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ABSTRACT

Traditional evolutionary algorithms tend to converge to a single
good solution, which can limit their chance of discovering more
diverse and creative outcomes. Divergent search, on the other hand,
aims to counter convergence to local optima by avoiding selection
pressure towards the objective. Forms of divergent search such as
novelty or surprise search have proven to be beneficial for both
the efficiency and the variety of the solutions obtained in deceptive
tasks. Importantly for this paper, early results in maze navigation
have shown that combining novelty and surprise search yields an
even more effective search strategy due to their orthogonal nature.
Motivated by the largely unexplored potential of coupling novelty
and surprise as a search strategy, in this paper we investigate how
fusing the two can affect the evolution of soft robot morphologies.
We test the capacity of the combined search strategy against objec-
tive, novelty, and surprise search, by comparing their efficiency and
robustness, and the variety of robots they evolve. Our key results
demonstrate that novelty-surprise search is generally more effi-
cient and robust across eight different resolutions. Further, surprise
search explores the space of robot morphologies more broadly than
any other algorithm examined.
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1 INTRODUCTION

Evolving virtual creatures has been a popular domain for testing the
creative capacity of evolutionary algorithms (EAs). The primary
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objective of EAs in this domain is to evolve and discover mor-
phologies that will move robots as far as possible within a given
simulation period. Over the years several environments have been
proposed to serve this purpose, ranging from evolving rigid bodies
[18, 26] to soft body morphologies [12]. While it has been feasible
for EAs to evolve efficient artificial creatures that behave (i.e. move)
in unconventional ways, the obtained phenotypes still fall short
when compared to the behavioral complexity met in nature. In an
attempt to allow EAs to reach higher levels of evolved complex-
ity, Cheney et al. [2] proposed the evolution of different materials
within the creatures’ morphologies. Inspired by the different tissue
forms we meet in natural morphologies ‘soft’ robots are composed
of voxels with different properties. Such robots are equipped with
higher degrees of freedom that allow them to explore more diverse
movement strategies.

It is evident that the complexity of soft robot evolution can lever-
age the creative capacity of EAs and directly affect the design space
and the expressivity of solutions. In that regard, the design of an
appropriate reward system is critical for obtaining highly fit solu-
tions within this domain [18]. It is only expected, however, that
local optima existent in the fitness landscape can strongly bias
search towards less effective morphologies [15]. Moreover, by ex-
plicitly rewarding solutions in terms of their goodness we may
deter the discovery of unconventional yet efficient behaviors [4];
this is normally due to the tendency of traditional EAs to converge
to a single good solution. As a response to this limitation, a recent
trend in evolutionary computation (EC) is inspired by open-ended
evolution [31] and focuses on rewarding behavioral characteris-
tics of obtained solutions such as the degree of divergence among
them. By ignoring the objective and instead rewarding behavioral
diversity we can tackle the premature convergence of EAs typically
encountered in evolutionary robotics [23, 25].

Being a popular example of a divergent search algorithm, novelty
search is an open-ended EA that does not consider the objectives of
the problem explicitly but instead searches for novel solutions in
the behavioral space [17]. The recently introduced surprise search
algorithm [7, 32] is also built on the principles of open-ended evo-
lution and rewards unexpected behaviors throughout the evolution-
ary process. While novelty search (NS) and surprise search (SS)
have demonstrated their effectiveness independently across sev-
eral benchmarks [7, 9, 10, 17], it was only very recently that the
two were coupled and tested for evolutionary divergence in maze
navigation [8].

Based on the promising findings of [8] our hypothesis in this
paper is that coupling novelty and surprise is a necessary condition
for discovering even more highly-performing and unconventional
solutions in the search space of virtual creatures. Even though
novelty-surprise search—as the algorithm that combines novelty
and surprise rewards has been named—has been tested already in
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maze navigation tasks [8], there has not been sufficient exploration
regarding its performance in more challenging domains with more
complex behavior characterizations. In that regard, evolving a soft
robot morphology is a suitable domain that offers complexity with
respect to the task per se but also with respect to behavior char-
acterization. On the one hand, it is a complex problem that allows
for many different configurations of materials, especially when
the resolution of the 3D lattice in which these materials can be
placed increases [29]. On the other hand, behavioral diversity in
soft robots can be measured in a more granular fashion than e.g.
in maze navigation, via the entire trajectory of the robot during
simulation.

This paper tests how novelty search, surprise search, and novelty-
surprise search perform in the domain of soft robot evolution in
terms of efficiency and robustness. The performance of these diver-
gent search approaches in finding individuals which can reach dis-
tant points in a 3D simulation is compared with traditional fitness-
based search towards that very objective. All algorithms in this
paper are tested across eight different soft robot setups, with vary-
ing lattice resolution, allowing for a comprehensive assessment
of their efficiency and robustness. Our key findings reveal that
coupling novelty and surprise is a beneficial search strategy with
regards to both algorithmic efficiency and robustness when com-
pared against all other algorithms. Further, we put an emphasis on
the different ways each algorithm explores possible robot structures
and we observe that surprise search and novelty search favor very
different morphologies. It also appears that the structural diversity
of robots evolved by surprise search is significantly higher than
that of all other approaches tested.

2 BACKGROUND

This section reviews methods for divergent search and the domain
of soft robot evolution.

2.1 Divergent Search

Divergent search is a recent paradigm that pushes for the intrinsic
properties of search [17], instead of rewarding directly a solution’s
proximity to an objective. This paradigm has been introduced to
counter the effects of a deceptive landscape. A deceptive fitness land-
scape challenges the discovery of a global optimum for traditional
evolutionary computation, as the local optima may guide the search
away from it [4]. To counter this behavior, several approaches have
been proposed over the years, such as speciation and niching, in
order to preserve solution diversity [20]. While these techniques
try to push for genotypical diversity, open-ended evolution handles
deceptiveness in the behavioral space.

2.1.1  Novelty Search: While traditional evolutionary search re-
wards explicitly the objective of the problem, novelty search [17]
pushes for divergent behaviors by ignoring the fitness of the prob-
lem it attempts to solve. This algorithm selects individuals based
on how different the solutions found are compared to the current
population and an archive of past novel individuals. In every gen-
eration, individuals may be added to the archive if their novelty
score is above a dynamic threshold. Novelty search is able to ex-
plore uncharted areas of the search space, as it is neither random
nor exhaustive search [17, 21, 22, 30]. The novelty score n(i) of an
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individual i is evaluated based on the average distance (dj,) of the n
nearest neighbors in the current population and the novel archive:

) = = " dli ), o
j=0

where j is the j-th nearest neighbor to i based on the distance d
(which is problem-dependent).

2.1.2  Surprise Search: While novelty search pushes for novel
behaviors, surprise search is an alternative divergent search algo-
rithm that rewards unexpected behaviors. Surprise search uses a
prediction model to identify behavioral patterns in previous gener-
ations and predict behaviors in the current generation; following
that, it rewards behaviors that deviate from the predicted ones
[6, 32]. Therefore surprise search attempts to mimic a self-surprise
process [5] that is built upon the behaviors evolved in the past
generations. The prediction space becomes the new search space
for the algorithm, which can be different from the behavioral space.
The prediction space is in general agnostic of the physical con-
straints of the simulation: for example, if an obstacle is present
in the simulation scene, the predicted path might traverse that
obstacle.

Surprise search consists of two key phases: the prediction phase
(Eq. 2) and the deviation phase (Eq. 3). In the first phase, the algo-
rithm tries to predict the behaviors of the current generation, based
on a number of past generations (h in Eq. 2) and the locality of the
behavioral information (k in Eq. 2). These two pieces of information
are used to build the prediction model m:

p = m(h.k). @)

Once the predicted behaviors p (of size k) are found, the algorithm
rewards unexpectedness in an individual based on its distance from
the n closest predicted behaviors of the current generation:

50 = = 3" dopi), ®)
j=0

where s(i) is the surprise score assigned to individual i, computed
as the average distance d; of i from its n closest predictions (p;, ;).
This formula considers the prediction space, rather than the dis-
tance between the current and past trends of the population as e.g.
captured by Eq. (1).

2.1.3  Novelty-Surprise Search: Novelty and surprise reward dif-
ferent behaviors, and one can argue that the notions of novelty
and unexpectedness are orthogonal. Inspired by this theoretical
distinction, [8] introduced a fusion of novelty search and surprise
search which combines the two rewards linearly. Novelty-surprise
search (NSS) combines the two rewards: n(i) from Eq. (1) and s(i)
from Eq. (3). Unlike surprise search, NSS maintains an archive of
novel individuals for the purposes of calculating the novelty reward.
The impact of each reward is controlled by a single parameter A:

ns(i) = A-n(i) + (1 = A) - s(i), (4)

where ns(i) is the combined novelty and surprise score of individual
iand A € [0,1] is a parameter that controls the relative importance
of novelty versus surprise.

This algorithm has been shown to be more efficient in maze
navigation tasks [8] than both surprise search and novelty search
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on their own. However, the behavior characterization for maze
navigation was merely one point in a 2D space (i.e. the final position
of the robot at the end of simulation). This paper, on the other hand,
tests the capabilities of NSS in a more complex scenario, which
involves a multidimensional behavior characterization; i.e. the trails
of the robots throughout the simulation. Our main hypothesis in
this paper is that the combined push towards both novelty and
unexpectedness can evolve soft robots with better performance in
terms of efficiency and robustness. For this purpose we test our
hypothesis across different search spaces; i.e. across various levels
of complexity for the morphology of soft robots.

2.2 Soft Robot Evolution

The domain of evolutionary robotics traditionally focuses on ar-
tificially evolving the structures of virtual creatures. The robots’
numerous degrees of freedom and the difficulty of the task makes
EC ideal for tackling this problem. Previous work has focused on
evolving rigid bodies [18, 26], as they are simpler and less computa-
tionally expensive to simulate. On the one hand, the few degrees of
freedom can limit the dexterity of rigid bodies, unless an excessive
number of joints is used. On the other hand, soft bodies have a
distributed deformation that permits theoretically infinite degrees
of freedom, allowing these “soft” robots to reach any point in the
space with an infinite number of configurations. Moreover, soft
bodies can conform to obstacles, as they generate little resistance
to external forces [29].

Relatively few attempts have been made to evolve soft robots, as
this problem comes with a high computational cost in simulating
these materials and a large parameter space, especially if different
materials are applied. Hiller and Lipson introduced the use of a soft-
voxel simulator (VoxCad) to simulate the statics and the dynamics
of soft bodies within reasonable computational budgets [11]. The
lattice of the soft robot has a predefined resolution, and multiple
materials are chosen as building blocks to compose the robot, both
active (as they can contract and expand following an external signal)
and passive (e.g. not actuated).

Within the domain of evolving virtual creature morphologies,
it has been shown that direct encodings tend to lead to poorly
structured and dysfunctional robot architectures [2]. For that pur-
pose, several indirect encodings have been proposed, including
L-systems [13], hierarchical nested graphs [26], and gene regula-
tory networks [1]. In [2], Cheney at al. propose to evolve soft mor-
phologies by evolving Compositional Pattern Producing Networks
(CPPNs) [27], given their high evolvability and expressive range
capacities. A CPPN is an artificial neural network with nodes of
different activation functions (sine, sigmoid, Gaussian, etc.) which
allow regularities, repetitions and other patterns to emerge [27].
CPPNs evolve using the neuroevolution of augmenting topologies
(NEAT) algorithm, which starts from simple networks and com-
plexifies them via recombination and mutation over the course of
evolution [28]. NEAT uses speciation to limit competition between
very different network structures. As shown in [2], the CPPN repre-
sentation allows soft robots to exhibit several locomotion strategies
and morphologies.
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Figure 1: A CPPN describes the materials of a 5x5x5 lattice.

Previous work in soft robot evolution has focused on a single
reward, which is either the distance covered, the novelty or sur-
prise of the evolved behaviors [2, 7, 9, 16, 18, 23, 26]. In this work,
we extend previous work on exploring divergent approaches in
artificial life [9, 23] by combining two algorithms, novelty search
and surprise search [8]. We compare the performances of four al-
gorithms across different resolutions of lattices and we perform an
analysis of the structures favored by each approach.

3 DOMAIN

This paper evaluates the outcomes of soft robot evolution in terms
of efficiency, robustness and structural diversity. The goal is to
assess how divergence can affect the quality of the outcome and
investigate the emerging differences between the robot structures
favored by each EC approach. The evaluation is based on data col-
lected through simulations run on VoxCad [11], which simulates the
statics, dynamics and non-linear deformation of heterogeneous soft
materials quantitatively. The simulation framework can reproduce
several materials, both active (volumetric actuated materials) and
passive (for example soft and hard tissue with different stiffness).
Following [2], soft robots consist of four materials, two active (red
and green) and two passive (cyan and blue). Green voxels expand
and contract following a signal at a predefined frequency, while
a counter-phase signal actuates the red voxels. Passive materials
are not actuated but are deformed by nearby materials: cyan vox-
els are soft (low stiffness), while blue voxels are harder and stiffer.
These voxels are placed on a 3D lattice with a predefined resolution;
the evolved morphologies are simulated via VoxCad [11] and the
resulting behavior is used to compute the fitness of the evolved
robot. As in [2], a CPPN is used to determine the material (if any)
of each voxel. Each x, y, z coordinate of the cubic lattice is provided
as input to the CPPN: its first output determines whether the voxel
is empty, while the highest score of the remaining four outputs
decides the material of that voxel (see Figure 1).

Four different EC approaches are tested in this paper: three
divergent search algorithms and the objective-driven search as a
baseline. To compare the algorithms in terms of performance (in
Sections 4.2 and 4.3), the fittest individuals in each of 90 independent
runs are collected. Further, the structural diversity of the obtained
robots is analyzed in Section 4.4 based on the 90 populations evolved
during 1000 generations by each algorithm, to test their ability to
explore different morphologies throughout evolution.
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(a) Fitness characterization (b) Distance characterization
Figure 2: Behavior characterization for (a) objective search
as the Euclidean distance between the starting and the end-
ing point and (b) divergent search as the average distance of
two trajectories sampled at the same rate.

3.1 Objective Search

In fitness-based search, the objective is to evolve robots capable of
moving as far away as possible from a fixed starting point. Based
on [2, 23], the chosen performance metric is the Euclidean distance
of the robot’s center of mass between the start and the end of
simulation time in body lengths (see Figure 2a). Objective search
(OS) attempts to maximize this distance.

3.2 Divergent Search

Divergent algorithms such as novelty, surprise and novelty-surprise
search require a different behavior characterization in order to com-
pute the distance between individuals, via dy(i, ) in Eq. (1) and
ds(i, ) in Eq. (3). Several behavior characterizations have been ex-
plored in [23], such as the number of voxels touching the ground,
kinetic energy or pressure. A straightforward behavior charac-
terization is the trajectory of the soft robot during simulation,
which is directly correlated with the robot’s displacement. The
two-dimensional trajectory! of the soft robots has proved to be best
in achieving good performance with novelty search [23]. For a fair
comparison between the three divergent approaches, the distance
characterization for both novelty and surprise is the average of the
Euclidean distance between sampled points of two trajectories r;, s
and rj s (see Eq. 5 and Fig. 2b). All trajectories start at the same
point and are sampled at a fixed rate, which guarantees a behavior
with a fixed length. Moreover, all trajectories are transformed to
make the computed measures rotation invariant, i.e. all points are
rotated so that the average overall path points fall on the x-axis, as
in [23].

S
dist(i, ) = ) [|ri,s = ri.s|l ©)
s=1

where r; s is the position of the robot i at the simulation step s. S is
the total number of samples considered during the simulation.

3.2.1 Novelty Search: Novelty search (NS) uses the parameters
of [23]; the novelty score is computed as the average distance of
10 nearest neighbors, i.e. n = 10 in Eq. (1), using Eq. (5) for dj.
Novelty search makes use of a novelty archive, where the most
novel individuals in each generation are stored.

3.2.2  Surprise Search: As described in Section 2.1.2, surprise
search (SS) relies on a prediction model and a distance function.

! The three-dimensional trajectory of the robot is simplified by ignoring the height (2)
component.
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Figure 3: Visualization of the k-means calculation for sur-
prise search: the thick red and green lines are, respectively,
two example centroid trajectories obtained by clustering the
dotted red and dotted green robot trajectories.

(a) Generation ¢ — 2 (b) Generation ¢ — 1 (c) Generation ¢
Figure 4: The key phases of the surprise search algorithm.
Surprise search uses a history of two generations (h = 2) and
15 clusters (k = 15) in this example. The example centroid of
a cluster of trajectories is a trajectory depicted as a red line
in generation -2 in this example (a). The centroid trajectory
of t —1(b) and the prediction of the trajectory for generation
t (c) are depicted as dark red and blue lines, respectively.

The surprise score is computed as the average distance between
the individual’s trajectory and the n closest predicted trajectories.
The predicted trajectories are computed via linear regression of the
sampled points of the previous two generations (h = 2 in Eq. (3)).
The local behaviors are computed via k-means clustering: this al-
gorithm computes the local behaviors by finding k centroids of the
robot trajectories, by using the distance measure detailed in Eq. (5).
Fig. 3 shows how k-means finds two centroids from trajectories
sampled at the same rate: as an example, the green thick line is a
sequence of centroid points computed by averaging the trajectories
assigned to the green cluster. In this paper k = 15and n = 4 in
Eq. (2) and Eq. (3) respectively, found empirically based on the best
objective score acquired as per Section 3.1. Figure 4 illustrates the
prediction process for one cluster centroid: when calculating the
surprise score for generation t, the robots of generation ¢ — 2 are
clustered into k trajectory centroids based on k-means; in genera-
tion t — 1 the algorithm computes another set of k clusters. Finally,
at generation ¢, k predictions are computed via linear interpolation
from t — 2 to t — 1. The surprise score (Eq. (3)) is then calculated
as the average distance from the four closest predicted trajectories,
using Eq. (5) for ds.

3.2.3 Novelty-Surprise Search: Novelty-surprise search (NSS)
linearly combines the novelty and surprise scores as in Eq. (4). While
the specific parameters of novelty search and surprise search remain
unchanged (as reported above), the linear combination of novelty
and surprise hinges on the A parameter that controls the relative
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Figure 5: Sensitivity analysis of A. The figure depicts the final
average fitness of the fittest individuals obtained from 90
runs across nine 1 values in the resolution 5x5x5. Error bars
display the 95% confidence interval of the average shown.

importance of the two rewards. In order to select the appropriate
A parameter, we run 9 experiments with A ranging from 0.1 to 0.9.
Each experiment is composed of 20 runs of the NSS algorithm with
a particular A parameter. Fig. 5 shows the average number of body
length covered by the fittest individual across A, for a representative
resolution of 5x5x5, chosen as it has already featured in previous
work [2, 9]. We pick a A that yields the highest average performance
after 1000 generations: this happens for A = 0.6, which leads to an
average of 12.13 body lengths.

4 EXPERIMENTS

Previous work in the soft robot environment has explored the effec-
tiveness of divergent search algorithms such as novelty and surprise
search [9, 23]. As mentioned earlier, in this paper we instead focus
on the performance comparison among four algorithms—namely
novelty-surprise search, novelty search, surprise search and objec-
tive search—across eight different lattice sizes.

All reported results are obtained from 90 independent evolution-
ary runs. Significance is tested through two-tailed Mann-Whitney
U-tests; significance is set to 5%. When performing multiple com-
parisons, the Bonferroni correction [3] is applied.

4.1 Experiment parameters

The simulation in VoxCad uses the same parameters as [23], in
particular a gravity of —27.6 m/s%, a simulation time of 0.4 sec-
onds, a rate of 40 Hz for the signal that actuates active voxels and a
sampling rate of 100 Hz. Robots evolved in this paper have eight
different lattice resolutions, from 33 to 103. The evolutionary al-
gorithm has a population of 30 individuals, which evolve for 1000
generations. Other CPPN-NEAT parameters are the same as in [2].

4.2 Efficiency

The main goal of robot locomotion is to evolve efficient behaviors,
i.e. to have reached the most distant point at the end of the simula-
tion. This section focuses exclusively on the 90 fittest individuals?

2The fittest individual of each independent evolutionary run is selected.
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Table 1: Efficiency averaged from 90 independent runs (95%
confidence interval in parentheses). Bold values are signifi-
cantly different from all the other approaches.

os NS Ss NSS
3x3x3 7.74 (0.50) 8.88(0.19) 9.32(0.26)  9.67 (0.23)
4x4x4 8.13(0.16) 9.89(0.35) 10.71(0.34) 11.18 (0.36)
5X5%5 7.51(0.36) 11.13(0.33) 10.73(0.37)  11.28 (0.30)
6X6x6 8.38(0.44) 11.15(0.28) 11.43(0.48) 11.72(0.30)
7X7X7 8.07 (0.41) 11.03(0.37) 10.57 (0.32)  11.35(0.32)
8x8x8 9.23(0.66) 11.47 (0.39) 11.35(0.38) 12.36 (0.41)
9x9x9 8.32(0.47) 11.48(0.37) 11.08(0.32) 11.53(0.38)
(

10x10x10  9.29 (0.67) 11.32(0.38) 11.18(0.43) 12.05 (0.35)

Fitness (Body Lenghts)
Average Final Fitness

0 200 400 600 800 1000 3 4 5 6 7 8 9 10
Generation Resolution

Figure 6: Efficiency averaged Figure 7: Relation between
from 90 independent runs the resolution of the robots
for resolution 8° across 1000 and the maximum fitness
generations. Bars denote 95% of each approach (averaged
confidence intervals. from 90 runs).

(based on the characterization of Fig. 2a) collected from 90 inde-
pendent runs across 8 resolutions. All values are normalized to the
dimension of the 3D lattice (i.e. in body lengths of the robot).

Results from Table 1 show that NSS outperforms any other ap-
proach for every resolution selected: it significantly outperforms
novelty search in 5 of the 8 resolutions tested (33, 43,7383 and 103),
As an example, Fig. 6 shows the efficiency of the four algorithms
across 1000 generations for the resolution 83: NSS outperforms nov-
elty, surprise and objective search from generation 400 onwards.

Fig. 7 shows the results of efficiency across all the resolutions
by means of linear regression. We can notice that every approach
has a linear relationship between their final average efficiency and
the robots’ resolution, as their final average efficiency is highly
correlated with lattice size (r > 0.7, p < 0.05 for each method
except SS, where r = 0.7 and p = 0.051). As noted in Table 1 and
observing the trends of the regression lines, we can notice that NSS
constantly achieves better results compared to other approaches.
The intercept values of NSS are significantly different based on an
ANCOVA test (p < 0.05).

4.3 Robustness

Inspired by [7, 10], we investigate the robustness of each algorithm
defined as the number of the fittest robots able to cover a certain
threshold distance from their start point. While in other domains it
is straightforward to define success (e.g. reaching the goal in a maze),
robot evolution lacks a predefined goal. Under this perspective,
we count the robots which cross several distance thresholds, and
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Figure 8: Number of suc- Figure 9: Relation between
cesses, cumulated on all res- lattice resolution and the fi-
olutions, for different perfor- nal robustness (threshold of
mance thresholds. 12 body lengths).

characterize them as “successful” if they are able to cover a distance
greater than the selected threshold (in body lengths).

Fig. 8 shows the distribution of successes across different thresh-
olds, cumulated across all lattice resolutions (i.e. 90 fittest robots for
each of 8 resolutions). The distribution shows that generally NSS
obtains more successes in thresholds between 8 and 14 compared
to the other three algorithms. The robustness of novelty search and
surprise search, on the other hand, is comparable across all shown
thresholds. Unsurprisingly, objective search is outperformed by any
other algorithm. It is important to note, however, that objective
search is still able to evolve solutions even at higher thresholds and
it eventually catches up to other approaches at threshold 14.

Fig. 9 shows the linear relation between the resolution of the
lattices and the number of successes obtained with a threshold of
12 body lengths. This threshold was chosen because the four ap-
proaches show significant Pearson correlations between resolution
and robustness (r > 0.7, p < 0.05 for each method); for all the
other thresholds this condition does not hold. Observing the four
regression lines of Fig. 9, NSS constantly achieves more successes
compared to other approaches: the difference between the intercept
values are significant according to an ANCOVA test (p < 0.05).
As expected, novelty search and surprise search perform similarly
with a very small advantage for surprise search at lower resolutions.
Finally, objective search has fewer successes compared to divergent
approaches, strengthening the evidence that the fitness landscape
is deceptive across all resolutions tested.

4.4 Structural variety

To evaluate the variety of morphologies evolved by the four ap-
proaches, we investigate how each algorithm explores the structural
space in two main feature dimensions, the number of filled materials
and the number of bones (i.e. blue voxels).

In order to investigate how the different search processes explore
the space of robot structures, we take inspiration from the feature
mapping employed in the MAP-elites algorithm [24] to evolve soft
robots. Unlike MAP-elites [24], structural diversity is not explic-
itly targeted in this case; it is interesting to see how this space is
explored when the diversity criterion is behavior in terms of move-
ment trails. To assess structural diversity, we compute the feature
maps using the individuals evolved in one run sampled every 10
generations, and we add the individual in the map if the selected bin
is empty or the fitness is lower compared to the individual tested.
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Figure 10: Average number of explored bins for all feature
maps. Error bars display the 95% confidence interval of the
average shown.
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Figure 11: Sample feature maps produced by the four meth-
ods, for a single evolutionary run on a resolution of 8 x 8 x 8.
White bins do not have any robots, while colored bins de-
note the fitness of the best individual (blue for low fitness,
red for high fitness).

In total, therefore, 3 - 103 individuals are tested per run; results
are averaged from 90 independent runs per lattice resolution. The
two feature dimensions are the same as in [24]: the percentage of
the voxels filled (x-axis), and the percentage of blue stiff voxels,
i.e. bones (y-axis). An example of the feature maps and the binning
method is shown in Fig. 11. As the smallest lattice resolution is 27
voxels, the feature maps have a resolution of 27 x 27.

Fig. 10 shows the number of explored bins averaged across 90
runs for each of the eight lattice resolutions. Interestingly, novelty
search and objective search tend to explore fewer bins in the two
feature dimensions considered, while NSS and especially surprise
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search are able to explore more broadly. In terms of the structures
favored by the different EC methods, novelty search tends to favor
consistently more filled structures composed of more active mate-
rials; on the other hand, SS tends to explore less filled structures
composed of more non-reactive materials, as can be noticed in the
example of Fig. 11. As a linear combination of novelty and surprise,
NSS structures lie between these two “extremes”. This algorithmic
property seems to be beneficial for divergent search in terms of
performance (based on Section 4.2). Indeed, NSS finds significantly
more bins in the feature space chosen compared to novelty search
in 7 out of 8 lattice resolutions (except 3%). However, surprise search
finds significantly more bins in the feature space chosen compared
to NSS in all lattice resolutions. The example robots shown in Fig. 12
attest to the variety of forms which can be well-performing while
structurally different. Further, the figure shows four frames of simu-
lation per robot that illustrate the variance in the way the different
evolved morphologies move away from their starting point.

5 DISCUSSION

The goal of this paper was to test the performance of a recently
introduced divergent algorithm, novelty-surprise search, in the soft
robot evolution domain, Compared to earlier applications of the
NSS algorithm in maze navigation [8] the task of evolving robot
morphologies is both more complex and requires a more complex
characterization of the robot’s behavior. The algorithm was com-
pared against three baselines: novelty, surprise and objective search.
Through the in-depth analysis of the evolved robots’ efficiency, ro-
bustness and structural characteristics, there are several insights on
how the search processes differ. Overall, NSS has shown improve-
ments in performance both in terms of efficiency and robustness.
In [8] the working hypothesis was that novelty search and surprise
search give orthogonal rewards; their combination should benefit
divergent search, which seems to be confirmed by the evidence
shown in this work.

Looking at the other two divergent search algorithms, their per-
formance is not particularly different: robots evolved via novelty
search or surprise search perform similarly both in terms of effi-
ciency and robustness. As already noticed in [9], however, surprise
search tends to explore the morphological space more expansively—
especially in terms of the volume of filled materials or passive
materials. It seems that the combination of novelty and unexpect-
edness results in a deeper exploration of the search space, as a
greedy search only for novel behavior might “hide” less novel but
efficient behaviors. Combining novelty with surprise alleviates that,
as surprise may backtrack to previously seen behaviors [8]. Re-
sults obtained by objective search clearly show that the problem
is deceptive, as it fails to reach similar performances compared to
all divergent approaches in any of the 8 lattice resolutions tested.
Moreover, the robots evolved by objective search are structurally
more similar to each other compared to those evolved via the differ-
ent divergent search alternatives. It is worth mentioning that while
the structural variety analysis has focused on the rate of non-active
materials and filled voxels (as in [24]), other structural properties
could be relevant, such as the rate of active materials or more so-
phisticated distance measures. Moreover, the results might also
be influenced by the chosen behavior characterization. A deeper
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Figure 12: Fittest robots evolved in the first run of each ap-
proach for the resolutions 3x3x3, 5x5x5, 8x8x8 and 10x10x10
(from top to bottom). Four simulation frames are depicted
for each robot.

analysis of the impact of different behavior characterizations on
the diversity of evolved structures is planned in future work.

This is the first paper to methodically compare the performance
of soft robot evolution across different lattice resolutions. Admit-
tedly, the main motivation for this analysis is to test how sensitive
each of the divergent search approaches is to the granularity al-
lowed per morphology. Results show that NSS is consistently more
efficient than the other algorithms when considering all 8 resolu-
tions tested as a whole (via ANCOVA tests), showing that the algo-
rithm can scale to more or less complex problems. Notably, larger
lattices generally lead to more efficient behaviors, with robots of 27
voxels reaching 20% shorter distances (normalized to robots’ body
lengths) than robots with 1000 voxels. This is perhaps not surpris-
ing, as a higher resolution allows for more expressive morphologies
(more voxels to choose from) and more robust behaviors. While a
direct representation would be challenged by the higher resolutions,
the indirect encoding (via CPPNs) can scale and perform better at
higher resolutions for all EC methods tested.

Experiments in this paper focus on diversifying the behavior of
the evolved soft robots; to do this, we use several behavior charac-
terizations (for the objective, for the distance, and for prediction
in surprise search) which have featured extensively in previous
work [2, 9]. Other behavior characterizations however have been
proposed [23] and could be potentially used to measure distance,
e.g. dn(i,j) in Eq. (1) and ds(i, j) in Eq. (3). Future work could ex-
plore how SS and NSS perform using such alternative behavioral
characterizations both for distance and for prediction estimation.
Another characterization could be used altogether: following [24],
for instance, structural properties could be used to measure di-
versity. The high structural diversity exhibited by surprise search
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and NSS in Section 4.4 could point to a potential use of these EC
methods to explore the structural feature space itself, e.g. to bias
search in MAP-elites[24]. More broadly, novelty-surprise search
could be implemented as a quality-diversity algorithm for soft robot
evolution, e.g. by including a local competition objective [19].

While future work should explore how NSS performs with al-
ternative behavioral or algorithmic parameters (e.g. as a driver for
quality-diversity and illumination algorithms), the VoxCad simu-
lation for soft robots is extremely computationally heavy. This is
especially true as resolutions increase: indicatively, for resolutions
of 10 x 10 X 10, one evolutionary run takes 88.2 CPU hours. To ad-
dress this, another possible direction for future work could explore
surrogate models [14] in combination with divergent algorithms.
Using a surrogate model may make the discovery of efficient robots
more difficult given the deceptiveness of this domain, but it would
certainly boost the number of evaluations and experiments which
could be performed. Therefore, a trade-off between efficiency and
computational cost needs to be explored.

6 CONCLUSION

This paper explored how combining novelty and surprise affects
soft robot evolution, both in terms of performance and in terms of
variety of evolved structures. In particular, four approaches were
compared: objective search, novelty search, surprise search and
novelty-surprise search. Extensive experiments which vary the
impact between novelty and surprise (1) and vary the number of
voxels available for the robot showed that the combined search for
novel and surprising solutions can be advantageous. In terms of
performance, evolved robots can reach further compared to other
divergent approaches, considering all lattice resolutions tested. In
terms of structural diversity, novelty-surprise search maintains a
higher population diversity than novelty search with regards to
two structural features. Based on our results, we foresee three main
directions for future work: (a) exploring how structural diversity can
affect evolution when used as objective or distance characterization;
(b) testing how surprise (or novelty-surprise) can be integrated
into quality-diversity algorithms such as novelty search with local
competition [19] or MAP-elites [24]; (c) assessing the performance
of divergent search and quality diversity algorithms in combination
with surrogate modeling.
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