

Pharmacogenetic Testing to Identify Presence of the HLA-B*57:01 Biomarker for Abacavir Treatment

Leanne Camilleri, Francesca Wirth, Lilian M. Azzopardi

Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta email: leanne.camilleri.16@um.edu.mt

INTRODUCTION

Testing for the *HLA-B*57:01* biomarker is clinically significant to predict the risk of potentially life-threatening hypersensitivity reactions in patients to be treated with the antiretroviral drug abacavir.¹

Screening for HLA-B*57:01 is required prior to initiating abacavir

AIM

To review and compare genotyping methods for the identification of the *HLA-B*57:01* pharmacogenetic biomarker in relation to abacavir treatment.

therapy and alternative therapy should be prescribed in patients who

test positive for the biomarker.^{1,2}

METHOD

1. *HLA-B*57:01* genotyping methods were identified from the Clinical Pharmacogenetics Implementation Consortium guidelines supplementary information.¹

2. A literature search was performed to identify studies describing genotyping for *HLA-B*57:01* with respect to abacavir.

3. The genotyping methods identified were reviewed and compared according to twelve genotyping method characteristics.
 Table 1: Characteristics evaluated for each genotyping method

Sensitivity	Specificity		
Genomic DNA source	Controls		
Reproducibility	Resolution		
Time for analysis	Cost per test		
Concordance	Robustness		
Sample processing	Positive and Negative Predictive Value		

- Fourteen articles (2005-17) describing *HLA-B*57:01* genotyping were reviewed.
- Eight genotyping methods were identified: 7 molecular (Sequence-based typing (SBT), Sequence Specific Primer PCR (SSP-PCR), Sequence Specific Probes (SSOP), Allele-Specific PCR, Real-time PCR, Direct PCR, Reverse hybridisation strip assays) and 1 serological (Flow Cytometry).
- The 8 methods have high sensitivity (≥99%) and specificity (≥97%) and 100% concordance with reference methods. For all 8 methods single-sample genotyping is not possible.
- Four methods allow use of non-invasive genomic DNA sources, 3 methods have integrated controls, turnaround time ranges from 2 to 24 hours and estimated cost/test ranges from €1-35.

 Table 2: Comparison of the eight HLA-B*57:01 genotyping methods

Genotyping method	Integrated Controls	Genomic DNA source	Time (hours)	Estimated cost/test (€)
SBT	Νο	Blood	24	30
SSP-PCR	Νο	Blood /Buccal swab/ saliva	3	30
SSOP	Νο	Blood	5	35
Allele-Specific PCR	Νο	Blood	2-4	30
Real-Time PCR	Yes	Blood/Buccal swab/ Saliva	2-8	15
Direct PCR	Yes	Blood Buccal Swab	3	1
Strip Assay	Yes	Blood / Saliva	6	30
Flow Cytometry	Νο	Blood	24	25-35

The genotyping methods reviewed show high sensitivity, specificity and concordance. Possibility of non-invasive testing, availability of integrated controls and on-demand testing are limited. The review highlights the need for development of rapid point-of-care *HLA-B*57:01* genotyping methods to promote use of pharmacogenetic testing in practice to personalise abacavir therapy in the interest of patient safety.

REFERENCES

- 1. Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, Pirmohamed M, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Abacavir Dosing: 2014 update. Clin Pharmacol Ther. 2014;95(5):499-500.
- 2. Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy-recent progress and future developments. AAPS J. 2018;20(1):4.

Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta um.edu.mt/ms/pharmacy