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Abstract

The question of representing emotion computationally remains largely unanswered: pop-
ular approaches require annotators to assign a magnitude (or a class) of some emotional
dimension, while an alternative is to focus on the relationship between two or more options.
Recent evidence in affective computing suggests that following a methodology of ordinal
annotations and processing leads to better reliability and validity of the model. This pa-
per compares the generality of classification methods versus preference learning methods
in predicting the levels of arousal in two widely used affective datasets. Findings of this
initial study further validate the hypothesis that approaching affect labels as ordinal data
and building models via preference learning yields models of better validity.
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affect modelling

1. Introduction

Capturing and reliably predicting the nuances of changing emotional states is a central prob-
lem of affective computing. The issue is complex, encompassing not only the experimental
protocol for data collection but also labelling to processing emotional data. Despite readily
available tools such as Likert scales (Likert, 1932) or the Self-Assessment Manikin (Morris,
1995), labelling emotions remains a challenge. Standard methods of collecting and process-
ing annotations often rely on absolute ratings which are processed as scalar or converted
to nominal values (Allen and Seaman, 2007; Yannakakis and Mart́ınez, 2015). However,
processing ratings as scalar or nominal values leads to a range of issues in representing,
measuring, understanding, and modelling affect (Yannakakis et al., 2017). There is ample
evidence to suggest that decision making and emotional processing rely on anchoring-biases
(Damasio, 1994; Seymour and McClure, 2008) and are subject to adaptation effects (Helson,
1964). This ever-changing baseline, to which we compare new experiences, means we treat
information as ordinal and our evaluation is subjective. Doing so has two main effects: first,
it is easier for us to pick the better option of two or more outcomes than to assign an abso-
lute value to an emotion (Yannakakis et al., 2017). Second, asking people to rate or classify
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their experiences may introduce biases as annotators have to interpret the provided scales
and rating systems, which lead to inconsistencies and unreliable reporting (Yannakakis and
Mart́ınez, 2015).

Motivated by the developing evidence for the advantages of the ordinal labelling ap-
proach (Yannakakis et al., 2017), this paper compares preference learning to classifica-
tion across two popular datasets within affective computing: the DEAP and the AMIGOS
datasets. To compare two types of algorithms on these datasets, we first convert affect
ratings to classes and preferences and then test the models’ accuracy in predicting a unseen
(validation) set of ratings. For fairness in comparisons, both approaches use support vector
machines (SVMs) as the underlying methodology. Our key results reveal that preference
learning is a preferred method for constructing models of arousal in the examined datasets,
as it yields more general models compared to the ones built via classification.

This paper contributes to the evidence that better models of affect could be built from
existing datasets in affective computing if affect labels are treated as ordinal data and
models are built via preference learning. We revisit the line of work behind preference
annotations (Martinez et al., 2014; Yannakakis and Mart́ınez, 2015; Yannakakis et al., 2017)
and adapt these findings to robust machine learning techniques (SVMs) and state-of-art
datasets (Koelstra et al., 2012; Miranda-Correa et al., 2017) with more granular affect
ratings than traditional Likert-like scales. Our key hypothesis is that ranking approaches
yield higher cross-validation accuracies than corresponding classification algorithms. We
also argue for the use of preference learning on datasets built for classification with granular
ratings, as it affords more precision in defining category boundaries. It should be noted
that we test this hypothesis in real-world datasets, unlike work by Martinez et al. (2014)
on synthetic data.

2. Background

In this section we outline the Classification and Preference Learning paradigms that are
compared for their predictive capacity in the selected datasets.

2.1. Classification for Affect Modelling

Classification (CL) is the supervised machine learning technique where a predictive model
classifies the provided data points into discrete categories. More formally, every instance
X = [xi|i = 0 . . . n] is assigned a discrete label from a set of predefined set L = [λj |j =
0 . . . k]. The algorithm learns a model which predicts the label λj ∈ L for each new datapoint
provided. Our experiments use a binary classifier. CL is a reliable and widely used method
in affective computing (Kapoor, 2015) and performs very well in user-dependent affect
modelling (Al Zoubi et al., 2012). However, in user-independent affect detection CL is
challenged as it reduces a model’s possible output into a set of finite and discrete states;
this introduces a bias when determining the split criterion between categories (Martinez
et al., 2014). Moreover, the stark separation between classes hides the granularity and
ordinal representation of emotions (Yannakakis et al., 2017). This paper uses Support
Vector Classifiers (SVC) as our CL baseline for comparisons with rank-based SVMs.
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2.2. Preference Learning for Affect Modelling

Preference learning (PL) is a supervised learning technique where a learned model predicts
the preference order either explicitly between two datapoints at a time, or implicitly by
applying multi-label classification (Fürnkranz and Hüllermeier, 2003). Pairwise PL exploits
one-to-one classification (Fürnkranz and Hüllermeier, 2003) to create an explicit ranked
preference between two datapoints. While CL treats the output as nominal labels, in PL
the output is a rank order. More formally, we assign a label L = [λi|i = 0 . . . n] for every
instance X = [xi|i = 0 . . . n] and provide the learning algorithm with the preferred order
for each pair of (xi, xj) ∈ X in the form of their corresponding labels λi � λj , where λi is
preferred over λj . This list of preferences P is a subset of all possible rankings (P ⊆ L×L)
as in some cases no clear order can be inferred. The PL algorithm aims to learn a predictive
preference model between any two instances of the provided dataset.

Unlike classification, learning affect preferences retains information on their underlying
order, revealing global and local preference relations. Although nominal values cannot
always be processed via PL (if there is no inherent order), ratings can easily be converted
into ranks for PL purposes (Yannakakis et al., 2017). Previous studies on PL methods
in affective computing focused on labelling data (Yannakakis and Mart́ınez, 2015) and
processing continuous annotations into ordinal data for general affect modelling (Camilleri
et al., 2017), Instead, this paper extends the work of Martinez et al. (2014) on comparing
PL to CL methods, focusing on SVMs testing the performance of PL and CL on popular
affective datasets. Our aim is to generalise the findings of an ordinal labelling and processing
approach (Yannakakis et al., 2017) to new machine learning methods and datasets, and lay
down the the groundwork for future studies focusing on general models of affect.

3. Experiment

Our experiment compares models trained via classification and preference learning (see
Section 3.2) on two popular datasets (see Section 3.1). Our machine learning algorithms
are built on support vector machines that use a radial basis function kernel (RBF): we
use support vector classifiers (SVC) for classification, and ranking support vector machine
(rankSVM) for preference learning. The paper uses the implementation of rankSVM avail-
able in the Preference Learning Toolbox (Farrugia et al., 2015) which is based on the
original rankSVM algorithm (Joachims, 2002). This ranking method is based on a pairwise
approach: the algorithm approximates a binary classifier not for the whole dataset but for
each provided pairwise comparison and learns to pick the preferred instance.

3.1. Datasets

In this paper we use two publicly available datasets, the Database for Emotion Analysis;
using Physiological signals (DEAP) (Koelstra et al., 2012) and A dataset for Mood, per-
sonality and affect research on Individuals and GrOupS (AMIGOS) short video dataset
(Miranda-Correa et al., 2017). Both sets use short videos as elicitors of emotion and track
a wide array of physiological signals and have similar annotation techniques. Motivated by
their demonstrated links to arousal, this paper uses heart rate variability (HR) and skin
conductance (SC) signals of those datasets as input for our models: (1) average HR, (2)
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standard deviation of the HR normal-to-normal (NN) interval, (3) root mean square of
successive differences in HR, (4) HR NN intervals that differ more than 50ms, (5) average
SC level, (6) number of significant SC responses, (7) sum of the amplitudes of significant
SC responses. The output of our models are the annotated arousal ratings, which were
provided through a Self-Assessment Manikin (SAM) in both datasets, as a floating-point
scale within [1, 9]. The DEAP dataset provides observations on 23 annotators, each with 40
feature sets and corresponding ratings, totalling 920 data points. The AMIGOS dataset has
data from 40 annotators, each with 16 feature sets and ratings, totalling 640 data points.

3.2. Experimental Protocol

Experiments in this paper revolve around leave-one-annotator out cross-validation. As a
preliminary step, we remove one participant (randomly chosen) from each dataset, without
applying any transformation to their data: this participant’s raw ratings later to validate
and compare the performance of the SVCs and rankSVMs. We pre-process the data of the
remaining 22 and 39 participants (for DEAP and AMIGOS respectively), first by converting
their annotated ratings into binary classes (for CL) and pairwise comparisons (for PL).

For classification we use two threshold options to create binary classes. In the first case,
classes are split between low arousal for SAM scores of [1, 5) and high arousal of (5, 9]. We
identify this setup as SVC with a class boundary of 5, i.e. SVC(5). SVC(5) gives us 871
classified instances out of the 920 in the DEAP dataset and 550 out of 640 in the AMIGOS
dataset. The second case identified as SVC(4.5-5.5) uses a broader boundary, splitting data
between low arousal for SAM scores of [1, 4.5) and high arousal of (5.5, 9]. SVC(4.5-5.5)
has 749 classified items in the DEAP and 505 in the AMIGOS dataset. We use these class
thresholds because any other splitting criterion of high versus low arousal categories results
in substantially smaller datasets that are not directly comparable to the dataset produced
by pairwise preferences.

For preference learning, we create a list of the pairwise comparisons of temporally ad-
jacent instances in the form of λi � λj (λi is preferred over λj). Similarly to SVCs, we
use two different configurations to construct this list. The first one considers any differ-
ence between two ratings as a clear ranking and is identified as rankSVM(0); the second
treats trivial differences (absolute difference below 0.1) as equal rank and is identified as
rankSVM(0.1). From the possible 919 comparisons for DEAP, rankSVM(0) yields 842
pairs and rankSVM(0.1) yields 760 pairs; for the 639 possible comparisons for AMIGOS,
rankSVM(0) yields 509 pairs and rankSVM(0.1) yields 475 pairs.

In the next step, we divide these participants into cross-validation folds, one per par-
ticipant (save for the one participant we reserved in the preliminary step). Within these
folds, we normalise the data and balance them across participants with oversampling. After
oversampling, we train each fold on 840 class instances (in case of SVCs) and 819 pairs of
pairwise preferences (in case of rankSVMs) on the DEAP dataset and 608 class instances
and 532 pairwise preferences on the AMIGIOS dataset. To find the best parameter for the
RBFγ, we use sensitivity analysis by tuning the parameter between 10 and 100 in incre-
ments of 10 (see Figure 1). We tune the parameters for each algorithm independently and
choose the parameters that result in the best average prediction accuracy on the test set
(i.e. one participant, cross-validated across all folds).
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Figure 1: Sensitivity analysis of the RBFγ parameter on SVCs and rankSVMs for DEAP
(left) and AMIGOS (right) datasets. The plot shows the average accuracy on the test sets.

It should be noted that the test accuracy is not directly comparable between algorithms
due to differences at both the algorithmic and the dataset level (e.g. the number of data
points are close but not identical among the four setups of Fig. 1). For a fair comparison,
SVCs and rankSVMs are compared based on the trained models’ predictions of the one
participant’s data which we reserved in the preliminary step. Inspired by comparisons
performed by Lotfian and Busso (2016) and Martinez et al. (2014), we evaluate SVCs (for
CL) and rankSVMs (for PL) by building a global order based on the predicted variables’
relative distance to the decision boundary and comparing it to the global order of the
participant’s raw ratings with Kendall’s τ .

As the RBF kernel maps our input space to a feature space with infinite dimensions, we
cannot calculate the absolute distance from the boundary. However, we are able to use the
decision function as a relative approximation. For this purpose, we use Equation 1, where
xi and yi are the input and output of the test set, x′ is the input to be predicted, αi is a
coefficient which separates support vectors from the rest of the datapoints, b is the bias of
the model, and K is the RBF kernel (Equation 2).

f(x′) =

n∑
i=1

αiyiK(xi, x
′) + b (1)

K(x, x′) = e−γ‖x−x
′‖2 (2)

As both SVC and rankSVM use the same decision function to evaluate this distance, this
metric provides us with a common ground across different SVM implementations. In both
cases a higher distance to the boundary equates to a higher confidence in the classification
or ranking of the instance. Sorting based on this distance, a high Kendall’s τ with the
participant’s global order of annotated preferences (i.e. the most arousing video clip ranked
first, based on the participant’s SAM annotation) means that a model closely matches the
participant’s affect preferences.

4. Results

In this section we discuss the key results of performance comparisons between each SVM
type across the two datasets examined. We report each algorithms’ performance per dataset
for the best RBFγ value found via the sensitivity analysis shown in Fig. 1.
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Table 1: Performance of SVCs and RankSVMs on the DEAP and AMIGOS datasets.
Results show the cross-validation accuracies (along with the chance-based baseline) and the
Kendall’s τ calculated as per Section 3.2.

DEAP AMIGOS
Accuracy Kendall’s τ Accuracy Kendall’s τ

Algorithm RBFγ Base Avg (Max) Avg (Max) RBFγ Base Avg (Max) Avg (Max)

SVC(5) 100 0.56 0.57 (0.83) 0.14 (0.22) 30 0.58 0.58 (1.00) 0.15 (0.28)
SVC(4.5-5.5) 40 0.55 0.56 (0.88) 0.15 (0.24) 20 0.60 0.61 (1.00) 0.13 (0.23)

rankSVM(0) 100 0.51 0.66 (0.77) 0.17 (0.26) 90 0.53 0.74 (0.93) 0.10 (0.37)
rankSVM(0.1) 100 0.50 0.73 (0.85) 0.19 (0.26) 90 0.53 0.70 (0.93) 0.13 (0.40)

4.1. DEAP

During training, rankSVMs perform significantly, exceeding their chance-level baseline ac-
curacies, while SVCs can barely improve on their respective baseline. The cross-validation
results in terms of accuracy are shown in Table 1, along with the respective baseline accu-
racy (i.e. always guessing the most common rank or label). While accuracies across different
machine learning tasks and dataset splits are not directly comparable, it is evident that the
average accuracy improves in a much more pronounced manner over its baseline value for
rankSVMs. For the purposes of comparison, we use the Kendall’s τ between the scoring of
each prediction from the decision function of the SVM at hand and the raw absolute ratings
as they were recorded by the annotators. Based on τ scores of Table 1), both rankSVMs
clearly outperform the SVCs at capturing a more general global order and predict an unseen
order, especially for rankSVM(0.1).

4.2. AMIGOS

Results obtained from AMIGOS, reported in Table 1, show similar patterns to the DEAP
dataset. Although the baselines in this dataset are less balanced, we are accounting for this
issue by applying weights to the classes while training the SVCs. Even so, SVCs grossly
underperform compared to the rankSVMs: this is especially true for other RBFγ values
(see Fig. 1) outside the best ones reported in Table 1. It is evident that SVCs barely surpass
the baseline on average, while high maximum accuracies may point to over-fitting. Directly
comparing the two algorithms through the Kendall’s τ validation score shows a similar
picture, with rankSVMs outperforming the SVCs. Interestingly, the SVCs perform quite
well, on par—and in case of SCV(5)—beyond the ranksSVMs. However, seeing how its
test accuracy is only at or around the baseline, this could be attributed to the distribution
of the validation set. In contrast, rankSVMs perform remarkably well on the test—which
suggests that (unlike SVCs) they do not overfit—and achieve very high maximum values
on the validation. Indeed, the best rankSVM(0) is 23% more accurate than its respective
baseline, and its maximum Kendall’s τ 21% above the best SVC(5).

5. Discussion

This initial study tested the hypothesis that a preference learning method will be able to
generalise better than classification when predicting the output of unseen arousal ratings.
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Results across two datasets and different splitting criteria reveal that rankSVM performs
consistently better on the unseen validation sets than SVC. Based on these observations
we can safely validate our hypothesis and provide further evidence for the benefits of rep-
resenting and processing emotion in an ordinal fashion (Yannakakis et al., 2017).

A major limitation of our study lies in the examined datasets themselves, as each feature
set captures the entire session of a short video. In DEAP and AMIGOS the data reflect a
discrete judgement and not a continuous change of the participants’ evaluation, therefore
it is hard to tell if a rating truly reflects a baseline to which participants’ measure the
next experience. We believe that a more nuanced dataset, where participants’ annotation
are recorded continuously in time, would improve the performance of preference learning,
especially because such data could be processed in a number of different ways (Camilleri
et al., 2017). Another limitation is that the study focused on recreating and verifying a
basic hypothesis inferred from previous works rather than creating truly general models.

Inspired by Camilleri et al. (2017), future work will investigate the ability of the models
to generalize across dataset. As a first step, this involves work with our existing datasets
to find the best protocol and metrics for evaluation of the different algorithms. Further, we
will explore other user modalities beyond physiology, which may impact the performance of
the models. In the future we will be focusing more on datasets with temporally continuous
annotation, which provide a more fertile ground for preference learning.

6. Conclusion

This paper documented a comparative study towards obtaining reliable and general affect
models. The performance of preference learning (rankSVM) was compared against clas-
sification (SVCs) across two popular datasets of affect: DEAP and AMIGOS. Results of
this study show the benefits of using preference learning for models of higher validity, and
contribute to existing evidence suggesting that ordinal annotation and ordinal processing
is a robust way to assess people’s emotional and decision making processes, as it better
reflects the anchoring mechanisms of our cognition (Yannakakis et al., 2017).
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