compare this with the Lemos metric to study further any
similarities and differences between Weyl and Einstein’s
theories.

III. THE CONFORMAL CYLINDRICAL METRIC

In order to solve the conformal field equations with a
cylindrically symmetric metric tensor, we consider a gen-
eral line element in cylindrical coordinates ðt; 	;�; zÞ:
ds2 ¼ �bð	Þdt2 þ að	Þd	2 þ cð	Þd�2 þ dð	Þdz2: (12)

Since in cylindrical topology the background spacetime
is not curved along the axial direction or over the angular
coordinate, the metric elements will be independent of
both z and �. Moreover, since we are looking for a con-
formal generalization of the Lemos metric, Eq. (10), in the
spirit of Ref. [3], we can consider the Lemos gauge
such that

Cð	Þ ¼ 	2 and Dð	Þ ¼ �2	2: (13)

Following a similar procedure as in Ref. [3], we refor-
mulate the metric in order to reduce the computation
required to solve the field equations. The line element
may be rewritten as

ds2 ¼ 	2ðrÞ
r2

�
� r2bðrÞ

	2ðrÞ dt
2 þ r2aðrÞ	02ðrÞ

	2ðrÞ dr2

þ r2d�2 þ �2r2dz2
�
; (14)

where 	ðrÞ is an arbitrary function of r. Choosing this
dependence such thatZ d	

	2ðrÞ ¼ � 1

	ðrÞ ¼
Z dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðrÞbðrÞp (15)

then yields

ds2 ¼ 	2ðrÞ
r2

½�BðrÞdt2 þ AðrÞdr2 þ r2d�2 þ �2r2dz2�;
(16)

with AðrÞ ¼ 1=BðrÞ and BðrÞ ¼ r2bðrÞ
	2ðrÞ . The metric that

results is thus conformally related to the standard general
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line element for cylindrical spacetimes with AðrÞ ¼
1=BðrÞ. Conformal transformations are allowed through
Eq. (2), so we take

g�� ! r2	�2ðrÞg��; (17)

and hence the general line element

ds2 ¼ �BðrÞdt2 þ dr2

BðrÞ þ r2d�2 þ �2r2dz2 (18)

is formulated. Hence, the metric elements may now be
determined up to an arbitrary overall r-dependent confor-
mal factor. Furthermore, since vacuum solutions of
W��ð	Þ will be considered, W��ðrÞ must also vanish,

from which it follows that the information is completely
transferred to W��ðrÞ so that this will contain all observ-

able information in the vacuum case.
The method used in general relativity of calculating the

Ricci tensors and then equating them to a vanishing stress-
energy tensor becomes far too complicated in conformal
gravity given Eq. (7). Indeed, this case strengthens when
the covariant derivative is considered. Instead, as was done

in Ref. [3], we calculate the Euler-Lagrange equations
using the generic line element

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2d�2 þ �2r2dz2; (19)

which adopts the Lemos gauge for cylindrically symmetric
spacetimes, and then substitute AðrÞ ¼ 1=BðrÞ.
The Euler-Lagrange equations turn out to be second

order [3]

ffiffiffiffiffiffiffi�g
p

W�� ¼ �I

�g��

¼ @

@g��

ð ffiffiffiffiffiffiffi�g
p ~LÞ � @

@x�

� ffiffiffiffiffiffiffi�g
p @ ~L

@ðg��Þ0
�

þ @2

@ðx�Þ2
� ffiffiffiffiffiffiffi�g
p @ ~L

@ðg��Þ00
�
; (20)

where 0 indicates differentiation with respect to r and ~L ¼
R��R

�� � R2=3. We consider only the diagonal elements

of W��, which only vary with respect to the radial coor-
dinate, since the line element in Eq. (19) has elements that
depend only on that coordinate. The previous variation is
taken for �I=�A and �I=�B, respectively, yielding

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r4AB

p
Wrr¼� �2

48AðrÞ4BðrÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4�2AðrÞBðrÞp ½�7r2BðrÞ2A0ðrÞ2ðrB0ðrÞ�2BðrÞÞ2þ2r2AðrÞBðrÞð2BðrÞ

�rB0ðrÞÞð4BðrÞ2A00ðrÞþ3rA0ðrÞB0ðrÞ2�2BðrÞðrA00ðrÞB0ðrÞþA0ðrÞð2rB00ðrÞþB0ðrÞÞÞÞþAðrÞ2ð�7r4B0ðrÞ4
þ4r3BðrÞB0ðrÞ2ð3rB00ðrÞþ5B0ðrÞÞþ4r2BðrÞ2ðr2B00ðrÞ2þB0ðrÞ2�2rB0ðrÞðrBð3ÞðrÞþ6B00ðrÞÞÞ
þ16rBðrÞ3ðrðrBð3ÞðrÞþ2B00ðrÞÞ�2B0ðrÞÞþ16BðrÞ4Þ� (21)

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r4AB

p
Wtt ¼ ��2

48AðrÞ4BðrÞ4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4�2AðrÞBðrÞp ½56r3BðrÞ3A0ðrÞ3ðrB0ðrÞ � 2BðrÞÞ þ r2AðrÞBðrÞ2A0ðrÞð57r2A0ðrÞB0ðrÞ2

� 4rBðrÞð13rA00ðrÞB0ðrÞ þ A0ðrÞð19rB00ðrÞ þ 13B0ðrÞÞÞ þ 4BðrÞ2ð26rA00ðrÞ þ 7A0ðrÞÞÞ
þ 2rAðrÞ2BðrÞð29r3A0ðrÞB0ðrÞ3 � 6r2BðrÞB0ðrÞð2rA00ðrÞB0ðrÞ þ A0ðrÞð9rB00ðrÞ þ 4B0ðrÞÞÞ
þ 4rBðrÞ2ðA0ðrÞðrð6rBð3ÞðrÞ þ 13B00ðrÞÞ � 5B0ðrÞÞ þ rð4rA00ðrÞB00ðrÞ þ ðrAð3ÞðrÞ þ 3A00ðrÞÞB0ðrÞÞÞ
þ 8BðrÞ3ð2A0ðrÞ � rðrAð3ÞðrÞ þ A00ðrÞÞÞÞ þ AðrÞ3ð�16r3ð4Bð3ÞðrÞ þ rBð4ÞðrÞÞBðrÞ3 þ 49r4B0ðrÞ4
� 4r3BðrÞB0ðrÞ2ð29rB00ðrÞ þ 11B0ðrÞÞ þ 4r2BðrÞ2ð9r2B00ðrÞ2 � 5B0ðrÞ2 þ 2rB0ðrÞð6rBð3ÞðrÞ
þ 13B00ðrÞÞÞ þ 16BðrÞ4Þ�: (22)

The other two elements, W�� and Wzz, do not need to be
taken into account, since we have a sufficient number of
constraints. These two further equations provide us with an
independent check of any solution that results.

We now restrict ourselves to the line element in Eq. (19),
taking AðrÞ to be the reciprocal of BðrÞ. This implies that
we need only one constraint to determine the line element,
since BðrÞ turns out to be the only unknown. Hence, all the
information is contained inWrr, irrespective of the number
of derivatives it contains. Taking the vacuum solution,
Wrr ¼ 0, the resulting equation to solve becomes

r2ð�r2B00ðrÞ2 � 4B0ðrÞ2 þ 2rB0ðrÞðrBð3ÞðrÞ þ 2B00ðrÞÞÞ
� 4rBðrÞðrðrBð3ÞðrÞ þ B00ðrÞÞ � 2B0ðrÞÞ � 4BðrÞ2 ¼ 0;

(23)

which can in principle be solved analytically.
In order to reduce the overall order of the differential

equation, we transform BðrÞ by
BðrÞ ¼ r2lðrÞ; (24)

which enables us to rewrite Eq. (23) as
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� r2l00ðrÞ2 þ 8l0ðrÞ2 þ 2rl0ðrÞðrlð3ÞðrÞ þ 4l00ðrÞÞ ¼ 0;

(25)

hence reducing the order when the substitution

l0ðrÞ ¼ yðrÞ (26)

is taken. However since, ignoring derivatives, the function
lðrÞ appears twice in every term, we transform the plane by
the exponential function

yðrÞ ¼ efðrÞ; (27)

which surprisingly yields the relatively simple expression

2r2f00ðrÞ þ r2f0ðrÞ2 þ 8rf0ðrÞ þ 8 ¼ 0: (28)

Again reducing the overall order of the differential equa-
tion through

f0ðrÞ ¼ hðrÞ; (29)

so that the arbitrary function is constrained by

2r2h0ðrÞ þ r2hðrÞ2 þ 8rhðrÞ þ 8 ¼ 0; (30)

the first integral is then

hðrÞ ¼ 1

aþ ðr=2Þ �
4

r
; (31)

and repeating each substitution in reverse, we arrive at the
final unknown in the line element in Eq. (19):

BðrÞ ¼ 4a2c

2r
þ 2acþ crþ dr2; (32)

where a, c, and d are constants of integration.
The result in Eq. (32) has all the terms of the Lemos

analogue; however, due to the placement of the constants,
the exact form of the Lemos line element in Eq. (10) cannot
be recovered. For this, we take the transformation

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21b2b3 � 3b4

b2b3

s
; (33)

c ¼ b3
4
; (34)

d ¼ b22; (35)

thus solving the problem of a conformal generalization of
the Lemos metric where BðrÞ is

BðrÞ ¼ b21b2b3 � 3b4
3b2r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3ðb21b2b3 � 3b4Þ

4b2

s
þ b3r

4

þ b22r
2; (36)

or more conveniently, in the form

A�1ðrÞ ¼ BðrÞ ¼ �

r
þ

ffiffiffiffiffiffiffiffiffiffi
3��

4

s
þ �r

4
þ k2r2; (37)

where

� ¼ b21b2b3 � 3b4
3b2

; (38)

� ¼ b3; (39)

k ¼ b2; (40)

from which we can regain the Lemos line element by
setting the emergent conformal factor � to zero. Hence,
the conformal Lemos-like metric can be found without
taking any approximations at all. Moreover, the solution
in Eq. (37) or Eq. (32) also satisfies the remaining vacuum
field equations Wii ¼ 0 for i ¼ t, �, and z.
Given the metric components in Eq. (37), we compare

the conformal line element with the same line element
derived in general relativity in Eq. (10). This is achieved
by setting the new constant conformal factor � to zero and
relating the remaining components, which would imply
that

k ¼ �; (41)

� ¼ � b

�
; (42)

hence we recover the expected metric for general
relativity [5].
Lastly, we close by considering the curvature of the

cylindrical metric; in particular, the Ricci curvature invari-
ant turns out to be given by

R ¼ g��R�� ¼ � 24k2r2 þ 3r�þ 2
ffiffiffiffiffiffiffiffiffiffi
3��

p
2r2

: (43)

The simplicity of this expression stems from the fact that
the only nonvanishing Ricci tensor components are on the
diagonal and depend only on one of the spacelike coordi-
nates simplifying many of the derivatives and sums. In a
similar way, the Kretschmann scalar invariant that results
also turns out to be remarkably simple:

K ¼ R���
R���


¼ 1

2r6

�
24�2 þ 6��r2 þ �2r4 þ 12�k2r5

þ 48k4r6 þ 8
ffiffiffiffiffiffiffiffiffiffi
3��

p
r

�
�þ �r2

4
þ k2r3

��
: (44)

Through the above scalar invariant, the physical singularity
is found to be located at r ¼ 0.

IV. TEMPERATURE

The Hawking temperature of the metric in Eq. (19) with
AðrÞ and BðrÞ as defined in Eq. (37) may provide interest-
ing insight into the quantum nature of the surrounding
spacetime. The surface gravity that forms the underpinning
of temperature by the relationship TH ¼ �

2� is defined by

the formula [25]
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�2 ¼ � 1

2
ðr���Þðr½����Þ; (45)

where �� is the Killing field generating the horizon rh
where BðrhÞ ¼ 0. This is given by

rh ¼ 1

12k2

�
��þ �2 � 24k2

ffiffiffiffiffiffiffiffiffi
3b�

p
�

þ �

�
; (46)

where

�3 ¼ �864�k4 � �3 þ 36�k2
ffiffiffiffiffiffiffiffiffiffi
3��

p
þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�k4ð1728�k4 þ �3 � 48�k2

ffiffiffiffiffiffiffiffiffiffi
3��

p Þ
q

; (47)

In the case of metric Eq. (19), the surface gravity given by
Eq. (45) gives

� ¼ � �

2r2
þ �

8
þ k2r; (48)

and so the temperature is found to be

TH ¼ �

2�
¼ 1

�

�
� �

4r2h
þ �

16
þ k2rh

2

�
: (49)

For � ¼ 0, this reduces to the general relativity result [5] as
expected.

V. CONCLUSION

The first point to note about our solution is that it is a
vacuum solution (W�� ¼ 0) with no cosmological constant

term in the field equations, whereas the Lemos metric,
which is retrieved by taking � ¼ 0 in Eq. (37), is a solution
of Einstein’s field equations in AdS gravity. The constant �
thus measures the departure of Weyl gravity from general
relativity. Comparing Eq. (37) with the Lemos metric in
Eq. (10), which is also a vacuum solution of conformal
gravity, we note that � must be related to the negative of

the mass and k ¼ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3
p

is related to the cosmo-
logical constant.
General relativity is by design a strong field theory in

that in the weak field, it asymptotes to Newtonian gravity.
Conformal (Weyl) gravity, on the other hand, aims to
derive a theory of gravity using no restrictions on the order
of the field equations. Applying just the invariance princi-
ple in Eq. (2), one can still achieve the standard Newtonian
phenomenology in the weak field limit, [14] and possibly a
solution to the dark matter and dark energy problems. The
solution found in this paper will not be applicable to most
astrophysical sources, since for the most part they are
organized with spherical symmetry. On the other hand,
for theories such as string theory, the new solution pre-
sented in this paper may have uses on scales just above the
Planck scale [26]. However, in any case, detection of any
such objects would in all likelihood be in the form of
Hawking radiation, which is one possible avenue of future
development for this metric. There may also be stringlike
applications in a number of other theories, such as with the
use of the AdS/conformal field theories correspondence
duality.
In this paper, we derive the static cylindrically neutral

metric for Weyl conformal gravity. The next step would be
to generalize this to the whole family of charged rotating
cylindrically symmetric solutions, as was done by
Mannheim and Kazanas [11] for the Kerr-Neuman general
relativity analogue. This adds to the current cylindrically
symmetric solutions in Refs. [17,18] in that the field equa-
tions are solved analytically in a gauge which naturally
generalizes the black string solutions of Einstein’s gravity.
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