

Healing & Disease Reversal – Part III

by Albert Cilia-Vincenti

This is the third part of a series summarising Dean Ornish's work, demonstrating that there is more to medicine than pharmaceutical drugs and surgery. His clinical research on disease reversal, in particular, may not be exactly what you learnt at medical school. He is Professor of Medicine and President of the Preventive Medicine Research Institute, California University, San Francisco.

Cardiovascular disease is the biggest pandemic of all time. Type 2 diabetes and obesity are closely following suit. However, coronary heart disease, type 2 diabetes and obesity can be prevented in almost everyone simply by making sufficient changes in diet and lifestyle. If we did, these pandemics could be as rare as malaria is in Europe or North America.

The Canadian INTERHEART study followed 30,000 men and women in 52 countries and found that 9 nutritional and lifestyle factors accounted for 95% of the risk of heart attack in every racial/ethnic group. These factors were: smoking, cholesterol level, hypertension, diabetes, obesity, diet, physical activity, alcohol consumption, and emotional stress/depression. Therefore, the disease that kills most people worldwide, and accounts for the single largest health care expenditure, is almost completely preventable by changing diet and lifestyle in ways which are described in this series.

A study¹ which reviewed all 11 randomised controlled trials of angioplasty, found that angioplasties do not reduce the heart attack risk and do not prolong life in patients with stable coronary artery disease. The same conclusion was reached in a more recent large-scale randomised controlled trial.²

People find it difficult to believe that comprehensive lifestyle changes may work even better than drugs and surgery in treating heart disease. Another major study³ found that regular physical exercise worked even better than angioplasty for preventing heart attacks, strokes, and premature deaths. A further study⁴ also found that those taking Atorvastatin had 36% fewer cardiac events after 18 months than those undergoing angioplasty. Several randomised controlled trials have shown that coronary bypass surgery prolongs life only in those with the most severe disease which, Ornish believes, is only a small percentage of those who receive it (in the US).

Angioplasty and bypass surgery may reduce angina, but he claims most people can reduce angina at least as much in only a few weeks just by changing their diet and lifestyle.

According to Ornish, Medicare statistics show a 543% increase in angioplasties and bypass operations between 1984 and 1996, despite the absence of clear outcome benefits. Ornish believes this challenges the sustainability of Medicare.

Spiraling health care costs are being devoted to surgical procedures that are invasive, dangerous and largely ineffective, whereas little or no money goes into diet and lifestyle interventions which are non-invasive, safe, inexpensive, and powerfully effective in treating coronary heart disease as well as other chronic diseases – and the only side effects are good ones.

In 2005, health care costs of Safeway supermarkets' employees in the US exceeded company net income by 20%. This was not sustainable. Ornish helped them develop incentives for wellness and prevention services in their health plan. The following year, Safeway's health care costs declined by 11% and they remained flat the year after.

Unfortunately, most health care providers still pay only for drugs and surgery, not for diet and lifestyle modifications that can help prevent the need for these. Professor Ornish sees as perverse the incentives and disincentives that reward surgical procedures and drugs over preventive approaches throughout medicine. Doctors are genuinely interested in helping their patients, but since they're trained to use drugs and surgery but not lifestyle interventions and preventive approaches, and because health care systems pay for drugs and surgery but not lifestyle/preventive approaches, it's not surprising that most physicians rely primarily on drugs and surgery. As doctors spend less time with more and more patients, there isn't enough time to talk about diet and lifestyle issues. Thus at a time when the limitations and increasing costs of high-tech interventions, such as angioplasty and stents, are becoming better documented, the power of, and cost savings from, diet and lifestyle interventions are becoming clearer.

In one of the more extreme examples of how powerful changes in diet and lifestyle can be, Ornish's team worked with a few men and women with severe coronary heart disease waiting for a heart transplant. They offered some of them their programme of comprehensive lifestyle changes whilst waiting for a donor. After one year, some improved so much that

Nutritional Medicine

Continued from page 11

they no longer needed a heart transplant – admittedly anecdotal but is still intriguing data.

The Ornish team also published findings on a larger number of patients with much impaired cardiac output who improved as much as those with less impaired myocardial function when they entered their programme. One patient, a 71-year-old man, a candidate for heart transplant, could hardly walk 20 feet due to breathlessness. He entered Ornish's heart disease reversing programme and followed it religiously. He improved so much

that he soon was able to perform a 4 mile heart walk, and even went back to work. Follow-up reports confirmed that 15 years after starting the programme, he still doesn't get dyspneic. A PET scan revealed his myocardium had significantly regenerated and had increased blood flow after one year on the programme. An echocardiogram confirmed much improved ventricular function and he no longer needed a heart transplant!

The Ornish team additionally studied 40 patients many of whom were on the way to needing a heart transplant. All were eligible for surgery (bypass or angioplasty). They compared 27 patients who chose their programme with 13 patients who underwent surgery –

the two groups were comparable in age, disease severity and cardiac function. After 3 months, there were 6 cardiac events in the 13 operated patients (46%) compared with only one cardiac event in the lifestyle-change group of 27 (4%) – 10 times fewer cardiac events in the lifestyle-change group. After 3 years, 96% of patients in the lifestyle-change group were still alive, and only 3 had undergone surgery. In the surgical group, only 77% were still alive. These differences were all statistically significant. Even very sick cardiac patients were therefore able to safely avoid bypass surgery or angioplasty and, if anything, did better than those operated on. Ornish admits this is a small patient sample without a randomised control group, but is encouraged by the differences.

References

- 1-Katritsis DG *et al*. Percutaneous coronary intervention versus conservative therapy in non-acute coronary artery disease: A meta-analysis. *Circulation* 2005; 111:2906-12. 2-Boden WE *et al*. Optimal medical therapy with or without PCI for stable coronary disease. *N Engl J Med* 2007; 356 (15): 1503-16. 3-Hambrecht RC *et al*. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. *Circulation* 2004; 109 (11):1371-8. 4-Pitt B *et al*. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease: Atorvastatin versus Revascularisation Treatment Investigators. *N Engl J Med* 1999; 341(2):70-6.

Bibliography

Elliot-Eller M *et al*. Clinical events in heart disease patients with low left ventricular ejection fraction: 3 years follow-up results. Abstract presented at the International Academy of Cardiology, 3rd World Congress on Heart Disease, Washington DC, 2003.

Pischke CR *et al*. Lifestyle changes and clinical profile in coronary heart disease patients with an ejection fraction of ≤ 40 percent or >40 percent in the Multicenter Lifestyle Demonstration Project. *Eur J Heart Fail* 2007; 9(9): 928-34.