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ABSTRACT
This paper focuses on utilizing two different Bayesian methods to deal with a variety of
toy problems which occur in data analysis. In particular we implement the Variational
Bayesian and Nested Sampling methods to tackle the problems of polynomial selection
and Gaussian Mixture Models, comparing the algorithms in terms of processing speed
and accuracy. In the problems tackled here it is the Variational Bayesian algorithms
which are the faster though both results give similar results.
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1 INTRODUCTION

Parameter estimation within the Bayesian framework rests
on the application of Bayes theorem to data analysis. If we
consider a parameter set θ, a data set D and all prior knowl-
edge I Bayes theorem tells us that:

P (θ|D, I) =
L(D|θ, I)P (θ|I)

P (D|I) (1)

Here we have:

• The Posterior Probability P (θ|D, I) which represents
our belief in the hypotheses once we have analysed the data
available.
• The Prior Probability P (θ|I) which encodes our previ-

ous knowledge of the system under examination.
• The Likelihood Function L(D|θ, I) which is the proba-

bility of observing the data for a given set of parameters.
• The Evidence P (D|I) which is a normalisation constant

given by the probability of the data.

In the specific case when the problem being faced is one of
parameter estimation we can ignore the denominator which
is independent of θ. We thus get:

P (θ|D, I) ∝ L(D|θ, I)P (θ|I) (2)

Here the prior knowledge is being transformed by the data
through the likelihood to give the posterior distribution
which embodies our new beliefs.

Bayesian methodology can also be applied to model se-
lection scenarios to choose between competing hypotheses
or models Mi. Given a model M we can write down, using
Bayes theorem, the probability that M is the correct model
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given the data D and our previous knowledge I:

P (M |D, I) =
P (D|M, I)P (M |I)

P (D|I) (3)

This is analogous to Equation (2) which deals with parame-
ter estimation: just as the posterior probability distribution
function for a parameter is proportional to its prior times
its likelihood, so the posterior probability for a model as a
whole is proportional to its prior probability times its Evi-
dence. P (D|I) itself cannot be calculated but model selection
can still be performed by comparing the probability of two
models M1 and M2 using a ratio, called the posterior ratio
or odd’s ratio:

P (M1|D, I)

P (M2|D, I)
=
P (M1|I)

P (M2|I)
× P (D|M1, I)

P (D|,M2, I)
(4)

When we have no prior preference for one model over an-
other Equation (4) reduces to a ratio of Evidences. Marginil-
isation and Bayes theorem allow us to express the Evidence
as an integral over the parameter space:

P (D|M, I) =

∫
θ∈Ω

P (θ|M, I)L(D|θ,M, I)dθ (5)

Calculating this integral then allows the experimentalist to
select the optimum model to describe a data set. We now
discuss two different techniques which lead to a value the
Evidence and further on compare them in terms of compu-
tational speed and accuracy.

2 NESTED SAMPLING

Nested sampling (Skilling, 2006) is a modern Bayesian tech-
nique which transforms the multidimensional Evidence in-
tegral of Equation (5) into a simpler one dimensional one.
This is done by considering the prior mass χ and its con-
stituent elements dχ = P (θ|I)dθ. These can be summed up

2010 RAS

ar
X

iv
:1

00
3.

33
57

v2
  [

st
at

.C
O

] 
 2

2 
M

ar
 2

01
0



2 A. Tua and K. Zarb Adami

θ1

θ2

χ
χ4 χ3 χ2 χ1

L(χ)

L4

L3

L1

L2

Figure 1. The above diagram, taken from (Skilling, 2006) shows

how points in the parameter space are sampled such that they

satisfy the Likelihood constraint L > L∗.

as follows:

χ(λ) =

∫
L(D|θ,I)>λ

P (θ|I)dθ (6)

This covers all the prior mass corresponding to a parame-
ter space with likelihood greater than λ. This provides for
the required transformation to one dimension. The Evidence
integral then becomes:

Evidence =

∫ 1

0

L(χ)dχ (7)

Because of the way we have ordered our elements in terms
of Likelihood we can evaluate Li = L(χi) at a sequence of m
points in the parameter space having decreasing Likelihood
as shown in Figure 1.

0 < χm < χm−1 < ... < χ2 < χ1 < 1 (8)

If we set hi = χi − χi−1 the above ordering allows us to
evaluate the integral as a weighted sum of the Likelihood:

Evidence =

m∑
i=1

hiLi (9)

Since we expect that the largest contributions to the integral
to come from relatively small regions of peaked Posterior it
makes more sense to sample points in χ at a logarithmic
rate instead of a linear one so that initial sampling of the
shallow Posterior is rapid. We therefore take:

χ1 = t1, χ2 = t1t2, ..., χi = t1t2...ti (10)

where each of the ti, known as the shrinkage ratio, lies be-
tween 0 and 1. In practice the Nested Sampling algorithm
implements these concepts as follows:

(i) N objects are sampled randomly from within the prior
and their likelihoods are evaluated. Initially we have the full
prior range from 0 to χ0 = 1 available to sample from.

1

1

0

0

0

1

( b )

( a )

( c )

χ*

χ*

χ*

Figure 2. We see the separate steps of the Nested Sampling
algorithm: (a) On entry we have n objects with L > L∗ or χ < χ∗.
(b) The one with largest χ and call it χ∗, removing it from our list

which now contains n− 1 objects sampled from the Prior. (c) We
generate a new object, sampled from the Prior once again, but

this time constrained to lie within the new Likelihood domain.

(ii) We then select the point with the lowest likelihood
(L0) and remove it from the set of samples. The prior volume
is then shrunk to χ1 with the shrinkage ratio t determining
the volume decrease. The value of t is the expectation value
of the largest of N random numbers from uniform distribu-
tion between 0 and 1, which is given by N/(N + 1).

(iii) The removed point is replaced with a new one satis-
fying the hard constraint likelihood L > L0

(iv) We then increment the Evidence by L0 × (χ1 − χ0).
(v) We iterate over these steps until we satisfy some stop-

ping condition.

The selection of the least likelihood object is illustrated in
Fig. 2. The method thus works its way up the likelihood
surface through nested surfaces of equal likelihood. To ter-
minate the process we can use two conditions. The first is
given in (Skilling, 2006) as the number of iterations k re-
quired for samples to converge to posterior peaks:

k −NH >> 0 (11)

Secondly we also requires that successive changes in evidence
are sufficiently small.

3 VARIATIONAL BAYES

Variational Bayesian methods provide another approach to
parameter estimation and model selection. The basic con-
cept behind this class of methods is to try and approximate
the Posterior distribution with a simpler probability distri-
bution. One can then optimize the parameters in this ap-
proximation so that it is as close as possible to the true
Posterior. It turns out that such an optimal form for the ap-
proximating distribution does indeed exist and this is usu-
ally very easy to deal with analytically. There is then no need
to sample from the Posterior as important quantities such as
the mean can be derived analytically from the approxima-
tion. Similarly the Evidence can be worked using standard
integration techniques on the same approximation. Varia-
tional Bayesian methods thus reduce the computationally
complex sampling and integration problems to a relatively
easy optimization one.

Though there are many optimization algorithms in the
literature which are used to find the best approximation
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Bound

Evidence

KL(Q||P)

Figure 3. A diagram based on that in (Zarb Adami, 2003) show-

ing the relationship between the KL divergence and the actual

Evidence. Here the value of the Bound is given by the integral
given in Equation (17).

the most widely used one is the Expectation-Maximization
(EM) algorithm (Zarb Adami, 2003). We give a brief
overview of the method here, a more complete explanation
can be found in (Mackay, 2003). The sensible question to ask
when approximating a complex function by some simpler
one Q(θ) is the amount of information lost in this process.
A suitable metric describing this quantity which one can
use to quantify the “distance” between the original distri-
bution and the approximation is the Kullback-Leibler (KL)
divergence (Kullback, 1959), denoted by DKL. This is given
by:

DKL(Q||P ) =

∫
Q(θ) log

(
Q(θ)

P (θ|D, I)

)
dθ (12)

We note that the above expression always returns a non-
negative value and, as one would hope, vanishes when
Q(θ) = P (θ|D, I). Bayes theorem then tells us that:

DKL(Q||P ) =

∫
Q(θ) log

(
Q(θ)P (D|I)

L(D|θ, I)P (θ|D, I)

)
dθ (13)

The Evidence P (D|I) is a quantity which is independent of
the parameters θ and can thus be taken out of the integral.

DKL(Q||P ) =

∫
Q(θ) log

(
Q(θ)

L(D|θ, I)π(θ|I)

)
dθ (14)

+ logP (D|I) (15)

The above equation suggests that one could define a cost
function CKL(Q||P ) which we can then seek to optimize by
minimizing the Kullback-Liebler divergence DKL:

CKL(Q||P ) = DKL(Q||P )− logP (D|I) (16)

=

∫
Q(θ) log

(
Q(θ)

L(D|θ, I)π(θ|I)

)
dθ (17)

Since DKL(Q||P ) > 0 the following inequality always holds:

CKL(Q||P ) > − logP (D|I) (18)

⇒ −CKL(Q||P ) 6 logP (D|I) (19)

We thus see how minimizing the cost function is equivalent
to maximizing a lower bound on the Evidence value. Figure 3
shows the relation between the lower bound to the Evidence
and the Kullback-Leibler divergence. Fortunately enough, in
most cases the lower bound to the Evidence is tight enough
to be used in place of the true Evidence in model selec-
tion procedures (Miskin, 2000). After having optimized the
approximating distribution one can then perform inference
with the approximation in place of the real Posterior.

4 COMPARISONS

In this section we can compare Nested Sampling and Varia-
tional Bayes as applied to two engineered problems, the first
being Polynomial Selection and the second being the fitting
of Gaussian Mixture Models. We use MATLAB in this pre-
liminary study to speed up the coding process. Naturally
both methods are coded in the same language to try and
ensure a fairer comparison of the computational times.

4.1 Polynomial Selection

When one has a sparse data set it is often useful to infer a
smooth curve that best fits with the observed points. This
can facilitate further studies of the data as procedures like
integration or the finding of extrema then become very easy.
Of course one might also want to fit data which has been
generated by a physical law which has polynomial depen-
dence on some parameter. The task at hand is thus to select
the degree of the polynomial to use as well as calculate its
coefficients. If a low order polynomial is chosen then it might
be difficult to fit the data well whilst if the polynomial order
is too high then there is a risk of over-fitting. We denote our
data set D, where D contains a set of points {(xi, Di)}. Here
1 6 i 6 I and I is the total number of data points. The xi
are the abscissa values whilst the Di are the ordinate values.
In the general case one can then construct an interpolation
model using a set of K fixed basis functions. We thus have:

Di =

N∑
n=1

wnfni + εi (20)

Here f = fni is a matrix constructed using the interpolat-
ing basis functions evaluated at the abscissa values xi. If
we decide to choose polynomials then we get fni = Fn(xi)
where Fn(x) = xn−1. The value of εi in Equation (20) rep-
resents the noise affecting each measurement, which we can
assume to be Gaussian with inverse variance γ. If we assume
that the Gaussian noise is independent then the Likelihood
function becomes:

L(D|w, γ, I) =

I∏
i=1

G

(
Di|

N∑
n=1

wnfni, γ

)
(21)

We generate the data for this study by computing the actual
values of a polynomial within a predefined interval [a, b] and
adding the Gaussian noise of inverse variance γ using MAT-
LAB’s inbuilt functions. Unless otherwise stated all the plots
shown in this section are based on a data set containing 40
data points generated in the interval [−2, 2] from a quintic
curve with added noise having σ = γ−1/2 = 2. We first tackle
the situation using Variational Bayesian and then move on
to use Nested Sampling. For the variational solution we can
assign conjugate priors:

P (w|I) = G (w|0, aw) (22)

P (γ|I) = Gamma (γ|aγ , bγ) (23)

We can set the three arbitrary parameters aw, aγ and bγ ac-
cordingly to modify the shape and scale of the priors. These
are chosen to make the priors as broad as possible, to simu-
late our ignorance of the underlying phenomena. The update
equations, given in (Zarb Adami, 2003) and (Miskin, 2000),
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Figure 4. Plots showing the data set fitted with polynomials of
different orders using Variational Bayes.

are shown below:

w̃ = a(w)I + 〈γ〉Q ffT (24)

ŵ = w̃−1 〈γf〉Q (25)

ā(γ) = a(γ) +
1

2

I∑
i=1

〈(
Di −

N∑
n=1

wnfni

)2〉
Q

(26)

b̄(γ) = b(γ) +
I

2
(27)

The iteration of these equations leads to the values for the
optimal parameter set describing the data. For our 40 point
data set we can try fitting different order polynomials. The
results are shown in Figure 4. One can observe how ineffi-
cient the fitting is when we use a quadratic and how this
improves once we use a cubic curve. Fitting with a quintic
(n = 6) we obtain:

w = (0.35,−0.82,−0.03,−0.29,−0.04, 1.19) (28)

σ = 1.65 (29)

These results are not too far from the true values of w =
(0, 0, 0, 0, 0, 1) and σ = 2 and an element of inconsistency
between the two is acceptable as we have taken a large noise
factor and not so many data points (40). Note that the odd
components in the weight vector, which correspond to the
even polynomials x2n, are especially close to zero. This is
because the parity of these components (even) is different
from the parity of the mechanism generating the data (odd).
Hence these contributions are fitted to zero as they can offer
no explanation of the data. Referring to Figure 5 we notice
that as expected the Likelihood always increases with the
number of parameters used to describe the data. However
the Evidence is also dependent on an Occam factor which
penalizes more complex models and is thus peaked, begin-
ning to decrease past n = 6. The peak at n = 6, correctly
implies that the most probable hypothesis is that the data
was generated using a 6 parameter polynomial which is a
quintic.

To implement the Nested Sampling algorithm for this
example we take Skilling’s code (Skilling, 2004) as a skeleton
and modify the Likelihood and exploration functions appro-
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Figure 5. Polynomial Selection using VB. One can see the Log-
Likelihood L (top left), the Occam factor (top right) and the

Evidence (bottom).
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Figure 6. Polynomial Selection using Nested Sampling. The bot-
tom right shows the Evidence whilst the others are different poly-

nomial fits.

priately to represent Equation (21) . We set uniform priors
for γ and w accordingly. Exploration of the parameter space
using a different variable step size for each separate param-
eter. The algorithm was then run with 36 objects. Nested
Sampling is much slower than the Variational method as the
average time of computation was in the region of 300 sec-
onds, an order of magnitude slower then Variational Bayes
which takes around 20 seconds for a typical run. This differ-
ence in speed is most probably due to the fact that Nested
Sampling is an MCMC method, involving the probabilistic
exploration of a parameter space whilst Variational Bayes is
analytical and has no such probabilistic dependence. Plots
showing the Evidence and fits are given in Figure 6. Note
that within the Nested Sampling framework we have no ex-
plicit “Occam Factor”. Rather the increase in parameters
penalizes the complex models by giving the algorithm more
space to explore and thus longer time to reach regions of
higher Likelihood. This means that when calculating the Ev-
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idence the higher Likelihood values are multiplied by smaller
weights as shown in Equation (9) resulting in a lower Evi-
dence value over all. Again we get the Evidence peaking at
the correct value of n = 6 with the optimum Evidence for
both methods at around log(Evidence) = −110. The coeffi-
cients themselves are also in very good agreement with the
ones obtained using Variational Bayes and we get:

w = (0.35,−0.82,−0.03,−0.29,−0.04, 1.19) (30)

σ = 1.65 (31)

In fact the greatest variation is in the relatively inconsequen-
tial coefficient of x2 and the value of this difference is 18%.
This is not such an issue as the coefficient is very small any-
way and has no major effect on the final plots. The averaged
percentage disagreement in all the other parameters is under
1% and the percentage disagreement in the coefficient of x5

is only 0.04%. This indicates clearly that the discrepancies
from the true parameters are due to the random nature of
the Gaussian noise and do not arise because of any fault in
either of the algorithms. Note that we give all the results for
the parameters in Appendix A, along with the percentage
difference between the two methods.

4.2 Gaussian Mixture Models

A Mixture Model is basically a distribution built up using
a number of simpler distributions having different parame-
ters. They are often used to obtain or substitute more com-
plex distributions. An illustrative example given in (Miskin,
2000) concerns the size of fruit. The probability distribution
will obviously depend on the type of fruit being measured.
Instead of having a single complex distribution it would
make sense to model the size distribution for each fruit type
using a Gaussian and then have a categorical variable which
gives the probability that a fruit is of a given type. Math-
ematically this can be expressed in terms of the Likelihood
function for a single data point Di, where i labels the data
point and can take values 1 6 i 6 I. If we have S categories
then we have:

L(Di|θ, I) =

S∑
s=1

P (si = s|π, I)P (Di|θs, I) (32)

Here si is an indicator variable for each data point which
tells us which distribution created the ith data point. These
are chosen probabilistically such that P (si = s|π, I) = πs.
Also, P (Di|θs, I) is the Likelihood for a given si and data
point Di. We henceforth consider the particular case when
the mixture is composed of Gaussians, known as a Gaussian
Mixture Model (GMM). Equation (32) then becomes:

L(Di|θ, I) =

S∑
s=1

πsG(Di|µs, σs) (33)

The parameters µ = (µ1, µ2, ..., µS), σ = (σ1, σ2, ..., σS) and
π = (π1, π2, ..., πS) are collectively referred to as θ.

A histogram of the generated points used in this sec-
tion is shown in Figure 7. The data set contains 300 points
generated from a Mixture Model composed of three Gaus-
sians. These have means µ = (−1, 1, 3) and sigma σ =
(0.4, 0.3, 0.7) . The points were produced in the following
ratio (0.3 : 0.35 : 0.35). The data set is relatively easy to
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Figure 7. Histogram showing the distribution composed of
three Gaussians. These had means µ = (−1, 1, 3):, sigma σ =

(0.4, 0.3, 0.7) and were produced in the following ratio (0.3 : 0.35 :

0.35).

handle for the algorithm because there is only a slight over-
lap between the different component distributions.

4.2.1 Variational Bayesian Methods

We first set out to attack the problem using Variational
Bayesian methods, fitting the data with S Gaussians. We
use conjugate Priors as required by the Variational Bayesian
algorithm, using s to label the variables pertaining to each
of the S Gaussians.

P (µs|I) = G(µs|m0s, τ0s) (34)

P (βs =
1

σs
|I) = G(βs|b0s, c0s) (35)

P (π|I) = D(πs|λ0s) (36)

The first two equations are Gaussian Priors for the parame-
ters pertaining to a single Gaussian in the mixture whilst the
third, D, represents a Dirichlet distribution over the categor-
ical weights with mixing hyperparameter λ0s as described in
Appendix A. If we assume the independence of the separate
data points and we consider all the distributions forming the
mixture, the Prior becomes:

P (θ|I) = P (π|I)
S∏
s=1

P (βs|I)
S∏
s=1

P (µs|I) (37)

Note that here βs, µs, b0s, c0s, π and λ0s each refer to a single
one of the Gaussian distributions forming the mixture. The
joint Likelihood of any single data point is given by Equation
(38).

L(Di, si|θ) = L(s = si|π)G(Di|βs, µs) (38)

If we assume that the data are independent then we con-
struct the final Likelihood by taking the following product:

L(D, s|θ) =

I∏
i

L(si = s)G(Di|βs, µs) (39)

Here D = (D1, D2, ..., DI) and s = (s1, s2, ..., sI). The in-
clusion of the indicator variable introduces additional com-
plexities into the derivation of the update equations for the
Variational Bayes algorithm. The procedure is described in
(Zarb Adami, 2003), (Miskin, 2000) and (Penny & Roberts,
2000). Here it is the results from the latter approach that we
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Figure 8. GMM Results using VB. We can see here three at-
tempts to fit the data with different amounts of Gaussians as well

as a plot of the Evidence bound (top left).

use and we refer the reader to this paper for the algorithmic
details. The algorithm is stopped when successive changes in
the Evidence bound are less than 10−6. The plots in Figure 8
show the results of fitting different numbers of Gaussians to
the data. The fit having 3 Gaussians results in the following
values for the means and the widths of the three component
distributions:

µ = (−0.94, 1.02, 2.98) (40)

σ = (0.42, 0.33, 0.68) (41)

These are in close agreement with the true values with which
the data was generated. The deduced ratio of the three
Gaussians is also correct, given by

0.299 : 0.353 : 0.347 (42)

The plot of the evidence bound in Figure (8) peaks at the
value of three, correctly indicating that most probably three
Gaussians were used to construct the Mixture Model. The
code takes around 25 seconds to run when testing for 1 to 6
Gaussians.

4.2.2 Nested Sampling

We now apply the Nested Sampling algorithm to tackle
the Gaussian Mixture Model data. As a stopping condition
we impose that the difference between successive values in
log Evidence should be less than 10−6 and that the condi-
tion in Equation (11) is satisfied. In the results quoted here
we utilize 50 objects in order to ensure a decent algorithmic
speed. Once again the Nested Sampling implementation is
considerably slower, with the code taking approximately 8
minutes to try out 1 to 6 Gaussians. Again, as with polyno-
mial fitting, we can attribute the difference in computational
speed to the random nature of the Nested Sampling algo-
rithm. We note here that for both polynomial fitting as well
as Gaussian Mixture Models the Nested Sampling imple-
mentation is our own and hence further work might be able
to improve the computational speed. However, we do not
believe that any increase in speed for Nested Sampling will
be able to improve the computational time to Variational
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Figure 9. A plot of the log-Likelihood, the Occam factor and the
Evidence for different numbers of Gaussians.
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Figure 10. GMM Evidence Plot using Nested Sampling (right)
and fitted GMM (left).

Bayes levels. In Figure 10 we show the Evidence against the
number of Gaussians used for fitting as well as the optimal
fit using three Gaussians. We first note that the figure gives
a peak at the correct value of 3, indicating that 3 Gaus-
sians were used to generate the data set. For the optimal
fit the three Gaussians have means µ = (−0.97, 1.02, 2.95),
sigmas σ = (0.40, 0.35, 0.70) and are produced in the ratio
(0.292 : 0.354 : 0.354). These are very close to the true values
which were used to generate the data set and in particular we
note that the ratios are calculated extremely well. Differing
runs of the Nested Sampling algorithm, particularly when we
run with more stringent stopping conditions, result in pa-
rameter values which differ by 0.03 at most. For a run with
a stopping condition of 10−6 we get µ = (−0.95, 1.01, 2.93),
σ = (0.42, 0.32, 0.73) and ratio = (0.291 : 0.354 : 0.354) .

We also test both algorithms using a harder data set
where there is far more overlap in the Gaussians. To per-
form this analysis we generate 600 data points with means
µ = (−1, 0, 1), leaving the other parameters as before.
The results are again favourable. In particular the Evidence
bound peaks at the correct value of 3. Also the inferred pa-
rameters of the 3 fitted Gaussians are largely in line with
the true values:

µ = (−0.96, 0.04, 1.06) (43)

σ = (0.39, 0.28, 0.70) (44)

The ratios are given by:

0.326 : 0.342 : 0.332 (45)
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Figure 11. GMM Results using Variational Bayes with a hard
data set. On the left we see the optimal fit using three Gaussians.

On the right we have a plot of the Evidence against the number

of Gaussians used.
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Figure 12. GMM Results using Variational Bayes with a hard

data set. On the left we see the optimal fit using three Gaussians.
On the right we have a plot of the Evidence against the number

of Gaussians used.

The largest discrepancy is in the ratio values. This proba-
bly stems from fact that because the Gaussians are so close
to each other it is harder to determine from which Gaus-
sian each point has been generated. These results are shown
in Figure 11. Investigating the same data set with Nested
Sampling we get the following results. The Gaussian posi-
tions returned by the algorithm are given by:

µ = (−0.98, 0.03, 1.02) (46)

σ = (0.39, 0.29, 0.70) (47)

ratios = (0.331 : 0.340 : 0.329) (48)

Nested sampling produces slightly better values for the
Gaussian means and widths but the ratios are again incor-
rect. The values are however within one standard deviation
of the true results. Again there is good agreement between
the Variational Bayes and Nested Sampling methods and
differences in the results from the true values are reflected
in both techniques. This indicates that much of the imper-
fections in the inference are due to the random nature of the
generated data and not due to the algorithmic deficiencies.

5 CONCLUSIONS

Virtually all experimental physical analysis done today is
somewhat statistical in nature and therefore necessitates the
use of powerful computational tools. The Bayesian frame-
work is one such set of tools which is gaining popularity
within the scientific community. Our main conclusion is that
whilst both Variational Bayes and Nested Sampling give
similar and accurate results when tackling engineered prob-
lems the former is much faster than the latter. Inferred pa-
rameters using the two different techniques are often within

a few percent of each other and the peaks in the Evidence
plots always agree. The discrepancy in speeds was attributed
to the fact that Nested Sampling is an MCMC method and
is dependent on random exploration of a parameter space
while Variational Bayes is analytical and has no such proba-
bilistic element. We do however point out that it is far easy
to formulate a Bayesian solution to a problem using Nested
Sampling than using Variational Bayes as in the latter case
one must derive the update equations for each problem and
this might be a non-trivial process.
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Appendix A: Notation

We describe the distributions used throughout this paper as
well as their notation.
Gaussian Distribution
The Gaussian (or Normal) distribution is given by the Equa-
tion 2, where we consider all previous knowledge to be en-
coded in I

P (x|I) = G(x|x̂, x̃) (1)

=

√
x̃

2π
exp

(
− x̃

2
(x− x̂)2)

)
(2)
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Here x̂ is the mean and x̃ > 0 is the inverse variance. Hence
the standard deviation, σ given by the square root of the
variance can be expressed as follows:

σ =
√

variance =

√
1

x̃
(3)

Useful expectation values under the Gaussian distribution
are:

< x >P= x̂ < x2 >P= x̂2 + x̃−1 (4)

Multivariate Gaussian Distribution
The Gaussian can be generalised to d dimensions, in which
case it is called a Multivariate Gaussian:

P (x|I) = G(x|x̂, x̃) (5)

=

√
x̃

(2π)d
exp

(
−1

2
(x− x̂)T x̃(x− x̂)

)
(6)

Here x̂ is a vector containing the mean in each dimension and
x̃ > 0 is the symmetric and positive definite inverse covari-
ance matrix. This is necessarily a symmetric matrix because
the cross terms are related to the covariances of the variables
and the covariance relation is necessarily a symmetric one.
When the variables are independent the covariance matrix,
and hence the inverse covariance matrix, is of diagonal form.
Useful expectation values under the multivariate Gaussian
distribution are:

< x >P= x̂ < x2 >P= x̂2 + x̃−1 (7)

Gamma Distribution The Gamma distribution crops up
in the Bayesian framework because it is the conjugate dis-
tribution for the inverse variance of a Gaussian distribution.
The distribution itself is given by:

P (x|I) = Gamma(x|a, b) (8)

=
1

Γ(b)
abx(b−1) exp(−ax) (9)

The constant a > 0 is a scale variable and b > 0 dictates the
shape of the distribution. Some useful expectation values
are:

< x >P =
b

a
(10)

< log x >P = − log a+
∂ log Γ(b)

∂b
(11)

The derivative ∂ log Γ(b)
∂b

is known as the digamma function
and is often denoted by Ψ(b).
Dirichlet Distribution The Dirichlet distribution is used
to model categorical weights, particularly in the Gaussian
Mixture Model setting. The probability distribution func-
tion for a Dirichlet describing m weights is given by:

P (π) =
Γ(
∑m
s=1 λs)∏m

s=1 Γ(λs)

m∏
s=1

πλ0−1
s (12)

The parameter λ0 is called the mixing hyperparameter. The
word hyperparameter is often used in Bayesian statistics to
denote parameters in priors and to distinguish them from
the actual parameters of the underlying model under inves-
tigation. When the λs are all equal we get the symmetric
Dirichlet distribution:

P (π) =
Γ(mλ0)

Γm(λs)

m∏
s=1

πλs−1
s (13)

The expectation value of πi is given by:

< πi >P=
λi∑m
i=1 λi

(14)

This paper has been typeset from a TEX/ LATEX file prepared
by the author using the Blackwell Science MN journal doc-
ument class file.
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