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Considering cylindrical topology, we present the static solution for a charged black hole in conformal

gravity. We show that unlike the general relativistic case, there are two different solutions, both including

a factor which gives rise to a linear term in the potential, which also features in the neutral case. This may

have significant ramifications for particle trajectories.
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I. INTRODUCTION

Einstein’s theory of general relativity has succeeded
extraordinarily well in solar system observations. How-
ever, when larger length scales are investigated, an over-
whelming amount of dark mass energy must be introduced
in order to reproduce observations such as with galactic
rotation curves and the accelerating expansion of the
Universe. It may be true that most of the contributing
mass energy of the Universe is nonluminous, but it may
also be the case that the underlying theory contains other
factors whose contribution only becomes significant on
large and very large scales.

A number of proposed models have attempted to add
terms and factors which only become significant on the large
scales such as with modified Newtonian dynamics [1] and
fðRÞ [2] gravity. On the other hand, other proposals aim to
exploit some hidden assumption or principle in general
relativity. One such idea is the fourth-order conformal
Weyl gravity model introduced in Refs. [3,4] which is based
on the underlying principle of local conformal invariance
such that the manifold remains the same under local confor-
mal stretchings of the kind

g��ðxÞ ! �2ðxÞg��ðxÞ: (1)

This restrictive invariance principle leads to a fourth-order
theory with the unique action [4]

IW ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L ¼ ��c

Z
d4x

ffiffiffiffiffiffiffi�g
p

C����C
����

¼ �2�c

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R��R
�� � 1

3
R2

�
; (2)

where �c is a dimensionless coupling constant and the Weyl
tensor C���� is given by

C����¼R�����1

2
ðg��R���g��R���g��R��þg��R��Þ

þ1

6
Rðg��g���g��g��Þ: (3)

This tensor also satisfies the conformal principle

C���� ! ~C���� ¼ �2ðxÞC����; (4)

due to its dependence on the metric tensor.
An immediate consequence of taking this action is that the

cosmological length scale, which appears in general relativ-
ity through the cosmological constant�, is unnecessary here.
One of the interesting consequences of conformal gravity is
that a number of behaviors still emerges despite not consid-
ering a cosmological constant such as the fact that the
Schwarzschild-de Sitter metric [4] is also a solution to the
field equations of Weyl gravity. Besides this, it has been
shown [5] that conformal gravity, despite being a fourth-
order theory, still admits a Newtonian potential 1=r term in
the field of any spherically symmetric matter distribution
described by a fourth-order Poisson equation. Therefore,
although the second-order Poisson equation in general rela-
tivity is sufficient to generate a Newtonian potential, it is not
by any means a necessary requirement, so that Newton’s law
of gravity remains valid in the fourth-orderWeyl gravity. The
conformal action of Eq. (2) leads to the field equations [6]

ð�gÞ�1=2g��g��
�IW
�g��

¼ �2�cW�� ¼ � 1

2
T��; (5)

where T�� is the stress-energy tensor, and

W�� ¼ 2C�
��

�
;�� þ C�

��
�R��; (6)

is the Bach tensor. Thus, when the Ricci tensorR�� vanishes,

so does W��, implying that any vacuum solution of general

relativity also carries over to conformal gravity naturally.
However, the converse does not hold in general since there
are other ways by which the Bach tensor can vanish.
At present, there is a number of solutions to the confor-

mal gravity field equations. These include the static,
spherically symmetric vacuum case obtained by
Mannheim and Kazanas in Ref. [4],

ds2 ¼ �BðrÞdt2 þ dr2

BðrÞ þ r2ðd�2 þ sin2�d	2Þ; (7)

where
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BðrÞ ¼ 1� �ð2� 3�
Þ
r

� 3�
þ 
r� kr2; (8)

which includes the Schwarzschild (
 ¼ k ¼ 0) and
Schwarzschild-de Sitter (
 ¼ 0) solutions as special cases,
and also its charged generalization [3,7] with

BðrÞ ¼ ð1� 3�
Þ � ð�ð2� 3�
Þ þQ2=8�c
Þ
r

þ 
r� kr2; (9)

whereQ is the charge. Some interesting work has also been
done in Refs. [8–10] where general topological solutions
in Weyl gravity were investigated. The particular case of
cylindrically symmetric solutions in Weyl gravity has been
considered in Refs. [11,12], but due to difficulties in the
complex field equations, a particular gauge is chosen that
does not naturally generalize the well known cylindrically
symmetric solutions in general relativity. So in Ref. [13],
we derived analytically the metric for a neutral static
cylindrical spacetime by adopting a gauge similar to that
used by Mannheim and Kazanas for the spherically sym-
metric case to obtain

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ r2d	2 þ �2r2dz2; (10)

where

A�1ðrÞ ¼ BðrÞ ¼ �

r
þ

ffiffiffiffiffiffiffiffiffiffi
3�


4

s
þ 
r

4
þ k2r2: (11)

This generalizes the static black string solution in general
relativity represented by the Lemos metric [14]

ds2 ¼ �
�
�2r2 � b

�r

�
dt2 þ dr2

�2r2 � b
�r

þ r2d	2

þ �2r2dz2; (12)

with k ¼ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3
p

and � ¼ �b=� ¼ �4GM=�,
so that in our case, we have a linear 
r term in the metric
similar to the spherically symmetric case in Eq. (8). We
now seek to consider the charged case and find that the field
equations which follow by taking a nonzero stress-energy
tensor in Ref. [13] have two separate solutions, each rep-
resenting a conformal generalization of the charged black
string solution in Einstein’s second-order theory [14],

ds2 ¼ �
�
�2r2 � b

�r
þ c2

�2r2

�
dt2 þ dr2

�2r2 � b
�r þ c2

�2r2

þ r2d	2 þ �2dz2; (13)

where � and � are the same constants as in Eq. (12), and
c2 ¼ 4G�2, where � is the linear charge density along the z
axis. The outline of the paper is as follows. In Sec. II, we
derive the metric for the charged cylindrically symmetric
spacetime in conformal gravity and compare it with the
general relativity analogue in Eq. (13). In Sec. III, we
discuss some of the thermodynamical properties of this
new solution and then present our discussion and

conclusion in Sec. IV. The signature used in this paper is
ð�;þ;þ;þÞ and units where G ¼ 1 ¼ c are used.

II. THE CONFORMAL CYLINDRICAL METRIC

Consider first a general line element in cylindrical coor-
dinates ðt; �;	; zÞ
ds2 ¼ �að�Þdt2 þ bð�Þd�2 þ cð�Þd	2 þ dð�Þdz2: (14)

The metric elements are taken to depend only on the radial
coordinate since a static cylindrically symmetric back-
ground metric is not expected to be curved in the angular
and axial directions.
Given the local conformal invariant symmetry, the met-

ric in Eq. (14) can be reformulated similarly to Refs. [4,7];
that is, given an arbitrary function of a spacelike coordinate
parameter r, �ðrÞ, the metric can be written as

ds2 ¼ �2ðrÞ
�
� að�Þ
�2ðrÞdt

2 þ bð�Þ
�2ðrÞd�

2

þ cð�Þ
�2ðrÞd	

2 þ dð�Þ
�2ðrÞdz

2

�
: (15)

Now a choice can be made on this dependence con-
strained by the aim of having an end result metric which is
computationally less intensive to solve for element com-
ponents. We takeZ d�

�2ðrÞ ¼ � 1

�ðrÞ ¼
Z drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðrÞbðrÞp ; (16)

which then yields the metric

ds2¼�2

�
�AðrÞdt2þ dr2

AðrÞþCðrÞd	2þDðrÞdz2
�
; (17)

where AðrÞ ¼ aðrÞ
�2ðrÞ , CðrÞ ¼ cðrÞ

�2ðrÞ , and DðrÞ ¼ dðrÞ
�2ðrÞ .

The metric is thus conformally related to the standard
cylindrical metric for static spacetimes. Following Eq. (1),
we take a transformation

g�� ! ��2ðrÞg��; (18)

which molds the metric into

ds2 ¼ �AðrÞdt2 þ dr2

AðrÞ þ CðrÞd	2 þDðrÞdz2; (19)

which is indeed more representational of the actual degrees
of freedom enjoyed by the metric. Hence, the metric will
be resolved up to an overall r-dependent conformal factor.
Through Eq. (5), it follows that W�� can be expressed

in terms of the conformally invariant stress-energy tensor
through

W�� ¼ 1

4�c

T��; (20)

which implies that the mass-energy information about the
system is completely contained in W��. Furthermore,
given the stress-energy tensor of the system, it is directly
proportional to W��.
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Now, to actually calculate the W�� tensor, we first note
that in order to achieve a conformal generalization of the
charged cylindrical metric in the Lemos gauge, we take a
vector potential [14]

A� ¼
�
� 2�

�r
þ const; 0; 0; 0

�
; (21)

where � and � have the same meaning as in the Lemos
metric in Eq. (13). This vector potential leads to the only
nonvanishing electric field component Er ¼ F10 ¼ 2�

�r2
,

which is covariantly conserved in general and does not
depend on the conformal nature of the model being con-
sidered since Maxwell’s theory is conformally invariant.
The Maxwell stress-energy tensor is found to only have
one nonvanishing component,

Tr
r ¼ � 2�2

�2r4
; (22)

which surprisingly is independent of metric components in
Eq. (19). Besides taking cylindrical coordinates, we also take

CðrÞ ¼ r2; (23)

since the background spacetime has cylindrical topology.
Furthermore, since we are attempting to find a conformal
generalization of the charged Lemos metric, we take the
Lemos gauge

DðrÞ ¼ �2r2; (24)

in the spirit of Ref. [4].
In general relativity, the common method of finding

solutions is to compare the curvature part of the field
equations with the simplest representation of the stress-
energy components. However, in conformal gravity, this
is far too difficult for the nontrivial instances given that
the curvature part is replaced by the Bach tensor in
Eq. (6). The alternative method used in Ref. [4] is to
consider the Euler-Lagrange equations using the general
line element

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2d	2 þ �2r2dz2; (25)

where the Lemos gauge is considered, and the coeffi-
cients of dr2 and dt2 are left unrelated at first.
The Euler-Lagrange equations turn out to be second

order [4]

ffiffiffiffiffiffiffi�g
p

W�� ¼ �I

�g��

¼ @

@g��

ð ffiffiffiffiffiffiffi�g
p ~LÞ � @

@x�

� ffiffiffiffiffiffiffi�g
p @ ~L

@ðg��Þ0
�
þ @2

@ðx�Þ2
� ffiffiffiffiffiffiffi�g
p @ ~L

@ðg��Þ00
�
; (26)

where 0 indicates differentiation with respect to r and ~L ¼ R��R
�� � R2=3.

Taking the variation with respect to AðrÞ and BðrÞ yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r4AB

p
Wrr¼� �2

48AðrÞ4BðrÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4�2AðrÞBðrÞp ½�7r2BðrÞ2A0ðrÞ2ðrB0ðrÞ�2BðrÞÞ2þ2r2AðrÞBðrÞð2BðrÞ�rB0ðrÞÞ

�ð4BðrÞ2A00ðrÞþ3rA0ðrÞB0ðrÞ2�2BðrÞðrA00ðrÞB0ðrÞþA0ðrÞð2rB00ðrÞþB0ðrÞÞÞÞþAðrÞ2ð�7r4B0ðrÞ4
þ4r3BðrÞB0ðrÞ2ð3rB00ðrÞþ5B0ðrÞÞþ4r2BðrÞ2ðr2B00ðrÞ2þB0ðrÞ2�2rB0ðrÞðrBð3ÞðrÞþ6B00ðrÞÞÞþ16rBðrÞ3
�ðrðrBð3ÞðrÞþ2B00ðrÞÞ�2B0ðrÞÞþ16BðrÞ4Þ�; (27)

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r4AB

p
Wtt¼ ��2

48AðrÞ4BðrÞ4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4�2AðrÞBðrÞp ½56r3BðrÞ3A0ðrÞ3ðrB0ðrÞ�2BðrÞÞþr2AðrÞBðrÞ2A0ðrÞð57r2A0ðrÞB0ðrÞ2

�4rBðrÞð13rA00ðrÞB0ðrÞþA0ðrÞð19rB00ðrÞþ13B0ðrÞÞÞþ4BðrÞ2ð26rA00ðrÞþ7A0ðrÞÞÞþ2rAðrÞ2BðrÞ
�ð29r3A0ðrÞB0ðrÞ3�6r2BðrÞB0ðrÞð2rA00ðrÞB0ðrÞþA0ðrÞð9rB00ðrÞþ4B0ðrÞÞÞþ4rBðrÞ2ðA0ðrÞðrð6rBð3ÞðrÞ
þ13B00ðrÞÞ�5B0ðrÞÞþrð4rA00ðrÞB00ðrÞþðrAð3ÞðrÞþ3A00ðrÞÞB0ðrÞÞÞþ8BðrÞ3ð2A0ðrÞ�rðrAð3ÞðrÞþA00ðrÞÞÞÞ
þAðrÞ3ð�16r3ð4Bð3ÞðrÞþrBð4ÞðrÞÞBðrÞ3þ49r4B0ðrÞ4�4r3BðrÞB0ðrÞ2ð29rB00ðrÞþ11B0ðrÞÞþ4r2BðrÞ2
�ð9r2B00ðrÞ2�5B0ðrÞ2þ2rB0ðrÞð6rBð3ÞðrÞþ13B00ðrÞÞÞþ16BðrÞ4Þ�: (28)

The other two elements W		 and Wzz do not need to be
taken into account since we have a sufficient number of
constraints; these two further equations provide us with an
independent check of any solution which results.

Taking the time-time and radial-radial components of
the metric to be the reciprocal of each other, AðrÞ ¼
1=BðrÞ, turns Eq. (27) into

12r4
1

B
Wrr ¼ �4B2 � 4rBð�2B0 þ rðB00 þ rB000ÞÞ

þ r2ð�4B02 � r2B002 þ 2rB0ð2B00 þ rB000ÞÞ:
(29)

But by Eq. (20),
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Wrr ¼ � �2

2�c�
2r4

B: (30)

This eliminates both metric tensor components and
radial coordinate factors from the constraint so that

� 6�2

�c�
2
¼ �4B2 � 4rBð�2B0 þ rðB00 þ rB000ÞÞ

þ r2ð�4B02 � r2B002 þ 2rB0ð2B00 þ rB000ÞÞ:
(31)

The problem can then be solved by a number of trans-
formations, first letting BðrÞ ¼ r2lðrÞ giving

� 6�2

�c�
2
¼ r6ð8l02 � r2l002 þ 2rl0ð4l00 þ rl000ÞÞ: (32)

Then, consider l0ðrÞ ¼ yðrÞ so that

� 6�2

�c�
2
¼ r6ð8y2 � r2y02 þ 2ryð4y0 þ ry00ÞÞ (33)

reduces the overall order of the problem and taking yðrÞ ¼
r�3hðrÞ gives a second-order differential equation

� 6�2

�c�
2
¼ �h2 � r2h02 þ 2rhðh0 þ rh00Þ: (34)

As in Ref. [13], we consider an exponential transforma-
tion of the form r ¼ et, which results in

� 6�2

�c�
2
¼ �h2 � _h2 þ 2h €h; (35)

where dots denote derivatives with respect to t.
Following hðtÞ ¼ ðvðtÞÞ2, the equation

6�2

�c�
2
¼ v3ðv� 4 €vÞ (36)

can be solved, where the first integral turns out to be

v2

2
þ 1

2v2

6�2

�c�
2
� 2ð _vÞ2 ¼ c1: (37)

This admits two separate solutions given by

vðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 6�2

�c�
2
e�ðtþc2Þþetþc2

4
�2c1þ4c21e

�ðtþc2Þ
s

(38)

and

vðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 6�2

�c�
2
eðtþc2Þ þe�ðtþc2Þ

4
�2c1þ4c21e

ðtþc2Þ
s

: (39)

This means that when all the transformations are taken
in reverse and the solutions are represented with the coor-
dinate r, the solutions for BðrÞ turn out to be

BðrÞ ¼ 2�2

�c�
2

e�c2

r
� ec2

4
rþ c1 � 4c21e

�c2

3r
þ c3r

2; (40)

and

BðrÞ ¼ 6�2

�c�
2
ec2r� e�c2

12r
þ c1 � 4c21e

c2rþ c3r
2; (41)

respectively, where c1, c2, and c3 are constants. The solu-
tion in Eq. (40) can be represented in a form similar to
Eq. (12) as

BðrÞ ¼ u

r
þ

ffiffiffiffiffiffiffiffiffiffi
3�


4

s
þ 
r

4
þ k2r2; (42)

where

u ¼ �� 2�2

�c�
2


; (43)

and k2 ¼ c3, 
 ¼ �ec2 , and c1 ¼
ffiffiffiffiffiffiffi
3�

4

q
. Similarly,

Eq. (41) takes the form

BðrÞ ¼ �

r
þ

ffiffiffiffiffiffiffiffiffiffi
3�


4

s
þ 
r

4
� �2r

2�c�
2�

þ k2r2; (44)

with k2 ¼ c3, c1 ¼
ffiffiffiffiffiffiffi
3�

4

q
, and ec2 ¼ � 1

12� .

On comparison with the general relativity case in
Eq. (13), the constants in Eqs. (42) and (44) regain their
regular meanings except for the 
 factor, which is a mea-
sure of deviation from general relativity in conformal
gravity. Also, in this representation, it is easy to see
that the two solutions are a charged generalization of the
neutral metric since setting � to zero retrieves Eq. (11) in
both cases.
In the first case given by Eq. (42), the coefficient u

retains its dependance on � but adds charge by introducing
a length scale 1=�c which is the coupling constant of
conformal gravity as given in the action in Eq. (2).
Meanwhile, the same linear term arises as in the neutral
case. However, the 1=r dependence of the charge term
in BðrÞ is unexpected and shows a divergence between
general relativity where charge produces a 1=r2 term and
conformal gravity where charge (electromagnetism) and
mass (gravitation) give rise to same contribution to the
exterior geometry. This will then make the task of separat-
ing the effects on the motion of a test particle from the two
contributions less straightforward than in the case of gen-
eral relativity. We note that in both the second-order theory
and the fourth-order theory, the only nonvanishing stress-
energy tensor component has the same form, namely, Tr

r /
1=r4, meaning that the different 1=r dependence of the
charge term in BðrÞ emerges out of the geometric part of
the fourth-order theory.
The same phenomenon was observed in the spherical

case [3,7], and so, since it also emerges here in the cylin-
drical topology, it may suggest that this could be a general
feature of charged solutions in conformal gravity. This
would imply, as noted in Ref. [7], that electromagnetism
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and gravitation may share a connection and some
underlying similarity.

The second solution given by Eq. (44) also possesses the
same 
r term as in the neutral metric, but now the charge
contribution to the external geometry features as an unex-
pected additional linear term in the potential. This has the
unrealistic consequence that the effect from a charge dis-
tribution at the source on the motion of a point charge
increases with distance. On the other hand, it may shed
some light about the origin of linear terms found practi-
cally in all known solutions of conformal Weyl gravity. It is
still unclear whether the 
r terms in Eqs. (8) and (11), and
now in Eqs. (42) and (44) have a universal origin (like the
cosmological term kr2) or are system dependent (like
the mass term �=r). From Eq. (44), it seems that at least
part of this is clearly system dependent.

Finally, we compare our solutions in Eqs. (42) and (44)
with the earlier charged solutions in spherical geometry
obtained in Ref. [3], given by

ds2 ¼ �ðar2 þ brþ cþ d=rÞdt2
þ ðar2 þ brþ cþ d=rÞ�1dr2 þ r2d�2

2; (45)

where

3bd� c2 þ 1þ 3�2

2�2�c

¼ 0: (46)

The above solution can be generalized to

ds2 ¼ �ðar2 þ brþ cþ d=rÞdt2
þ ðar2 þ brþ cþ d=rÞ�1dr2 þ r2d�2

2;K; (47)

with

3bd� c2 þ K2 þ 3�2

2�2�c

¼ 0; (48)

where

d�2
2;k ¼

d�2

1� K�2
þ �2d	2 (49)

represents the metric on a unit 2 sphere (K ¼ 1), a unit
hyperbolic manifold (K ¼ �1), or a 2 torus (K ¼ 0).
Comparing Eqs. (42) and (44) with Eq. (47) and putting
K ¼ 0, we found that both solutions satisfy Eq. (48).

III. TEMPERATURE

The most immediate path for studying the quantum
nature of black holes is through a consideration of their
thermodynamical properties. The horizon temperature, Th,
is the natural place to start along this line of thought. This is
defined in terms of the surface gravity, �, by the relation
Th ¼ �

2� , which in turn is given in terms of the Killing

vector fields, 
�, by [15]

�2 ¼ � 1

2
ðr�
�Þðr½�
��Þ: (50)

The Killing vectors will be calculated at the horizon radius.
For the first solution from Eq. (38), the horizon radius is
given by

r1h ¼
1

12�2��ck
2
½2�2 � �2��c
þ ð�4�2�2

cð
2 � 24k2
ffiffiffiffiffiffiffiffiffiffi
3�


p Þ � 4�2��c
�
2 þ 4�4Þ=½6�4�2�2

cð
2 � 12k2
ffiffiffiffiffiffiffiffiffiffi
3�


p Þ�2

� �6�3�3
cð
3 � 36
k2

ffiffiffiffiffiffiffiffiffiffi
3�


p þ 864�k4Þ � 12�2��c
�
4 þ 4 ���1=3 þ ½��6�3�3

cð
3 � 36
k2
ffiffiffiffiffiffiffiffiffiffi
3�


p þ 864�k2Þ
þ 6�4�2�2

cð
2 � 12k2
ffiffiffiffiffiffiffiffiffiffi
3�


p Þ�2 � 12�2��c
�
4 þ 44 ���1=3�; (51)

where

�� ¼ 2�2 þ 3½3�6�4�3
ck

4ð�6�3�3
cð
3 � 48
k2

ffiffiffiffiffiffiffiffiffiffi
3�


p þ 1728�k4Þ � 12�4�2�2
cð
2 � 24k2

ffiffiffiffiffiffiffiffiffiffi
3�


p Þ�2

þ 36�2��c
�
4 � 32�6Þ�1=2; (52)

while for the second given in Eq. (39), the horizon radius is given by

r2h ¼ � 


12k2
þ 1

12k2
ð
2 � 24k2

ffiffiffiffiffiffiffiffiffiffi
3�


p Þ
"
�
3 þ 36k2

ffiffiffiffiffiffiffiffiffiffiffiffi
3�
3

q
� 864k4u

þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k4ð�3�ð
3 � 32k2

ffiffiffiffiffiffiffiffiffiffiffiffi
3
3�

q
Þ þ 4uð
3 � 36k2

ffiffiffiffiffiffiffiffiffiffiffiffi
3
3�

q
þ 432k4uÞÞ

r #�1=3

þ 1

12
ffiffiffi
23

p
k2

"
�2
3 þ 72k2

ffiffiffiffiffiffiffiffiffiffiffiffi
3�
3

q
� 1728k4uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ð
2 � 24k2

ffiffiffiffiffiffiffiffiffiffi
3�


p Þ3 þ 4ð
3 � 36k2
ffiffiffiffiffiffiffiffiffiffiffiffi
3�
3

q
þ 864k4uÞ2

r #�1=3

:

(53)

For either case of rih and with the metric in Eq. (19), the following surface gravity is found:
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� ¼ 


8
� �2

4�c�
2�

� �

2r2ih
þ rihk

2: (54)

Finally, this results in a horizon temperature

Th ¼ 1

2�

�



8
� �2

4�c�
2�

� �

2r2ih þ rihk
2

�
; (55)

which for 
 ¼ 0, reduces to the general relativistic result
[16]. Furthermore, for a vanishing charge density, we
obtain the expected result already found in Ref. [13].

IV. CONCLUSION

In this paper, we studied static charged cylindrical solu-
tions in conformal gravity, and we found that, unlike the
second-order Einstein’s theory, there are two independent
metric tensors which can be used to describe the external
geometry.

The field equations used for conformal gravity do not
feature a cosmological constant. However, both solutions
contain the same cosmological term which occurs in the
general relativistic solution (13).

The linear 
r term arises as in the neutral case (11) and
the spherically symmetric solution in Eq. (8), where it was
used [4] to explain the flat rotational curves of galaxies and
other large matter distributions.

Moreover, we found that, unlike general relativity where
the modification from the charge to the static black string
solution (12) is in the form of a term which behaves like

1=r2, in the fourth-order case, the modification to the
neutral solution (11) is different. In one of the solutions,
the modification behaves like 1=r, i.e., like a Newtonian
term, as in the spherically symmetric solution (9) derived
earlier by Mannheim and Kazanas, while in the second
solution, the modification is in the form of an additional
linear term in the metric.
The solutions found in this paper will not be appli-

cable to most astrophysical sources since, for the most
part, they are organized with spherical symmetry, but
there are a number of other sources which may be
amenable to this background metric description.
Another place where cylindrical symmetry may arise is
on the very small scale since exotic forms of collapsing
matter fields may take place here. However, this type of
collapse detection would, in all likelihood, be in the
form of Hawking radiation, which is one possible avenue
of future development. Moreover, there may also be
stringlike applications in a number of other theories
such as with the use of the AdS/CFT correspondence
duality.
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