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Abstract

The purpose of this study was to evaluate two novel liposomal formulations of cisplatin as potential therapeutic agents for
treatment of the F98 rat glioma. The first was a commercially produced agent, LipoplatinTM, which currently is in a Phase III
clinical trial for treatment of non-small cell lung cancer (NSCLC). The second, produced in our laboratory, was based on the
ability of cisplatin to form coordination complexes with lipid cholesteryl hemisuccinate (CHEMS). The in vitro tumoricidal
activity of the former previously has been described in detail by other investigators. The CHEMS liposomal formulation had
a Pt loading efficiency of 25% and showed more potent in vitro cytotoxicity against F98 glioma cells than free cisplatin at
24 h. In vivo CHEMS liposomes showed high retention at 24 h after intracerebral (i.c.) convection enhanced delivery (CED) to
F98 glioma bearing rats. Neurotoxicologic studies were carried out in non-tumor bearing Fischer rats following i.c. CED of
LipoplatinTM or CHEMS liposomes or their ‘‘hollow’’ counterparts. Unexpectedly, LipoplatinTM was highly neurotoxic when
given i.c. by CED and resulted in death immediately following or within a few days after administration. Similarly ‘‘hollow’’
LipoplatinTM liposomes showed similar neurotoxicity indicating that this was due to the liposomes themselves rather than
the cisplatin. This was particularly surprising since LipoplatinTM has been well tolerated when administered intravenously. In
contrast, CHEMS liposomes and their ‘‘hollow’’ counterparts were clinically well tolerated. However, a variety of dose
dependent neuropathologic changes from none to severe were seen at either 10 or 14 d following their administration.
These findings suggest that further refinements in the design and formulation of cisplatin containing liposomes will be
required before they can be administered i.c. by CED for the treatment of brain tumors and that a formulation that may be
safe when given systemically may be highly neurotoxic when administered directly into the brain.
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Introduction

Platinum containing drugs are widely used chemotherapeutic

agents for the treatment of a variety of human cancers [1,2].

However, their renal, gastro-intestinal and neurotoxicity, rapid

binding to plasma proteins, and poor penetration of the central

nervous system (CNS) have limited their use for the treatment of

brain tumors [2–4]. We recently have reported that intracerebral

(i.c.) convection enhanced delivery (CED) or osmotic pump

infusion of carboplatin in combination with radiotherapy (RT),

produced a 2.5 to 3.6 fold increase in the mean survival time

(MST) of F98 glioma bearing rats with a subset of cured animals

[5]. However, the wide range of survival times (37–180 days)

suggested that there was non-homogenous distribution of the drug

within the tumors. This occurred despite the fact that i.c. CED of

20 mg of carboplatin resulted in a tumor drug concentration

(10.4 mg/g) equivalent to that observed following i.v. administra-

tion of a 10006greater dose (20 mg or 20,000 mg) to F98 glioma

bearing rats. These observations suggested to us that a liposomal

formulation of the drug might result in not only more sustained

release, but also improved microdistribution within the tumor

[6,7].

Liposomes have been used clinically to deliver a variety of

anticancer drugs including cisplatin [8–11], but not for the

treatment of brain tumors. Bankiewicz [12–14] and Dickinson

[15,16] and their research teams have carried out extensive studies

in rodents, dogs and primates to evaluate CED of liposomes,

loaded with either tracers or therapeutic agents for the treatment
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of brain tumors. Loading cisplatin into liposomes potentially could

reduce its systemic toxicity and improve its microdistribution

within brain tumors following CED [17]. For the design and

preparation of liposomal nanovehicles, it is important to achieve a

balance between their stability, encapsulation efficiency, drug

release, i.c. drug distribution, and tumoricidal activity. This is

especially true if they are to be used for the treatment of brain

tumors, where the blood-brain barrier (BBB) severely limits tumor

uptake following systemic administration [18]. This could be

circumvented by directly administering them i.c. by means of

CED, if the delivery parameters can be optimized [19]. Readers

interested in more detailed information relating to CED of

liposomes for the treatment of brain tumors are referred to a

recent review on this topic [20].

In the present study we initially evaluated a proprietary

liposomal formulation of cisplatin (LipoplatinTM, Regulon Inc.

Mountain View, CA) [6–11] and their ‘‘hollow’’ counterparts in

non-tumor bearing Fischer rats. These unexpectedly proved to be

highly neurotoxic, and served as an impetus for us to develop a

formulation that would be better tolerated following i.c. CED. In

this report we describe a novel liposomal cisplatin formulation that

we have prepared, which was based on the ability of cisplatin to

form coordination complexes with lipid cholesteryl hemisuccinate

(CHEMS) [21]. These liposomes showed increased in vitro

cytotoxicity against F98 glioma cells compared to free cisplatin

and tumor retention in F98 glioma bearing rats. However,

neurotoxicologic studies, carried out in non-tumor bearing

animals, showed that the CHEMS liposomes and their ‘‘hollow’’

counterparts produced a variety of neuropathologic changes

ranging from minimal to severe. These findings indicated that

they were not suitable for therapy studies and that further work

will be required to produce liposomal cisplatin containing

nanovehicles that will be well tolerated when administered i.c.

by CED to F98 glioma bearing rats.

Materials and Methods

Chemicals
Egg yolk phosphatidylcholine (egg PC), and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N- [methoxy (polyethylene gly-

col)-2000] ammonium salt (mPEG-DSPE) were purchased from

Avanti Polar Lipids (Alabaster, AL). Cholesteryl hemisuccinate

(CHEMS, MW 486 Da) and cisplatin (MW 300.04 Da) were

purchased from Fisher Scientific, Pittsburgh, PA. An aqueous

solution of cisplatin (5 mM) was prepared by incubating it

overnight in the dark at 37uC in order to reach full equilibration.

Preparation and Characterization of LipoplatinTM and
CHEMS Liposomes

LipoplatinTM is a liposomal formulation of cisplatin, composed

of the lipids 1, 2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycer-

ol)] (sodium salt), also known as dipalmitoyl phosphatidyl glycerol

(DPPG, MW 745Da), soy phosphatidyl choline (SPC-3, MW

790 Da), cholesterol (MW, 386.66 Da) and mPEG-DSPE. It was

produced in two steps: First liposomes composed of SPC-3,

cholesterol and mPEG-DSPE were prepared. Second, reverse

micelles between the cisplatin dihydroxy form (positively charged)

and DPPG (negatively charged) were formed in an ethanolic

solution, which then was engulfed by the liposomes from step 1 by

mixing them under proprietary conditions. The resulting prepa-

ration was a sterile, non-pyrogenic opaque liquid intended for

intravenous injection [8]. The ‘‘hollow’’ Lipoplatin liposomes were

produced in a similar manner but did not contain any cisplatin.

To prepare CHEMS liposomes egg PC, CHEMS and mPEG-

DSPE (20:10:1, w/w) were mixed in chloroform and dried into a

thin film by evaporating the bulk of the solvent under nitrogen,

and the residual solvent was removed under vacuum. A 10% by

weight (wt%) aqueous sucrose solution (pH 8.0), was added and

the lipid film was hydrated overnight at ambient temperature and

finally for 1 h at 37uC. The lipid dispersion was sonicated for

1 min in a bath sonicator to generate liposomes, and then

processed by a high-pressure EmulsiFlex-C5 homogenizer (Aves-

tin, Inc., Ottawa, Canada) for 10 min, in order to reduce particle

size. Cisplatin (5 mM in 10 wt% sucrose, pH 8.0) was added to

the liposomes (CHEMS: cisplatin ,1:2.5 mol/mol) and it was

incubated at 37uC for 24 h. The unbound cisplatin was removed

by hollow-fiber diafiltration (MicroKros Spectrum Laboratories,

Inc., Rancho Dominguez, CA), sterilized by passing them through

a 0.45 mm filter (Millipore Corp., Billerica, MA) and then freeze-

dried. A schematic diagram of the resulting purified CHEMS

liposomes are shown in Fig. 1. The ‘‘hollow’’ CHEMS liposomes

were prepared in a similar way but did not contain any cisplatin.

Determination of Size, Zeta Potential and in vitro
Tumoricidal Activity

The size distribution of the LipoplatinTM was determined by

dynamic light scattering on Beckman Coulter N4+ particle size

analyzer and for CHEMS liposomes on a NICOMP Submicron

Particle Sizer. All particle size data refer to volume-weighted

distributions. The zeta potentials (f) of the liposomes were

determined on a ZetaPALS instrument (Brookhaven Instruments

Corp., Holtsville, NY). CHEMS liposomes, at a dose of 15 mg

cisplatin per flask, were added to F98 rat glioma cells (CRL-2397,

ATCC), propagated in T-75 flasks. Cells were incubated at 37uC
for 1, 2, and 4 h. they then were trypsinized and harvested,

followed by centrifugation to obtain cell pellets. These were

resuspended in 2 ml of phosphate buffered saline (PBS, pH 7.4)

and then processed for Pt determinations by means of Inductively

Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) at a

later date [5]. To assess the in vitro cytotoxicity of free cisplatin,

LipoplatinTM and CHEMS liposomes and their ‘‘hollow’’ coun-

terparts, F98 glioma cells were treated with varying concentrations

of either for 4 or 24 hrs. The cells then were plated out in petri

dishes, 3 replicates for each concentration and at 7 days the

cultures were terminated and colonies were enumerated as

previously described [5]. Colonies with .50 cells were enumer-

ated under a dissecting microscope and the surviving fractions

(S.F.) were calculated.

Neurotoxicologic Studies
All of the animal studies were carried out in strict accordance

with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and our protocol

was approved by the Institutional Animal Care and Use

Committee of The Ohio State University (Permit #: A-3261-01

and IACUC protocol number 2007A0261-R1).

Neurotoxicologic studies were carried out in non-tumor bearing

male Fischer rats. Initially, a dose escalation study was performed

using either LipoplatinTM or CHEMS liposomes. The former

contained 0.45, 0.90, 1.80 or 2.70 mg of cisplatin, respectively, and

the latter contained 0.48 mg/mL of cisplatin in 10, 15 and 20 mL.

Non-cisplatin containing (‘‘hollow’’) liposomes of each type were

evaluated as vehicle controls. All of these agents were administered

into the striatum of the right cerebral hemisphere by CED over

30 min [5] using a 28 gauge needle as a cannula with 3 animals for

each concentration. Those rats that received LipoplatinTM and did

not die acutely were monitored daily and euthanized at 4 d

Studies on Liposomal Cisplatin following CED
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following CED. Animals that received CHEMS liposomes were

monitored clinically and weighed 3X per week until they were

euthanized at either 10 or 14 d following administration. The

brains of all animals were removed and processed for neuropath-

ologic examination [5].

Biodistribution Studies in F98 Glioma Bearing Rats
The F98 rat glioma was derived from an undifferentiated

neoplasm that was induced in the progeny of a pregnant CD

Fischer rat that had received an injection of N-ethyl-N-nitroso-

urea. It has been propagated in vitro and in vivo since 1971 and, as

described in a recent review [22], it has been used in a wide variety

of studies in experimental neuro-oncology. F98 cells were grown in

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Grand

Island, NY) supplemented with 10% fetal bovine serum (FBS)

(Hyclone, Logan, UT), 100 units/mL penicillin, 100 mg/mL

streptomycin and 2 mM L-glutamine. Fischer rats (Animal

Production Branch National Cancer Institute, Frederick, MD)

weighing 220–240 g were used in the present study. A stereotactic

implantation procedure, which has been described in detail

elsewhere [23], was employed. F98 cells at a concentration of

105 cells/10 ml in DMEM containing low gelling temperature

agarose were injected stereotactically into the right caudate

nucleus over 10–15 s through a small entry port of the plastic

screw.

Thirteen days later, at which time the tumors had attained

volumes of ,25–30 mm [5], biodistribution studies were initiated.

CHEMS liposomes were diluted in normal saline and adminis-

tered to 8 rats by CED over 30 min (9.6 mg/10 ml). Immediately

following or 24 h after CED, 4 rats were euthanized, their brains

were removed, the tumors were carefully dissected out from

surrounding normal brain and they were weighed, and stored at

270uC. Similarly, a 1 mm zone surrounding the excised tumor

was dissected out, and this was designated as ‘‘brain around

Figure 1. Schematic representation of a liposome containing CHEMS-cisplatin complexes prepared by the addition of a cisplatin
solution to preformed egg PC/CHEMS/mPEG-DSPE liposomes.
doi:10.1371/journal.pone.0048752.g001

Table 1. Formulations of liposomal cisplatin preparations.

Lipid
Composition

Cisplatin loading
(mol/mol)

Loading
efficiency

Particle size
(nm)

Zeta potential
(mV)

Egg PC:CHEMS:mPEG- CHEMS: cisplatin 25% 55.2634.3a 230.960.4a

DSPE 1 : 2.5 (initial) 56.7620.8b 27.961.1b

1 : 0.6 (final) 52.3618.2c 28.360.7c

LipoplatinTM 254.765d

DPPG: SPC-3: 249.665e

cholesterol:

mPEG-DSPE

aHollow liposomes (before cisplatin loading).
bLiposome/cisplatin measured immediately after preparation.
cAfter lyophilization, 10 d storage at ambient temperature, and resuspension.
dIn water.
eIn 5% dextrose.
doi:10.1371/journal.pone.0048752.t001
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Figure 2. Clonogenic survival of F98 glioma cells following treatment with either free cisplatin or liposomal cisplatin for 4 or 24 h.
Surviving fractions (S.Fs) were determined for the F98 glioma cells treated with (A) CHEMS lipsomes, (B) free cisplatin following a 4 h (N) or 24 h (#)
exposure. Each data point represents the mean of 3 replicates 6 the standard deviation.
doi:10.1371/journal.pone.0048752.g002
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tumor’’ (BAT). The remaining right cerebral hemisphere and the

left hemisphere were designated ‘‘normal’’ brain. Platinum

determinations in all of these tissues were performed at a later

date by means of ICP-OES. Based on Pt uptake values, the

concentrations of cisplatin (MW 300.05 Da), were calculated by

multiplying the Pt values by 1.54. Platinum retention in the F98

glioma after CED of CHEMS liposomes was calculated as %

injected dose (ID)/g tumor.

Statistical Evaluation of Data
For data obtained in the in vitro cytotoxicity studies, the means

and standard deviations (SD) of surviving fractions of F98 glioma

cells were calculated. Data were first log transformed and then fit

to a quadratic function. The data also were used to test the

difference in S.F. of the cells using a one-way Analysis of Variance

(ANOVA), followed by a post hoc test using Tukey’s method [24].

Analysis of the differences in in vitro toxicity of LipoplatinTM and

CHEMS liposomes, and their ‘‘hollow’’ counterparts was deter-

mined by means of a two-sample t-test. For the biodistribution

data, the means and SD were computed for cisplatin in tumor,

brain around tumor (BAT), ipsilateral (tumor bearing) and

contralateral (non-tumor bearing) cerebral hemispheres and blood.

A two-sample t-test was used to compare Pt concentrations in

these tissues at 0 or 24 hours following CED. For retention of Pt in

F98 glioma bearing rats, a two-way ANOVA was used to test for

differences between free carboplatin and CHEMS liposomes and

those between two time points (0 and 24 h). Differences were

considered significant if the P value was ,0.05.

Results

Preparation and Characterization of CHEMS Liposomes
As a result of the addition of cisplatin, the zeta (f) potential of

the lipid vesicles decreased from 230.9 mV to 27.9 mV, thereby

confirming that it had bound to the liposomes (Table 1). Assuming

a uniform distribution of CHEMS on the two sides of the lipid

bilayer, the molar ratio of the CHEMS in the outer/inner layer

should have been close to 0.6 for the observed liposome size. Based

on the procedure that we employed, only the outer layer of the

liposomal membrane was accessible for cisplatin and a maximum

molar ratio of the 1:0.6 was attained for CHEMS/cisplatin

liposomes (Table 1). This could either indicate that virtually all

CHEMS molecules in the outer lipid layer had reacted with

cisplatin or alternatively that coordination compounds had been

formed at 1:1 stoichiometry.

In vitro Tumoricidal Activity of Either Free Cisplatin or
Cisplatin Containing Liposomes

The in vitro tumoricidal activity of LipoplatinTM previously has

been described in detail elsewhere by Paquette and his research

team [25]. Clonogenic survival data for F98 glioma cells that had

been exposed to free cisplatin or either LipoplatinTM or CHEMS

liposomes or their ‘‘hollow’’ counterparts at 4 or 24 h are shown in

Fig. 2 and Table 2. The IC90 of cisplatin and CHEMS at 4 h were

0.600 and 0.383 mg/mL, respectively, versus 0.335 and 0.259 mg/

mL at 24 h. The S.F. of F98 cells were 0.13% following 24 h

treatment with CHEMS liposomes containing 0.375 mg/mL

cisplatin, versus 0.74% for free cisplatin. Thus, the CHEMS

showed more potent cytotoxicity than free cisplatin at 24 h.

It is noteworthy that LipoplatinTM and its ‘‘hollow’’ counterpart

showed equivalent in vitro cytotoxicity against F98 glioma cells

(S.F. 0.51 versus 0.43) following a 4 hr incubation. This was

attributed to the intrinsic toxicity of the ‘‘hollow’’ liposomes and

the slow release of cisplatin from LipoplatinTM. The in vitro

cytotoxicity of cisplatin containing CHEMS liposomes was 106
greater than the ‘‘hollow’’ counterpart (S.F. 0.05 versus 0.59). Free

cisplatin at a concentration of 3 mg/ml showed the most potent

in vitro cytotoxicity (S.F. 0.0002) and this correlated with the

marked in vivo neurotoxicity of the free drug (Fig. 3H and 4F).

Neurotoxicologic Studies
Unexpectedly, rats that received the highest doses of Lipopla-

tinTM (1.8 and 2.7 mg cisplatin) by CED showed acute neurotox-

icity, which was manifested as soon as the effects of anesthesia had

worn off. These animals clearly were in acute distress, as evidenced

by vocalization suggesting that they were in pain, hyperactivity

and sensitivity to touch. They were re-anesthetized in the hope

that when they again came out of anesthesia, their clinical status

would have improved. Since this was not the case, they then were

euthanized. The brains of these animals showed one or more foci

of acute hemorrhage (Fig. 3A) at sites other than along the needle

track. Rats that received LipoplatinTM, containing 0.9 or 0.45 mg

of cisplatin, which were euthanized 4 days following administra-

tion, showed a spectrum of changes ranging from mild to severe

with hemorrhage, extensive necrosis, with or without infiltrates of

foamy macrophages (Fig.3B and C). Rats that received the

‘‘hollow’’ counterparts of LipoplatinTM clinically did not appear to

be sick. However, the brains of these animals, euthanized d 4

following administration, showed hemorrhage with associated

necrosis, edema of the neuropil and an infiltrate of macrophages

(Fig. 3D and E). In summary, LipoplatinTM and its ‘‘hollow’’

counterpart proved to be highly neurotoxic when administered i.c.

by CED at these doses. This in part was due to the intrinsic

toxicity of the liposomes themselves, together with the neurotoxic

effects of cisplatin itself.

In contrast, the brains of half of the rats that received CHEMS

liposomes at doses of 4.8, 7.2 or 9.6 mg of cisplatin showed

minimal histopathologic abnormalities at 2 wks following admin-

istration. In some animals there were focal accumulations of clear

vacuoles that presumptively may have contained lipid (Fig. 4A),

and in others there were scattered reactive astrocytes and

astrocytosis with necrosis and incipient necrosis, infiltrates of

macrophages (Fig. 4B), and evolving reactive eosinophilic neurons,

which were consistent with late neuronal injury. In a second study

with CHEMS liposomes, containing 3, 6 or 9 mg of cisplatin rats

were euthanized at d 10 following administration by CED. Again,

there was a spectrum of changes ranging from normal in the

Table 2. Comparison of the toxicity against F98 glioma cells
of LipoplatinTM and CHEMS cisplatin liposomes and their
‘‘hollow’’ counterparts.

Test agent
Cisplatin conc
(mg/ml)

Surviving fraction
(mean ± SD) P-value*

LipoplatinTM 3 0.5160.13 0.42

‘‘Hollow’’Regulon
liposomes

0 0.4360.05

CHEMS liposomes 0.5 0.02360.003 0.02

‘‘Hollow’’ CHEMS
liposomes

0 0.5960.13

aF98 glioma cells were exposed to the test agent for 4 hours, following which
clonogenic assays were carried.
bSurviving fractions were determined following 7 days incubation at 37uC in a
CO2 incubator.
*P-value is computed using two-sample t-test.
doi:10.1371/journal.pone.0048752.t002
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brains of some rats, and focal areas of hemorrhage in others that

received the lowest dose, to focal accumulations of lymphocytes

and macrophages (6 mg of cisplatin) to focal areas of intense

inflammation (Fig. 4C and D) with large numbers of lymphocytes

and macrophages, hemorrhage (Fig. 4C) and prominent neovas-

cularization (Fig. 4E) and necrosis (9 mg). Based on these findings,

it was concluded that the 3, 4.8 or 6 mg doses of cisplatin of the

CHEMS liposomes appeared to be reasonably well tolerated

Figure 3. Neuropathologic changes associated with i.c. CED of LipoplatinTM or its ‘‘hollow’’ counterparts or free cisplatin (A). (A)
LipoplatinTM (1.8 mg). Rat was euthanized 2 hr after CED. There is cerebral edema and a single focus of hemorrhage in the R cerebral hemisphere,
adjacent to the medial boundary of the R lateral ventricle and another in the lateral hypothalamic area. (B) LipoplatinTM (0.9 mg cisplatin). The rat was
euthanized 4 days after CED. There is extensive necrosis with a dense infiltrate of foamy macrophages. (C) LipoplatinTM (0.9 mg cisplatin) euthanized
on d 4. There is a 664 mm zone of advanced necrosis with a peripheral zone of microglial reaction. There is edema of the neurophil and
vacuolization, but no inflammatory response. (D) and (E) LipoplatinTM ‘‘hollow’’ liposomes (1006). There is a 764 mm zone of hemorrhage associated
with necrosis and edema of the neuropil. (E) There is an infiltrate of macrophages and hyperplasia of endothelial cells of adjacent small vessels. (F)
Free cisplatin (3 mg), rats euthanized on d 7. Higher power (4006) view of (Fig. 4H). There is hemorrhage, necrosis and infiltration with lipid laden
macrophages. Scattered larger blood vessels show early fibrin deposition in the walls.
doi:10.1371/journal.pone.0048752.g003
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following i.c. CED although there were a variety of neuropath-

ologic findings ranging from none to moderate. On the other

hand, the 9 mg dose produced severe neuropathologic changes.

The brains of rats that received ‘‘hollow’’ CHEMS liposomes,

which were euthanized at d 10 following administration, showed

prominent necrosis with an intense inflammatory response

consisting of lymphocytes and macrophages (Fig. 4F). Immuno-

staining for glial fibrillary acidic protein (GFAP) revealed foci of

reactive astrogliosis in the paraventricular area (Fig. 4G). The

brains of rats that received either 6 or 3 mg of free cisplatin, which

were euthanized on d 7, showed the most severe changes of any

that were seen in the present study. These included prominent

confluent areas of hemorrhage with white matter necrosis

(Fig. 4H), infiltrates of macrophages and early fibrin deposition

in the walls of blood vessels (Fig. 3F).

Biodistribution and Tumor Retention of Liposomal
Cisplatin in F98 Glioma Bearing Rats

The amounts of platinum retained in the brain tumors of rats

were 46.664.2% at 1 h following CED of CHEMS liposomes and

26.661.2% at 24 h. The tumor concentration was 4.4 mg/g

immediately following CED of CHEMS liposomes containing

9.6 mg of cisplatin and 2.8 mg/g at 24 h (P = 0.05, Table 3). This

was significantly higher (P = 0.03) than the drug concentrations in

normal brain (0.1 to 0.8 mg/g). The tumor Pt concentration was

comparable to that detected immediately following CED of

carboplatin when adjusting for the higher dose of the latter [5].

Furthermore, based on these studies [5], the concentrations in

extracranial tissues would have been in the undetectable range

(,0.01 mg/g).

Discussion

The purpose of the present study was to evaluate two liposomal

formulations of cisplatin as potential candidates for future in vivo

therapeutic studies using the F98 rat glioma model. The first,

LipoplatinTM, was found to be highly neurotoxic following i.c.

CED to non-tumor bearing Fischer rats. Therefore, we designed,

prepared and characterized a novel liposomal carrier with the

cisplatin bound to CHEMS as a ligand in the outer lipid layer.

This formulation addressed two common problems associated with

liposomal drug delivery, the efficiency of encapsulation and drug

release [26]. Failure of the liposomes to release the encapsulated

drug would compromise its therapeutic efficacy. To obviate this

problem, cisplatin was added to the CHEMS liposomes after their

preparation in order to allow for the cisplatin-CHEMS complex to

form on the outer lipid layer. The residual negative f potential of

the nanoparticles possibly was due to the negative charge of the

mPEG-DSPE conjugate.

The acute neurotoxicity of LipoplatinTM and the ‘‘hollow’’

counterpart was completely unexpected since LipoplatinTM has

been shown to be safe and therapeutically effective following i.v.

infusion in patients with NSCLC [8,9]. Extensive in vitro [25] and

in vivo [27] studies on LipoplatinTM have been carried out by

Paquette and his research team using the F98 glioma model.

LipoplatinTM showed only a slight reduction in in vitro tumoricidal

activity compared to low concentrations of free cisplatin, and that

this was enhanced when it was combined with X-irradiation [25].

Based on these promising results, in vivo studies were initiated with

LipoplatinTM and LipoxalTM, which contained oxaliplatin [27].

These were administered to F98 glioma bearing rats by

intracarotid infusion either alone or in combination with a single

15 Gy dose of X-irradiation. Animals that received LipoplatinTM

showed a marked reduction in toxicity compared to cisplatin, and

the MST was 30.2 d, compared to 22.0 d for untreated controls

and 13.3 d for cisplatin treated rats whose deaths were attributable

to drug toxicity. However, as reported by Elleaume and her

research team [28,29], free cisplatin administered by i.c. CED

(6 mg in 20 mL) to F98 glioma bearing rats, resulted in a MST of

59 d with a 13% cure rate with no clinical evidence of

neurotoxicity compared to a MST of 24 d for untreated controls.

However, neuropathologic studies to determine the toxicity of

cisplatin were not carried out and based on our own observations;

we would expect that this would have produced neurotoxic effects.

Even better results have been obtained by i.c. CED of carboplatin

in combination with 6 MV photons [5,30–32] without any

histopathologic evidence of neurotoxicity [5]. As we have shown in

the present study, free cisplatin at doses of either 3 or 6 mg

produced severe neuropathologic changes consisting primarily of

hemorrhage and necrosis at the site of administration. This is in

Figure 4. Neuropathologic changes associated with i.c. CED of cisplatin containing CHEMS liposomes (A-E), their ‘‘hollow’’
counterparts (F), or free cisplatin (H). (H&E) stained coronal sections at 4006 magnification unless otherwise noted. (A) and (B) CHEMS –
cisplatin, (4.8 mg), euthanized at 2 wks. (A) Although no necrosis is seen there are clear, possibly lipid containing vacuoles scattered reactive
astrocytes and a mild infiltrate of macrophages. (B) There is focus of incipient necrosis and a moderate infiltrate of macrophages. Neurons consistent
with late neuronal injury, proliferation of astrocytes and ependymal cells along the wall of the ventricle are also seen, but not in this
photomicrograph. (C) and (D) CHEMS – cisplatin (9 mg), euthanized on d 10. There is focal intense inflammation with large numbers of macrophages,
scattered lymphocytes, hemorrhage and necrosis and (E) prominent neovascularization. (F) and (G) ‘‘Hollow’’ CHEMS liposomes, euthanized on d 10.
There is prominent necrosis with an intense inflammatory response consisting of lymphocytes and macrophages. Small vessels are engorged with
blood and show reactive endothelial cells. (G) GFAP immunostaining revealed paraventricular foci of reactive astrogliosis. (H) Free cisplatin (3 mg),
euthanized on d 7. Low power view (1006) shows a prominent focus (767 mm) of confluent hemorrhage with disruption of adjacent necrotic white
matter.
doi:10.1371/journal.pone.0048752.g004

Table 3. Biodistribution of liposomes following CED to F98
glioma bearing rats.

Mean cisplatin concentrations (mg/g) ± SDc

Groupa Tumor

Brain
aroundb

tumor (BAT) Brain (R) Brain (L) Bloodd

0 h 4.460.9 2.261.4 0.360.4 0.660.7 ,0.01

24 h 2.860.2c 1.361.0 0.160.2 0.860.3 ,0.01

aF98 glioma cells were implanted into the right caudate nucleus of 8 Fischer
rats. Twelve to 14 d later, they received CED of cisplatin containing CHEMS
liposomes (9.6 mg in 10 ml over 30 min) and were euthanized either
immediately following (t = 0 h.) CED or 24 h later. The tumors, BAT and normal
brain and blood samples were collected and Pt concentrations were
determined by ICP-OES.
bBrain around tumor arbitrarily included an area of 1 mm beyond the dissected
margins of the tumor.
cMeans and standard deviations (SD) were calculated on values obtained from 4
rats for each time point.
dThe P-value,0.05 compared to that determined at t = 0. Other than this, there
were no significant differences in the 0 and 24 h Pt values.
doi:10.1371/journal.pone.0048752.t003
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striking contrast to the minimal neuropathologic changes ob-

served, following i.c. CED of 20 mg carboplatin or infusion by

means of Alzet osmotic pumps (84 mg) [5].

Cisplatin is subject to import mechanisms through the cell

membrane using copper transporters limiting its cytoplasmic

uptake [7], whereas its formulation into LipoplatinTM appears to

yield nanoparticles that greatly enhance its cytoplasmic uptake

through fusion with the cell membrane or by endocytosis [10].

The fusogenic properties of LipoplatinTM, along with its tumor

concentration after i.v. administration to patients, resulted in a 40-

fold higher concentration in tumors compared to adjacent normal

tissues in surgically resected specimens obtained from patients with

NSCLC [6]. This resulted in a significant increase in its

therapeutic efficacy [9]. However, as shown in the present study,

its fusogenic properties may make it unsuitable for direct i.c. CED

to the brain. The acute neurotoxicity observed almost immediately

following the administration of LipoplatinTM and its hollow

liposome counterparts, which consisted of pain and hypersensitiv-

ity to touch, may have been due to cerebral edema and

hemorrhage. Intravenous administration of LipoplatinTM to treat

brain tumors is currently under investigation and animal studies

suggest that it crosses the BBB to a greater extent than free

cisplatin (Boulikas, unpublished data).

There is very little in the neuropathology [33], neurotoxicology

[34,35] and nanotoxicology literature [36,37] relating to the

neurotoxic effects of drug containing liposomes administered i.c.

by CED. Liposomal size and shape are critical determinants as to

whether they can traverse the BBB [38]. Direct i.c. CED

completely bypasses the BBB, and therefore, particle size may

have been less important. However, surface composition and

physical properties such as charge and f potential and their drug

payload can be of the critical importance in determining whether

they will have a direct neurotoxic effect and the former may

explain the neurotoxicity of the ‘‘hollow’’ liposomes. The minimal

neuropathologic changes seen within the brains of rats dying

immediately following i.c. by CED of LipoplatinTM, and the

severity of their acute neurologic symptoms suggest that acute

cerebral edema was responsible. The changes seen in the brains of

animals that were euthanized at 4 d following administration

suggest that these were due to direct toxic effects on gray and white

matter, which possibly may have been due to oxidative stress [10].

Turning to the neuropathologic changes seen following i.c. CED

of CHEMS liposomes and their ‘‘hollow’’ counterparts liposomes

in the present study, these ranged from none to moderate to severe

for both the lower and higher dose. These may have been due to

either the rapid or slow release of cisplatin in the case of the

former, combined with the intrinsic toxicity of the CHEMS

‘‘hollow’’ liposomes. These findings precluded carrying out any

therapy studies in F98 glioma bearing rats.

Bankiewicz and Dickinson [12–16,20] and their respective

research teams, have had the most experience of any investigators

who have administered drug containing liposomes i.c. by CED.

Most recently, they have evaluated CPT-11 (Irinotecan) contain-

ing liposomes in canines with spontaneous intracranial tumors.

There was clear evidence of therapeutic efficacy, as determined by

imaging studies that revealed a reduction in tumor volume, the

presence of tumor necrosis and a change in tumor morphology

consistent with a drug effect without any evidence of toxicity.

Kawabata and his research team recently have evaluated sodium

borocaptate, containing transferrin targeting liposomes, which

were administered i.c. by CED, as potential boron delivery agents

for neutron capture therapy of F98 glioma bearing rats [39].

These liposomes, which also contained an iodine contrast agent,

were well tolerated clinically and imaging studies revealed precise

localization at the site of the tumor with delivery of a high boron

payload. However, no neuropathologic studies were carried out to

determine if they were neurotoxic. Similarly, Brenner and his

research team recently have evaluated rhenium-186 containing

liposomes, which also were administered i.c. by CED to U87

glioma bearing rats [40]. The endpoint of these studies was

prolongation of median survival time, which was significantly

increased compared to that of rats that received non-radioactive

liposomes with minimal neurotoxicity.

All of these studies suggest that i.c. CED of liposomes may have

therapeutic efficacy. However, we do not believe that therapy

studies with LipoplatinTM or cisplatin containing CHEMS

liposomes are warranted at this time, especially since such good

survival data have been obtained in the F98 glioma model using

CED or Alzet pump delivery of free carboplatin [5,27,28]. Our

findings suggest that further refinements in the design and

formulation of cisplatin containing liposomes will be required

before they can be administered i.c. by CED for the treatment of

brain tumors and that a formulation, such as LipoplatinTM, which

may be safe when given systemically, may be highly neurotoxic

when administered directly into the brain. Liposomal formulations

of other cytoreductive therapeutic agents for the treatment of

cancer [41], and more specifically of brain tumors, may have

certain advantages [20]. However, at this point in time no such

agents have been used clinically. Further studies using them are

being pursued and it remains to be determined if indeed they will

have clinical utility.
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