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Abstract

Hermansky Pudlak type 2 syndrome (HPS2) is a rare autosomal recessive primary immune deficiency caused by mutations
on b3A gene (AP3B1 gene). The defect results in the impairment of the adaptor protein 3 (AP-3) complex, responsible for
protein sorting to secretory lysosomes leading to oculo-cutaneous albinism, bleeding disorders and immunodeficiency. We
have studied peripheral blood and lymph node biopsies from two siblings affected by HPS2. Lymph node histology showed
a nodular lymphocyte predominance type Hodgkin lymphoma (NLPHL) in both HPS2 siblings. By immunohistochemistry,
CD8 T-cells from HPS2 NLPHL contained an increased amount of perforin (Prf) + suggesting a defect in the release of this
granules-associated protein. By analyzing peripheral blood immune cells we found a significant reduction of circulating NKT
cells and of CD56brightCD162 Natural Killer (NK) cells subset. Functionally, NK cells were defective in their cytotoxic activity
against tumor cell lines including Hodgkin Lymphoma as well as in IFN-c production. This defect was associated with
increased baseline level of CD107a and CD63 at the surface level of unstimulated and IL-2-activated NK cells. In summary,
these results suggest that a combined and profound defect of innate and adaptive effector cells might explain the
susceptibility to infections and lymphoma in these HPS2 patients.
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Introduction

The role of the immune system in cancer surveillance has been

characterized in detail at the cellular and molecular level [1,2].

Lymphoproliferative disorders (LPD) are among the most frequent

spontaneous neoplasms arising in immunodeficient mice [3]. In

humans, the risk of developing LPD is significantly increased in

primary and secondary immunodeficiencies. In particular, prima-

ry immune deficiency (PID) patients might develop a wide array of

LPD, sharing features such as extra-nodal involvement, predom-

inance of high-grade B-cell neoplasm and frequent association

with Epstein Barr Virus (EBV) infection [4]. Although Hodgkin

Lymphoma (HL) has been reported in patients with secondary

immune deficiencies, such as iatrogenic immunosuppression and

HIV infection [5], it is rarely observed in PID. Cases of classical

HL have been reported in patients with Hyper-IgM (HIGM)

syndrome, Common Variable Immunodeficiency (CVID), Hyper-

IgE syndrome (HIES) and Wiskott Aldrich Syndrome (WAS) [5,6].

On the contrary, nodular lymphocyte predominance HL

(NLPHL) was reported only in association with autoimmune

lymphoproliferative syndrome (ALPS) [7,8].

Hermansky Pudlak type 2 syndrome (HPS2) is a rare autosomal

recessive disease characterized by oculo-cutaneous albinism,

bleeding disorders and immunodeficiency [9,10]. The disease is

caused by mutations on the b3A gene (AP3B1) encoding for the

b3A subunit of the adaptor protein 3 (AP-3) complex. This

heterotetrameric complex is an ubiquitously expressed cytosolic

protein, that is essential for secretory lysosomes formation in
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melanocytes, platelets, neutrophils, cytotoxic T cells (CTL), and

Natural Killer (NK) cells. In the immune system, absence of AP-3

leads to reduced intracellular content of neutrophil elastase and

consequently to neutropenia. Likewise, defects in cytolytic activity

have been observed in vitro in NK cells and CTL of HPS2

patients [11,12]. NK cells are essential for tumor surveillance and

defense against virally infected cells [13].

Natural Killer T (NKT) cells are a distinct lymphocyte subset

characterized by expression of CD3 and CD56. These cells have

been defined as an innate-like lymphocyte population that express

an invariant TCR made of the Ja18-Va24 and Vb11 rearrange-

ments specific for glycosphingolipids presented by the non-classical

MHC Class-I molecule CD1d. iNKT cells display important

immune regulatory functions [14]. Compelling evidence indicate

that iNKT cells might have an important role in tumor

surveillance. iNKT cells exhibit direct anti-tumor activity and

enhance the cytotoxic activities of NK and CD8+ T cells.

Significantly, a decrease in iNKT cells in the peripheral blood or

tissues is observed in patients with advanced forms of cancer [15].

In this study, we have investigated the immune functions of NK

and NK-T cells in in two siblings affected by HPS2.

Materials and Methods

Patients
The investigation was conducted according to the principles

expressed in the Declaration of Helsinki and approved by the local

ethic committees. All subjects, caretakers, or guardians on the

behalf of the minors/children participant gave their written

informed consent to participate in the study as approved by the

local ethic committee at Spedali civili, Brescia. Written informed

consent for the publication of case history from the next of kin,

caretakers, or guardians on the behalf of the minors/children

participants involved in your study was obtained.

Born from unrelated parents, Patient 1 (Pt1) and Patient 2 (Pt2)

were diagnosed with HPS2 at the age of 7 and 4 years respectively

at Spedali civili (Brescia, Italy) as previously described [12]. Patient

3 (Pt3) was diagnosed at the age of 7 months at Mater Dei

Hospital, Tal-Qroqq, Msida, Malta. Partial oculocutaneous

albinism was observed in the patients at birth.

At the age of 10 Pt1 presented with asymptomatic left

mandibular lymphadenopathy and Positron Emission Tomogra-

phy (PET) showed bilateral involvement of laterocervical lymph

nodes. At the age of 8 years, a retroperitoneal mass was

incidentally detected in Pt2. Stage IIA and Stage IIIA NLPHL

were diagnosed respectively; complete remission was achieved in

both patients upon treatment with the AIEOP MH-2004

chemotherapeutic protocol; after 53 and 37 months from diagnosis

respectively both patients are free of disease.

Pt 3 is a 6 year old Maltese girl who was clinically suspected to

have HPS2 at 7 months of age. Aged 2 months, she presented with

horizontal nystagmus which was found to be secondary to albinoid

fundi. In addition, she was noted to be generally hypopigmented,

had severe neutropenia, low serum IgM and prolonged in vitro

bleeding time. HPS2 was confirmed by mutational analysis of the

AP3B1 gene (g.180117-180740 del). Subsequently, she was

diagnosed with bilateral developmental dysplasia of the hips

necessitating open reduction, pectus excavatum and asymptomatic

ventricular ectopics. At the age of 5 she acquired primary EBV

infection from which she recovered completely.

Whole blood was collected from HPS2 patients and from

healthy donors in BD Vacutainer Plus plastic whole blood tubes

(BD Bioscience, Franklin Lake, NJ, USA) and then used for cells

purification. Fresh blood was available for a limited number of

experiments for Pt3.

Histology and Immunohistochemistry
Tumor specimens were represented by formalin fixed and

paraffin embedded lymph nodes from the two patients and five

cases of NLPHL from patients without history of immunodefi-

ciency (4 males, 1 female, from 18 to 73 years old). Paraffin

sections were used for immunohistochemistry to detect the

following antigens: CD20 (clone L26, Dako, Glostrup, Denmark),

PAX5 (clone 24/PAX-5, BD Biosciences, San Josè, CA, USA),

Bcl6 (clone P1F6, Novocastra Laboratories, Newcastle upon Tyne,

UK), BOB.1 (rabbit polyclonal, Santa Cruz Biotechnology Inc,

Santa Cruz, CA, USA), OCT-2 (rabbit polyclonal, Santa Cruz

Biotechnology), CD30 (clone BerH2, Dako), CD15 (clone MMA,

Thermo Scientific, Fremont, CA, USA), CD3 (clone SP7 Thermo

Scientific), CD8 (clone C8/144B, Dako), PD1 (clone NAT 105/

e3J, kindly provided by Dr Teresa Marafioti, Oxford), CD57

(clone NK-1, Invitrogen Corporation, Carlsbad, CA, USA), CD56

(mouse IgG1, clone Ab-2, Thermo Scientific), Perforin (clone

5B10, Novocastra Laboratories), CD23 (clone 1B12, Thermo

Scientific), CD21 (clone 2G9, Thermo Scientific), CD163 (clone

10D6, Thermo Scientific), CD68R (clone PG-M1, Dako).

The immunoreaction was revealed using Envision MR (Dako)

or NovoLink Polymer (Novocastra Laboratories) peroxidase-

conjugated polymers, followed by diaminobenzidine as chromo-

gen and hematoxylin as counterstain. Double immunostains for

perforin (Prf), CD8 and CD56 and for CD56 and CD3 were

performed as previously reported [16]. The second immune

reaction was revealed using Mach4 AP (Biocare Medical,

Concord, CA, USA) followed by Ferangi Blue as chromogen

(Biocare Medical). Detection of Epstein-Barr virus (EBV) was

performed by immunohistochemistry, using antibody against

LMP1 (clone CS1, Novocastra Laboratories) and by in situ

hybridization of EBV-encoded RNA (EBV/EBER), (PNA ISH

Detection Kit, Dako).

For cell counting digital images taken with DP-70 Olympus

digital camera mounted on Olympus BX60 microscope were

processed by Analysis Image Processing software (Olympus). The

number of Prf positive cells were evaluated on five high power field

(HPF, corresponding to 1.8 mm2) for each case and the values

were expressed as mean of positive cells +/2 SEM per HPF. The

student’s t test was used for statistical analysis and considered

significant with values of p,0.05.

PBMC and NK cells purification and culture
Peripheral blood mononuclear cells (PBMC) derived from

patients and healthy donors seen for minor trauma were obtained

from heparinized blood by density gradient centrifugation over

Ficoll (Sigma, St. Louis, MO). PBMC were resuspended in RPMI

1640 medium, supplemented with 2 mM glutamine, 50 mg/ml

penicillin, 50 mg/ml streptomycin and 10% heat-inactivated FCS

(Fetal Calf Serum, Sigma, St. Louis, MO). Peripheral blood

samples were collected from patients before the development of

NLPHL. Peripheral blood collected from three different age-

matched healthy donors were used in every experimental assays.

NK cells were purified by NK Cell Separation Cocktails

(Rosette Sep, Stem Cell Technologies Inc, Vancouver, BC). The

purity of NK cells was .96% as assessed by flow cytometric

analysis with a mixture of CD56-PC5 and CD3-FITC antibodies.

CD3 contamination in purified NK cells was ,1%. Purified NK

cells were cultured on irradiated feeder cells in the presence of

100 U/ml IL-2 (Proleukin, Chiron Corp., Emeryville, USA) and
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1.5 ng/ml PHA (Gibco Ltd, Paisley, Scotland) in order to obtain

polyclonal NK cell populations.

Flow cytofluorimetric analysis
The fine characterization of surface markers of resting NK cells

was performed using the following mAbs produced in our

laboratory or kindly provided by A. Moretta (DIMES, University

of Genoa): BAB281 and KL247 (IgG1 and IgM respectively anti-

NKp46), AZ20 and F252 (IgG1 and IgM, respectively, anti-

NKp30), AZ140 and KS38 (IgG1 and IgM respectively anti-

NKp44), ON72 and BAT221, (IgG1 anti-NKG2D), c127 and

SUS142 (IgG1 and G2b respectively, anti-CD16), c218 and FS280

(IgG1 and IgG2a, respectively, anti-CD56), PP35 (IgG1, anti-

CD244), A6/136 (IgM, anti-HLA class I), 3C8 (IgM, anti-CD63),

XA147 (IgM anti-CD57).

A mixture of PC5-conjugated anti-CD56 mAb and FITC-

conjugated anti-CD3 mAb (Beckman Coulter, Immunotech,

Marseille, France), PE-conjugated anti-CD107a mAb (Becton

Dickinson- Biosciences, Pharmingen, CA, USA), purified anti-

CXCR1 (Santa Cruz Biotechnologies, Santa Cruz, CA) and

purified anti-CCR7 and PC5-conjugated anti-CD62L (R&D

systems, Minneapolis MN USA) were purchased for further

cytofluorimetric analysis. CD107a expression was evaluated

without tumor target cells on freshly isolated and polyclonal IL-2

activated NK cells staining with anti–CD3-FITC and anti–CD56-

PC5 mAbs for 30 minutes, and afterward incubated with 4 ml anti-

CD107a-PE for 1 hour.

For detection of IFN-c production, polyclonal IL-2-activated

NK cells were stimulated with PHA (1.5 ng/ml) or K562 (E/T

ratio: 1:1) for 3 hours at 37uC. NK cells were washed, fixed and

permeabilized with Fix and Perm Solution (BD Biosciences) for 20

minutes and then labeled for 1 hour with 50 mg/ml anti-IFN-c-PE

(Becton Dickinson-Biosciences, Pharmingen, CA, USA).

Purified PBMC (106 cells) from peripheral blood samples were

used to evaluate the proportion of iNKT cells among the

lymphocyte population for each individual tested. Identification

of iNKT cells was obtained co-staining a commercial FITC-

conjugated antibody directed against the CDR3 region of the

invariant TCRa chain (Va24-JaQ) (BD Biosciences) with fluoro-

chrome-conjugated anti-CD3, anti-CD16 and anti-CD56 mAbs

(BD Biosciences) or with the combination of FITC-conjugated

antibody against TCR Va24 (BD Biosciences) and PE-conjugated

antibody against TCR Vb11 (BD Biosciences) with APC-

conjugated anti-CD3 for 20 minutes at RT. An alternative

protocol required staining for 30 minutes with a 1:200 dilution of

PE-conjugated PBS-57 loaded CD1d tetramer (obtained from the

NIH Tetramer Core Facility at Emory, Atlanta), used as a specific

iNKT cell marker. At least 250,000 PBMC were acquired for each

test and the proportion of iNKT cells was calculated after selection

of CD3+ lymphocytes that coexpressed the specific NK and iNKT

cell markers. Non-specific staining was evaluated using an

appropriate isotype control mAb (BD Biosciences) or the unloaded

CD1d tetramer. All cell acquisitions were performed on a

FACSCalibur flow cytometer (BD) and data analyzed using the

Cell Quest software (BD) or the FlowJo software version 8.8.6.

Cell Lines and Cytotoxicity Assays
NK cells that had been exposed to IL-2 were tested for cytolytic

activity against various NK-susceptible tumor target cells, includ-

ing: Hodgkin’s-derived cell lines L540 and L428, human

melanoma FO-1 and M14, murine mastocytoma P815, EBV-

lymphoblastoid cell lines HLA2 LCL 721.221, EBV-lymphoblas-

toid cell lines HLA+ ALINA, Burkitt’s lymphoma Daudi and Raji,

ovarian carcinoma IGROV, human glioblastoma A172, erythro-

leukemia K562, kidney carcinoma SKNEP1, and allogeneic PHA

blasts [17–22]. These cell lines were selected on the basis of their

expression of specific ligands for activating NK receptors. In

particular, FO-1, RAJI express ligands for NKG2D and NKp30

while M14, P815, B-EBV lymphoblastoid cell lines mainly express

the ligands for NKp46 [23,24].

All these tumor cell lines were tested in a 4-h 51Cr release assay

as previously described [25] with 5N103cells/well at a final ratio of

1:10 with polyclonal activated NK cells. L540 and L428 were

kindly provided by Marco Cassatella (University of Verona, Italy),

all other target cell lines were kindly provided by Alessandro

Moretta (University of Genoa, Italy).

Effector NK cells were incubated either in the absence or in the

presence of specific mAbs, IgM isotype, anti-HLA class I and/or

anti-NK cell receptors.

All the in vitro experiments were performed three times for both

patients, each time with three different healthy controls. All the

values obtained from the patients’ and control’s groups were

pulled together and analyzed using the Mann-Whitney test. The

results of the statistical analyses between the two groups are shown

in the Figures, with asterisks indicating p values ,0.01.

Results

Development of Nodular Lymphocyte-Predominant
Hodgkin Lymphoma in two HSP2 patients

Pt1 and Pt2 developed NLPHL at the age of ten and eight,

respectively (see Material and Methods section for details). The

histological features in Pt1 and Pt2 lymph nodes were similar.

Lymph nodes showed a diffusely effaced architecture (Figure 1 a),

with partially confluent macro-nodules mainly composed by small

mature lymphocytes; a large number of epithelioid histiocytes were

also present within the nodules. Atypical cells with classical

cytologic and phenotypic features of lymphocyte predominant (LP)

cells (strong expression of CD20, Pax5, Bcl6, OCT2 and BOB.1,

negativity for CD15 and CD30) were found within the nodules

(Figure 1 b, c, e). These nodules were mainly composed by CD20+

small B-cells (Figure 1 c) and contained an expanded meshwork of

CD21+CD23+ follicular dendritic cells (not shown). Rosettes of

CD3+CD57+PD1+ T cells surrounding LP cells were commonly

observed (Figure 1 d). The intranodular epithelioid histiocytes

reacted for CD163 and CD68 (not shown). In Pt2, an extra-

capsular area of the lymph node showed accumulation of

numerous confluent large CD20+ B cells on a background of T-

lymphocytes, suggesting an histological progression (Figure 1 f). No

EBV-infection was detected by immunohistochemistry and in situ

hybridization.

We analyzed the effector cell populations in the tumor

microenvironment of NLPHL by immunohistochemistry. As

observed in other cases of NLPHL, diagnosed in other subjects,

host immune cells in NLPHL from HPS2 patients were mainly

represented by numerous CD8+ T-cells and very rare

CD56+CD32 NK cells (data not shown). Conversely, we found

that the number of cells expressing perforin (Prf+) in NLPHL from

HPS2 patients was significantly higher compared to other cases of

NLPHL (Pt1: 48615, Pt2 82614; NLPHL-controls: 2066;

p = 0.005) (Figure 2). The large majority of Prf+ cells were located

within the tumor nodules and co-expressed CD8 thus correspond-

ing to NLPHL-associated CTL. In addition, double stains for Prf

and CD8 (Figure 2 a and b inserts) showed a significant increase in

the fraction of Prf+ CD8+ CTL in NLPHL from HPS2 patients

(Pt1: 54%65%, Pt2: 55%612%; NLPHL-controls: 27%611%;

p = 0.03) suggesting increased Prf retention in HPS2 CTLs.

However, analysis of intracellular perforin content by flow
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cytometry of CD3+CD8+ T cells derived from patients Pt1 and

Pt2 PBMCs showed that intracellular staining of perforin was

comparable to that of healthy donors (data not shown).

NK cells from HPS2 patients show a reduction of the
CD56bright subset and have an altered expression of the
degranulation markers CD63 and CD107a

We hypothesized that the susceptibility to this rare form of

lymphoma in HPS2 patients might be related to defective immune

surveillance. Therefore, we analyzed specific markers of matura-

tion and degranulation on NK cells by flow cytometry. In both

HPS2 patients we observed a striking reduction of the CD56bright/

CD162/CCR7+ NK cell subset and an important increase of

CD56dim NK cells (Figure 3). Specifically, from four separate

evaluations in a two-year period, the average percentage of

CD56bright cells on total NK cells was 1.460.9% and 0.1560.11%

for Pt1 and Pt2 respectively, compared to a median of 8.6% (range

1.8–23.2) calculated in 22 age-matched healthy subjects. Recent

studies suggest that CD57, CD16 and KIR expression by CD56dim

NK cells is associated with phenotypical and functional features of

highly mature and terminally differentiated NK cells [26–29].

Analysis of co-expression of CD16, CD57 and KIR in NK cells

from HPS2 patients showed a significant depletion of CD56bright/

CD162 and of CD56bright/CCR7+ subsets (Figure 3 and data not

shown) that are usually seen as NK cells with potent immunoreg-

ulatory function, but reduced cytolitic activity, suggesting that

circulating NK cells display a terminally differentiated phenotype.

This is especially evident in Pt1 that shows an increase of CD56+/

CD57+ NK cells. The expansion of the CD56+/CD57+ subset

might be related to the numerous episodes of viral infections that

have been observed in Pt1, suggesting that recurring exposures of

HPS2 patients to viral pathogens might have led to depletion of

the CD56bright/CD162/CCR7+ subset and, secondarily, to

expansion of the of CD56+/CD57+ memory NK subset [28].

We also analyzed expanded IL-2 activated NK cells and we noted,

in both patients, peculiar expansion of KIRs+/NKG2A- NK cell

clones (data not shown) when compared with healthy donors.

Next, we studied the expression of lysosomal and degranulation

markers on resting and IL2-activated NK cells. Previous studies by

our group and others [12,30,31] reported an abnormal expression

of the lysosomal marker CD63 on cell membrane of neutrophils

and CD8+ T-cells from the same HPS2 patients [12,31]. Flow

cytometry analysis showed that a large fraction of unstimulated

NK cells (25% for Pt1 and 30% for Pt2) and IL-2 activated NK

cells in HPS2 (78–96% in both patients) expressed CD63 as

compared to the control group (0.1–1% and 5–17% in

unstimulated and IL-2 activated NK cells, respectively) (data not

shown).

The expression of the degranulation marker CD107a on surface

of resting and IL-2-activated NK cells can be induced during

exocytosis of lytic granules upon engagement by specific ligands

expressed on target cells. In control subjects, CD107a is detectable

at very low levels (,1%) on either resting and IL-2 activated NK

cells, in the absence of co-culture with tumor target cells. On the

contrary, NK cells from HPS2 patients spontaneously expressed

CD107a on the surface, at significantly higher levels either at basal

level (6% for Pt1 and 16% for Pt2) and upon IL-2 activation (30%

for Pt1 and 33% for Pt2) despite the absence of target cells

(Figure 4A).

IFN-c production and NK-cytotoxic activity are impaired
in NK cells from HPS2 patients

Activated NK cells release several cytokines that modulate other

effector functions of the immune system. We analyzed the

production of IFN-c, by intracellular staining, in three settings:

in IL-2 activated NK cells, after stimulation with phytohemagglu-

tinin (PHA) or after co-culture with the tumor target cells K562 at

Figure 1. Histology of NLPHL in HPS2 patients. Lymph node
biopsy from Pt1 show multiple large nodules (a) containing LP cells (b)
that express CD20 (c) and are surrounded by rosettes of CD57+ (d), PD-
1+ (d inset) T-cells. LP cells are positive for OCT2 (e1) and Bcl6 (e2) and
negative for CD15 (e3) and CD30 (e4). In Pt2, an area with accumulation
of numerous, partially confluent, large CD20+ B cells, suggests
histological progression (f). For immunohistochemistry, sections are
counterstained with Meyer’s haematoxylin and secondary antibodies
revealed with DAB. Original magnification: 406(a); 2006(f); 6006(b, c, d,
e).
doi:10.1371/journal.pone.0080131.g001

Figure 2. Prf-positive cells in NLPHL. Lymph node sections are
from Pt1 (a), Pt2 (b) and controls (c and d), stained for anti-Prf (a-d;
brown) and anti-CD8 (inserts blue). An increased number of Prf+ CTL co-
expressing CD8 (insert) are observed in NLPHL nodules from HPS2
patients compared to controls. Sections are counterstained with
Meyer’s haematoxylin and secondary antibodies revealed with DAB
(Prf) or Ferangi blue (CD8). Original magnification: 2006(a–d) and
10006(inserts).
doi:10.1371/journal.pone.0080131.g002
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Figure 3. Analysis of the CD16, CCR7, and CD57 surface expression on CD56+ NK cells. Flow cytometry relative quantification of CD56+

Lin2 NK cells (first panels) and of CD16 (second panels), CCR7 (third panels), and CD57 expression (lower panels) on CD56+ gated NK cells. HPS2
patients’ (Pt1 and Pt2) data are representative of one of the four separate evaluations performed on peripheral blood lymphocytes in a two-year
period and are compared with a representative normal subject (CTRL) of the healthy donor group.
doi:10.1371/journal.pone.0080131.g003
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Figure 4. CD107a expression and IFN-c production by NK cells of HPS2 patients. A, surface expression of CD107a in resting (upper panels)
and IL-2 activated NK cells (lower panels) in a representative healthy donor (CTRL) of six distinct subjects analyzed and in HPS2 patients (Pt1 and Pt2).
In each plot the bar defines the percentage of cells that express CD107a. B, IFN-c–producing IL-2 NK cells were analyzed by flow cytometry. The
percentage of IFN-c producing CD56+ NK cells from a representative healthy donor (CTRL) of six distinct subjects analyzed and from patients (Pt1 and
Pt2) is shown in un-stimulated conditions (medium), stimulated by PHA (PHA) and stimulated by NK susceptible K562 tumor target cells (K562).
The percentages shown in the panels A and B are representative of an experiment repeated three times.
doi:10.1371/journal.pone.0080131.g004
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E/T ratio 1:1. We observed that IFN-c was expressed by 17–19%

of PHA-activated NK cells from HPS2 patients and by 42% of IL-

2 activated NK cells from a representative control subject

(Figure 4B, intermediate panels). In addition, incubation of NK

cells with the target cell line K562 leads to higher IFN-c
expression in cells from a representative control subject (50%)

than from HPS2 patients (16% for Pt1 and 34% for Pt2)

(Figure 4B, lower panels), suggesting an impaired production of

the cytokine after stimulation.

We have previously shown an important reduction of cytolytic

activity of NK cells in HPS2 patients [12]. Since both HPS2

siblings developed NLPHL, cytolytic activity of polyclonal IL-2-

activated NK cells was evaluated against human and murine

tumor cell lines, including Hodgkin’s lymphoma cell lines (L428

and L540 cell lines, HLA class I negative and positive,

respectively). We detected a striking absolute and/or relative

defect of NK cytotoxic activity against B-EBV lymphoblasts,

IGROV and M14 human cell lines, P815 murine cell line and

PHA activated lymphoblasts, with p,0.01 when compared with

control NK cells (Figure 5 A column 1–6). K562, SKNEP1,

DAUDI, RAJI and A172 human cell lines showed less impaired,

although still significantly lower (p,0.01), cytotoxic activity of

HPS2 NK cells when compared to that of normal subjects (Figure 5

A column 7–11). In contrast, the cell line FO-1 was equally

susceptible to lysis by both HPS2 and normal NK cells (Figure 5A

column 12).

In order to evaluate the role of KIR receptors in NK

cytotoxicity against Hodgkin Lymphoma cell lines, HLA class I

masking was performed by addition of anti-HLA class I mAbs to

the culture before the cytotoxicity assay against L540 and L428

cell lines. NK cells from healthy donors were able to kill both

target cell lines at maximal levels (Figure 5B). On the contrary,

HPS2 NK cells displayed poor cytolytic activity against both

Hodgkin’s lymphoma cell lines without any increase after HLA

class I masking suggesting that this reduction is not related to the

involvement of HLA class I specific inhibitory receptors

(Figure 5B).

Analysis of NK activating receptors NKp46, NKp30, NKp44,

NKG2D and CD244 (2B4) did not reveal abnormal expression

patterns in NK cells of HPS2 patients [12]. This suggests that the

heterogeneity of cytolytic activity might be related to the variable

surface expression of the specific ligands for NK activating

receptors by tumor cells. In order to define the susceptibility of

target cell lines to NK cells we performed a further cytotoxicity

assay after masking activating NK receptors with different specific

monoclonal antibodies directed against NK receptors (data not

shown). We observed that tumor target cell lines that express the

ligands for NKG2D and NKp30 such as FO-1 and RAJI, were

more susceptible to HPS2 NK cells than other tumor cell lines

mainly expressing the ligands for NKp46 (M14, P815, B-EBV

lymphoblastoid cell lines) that were not killed by patients’ NK cells.

iNKT cells are undetectable in HPS2 patients
In order to evaluate the number of circulating iNKT cells in

HPS2, we have stained PBMC from both patients and 12 healthy

donors with an appropriate mixture of mAbs against surface

markers (CD3, CD16 and CD56) followed by the incubation with

PE-conjugated PBS57-loaded or PBS57-unloaded CD1d tetramer.

Despite the large number of CD3+ lymphocytes analyzed (at least

250,000 events acquired), Pt1 and Pt2 cells stained with the loaded

tetramer displayed a number of PE-positive events similar to the

ones obtained staining with the unloaded tetramer (Figure 6A,

upper panels). The same result was obtained when patients PBMC

were stained with a commercial antibody directed against the

Figure 5. Impairment of cytolytic activity of IL-2–stimulated NK cells in HPS2 patients. A, Purified polyclonal IL-2–activated NK cells,
derived from Pt1 (triangle pointing up) or Pt2 (triangle pointing down) or 5 distinct healthy donors (circle), were tested against NK susceptible target
cells (E/T ratio 10:1): HLA- LCL 721.221 EBV-lymphoblastoid cell lines, HLA+ ALINA EBV-lymphoblastoid cell lines, IGROV ovarian carcinoma, M14
human melanoma, P815 murine mastocytoma, allogeneic PHA blasts, K562 erythroleukemia, SKNEP1 kidney carcinoma, Daudi and Raji Burkitt’s
lymphoma, A172 human glioblastoma and FO-1 human melanoma. B, Purified polyclonal IL-2-activated NK cells, derived from Pt1 (triangle pointing
up), Pt2 (triangle pointing down) or 5 distinct healthy donors (circle), were tested against the Hodgkin’s lymphoma derived L428 (HLA-) and L540
(HLA+) cell lines, either in the absence (2) or in the presence (+) of anti-HLA class I mAb at E/T ratio 10:1. The results shown represent the
combination of three independent experiments. Each value represents the mean 6 SD of 5 replicates. * = p,0.01.
doi:10.1371/journal.pone.0080131.g005
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CDR3 region of the invariant chain (Va24i), specifically expressed

by iNKT cells (Figure 6A lower panels). For this reason patient’s

iNKT cell counts had to be considered below the detection limit of

the technique. Evaluation of circulating iNKT was performed in

three separate occasions in a 18-month period with an average of

3.16e-3 and 2.55e-3 for Pt1 and Pt2 respectively, constantly below

the range reported for normal subjects.

Quantification of iNKT cells in an additional HPS2 patient

(Pt3) by staining with the combination of antibodies against the

abTCR chains specifically expressed by iNKT cells (Va24 TCR

and Vb11 TCR) showed a similar reduction of iNKT cells

(Figure 6B).

Discussion

In this study we report the occurrence of nodular lymphocyte

predominance type Hodgkin lymphoma (NLPHL) in two young

siblings affected by Hermansky Pudlak type 2 syndrome (HPS2).

By analyzing peripheral blood immune cells we found that NK

and iNKT cells from HPS2 patients are significantly impaired in

their number and function including tumor cell killing activity. On

Figure 6. Quantification of iNKT cells in HSP2 patients. Flow cytometric quantification of iNKT cells in isolated PBMC from HPS2 patients and
two control subjects concomitantly stained. A, The proportion of iNKT cells was calculated on the CD3+ population (at least 250,000 events acquired)
contained in the lymphogate and is reported for each dot plot. Staining with PE-conjugated PBS57-loaded CD1d tetramer or, with FITC-conjugated
antibody against the Va24-JaQ invariant chain are presented in the upper and lower panel, respectively. B, iNKT cells were counted as double positive
for FITC-conjugated antibody against Va24 and PE-conjugated antibody against Vb11 in a CD3+ gate comprising at least one million of events. The
panel is representative of three separate analyses performed in a 18-month period.
doi:10.1371/journal.pone.0080131.g006
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histology, NLPHL from HPS2 patients show an increased number

of Prf+ CD8+ CTLs and at lower extent CD56+CD32 NK cells

within the tumor nodules. While, CD3+CD8+ T cells from HPS2

patient presented a normal content of perforin. Taken together,

these results suggest that HPS2 NLPHL show an increased

number of Prf+CD8+ CTLs within the tumor nodules; this might

reflect a defect in the release of this granules-associated protein by

the CTL fraction.

Different forms of lymphoproliferative disorders (LPD) are

observed in primary immune deficiency (PID) patients and are

commonly related to EBV infection [32]. NLPHL occurring in

HPS2 patients, similarly to sporadic NLPHL, are probably not

related to EBV infection since EBV antigens were not detected in

the tumor cells. This suggests that impairment of T-cell-mediated

immune surveillance to EBV is not involved in the mechanism of

HPS2-associated lymphomagenesis [33]. NLPHL represents a

minor fraction of HL and derives from the neoplastic transfor-

mation of germinal centre B cells at the centroblastic stage.

Familial NLPHL are rarely observed in immune competent

subjects [34–37], but they are commonly seen in patients suffering

from autoimmune lymphoproliferative syndrome (ALPS) [7,8], a

disorder of apoptosis in which the inability of lymphocytes to

undergo programmed cell death leads to lymphadenopathy,

hypersplenism, and autoimmune cytopenias increasing the risk

of developing Hodgkin (HL) and non-Hodgkin lymphoma (NHL).

The development of NLPHL in the two HPS2 siblings suggests

a possible involvement of effector functions of multiple cell types

including NK, iNKT and CTL in lymphoma development. In this

study we found an abnormal distribution of NK subsets in the

peripheral blood of HPS2 patients. Specifically, HPS2 patients

show a significant reduction of CD56bright CD162 KIR2

NKG2A+CCR7+ subset. Recent reports support the hypothesis

of unidirectional differentiation of CD56dim from CD56bright,

suggesting that the recurrent viral infections might lead to

depletion of CD56bright CD162 KIR2 NKG2A+CCR7+ NK cells

[13,26,28]. Within the CD56dim subset, a more differentiated

phenotype is highlighted by the simultaneous expression of CD57

and of KIR, CD16 and intense intracytoplasmic Prf. Remarkably,

CD56dim NK cells from HPS2 patients expressed CD57 molecule

and KIRs repertoire, suggesting that these cells have completed

their maturation in spite of reduced intracellular Prf content.

Moreover, various authors demonstrated that recurrent viral

infection can cause an increase of CD57+ NK cells reflecting

differentiation and expansion of a human memory NK cells subset

as probably occurred in Pt1 [38].

It is commonly accepted that CD56bright NK cells are the main

source of cytokine production, while CD56dim NK cells are mostly

responsible for cytolytic activity and tumor target cell killing.

However, recent evidences indicate that also early IFN-c
production is a functional property of CD56dim NK cells after

engagement of activating receptors [39]. Notably, CD56+CD32

NK cells from HPS2 patients show an important cytolytic defect

combined to a reduced production of IFN-c after engagement of

activating receptors. With the exception of FO-1, NK cells from

HPS2 patients fail to properly recognize and kill a large series of

tumor cell lines including HL cell lines. Analysis of NK activating

receptors by polyclonal IL-2 activated NK cells of both HPS2

patients did not reveal abnormal expression. This observation

suggests that a reduced surface density expression of activating NK

receptor ligands on tumor cell lines, not involving the whole

repertoire of activating NK receptors, might account for the severe

cytotoxic defect of HPS2 NK cells. Remarkably, despite HPS2

patients have defective cytotoxic activity, the risk of these patients

to develop hemophagocytic lympohistiocytosis (HLH) is very low

since only a single HPS2 patient developing HLH has been

reported [30]. The observation that HPS2 patients show reduced

production of IFN-c after engagement of activating receptors

might be important to understand the differences between HPS2

and other genetic conditions characterized by impairment of NK/

CTL cytotoxic activity [40].

Previous observations showed that cell-surface expression of

CD63 was increased in fibroblasts and CTL of HPS2 patients

suggesting that lack of AP-3 complex results in change in the

steady state distribution of the membrane protein between

intracellular vesicles and the plasma membrane. We reported a

remarkable increase of CD63 expression on the cell surface of

neutrophils and a severe defect of neutrophil elastase expression in

the cytoplasm as compared with control subjects [12]. This

observation led us to speculate that lack of AP-3 prevents normal

expression and correct sorting of neutrophil elastase in azurophil

granules of myeloid progenitors. In this study we have shown that

unstimulated and IL-2 -stimulated NK cells from both HPS2

patients expressed increased baseline levels of CD107a and CD63,

suggesting that this misrouting of lysosomal proteins to the cell

membrane could likely contribute to the observed cytotoxic defect

and impaired degranulation of cytolitic proteins. It is noteworthy

that Enders et al. demonstrated an increased baseline expression of

lysosomal marker proteins such as CD63 and CD107a on resting

CD3+CD8+T cells from HPS2 patients, but their elevated

expression levels did not further increase on surface despite

functional activation of the cells [30].

In 2003 Clark et al. [31] showed that AP-3 deficiency leads to a

diminished CTL-mediated cytotoxicity dependent on a defective

lytic granules movement along the microtubules to the microtu-

bule organizing center (MTOC). As a result, AP-3 deficient CTLs

from HSP2 patients showed enlarged lytic granules with an

abnormal cytoplasmic distribution on microscopy. Noteworthy, we

found a high number of Prf+ CTL in NLPHL from HPS2

patients, suggesting intracellular retention of this protein in tumor-

associated CTL.

In addition to the numerous tumour-infiltrating CTL, also NK

cells play an important role in the immune surveillance against

lymphomas. In fact, NK cells are usually seen as sentinel cells that

can interfere with lymphoma growth at the early stages of

development while the CTL might infiltrate the tumor at the later

times [41].

Another remarkable finding in HPS2 patients is represented by

the profound depletion of iNKT cells. This is in line with the

evidence that AP3-deficient mice have a reduced iNKT cell

population, suggesting a developmental defect possibly associated

with impaired intracellular trafficking of CD1d [42]. Alternatively,

the reduction of iNKT cells in HPS2 patients might be a

secondary phenomenon due to repetitive viral infections [43].

Among PID, a striking defect of iNKT cells is observed in X-

linked lymphoproliferative disease (XLP). Most XLP cases are

caused by germline mutations in the SH2D1A gene, which

encodes the adaptor molecule Signaling Lymphocytic Activation

Molecule (SLAM)-associated protein (SAP) [44]. Loss of SAP

expression in XLP patients and mice impairs NK and CD8+ T

cells cytotoxicity, T cell cytokine production, activation-induced

cell death, and iNKT cell development. Although XLP patients

typically develop EBV-associated non Hodgkin B cell lymphomas

[45], recent studies suggest that T cells restricted to non-classical

MHC Class-I molecules are important for immune surveillance of

hematological malignancies [46]. In particular, iNKT cells, that

are CD1d-restricted cells, can induce cell death of chronic

lymphocytic leukemia cells after stimulation with alphaGalCer

[47], and can trigger secondary anti-lymphoma response in
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murine models of lymphoma [48]. Significantly, CD1d is

expressed by neoplastic cells of HL and iNKT cells have been

detected in cell suspensions of HL clinical samples [46]. These

data indicate a potential contribution of iNKT cells to NLPHL

development.

In summary, this study reports (for the first time) the occurrence

of NLPHL in two siblings with HPS2. The set of abnormalities

observed in different immune cell compartments point toward

HPS2-associated NLPHL as an additional model to understand

the role of the immune surveillance in B-cell lymphomas. The

availability of mice with distinct mutations in the AP3B1 gene and

mimicking HPS2 will be instrumental in clarifying the role of the

AP-3 complex in abnormal lymphoid cell proliferation.
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