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a b s t r a c t

A family A of sets is said to be intersecting if any two sets in A intersect (i.e. have at least
one common element). A is said to be centred if there is an element common to all the sets
in A; otherwise, A is said to be non-centred. For any r ∈ [n] := {1, . . . , n} and any integer
k ≥ 2, let Sn,r,k be the family

{{(x1, y1), . . . , (xr , yr )}: x1, . . . , xr are distinct elements of [n], y1, . . . , yr ∈ [k]}

of k-signed r-sets on [n]. Letm := max{0, 2r−n}.We establish the followingHilton–Milner-
type theorems, the second of which is proved using the first:
(i) IfA1 andA2 are non-empty cross-intersecting (i.e. any set inA1 intersects any set inA2)
sub-families of Sn,r,k, then

|A1| + |A2| ≤

n
r


kr −

r
i=m

 r
i


(k − 1)i


n − r
r − i


kr−i

+ 1.

(ii) If A is a non-centred intersecting sub-family of Sn,r,k, 2 ≤ r ≤ n, then

|A| ≤



n − 1
r − 1


kr−1

−

r−1
i=m

 r
i


(k − 1)i


n − 1 − r
r − 1 − i


kr−1−i

+ 1 if r < n;

kr−1
− (k − 1)r−1

+ k − 1 if r = n.

We also determine the extremal structures. (ii) is a stability theorem that extends Erdős–
Ko–Rado-type results proved by various authors. We then show that (ii) leads to further
evidence for an intersection conjecture suggested by the author about general signed set
systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote elements of a set or non-negative integers, capital
letters such as X to denote sets, and calligraphic letters such as F to denote families (i.e. sets whose elements are sets
themselves). Arbitrary sets and families are taken to be finite. N is the set of positive integers {1, 2, . . .}. For m, n ∈ N with
m ≤ n, we denote {i ∈ N:m ≤ i ≤ n} by [m, n], and if m = 1 then we also write [n]; [0] is taken to be the empty set ∅. For
a set X , the power set {A: A ⊆ X} of X is denoted by 2X , and the r-uniform sub-family {Y ⊆ X: |Y | = r} of 2X is denoted by

X
r


. The Cartesian product X × Y of two sets X and Y is the set {(x, y): x ∈ X, y ∈ Y }.
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For a family F , we represent the union of all sets in F by U(F ), and the size of a largest set in F by αF . For any set
V we denote the family {F ∈ F : F ∩ V ≠ ∅} by F (V ). If u ∈ U(F ), then F ({u}) is called a star of F . Note that F ({u})
= {F ∈ F : u ∈ F}.

A family F1 is said to be isomorphic to a family F2 if there exists a bijection β:U(F1) → U(F2) such that, for any subset
F of U(F1), F is a member of F1 iff (if and only if) the set {β(i): i ∈ F} is a member of F2; we write F1 ∼= F2.

A family A is said to be intersecting if A∩B ≠ ∅ for any A, B ∈ A. A is said to be centred if there is an element common to
all the sets in A (i.e.


A∈A A ≠ ∅); otherwise, A is said to be non-centred. Note that if A is a centred sub-family of a family

F , then A is a sub-family of a star of F and is trivially intersecting.
Let F be a family. If either U(F ) = ∅ (the only case in which F has no intersecting sub-families) or one of the largest

intersecting sub-families of F is a star C (i.e. no intersecting sub-family of F has more sets than C), then we say that F has
the star property. If either U(F ) = ∅ or all the largest intersecting sub-families of F are stars, then we say that F has the
strict star property.

A classical result in extremal set theory is the Erdős–Ko–Rado (EKR) Theorem [14], which says that if r ≤ n/2, then


[n]
r


has the star property, i.e. the size of any intersecting sub-family of


[n]
r


is at most the size


n−1
r−1


of any star of


[n]
r


(note

that


[n]
r


is intersecting if n/2 < r ≤ n). There are various proofs of the EKR Theorem, two of which are particularly short

and beautiful: Katona’s proof [21], which featured an elegant argument known as the cycle method, and Daykin’s proof [12]
using another fundamental result known as the Kruskal–Katona Theorem [20,22]. Many other EKR-type results were proved
after the publication of [14]; see [6,13,16]. In particular, Hilton and Milner [18] extended the EKR Theorem by establishing
the size of a largest non-centred intersecting sub-family of


[n]
r


(r ≤ n/2).

For 2 ≤ r ≤ n/2 let Nn,r denote the non-centred intersecting sub-family {A ∈


[n]
r


: 1 ∈ A, A ∩ [2, r + 1] ≠

∅} ∪ {[2, r + 1]} of


[n]
r


.

Theorem 1.1 ([18]). If 2 ≤ r ≤ n/2 and A is a non-centred intersecting sub-family of


[n]
r


, then |A| ≤ |Nn,r | =


n−1
r−1


−


n−1−r
r−1


+ 1.

Various alternative proofs of this result have been obtained; see, for example, [8,9,15].
We now define signed sets and outline the EKR-type results relevant to the contributions in this paper.
Let X be an n-set {x1, . . . , xn}. Let y1, . . . , yn ∈ N. We call the set {(x1, y1), . . . , (xn, yn)} a k-signed n-set if max{yi: i ∈

[n]} ≤ k. For any integer k ≥ 1, we define SX,k to be the family of k-signed n-sets given by
SX,k := {{(x1, y1), . . . , (xn, yn)}: y1, . . . , yn ∈ [k]}.

We need to define S∅,k := ∅. With a slight abuse of notation, for a family F we define

SF ,k :=


F∈F

SF ,k.

For the special case F =


[n]
r


with r ∈ [n], the family SF ,k is also denoted by Sn,r,k; so

Sn,r,k =


{(x1, y1), . . . , (xr , yr)}: {x1, . . . , xr} ∈


[n]
r


, y1, . . . , yr ∈ [k]


.

Note that we therefore have that Sn,n,k and S[n],k are the same family.
Berge [1] discovered the star property of S[n],k, and Livingston [23] showed that S[n],k has the strict star property unless

k = 2.
A well-known generalisation of the Berge–Livingston result was first stated by Meyer [24] and proved by Deza and

Frankl [13].

Theorem 1.2 ([13]). Let r ≤ n and k ≥ 2. Then:
(i) Sn,r,k has the star property;
(ii) Sn,r,k has the strict star property unless r = n ≥ 3 and k = 2.

It is worth pointing out that the EKR problem for signed sets has attracted much attention and has been expressed in
various equivalent formulations; an account of this is given in [6]. The ‘signed sets’ terminology was introduced in [2] (in
which an alternative proof and an application of Theorem 1.2 are given) for a setting that can be re-formulated as Sn,r,k, and
the general formulation SF ,k was introduced in [3], the theme of which is the following general conjecture.

Conjecture 1.3 ([3]). For any family F and any integer k ≥ 2,
(i) SF ,k has the star property;
(ii) SF ,k does not have the strict star property only if k = 2 and there exist three distinct elements x1, x2, x3 of U(F ) such that

F ({x1}) = F ({x2}) = F ({x3}) and SF ,2({(x1, 1)}) is a largest star of SF ,2.
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The converse of (ii) is true, simply because {A ∈ SF ,2: |A ∩ {(x1, 1), (x2, 1), (x3, 1)}| ≥ 2} is a non-centred intersecting
sub-family of SF ,2 that is as large as SF ,2({(x1, 1)}). Obviously we cannot replace k ≥ 2 by k ≥ 1, because if F does not

have the star property (for example, F is a non-star intersecting family such as


[3]
2


), then neither does SF ,1 (since SF ,1

is a copy of F ). In the same paper this conjecture is proved for families F that are compressed with respect to an element
x∗

∈ U(F ), i.e. families F such that if x ∈ F ∈ F and x∗
∉ F , then (F \ {x}) ∪ {x∗

} ∈ F ; this generalises Theorem 1.2 since
[n]
r


is compressed with respect to any element of [n]. Holroyd and Talbot [19] essentially proved the ‘non-strict’ part of

the conjecture for uniform families (families whose sets are of the same size) that have the star property, and part (ii) of the
conjecture for such families was then verified in [3]. In [4] the conjecture is proved for the case when k is sufficiently large,
depending only on the size αF of a largest set in F .

Theorem 1.4 ([4]). Conjecture 1.3 is true if k ≥
1
2 (αF − 1)αF

2.

It is worth pointing out that Conjecture 1.3(i) has a striking resemblance to the well-known Chvátal Conjecture [10,11],
which is one of the central problems in extremal set theory. The Chvátal Conjecture says that for any familyF ,


F∈F 2F has

the star property. A conjecture generalising these two conjectures is suggested in [7].

2. Main results

Two families A and B are said to be cross-intersecting if A ∩ B ≠ ∅ for any A ∈ A and any B ∈ B. Sometimes a result for
a pair of cross-intersecting families is needed as a stepping stone to a result for intersecting families. For example, in order
to obtain Theorem 1.1, Hilton and Milner [18] proved the following result.

Theorem 2.1 ([18]). Let 1 ≤ r ≤ n/2, and let A1, A2 be non-empty cross-intersecting sub-families of


[n]
r


. Let B1 := {[r]}

and B2 := {A ∈


[n]
r


: A ∩ [r] ≠ ∅}. Then

|A1| + |A2| ≤ |B1| + |B2| =

n
r


−


n − r
r


+ 1.

Various alternative proofs of this result have been obtained; see, for example, [5,8,17,25].
In Section 4, we prove the following signed sets analogue of the above result for the purpose of obtaining ourmain result.

Theorem 2.2. Let A1, A2 be non-empty cross-intersecting sub-families of Sn,r,k, where k ≥ 2. Let m := max{0, 2r − n}. Then

|A1| + |A2| ≤

n
r


kr −

r
i=m

 r
i


(k − 1)i


n − r
r − i


kr−i

+ 1.

Unless r = n and k = 2, equality holds iff either Ai = {A} and A3−i = Sn,r,k(A) for some i ∈ [2] and A ∈ Sn,r,k or r = 2 and
A1 = A2 ∼= Sn,2,k({(1, 1)}).

A different proof of this result in a more general form has been simultaneously obtained by Wang and Zhang [26].
For n, i ∈ N with n ≥ 3, let

Nn,i := {(1, i + 1)} ∪ ([2, n] × [1]) = {(1, i + 1), (2, 1), (3, 1), . . . , (n, 1)}.
For n ≥ 3, 2 ≤ r ≤ n and k ≥ 2, let Nn,r,k be the non-centred intersecting sub-family of Sn,r,k given by

Nn,r,k :=


{A ∈ Sn,r,k: (1, 1) ∈ A, A ∩ ([2, r + 1] × [1]) ≠ ∅} ∪ {[2, r + 1] × [1]} if r < n;
{A ∈ Sn,r,k: (1, 1) ∈ A, A ∩ Nn,1 ≠ ∅} ∪ {Nn,1, . . . ,Nn,k−1} if r = n.

For 3 ≤ r ≤ n, let Tn,r,k be the triangle family {A ∈ Sn,r,k: |A ∩ ([3] × [1])| ≥ 2}. Note that Nn,r,k and Tn,r,k are non-centred
intersecting families. In Section 5, we prove the following extension of Theorem 1.2 using Theorem 2.2.

Theorem 2.3. Let A be a non-centred intersecting sub-family of Sn,r,k, where n ≥ 3, 2 ≤ r ≤ n and k ≥ 2. Let
m := max{0, 2r − n}. Then

|A| ≤ |Nn,r,k| =



n − 1
r − 1


kr−1

−

r−1
i=m

 r
i


(k − 1)i


n − 1 − r
r − 1 − i


kr−1−i

+ 1 if r < n;

kr−1
− (k − 1)r−1

+ k − 1 if r = n.

Unless r = n and k = 2, equality holds iff one of the following holds:
(i) A ∼= Nn,r,k;
(ii) r = 3 and A ∼= Tn,3,k;
(iii) r = n = 4 and A ∼= T4,4,k.

This is an analogue of Theorem 1.1 for signed sets.
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In Section 6 we apply Theorem 2.3 to obtain the following improvement of Theorem 1.4.

Theorem 2.4. Conjecture 1.3 is true if k ≥ αF
2.

3. The compression operation

The proofs of Theorems 2.2 and 2.3 are based on the compression (also known as shifting or pushing-up) method used
in [13] for the proof of Theorem 1.2. We again refer the reader to [16] for a survey on the applications of compression in
extremal set theory.

For (a, b) ∈ [n] × [2, k], let ∆a,b: 2
S2[n],k → 2S2[n],k be defined by

∆a,b(A) := {δa,b(A): A ∈ A, δa,b(A) ∉ A} ∪ {A ∈ A: δa,b(A) ∈ A},

where δa,b: S2[n],k → S2[n],k is defined by

δa,b(A) :=


(A \ {(a, b)}) ∪ {(a, 1)} if (a, b) ∈ A;

A otherwise.

Note that |∆a,b(A)| = |A|. Another fundamental property of ∆a,b is that ∆a,b(A) is intersecting if A is intersecting.
Moreover, the following holds, which is a special case of [4, Lemma 3.1].

Lemma 3.1. SupposeA ⊂ S2[n],k andV ⊆ [n]×[2, k] such that (A∩B)\V ≠ ∅ for any A, B ∈ A. Then (C∩D)\(V∪{(a, b)}) ≠ ∅

for any C,D ∈ ∆a,b(A).

Corollary 3.2. Let A be an intersecting sub-family of S2[n],k. Let

A∗
:= ∆n,k ◦ · · · ◦ ∆n,2 ◦ · · · ◦ ∆1,k ◦ · · · ◦ ∆1,2(A).

Then A ∩ B ∩ ([n] × [1]) ≠ ∅ for any A, B ∈ A∗.

Proof. By repeated application of Lemma 3.1, (A ∩ B) \ ([n] × [2, k]) ≠ ∅ for any A, B ∈ A∗. The result follows since
(A ∩ B) \ ([n] × [2, k]) = A ∩ B ∩ ([n] × [1]). �

4. Non-empty cross-intersecting families of signed sets

This section is dedicated to the proof of Theorem 2.2, which requires the following lemma for the second part (the
characterisation of the extremal structures).

Lemma 4.1. Let A1 and A2 be non-empty cross-intersecting sub-families of Sn,2,k, where k ≥ 2 and (2, k) ≠ (n, 2). Suppose
Ai ≠ ∆a,b(A1) = ∆a,b(A2) = Sn,2,k({(c, d)}) for some i ∈ [2] and (c, d) ∈ [n] × [k]. Then A1 = A2 = Sn,2,k({(a, b)}).

Proof. Wemay assume that i = 1. So there exists A1 ∈ A1 \∆a,b(A1) such that δa,b(A1) ∈ ∆a,b(A1)\A1; let A′

1 := δa,b(A1).
Thus, for some (a1, b1) ∈ ([n] \ {a}) × [k], A1 = {(a, b), (a1, b1)} and (c, d) ∈ A′

1 = {(a, 1), (a1, b1)}. If (c, d) = (a1, b1)
then A1 ∈ Sn,2,k({(c, d)}), and hence A1 ∈ ∆a,b(A1), a contradiction. So (c, d) = (a, 1) and hence, by the assumptions of the
lemma, ∆a,b(A1) = ∆a,b(A2) = Sn,2,k({(a, 1)}). Note that this implies that |A ∩ {(a, 1), (a, b)}| = 1 for all A ∈ A1 ∪ A2.
If there exists A2 ∈ A2 such that (a, 1) ∈ A2, then, since A1 ∩ A2 ≠ ∅ (as A1, A2 are cross-intersecting), A2 can only
be A′

1. Together with ∆a,b(A2) = Sn,2,k({(a, 1)}), this implies that A2 contains B := Sn,2,k({(a, b)}) \ {A1}. Given that
(2, k) ≠ (n, 2) (i.e. k ≥ 3 if n = 2), for any A ∈ Sn,2,k({(a, 1)}) there exists B ∈ B such that A ∩ B = ∅. By the above, it
follows that A1 = Sn,2,k({(a, b)}), which in turn forces A2 to be Sn,2,k({(a, b)}). �

Proof of Theorem 2.2. The result is trivial for r = 1. If r = n and k = 2, then the result follows from the fact that for any
A := {(x1, y1), . . . , (xn, yn)} ∈ Sn,n,2, the unique set in Sn,n,2 that does not intersect A is {(x1, 3 − y1), . . . , (xn, 3 − yn)}. We
will therefore assume that r ≥ 2 and (r, k) ≠ (n, 2).

From A1 and A2 we construct an intersecting family C as follows. For each i ∈ [2], we add the point (n+1, i) to each set
in Ai to obtain a new family A′

i = {A∪ {(n+ 1, i)}: A ∈ Ai}. Then we take C to be the sub-family A′

1 ∪ A′

2 of Sn+1,r+1,k. C is
intersecting because for any A and B in C, (n + 1, i) ∈ A ∩ B if A, B ∈ A′

i for some i ∈ [2], and A and B intersect on [n] × [k]
if A ∈ A′

i and B ∈ A′

j with i ≠ j (since A1 and A2 are cross-intersecting). Let D be the family obtained by applying all the
compressions ∆a,b with (a, b) ∈ [n] × [2, k] to C in the order ∆1,2, . . . , ∆1,k, . . . , ∆n,2, . . . , ∆n,k, i.e.

D := ∆n,k ◦ · · · ◦ ∆n,2 ◦ · · · ◦ ∆1,k ◦ · · · ◦ ∆1,2(C).

We now remove the points (n + 1, 1) and (n + 1, 2) from the sets in the family D to obtain the two families B1 :=

{D \ {(n + 1, 1)}: (n + 1, 1) ∈ D ∈ D} and B2 := {D \ {(n + 1, 2)}: (n + 1, 2) ∈ D ∈ D}, which are therefore sub-families
of Sn,r,k. By an argument similar to that of Corollary 3.2, Lemma 3.1 yields

D1 ∩ D2 ∩ (([n] × [1]) ∪ {(n + 1, 1), (n + 1, 2)}) ≠ ∅ for any D1,D2 ∈ D
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(i.e. pairwise intersection is not contained in [n]×[2, k] since all compressions∆a,b with (a, b) ∈ [n]×[2, k]were applied),
and hence

B1 ∩ B2 ∩ ([n] × [1]) ≠ ∅ for any B1 ∈ B1 and B2 ∈ B2. (1)

For each i ∈ [2], choose a set A∗

i in Ai and let B∗

i := {(a, 1): a ∈ [n], A∗

i ∩ ({a} × [k]) ≠ ∅} (i.e. B∗

i is the set obtained by
replacing each point (a, b) in A∗

i by the point (a, 1)); it is easy to see that B∗

i ∈ Bi, because any point (a, b) ∈ [n] × [k] in A∗

i
with b ≥ 2 is a point in A∗

i ∪ {n + 1, i} ∈ D that was shifted to (a, 1) via the compression ∆a,b.
Let X be the n-set [n] × [1]. In view of (1), we just need to focus on the intersection of the sets with X . For each i ∈ [2],

let B
(q)
i := {B ∈ Bi: |B ∩ X | = q}, Xi := {B ∩ X: B ∈ Bi}, X

(q)
i := {A ∈ Xi: |A| = q}. Let R be the r-set [r] × [1]. For each

q ∈ [r], let E (q)
:= {A ∈


X
q


: A ∩ R ≠ ∅} and wq := |Sn−q,r−q,k−1| =


n−q
r−q


(k − 1)r−q. By (1), for each i ∈ [2],

r
q=1 B

(q)
i

is a partition of Bi. So we have

|A1| + |A2| = |C| = |D| = |B1| + |B2| =

r
q=1

(|B
(q)
1 | + |B

(q)
2 |) ≤

r
q=1

(|X
(q)
1 | + |X

(q)
2 |)wq (2)

and
r

q=1

|E (q)
|wq + 1 = |Sn,r,k(R)| + 1 =

n
r


kr −

r
i=m

 r
i


(k − 1)i


n − r
r − i


kr−i

+ 1. (3)

Let 1 ≤ p ≤ min{r, n/2}. If X
(p)
1 ≠ ∅ and X

(p)
2 ≠ ∅, then, by Theorem 2.1, we have |X

(p)
1 | + |X

(p)
2 | ≤


n
p


−


n−p
p


+ 1,

and hence |X
(p)
1 | + |X

(p)
2 | ≤ |E (p)

| + 1 with equality only if p = r . Now, without loss of generality, suppose X
(p)
2 = ∅. Then

|X
(p)
1 | + |X

(p)
2 | = |X

(p)
1 | ≤ |{A ∈


X
p


: A ∩ B∗

2 ≠ ∅}| ≤ |E (p)
| with the first inequality resulting from (1).

Therefore, we have just shown that

1 ≤ p ≤ min{r, n/2} ⇒ |X
(p)
1 | + |X

(p)
2 | ≤


|E (p)

| if p < r;
|E (p)

| + 1 if p = r.
(4)

If r ≤ n/2, then the upper bound in the theorem is immediate from (2)–(4).
Suppose r > n/2. Set w0 := 0, E (0)

:= X
(0)
1 := X

(0)
2 := ∅. Consider

n − r ≤ p ≤ ⌊n/2⌋.

Then,

|E (n−p)
| =


n

n − p


, |E (p)

| =



n
p


if p ≥ n − r + 1;

n
p


− 1 if p = n − r.

(5)

Also, an easy calculation yields

wp ≥ wn−p with strict inequality if p < n/2. (6)

By (1), for any A ∈ X
(p)
i and B ∈ X

(n−p)
3−i , we cannot have A = X \ B; hence

|X
(p)
i | + |X

(n−p)
3−i | ≤


n

n − p


. (7)

Let cp :=


|X

(p)
1 | + |X

(p)
2 |


wp. If n is odd, then

r
q=n−r


|X

(q)
1 | + |X

(q)
2 |


wq =

r
q=n−r

cq =

⌊n/2⌋
p=n−r

(cp + cn−p)

≤

⌊n/2⌋
p=n−r


(|X

(p)
1 | + |X

(p)
2 |)wp +


2


n
n − p


− (|X

(p)
1 | + |X

(p)
2 |)


wn−p


(by (7))

≤

⌊n/2⌋
p=n−r


|E (p)

|wp +


2


n
n − p


− |E (p)

|


wn−p


(by (4), (6))
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=

⌊n/2⌋
p=n−r


|E (p)

|wp +


|E (n−p)

|wn−p if p ≥ n − r + 1
(|E (n−p)

| + 1)wn−p if p = n − r


(by (5))

= wr +

r
q=n−r

|E (q)
|wq = 1 +

r
q=n−r

|E (q)
|wq. (8)

Similarly, if n is even, then

r
q=n−r


|X

(q)
1 | + |X

(q)
2 |


wq =

r
q=n−r

cq =

n/2−1
p=n−r

(cp + cn−p) + cn/2

≤


1 +

r
q=n−r

|E (q)
|wq − |E (n/2)

|wn/2


+


|X

(n/2)
1 | + |X

(n/2)
2 |


wn/2

≤ 1 +

r
q=n−r

|E (q)
|wq (by (4)). (9)

We know that if n − r ≥ 2, then (4) holds for p = 1, . . . , n − r − 1. Together with (2), (3), (8) and (9), this gives us the
desired upper bound for |A1| + |A2|.

Now suppose the upper bound is attained. Then |X
(1)
1 | + |X

(1)
2 | = |E (1)

| = r if n− r ≥ 2 (by (4)), and the same holds by
(6), (8) and (9) if n − r ≤ 1. We may assume that |X

(1)
1 | ≥ |X

(1)
2 |. By (1), for each i ∈ [2], each set in Xi intersects each set

in X3−i, and hence each single-element set in X
(1)
i must be contained in the intersection of the sets in X3−i.

Suppose X
(1)
2 = ∅. Then, since |X

(1)
1 | + |X

(1)
2 | = r , we have |X

(1)
1 | = r , and hence B∗

2 is the only set in X2. So A2 = {A∗

2}

and A1 ⊆ Sn,r,k(A∗

2). Since |A1| + |A2| = |Sn,r,k(R)| + 1, A1 = Sn,r,k(A∗

2).
Suppose X

(1)
2 ≠ ∅ instead. Then X

(1)
1 = X

(1)
2 = {x} for some x ∈ X , and hence r = 2 since |X

(1)
1 | + |X

(1)
2 | = r . By

(1), B1, B2 ⊆ Sn,2,k({x}). Since |B1| = |B2| = |A1| + |A2| = |Sn,2,k([2] × [1])| + 1 = 2|Sn,2,k({x})|, we actually have
B1 = B2 = Sn,2,k({x}). It follows by Lemma 4.1 that A1 = A2 = Sn,2,k({(a, b)}) for some (a, b) ∈ [n] × [k]. �

5. Non-centred intersecting families of signed sets

This section is dedicated to the proof of Theorem 2.3. We first prove a set of lemmas to ensure that in the proof of Theo-
rem 2.3 we may work with a non-centred intersecting family A ⊂ Sn,r,k that is invariant under any compression ∆a,b. The
really important lemma is the first one, and the others will only be used for the extremal cases of Theorem 2.3.

Lemma 5.1. Let n ≥ 3, 2 ≤ r ≤ n and k ≥ 2 such that (r, k) ≠ (n, 2). Let a ∈ [n] and b ∈ [2, k]. Suppose A is a non-centred
intersecting sub-family of Sn,r,k and ∆a,b(A) is centred. Then |A| < |Nn,r,k|.

Proof. SinceA is non-centred and∆a,b(A) is centred, we clearly have∆a,b(A) ⊆ Sn,r,k({(a, 1)}) and hence A = A({(a, 1),
(a, b)}). Thus, the families A1 := A({(a, 1)}) \ A({(a, b)}) and A2 := A({(a, b)}) \ A({(a, 1)}) are non-empty since A is
non-centred. It follows that A′

1 := {A \ {(a, 1)}: A ∈ A1} and A′

2 := {A \ {(a, b)}: A ∈ A2} are non-empty cross-intersecting
sub-families of a family isomorphic to Sn−1,r−1,k. By Theorem 2.2,

|A′

1| + |A′

2| ≤ |Sn−1,r−1,k([r − 1] × [1])| + 1 < |Nn,r,k|.

Since |A| = |A({(a, 1), (a, b)})| = |A′

1| + |A′

2|, the result follows. �

Lemma 5.2. Let n, r, k, a and b be as in Lemma 5.1. SupposeA is an intersecting sub-family of Sn,r,k andA ≠ ∆a,b(A) ∼= Nn,r,k.
Then A ∼= Nn,r,k.

Proof. Wemay assume without loss of generality that, for some k1, k2 ∈ [k],

∆a,b(A) = {A ∈ Sn,r,k: (1, k1) ∈ A, A ∩ ([2,min{r + 1, n}] × {k2}) ≠ ∅} ∪ B

whereB consists only of the set [2, r+1]×{k2} if r < n, andB consists of the setsN ′

i := {(1, i)}∪([2, n]×{k2}), i = 1, . . . , k,
if r = n. Let N ′ be the family on the right-hand side of the equality above, and let N := [2,min{r + 1, n}] × {k2}.

Since ∆a,b(A) ≠ A, there exists A∗
∈ A \ ∆a,b(A) such that δa,b(A∗) ∈ ∆a,b(A) \ A. Taking A′

:= δa,b(A∗), we therefore
have (a, 1) ∈ A′

∈ N ′. Suppose r + 1 < a ≤ n. Then, by definition of N ′, the set (A′
\ {(a, 1)}) ∪ {(a, b)} is also in N ′ (i.e.

A∗
∈ N ′), but this contradicts A∗

∉ ∆a,b(A) = N ′. So a ≤ min{r + 1, n}.
Let A1 := A({(1, 1)}), A2 := A({(1, b)}), A0 := A \ (A1 ∪ A2). Let A′

1 := {A \ {(1, 1)}: A ∈ A1} and A′

2 :=

{A \ {(1, b)}: A ∈ A2}.
Case I: r < n. So N ′

= {A ∈ Sn,r,k({(1, k1)}): A ∩ N ≠ ∅} ∪ {N}.
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Consider first a = 1. By (a, 1) ∈ A′
∈ N ′

= ∆a,b(A) and the definition of N ′, we then have k1 = 1, A = A1 ∪ A2 ∪ {N}

and A∗
∈ A2. Suppose A1 ≠ ∅. Then, A′

1 and A′

2 are non-empty cross-intersecting sub-families of a family isomorphic to
Sn−1,r−1,k. By Theorem 2.2, we obtain |A′

1|+ |A′

2| ≤ |{A ∈ Sn−1,r−1,k: A∩ ([r −1]×[1]) ≠ ∅}|+1, and hence |A| < |Nn,r,k|,
which is a contradiction as |A| = |∆a,b(A)| = |N ′

| = |Nn,r,k|. So A1 = ∅ and hence A = A2 ∪{N} ⊆ Sn,r,k({(1, b)})∪{N}.
Since A is intersecting, A ⊆ N ′′

:= {A ∈ Sn,r,k({(1, b)}): A ∩ N ≠ ∅} ∪ {N} ∼= N ′. Since |A| = |N ′
|, A = N ′′.

Now consider 2 ≤ a ≤ r + 1. Suppose k2 ≠ 1. Since (a, 1) ∈ A′
∈ N ′, we then get A′

≠ N, (1, k1) ∈ A′
∩ A∗, |A∗

∩ N| ≥

|A′
∩ N| > 0, and hence A∗

∈ N ′, a contradiction. So k2 = 1. Let N ′
:= (N \ {(a, 1)}) ∪ {(a, b)}. Since N ∈ N ′

= ∆a,b(A)
and N ′

∉ N ′, we clearly have A ⊂ Sn,r,k({(1, k1)}) ∪ {M} where M ∈ {N,N ′
} and M ∈ A. Since A is intersecting and

|A| = |∆a,b(A)| = |Nn,r,k|, A = {A ∈ Sn,r,k({(1, k1)}): A ∩ M ≠ ∅} ∪ {M}. (Since A ≠ N ′,M = N ′.)
Case II: r = n. So N ′

= {A ∈ Sn,r,k({(1, k1)}): A ∩ N ≠ ∅} ∪ {N ′

1, . . . ,N
′

k} and N ′

i = {(1, i)} ∪ N, i = 1, . . . , k. Since
(r, k) ≠ (n, 2), k ≥ 3.

Consider first a = 1. Suppose k1 ≠ 1. Then, since (1, 1) = (a, 1) ∈ A′
∈ N ′, we must have A′

= N ′

1 and hence A∗
= N ′

b,
a contradiction to A∗

∉ ∆a,b(A) = N ′. So k1 = 1. Thus, since ∆1,b(A) = N ′, we clearly have A0 = {N ′

i : i ∈ [k] \ {1, b}},

A′

1∪A′

2 = S [2,n]
n−1


,k
(N) (i.e.A′

1∪A′

2 = SF ,k(N), F =


[2,n]
n−1


),A′

1∩A′

2 = {N}, |A′

1|+|A′

2| = |Sn−1,n−1,k([n−1]×[1])|+1.

By Theorem 2.2, it follows that, for some j ∈ [2], A′

j = {N} and A′

3−j = S [2,n]
n−1


,k
(N). Thus, since A = A0 ∪ A1 ∪ A2, either

A = {A ∈ Sn,n,k({(1, b)}): A ∩ N ≠ ∅} ∪ {N ′

i : i ∈ [k]} ∼= N ′ or A = N ′; since A ≠ ∆a,b(A) = N ′, the former holds.
Now consider 2 ≤ a ≤ n. We may assume that k1 = 1. Suppose k2 ≠ 1. Since (a, 1) ∈ A′

∈ N ′, we then get
A′

∉ {N ′

i : i ∈ [k]}, (1, k1) ∈ A′
∩ A∗, |A∗

∩ N| ≥ |A′
∩ N| > 0, and hence A∗

∈ N ′, a contradiction. So k2 = 1. So
N ′

= N := Nn,n,k. For each i ∈ [k], let Ei := A({(1, i)}) and Ni := N ({(1, i)}). Since r = n, A =
k

i=1 |Ei| and N =k
i=1 |Ni|. Since a > 1 and∆a,b(A) = N , for each i ∈ [2, k], Ei = {Mi} for someMi ∈ {Nn,i−1, (Nn,i−1\{(a, 1)})∪{(a, b)}}. Let

M := {A ∈ Sn,n,k: (1, 1) ∈ A, A∩M2 ≠ ∅}. For each i ∈ [2, k], letM ′

i := (M2\{(1, 2)})∪{(1, i)}. LetM′
:= M∪{M ′

i : i ∈ [2, k]}.
So M′ ∼= N . Since A is intersecting, E1 = E1(M2) ⊆ M. Since |N | = |∆a,b(A)| = |A| = |E1|+ k− 1 ≤ |M|+ k− 1 = |N |,
E1 = M. Thus, a set A inSn,n,k\E1 intersects each set in E1 iff A = M ′

i for some i ∈ [2, k]. SoA ⊆ M′. Since |A| = |N | = |M′
|,

A = M′. �

Lemma 5.3. Let k ≥ 3, and let n, r, a and b be as in Lemma 5.1. Suppose A is an intersecting sub-family of Sn,r,k and
A ≠ ∆a,b(A) ∼= Tn,r,k. Then A ∼= Tn,r,k.

Proof. Wemay assumewithout loss of generality that∆a,b(A) = T ′
:= {A ∈ Sn,r,k: |A∩T | ≥ 2}where T := [3]×{k′

}, k′
∈

[k]. Since A ≠ ∆a,b(A), there exists A1 ∈ A \ ∆a,b(A) such that δa,b(A1) ∈ ∆a,b(A) \ A. Let A2 := δa,b(A1). Since
A2 ∈ T ′, |A2 ∩ T | ≥ 2. Thus, since (a, 1) ∈ A2, we have (a, 1) ∈ T because otherwise we get |A1 ∩ T | ≥ |A2 ∩ T | ≥ 2
contradicting A1 ∉ ∆a,b(A) = T ′. So a ∈ [3], k′

= 1 and T ′
= T := Tn,r,k. We may assume that a = 1.

Let T ′
:= T \{(1, 1)} = {(2, 1), (3, 1)}. We prove the lemma by showing thatA = T ′′

:= {A ∈ Sn,r,k: |A∩({1, b}∪T ′)| ≥

2}. Since ∆1,b(A) = T , for any A ∈ A, 1 ≤ |A ∩ T ′
| ≤ 2, and if |A ∩ T ′

| = 2, then A ∈ ∆1,b(A). Thus, |A1 ∩ T ′
| = 1. We may

assume that A1 ∩ T ′
= {(3, 1)}.

Suppose A∗
∈ A such that A∗

∩ T ′
= {(3, 1)}. Let C := [3, r]. For each c ∈ C , choose kc ∈ [k] such that (c, kc) ∉ A1 ∪ A∗

(note that this is possible since k ≥ 3). Let A3 := {(1, b), (2, 1)} ∪ {(c, kc): c ∈ C}, A4 := δ1,b(A3). Since A4 ∈ T = ∆1,b(A),
at least one of A3 and A4 is in A. Since A is intersecting and A4 ∩ A1 = ∅, A4 ∉ A. So A3 ∈ A. Suppose (1, b) ∉ A∗; then
A∗

∩ A3 = ∅, a contradiction as A is intersecting. So (1, b) ∈ A∗ and A∗
∈ T ′′.

Let B ∈ B := {A ∈ Sn,r,k: (1, b), (3, 1) ∈ A, (2, 1) ∉ A}. Since ∆1,b(A) = T , exactly one of B and δa,b(B) is in A. By the
argument for A∗, B ∈ A. So B ⊂ A. Now, for any S ∈ Sn,r,k such that S ∩ T ′

= {(2, 1)} and (1, b) ∉ S, there exists R ∈ B
such that R ∩ S = ∅. Thus, since A is intersecting, (1, b) ∈ A for all A ∈ A with A ∩ T ′

= {(2, 1)}.
Let A ∈ A. We have shown that A ∈ T ′′ if |A ∩ T ′

| = 1. By definition of T ′′, A ∈ T ′′ if |A ∩ T ′
| = 2. So A ⊆ T ′′. Since

|A| = |∆1,b(A)| = |T | = |T ′′
|, A = T ′′. �

Lemma 5.4. Let n > 3 and a ∈ [n]. Suppose A is an intersecting sub-family of Sn,3,2 and A ≠ ∆a,b(A) ∼= Tn,3,2. Then A
∼= Tn,3,2.

Proof. By the argument in the proof of Lemma 5.3, we may assume that a = 1 and ∆1,b(A) = T := Tn,3,2. Let A1 :=

A({(1, 1)}), A′

1 := {A \ {(1, 1)}: A ∈ A1}, A2 := A({(1, b)}), A′

2 := {A \ {(1, b)}: A ∈ A2}, A0 := A \ (A1 ∪ A2). Let
Z := [2, 3] × [1]. It is easy to check that having ∆1,b = T implies A0 = {A ∈ Sn,3,2: A ∩ {(1, 1), (1, b)} = ∅, Z ⊂

A}, A′

1 ∪ A′

2 = SF ,2(Z) where F =


[2,n]
2


, A′

1 ∩ A′

2 = {Z}, |A′

1| + |A′

2| = |SF ,2(Z)| + 1 = |Sn−1,2,2([2] × [1])| + 1.

Since A′

1 and A′

2 are cross-intersecting (as A is intersecting), it follows by Theorem 2.2 that, for some j ∈ [2], A′

j = {Z} and
A′

3−j = SF ,2(Z). Thus, since A = A0 ∪ A1 ∪ A2, either A = {A ∈ Sn,3,2: A ∩ ({(1, b)} ∪ Z) ≠ ∅} ∼= T or A = T . (Since
A ≠ ∆a,b(A) = T , the former holds.) �

Proof of Theorem 2.3. The result is trivial for r = 2 because a non-centred intersecting family of sets of size 2 can only be of
the form {{a, b}, {a, c}, {b, c}}. The casewhen k = 2 and r = n is also easy because for any set A := {(x1, y1), . . . , (xn, yn)} ∈

Sn,n,2, the unique set in Sn,n,2 that does not intersect A is {(x1, 3 − y1), . . . , (xn, 3 − yn)}; thus, the size of an intersecting
sub-family of Sn,n,2 is at most 2n−1

= |Nn,n,2|. So we now assume that r ≥ 3 and (r, k) ≠ (n, 2).
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Let N := Nn,r,k. Since N is a non-centred intersecting sub-family of Sn,r,k, we may assume that

|A| ≥ |N |. (10)

Let A∗
:= ∆n,k ◦ · · · ◦ ∆n,2 ◦ · · · ◦ ∆1,k ◦ · · · ◦ ∆1,2(A). So |A∗

| = |A|. By Corollary 3.2, A∗ is intersecting. By (10) and
Lemma 5.1, A∗ is non-centred. By Lemmas 5.2–5.4, if A∗ is isomorphic to one of N , Tn,3,k and T4,4,k, then so is A. We may
therefore assume that A = A∗. Taking X := [n] × [1], Corollary 3.2 then gives us

A1 ∩ A2 ∩ X ≠ ∅ for any A1, A2 ∈ A. (11)

Define A(q)
:= {A ∈ A: |A ∩ X | = q} and A

(q)
X := {A ∩ X: A ∈ A(q)

}. Define N (q) and N
(q)
X similarly. Define wq as in the

proof of Theorem 2.2. We have

|A(q)
| ≤ |A

(q)
X |wq, |N (q)

| = |N
(q)
X |wq, (12)

|A| =

r
p=1

|A(p)
|, |N | =

r
p=1

|N (p)
|. (13)

In view of (12) and (13), it is easy to check that |Tn,3,k| = |Nn,3,k| and |T4,4,k| = |N4,4,k|. Thus, it remains to show that
equality holds in (10) and that A satisfies one of parts (i)–(iii) of the theorem.

Let AX := {A ∩ X: A ∈ A} =
r

p=1 A
(p)
X . Since A is non-centred, it follows by (11) that

AX is non-centred. (14)

An immediate implication of (14) is that

A
(1)
X = ∅ = N

(1)
X . (15)

Consider 2 ≤ p ≤ min{r, n/2}. If A
(p)
X is non-centred, then, by Theorem 1.1, we have |A

(p)
X | ≤ |Nn,p|, and hence

|A
(p)
X | ≤ |N

(p)
X |; note that |Nn,p| = |N

(p)
X | if p = r , and if p < r , then, since |A

(p)
X | ≤ |Nn,p|, |A

(p)
X | < |N

(p)
X | unless

p = 2, A
(p)
X

∼=


[3]×[1]

2


, and either r = 3 or r = 4 = n. Now suppose A

(p)
X is centred and x ∈


A∈A

(p)
X

A. By (14), there

exists B ∈ AX such that x ∉ B. Thus, by (11), A(p)
X ⊆ {A ∈


X
p


: x ∈ A, A ∩ B ≠ ∅} and hence |A

(p)
X | ≤ |N

(p)
X | with equality

only if p < r and A
(p)
X

∼= N
(p)
X .

Therefore, we have shown that

|A
(p)
X | ≤ |N

(p)
X |, p = 1, . . . ,min{r, ⌊n/2⌋}, (16)

and that

p ≤ min{r, n/2}, p < r, |A
(p)
X | = |N

(p)
X |, A

(p)
X � N

(p)
X

⇒ p = 2, min{r, n − 1} = 3, A
(p)
X =


T
2


for some T ∈


X
3


. (17)

Case I: r ≤ n/2 (so n ≥ 6 as r ≥ 3). Then, by (10), (12) and (13), we have equalities in (16). By (17), it follows that either
A

(2)
X

∼= N
(2)
X or r = 3 and A

(2)
X

∼=


T
2


for some T ∈


X
3


.

Suppose A
(2)
X

∼= N
(2)
X . Then, for some x ∈ X and A∗

∈


X\{x}

r


, A

(2)
X = {A ∈


X
2


: x ∈ A, A ∩ A∗

≠ ∅}. Let B :=

{B ∈ Sn,r,k: x ∈ B, B ∩ A∗
≠ ∅} ∪ {A∗

}. Clearly, for any C ∈ Sn,r,k \ B there exists A ∈ A
(2)
X such that A ∩ C = ∅; thus, by

(11), A ⊆ B. Since B ∼= N , it follows by (10) that A = B.
Now suppose r = 3 andA

(2)
X

∼=


T
2


for some T ∈


X
3


. Let T ′

:= {A ∈ Sn,3,k: |A∩T | ≥ 2}. Clearly, for any C ∈ Sn,r,k \T ′

(i.e. |C ∩ T | ≤ 1) there exists A ∈ A
(2)
X such that A ∩ C = ∅; thus, by (11), A ⊆ T ′. Since |T ′

| = |Nn,3,k|, it follows by (10)
that A = T ′. So A ∼= Tn,3,k.

Case II: r > n/2. Suppose n = r = 3. Then, since A
(3)
X = ∅ or A

(3)
X = {X}, it clearly follows by (14) and (15) that

A
(2)
X

∼=


[3]×[1]

2


. By the argument in Case I, A ⊆ T3,3,k. Since T3,3,k = N3,3,k, it follows by (10) that A = N3,3,k.

Now suppose n ≥ 4. Consider n − r ≤ p ≤ n/2. Note that

wp ≥ wn−p with strict inequality if p < n/2. (18)

By (11), for any A ∈ A
(p)
X and B ∈ A

(n−p)
X , we cannot have A = X \ B; therefore

|A
(p)
X | + |A

(n−p)
X | ≤


n

n − p


= |N

(p)
X | + |N

(n−p)
X |. (19)
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We have

|A(p)
| + |A(n−p)

| ≤ |A
(p)
X |wp + |A

(n−p)
X |wn−p

≤ |A
(p)
X |wp +


n

n − p


− |A

(p)
X |


wn−p (by (19))

≤ |N
(p)
X |wp +


n

n − p


− |N

(p)
X |


wn−p (by (16), (18))

= |N
(p)
X |wp + |N

(n−p)
X |wn−p = |N (p)

| + |N (n−p)
|. (20)

Thus, if n is odd, then

r
q=n−r

|A(q)
| =

⌊n/2⌋
p=n−r


|A(p)

| + |A(n−p)
|


≤

⌊n/2⌋
p=n−r


|N (p)

| + |N (n−p)
|


=

r
q=n−r

|N (q)
|,

and if n is even, then

r
q=n−r

|A(q)
| =

n/2−1
p=n−r


|A(p)

| + |A(n−p)
|

+ |A(n/2)

|

≤

n/2−1
p=n−r


|N (p)

| + |N (n−p)
|

+ |N (n/2)

| (by (16), (20))

=

r
q=n−r

|N (q)
|.

Therefore,

r
q=n−r

|A(q)
| ≤

r
q=n−r

|N (q)
|. (21)

Suppose n− r ≤ 1. Then, by (13) and (21), we have |A| ≤ |N |with equality only if the inequalities giving rise to (21) are
equalities. By (10), this is indeed the case. It follows by (16) and (18) (and n ≥ 4) that we particularly have |A

(2)
X | = |N

(2)
X |

(see (20)). By (17), either A
(2)
X

∼= N
(2)
X or min{r, n − 1} = 3 and A

(2)
X

∼=


T
2


for some T ∈


X
3


. By the argument in Case I,

it follows that A ∼= N or A ∼= Tn,r,k, and the latter holds only if r = 3 or n = r = 4.
Finally, suppose n − r ≥ 2. By (12) and (16),

n−r−1
q=1 |A(q)

| ≤
n−r−1

q=1 |N (q)
| with equality only if equality holds in (16)

for p = 1, . . . , n− r − 1. We also have
r

q=n−r |A(q)
| ≤

r
q=n−r |N (q)

| (by (21)) with equality only if equality holds in (20)
for p = n − r, . . . , ⌊n/2⌋. Together with (13), these summations yield |A| ≤ |N |. By (10), |A| = |N |. Since we thus have
equality in (16) for p = 2, it follows by (17) that either A

(2)
X

∼= N
(2)
X or r = 3 (note that n − 1 > 3 as n − r ≥ 2 and r ≥ 3)

and A
(2)
X

∼=


T
2


for some T ∈


X
3


. As above, this yields A ∼= N or A ∼= Tn,3,k. �

6. Intersecting systems of signed sets

Here we prove Theorem 2.4 using Theorem 2.3 with r = n.
For any set X in a family F and any sub-family A of SF ,k, we define

AX := A ∩ SX,k.

The following two lemmas are important ingredients.

Lemma 6.1. For any n ≥ 0 and k ≥ 3, let bn,k ∈ N such that the size of a largest non-centred intersecting sub-family of S[n],k
is not greater than bn,k. Let F be a family, and let A be a non-centred intersecting sub-family of SF ,k. Then |AX | ≤ b|X |,k for all
X ∈ F .

Proof. Let X ∈ F . If AX is non-centred, then the result is immediate. So suppose AX is centred, i.e. |


A∈AX
A| ≥ 1.

Case 1: |


A∈AX
A| = 1. Let (x, y) be the unique member of


A∈AX

A. Since A is non-centred, there exists A∗
∈ A such

that (x, y) ∉ A∗. Let A′
:= A∗

∩ U(SX,k) = A∗
∩ (X × [k]), and choose A′′

∈ SX,k such that (x, y) ∉ A′′ and A′
⊂ A′′. So

AX ∪ {A′′
} is a non-centred sub-family of SX,k, and it is also intersecting because every set in AX must intersect A∗ on some

element of A′. Therefore, |AX | ≤ b|X |,k − 1.
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Case 2: |


A∈AX
A| ≥ 2. Let I :=


A∈AX

A, and let (x1, y1), . . . , (x|I|, y|I|) be the distinct elements of I . Since I is a subset
of a signed set, x1, . . . , x|I| are distinct. If |I| = |X | then I is the unique member of AX (as the sets in AX are of size |X |), so
suppose |I| < |X |. Let x∗

∈ X \ {x1, . . . , x|I|}. It is easy to see that, given that k ≥ 3, we can choose two sets A1, A2 ∈ SX,k
such that A1 ∩ I = {(x1, y1)}, A2 ∩ I = {(x2, y2)} and A1 ∩ A2 = {(x∗, 1)}. So AX ∪ {A1, A2} is a non-centred intersecting
sub-family of SX,k, and hence |AX | ≤ bn,k − 2. �

Lemma 6.2. Let F be a family, and let A be a sub-family of SF ,k. Let Z be a subset of U(SF ,k) such that A∩Z ≠ ∅ for all A ∈ A.
Then there exists x ∈ U(F ) such that

|A| ≤ |Z |


F∈F ({x})

|AF |.

Proof. We have A =


C∈


Z
1

 A(C). Choose C∗
∈


Z
1


such that |A(C)| ≤ |A(C∗)| for all C ∈


Z
1


. We then have

|A| =




C∈


Z
1

A(C)

 ≤


C∈


Z
1

 |A(C)| ≤ |Z | |A(C∗)|.

Obviously C∗
= {(x, y)} for some x ∈ U(F ) and y ∈ [k]. So A(C∗) ⊆


F∈F ({x}) AF . Hence the result. �

Proof of Theorem 2.4. Let A be a non-centred intersecting sub-family of SF ,k. A cannot have a set A of size 1, because
otherwise each set in A must contain A, and hence A is centred. So |A| ≥ 2 for all A ∈ A, and hence we can assume that

|F | ≥ 2 for all F ∈ F .

Suppose A has two distinct sets A and B of size 2 such that A, B ∈ SF ,k for some F ∈ F . Then, since A and B intersect, we
have A = {(x1, y1), (x2, y2)} and B = {(x1, y1), (x2, y′

2)}, where {x1, x2} = F , y1, y2, y′

2 ∈ [k] and y2 ≠ y′

2. So every set in A
contains (x1, y1) because it intersects both A and B, and it cannot contain both (x2, y2) and (x2, y′

2) (since it is a signed set);
however, this contradicts the assumption that A is non-centred. Therefore,

F ∈ F , |F | = 2, AF ≠ ∅ ⇒ |AF | = 1. (22)

It clearly follows that if αF = 2, then A = {{(x1, y1), (x2, y2)}, {(x1, y1), (x3, y3)}, {(x2, y2), (x3, y3)}} for some distinct
x1, x2, x3 ∈ U(F ) such that {x1, x2}, {x1, x3}, {x2, x3} ∈ F , and hence the centred sub-family {{(x1, y1), (x′, y′)}: (x′, y′) ∈

({x2} × [k]) ∪ ({x3} × [k])} of SF ,k is larger than A. This actually proves Conjecture 1.3 for the case αF ≤ 2.
We now consider families F with αF ≥ 3 and k ≥ k0 := αF

2.
Consider n ≥ 3. For each i ∈ [1, n − 1], let N ′

i := {A ∈ Sn,n,k: (1, 1), (i + 1, 1) ∈ A}. Let N ′
n := {Nn,1, . . . ,Nn,k−1}, where

Nn,1, . . . ,Nn,k−1 are as defined in Section 2. Clearly Nn,n,k =
n

i=1 N ′

i and hence |Nn,n,k| ≤
n

i=1 |N ′

i | = (n− 1)kn−2
+ (k−

1) < nkn−2. By Theorem 2.3 with r = n, we can take bn,k = |Nn,n,k| in Lemma 6.1, and hence |AF | ≤ |Nn,n,k| < |F |k|F |−2 for
all F ∈ F with |F | = n. Also, by (22), we again have |AF | < |F |k|F |−2 for all F ∈ F with |F | = 2.

Let B ∈ A. Since each A ∈ A intersects B, Lemma 6.2 tells us that |A| ≤ |B|


F∈F ({x}) |AF | for some x ∈ U(F ). Let
C := SF ,k({(x, 1)}). We have

|A| ≤ αF


F∈F ({x})

|AF | < αF


F∈F ({x})

|F |k|F |−2
≤


F∈F ({x})

αF
2k|F |−2

=


F∈F ({x})

k0k|F |−2
≤


F∈F ({x})

k|F |−1
=


F∈F ({x})

|CF | = |C|.

Since C is a centred sub-family of SF ,k, the result follows. �
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