
Kerb-side enthusiasm

The determinants of voluntary waste separation effort in Malta

Marie Briguglio

L-UNIVERSITÀ TA' MALTA
UNIVERSITY OF MALTA

UNIVERSITY OF
STIRLING

INTRODUCTION

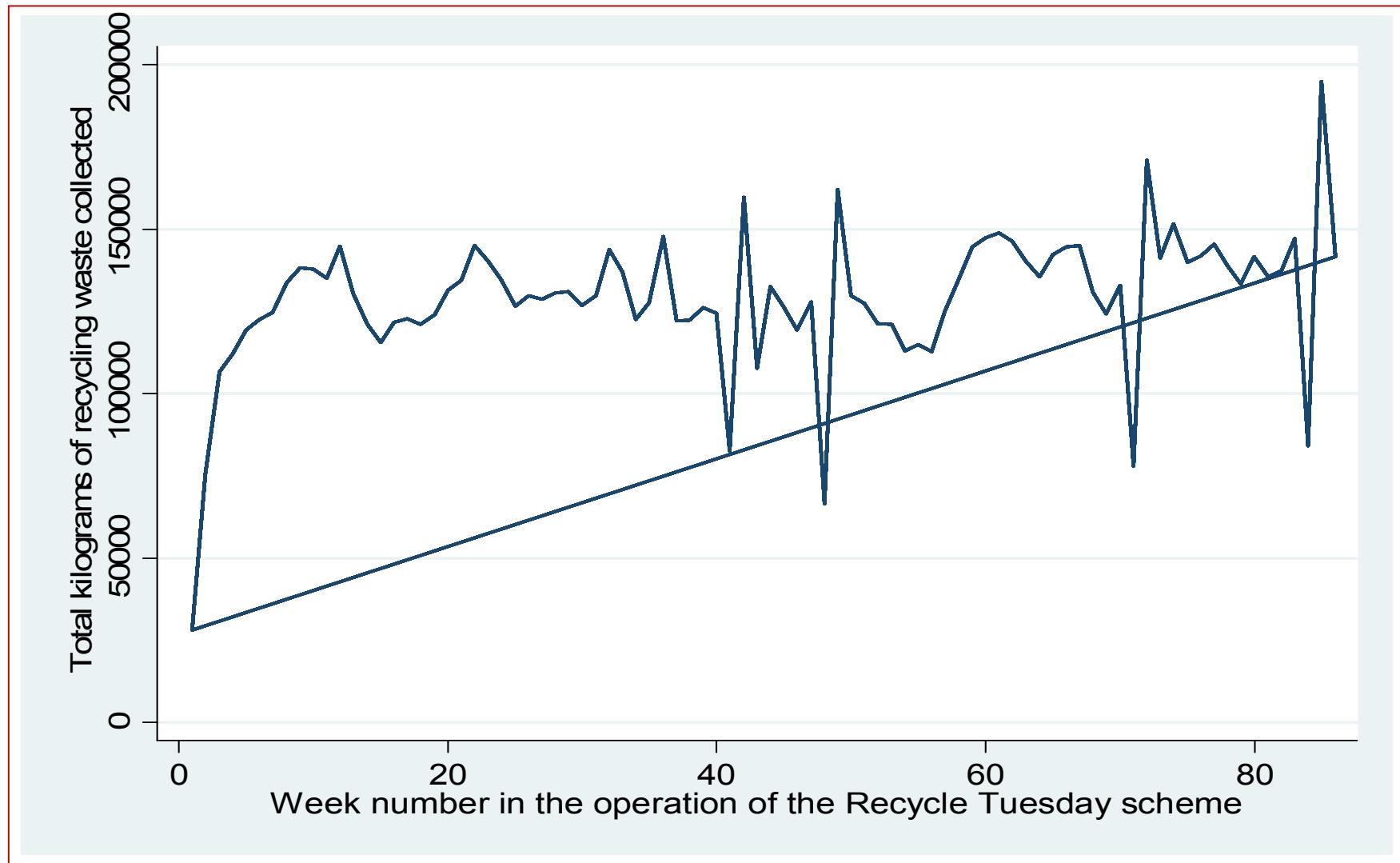
Imagine:

daily kerb-side collection of **mixed** municipal solid waste is **free**.

Introduce:

weekly voluntary kerb-side collection of **separated** waste at a **fee**

Requiring more space, more time, more money


Outcome:

National kerb-side recycling scheme takes off...

....at different rates in different localities.

INTRODUCTION

Total Collected over 86 weeks

INTRODUCTION – motivation

- a case study in behavioural-environmental-economics
- co-operation in a social dilemma situation – in the field
- empirical analysis of effectiveness of intervention elements

...contribution to the Literature

- high-stakes issue (externalities, resources, EU obligations)
- potential for voluntary approach if enforcement too expensive.
- potential to examine if policy for rational egoists misdirected.

...contribution to Policy

LITERATURE – Overview

Behavioural Environmental Economics

e.g. Gsottberg e. 2011 (Behavioural environmental policy)

Shogren Taylor 2008 (Behavioural Environmental Economics)

Theoretical models for household recycling behaviour

e.g. Halvorsen 2008 (Moral motives)

Nyborg Rege 2003 (Crowding out/in)

Empirical studies on recycling

e.g. Sidiq et al 2010 (Minnesota)

Hage and Söderholm 2008 (Sweden)

+ OECD 2008 (review) + 30 field studies

LITERATURE - Summary

Motives

Narrow self interest, Moral, Social
+ Non cognitive

Interventions

Pecuniary, Convenience, Communication

Socio Economics

Education, Gender, Income, Age, Political,
+ Dwelling/Community

MODEL

Household derives utility from consumption, leisure, environment, household space, moral well-being and perceived social respect.

Conditional upon household characteristics.

$$U_i = U_i(x_i, l^c_i, e_i, a_i, s_i, v^c_i; d_i)$$

Recycling increases household's moral well-being. Positive in government communication.

$$a_i = a_i(w^r_i; GC^r). \text{ where } \delta a_i / \delta w^r_i > 0 \text{ and } (\delta a_i / \delta w^r_i) / \delta GC^r > 0$$

Perceived social-respect decreases in distance of the household's recycling from the norm. Positive in government communication and frequency of kerbside collection

$$s_i = s_i(|w^r_i - w^{rn}| (GC^r, GF^r)). \text{ where } \delta s_i / \delta w^r_i > 0, \delta w^{rn} / \delta GC^r > 0 \text{ and } \delta w^{rn} / \delta GF^r > 0$$

MODEL

Perceived environmental quality increases with recycling, decreases with waste. Positive in government communication and frequency (and hence visibility) of kerbside collection.

$$e_i = e_i [w^r_i, w^u_i, w^{rn} (GC^r, GF^r), w^{un} (GF^u)]$$

where $\delta e_i / \delta w^r_i > 0$, $\delta w^{rn} / \delta GC^r > 0$, $\delta w^{rn} / \delta GF^r > 0$, $\delta w^{un} / \delta GF^u > 0$

Waste collection comes at a price (as do all other goods and services)

$$m_i = GP^r \cdot w^r_i + GP^u \cdot w^u_i + x_i$$

Recycling diverts time from leisure. Government communication helps.

$$l^c_i = l^t_i - l^r_i (w^r_i; GC^r) \text{ where } \delta l^r_i / \delta w^r_i > 0 \text{ and } (\delta l^r_i / \delta w^r_i) / \delta GC^r < 0$$

Recycling consumes space. Frequency of waste collection helps

$$v^c_i = v^t_i - v^r_i (w^r_i; GF^r) - v^u_i (w^u_i; GF^u) \text{ where } \delta v^r_i / \delta w^r_i > 0, (\delta v^r_i / \delta w^r_i) / \delta GF^r < 0$$

Recycling is drawn from waste, a function of consumption $w^t_i (x_i) = w^u_i + w^r_i$

MODEL - Formal

1. $U_i = U_i(x_i, l^c_i, e_i, a_i, s_i, v^c_i; d_i)$
2. $a_i = a_i(w^r_i; GC^r)$. where $\delta a_i / \delta w^r_i > 0$ and $(\delta a_i / \delta w^r_i) / \delta GC^r > 0$
3. $s_i = s_i(|w^r_i - w^{rn}| (GC^r, GF^r))$. where $\delta s_i / \delta w^r_i > 0$, $\delta w^{rn} / \delta GC^r > 0$ and $\delta w^{rn} / \delta GF^r > 0$
4. $e_i = e_i [w^r_i, w^u_i, w^{rn} (GC^r, GF^r), w^{un} (GF^u)]$ where $\delta e_i / \delta w^r_i > 0$, $\delta w^{rn} / \delta GC^r > 0$,
 $\delta w^{rn} / \delta GF^r > 0$, $\delta w^{un} / \delta GF^u > 0$
5. $U_i = U_i (x_i, l^c_i, v^c_i, w^r_i, w^u_i, w^{rn} (GC^r, GF^r), w^{un} (GF^u); d_i, GC^r)$
6. $m_i = GP^r \cdot w^r_i + GP^u \cdot w^u_i + x_i$
7. $l^c_i = l^t_i - l^r_i (w^r_i; GC^r)$ where $\delta l^r_i / \delta w^r_i > 0$ and $(\delta l^r_i / \delta w^r_i) / \delta GC^r < 0$
8. $v^c_i = v^t_i - v^r_i (w^r_i; GF^r) - v^u_i (w^u_i; GF^u)$ where $\delta v^r_i / \delta w^r_i > 0$ and $(\delta v^r_i / \delta w^r_i) / \delta GF^r < 0$
9. $w^t_i (x_i) = w^u_i + w^r_i$

MODEL

Solving (Lagrangian s.t. conditions), yields typical predictions about extent of recycling **by the optimising household** and allows us to make hypothesis about effect of interventions and constraints on voluntary recycling

+ Implications of intervention if optimisation conditions are relaxed

MODEL - Estimation

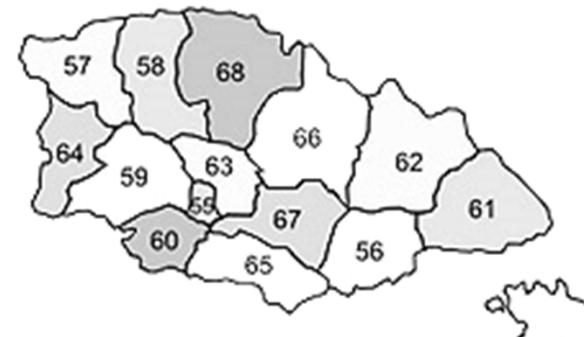
Expressing recycling as a **linear function of the exogenous variables** provides the basis for the empirical estimation

$$Y_{it} = \alpha + \beta_1 G_{it} + \beta_2 X_{it} + \beta_3 C_{it} + u_{it}$$

Y_{it} kilograms of separated waste per capita
 G_{it} vector of interventions (convenience, price, communication)
 X_{it} vector of constraints (space, time, income)
 C_{it} captures a number of relevant controls including SES
 u_{it} represents the error term.
 i indexes locality of observation; t indexes time units (week)

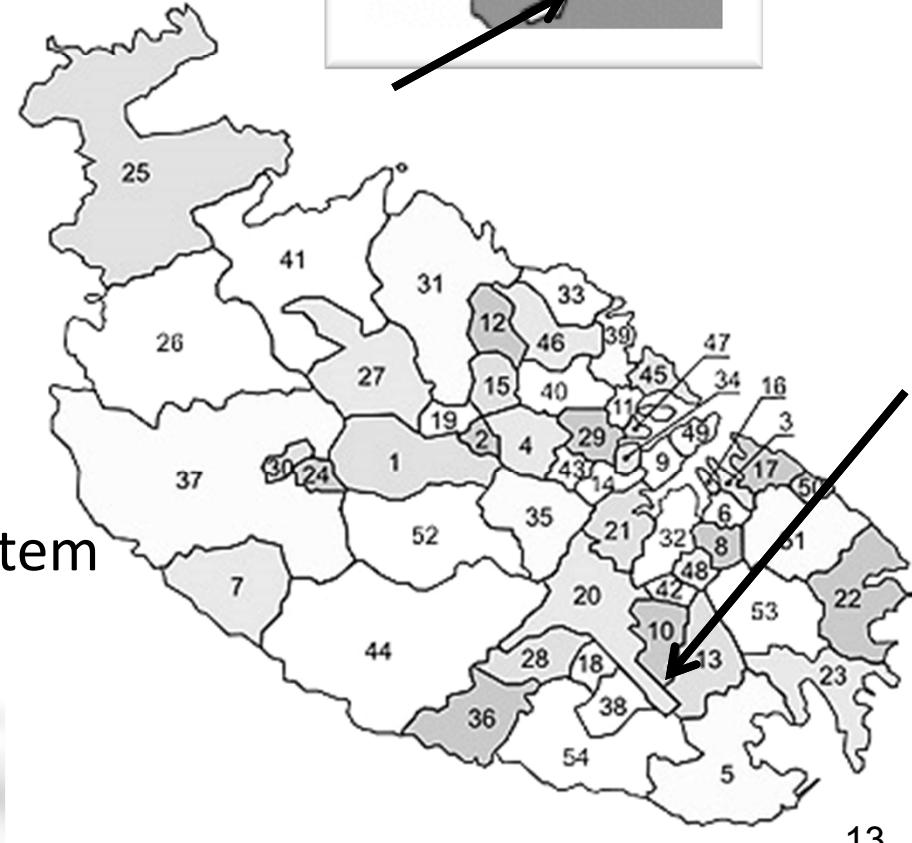
Model - Hypotheses

The a-priori expectation is that Y_{it} (recycling) increases with


Government communication, frequency of collection, lower fees

Lower opportunity cost of time, space, price

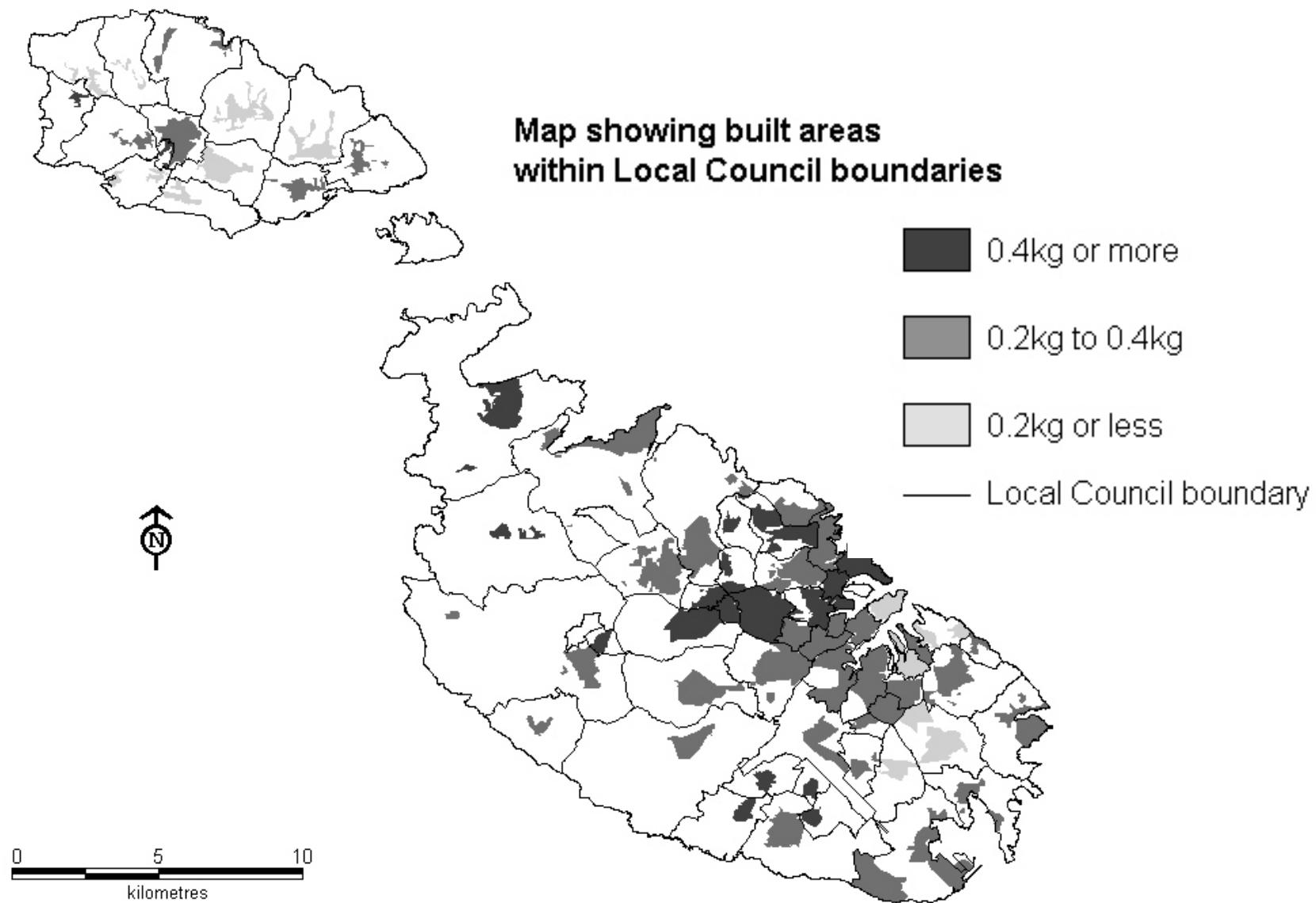
Stronger norm/moral prefs e.g. efficacy belief, homogeneity


Habit over time

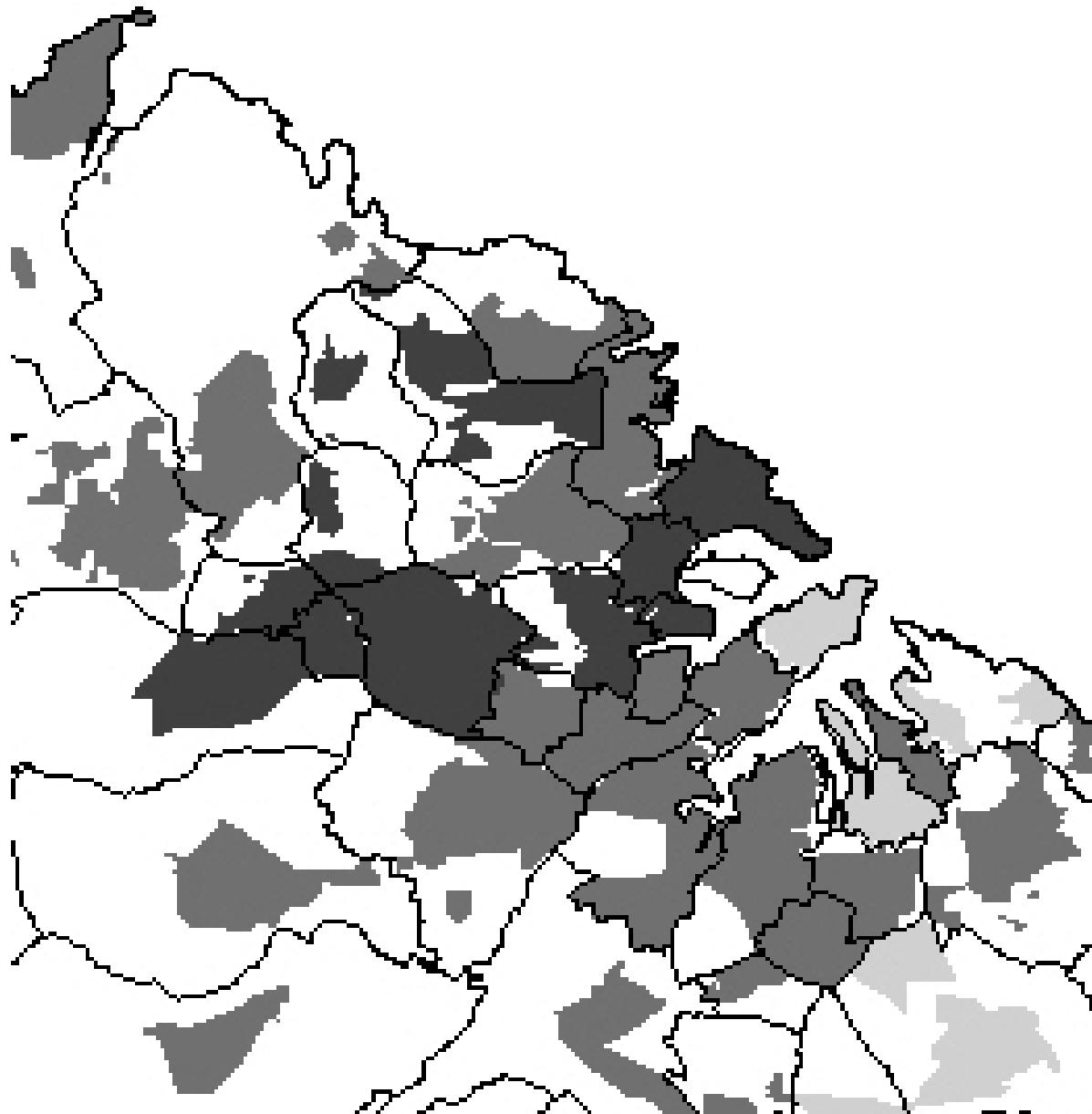
DATA - Context

MALTA

316 km² total area
68 locations
410,000 population
2 inhabited islands
EU member state
V. high voter turnout, bi-party system
Lowest r in the EU


13

DATA - Context


THE SCHEME
Recycling “Tuesdays”
3 streams of waste
In a grey bag
At the kerbside
At 0.08 euro per bag
86 weeks
March 2008

DATA - Context

DATA - Context

Map showing built areas
within Local Council boundaries

- 0.4kg or more
- 0.2kg to 0.4kg
- 0.2kg or less
- Local Council boundary

DATA - Sources

Data available on:

Recycling waste volumes by locality, week

Intervention design elements by locality, week

Constraints by locality

Socio economic characteristics by locality

Controls by locality, week

FROM:

Malta Environment and Planning Authority

68 Local Councils

National Statistics Office

Department of Information

Malta Tourism Authority

The Diocese of Malta

interalia
17

Data – Variables

The dependent variable “Yit”

Tonnes of separated waste in 68 localities/population (recpc)

PANEL

The explanatory variables “Git”

GC dummy variable extent of promotional effort (recpr) (recprXvote)

CROSS

GP dummy variable weeks of free bags (freebag)

TIME

GP dummy variable for period with tax on bags (mswtax)

TIME

GF variables for frequency of collection (recfreq), (mswfreq)

PANEL

GF dummy variable for missed collections (holiday)

PANEL

The constraints “Xit”

TIME for leisure (oldpc) (teredupc)

CROSS

SPACE (densitybuilt)

CROSS

INCOME (spapc)

CROSS

The moral/social preferences “C”

SOCIAL – (diversity) diversity index (tourists, singles, social cases)

PANEL

MORAL - (votepnpc)

CROSS

+ Control variable

TIME week number in the scheme (week)

TIME

Estimation - specification

$$\text{Recpc}_{it} = B_0 + \text{recpr}_i B_1 + \text{freebag}_t B_2 + \text{mswprice}_t B_3 + \text{recfreq}_{it} B_4 + \text{mswfreq}_{it} B_5 + \text{holiday}_{it} B_6 + \text{densitybuilt}_i B_7 + \text{spapc}_i B_8 + \text{teredupc}_i B_9 + \text{oldpc}_i B_{10} + \text{votepnpc}_i B_{11} + \text{diversity}_i B_{12} + \text{week}_t B_{13} + u_{it}$$

That is, recycling per capita is a function of government interventions (price, frequency, communication), household constraints (space, income, time), moral preferences, normative effects and time.

Estimation – statistics

Variable	N	Mean	SD	Min	Max
recpc	4469	0.368	0.302	0	2.980198
freebag	4469	0.162	0.369	0	1
mswprice	4469	0.500	0.500	0	1
recfreq	4469	1.030	0.170	1	2
mswfreq	4469	5.784	1.257	0	7
holiday	4469	0.035	0.183	0	1
recpr	4469	0.577	0.494	0	1
densitybuilt	4469	7.385	2.806	2.370	19.031
spapc	4469	0.071	0.038	0.011	0.188
teredupc	4469	0.079	0.041	0.022	0.187
oldpc	4469	0.220	0.072	0.070	0.378
votenpc	4469	0.436	0.151	0.198	0.831
diverse	4469	0.107	2.386	-3.057	6.701
week	4469	43.517	24.819	1	86

GOZO COUNCILS LEFT OUT

Estimation – Random Effects

Freebag	0.0127	0.0088	
Mswprice	-0.0767	0.0101	***
Recfreq	0.183	0.0286	***
Mswfreq	0.0321	0.0104	***
Holiday	-0.198	0.0134	***
Recpr	0.121	0.0353	***
densitybuilt	-0.0194	0.0063	***
Spapc	-2.075	1.235	*
teredupc	-2.611	1.057	**
Oldpe	0.317	0.474	
votenpc	0.821	0.191	***
diverse	-0.0187	0.00951	**
week	0.00221	0.00024	***
Constant	-0.058	0.118	

Notes: *** p<0.01, ** p<0.05, * p<0.1 N: 4469; Councils 52; r²_o 0.187; r²_b 0.233; chi² 383.3; sigma_u 0.113; sigma_e 0.156; rho 0.343

21

DISCUSSION : INTERACTING PR WITH VOTE

freebag	0.0128	0.00881
mswprice	-0.0768	0.0101 ***
recfreq	0.179	0.0286 ***
mswfreq	0.0315	0.0102 ***
holiday	-0.198	0.0134 ***
recpr	-0.139	0.0968
densitybuilt	-0.0189	0.00599 ***
spapc	-1.422	1.194
teredupc	-2.143	1.016 **
oldpc	0.198	0.452
votepnpc	0.531	0.208 **
diverse	-0.0246	0.00926 ***
week	0.00221	0.000242 ***
recprXvote	0.605	0.212 ***
Constant	0.0125	0.115

Estimation - tests

Random Effects?

Breusch and Pagan LM test

Hausmann Test

Multicollinearity?

Pair-wise reveal some high correlations.

Endogeneity?

Price: Freebag, time dummy

Promotion: Recpr, cross section dummy.

Frequency: Recfreq and mswfreq not much variation in time.

Robust SE?

CONCLUSION - limitations

1. Regional data: Inferences about households/individuals? More households/individuals or more recycling?
2. Contamination of data: (regions, streams, sources for recpc) and reporting lag.
3. Reliance on time/cross section dummies for identification, omitted variables?

CONCLUSION - strengths

1. Employs rich spatial and temporal panel data set with low level of aggregation, based on actual recycling, no influence on data collection processes, no distortion between reported and actual.
2. Documents recycling uptake w/o of pecuniary incentive and confirms role of intervention design other than price.
3. Finds importance of pro-government sentiment – for further research.

Thank You

marie.briguglio@stir.ac.uk