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Abstract

A neural language model is a neural network that can be used to generate a sentence
by suggesting probable next words given a partially complete sentence (a prefix). A
recurrent neural network reads in the partial sentence and produces a hidden state vector
which represents information about which words can follow. If a likely word from those
suggested is selected and attached to the sentence prefix, another word after that can be
selected as well, and so on until a complete sentence is generated in an iterative word by
word fashion.

Rather than just generating random sentences, a neural language model can instead be
conditioned into generating descriptions for images by also providing visual information
apart from the sentence prefix. This visual information can be included into the language
model through different points of entry resulting in different neural architectures. We
identify four main architectures which we call init-inject, pre-inject, par-inject, and merge.

We analyse these four architectures and conclude that the best performing one is
init-inject, which is when the visual information is injected into the initial state of the
recurrent neural network. We confirm this using both automatic evaluation measures and
human annotation.

We then analyse how much influence the images have on each architecture. This is
done by measuring how different the output probabilities of a model are when a partial
sentence is combined with a completely different image from the one it is meant to be
combined with. We find that init-inject tends to quickly become less influenced by the
image as more words are generated. A different architecture called merge, which is when
the visual information is merged with the recurrent neural network’s hidden state vector
prior to output, loses visual influence much more slowly, suggesting that it would work
better for generating longer sentences.

We also observe that the merge architecture can have its recurrent neural network
pre-trained in a text-only language model (transfer learning) rather than be initialised
randomly as usual. This results in even better performance than the other architectures,
provided that the source language model is not too good at language modelling or it will
overspecialise and be less effective at image description generation.

Our work open up new avenues of research in neural architectures, explainable AI,
and transfer learning.
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1.1 Introduction

Image caption generation is the task of automatically generating a description of an image
using a computer. Text can be generated automatically using a kind of neural network
called a neural language model that learns how to string words together into sentences
after being trained on examples of well-written sentences. The problem is how to control
the meaning of what gets generated, such as how to make the generated text a description
of a specific image such that different images lead to different descriptions.

In order to do so, the neural language model needs to be influenced by visual infor-
mation somehow. The question is, where should the visual information go in a neural
language model? Existing image caption generators have included the visual information
into the language model in different ways. Our objective is to make a systematic analysis
of what these different ways are and their merits.

All the code used for the experiments in the thesis is available online1.

1See: https://github.com/mtanti/mtanti-phd
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1.2 Motivations for the grounding problem

The question of how to connect language to the world is called the grounding problem.
In this case, we are interested in grounding language in perceptual data in order to be
able to describe images. This is a fundamental AI challenge which has been addressed by
cognitive scientists (Harnad, 1990) and AI practitioners (Roy, 2005) alike.

Consider a system which predicts the next word in a half-finished sentence, such as
for predictive text. The number of word candidates that can follow a partial sentence like
“a man is . . . ” is extremely large. Suppose however that apart from the partial sentence
there is also an image which the sentence is supposed to be describing. In this case,
the number of possible candidate words to follow the partial sentence will be drastically
reduced since the image acts as a filter of which sentences are valid. This is shown in
Figure 1.1.

Grounding serves as a form of guidance or goal to a text generation system in order to
specify what it is that the system should describe or talk about. It also introduces several
AI challenges to the task. For example, the level of abstraction needed to understand the
image needs to be determined (is it a cluster of lines and colours, several individual people
together, or a crowd?). Likewise, any non-salient parts of the image need to be ignored
(do we need to describe the grass in the photo or is there more interesting information to
focus on?). It is important to address these challenges in order to be able to communicate
effectively to human beings.

There are several applications for visual grounding such as robots or chat bots that
can describe what they are seeing from a camera, systems for describing images to peo-
ple with impaired vision, summarising videos using short descriptions, providing extra
information (in the form of images) to text understanding systems about potentially am-
biguous sentences, and searching for images using text. Here are some specific fields in
AI that require grounding in vision:

• Visual question answering: generating answers for questions about images (Antol
et al., 2015; Fukui et al., 2016).

• Multimodal translation: generating translations of sentences that are accompanied
by an image (Specia et al., 2016; Grönroos et al., 2018).

Figure 1.1: An illustration showing how the inclusion of vision helps with language
tasks. Clipart image taken from https://openclipart.org/detail/298220/man-

walking
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• Grounded inference: classifying whether a sentence is true given a premise sentence
and a premise image (Vu et al., 2018) or just a premise image (Xie et al., 2019; Lai,
2018).

• Text-to-image generation: generating an image based on a textual description (Xu
et al., 2017; Mansimov et al., 2016)

We focus on image captioning in particular because it lends itself well to the analysis
of visual grounding. It requires only a single input (the image) which will make analysis
of the different possible ways to include the image into the neural network easier. With
multiple inputs there would be many more possible combinations of input locations which
would force us to only consider a subset.
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1.3 Research questions

Our work investigates the following questions with regards to how to ground language in
vision. First, the general questions:

1. Given that neural language models require a representation of what has already
been generated in order to work, should the visual information be encoded together
with the words as a single mixed representation or should the visual and linguistic
information be kept separate?

2. Given that neural language models generate sentences one word at a time, should
the visual information be introduced once at the beginning only or should it be
reintroduced for every word being generated?

More specific questions we will be trying to answer:

3. What are the merits of different neural architectures that include visual information
at different locations in the neural language model? Is there a best architecture?

4. Are there architectures that are influenced less by visual information than others?
Furthermore, are there architectures that become influenced less by visual informa-
tion as more words in the sentence are generated?

5. In an architecture that keeps its visual and linguistic parts separate, is it possible
to train the parts separately?

Our goal is not to reach a new state of the art image caption generator, but to analyse
the different possible architectures to condition a language model on visual information.
We also avoid using the now-commonplace attention mechanism which gives better results
but which limits the kind of architectures that can be used (attention mechanisms are
explained in Subsection 2.5.4). Our work here will set the foundation for further analysing
more complex caption generators.
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1.4 Roadmap

The remainder of this thesis is structured as follows. The next chapter will give an
explanation of terms and methods related to neural image caption generators, starting
from neural networks, then moving to neural language models, and finally image caption
generators. It also establishes four possible main image caption generator architectures
found in the literature which will be analysed in the remainder of the thesis.

The three chapters after that will be about three sets of experiments, each designed
to answer one of the above three specific research questions. These are as follows:

• Chapter 4 deals with evaluating the performance of each architecture using different
evaluation measures (research question 3).

• Chapter 5 deals with analysing the amount of visual influence on each architecture
(research question 4).

• Chapter 6 deals with evaluating the viability of separately training the visual and
linguistic parts of the architectures that can be trained in this way (research question
5).

Finally we give our conclusions and future work in the last chapter.
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1.5 Publications related to this thesis

We have already published preliminary work that was later improved for this thesis.

• The work in chapter 4 has been published in the International Conference on Natural
Language Generation (Tanti et al., 2017) and in the Natural Language Engineering
Journal (Tanti et al., 2018).

• The work in chapter 5 was published in the European Conference on Computer
Vision (Tanti et al., 2019b).

• Finally the work in chapter 6 was not yet published at the time of writing this thesis
but was put on Arxiv as a pre-print paper (Tanti et al., 2019a).
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Chapter 2

Background
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2.1 Introduction

In this chapter we give a general introduction to all the necessary background topics
needed to understand this thesis. We will go from the most general topic to the most
specific, highlighting important keywords using italic type.

We start from a general explanation of how neural networks work. This allows us to
establish the terminology and notation that will be used throughout the rest of the thesis.

This is followed by how neural networks can encode sentences. Here we explain that
recurrent neural networks encode sequences of words rather than generate them, which is
important to understand how one of the image caption generator architectures works.

The next section deals with how to predict the next word in an encoded partial sentence
in order to generate sentences using neural language models. This is to prepare the ground
for caption generators, as caption generators are not an indivisible entity but are a neural
language model with an image added to it. This section also explains that there are two
ways a neural language model can be used: a basic method and an efficient method. The
most commonly used method is the efficient method and is the one which we use in this
thesis but the other method is more powerful as will be discussed in the last section of
this chapter.

The last section deals with how the sentences being generated can be controlled into
being captions for images. This is where we give a review of the literature on caption
generators and is the main subject of the thesis.
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2.2 Artificial neural networks

Deep learning (Lecun et al., 2015) is a machine learning technique that reduces the prob-
lem of manual representation engineering as it can work directly on almost raw data. This
technique consists of using artificial neural networks with multiple hidden layers, where
each layer transforms a representation of the input into another representation until it be-
comes an output. Artificial neural networks are functions that take in a tensor of numeric
inputs and return another tensor of numeric outputs. They work using many neural units
which are defined as follows:

y = f(x ·w + b) (2.1)

where y is the scalar output of the neural unit, x is the inputs vector to the neural unit,
w is the weights vector, b is the bias scalar, f is the non-linear activation function, and · is
the dot product operator. Changing the weights and bias, collectively called parameters,
will change how the neural unit maps inputs to output.

Activation functions can be squashing functions such as sigmoid:

sig(x) =
1

1 + e−x
(2.2)

or hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x
(2.3)

or they can be unbounded functions such as the rectified linear unit:

ReLU(x) = max(x, 0) (2.4)

Computing multiple neural units for the same inputs leads to a vector of outputs. Such
a group of neural units is called a layer. Several layers can be used in series where the
output vector of one layer serves as input to another layer, each transforming the vector of
numbers into a different representation until the last layer makes the final transformation
that is the desired output. The last layer is called the output layer whilst the other layers
are called hidden layers. This is illustrated in Figure 2.1.

We can extend the previous definition of a neural unit into the definition of a layer,
specifically a fully connected feed-forward layer, as follows:

y = f(x⊗W + b) (2.5)

where y is the output vector of the layer, W is the weights matrix, x is the inputs vector
of the layer, b is the bias vector, f is the activation function, and ⊗ is the tensor product
operator.

If the output of the neural network is to be used to decide on the class of the input,
such as the type of object shown in an image or the topic of a document, then it is usually
required that a probability for each class (a probability distribution) is returned in order
to decide how likely the input is to belong to a particular class. This can be accomplished

10



Figure 2.1: An illustration of a neural network with a single hidden layer. The
first column is the input layer which takes in vector x of size 4. The second column
is the hidden layer which transforms x into vector h of size 2. The last column
is the output layer which transforms vector h into vector o of size 3. Squares are
inputs, circles are neural units, connected arrows are weights, and dangling arrows
are biases.

using a softmax function as an activation function in the output layer. Softmax is defined
as follows:

softmax(x)i =
exi∑
j e

xj
(2.6)

where x is a vector of logits (scores) for each class and softmax(x)i is the probability
of the ith class given by the softmax function. The result of the softmax is a vector of
probabilities that sum to 1, one for each class.

An interesting feature of neural networks is their expressiveness. It is possible to prove
that, given at least a single hidden layer with a sufficient number of neural units, a neural
network is a universal approximating function, that is, it can be assigned parameters
that make it approximate any particular function (Hornik et al., 1989). Furthermore, the
number of neural units in the hidden layer required to express a function is exponentially
larger than that of a neural network with two hidden layers (Eldan and Shamir, 2016). The
insight that adding more hidden layers makes neural networks more efficient at expressing
functions led to deeper and deeper neural networks with more and more layers, which
resulted in the field known as deep learning.

Whilst genetic algorithms and simulated annealing can be used to find the right pa-
rameters to make a neural network compute the desire function, the most common way to
learn the parameters is by using gradient descent optimisation. Gradient-based techniques
are expected to perform poorly on non-convex optimisation problems, such as neural net-
work parameter optimisation, but it turns out that even if the parameter updates of
gradient descent will lead to a local minimum, we can expect that most minima will be
similar to each other given a large neural network, so this is not a significant problem
(Choromanska et al., 2015). Gradients for a multi-layer neural network can be efficiently
computed using the backpropagation algorithm (Rumelhart et al., 1986).

Of course, the more expressive a model is, the less likely it is to compute something

11



meaningful to a person after training and the more likely it is to simply memorise the
training set (Zhang et al., 2016a), a problem known as overfitting. In order to reduce the
extent of overfitting, many regularisation techniques were developed (Goodfellow et al.,
2016, Chapter 7), the most straightforward of which is called early stopping. Early stop-
ping is a technique where after every parameter update, the neural network is evaluated
on a validation set, which is disjointed from the training set and the test set. As soon as
it stops improving on the validation set, training is stopped as this is evidence that the
neural network has started memorising the training set rather than learning a useful func-
tion. Another example of regularisation involves constraining the possible values of the
parameters of the neural network such as by weight decay (or L2 regularisation). Weight
decay encourages the neural network weights to be as small as possible by minimising the
sum of the squares of all the weights in the neural network. This reduces the extent to
which a neural unit can put too much importance on a single other neural unit in the
previous layer. Dropout (Srivastava et al., 2014) is a more complex form of regularisation
which approximates the effect of three different regularisation techniques:

• averaging together the outputs of separately trained neural networks (ensembling),

• all of which share many parameters together (parameter sharing),

• and all of which are trained on different subsets of the training set (bagging).

This approximation is achieved by simply ignoring a random subset of neural units in a
layer for each training item during training, forcing each neural unit to avoid relying on
any other single neural unit.

As has been stated already, with deep learning the manual engineering needed on
the input prior to being fed to the neural network is minimal. For example in text, the
engineering decisions that are taken regarding the input are usually things like whether
to process at the word level or the character level, the vocabulary size, and the maximum
sentence length. Processing text after these decisions have been taken is relatively straight
forward, as is elaborated upon in the next section.
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2.3 Deep learning approaches to encoding sentences

To encode a sentence means to transform it into an abstracted representation that is
easier to work with, which in the case of deep learning usually means transforming it into
a vector or matrix. Traditionally sentences would be encoded using bag of words models in
order to represent their meaning using vectors consisting of the number of times they use
certain words or n-grams. With neural networks, there is no need for manually designing
algorithms to encode sentences as this can be done automatically.

2.3.1 Word embeddings

Unless the sentence is viewed as a string of characters instead of words, the first step
in encoding a sentence is usually to encode the individual words in a sentence, which in
turn requires that a finite vocabulary of useful words be selected. The vocabulary usually
consists of the most frequent n words in the training set plus some pseudo-words that are
added to the vocabulary for convenience. For example, any word in the input text that is
not in the vocabulary is replaced with a pseudo-word called an unknown token. Typically,
another pseudo-word is introduced in the vocabulary called a pad token which is used at
the beginning or end of each sentence in the text in order to make all the sentences equal
in length (equal to a determined maximum length).

The words in the vocabulary now need to be replaced with numerical vectors since
neural networks can only work with numbers. These vectors, called word embeddings,
should encode some representation of meaning about each word such that words that are
used similarly in the training set will have similar vectors. The first step to doing this is
to represent every word with an index which is its position in the vocabulary list. The
first word in the vocabulary is replaced with the number 0, the second with 1, and so on,
resulting in a regularly shaped numerical matrix as illustrated in Figure 2.2.

Next, the neural network is fitted with an embedding matrix which is a matrix where
each row is the vector representing a different word in the vocabulary. Each word index
is replaced with its corresponding row vector in the matrix, thus replacing the words
with vectors. This is illustrated in Figure 2.3. The numbers in the embedding matrix
are optimised freely with the rest of the neural network parameters in order to find the
optimal word embeddings according to the task being solved by the neural network.

Word embeddings are also useful in their own right. Once an embedding matrix has
been trained, it is possible to transfer it to another neural network as is without needing
to train it further, transferring the captured meaning along with it. This is so useful that
surrogate tasks have been created just to be able to extract a useful embedding matrix
that can be used for different tasks. An example of these off-the-shelf embedding matrices
is word2vec (Mikolov et al., 2013) where the surrogate task is to predict the words that
are adjacent to a particular word in a sentence. Another example is GloVe (Pennington
et al., 2014) where the surrogate task is to make the dot-product of any two word vectors
approximately equal to the weighted logarithm of the number of times that one of the
words occurs in the context of the other in a corpus.
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Figure 2.2: How text is prepared before being used in a neural network. First, a
vocabulary is extracted from the raw text, in this case only words that occur more
than once make it to the vocabulary. The text is then processed to include only
vocabulary words with any other words replaced by the unknown token. Sentences
are also padded with pad tokens at the end so that all sentences are the same length.
Finally, words are replaced with their indices in the vocabulary in order to produce
a numerical matrix.

Figure 2.3: An illustration showing how words in a sentence are converted into
vectors using an embedding matrix.
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Figure 2.4: An illustration showing the naive way to input a sentence into a neural
network by concatenating the embedded words together into one vector and passing
it to the next layer. Note that the embedding matrices for each word position need
not be equal and can be optimised separately.

2.3.2 Non-recurrent methods to sentence encoding

Inputting sentences is slightly more challenging than inputting words. The neural net-
works shown up to now can only accept fixed length vectors as inputs whilst sentences
have a variable length.

The naive solution is to decide on a maximum sentence length and then force all
sentences to be that length. If a sentence is shorter than the maximum then pad words
are used to fill in missing words. If the sentence is longer than the maximum then only a
part of it can be used. After all words have been embedded they are then concatenated
into a single vector. The embedding matrix can either be shared among all word positions
in the sentence or a different one can be used for each position. An example of this is
illustrated in Figure 2.4. Not only is this wasteful, since it would need an excessive amount
of parameters, the maximum sentence length is likely to be much larger than necessary
most of the time, making a lot of parameters unnecessary most of the time.

One easy way to get around the large number of parameters is to simply average all the
word vectors of the sentence together, creating a sentence vector that is the centroid of the
words. This is called a deep averaging network. Its main flaw is that it ignores the order
of the words, since the averaging operation is commutative, but there are experiments
which show that it can work better than some more sophisticated ways of representing
sentences (Iyyer et al., 2015).

Another way to encode sentences is by using one-dimensional convolutional neural
networks (Collobert et al., 2011). A convolutional neural network is more typically as-
sociated with encoding images and would need to be at least two-dimensional in order
to process the rectangular shape of the image (more on this in Subsection 2.5.2). When
applied to a sentence, there is only one dimension to process. A sentence is encoded by
passing a sliding window over the word vectors, for example every three consecutive words,
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Figure 2.5: An illustration showing the convolutional and pooling operations
of a one-dimensional convolutional neural network encoding a sentence. The filter
works on three-word windows producing a feature vector of size two, and pooling is
max-pooling. Each of the four displayed layers have the same parameters.

concatenating these word vectors together and passing them through a small fully con-
nected layer, called a filter. Every window of words is passed through the same filter and
transformed in the same way into separate feature vectors. Once the sentence is mapped
into a collection of feature vectors, a pooling operation is performed where the collection
of vectors is squashed into a single vector, usually by keeping only the maximum value of
each corresponding element in the vectors. This pooled vector is the sentence encoding.
The pooling allows the sentence to be long without requiring huge vector representations.
This process is illustrated in Figure 2.5. Several filters can be used in sequence in order to
extract higher level information from the previous feature vectors, creating a hierarchical
encoding. Also, several filters can be used in parallel in order to extract different types
of information and the resulting encodings can then be concatenated into a single vector
encoding.

2.3.3 Recurrent neural networks

When encoding a variable length sentence, it is important to be able to transform a
sentence of any length into a fixed vector size as this is what neural networks typically
operate on. One-dimensional convolutional neural networks do this by using the pooling
operator which squashes the many fixed-size filter vectors into a single fixed-size vector;
the pooling operator however is not a trainable operator and might not be the optimal
way to mix the vectors together given a particular task and dataset. Recurrent neural
networks (RNN) do not have this problem.

An RNN is a neural network layer that maintains a memory, called a hidden state
vector or simply state. This memory is a fixed vector that can be used to remember past
inputs. In other words, the contents of this vector can be treated as a representation of a
sequence of inputs. As a neural network layer, all the RNN does is take in two inputs: the
new input to remember, such as a word in a sentence, and the previous state. Its output
would then be the new state. Given that the state is produced from the new input and
the previous state, this means that the RNN can be chained so that the new state is used
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Figure 2.6: An illustration showing what a simple RNN is made up of and how
it processes a sequence of inputs (a sentence in this case). Given a state vector s
and an input vector x, the RNN layer will combine them to produce a new state
vector s′ that can in turn be fed back to the RNN layer with another input. A
default initial state is used for the first input, such as an all-zeros vector. Each state
contains information describing all the inputs visited before that point (a prefix of
the sentence) with the final state representing the full sentence.

as an input to itself. This is illustrated in Figure 2.6. Of course the chaining implies that
there has to be an initial state that does not come from the RNN. This initial state can
be a constant, such as an all-zeros vector, or it can come from some other neural network
layer. What is important is that it is the same layer with the same parameters that is used
for every word and so the sentence can be very long whilst the neural network remains
the same size. After each word, the state represents information about all the words seen
up to that point, which form a prefix of the sentence. The final state will represent the
full sentence. This type of RNN is called a simple recurrent neural network, also known
as an Elman network (Elman, 1990).

Formally, a simple RNN is defined as follows:

St = f((St−1 ++Xt)⊗W + b) (2.7)

where S is a matrix of state vectors, X is a matrix of input vectors, St is the new state
vector after t inputs, St−1 is the previous state vector, S0 is the initial state vector, Xt

is the new input vector, W is the weight matrix, b is the bias vector, f is the activation
function, ++ is the vector concatenation operator, and ⊗ is the tensor product operator.

The parameters of an RNN can be trained by ‘unrolling’ it, that is, replicating the
layer that processes one input for as many times as the length of the longest sequence
in the training set. The replicated layers would be no different than those of the fully
connected feed-forward neural networks described before. In order to be able to roll the
replicated layers back into one, the parameters of the layers need to be kept equal. This
is done using the backpropagation through time algorithm (Werbos, 1990), which is an
extension of the backpropagation algorithm, to efficiently handle this case.

An interesting feature about RNNs is that they are equivalent to a universal Turing
machine, in the sense that they are expressive enough to simulate any computer program
(Siegelmann and Sontag, 1995). This fact should not distract from the reality that learning
the parameters to give complex behaviour to an RNN is challenging. Simple RNNs
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suffer from the vanishing and exploding gradient problem (Hochreiter et al., 2000) whose
main consequence is that the neural network is only able to learn short sequences. As
longer and longer sequences are used, the gradient of the final state with respect to the
early inputs in the sequence can grow or shrink exponentially, leading to exploding or
vanishing gradients during training which will either cause numerical overflows or early
inputs getting completely ignored during training. These problems can be mitigated by
using ReLU as an activation function, clipping the gradients so that they are never greater
than a certain value (Pascanu et al., 2013), or by initialising the weights matrix of the
state to the identity matrix (Le et al., 2015).

Many practitioners, including us, opt to instead use a more sophisticated type of
RNN such as the long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
or the gated recurrent unit (GRU) (Chung et al., 2014). These RNNs solve the problem of
vanishing and exploding gradients by changing the equation to produce the next state to
one which more easily propagates the gradient across long sequences. The main template
for the equation is as follows:

St = tanh((St−1 ++Xt)⊗W + b) + St−1 (2.8)

Both the LSTM and the GRU implement the above template. They also include gating
functions, that is, additional neural layers that are used to decide whether an activation
value in some other layer, the gated layer, should be allowed through or be replaced with
a zero. This is done by multiplying the activation values of the gated layer by a fraction
between 0 and 1, which in turn is produced by the gate layer by using sig as an activation
function.

The LSTM uses two hidden state vectors called the hidden state and the cell state.
Usually it is the hidden state that is treated as representing the sequence. The LSTM is
defined as follows:

Gf
t = sig((Ht−1 ++Xt)⊗W f + bf ) (2.9)

Gi
t = sig((Ht−1 ++Xt)⊗W i + bi) (2.10)

Go
t = sig((Ht−1 ++Xt)⊗W o + bo) (2.11)

Ct = Gi
t � tanh((Ht−1 ++Xt)⊗W c + bc) +Gf

t �Ct−1 (2.12)

Ht = Go
t � tanh(Ct) (2.13)

where H is a matrix of hidden state vectors, C is a matrix of cell state vectors, X is a
matrix of input vectors, Gα is a matrix of gate vectors, Ht is the hidden state vector after
t inputs, H0 is the initial hidden state vector, Ct is the cell state vector after t inputs, C0

is the initial cell state vector, Gα
t is a gate vector after t inputs, Wα is a weights matrix,

bα is a bias vector, � is the element-wise vector multiplication operator, ++ is the vector
concatenation operator, and ⊗ is the tensor multiplication operator. The template in
Equation 2.8 is used on Ct. It is gated at the two terms of the addition: Gf is called the
forget gate and gates parts of the previous cell state vector in order to choose whether a
piece of state information should be propagated forward, and Gi is called the input gate
and gates parts of the new vector to add to the previous cell state vector. These gates are
not based on the cell state directly (although there is a version of the LSTM that does
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this called a cell peep-hole LSTM (Gers et al., 2002)) but only on the current input Xt

and the hidden state Ht. Ht is a second state that is derived from the cell state and is
just the tanh of the cell state gated by Go

t, called the output gate.
A simplified version of the LSTM is the GRU, which uses only one state vector. It is

defined as follows:

Gf
t = sig((St−1 ++Xt)⊗W f + bf ) (2.14)

Gi
t = 1−Gf

t (2.15)

Gr
t = sig((St−1 ++Xt)⊗W r + br) (2.16)

St = Gi
t � tanh(((St−1 �Gr

t)++Xt)⊗W s + bs) +Gf
t � St−1 (2.17)

In this case, the input gate is just the logical inverse of the forget gate. Gr
t is called a

reset gate and is used to turn parts of the previous state to zero when computing the new
information to be added to the state. There is no output gate.

Other types of RNN include the recurrent highway network (Zilly et al., 2017) which
is a simple RNN but with multiple layers used to compute the next state, the tree LSTM
(Zhang et al., 2016b) which is an LSTM that takes in multiple input vectors rather than
one in order to encode a tree of inputs, and neural Turing machines (Graves et al., 2016)
which keep several vectors as states and which choose which ones to update and read
at every time step. It is worth mentioning that as of recently there is an alternative to
RNNs called transformer networks (Vaswani et al., 2017; Devlin et al., 2018) which encode
text using only attention mechanisms (to be discussed in Subsection 2.5.4), but these are
beyond the scope of this work as we focus on RNNs.

The next section will discuss how to use RNNs in order to implement neural language
models which can generate text.
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2.4 Neural language models

The neural networks described thus far are able to accept a sentence as input. This section
discusses how neural networks can be used to generate novel natural language sentences.

2.4.1 Language models

A language model is a function that takes in a sentence and returns the probability that
the sentence belongs to a language that is being modelled by the language model. The
language model finds the following probability:

P (w1...n) = P (w1, w2, . . . , wn) (2.18)

where w1...n is a sentence with n words and wi is the ith word in the sentence.
By using the chain rule, this probability can be broken down into the following product

of probabilities:

P (w1...n) = P (w1)× P (w2|w1)× P (w3|w1, w2)× · · · × P (wn|w1, . . . , wn−1) (2.19)

=
n∏

i=1

P (wi|w1, . . . , wi−1) (2.20)

where P (wi|w1, . . . , wi−1) is the probability of using word wi after the sentence prefix
w1 . . . wi−1. For example, given the sentence prefix ‘a man is walking his . . . ’, what is the
probability that the next word in that prefix is ‘dog’?

Henceforth we will focus on P (wi|w1 . . . wi−1) rather than P (w1...n−1). Given a prefix
w1 . . . wi−1, a language model might predict the probability of wi for every word in the
vocabulary at once. This is usually accomplished using a softmax function.

Softmax is useful in language models because it first makes all the scores positive by
taking their exponent before normalising them. Since the exponent function never equals
zero, softmax will not give a probability of zero to any word, which means that there is
no need for smoothing to handle unlikely word sequences.

A language model is just a sequence classifier that probabilistically classifies each word
in the vocabulary using a prefix of a sentence as input. It might be confusing to think of
language models as classifiers when there are multiple possible next words given the same
prefix (a classifier usually picks one class only). This is a classification problem where
what is important is not deciding a correct class but the probabilities associated with the
classes. The probability given to a word should be proportional to the number of times
the word was found to follow the prefix in the training set.

2.4.2 Text generation

Assuming that a function that computes P (wi|w1 . . . wi−1) is available, a sentence can
be generated over a vocabulary of words by repeatedly selecting a likely word to follow
a given prefix and appending the selected word to the end of the prefix until the prefix
becomes a complete sentence. This is illustrated in Figure 2.7.
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Figure 2.7: An illustration showing how a language model can be used to generate
a sentence over a vocabulary of words. The prefix is extended with another word,
where the word is chosen based on its probability according to the language model.
Each word is chosen randomly using the given probabilities (which might not be
the most likely word). After multiplying all the probabilities of the words in the
generated prefix together, the probability of the sentence is found (in this case the
probability is 0.04).

Another two pseudo-words (apart from the unknown token and pad token) are added
to the vocabulary in order to be able to begin and end the text generation process. The
start token is artificially added to the beginning of every sentence. Given that every
sentence starts with this token, the probability of the start token is 1 and thus does not
need to be calculated. On the other hand, the end token is artificially added to the end of
every sentence and so as soon as the end token is selected, the sentence is fully generated.
These two pseudo-words can be removed after the sentence is generated.

If the aim of the generation is to sample a sentence based on its probability (the
probability of a particular sentence being generated is equal to the probability of the
sentence according to the language model), then the next word to follow a prefix can be
selected using roulette wheel selection. This is when a word is randomly chosen with a
probability equal to that given by the language model. This is useful for generating likely
sentences at random.

On the other hand, it is sometimes desirable to generate the most likely sentence
according to the language model rather than a random sentence. This is essentially a
search problem where the task is to find a path in a probability tree from the root to
a leaf such that the probability of the path is maximised. This probability tree has the
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root node being the start token and the leaves are the end token. The probability of
any node in the tree is calculated by the language model given the node’s ancestors (the
sentence prefix). Given a reasonably sized vocabulary, which can be in the hundreds of
thousands, the arity of the probability tree is too large to be solved using exact algorithms
in a practical amount of time and memory; so instead, approximation algorithms are used
which find a highly likely path that is close to being the most likely.

The simplest and fastest method is greedy search, where the most likely next word is
always chosen and no other possible path is explored. A better approach is to extend this
algorithm into a beam search, which is illustrated in Figure 2.8. Greedy search is a beam
search with a beam width of one, because only one path is explored. A beam width of two
would explore two possible paths as follows:

Given the start token as a prefix, the most likely two words are selected, which leads
to two different prefixes that are added to a list called a beam. Each prefix in the beam is
fed to the language model in order to see which words can follow each of the two prefixes.
The probability of each word is multiplied by the probability of the prefix in order to see
what the probability of the new prefix will be after appending each word. The two most
likely new prefixes are chosen and added to a new beam. This is repeated until the most
likely prefix in the beam has an end token, in which case that prefix is returned as the
most likely sentence. The greater the beam width, the more likely that the generated
sentence is the most probable sentence, but also the slower the process and the more
memory is needed.

2.4.3 Non-recurrent methods to language modelling

In Subsection 2.3.2 we described a naive way to encode a sentence by concatenating all the
embedded words in the sentence and passing a single giant vector into a neural network.
This idea is partly used in one of the earliest neural language models proposed (Bengio
et al., 2003). The trick is to only use a small number of words, such as five, instead of a
whole sentence. In order to predict the probability of the next word given a prefix, the
language model makes a Markov assumption that only the previous five words are needed
to predict the next word, similar to how n-gram language models work. This means that
the neural network only needs to handle a truncated prefix of embedded word vectors
concatenated together. A softmax layer at the output would then predict the probability
of each word in the vocabulary being the next word after the truncated prefix.

This idea was further elaborated with log-bilinear models (Mnih and Hinton, 2007)
which reduce the neural network to a simple linear layer (with no activation function) that
transforms the concatenated word vectors into a query vector in the embedding space.
The probability of a particular word matching the query vector, and hence being the next
word in the truncated prefix, is determined by the dot product of the candidate word’s
vector and the query vector, called a score. Softmax is then applied to the scores in order
to normalise them into probabilities.
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Figure 2.8: A partial illustration showing how beam search works. The beam
width is 2. After each step, the two most probable candidate prefixes are selected
to move to a new beam. When the most probable prefix in the beam ends with the
end token, that prefix is returned as the most probable sentence.
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2.4.4 Recurrent neural language modelling

The language models described in the previous subsection dealt with truncated prefixes
only, requiring many more parameters added for every extra word the prefix is made
to include. Recurrent neural networks can help with this problem as RNNs can encode
arbitrary length prefixes using the same number of parameters.

Basic language modelling

An RNN language model uses an RNN in order to process a sequence of embedded word
vectors and then pass the final state to a layer with a softmax activation function. The
layer takes the encoded prefix and classifies the next word. This is illustrated in Figure 2.9.

The way this neural network is trained is by taking a corpus of text and breaking down
each sentence into all possible prefixes together with the next word after each prefix. The
neural network is then trained to predict the next word of all the prefixes by nudging the
probability of the correct next word a little higher. Given that the softmax forces the
sum of the probabilities to be equal to 1, this implies that the other words get a slight
reduction in their probability. Nonetheless, by doing this repeatedly, the probabilities of
words that are not found to follow the prefix get reduced to be almost zero whilst the
rest of the words get a probability that is proportional to the number of times they were
found to follow the prefix.

The basic way to make use of this model is to format the dataset as illustrated in
Figure 2.10. Separating each prefix as an independent training item makes training very
slow and memory wasteful due to all the padding that would be needed.

Efficient language modelling

A more efficient alternative is to use the full sentence as an input and make a prediction
after every word using the corresponding state, thus being able to optimise for several
prefixes at once. This is shown in Figure 2.11.

The dataset can now be organised in the form shown in Figure 2.12. Note how the
target in each row is now a sequence of words rather than a single word. This is basically

Figure 2.9: An illustration showing how an RNN language model processes a
prefix of words to produce a probability for each word in the vocabulary.
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Figure 2.10: An illustration showing how the dataset should be organised for a
language model architecture like in Figure 2.9. Note that only two sentences are
shown above.

Figure 2.11: An illustration showing a more efficient way to train an RNN lan-
guage model by passing in a whole sentence as input instead of a prefix and then
using each state to predict the next word at that point. The probabilities after each
prefix are then optimised. Note that the softmax layers are the same layer replicated
for each state.
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Figure 2.12: An illustration showing how the dataset should be organised for a
language model architecture like in Figure 2.11.

the same sentence as in the prefix but instead of putting a start token at the beginning
there is an end token at the end.

This method is much more efficient both in terms of speed and space. It also seems
to be the most common way to train a language model and is the method we use in our
experiments. During generation at test time, it is not possible to predict all the words of
the sentence at once since the input prefix is not provided and needs to be constructed one
word at a time. Therefore, at every time step during generation, the model will re-predict
all the words that were already generated and these will need to be ignored as only the
last predicted word will be useful. This word will then be added to the prefix and, again,
only the last predicted word will be used.

As will be seen later, there are certain things that can only be done using the basic
language modelling method. We will discuss these things in Section 2.5.

Training the language model

The type of language model training where a ground truth prefix is provided at training
time is called teacher forcing (Williams and Zipser, 1989). The problem with this is that
after training, the neural network is expected to generate a sentence from scratch without
any guidance from a training set. If an incorrect word is selected at some point in the
sentence generation process, the erroneous word is added to the prefix which might throw
off all subsequent word probabilities, resulting in compounded errors.

Scheduled sampling (Bengio et al., 2015) attempts to mitigate this problem by in-
corporating prefixes where some of the words were replaced with what would have been
selected had the neural network been used as is to generate. Professor forcing (Lamb
et al., 2016) takes this approach further by generating some sentences in the middle of
training, reading the states that result after inputting the ground truth sentences and the
generated sentences and using generative adversarial training (Goodfellow et al., 2014) to
make the distribution of the two categories of states indistinguishable, making the RNNs
learn to avoid veering off too much when an inconsistent word is introduced to the prefix.

Other information

There is a misconception that RNNs are sequence generators rather than encoders (Tanti
et al., 2017). The role of RNNs in text generators is to encode prefixes of text in order
to know what word should be predicted next. The prediction is done by the softmax
layer and the generation is done by the whole neural network as part of the beam search
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algorithm. In the next section we will see that there are ways to condition RNN language
models into providing descriptions for images by feeding visual information to the softmax
layer directly, leaving the RNN unaware of what image is being described. This would
not be possible if the generation was driven by the RNN.

Finally, there is the question of whether the way an RNN encodes a sentence prefix is
sensible. The RNN treats the prefix as a linear structure rather than a hierarchical one
which is based on syntactic or dependency parse trees. Frank and Bod (2011) describe
an experiment in which they find that linear models predict human reading time of text
more accurately than hierarchical models, which suggests that humans rely more on linear
processes to predict the next word being read than hierarchical processes. This is evidence
that linear models like RNNs are linguistically valid in the context of predicting the next
word.

The next section will explain how to take these language models, which are ‘blind’, and
adapt them into image caption generators by providing them with a visual input.
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2.5 Neural image caption generation

In the previous section we have discussed how neural networks can be used to generate
sentences, but the text that would be generated is unconditioned, that is, it does not
have a way to specify ‘what’ to generate. It would be more useful to be able to enforce
a particular meaning in the generated sentence, that is, to control what the generated
sentence is supposed to say by supplying some extra input. This is called ‘conditioning
the language model’ and the idea is to assign different probabilities to the same sentence
given different desired meanings.

Some examples of conditioned language models are

• machine translation where the generated target sentence needs to have the same
meaning as the given source sentence (Bahdanau et al., 2014),

• abstractive summarisation where the generated target text needs to be shorter than
the source text whilst still retaining as much information as possible (Nallapati
et al., 2016),

• question answering systems where the generated sentence is an answer to a given
question about a given body of data (Sukhbaatar et al., 2015).

In this work we are interested in a particular language model conditioning known as
image caption generation (Bernardi et al., 2016; Hossain et al., 2019) where the input
conditioning the language model is an image and the desired text is a description of the
high-level content of the image.

2.5.1 Automatic caption generation

Although we refer to the task as image caption generation, technically the captions we
typically encounter in print and social media are text that complements an image with
extra information that is not available from the image itself, such as what a speaker is
saying or what is the significance of the scene in the photo. These sort of descriptions are
beyond the scope of this work. We instead focus on what Hodosh et al. (2013) refer to as
concrete and conceptual image descriptions. Whereas abstract descriptions include things
such as the mood being conveyed by the image (a romantic setting or a depressing scene),
concrete descriptions are only limited to the entities in the image together with their
attributes, relationships, and events they participate in. Whereas perceptual descriptions
mention things like predominant colour or shapes, conceptual descriptions focus on more
human-friendly concepts which is useful in tasks such as to aid visually-impaired people or
to provide searchable text related to the image. We further focus on generic descriptions
where no proper names of people or places are used.

Being able to automatically generate descriptions of images requires interaction be-
tween computer vision, the extraction of high level information from visual media, and
natural language generation, the conversion of a non-linguistic representation into hu-
man readable text. Some early caption generation systems bridged these two fields by
using sentence templates with blanks in them which are to be filled with words that are
extracted from the image using object and attribute detectors (Kulkarni et al., 2011;
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Mitchell et al., 2012; Elliott and Keller, 2013). Other early systems would instead use a
database of known image-description pairs. Given an image to be described, the system
would then search the database for the most similar image in order to use its description
(Ordonez et al., 2011; Gupta et al., 2012; Mason and Charniak, 2014). Parts of several
descriptions can be stitched together in order to create some variety (Kuznetsova et al.,
2014). A variation on this approach is to learn a multimodal space using neural networks.
A multimodal space is a vector representation that can represent both images and sen-
tences such that the more similar in content the image or sentence is, the more similar
the vectors will be (according to some distance measure). The system would then convert
an image into a vector and look for the most similar vector of a sentence or convert a
sentence into a vector and look for the most similar vector of an image (Socher et al.,
2014).

Both template-based and retrieval-based methods, although intuitive, are not able to
give novel descriptions as they are limited to the pre-programmed templates or database
of existing captions. The third category of caption generators would be able to generate
novel descriptions. This consists of a neural language model that is conditioned on an
image. Even so, Devlin et al. (2015) report that out of all the captions generated by their
conditioned language model, only about 33% were unique whereas their retrieval-based
method returned captions where about 37% of them were unique. On the other hand,
in our experiments, over 80% of captions were unique so it is possible to obtain novel
captions, even if maybe somewhat stereotypical.

Typically, conditioned language models use image features extracted from a hidden
layer of another neural network that was pre-trained to perform object recognition. This
vector of activation values is then supplied as an input to the neural language model which
will condition the generated sentence. In this work we focus on this category of caption
generators and thus will go into more detail on it below.

2.5.2 Convolutional neural networks for images

An image is a tensor of pixel values where each value indicates a spot of colour. Grey
scale images use a two-dimensional tensor (the width and height of the image) with each
value indicating the brightness of the grey. On the other hand, colour images indicate
colour by mixing different intensities of red, green, and blue and thus require a three
dimensional tensor where the extra dimension stores the three colour channel values1.
In general we consider an image to be a rectangular array of vectors where each vector
contains the channels of each pixel (can be one channel for grey scale, three channels for
reg-green-blue pixels, and so on).

Unlike sentences, images can be resized so that all the images in the training set
have the same tensor shape meaning there is no need to pad an image in the same way
that a sentence needs to be padded. Furthermore, unlike words, pixels are possible to
work with directly without needing to embed them. This is because the values in the
pixels represent an intensity of a colour rather than an arbitrary position in a vocabulary.
Instead of embedding, the pixels are preprocessed by centering, that is, their values are

1In reality there are several different colour models available to indicate colour in an image other than
the red-green-blue method. These include hue-saturation-value and the CIE 1931 XYZ color space.

29



Figure 2.13: An illustration showing a convolutional neural network being used
on an image. A convolutional layer performs a process where a sliding window
called a receptive field (the three-by-three grey grid on the left) is moved along the
image pixels, where pixels are vectors of channels, and the pixels in the window are
passed through a filter to produce a single vector on a feature map. Each vector in
the feature map represents a patch of the image. The feature map is then passed
through another convolutional layer to produce another feature map (as if it were
another image) until finally the feature map is flattened into a vector called a feature
vector which is then passed through a normal fully connected neural network.

altered such that the mean pixel value in all images in the training set is zero (which is
done by subtracting the mean pixel value from all pixels in all images).

Just like encoding sentences, naively encoding an image using a normal fully connected
layer that takes each pixel in a reasonably sized image as input has the same problem
as that described in Subsection 2.3.2: it has far too many parameters. Instead, a two-
dimensional convolutional neural network (CNN) is used in order to be able to process
an image with a minor amount of parameters. The 1D CNN has already been discussed
in Subsection 2.3.2. A 2D CNN uses a rectangular sliding window called a receptive field
that goes over a patch of pixels (vectors) in the image and uses a small fully connected
layer called a filter to transform the patch of pixel values into a single vector. The vectors
derived from all patches that were processed in the image are organised into a rectangular
shape called a feature map such that vectors in the map come from correspondingly
positioned patches in the image. The feature map is considered the activation values of
a hidden layer. This map is then convolved again into another feature map and so on for
each hidden layer. At the end, the last feature map is flattened into a single dimensional
vector which can then be fed to a normal fully connected neural network layer in order
to do something with the image representation, such as recognise the object shown in the
image. This process is illustrated in Figure 2.13.

Feature maps can sometimes be considered a higher level representation of the image.
This representation can be informative enough to be a useful for use in other tasks such
as caption generation, similar to how word embeddings can be transferred to other tasks.
Unfortunately, feature maps can be very large tensors, so an alternative is to use the
activations of the fully connected layers instead which provide a compressed fixed-size
vector that represents the image. One important advantage of representing images with
feature maps rather than feature vectors is that feature maps preserve the locality of the
features; that is, you can trace a feature on a feature map back to a region of pixels in the
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image, something which cannot be done with feature vectors. This makes them useful to
process different regions of the image differently (which allows for more advanced image
captioning techniques like attention, which will be discussed later).

CNNs are not typically trained from scratch for generating image representations
that are optimised for caption generation. More commonly, the image representations
are either extracted as is from a pre-trained CNN that was optimised to perform ob-
ject recognition or the pre-trained CNN is further fine-tuned with more training on the
caption generation task. This is because object recognition datasets such as ImageNet
(Russakovsky et al., 2015) contain millions of images to train on whilst caption generation
datasets only contain a few hundreds of thousands of images, which is not enough to learn
a generic image representation. The next subsection will discuss how to actually use the
image representation for caption generation.

Well-known CNNs include LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al.,
2012), VGGNet (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and
ResNet (He et al., 2016).

2.5.3 Combining convolutional neural networks with neural lan-
guage models

The types of caption generators we are interested in are the ones which take an image
that has been converted into a feature representation and is then somehow fed into an
RNN-based neural language model. A survey of the literature, which will be elaborated
upon in Subsection 2.5.5, reveals that there are four broad categories for how this is done.
Sometimes more than one method is used at once. In this work, these categories are called
init-inject, pre-inject, par-inject, and merge. They are illustrated in Figure 2.14.

• Init-inject: Init-inject is when the RNN’s initial hidden state vector is set to be the
image vector (or some vector derived from the image vector). It requires the image
vector to have the same size as the RNN hidden state vector.

• Pre-inject: Pre-inject is when the first input to the RNN is the image vector (or
some vector derived from the image vector). The word vectors of the description
prefix come later. The image vector is thus treated as a first word in the prefix and
it requires the image vector to have the same size as the word vectors.

• Par-inject: Par-inject is when the image vector (or some vector derived from the
image vector) serves as input to the RNN in parallel with the word vectors of the
description prefix, such that the word vectors are combined with the image vector
into a single input before being passed to the RNN. The image vector does not need
to be included with every word, although it usually is, and can instead be included
with the first word only (this is not pre-inject as the image is not injected on a
separate time step).

• Merge: Merge is when the RNN is not exposed to the image vector (or some vector
derived from the image vector) at any point. Instead, the image is introduced into
the language model after the prefix has been encoded by the RNN.
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(a) The init-inject architecture.

(b) The pre-inject architecture.

(c) The par-inject architecture.

(d) The merge architecture.

Figure 2.14: The four main ways to connect an image representation to a
neural language model in caption generation. Clipart image taken from https:

//openclipart.org/detail/298220/man-walking.
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It is possible to think about a fifth architecture called post-inject. This is when the
image vector is injected as the last word in every prefix. Whilst it is possible to do so,
it would also require that the language model be trained using the basic language model
method described in Subsection 2.4.4. This type of architecture is never mentioned in the
literature and so we will ignore it.

We make a broad distinction between the inject architectures and the merge architec-
ture which is that the inject architectures all inject the image information into the RNN’s
state in some way or another. This forces the RNN to accommodate two types of informa-
tion in the state: the prefix of the description and the image. The merge architecture on
the other hand leaves this separate visual information outside of the RNN and thus leaves
the RNN part to act as a normal text-only language model which encodes the prefix.

Another important difference between architectures is that par-inject and merge both
require the image vector to be replicated at every time step in the description whilst init-
inject and pre-inject only allow the image vector to be inserted once at the start. This
means that it is possible to use a different image representation at every time step for
par-inject and merge such that the visual information evolves over time. An example of
using different image representations at every time step is in attention mechanisms.

2.5.4 Attention mechanisms

Having a dynamic image representation which adapts according to what word needs to be
generated next, referred to as attention, allowed caption generators to reach performance
levels that would have probably been unattainable otherwise. Rather than having a
bottleneck due to requiring a single vector to contain all the information needed to describe
the whole image, attention mechanisms allow the image vector to only encode information
that is necessary for the next word only. This means that the image vector can be smaller
and better able to capture fine-grained information.

Attention in neural networks was first used in machine translation (Bahdanau et al.,
2014). Early neural machine translation models required that the full source sentence
be first represented as a single vector that is used to inform a language model on which
words to use throughout the whole target sentence generation process (Sutskever et al.,
2014). This requires the source sentence vector to encode enough information to be able
to generate every word in the target sentence correctly, which becomes harder to do as
the sentences become longer. Attention gets around this problem by producing a different
source sentence representation for each word that needs to be generated, which is obtained
by focussing on only a few words in the source sentence whilst ignoring those that do not
contribute to the word that needs to be generated next.

This focus is achieved by multiplying each word vector by an element in a softmax
vector, such that elements in the softmax that are close to zero will zero out the corre-
sponding word vectors. By inspecting what these softmax vectors were before each word
was generated, it is possible to check which words were being attended to, that is, what
the neural network was ‘looking at’ when it generated a particular word. The neural
network would know which words to focus on based on the current state of the language
model’s RNN which stores information about what has been generated thus far and, by
extension, what needs to be generated next.
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Figure 2.15: An illustration of how the image representation is altered per time
step when attention is used. Each image representation filters out regions of the
image that are not important for predicting the next word. For predicting ‘man’,
the face of the person would be focussed on the most. On the other hand, for
predicting ‘walking’, the legs would be focussed on the most. The focussing is more
concentrated the smaller the number of regions being focussed on.

Attention can be applied to caption generation (Xu et al., 2015; Rennie et al., 2017)
by focussing on different regions of the image rather than words, depending on what kind
of word needs to be generated next in the description. Once this word-specific image
representation has been encoded, it is then inserted into the language model via par-
inject or merge, with a different representation per time step. The process is illustrated
in Figure 2.15. Init-inject and pre-inject do not allow for this sort of behaviour unless the
basic language modelling method described in Subsection 2.4.4 is used, which would be
slow.

2.5.5 A review of existing caption generators

With the different architectures described in Subsection 2.5.3 in mind, we next discuss a
selection of recent contributions, placing them in the context of this classification. Ta-
ble 2.1 provides a summary of these published architectures.

Source Init Pre Par Mrg Remarks

(Chen and Zitnick, 2014) �
(Chen and Zitnick, 2015) �
(Devlin et al., 2015) �
(Donahue et al., 2015) �
(Gu et al., 2017) � Encodes prefix using a

CNN.
(Hendricks et al., 2016) �
(Hessel et al., 2015) � Based on (Karpathy and

Fei-fei, 2015).
(Karpathy and Fei-fei, 2015) � Image is only included with

the first word.
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(Krause et al., 2016) � Image is passed through a
separate RNN at every time
step and the hidden state
vectors are pre-injected.

(Liu et al., 2016)† �
(Liu et al., 2016)† � � Par-injects image at-

tributes.
(Liu et al., 2017) � � Translates image attributes

into a description with at-
tention mechanism. Init-
injects whole attributes and
merges attended attributes.

(Lu et al., 2017) � � Attention mechanism which
par-injects whole image and
merges the attended image.

(Ma and Han, 2016) � Translates image attributes
into a description.

(Mao et al., 2014) �
(Mao et al., 2015b) �
(Mao et al., 2015a) �
(Nina and Rodriguez, 2015) �
(Oruganti et al., 2016) � Image is passed through a

separate RNN several times
so that a different image
hidden state vector is in-
jected at each time step.

(Rennie et al., 2017)† �
(Rennie et al., 2017)† � Attention mechanism which

par-injects the attended im-
age into the part of the
LSTM that is input gated.

(Venugopalan et al., 2017) � Based on (Hendricks et al.,
2016).

(Vinyals et al., 2015) �
(Vinyals et al., 2017) � Based on (Vinyals et al.,

2015).
(Wang et al., 2016a) � Generates two descriptions

from the front and in reverse
and then the most probable
is picked.

(Wang et al., 2016b) �
(Wu et al., 2015) � Pre-injects image at-

tributes.
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(Xu et al., 2015) � � � Attention-based mechanism
which init-injects the full
image while the attended
image is par-injected and
merged.

(Yao et al., 2017)† � First two words are the im-
age attributes and the im-
age.

(Yao et al., 2017)† � � Either pre-inject is made
with image attributes and
par-inject is made with the
image or vice versa.

(You et al., 2016) � � �
(Zhou et al., 2016) � � The image is modified by

the last generated word be-
fore being par-injected.

Table 2.1: A summary of caption generators that use the different conditioning
methods. †means that the publication describes multiple systems which use different
conditioning methods.

Init-inject architectures: Models conforming to the init-inject architecture treat the
image vector as the initial hidden state vector of an RNN (Devlin et al., 2015; Liu et al.,
2016). Wang et al. (2016b) combine two RNNs in parallel, both initialised with the same
image. Some systems treat their images as sequences using attributes and then translate
these attributes into a description through init-injection (Ma and Han, 2016).

On the other hand, Liu et al. (2017) instead translate objects detected in an image
into a description. In this case, the translation is one which uses attention mechanisms.
The object vectors are passed through an RNN so that its states can be attended and
merged during the generation of the description. The final state of the objects RNN is
init-injected. Other systems also use init-injection in attention mechanisms in order to
provide a vector representing information about the whole image. For example Xu et al.
(2015) initialise the RNN with the centroid of all image parts before attending to some
parts as needed.

Pre-inject architectures: Models conforming to the pre-inject architecture treat the
image as though it were the first word in the prefix (Vinyals et al., 2015, 2017; Nina and
Rodriguez, 2015; Rennie et al., 2017). Image attributes are sometimes used instead of
image vectors (Wu et al., 2015; Yao et al., 2017). Yao et al. (2017) also try passing an
image as the first two words instead of just one word by using the image vector as the
first word and image attributes as a second, or vice versa.

Just like init-inject, pre-inject is also used to provide information about the whole
image in attention mechanisms (You et al., 2016; Zhou et al., 2016).

(Krause et al., 2016) generate paragraph-length descriptions in two stages. First, an
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RNN is used to convert the image vector into a sequence of image vectors by incorporating
the image at every time step. This sequence of vectors represents sentence topics, each of
which is to be converted into a separate sentence by conditioning a language model using
pre-inject.

Par-inject architectures: Models conforming to the par-inject architecture input the
image features into the RNN jointly with each word in the description prefix. It is by
far the most common architecture used and has the largest variety of implementations.
For example Donahue et al. (2015) do this with two RNNs in series and find that it is
better to inject the image in the second RNN than the first. Yao et al. (2017) par-inject
the image whilst pre-injecting image attributes (or vice versa); and Liu et al. (2016) par-
inject attributes from the image whilst init-injecting the image vector. Other, less common
instantiations include par-injecting the image, but only with the first word (Karpathy and
Fei-fei, 2015; Hessel et al., 2015); processing the prefix using a one-dimensional CNN and
then passing the encoded prefix to an RNN together with the image vector (Gu et al.,
2017); generating two descriptions using two different RNNs, one from the front and one
in reverse, and then picking the most probable one (Wang et al., 2016a); and passing the
words through a separate RNN, such that the resulting hidden state vectors are what is
combined with the image vector (Oruganti et al., 2016).

Many times this architecture is used in order to pass a different representation of
the same image with every word so that visual information changes for different parts
of the sentence being generated. For example Zhou et al. (2016) perform element-wise
multiplication of the image vector with the last generated word’s embedding vector in
order to attend to different parts of the image vector. Oruganti et al. (2016) pass the
image through its own RNN for as many times as there are words in order to use a
different image vector for every word. Chen and Zitnick (2014, 2015) use a simple RNN
to try to predict what the image vector looks like given a prefix. This predicted image is
then used as a second image representation which is par-injected together with the actual
image vector.

More commonly, modified image representations come from attention mechanisms
(You et al., 2016; Xu et al., 2015; Rennie et al., 2017). Rennie et al. (2017) inject the
image not as an input to the RNN but use a modified LSTM, which allows them to inject
the attended image directly inside the input gated expression (the part of the LSTM
which is multiplied by the input gate).

Like init-inject and pre-inject, par-inject is sometimes used to provide information
about the whole image in attention mechanisms whilst the attended image regions are
merged (Lu et al., 2017).

Merge architectures: Rather than combining image features together with linguistic
features from within the RNN, merge architectures delay their combination until after the
description prefix has been vectorised (Mao et al., 2014, 2015a,b). Hendricks et al. (2016)
and later Venugopalan et al. (2017) use a merge architecture in order to keep the image
out of the RNN and thus be able to train the part of the neural network that handles
images and the part that handles language separately, using images and sentences from
separate training sets.
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Some work on attention mechanisms also uses merge architectures with attention
mechanisms by merging a different image representation at every time step. You et al.
(2016) and Xu et al. (2015) merge as well as par-inject the attended visual regions; Lu
et al. (2017) only merge the regions whilst par-injecting a fixed image representation; Liu
et al. (2017) pass vector encoded objects detected in an image into an RNN and the final
state is init-injected whilst the attended RNN states are merged.

Though they do not use an RNN and hence are not focussed on in this review, caption
generators that use log-bilinear models usually merge the image with the prefix represen-
tation (Kiros et al., 2014a,b; Song and Yoo, 2016).

2.5.6 Evaluation measures

The best way to evaluate how well a caption generator performs is by asking human
annotators to rate the quality of the captions it generates. Unfortunately, this is time
consuming, and instant automatic evaluation measures are necessary during development.
The most basic evaluation measure is the perplexity measure which was developed to
evaluate language models in general. Perplexity is defined as

perplexity(s, P ) = 2entropy(s,P ) (2.21)

entropy(s, P ) = − 1

|s|
|s|∑
i=2

log2 P (si|s1 . . . si−1) (2.22)

where s is a sentence (caption), P is a language model that predicts the probability of a
word in a sentence given its preceding words, si is the ith word in the sentence, |s| is the
number of words in sentence s, and s1 and s|s| are the start and end token respectively.

Given a reference sentence that was written by a human, the perplexity function
measures how probable that sentence is according to the language model. The more
probable a given correct sentence is according to the model, the more likely that sentence
is to be generated by the model. Perplexity is simple and fast to calculate but it does
not measure the quality of generated sentences, only how likely it is to generate given
correct sentences. To measure the quality of actual generated sentences we will need to
use caption quality metric functions. Unfortunately, perplexity does not correlate well
with these functions (Tanti et al., 2019c).

Automatic sentence quality measures were originally developed for other text gener-
ation tasks such as machine translation and automatic summarisation, which were later
adopted by the caption generation community. Basically, given a set of possible (hu-
man written) translations for a given source sentence, these functions would measure how
similar the generated translation is to the reference sentences by breaking the sentences
down into n-grams and counting how many n-grams the generated and reference sentences
have in common. Examples of such measures are BLEU (Papineni et al., 2002), ROUGE
(Lin and Och, 2004), and METEOR (Banerjee and Lavie, 2005). METEOR in particular
makes use of a thesaurus in order to allow for matching synonyms between n-grams rather
than rely on exact matching alone. In caption generation, rather than use a set of possible
translations for a given source sentence, a set of possible descriptions of a given image is
used instead.
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More specific image description evaluation measures were eventually developed, no-
tably CIDEr (Consensus-based Image Description Evaluation) (Vedantam et al., 2015)
and SPICE (Semantic Propositional Image Caption Evaluation) (Anderson et al., 2016).
CIDEr also uses n-gram similarities but makes use of TF-IDF to measure the similarity
and was tuned on captions specifically rather than general sentences. SPICE computes
similarity between sentences from scene graphs (Johnson et al., 2015), which are graphs
that specify the content of a scene in an image based on objects and their attributes and
relationships. The idea is to measure the similarity of the sentence to the content of the
image directly, however a scene graph would be difficult to extract from an image and so
is instead approximated by parsing the reference sentences.

Lately, WMD (Word Mover’s Distance) (Kusner et al., 2015), a function that was
originally developed for general document similarity, has also been adapted for caption
evaluation (Kılıçkaya et al., 2017). WMD measures the semantic distance between texts
by measuring how many words they have in common, in no order; however, the words are
matched using word2vec (Mikolov et al., 2013) embeddings and their cosine distance. In
order to measure how much word meaning the two texts have in common, Earth Mover’s
Distance is used which is a function that measures the minimum distance needed to move
each word vector in one text to one of the word vectors in the other text. The words are
weighted by their frequency in their corresponding text and stop words are removed.

We opted to use WMD as a representative caption quality measure because its authors
found that it correlates well with human judgement whilst being robust to synonym
swapping and other distraction tasks. Our decision is further confirmed because, as will
be seen later, it corresponds the best to other ways of measuring the quality of caption
generators.
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2.6 Conclusion

While the literature on caption generation now provides a rich range of models and com-
parative evaluations, the different architectures described above have been given little
attention in terms of performance comparisons. Work that has tested both par-inject
and pre-inject, such as by Vinyals et al. (2015), reports that pre-inject works better. The
work of Mao et al. (2015a) compares inject and merge architectures and concludes that
merge is better than inject. Mao et al.’s comparison between architectures is however
a relatively tangential part of their overall evaluation, and is based only on the BLEU
metric (Papineni et al., 2002).

Answering the question of which architecture is best is difficult because different ar-
chitectures perform differently on different evaluation measures, as shown for example by
Wang et al. (2016b), who compared architectures with simple RNNs and LSTMs. Al-
though the state of the art systems in caption generation all use inject-type architectures,
it is also the case that they are more complex systems than the published merge architec-
tures and so it is not fair to conclude that inject is better than merge based on a survey
of the literature alone. This is what Research Question 3 asks in Chapter 1 of this thesis.

There are also several challenges worth mentioning in the field of caption generation
in general. For example, it turns out that neural caption generators do a poor job of
grounding. Shekhar et al. (2017) used a caption generator in order to determine if a
word in a caption was replaced with an incorrect word (such that the caption does not
describe the image any more). This was done by measuring how much the probability of
the whole sentence according to the neural network goes down as a result of replacing the
word. It was found that the model was only able to detect the incorrect word 45% of the
time whilst a ‘blind’ language model could do so 25% of the time. Similar techniques are
used in this thesis in order to measure how much influence the image has on the model
in order to answer Research Question 4. Another interesting observation was that simply
providing the caption generator with a vector that describes what objects are in the image
instead of a complex visual features representation results in better captions (Wang et al.,
2018). This also means that caption generators can predict verbs using only the nouns
rather than by looking at what is going on in the image. This is also relevant to Research
Question 4.

In what follows, we present a systematic comparison between all the different archi-
tectures discussed above. We perform these evaluations using a common dataset and a
variety of quality metrics, covering (a) the quality of the generated descriptions; (b) the
linguistic diversity of the generated descriptions; and (c) the networks’ capabilities to
determine the most relevant image given a description.
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Chapter 3

Architecture comparison
1

1An earlier version of the work shown in this chapter has been published (Tanti et al., 2018).
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3.1 Aims

In this chapter we will compare each of the four architectures shown in Figure 2.14 in
the previous chapter using several metrics to see each one’s pros and cons when trained
under similar conditions.

The main contribution of these experiments is to present a systematic comparison of
the different ways in which the conditioning of linguistic choices based on visual informa-
tion can be carried out, studying their implications for caption generator architectures.
Thus, rather than seeking new results that improve on the state of the art, we seek to de-
termine, based on an exhaustive evaluation of inject and merge architectures on a common
dataset, where image features are best placed in a caption generator.

From a scientific perspective, such a comparison would be useful for shedding light
on the way language can be grounded in vision. Should images and text be intermixed
throughout the process, or should they initially be kept separate before being combined in
some multimodal layer? Many papers speak of RNNs as ‘generating’ text. Is this the best
way to view them or are RNNs better viewed as encoders which vectorise a linguistic prefix
so that the next feed-forward layer can predict the next word, conditioned on an image?
Answers to these questions would help inform theories of how caption generation can be
performed. The architectures we compare provide different answers to these questions.
Hence, it is important to acquire some insights into their relative merits.

From an engineering perspective, insights into the relative performance of different
models could provide rules of thumb for selecting an architecture for the task of image
captioning, possibly for other tasks as well, such as machine translation. This would make
it easier to develop new architectures and new ways to perform caption generation.
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3.2 Experiments

As a reminder, the four architectures being investigated (illustrated in Figure 2.14 and
discussed in Subsection 2.5.3) are:

• Init-inject: Image as initial state of RNN.

• Pre-inject: Image as first word in RNN.

• Par-inject: Image concatenated to every word.

• Merge: Image concatenated to RNN hidden state vector.

3.2.1 Datasets

The datasets used for all experiments were the version of Flickr8K (Hodosh et al., 2013),
Flickr30K (Young et al., 2014), and MSCOCO (Lin et al., 2014) distributed by Karpathy
and Fei-fei (2015).2. All datasets consist of images taken from Flickr3 combined with
between five and seven manually written captions per image. The provided datasets
are split into a training, validation, and test set using the following number of images
respectively:

• Flickr8K - 6 000 (75.0%), 1 000 (12.5%), 1 000 (12.5%);

• Flickr30K - 29 000 (93.5%), 1 014 (3.3%), 1 000 (3.2%);

• MSCOCO - 82 783 (89.2%), 5 000 (5.4%), 5 000 (5.4%).

The images were vectorised into 4 096-element vectors via the activation values of
layer ‘fc7’ (the penultimate layer) of the VGG OxfordNet 16-layer convolutional neural
network (Simonyan and Zisserman, 2014), which was trained for object recognition on
the ImageNet dataset (Deng et al., 2009). The convolutional neural network is fixed and
not modified by the caption generator’s training. The pre-trained VGG OxfordNet was
obtained from Davi Frossard’s VGG16 implementation.4

The known vocabulary consists of all the words in the captions of the training set
that occur at least 5 times. This amounts to 2 532 words for Flickr8K, 7 342 words for
Flickr30K, and 8 725 words for MSCOCO. Any other word which is not part of the vo-
cabulary is replaced with the unknown token. In order to reduce the amount of different
tokens, we preprocess all the captions in the datasets by lowercasing all characters, replac-
ing strings of digits with a ‘NUM’ token, and removing all non-alphanumeric non-space
characters.

2See: http://cs.stanford.edu/people/karpathy/deepimagesent/
3See: https://www.flickr.com
4See: https://www.cs.toronto.edu/~frossard/post/vgg16/

43



Figure 3.1: An illustration of the main architecture schema that is instantiated in
the four different architectures tested in the experiments. The neural network takes
a prefix of a sentence, embeds each word, and encodes it via an RNN (a GRU).
A 4 096-element feature vector representing the image is projected into a smaller
vector via a fully connected layer (post-image) which is then either mixed in with
the RNN (inject) or concatenated to the RNN hidden state vector (merge). The
mixed image-prefix multimodal vector is then passed to the softmax layer to predict
the next word in the prefix. Only one of the dashed arrows is used depending on
whether the architecture is one of merge or inject.

3.2.2 Architecture

In order to make a fair evaluation, a basic schema was used to construct each architecture.
A diagram illustrating the schema is shown in Figure 3.1. The schema is based on the
architecture described by Vinyals et al. (2015), without the ensemble, which was chosen
for its simplicity whilst still being the best performing system in the 2015 MSCOCO image
captioning challenge.5 Tensorflow v1.46 was used to implement the neural networks.

Word embeddings: Word embeddings, that is, the vectors that represent known words
prior to being fed to the RNN, consist of vectors that have been randomly initialised.
No precompiled vector embeddings, such as word2vec (Mikolov et al., 2013) were used.
Instead, the embeddings are trained as part of the neural network in order to learn the
best word representations for the task.

Recurrent neural network: The purpose of the RNN is to take a prefix of embedded
words (together with the image vector in inject architectures) and produce a single vector
that represents the sequence. A GRU (Chung et al., 2014) was used in our experiments
for the simple reason that it is a powerful RNN that only has one hidden state vector.
By contrast, an LSTM has two state vectors (the hidden state and the cell state). This
would make architecture comparisons more complex, as the presence of two state vectors
raises the possibility of multiple versions of the init-inject architecture such as using one
state but not the other or using both at once. By using an RNN with a single hidden
state vector there is only one way to implement init-inject.

Image: All images are input as 4 096-element vectors. A fully connected layer com-
presses this vector into a smaller post-image vector.

5See: http://mscoco.org/dataset/#captions-leaderboard
6See: https://www.tensorflow.org/
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Output: Once the image and the caption prefix have been vectorised and mixed into a
single vector, called a multimodal vector, the next step is to use them to predict the next
word in the caption. This is done by passing the mixed vector through a fully connected
layer with a softmax activation function that outputs the probability of each possible next
word in the vocabulary. Based on this distribution, the next word to come after the prefix
is selected.

3.2.3 Hyperparameter tuning

For the results to be reliable, it is important to find the best (within practical limits) hyper-
parameters for each architecture so that we can judge the performance of the architectures
when they are optimally tuned, rather than using one-size-fits-all hyperparameter settings
which might cause some architectures to under-perform. The library Scikit-Optimize7 was
used to perform hyperparameter tuning using Bayesian optimisation with a random forest
model. It is also possible to use Gaussian processes instead of random forests but Gaus-
sian processes are not as good (Eggensperger et al., 2015). The model is used to predict
the expected improvement of a given hyperparameter combination. To train the model,
it is initialised using 32 random hyperparameters together with their evaluated resulting
performance after training the neural network. Following this, the model continues to be
improved by exploring a sequence of 64 candidate hyperparameters that the model sug-
gests will maximise the expected improvement, the result of each one being fed back to
the model. At the end, the best hyperparameter combination found out of the 96 different
hyperparameters (32 + 64) is used to set the neural networks during the experiments.

For each hyperparameter combination to be evaluated, we trained a neural network on
the Flickr8K training set based on the hyperparameters and then generated captions for
the MSCOCO validation set using beam search as a generation method (Mao et al. (2015a)
also used Flickr8K for hyperparameter tuning). The reason why Flick8K was used for
training is to speed up the hyperparameter tuning process (it would take too long to train
on MSCOCO with different hyperparameters 96 times). The reason why the MSCOCO
validation set was used instead of the Flickr8K one is because the Flickr8K validation set
is used for early stopping during hyperparameter evaluation. Thus it was preferable to
use an alternative validation set during tuning to avoid subsequent evaluation of a model
on data that had influenced its training. The Word Mover’s Distance (Kusner et al., 2015;
Kılıçkaya et al., 2017) metric, or WMD, was used to measure the quality of the generated
captions. This process was performed twice for each hyperparameter combination and
the average WMD resulting from the two independent train and generation sessions was
used as a score for the hyperparameter combination. This makes the score more robust
than if the model was only trained and evaluated once. The optimal hyperparameters
found were then used in the experiments across all datasets.

The following hyperparameters are the ones that were tuned:

Weights initialisation method: The probability distribution used to initialise all the
weights. Can be the normal distribution or Xavier initialisation (Glorot and Bengio, 2010)

7See: https://scikit-optimize.github.io/
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with normal distribution.

Maximum initial weight: The maximum absolute value of the initial weight beyond
which it is clipped (for both positive and negative values). Can be between 1e-5 and 1.0.

Embed size: The layer size of the embedding layer. Can be between 64 and 512.

RNN size: The hidden state vector size of the RNN. Can be between 64 and 512.

Post-image size: The layer size of the post-image layer. Can be between 64 and 512.

Post-image activation: The activation function used on the post-image layer. Can be
ReLU or none (the identity function).

Optimiser: The optimiser used for training. Can be Adam (Kingma and Ba, 2014),
RMSProp8, or AdaDelta (Zeiler, 2012). These were selected based on common practices
in the literature: Rennie et al. (2017) used Adam, Karpathy and Fei-fei (2015) used
RMSProp, and Mao et al. (2015b) used AdaDelta.

Learning rate: The learning rate to use with the chosen optimiser. Can be between
1e-5 and 1.0.

Normalise image: Whether to use the vector norm of the image feature vector or leave
the image as is. Can be true or false.

Weight decay weight: The weight assigned to the weight decay regularisation. Can
be between 1e-10 and 0.1.

Image dropout rate: The dropout rate applied to the image vector input. Can be
between 0.0 and 0.5.

Post-image dropout rate: The dropout rate applied to the post-image layer. Can be
between 0.0 and 0.5.

Embed dropout rate: The dropout rate applied to the embedding layer. Can be
between 0.0 and 0.5.

RNN dropout rate: The dropout rate applied to the hidden state vector of the RNN.
Can be between 0.0 and 0.5.

Maximum gradient norm: The maximum norm of the gradients beyond which it is
clipped. Can be between 1.0 and 1000.0.

8See: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Minibatch size: The minibatch size to use during training. Can be between 10 and
300.

Beam width: The beam width to apply when using beam search to generate captions.
Can be between 1 and 5.

The following hyperparameters are the ones that were fixed (not tuned):

RNN: The RNN was set to be a GRU for all architectures in order to have a powerful
RNN that only has one hidden state vector rather than two like the LSTM does. To
initialise the RNN (except for init-inject which takes the image as an initial state), we use
a learnable vector that is optimised together with the rest of the neural network.

Loss function: The loss function used during training is the mean of the cross-entropy
of each word in each caption in a minibatch.

Early stopping: Training ends when the geometric mean of the perplexity on the
validation set after a particular epoch is worse than it was after the previous epoch.
Training does not terminate before then.

Caption generation: The generated captions must be between 5 and 20 words long.
Beam search will not end a sentence before there are at least 5 words in it and will
abruptly stop a sentence that is 20 words long. A caption cannot have the same word
twice next to each other and cannot have the unknown token in it.

Bias initialisation: All biases are initialised to zeros.

Adam optimiser hyperparameters: Other than the learning rate, the other hyper-
parameters used by the Adam optimiser were left as default, that is, β1 = 0.9, β2 = 0.999,
and ε =1e-08.

In Subsection 3.3.1 we will discuss the optimal hyperparameters found. It is important
to note that the init-inject and pre-inject architectures have an advantage over the other
two architectures when it comes to hyperparameter searching since their search space is
smaller because of the constraint that the post-image size must be equal to the RNN size
(init-inject) or the embed size (pre-inject). This means that it is likely that these two
architectures will end up with better hyperparameters, but this is also an advantage of
the architectures.

3.2.4 Evaluation metrics

To evaluate the different architectures, the test set images are used to measure the archi-
tectures’ quality using metrics that fall into four classes, described below.
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Quality metrics: These metrics quantify the quality of the generated captions by mea-
suring the degree of overlap between generated captions and those in the test set. We use
the MSCOCO evaluation code9 which measures the standard evaluation metrics BLEU-
(1,2,3,4) (Papineni et al., 2002), ROUGE-L (Lin and Och, 2004), METEOR (Banerjee
and Lavie, 2005), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016).
The evaluation code does not include WMD (Kusner et al., 2015; Kılıçkaya et al., 2017)
as a metric so we created a fork of the repository that also includes WMD10.

Diversity metrics: Even though we would expect conditioned language models to gen-
erate novel descriptions, it is possible for them to produce the same generic captions for
different images (Devlin et al., 2015) which would be undesirable. Therefore, apart from
measuring the caption similarity to the ground truth, we also measure the diversity of the
captions. To quantify the novelty of generated captions we use the following measures:

• the percentage of known vocabulary words used in all generated captions (indicates
the extent of vocabulary exploitation),

• the percentage of unique sentences generated (indicates the variety of sentences
generated),

• and the number of sentences that were copied from the training set (indicates the
amount of novel sentences generated).

As a ceiling estimate of diversity, we compute the same metrics on the human-written
test set captions themselves. For each group of human-written captions available for each
image in the test set, we extract a random caption and apply these diversity metrics on
these extracted captions.

Retrieval metrics: Retrieval metrics are metrics that quantify how well the architec-
tures perform when retrieving the correct image out of all the test set images in the test set
given a corresponding caption. A conditioned language model can be used for retrieval by
measuring the degree of relevance each image has to the given reference caption (accord-
ing to the model). Relevance is measured as the probability of the whole caption given
the image (by multiplying together each word’s probability). Different images will usually
result in different probabilities for the same caption. The more probable the caption is,
the more relevant the image. We use the standard R@n recall measures (Hodosh et al.,
2013) and report recall at 1, 5, and 10. Recall at n is the percentage of captions whose
correct image is among the top n most relevant images. We also calculate the median
rank of each correct image in the sorted list of retrieved images. Since this process takes
time proportional to the number of captions multiplied by the number of images, the pool
of possible reference captions to consider during retrieval only includes one caption out
of the group of captions available for each image in order to reduce the evaluation time.
The selected caption for each image was randomly chosen but was kept the same across
models.

9See: https://github.com/tylin/coco-caption
10See: https://github.com/mtanti/coco-caption
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Probability metrics: Apart from the retrieval metrics, probability metrics are also
useful measures on their own. The higher the probabilities of the probability of the
test caption given the test image, the higher the probability that the test caption is
generated given the image. We measure both caption probability and caption perplexity
and aggregate all the caption scores into a single score by using mean, median, and
geometric mean.
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3.3 Results

3.3.1 Hyperparameter tuning results

In order to extract as much information as possible from the conducted experiments, we
also analysed the results produced from the hyperparameter search for each architecture.
The top five hyperparameter combinations for each architecture are shown in Table 3.1,
where the ‘rank 1’ column gives the best hyperparameters found and which were used
in the experiments. The WMD is small because these neural networks were trained on
Flickr8K whilst being evaluated on the MSCOCO validation set.

The WMD of the best hyperparameters found for the merge architecture is higher
than that of all the other architectures. No hyperparameter was set the same across all
architectures and ranks. The following are architecture specific consistencies:

Init-inject: The only hyperparameter that was set the same across all ranks in this
architecture is the post-image layer not using an activation function. Using Pearson
correlation on the whole 96 hyperparameters explored we found that the hyperparameters
that correlated the most with WMD were using AdaDelta as an optimiser (r = −0.476)
and image normalisation (r = −0.228).

Pre-inject: No hyperparameter was set the same across all ranks in this architecture.
Using Pearson correlation on the whole 96 hyperparameters explored we found that the hy-
perparameters that correlated the most with WMD were using AdaDelta as an optimiser
(r = −0.445), using RMSProp as an optimiser (r = 0.349), and RNN size (r = 0.254).

Par-inject: The learning rate should be around 4.4e-4, the image vector should not be
normalised, the embedding layer should have a size of about 500 and have a very low
dropout rate, and the minibatch size should be about 150. Using Pearson correlation on
the whole 96 hyperparameters explored we found that the hyperparameters that correlated
the most with WMD were using AdaDelta as an optimiser (r = −0.393), using RMSProp
as an optimiser (r = 0.357), weight decay weight (r = −0.302), embedding dropout rate
(r = −0.296), embed size (r = 0.287), and the maximum initial weight (r = 0.270).

Merge: The weight initialisation method should be Xavier, the optimiser should be
Adam with a learning rate of around 3.0e-4, the image vector should not be normalised,
the post-image layer should have a ReLU activation function, and the RNN dropout rate
should be around 0.25. Using Pearson correlation on the whole 96 hyperparameters ex-
plored we found that the hyperparameters that correlated the most with WMD were using
AdaDelta as an optimiser (r = −0.579), using Adam as an optimiser (r = 0.378), and the
maximum initial weight (r = 0.234).

In general, these results suggest that AdaDelta is not recommended as an optimiser. In
order to provide a better analysis of some of these hyperparameters, we plotted a scatter
plot that compares the layer sizes to the resultant WMD values. All 96 hyperparameter
combinations that were explored during the hyperparameter tuning process were plotted.
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Rank 1 2 3 4 5
WMD 0.0832 0.0830 0.0821 0.0813 0.0813
weight init. method Normal Normal Xavier Normal Xavier
max. init. weight 3.50e-03 1.22e-05 2.92e-05 2.43e-02 2.36e-05
embed size 502 123 315 202 150
RNN size 418 132 396 179 488
post-image size 418 132 396 179 488
post-image activation none none none none none
optimiser Adam Adam RMSProp Adam RMSProp
learning rate 1.73e-03 1.17e-03 8.86e-04 1.35e-04 1.22e-03
normalise image true false false false true
weight decay weight 2.74e-06 6.28e-07 6.03e-06 3.13e-09 1.24e-07
image dropout rate 0.01 0.06 0.04 0.12 0.01
post-image dropout rate 0.34 0.46 0.38 0.30 0.48
embedding dropout rate 0.34 0.22 0.37 0.33 0.40
RNN dropout rate 0.11 0.12 0.06 0.15 0.00
max. gradient norm 1.57e+00 1.63e+01 4.11e+00 8.56e+00 9.85e+00
minibatch size 168 270 284 54 239
beam width 3 5 2 2 5

(a) Top five hyperparameter combinations for the init-inject architecture.

Rank 1 2 3 4 5
WMD 0.0800 0.0790 0.0777 0.0772 0.0762
weight init. method Xavier Xavier Normal Normal Xavier
max. init. weight 5.04e-04 2.16e-05 1.50e-01 3.50e-05 5.03e-05
embed size 206 112 200 220 95
RNN size 498 408 391 480 312
post-image size 206 112 200 220 95
post-image activation none none none ReLU none
optimiser RMSProp Adam Adam RMSProp Adam
learning rate 5.54e-04 4.66e-03 1.42e-03 6.39e-04 8.64e-04
normalise image false true true false true
weight decay weight 1.77e-09 3.00e-07 3.29e-06 1.39e-06 3.34e-06
image dropout rate 0.26 0.14 0.21 0.47 0.29
post-image dropout rate 0.29 0.20 0.42 0.11 0.29
embedding dropout rate 0.29 0.08 0.26 0.24 0.26
RNN dropout rate 0.09 0.22 0.08 0.14 0.48
max. gradient norm 1.65e+00 2.54e+01 1.08e+01 9.16e+00 1.91e+01
minibatch size 85 122 21 183 16
beam width 5 4 3 1 2

(b) Top five hyperparameter combinations for the pre-inject architecture.
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Rank 1 2 3 4 5
WMD 0.0827 0.0827 0.0815 0.0814 0.0809
weight init. method Xavier Normal Xavier Xavier Normal
max. init. weight 6.25e-02 7.75e-04 1.35e-02 2.74e-02 7.64e-03
embed size 493 461 511 446 502
RNN size 451 494 432 174 418
post-image size 359 212 446 155 465
post-image activation none none ReLU ReLU none
optimiser Adam RMSProp RMSProp RMSProp Adam
learning rate 2.54e-04 5.77e-04 4.95e-04 4.17e-04 4.39e-04
normalise image false false false false false
weight decay weight 2.18e-10 4.96e-10 2.01e-10 1.10e-08 7.71e-09
image dropout rate 0.23 0.42 0.37 0.37 0.16
post-image dropout rate 0.33 0.19 0.42 0.08 0.19
embedding dropout rate 0.01 0.01 0.01 0.03 0.05
RNN dropout rate 0.19 0.25 0.03 0.17 0.16
max. gradient norm 6.77e+01 9.99e+01 4.22e+01 1.12e+02 2.36e+01
minibatch size 143 118 141 151 149
beam width 2 4 5 4 3

(c) Top five hyperparameter combinations for the par-inject architecture.

Rank 1 2 3 4 5
WMD 0.0838 0.0826 0.0821 0.0816 0.0816
weight init. method Xavier Xavier Xavier Xavier Xavier
max. init. weight 1.96e-01 6.62e-01 8.24e-02 2.80e-02 1.66e-01
embed size 276 193 103 420 221
RNN size 227 155 229 443 80
post-image size 268 417 454 213 260
post-image activation ReLU ReLU ReLU ReLU ReLU
optimiser Adam Adam Adam Adam Adam
learning rate 2.64e-04 3.02e-04 2.71e-04 2.16e-04 3.90e-04
normalise image false false false false false
weight decay weight 3.01e-07 1.37e-10 5.79e-07 2.24e-07 6.30e-05
image dropout rate 0.02 0.37 0.15 0.33 0.37
post-image dropout rate 0.21 0.20 0.26 0.17 0.18
embedding dropout rate 0.01 0.09 0.36 0.36 0.11
RNN dropout rate 0.28 0.26 0.24 0.22 0.26
max. gradient norm 6.86e+02 5.00e+01 1.34e+00 4.70e+02 3.02e+00
minibatch size 237 110 148 215 182
beam width 5 3 3 3 3

(d) Top five hyperparameter combinations for the merge architecture.

Table 3.1: The top five hyperparameter combinations found for each architecture.
An explanation of each hyperparameter is given in Subsection 3.2.3.
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(a) The init-inject architecture. (b) The pre-inject architecture.

(c) The par-inject architecture. (d) The merge architecture.

Figure 3.2: Scatter plots of how the RNN size relates to the WMD for each
architecture. A linear trend line is fitted and shown as well.

It might be argued that since only 32 of the 96 hyperparameters were chosen randomly
whilst 64 were chosen by Baysian optimisation, there is a risk of some bias in the plotted
data points. Unfortunately, using just 32 data points is too small a sample size to get a
meaningful plot, so we opted to use all the available hyperparameter combinations.

RNN sizes: The RNN size, plotted in Figure 3.2, significantly affects the amount of
memory needed to store the neural network since the last layer has a number of weights
equal to the RNN size multiplied by the vocabulary size, the vocabulary size being gen-
erally large. The last layer’s number of weights equals r× v in inject architectures whilst
in merge architectures have (r+ p)× v, where r is the RNN size, p is the post-image size
and v is the vocabulary size.

Init-inject and merge don’t seem to be affected much by the size of the RNN state,
although merge does tend to work slightly better on smaller state sizes. This could
be because merge is more likely to overfit at its RNN due to it only needing to store
linguistic information rather than a mix of visual and linguistic information like the inject
architectures. As we’ll see, init-inject seems to be stable across all model sizes, which is
good as it reaches peak performance with a small number of parameters.

On the other hand pre-inject and par-inject are more sensitive to the RNN state size.
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(a) The init-inject architecture. (b) The pre-inject architecture.

(c) The par-inject architecture. (d) The merge architecture.

Figure 3.3: Scatter plots of how the embed size relates to the WMD for each
architecture. A linear trend line is fitted and shown as well.

In the case of the pre-inject architecture, this could be in order to better remember the
first word (the image). The fact that init-inject does not have the same effect (requiring
a large RNN state to remember the image in the initial state) might be explained in the
next chapter which shows that GRUs are very sensitive to their initial state. Par-inject,
as will be seen, requires a large model in general in order to work well.

Embed sizes: The embed size, plotted in Figure 3.3, also significantly affects the
amount of memory needed to store the neural network since the embedding matrix has
a number of weights equal to the embed size multiplied by the vocabulary size, the vo-
cabulary being generally large. The embedding matrix’s number of weights equals e× v,
where e is the embed size and v is the vocabulary size.

Again, init-inject is not affected much by the embedding layer size, evidence of its
efficiency in parameter use. Merge is negatively correlated, probably due to overfitting,
just like for the state size.

The fact that pre-inject requires a large state size but a small word size (and image
size, since they have to be equal in pre-inject) could be in order to be able to pack more
information in the RNN state by putting smaller items in a larger memory. Par-inject,
again, requires a large model to perform well.
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(a) The init-inject architecture. (b) The pre-inject architecture.

(c) The par-inject architecture. (d) The merge architecture.

Figure 3.4: Scatter plots of how the post-image size relates to the WMD for each
architecture. A linear trend line is fitted and shown as well.

Post-image sizes: The post-image size, plotted in Figure 3.4, affects the amount of
memory needed to store the neural network if the original image vector size is large,
which in this case it is since it is 4 096-elements long. The post-image layer’s number of
weights equals i× p, where i is the image vector size and p is the post-image size.

Given that init-inject is not affected much by the state size then it must also not be
affect much by the image size, since these two sizes are tied in the init-inject architecture.
Similarly, given that pre-inject works worse on large embedding sizes then it must also
work worse on large image sizes.

Merge seems to work better on larger image sizes, although it is unclear why this is.
Again, par-inject requires more parameters to work well.

Full model sizes: We finally put all the layers together and see how the WMD changes
as the total number of parameters changes. We calculate what the model size will be if
the vocabulary size was that of MSCOCO. This is plotted in Figure 3.5.

We can see that par-inject does not work well with small models whilst all the other
architectures can work well with different model sizes. Merge is shifted towards larger
models in general which means that the merge architecture results in a large model more
often than not, although it can work well with smaller models unlike par-inject.
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(a) The init-inject architecture. (b) The pre-inject architecture.

(c) The par-inject architecture. (d) The merge architecture.

Figure 3.5: Scatter plots of how the full model size (number of parameters) relates
to the WMD for each architecture. The vocabulary size of MSCOCO is assumed.
A linear trend line is fitted and shown as well.
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We have a hypothesis for why init- and pre-inject can work well with small models
whilst par-inject can’t, which is that the former two architectures use shared representa-
tions whilst par-inject does not. Due to the fact that the image representation is shared
is the RNN state representation in init-inject, as the state representation gets better,
so might the image representation. Ditto for pre-inject but with the word representa-
tion rather than the state representation. This could result in more effective training at
smaller model sizes whereas par-inject would underfit. We do not have a hypothesis to
explain why the merge architecture does not also underfit in spite of not having shared
representations.

Interim summary

• The init-inject architecture is stable across layer sizes and can achieve both high
and low performance at every model size. This could be because it has a shared
representation between the state and the image which might result in better a
representation for both.

• The pre-inject architecture needs a large RNN size but a small image size. Probably
in order to better remember information about the image given that it is the first
word in the sequence.

• The par-inject architecture needs to be larger at every layer to increase in perfor-
mance. Having separate channels for the image and words into the RNN might
require more processing in order to be able to create a single representation in the
RNN. The shared representations of init- and pre-inject seem to help them work
with less parameters.

• The merge architecture might overfit with a large RNN given that it only needs to
store linguistic information in there.

3.3.2 Experimental results

We now look at the results produced by the actual experiments after training and evaluat-
ing the architectures using the best hyperparameters found in the hyperparameter search
(the rank 1 columns in Table 3.1).

Probability metrics: Table 3.2 shows the result of calculating different aggregations
of the probability and perplexity of test set sentences according to the trained neural
networks. Init-inject and par-inject perform the best at all of these measures, whilst
pre-inject and merge seem to perform poorly.

Quality metrics: Table 3.3 shows the result of calculating different caption quality
metrics on the generated sentences for the test set images. The ceiling is there as an
anchor point to know what the maximum score for each metric is. It is computed by
treating the captions provided with the images in the test set themselves as if they were
generated (since there are multiple captions with each image, a random caption was
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selected). All four architectures perform similarly but, again, init-inject and par-inject
outperform pre-inject and merge.

Diversity metrics: Table 3.4 shows the amount of variation in the generated sentences
in terms of words used. The ceiling is there as an anchor point to know what the human-
written test set sentences would score on each metric (it is computed just like for the
quality metrics). The percentage of vocabulary used is a metric for measuring how much
of the available vocabulary is exploited when generating sentences as opposed to relying
on just high frequency words (which would be exposed to the neural network more often
during training). In this case, init-inject and par-inject perform the best with pre-inject
performing the worst, which corresponds with the caption quality metrics.

Furthermore, it turns out that the amount of minimum frequency words used correlates
with the amount of the vocabulary used, that is, the more words are used, the more rare
words are used (even though less than 15% of the vocabulary is used). This means that a
well performing neural network is capable of using words with a frequency of just 5 (the
minimum frequency threshold used in the experiments) and so it might be worthwhile
to include even rarer words in the vocabulary. It is concerning that, compared to the
human written captions, generated sentences use very little of the available vocabulary,
hinting that the generated captions tend to be stereotyped and perhaps ‘robotic’ sounding.
This observation was in fact made by Devlin et al. (2015) who found that the generated
captions in an init-inject architecture are very stereotypical, although unlike what is
reported in that paper, none of our generated sentences were found in the training set.
All the generated sentences have similar average lengths. Par-inject generated the most
unique sentences whilst pre-inject generated the most duplicated sentences as well as using
exclusively very frequent words.

Retrieval metrics: Table 3.5 shows the result of using the trained models to search for
a test set image using its corresponding caption. Init-inject performs the best at this task
whilst pre-inject performs the worst. Here merge performs very similarly to init-inject
and par-inject whilst pre-inject performs very poorly.

Miscellaneous metrics: Table 3.6 shows miscellaneous results such as the number of
parameters in the models and the training time. The smallest architectures are merge and
pre-inject, although given how badly pre-inject performed in general it is likely that this
is not the optimum size for such an architecture and a more extensive hyperparameter
search might have resulted in a bigger model which performs better. The fastest models
to train, both in terms of number of epochs and training time, are init-inject and merge.
Par-inject is the all-round worst model at both size and training speed.
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Init-inject Pre-inject Par-inject Merge

Mean prob. 1.8e-05 (2.9e-06) 1.7e-05 (4.6e-06) 1.9e-05 (7.6e-07) 1.0e-05 (1.5e-06)
Median prob. 3.1e-13 (1.9e-14) 2.7e-14 (2.9e-15) 7.8e-14 (5.4e-15) 1.4e-14 (1.5e-15)
Geomean prob. 1.4e-14 (3.6e-16) 1.3e-15 (1.3e-16) 3.1e-15 (1.5e-16) 6.2e-16 (7.0e-17)
Mean pplx 24.21 (0.36) 29.94 (0.30) 29.00 (0.15) 33.29 (0.80)
Median pplx 12.91 (0.04) 16.56 (0.17) 14.71 (0.12) 16.78 (0.19)
Geomean pplx 14.28 (0.02) 17.61 (0.15) 16.25 (0.08) 18.62 (0.16)

(a) Results for Flickr8K.

Init-inject Pre-inject Par-inject Merge

Mean prob. 4.4e-06 (9.4e-07) 2.9e-06 (7.6e-07) 6.3e-06 (1.0e-06) 2.1e-06 (3.1e-07)
Median prob. 2.4e-15 (3.5e-16) 1.1e-16 (2.4e-17) 1.2e-15 (9.8e-17) 1.1e-16 (1.5e-17)
Geomean prob. 1.9e-17 (7.9e-19) 7.8e-19 (1.5e-19) 9.2e-18 (9.9e-19) 7.0e-19 (3.4e-20)
Mean pplx 33.59 (0.74) 43.66 (1.15) 36.93 (0.69) 55.59 (2.28)
Median pplx 15.07 (0.08) 19.68 (0.38) 15.83 (0.21) 19.20 (0.09)
Geomean pplx 17.26 (0.07) 22.06 (0.35) 18.17 (0.14) 22.00 (0.08)

(b) Results for Flickr30K.

Init-inject Pre-inject Par-inject Merge

Mean prob. 5.0e-05 (4.5e-06) 3.1e-05 (9.1e-07) 3.5e-05 (2.4e-06) 1.6e-05 (7.5e-07)
Median prob. 1.9e-11 (6.7e-13) 1.2e-12 (6.1e-14) 1.3e-11 (7.6e-13) 3.1e-12 (2.5e-13)
Geomean prob. 1.5e-12 (5.5e-14) 8.5e-14 (3.1e-15) 9.4e-13 (2.5e-14) 1.6e-13 (6.1e-15)
Mean pplx 19.57 (0.05) 29.41 (0.14) 21.73 (0.17) 31.26 (0.61)
Median pplx 9.20 (0.05) 11.76 (0.05) 9.45 (0.04) 10.73 (0.04)
Geomean pplx 10.54 (0.03) 13.56 (0.04) 10.98 (0.03) 12.78 (0.04)

(c) Results for MSCOCO.

Table 3.2: Results of the probability metrics. Legend: prob. - probability, ge-
omean - geometric mean, pplx - perplexity.
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Init-inject Pre-inject Par-inject Merge Ceiling

BLEU-1 0.605 (0.005) 0.602 (0.005) 0.591 (0.005) 0.602 (0.011) 1.000 (0.000)
BLEU-2 0.421 (0.006) 0.413 (0.003) 0.410 (0.005) 0.411 (0.010) 1.000 (0.000)
BLEU-3 0.285 (0.004) 0.277 (0.005) 0.274 (0.005) 0.269 (0.009) 1.000 (0.000)
BLEU-4 0.191 (0.004) 0.183 (0.005) 0.181 (0.004) 0.174 (0.007) 1.000 (0.000)
METEOR 0.194 (0.002) 0.187 (0.001) 0.196 (0.002) 0.190 (0.001) 1.000 (0.000)
ROUGE-L 0.446 (0.004) 0.440 (0.004) 0.446 (0.003) 0.439 (0.004) 1.000 (0.000)
CIDEr 0.474 (0.017) 0.441 (0.011) 0.476 (0.012) 0.457 (0.011) 2.663 (0.007)
SPICE 0.134 (0.002) 0.127 (0.001) 0.133 (0.003) 0.128 (0.002) 0.439 (0.002)
WMD 0.140 (0.003) 0.137 (0.004) 0.137 (0.002) 0.137 (0.003) 1.000 (0.000)

(a) Results for Flickr8K.

Init-inject Pre-inject Par-inject Merge Ceiling

BLEU-1 0.602 (0.018) 0.604 (0.005) 0.608 (0.006) 0.618 (0.003) 1.000 (0.000)
BLEU-2 0.410 (0.015) 0.406 (0.005) 0.416 (0.007) 0.421 (0.002) 1.000 (0.000)
BLEU-3 0.275 (0.011) 0.270 (0.004) 0.281 (0.007) 0.282 (0.002) 1.000 (0.000)
BLEU-4 0.186 (0.008) 0.179 (0.005) 0.189 (0.007) 0.189 (0.002) 1.000 (0.000)
METEOR 0.174 (0.001) 0.167 (0.001) 0.178 (0.001) 0.171 (0.000) 1.000 (0.000)
ROUGE-L 0.419 (0.004) 0.413 (0.003) 0.426 (0.003) 0.421 (0.001) 1.000 (0.000)
CIDEr 0.361 (0.011) 0.337 (0.005) 0.381 (0.010) 0.371 (0.004) 2.541 (0.007)
SPICE 0.112 (0.002) 0.108 (0.001) 0.116 (0.001) 0.110 (0.001) 0.416 (0.002)
WMD 0.121 (0.001) 0.118 (0.002) 0.122 (0.002) 0.120 (0.002) 1.000 (0.000)

(b) Results for Flickr30K.

Init-inject Pre-inject Par-inject Merge Ceiling

BLEU-1 0.668 (0.004) 0.651 (0.002) 0.678 (0.003) 0.664 (0.003) 1.000 (0.000)
BLEU-2 0.489 (0.006) 0.472 (0.002) 0.501 (0.002) 0.487 (0.003) 1.000 (0.000)
BLEU-3 0.357 (0.006) 0.341 (0.002) 0.364 (0.003) 0.353 (0.004) 1.000 (0.000)
BLEU-4 0.263 (0.006) 0.251 (0.002) 0.266 (0.003) 0.257 (0.004) 1.000 (0.000)
METEOR 0.225 (0.001) 0.215 (0.001) 0.225 (0.001) 0.217 (0.001) 1.000 (0.000)
ROUGE-L 0.494 (0.003) 0.482 (0.001) 0.498 (0.001) 0.488 (0.002) 1.000 (0.000)
CIDEr 0.790 (0.014) 0.739 (0.005) 0.806 (0.006) 0.764 (0.007) 2.715 (0.003)
SPICE 0.153 (0.002) 0.144 (0.001) 0.155 (0.001) 0.148 (0.001) 0.431 (0.001)
WMD 0.179 (0.002) 0.170 (0.001) 0.176 (0.002) 0.172 (0.001) 1.000 (0.000)

(c) Results for MSCOCO.

Table 3.3: Results of the caption quality metrics. The ceiling is the result of using
these metrics on the test set sentences themselves.
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Init-inject Pre-inject Par-inject Merge Ceiling

Vocab. used 14.3% (0.6%) 10.0% (0.6%) 14.3% (0.5%) 11.5% (0.3%) 47.3% (0.3%)
Min. freq. vocab. 5.0 (0.0) 18.2 (4.5) 5.2 (0.4) 8.0 (2.2) 5.0 (0.0)
Mean sent. len. 10.1 (0.1) 9.4 (0.2) 10.6 (0.1) 10.0 (0.2) 10.9 (0.0)
Reused sents. 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)
Unique sents. 80.3% (1.3%) 71.2% (3.8%) 91.1% (1.0%) 86.1% (1.8%) 99.9% (0.0%)

(a) Results for Flickr8K.

Init-inject Pre-inject Par-inject Merge Ceiling

Vocab. used 5.6% (0.2%) 4.0% (0.2%) 6.3% (0.3%) 5.2% (0.2%) 24.1% (0.2%)
Min. freq. vocab. 7.8 (3.7) 77.8 (26.3) 10.4 (3.3) 10.4 (3.2) 5.0 (0.0)
Mean sent. len. 11.0 (0.6) 10.4 (0.2) 11.2 (0.2) 10.3 (0.1) 12.4 (0.1)
Reused sents. 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)
Unique sents. 74.2% (1.2%) 63.6% (3.8%) 84.2% (1.6%) 75.0% (1.7%) 100.0% (0.0%)

(b) Results for Flickr30K.

Init-inject Pre-inject Par-inject Merge Ceiling

Vocab. used 7.6% (0.2%) 5.1% (0.1%) 8.4% (0.2%) 7.3% (0.2%) 37.2% (0.2%)
Min. freq. vocab. 10.2 (3.1) 115.8 (35.8) 7.6 (1.7) 11.6 (3.3) 5.0 (0.0)
Mean sent. len. 9.3 (0.1) 9.1 (0.0) 9.2 (0.1) 9.0 (0.0) 10.5 (0.0)
Reused sents. 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)
Unique sents. 43.6% (1.1%) 28.9% (1.5%) 54.2% (0.6%) 46.9% (0.8%) 99.8% (0.1%)

(c) Results for MSCOCO.

Table 3.4: Results of the diversity metrics. The ceiling is the result of using these
metrics on the test set sentences themselves. Legend: vocab. - vocabulary, min. -
minimum, freq. - frequency, sent. - sentence, len. - length, min. freq. vocab. - the
minimum training set frequency of the words used in generated sentences.
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Init-inject Pre-inject Par-inject Merge

R@1 18.4% (0.8%) 10.6% (0.2%) 15.8% (0.6%) 15.7% (0.9%)
R@5 43.6% (0.9%) 32.3% (1.2%) 39.6% (1.0%) 37.9% (1.1%)
R@10 57.6% (1.3%) 45.4% (2.0%) 54.0% (1.7%) 50.3% (1.3%)
Median rank 7.4 (0.5) 12.8 (1.0) 9.0 (0.6) 10.4 (0.8)

(a) Results for Flickr8K.

Init-inject Pre-inject Par-inject Merge

R@1 21.8% (0.6%) 12.8% (1.0%) 20.5% (1.4%) 19.4% (1.3%)
R@5 48.9% (0.8%) 35.1% (0.6%) 46.1% (1.5%) 44.6% (1.4%)
R@10 60.3% (1.3%) 48.6% (1.3%) 58.5% (1.4%) 55.5% (0.7%)
Median rank 6.0 (0.0) 11.4 (0.8) 6.6 (0.5) 7.7 (0.4)

(b) Results for Flickr30K.

Init-inject Pre-inject Par-inject Merge

R@1 13.3% (0.2%) 6.8% (0.5%) 11.7% (0.3%) 11.2% (0.2%)
R@5 34.4% (0.4%) 21.9% (0.2%) 31.6% (0.5%) 29.8% (0.4%)
R@10 46.3% (0.5%) 33.1% (0.2%) 44.0% (0.6%) 41.8% (0.2%)
Median rank 12.6 (0.5) 22.7 (0.7) 14.2 (0.4) 16.0 (0.0)

(c) Results for MSCOCO.

Table 3.5: Results of the retrieval metrics. Legend: R@n - recall at n.

Init-inject Pre-inject Par-inject Merge

Number of params. 5199452 (0) 3682810 (0) 5628326 (0) 3396151 (0)
Number of epochs 10.6 (0.5) 16.6 (1.4) 22.4 (1.0) 14.8 (0.7)
Training time (s) 327.2 (14.2) 652.6 (52.5) 845.4 (38.5) 310.8 (14.4)

(a) Results for Flickr8K.

Init-inject Pre-inject Par-inject Merge

Number of params. 9629462 (0) 7073860 (0) 10173776 (0) 7109471 (0)
Number of epochs 9.0 (0.6) 17.8 (3.1) 18.8 (2.5) 11.0 (0.9)
Training time (s) 3518.4 (243.8) 8677.2 (1484.0) 8813.2 (1144.6) 3611.4 (282.9)

(b) Results for Flickr30K.

Init-inject Pre-inject Par-inject Merge

Number of params. 10903205 (0) 8048875 (0) 11480711 (0) 8177147 (0)
Number of epochs 11.2 (1.5) 17.0 (1.1) 20.8 (2.0) 12.2 (1.0)
Training time (s) 9255.2 (1177.2) 17372.0 (1113.9) 20141.0 (1950.6) 8224.4 (647.7)

(c) Results for MSCOCO.

Table 3.6: Results of the miscellaneous metrics. Legend: params. - Parameters
(weights and biases).
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Interim summary

• Init-inject and par-inject perform the best all round. Almost all the best results
went to either init-inject or par-inject with a small portion going to merge and a
couple going to pre-inject. Init-inject performs best at probability and retrieval
metrics (which are related) whilst par-inject performs best at the diversity metrics
(but init-inject was best according to the WMD metric). The best quality metrics
were shared between init-inject and par-inject.

• Not surprisingly, the two worst performing models also happen to be the smallest.

• The WMD quality metric seems to correlate well with the probability and retrieval
metrics. Its only mismatch is for the Flickr30K results but then init-inject and
par-inject are very close in terms of WMD, geometric mean perplexity, and R@1
metrics.
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3.4 Human evaluation

We opted to also include a human evaluation of the different captions that were generated.
Given that a caption generator is ultimately meant to be used by humans, a human
evaluation of the system’s output is important although, unfortunately, seldom done in
practice due to it being a time-consuming process. Elliott and Keller (2013) evaluated
their system by asking whether the generated descriptions were grammatical, correctly
described the action in the image, and correctly described the scene in the image. Mitchell
et al. (2012) also evaluated their system by asking whether the generated descriptions were
grammatical and correctly describe the image but included also whether the main aspects
were described, whether the order of objects was reasonable, and whether it sounds like
a human wrote it. We opted to only ask about accuracy and fluency (grammaticality) in
order to speed up the annotation process.

Five annotators were recruited to evaluate the generated captions of 200 images that
were randomly selected from the MSCOCO test set. Given that each system was run five
times, thereby generating five separate captions for each image, we randomly selected one
of the five captions for each of the 200 images and for each of the 4 architectures, resulting
in 4× 200× 1 = 800 captions, and put them in an online database which were shown to
the annotators on their personal computers.

The task of the annotators was to select which captions were a satisfyingly accurate
description of the given image (even if the grammar is poor) and which captions were
satisfyingly fluent (even if the description has nothing to do with the image). In order
to simplify the annotation process and the aggregation of results, these annotations were
binary (yes/no) rather than graded. This allows us to simply give the percentage of
captions for a given architecture that were annotated as accurate or fluent. The annotators
also thought that binary choices were easier and faster to input. Although there is a forced
choice, this did not seem to be a problem in preliminary tests.

The annotators were not informed of which caption was generated by which architec-
ture and the order of the images shown was randomised for each annotator. For each
image, the order of the captions shown was also randomised for each user. For reference,
apart from the generated captions, one of the human written captions in the test set was
also shown among the captions. The annotators were not aware of this and were told
that all captions were generated by a computer. Since there are about 5 manually written
captions for each image, one was randomly selected for each image. Therefore, the true
number of captions in the database was (4 + 1) × 200 × 1 = 1 000 captions. Figure 3.6
shows a screenshot of the instructions presented to the annotators whilst Figure 3.7 shows
a screenshot of the annotation screen with an image and corresponding captions.

All 5 annotators finished annotating all 200 images. The inter-annotator agreement,
as measured using Cohen’s kappa coefficient, is shown in Table 3.7. The agreement
is generally low, which is evidence that caption evaluation is not an exact science. It
is interesting however that human written captions have less inter-annotator agreement
than automatically generated ones. To further investigate this, we also measured the
percentage of annotations that were unanimous, that is, where all 5 annotators gave the
same annotation for a given caption, as shown in Table 3.8. Here we see that human
written captions have less agreement when it comes to fluency but more so on accuracy.
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Figure 3.6: A screenshot of the instructions presented to the annotators prior to
beginning the annotation process.

Figure 3.7: A screenshot of one of the questions presented to the annotators
during the annotation process.
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Table 3.9 shows the percentage of positive annotations given to the captions of each
architecture. We can see that human captions are much more accurate than automatically
generated captions, but then are the least fluent. This is again confirmed in Table 3.10
which shows the percentage of positive annotations after filtering for only unanimously
agreed annotations. Clearly there is something unusual about the human written captions
that was not picked up by the neural networks. The human written captions (Chen et al.,
2015) (which are the ones provided in the MSCOCO test set) are written by Amazon
Mechanical Turk workers who were asked to:

• describe all the important parts of the scene,

• not to start sentences with ‘there is’,

• not to describe unimportant details,

• not to describe things that might have happened in the future or past,

• not to describe what a person might be saying,

• not to give people proper names,

• and not to use less than 8 words.

Nothing in the rules predicts that the captions should not be fluent. Here are all of the
unanimously agreed non-fluent human written descriptions:

• a man that is jumping a skateboard outside

• a few people are getting of a plane

• a large body of water with small boats floating on top of it

• people on the street near a sea with waters

• a guy showing off a zebra at a building

• a cluttered computer desk has a nice chair with it

The second one has a spelling mistake whilst the rest sound awkward. On the other hand,
typical automatically generated captions sound like:

• a bike parked next to a wooden fence

• a group of people sitting on a bench

• a bird standing on top of a body of water

• a group of elephants standing next to each other

• a little girl sitting at a table with a cake
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Human Init-inject Pre-inject Par-inject Merge
Accuracy 0.262 0.433 0.439 0.435 0.457
Fluency 0.127 0.209 0.169 0.305 0.284

Table 3.7: Results of the amount of inter-annotator agreement using Cohen’s
kappa coefficient.

Human Init-inject Pre-inject Par-inject Merge
Accuracy 63.0% 49.0% 51.5% 55.0% 55.0%
Fluency 20.5% 42.0% 44.5% 42.5% 45.0%

Table 3.8: Results of the percentage of responses that were in unanimous agree-
ment.

Human Init-inject Pre-inject Par-inject Merge
Accuracy 87.1% 33.7% 29.4% 27.4% 27.7%
Fluency 65.7% 76.6% 80.8% 72.9% 76.2%

Table 3.9: Results of the percentage of responses that were positive.

Human Init-inject Pre-inject Par-inject Merge
Accuracy 98.4% 16.3% 13.6% 10.0% 12.7%
Fluency 85.4% 94.0% 96.6% 88.2% 91.1%

Table 3.10: Results of the percentage of responses that were positive and in
unanimous agreement out of all unanimously agreed responses.
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It is clear that the neural networks have learned a very simple grammatical pattern which
is probably the most common in the training set. The advantage of the neural networks is
that if they latch onto a fluent pattern then they can use it consistently whereas humans
are not consistent in general.

Regarding the results of the automatically generated captions, according to the auto-
matic metrics, namely geometric mean perplexity (Table 3.2c), WMD (Table 3.3c), and
recall at 1 (Table 3.5c), which all gave the same ranking in the MSCOCO data, the
performance ranking should be init-inject, followed by par-inject, followed by merge, fol-
lowed by pre-inject. But according to the human evaluation the ranking by accuracy is
init-inject, followed by pre-inject, followed by merge, followed by par-inject. Somehow,
par-inject, which was ranked as one of the best by the automatic metrics, was deemed
as performing the worst by the annotators whilst pre-inject, which was ranked as the
worst by the automatic metrics, was deemed as performing very well by the annotators.
Although there is agreement on the best architecture, perhaps more work needs to go into
designing automatic evaluation measures as there might still be a long way to go before
we should trust them as much as we do (Vinyals et al., 2017; Reiter and Belz, 2009). On
the other hand, the accuracies are quite similar to each other and only 200 images were
used so maybe a larger sample would give a different story.

Although fluent captions do not imply that they also sound pleasant, it is very telling
that pre-inject was considered to be the most fluent, even though it has very stereotyped
captions according to the diversity metrics. It seems that you can make very fluent
sentences using only very frequent words. The second most fluent system was init-inject,
which is promising given that it was the most accurate system.

We conclude this section with some examples of generated captions together with
their corresponding image in Table 3.11. We show one example for every combination of
accuracy and fluency for comparison.

Interim summary

• Init-inject is the best architecture overall.

• Beyond the best architecture, the human evaluation and automatic evaluation are
in disagreement. Assuming that the sample size is reliable, this means that the
automatic metrics might not be as reliable as we expect them to be.

• Although using only very high frequency words, pre-inject generated the most fluent
sentences of all.
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Accurate? Fluent? Caption Image
Yes Yes a bathroom with a toi-

let and a sink

Yes No a white plate topped
with a slice of cake

No Yes a man holding a ba-
nana in his hand

No No a wooden bench sit-
ting on top of a
wooden bench

Table 3.11: Examples of captions for each combination of unanimous accuracy and
fluency annotations. All of these captions were generated by the merge architecture
as it was the only one to have an example from each combination.
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3.5 Conclusion

In general, it seems that init-inject performs the best as an architecture, both according
to automatic measures and human measures. One caveat here is that these models are
highly dependent on the hyperparameters used, as a small change in the hyperparameters
might result in substantial change in performance. For example, in a previous version
of these experiments (Tanti et al., 2018) that used a less comprehensive hyperparameter
search, we found that par-inject performed poorly in general and that merge performed
the best at the diversity metrics. Given that all the models were subjected to the same
hyperparameter search process, we feel that the experiments performed here give a fair
comparison nonetheless. Some consistencies that were found across experiments are that
init-inject always performs well and merge always has a relatively small number of pa-
rameters.

For convenience, here are the architectures sorted by their general performance:

• According to automatic metrics: init-inject, par-inject, merge, pre-inject.

• According to human annotators: init-inject, pre-inject, merge, par-inject.

Whilst state-of-the-art caption generators seem to give the impression that the im-
age captioning task is solved, experiments show that these models might still not be as
grounded to vision as we would like them to be. For example Hodosh and Hockenmaier
(2016) set up a binary classification task where an image has to be assigned to one of two
captions: one being correct and one being incorrect. The classification is done by using a
caption generator to measure the probability of the caption given the image and picking
the most probable caption. When the distractor caption was completely different from
the correct caption except for mentioning the correct scene, such as ‘a man at a podium’
as opposed to ‘a woman at a podium’, the classification accuracy of the model was almost
equal to chance. Similarly, Shekhar et al. (2017) also found that caption generators were
not suitably grounded as they could not identify an incorrect caption better than chance.

How to visually ground a language model is therefore still an open question. In order
to better understand how to answer this question, it is important to first further analyse
the different ways how each architecture grounds itself in vision by probing its internal
representation. This is what we discuss in the next chapter.

70



Chapter 4

Groundedness analysis
1

1An earlier version of the work shown in this chapter has been published (Tanti et al., 2019b).
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4.1 Aims

Whereas the previous chapter focussed on the practical aspects of different caption gener-
ator architectures, in this chapter we will investigate the internal representations learned
by the different architectures. An understanding of internal representations, which is a
task in the field of explainable AI (Samek et al., 2018), can shed light on the extent to
which the generator is grounded in visual data and help to explain some of the model’s
output decisions, which is useful for understanding why a model makes any mistakes it
does and for convincing users that it is working correctly.

It is known that not all words in a sentence are given equal importance by a neural
language model (Kádár et al., 2017). Rather than measuring the importance of words,
as was done by Kádár et al. (2017), we would like to measure the importance of the
image. The main question we address is how sensitive the different caption generators
investigated in the previous chapter actually are to the visual input, that is, to what
extent the output of these models varies as a function of the image. We address this
using sensitivity analysis (Samek et al., 2018) and an analysis based on foils (Shekhar
et al., 2017). In addressing this question, we hope to achieve a better understanding of
the extent to which different caption generation architectures succeed in grounding words
in visual features.
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4.2 Experiments

Our goal is to measure how much influence visual information has on the output of each
implemented architecture described in the previous chapter. We want to see how this
influence changes throughout the course of generating a caption. We will use the already-
trained models of all architectures, datasets, and runs obtained from the previous chapter
to do this.

The way we use the captions to measure visual influence is illustrated in Figure 4.1.
We take captions from the test sets of Flickr8K, Flickr30K, and MSCOCO and feed
each caption to the already-trained caption generators one word at a time to predict the
probability of the next word. The words that are predicted by the neural network are
not used at any point in this process. Only the words in the test set captions are fed to
the neural network, just like when we were predicting the probability of captions. Each
time a word is fed, the influence of the image is measured using one of two ways described
below. We do this using all captions of a given length so that we can report the mean
amount of visual influence at each time step over all corresponding time steps in captions.
This allows us to draw a graph showing how average visual influence changes for each
word in all captions of a given length. We also consider all five runs of the trained models
and take their average visual influence per time step.

4.2.1 Visual influence measures

Although there are numerous existing techniques for measuring the visual influence of a
caption generator (Hodosh and Hockenmaier, 2016; Shekhar et al., 2017; Kádár et al.,
2017), these do not allow us to measure the influence of the image on every word but on
only some of the words such as nouns. For this reason, we developed two visual influence
measures: sensitivity analysis and omission scoring, both of which are explained in detail
below.

Sensitivity analysis

Sensitivity analysis (Samek et al., 2018) involves measuring the absolute gradient of a
model’s output with respect to its input in order to see how sensitive the output is to
different parts of the input. The more sensitive the output is to a part of the input, the
more important that part of the input is to produce the given output.

We use this technique to measure how sensitive the softmax layer is to the image at
different time steps in the generation process. We do this by computing the absolute value
of the partial derivative of the softmax output with respect to the input image vector.
The steeper the gradient of the output with respect to a given image, the greater the
change would be in the output if the image were different. It is important to note that
even though the image might only be input once as an initial state to the RNN (as would
happen in the init-inject architecture), the output’s gradient with respect to the image
will not be the same at every time step.

As we implemented our neural networks in Tensorflow, it is not possible to find the
gradient of the whole softmax vector since, at the time of writing, Tensorflow does not

73



Figure 4.1: A visual explanation of how captions from the test set are used to
measure visual influence on the output. I is an image, w is a word in a caption, and
the illustrated architecture is init-inject. Captions of a given length (three in the
diagram) are grouped together and the amount of influence that the image has on
the neural network is measured after every word. Note that the first point on the
graph is the influence of the image on predicting the first word in the caption and
not on the start token.

allow for computing full Jacobian matrices efficiently. It can only efficiently find the
gradient of a scalar (with respect to any shape tensor). Instead, we only take the gradient
of a single element in the softmax: the maximum value. The maximum probability
element in a softmax vector can be taken to be the output token of the neural network
when generating the caption greedily. This gives us a vector with a partial derivative for
every element in the image vector. We aggregate these partial derivatives by taking the
mean of the absolute values.

Note that this visual influence measure measures the influence of the image on a single
element in the softmax output only (for every time step in the captions).

Omission scoring

Omission scoring (Kádár et al., 2017) measures changes in the model’s output as some part
of an input is removed or replaced by a ‘foil’. The more the output changes as a result of
removing a particular input, the more important the removed input is. This has been done
in the image captioning domain, and has yielded datasets such as FOIL-COCO (Shekhar
et al., 2017). Shekhar et al. (2017) tested the visual sensitivity of images by replacing
words in captions with strategically chosen different words called foils which result in the
caption not being faithful to the image content any more. A trained caption generator was
then used to see if the model’s output probabilities can be used to detect which captions
contain the foil word (captions with a foil word should have a smaller probability given
the correct image than completely correct captions). The results showed that this is a
hard task for many vision-language models, despite being trivial for humans.
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(a) Dataset: Flickr8K. (b) Dataset: Flickr30K. (c) Dataset: MSCOCO.

Figure 4.2: A length-frequency plot of the captions in the test sets of each dataset.

We use a similar technique to measure how important the image is to the hidden layer
representations in the neural network by using a foil image. A foil image is selected for
each correct image by taking the nouns in the correct image’s captions and selecting all
the other test set images that do not have any caption nouns in common with it. An
image whose captions have no nouns in common is likely to have no salient objects in
common and so should depict a different scene. Given this subset of images, we then
compare each filtered image’s feature vector to that of the correct image using cosine
distance and use the image that is the most different in feature space from the correct
image. This increases the likelihood that the foil images are maximally different from the
correct image both in terms of content and feature space.

In order to measure the influence of the image on the caption generators, we measure
the cosine distance which is defined as

cos(u, v) =

∑
i(ui × vi)√∑

i ui
2 ×√∑

i vi
2

(4.1)

where u and v are equally sized vectors. Cosine is used to measure the distance between
the internal representation of the model when the correct image is used and the perturbed
internal representation when the foil image is used. The greater the distance, the more
influence the image has on the model’s internal representation and hence the more impor-
tant the image to the predicted word. For internal representations we use the multimodal
vector (RNN hidden state vector for inject architectures or the RNN hidden state vector
concatenated with the image vector for the merge architecture) and the softmax output
vector. We measure by how much these representations change when perturbed with the
foil image for every word in the image’s captions.

Note that this visual influence measure measures the influence of the image on a whole
layer rather than on a single element in a layer like the previous measure does.

4.2.2 Caption lengths

Since captions are grouped by caption length for these experiments to work (see Fig-
ure 4.1), we opted to work with a short caption length and a long one in order to see
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the effect of both short and long sentences. It is important that the number of captions
with these given lengths is sufficient to create a meaningful average when aggregating
results. Therefore, different caption lengths were selected for each dataset according to
the frequencies of each caption length in each dataset.

The frequencies of each dataset’s caption lengths form a unimodal frequency curve as
shown in Figure 4.2. We opted to choose the shortest and longest length for which there
are at least 50 different captions in the respective test set. The caption lengths we chose
were:

• Flickr8K: 5 (frequency: 66) and 13 (frequency: 65)

• Flickr30K: 6 (frequency: 68) and 14 (frequency: 54)

• MSCOCO: 7 (frequency: 800) and 15 (frequency: 51)
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4.3 Results

4.3.1 Nouns

We start with this subsection in order to make it easier to see a common trend in all
the following experiment results. As will be shown, nouns generally turn out to be an
important feature to predicting visual influence. It will be shown that when the next
word to be predicted is a noun, the image’s influence on the output tends to dramatically
increase. This makes sense since nouns tend to be visual in nature and the captions were
written with the intention of being concrete and conceptual rather than abstract, which
biases the humans writing the captions toward naming salient objects. It also makes sense
given that the convolutional neural network used to extract image features was trained for
the task of object recognition rather than something like action recognition which would
be useful for verbs. Therefore, the neural network is likely basing its decision to produce a
verb more on linguistic information than visual information. Wang et al. (2018) provides
more evidence for this by showing that a bag-of-words vector specifying which objects are
in the image is enough information to condition the neural language model in a way that
provides even better captions than when using visual features extracted from a CNN.

Therefore, before discussing the results, it is worth noting where nouns tend to occur
in the test set captions of each dataset. For this reason, we have shown in Figure 4.3 what
percentage of words are nouns in different token positions in captions. The captions were
tagged using NLTK’s default tagger2 (v3.2.5) using the universal tagset.

It is clear that nouns tend to occur mainly in two positions of a caption: the second
word and the last word, with the last word being the most likely to be a noun out of all
token positions. The captions in the datasets have a degree of stereotypical constructions
that relate two nouns on either side of the sentence, both of which are preceded by
determiners. Here are some examples from MSCOCO:

• a dog running in a field

• a statue sitting by the road near a door

• a man is walking down a path covered in a snow

It turns out that the second and last word positions usually require the most visual
information to process, as we will show below.

The reason why short Flickr8K captions seem to have the same percentage of words
being nouns in the first and second positions is because, in order to be short, they some-
times do away with the first determiner. An example of a short Flickr8K caption is “dog
running in a field”.

4.3.2 Sensitivity analysis

We start by measuring how sensitive the most probable next word in the softmax is to
the average image vector element, shown in Figure 4.4.

2nltk.pos tag()
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Noun frequencies

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.3: The percentage of sentences of the given length that have a noun at
the given token position. Note that the last token index is for the end token.
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One feature is prevalent in the charts: init-inject is much more sensitive to the image
than all the other architectures. But this is likely to be because init-inject is the only
architecture to have the hyperparameter for normalising the image vector being set to
true, which means that the image vector numbers will be very small next to unnormalised
image vectors. This will make the weights in the layer processing the image vector large
in order to compensate for this difference in magnitude, which in turn makes its derivative
large.

We can neutralise the effect of the weights being multiplied by the image vector by
instead measuring the sensitivity with respect to the post-image vector, that is, the vector
that comes out after the weights multiplication. This is shown in Figure 4.5.

The sensitivity of init-inject is now less extreme when compared to the other architec-
tures but still the highest. We can clearly see two spikes for every architecture in every
chart: one for the second word and one for the last word (not including the end token).
As mentioned in the previous subsection, this is likely due to these word positions being
usually occupied by nouns.

The fact that init-inject is both the most sensitive architecture and also performed
the best in the previous chapter does not mean that one predicts the other. Image
sensitivity and generated caption quality are only partially related at best, plus the other
architectures’ sensitivity to the image does not predict their performance.

There also seems to be a downward trend in sensitivity to the image as the word being
predicted gets closer to the end of sentence. For example, although the last word is more
likely to be a noun than the second word, the second word’s sensitivity to the image is
usually higher than that of the last word. This is likely due to the caption generator
relying more on information from the caption prefix as it gets longer rather than on the
visual information. The longer the prefix, the more information is available in the prefix
to deduce what the next word should be and thus the image becomes less important.
Although this explains the general shape of the curves, it does not explain why init-inject
is significantly affected more than merge. This is something we’ll investigate further with
omission scores in the next subsection.
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Sensitivity with respect to image

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.4: Results for gradient of maximum probability at each time step with
respect to the image. Note that the last token index is for the end token.
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Sensitivity with respect to post-image

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.5: Results for gradient of maximum probability at each time step with
respect to the post-image. Note that the last token index is for the end token.
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One reason why init-inject is so sensitive to the image has to do with the equation
describing the GRU. As already shown in Equation 2.17 in Subsection 2.3.3, the equation
describing how the next state is produced from the previous state is:

St = Gi
t � tanh(((St−1 �Gr

t)++Xt)⊗W s + bs) +Gf
t � St−1

If we abstract away details about parameters and gates then we get the following equation:

St = tanh(St−1 ++Xt) + St−1 (4.2)

where S is a matrix of state vectors, X is a matrix of input vectors, and ++ is the vector
concatenation operator. We can now see how the recurrence relation evolves with every
time step in terms of only inputs and the initial state:

S1 = tanh(S0 ++X1) + S0 (4.3)

S2 = tanh((tanh(S0 ++X1) + S0)++X2) + tanh(S0 ++X1) + S0 (4.4)

. . .

We can see that as the number of time steps increases, one thing that remains constant
is that the initial state is simply added on as is to the equation. It is not bounded by
a non-linear function like all the inputs are. Therefore the initial state is free to grow
arbitrarily in absolute value before being added in, which means that it can easily dom-
inate the value of the next state. In contrast, the LSTM would only behave similarly to
the GRU when it is the cell state that is being used as both a conditioned initial state
and a final state. The initial hidden state in the equation is always buried under at least
one squashing function, which limits its absolute value, whilst the initial cell state is un-
bounded. This hints at injecting the image into the cell state of the LSTM rather than
the hidden state. We leave confirmation of this hypothesis for future work.

For completeness’ sake, we shall also investigate how sensitive the most probable word
is to the preceding word. This is to compare how much influence visual information has
on the model as opposed to how much influence linguistic information has on the model.
The model’s sensitivity to the previous word is shown in Figure 4.6.

Here we can see that, except in Flickr8K, merge is much more sensitive to the previous
word in the caption (the one before the word position being predicted) than all the other
architectures. This sensitivity probably stems from how similar the merge architecture
is to a text-only language model. Given that the RNN hidden state vector is not being
hampered by visual information in addition to the words (which happens in inject archi-
tectures), there is a cleaner connection from the previous word to the softmax. To give
evidence of this, we compare the sensitivity of the merge architecture to the sensitivity of
a ‘blind’ language model in order to show that the high sensitivity comes from the lack of
visual interference. We train a language model on the text of MSCOCO and measure how
sensitive the maximum probability of its softmax is to the previous word. The language
model itself will be described in detail in the next chapter. The results are shown in
Figure 4.7.

We can see how similar the gradients of the language model and the gradients of the
merge architecture are, at least in scale if not in shape.
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Sensitivity with respect to previous token

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.6: Results for gradient of maximum probability at each time step with
respect to the previous token. Note that the last token index is for the end token.
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Sensitivity with respect to previous token (language model)

(a) Dataset: MSCOCO, length: 7. (b) Dataset: MSCOCO, length: 15.

Figure 4.7: Results for gradient of maximum probability at each time step with
respect to the previous token in a language model (i.e. text only). The language
model is described in detail in the next chapter (corpus: MSCOCO, corpus size:
300 000 sentences). Note that the last token index is for the end token.

Interim summary

• The maximum probability value in the softmax of init-inject is very sensitive to
the visual information, with merge coming in second. The reason for init-inject’s
sensitivity could be due to the way the GRU works. In LSTMs, the same effect can
be obtained if the image is injected into the cell state rather than the hidden state.

• Sensitivity tends to go down as the prefix gets longer. This can be due to the neural
network not needing to look at the image as the prefix gets longer as the prefix
would be enough information.

• The previous point is not sufficient to explain why init-inject loses sensitivity more
drastically than merge. This is investigated in the next section.

• The maximum probability value in the softmax of merge is very sensitive to the
previous word in the prefix. This sensitivity is similar to the sensitivity of a text-
only language model on the previous word.

4.3.3 Omission scores

One reason why the sensitivity to the image goes down in init-inject is due to it having a
finite memory. The RNN’s fixed-size hidden state vector needs to accommodate both the
visual information and information about more and more words as the prefix gets longer.
Our hypothesis is that since the RNN’s memory size is fixed, then it will be harder to
remember both the prefix and the image as the prefix gets longer in an inject architecture.
A merge architecture on the other hand has an easier time managing its memory as it is
only being used to remember words rather than the image as well.

To test this hypothesis we use a second image importance measure that measures the
visual influence on a whole layer rather than on a single element in a layer. We will be
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Figure 4.8: A simple illustration showing the original and foil multimodal vector
of the merge architecture. Rectangle widths are to scale (227 units vs. 268 units).
The top two grey and green rectangles stand for the concatenated multimodal vector
resulting from the correct image and the bottom two grey and blue rectangles stand
for the multimodal vector resulting from the foil image. Note how the grey area is
identical for both vectors, resulting in a cosine distance that should be smaller than
if the two vectors had nothing in common.

measuring how much the multimodal vector changes in terms of cosine distance if the
image were replaced with a different foil image while keeping the same caption. The
multimodal vector is the vector of activations that comes from the layer which contains
both information about the image and about the caption prefix. In the case of inject
architectures it is the RNN state itself whilst in the case of the merge architecture it is
the RNN state concatenated to the post-image vector.

Note that in the case of merge, we are measuring the cosine distance between the
RNN’s vector being concatenated with the correct image vector and the same RNN vector
being concatenated with the foil image vector. This means that the merge architecture’s
multimodal vectors have about half of the elements in their vectors being identical (about
46% to be more precise). This is shown in Figure 4.8. An analysis on randomly generated
vectors shows that if the RNN hidden state vector and post-image vector consisted of
standard normal random numbers, then the cosine distance between the correct and foil
multimodal vectors would be around 0.54 on average. This is in contrast to the cosine
distance of the two completely random vectors with nothing in common which would be
around 1.0 on average. This means that the merge architecture is expected to be at a
disadvantage as it is harder for it to produce a very different multimodal vector than the
inject architectures.

The results of the omission scoring measure of visual influence are shown in Figure 4.9.
In addition to the multimodal vector, we also show what the average cosine distance
between the original images and their corresponding foil images is.

One observation that stands out is how the merge architecture’s omission scores re-
main relatively stable and large across datasets. The fact that the merge architecture is
expected to have a smaller cosine distance but instead has a relatively large one shows
how much the architecture’s internal representation is grounded in visual information.
The fact that the visual influence remains stable whilst the other architectures seem to
lose visual information quickly as we move towards the end of the sentence is also a good
sign for the merge architecture.
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Omission with respect to multimodal vector

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.9: Results for cosine distance between multimodal vectors resulting from
the correct image and foil image. Dashed line is the average cosine distance between
the correct image and foil image. Note that the last token index is for the end token.
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For completeness’ sake, we also show how the output softmax changes when a foil
image is used to see if that changes as much as the multimodal vector. The results of the
omission measure applied to the softmax vector are shown in Figure 4.10.

One observation that stands out is that, in the previous figure, the merge architecture
has a very different multimodal vector when a foil image is used but here the output
vector seems to change just like the other architectures. In fact, all the architectures
behave almost identically. The observation is not changed when a different distance
measure is used from cosine distance, namely Jensen-Shannon divergence (JSD). JSD is
a distance function that is specifically intended for use on probability distributions and
is defined as
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where P and Q are equally sized vectors consisting of probabilities that sum to 1. The
omission results on the softmax vector using JSD as a distance measure are shown in
Figure 4.11.

Although the shapes are still very similar, we can now see a clear ranking in the last
peak of each chart. The merge architecture seems to be the most visually influenced
architecture, both with respect to the multimodal vector and the output vector. In
addition, the merge and par-inject architectures are at the top of the ranking whilst the
pre- and init-inject architectures are at the bottom. The charts show that as the number
of words being passed into the RNN increases, the distance between these two groups of
architectures starts getting wider. This makes sense, as the image is being re-introduced
into the model after every time step in the merge and par-inject architectures whereas
the other two architectures only see the image once at the beginning.

Seeing the image only once prior to the caption generation process makes it more
likely to forget what’s in the image as the caption prefix gets longer as there are more and
more words that also need to be remembered apart from the image. These two modes
of generating descriptions are analogous to a human writing a description of an image
by either seeing the image only once and then writing the description from memory or
keeping the image visible for the duration of the writing. It may very well be the case
that the humans would write different descriptions for the same image given these two
different modes of describing.

We still need an explanation for why the behaviour of the merge architecture changed
so much between the multimodal vector and the softmax output vector. The cause of
the anomalous results might be due to the softmax function itself. Applying the omission
analysis on the logits of the softmax layer (the values prior to applying the softmax
function), shown in Figure 4.12, reveals that the merge architecture’s visual influence is
still stable at the logits stage, although the relative scale has been changed. This leads
us to conclude that the instability originates at the softmax function itself.

The softmax function eliminates negative numbers in the logits by replacing them with
very small positive numbers. Therefore, if the logits vectors have a certain cosine distance
due to the numbers in one vector having a different sign (positive or negative) from the
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corresponding numbers in the other vector or if they are due to differently scaled negative
numbers, the softmax function would then eliminate this source of difference. In fact, it
turns out that the merge models have the largest magnitude negative numbers in their
logits vector, as can be seen from Figure 4.13 which shows what the minimum logit value
is for each architecture at different time steps.

This gives a tentative explanation for how a stable omission score at the multimodal
vector can result in an omission score with large spikes at the output vector. It also helps
to keep in mind that, regardless of architecture, the cosine distance between softmax
probabilities originating from the correct and foil images cannot remain stable since some
word positions do not depend on the image but only on the previous words, such as ‘a’
following ‘in’. This means that at certain word positions, there must be similar output
probabilities (when they do not depend on the image) whilst at other positions there must
be different output probabilities (when they do depend on the image).
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Omission with respect to output

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.10: Results for cosine distance between output softmaxes resulting from
the correct image and foil image. Dashed line is the average cosine distance between
the correct image and foil image. Note that the last token index is for the end token.
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Omission with respect to output (JSD)

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.11: Results for Jensen-Shannon divergence between output softmaxes
resulting from the correct image and foil image. Note that the last token index is
for the end token.
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Omission with respect to logits

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.12: Results for cosine distance between logits vectors resulting from the
correct image and foil image. Dashed line is the average cosine distance between the
correct image and foil image. Note that the last token index is for the end token.
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Minimum logit

(a) Dataset: Flickr8K, length: 5.
(b) Dataset: Flickr8K, length: 13.

(c) Dataset: Flickr30K, length: 6. (d) Dataset: Flickr30K, length: 14.

(e) Dataset: MSCOCO, length: 7. (f) Dataset: MSCOCO, length: 15.

Figure 4.13: The minimum logit (produced from correct images) at the given
token position. Note that the last token index is for the end token.
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Interim summary

• Contrary to what the sensitivity analysis suggests, when the visual influence of
the whole layer is measured, init-inject has the least visual influence out of all the
architectures.

• The merge architecture has the greatest and most stable multimodal vector visual
omission scores across word positions. This is the case even though the structure of
the merge architecture’s multimodal vector predicts that it should have a smaller
omission score. It also has the most visual influence at the output vector but the
amount of influence is not stable across word positions.

• Whether the image is input just once at the beginning (init- and pre-inject) or at
every time step (par-inject and merge) seems to effect how quickly visual influence
degrades as the caption gets longer, with the former group degrading the fastest.

• At the logits vector, merge is still stable but not the greatest and at the softmax
vector it is the greatest but not stable.

• The reason why the behaviour in the merge architecture changes at the output
vector is likely because softmax deletes negative numbers from the logits vector and
the merge architecture has the largest magnitude negative numbers in the logits
vectors of all architectures.
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4.4 Conclusion

In this chapter we have seen two ways to measure the amount of influence an image has on
a caption generator. Sensitivity analysis involves measuring the gradient of the softmax
with respect to the image and omission scoring involves measuring the amount of change
in a layer’s activation values when a different image is used. These two measures are
useful for quantifying how much visual information was necessary for each word in the
generated caption and are thus useful for partially explaining the behaviour of the neural
network.

In general, it seems that the amount of visual information used to predict a word
depends significantly on what kind of word is being predicted, such as its part-of-speech.
Nouns require more visual information to predict than others, probably because the cap-
tions were written to be concrete which makes them tend to mention objects in the
image, as well as because the convolution neural network used to extract visual features
was trained for object recognition and might be biased toward extracting object-based
features. This means that the model is more likely to make mistakes when it comes to
verbs and prepositions rather than nouns. In fact, it is possible to get a well-functioning
caption generator by only informing the language model of the objects in the image and
nothing else (Madhysastha et al., 2018), meaning that the dataset is so stereotyped that
you can correctly guess the verbs and prepositions from just the nouns.

It also seems that, although the amount of visual information needed goes down as
the word being predicted nears the end of the sentence, it is also likely that inject archi-
tectures tend to ‘forget’ visual information since their RNN needs to store both the visual
information and an ever growing amount of words as they get generated. The merge
architecture on the other hand does not have this problem since the image is kept outside
of the RNN and so is not ‘crowded out’ of memory by the words. This does not seem to
be an issue in practice however since the init-inject architecture, which suffers the most
from this loss of visual information, performs the best in terms of generated captions. It
might be because the captions are short enough to avoid losing more than the minimum
amount of information needed to produce a coherent caption. It could also be the case
that words towards the end of the captions are predictable enough from the prefix alone
that the image is not crucial beyond a certain number of words.

For convenience, here are the architectures sorted by their general performance:

• According to image sensitivity: init-inject, merge, par-inject, pre-inject.

• According to omission score at multimodal vector: merge, pre-inject, par-inject,
init-inject.

• According to omission score at output vector: merge, par-inject, init-inject, pre-
inject.

Contrary to the previous two chapters, the next chapter will not discuss any more
comparisons between architectures. Instead we take one architecture and talk about how
to pre-train its language-handling part on a corpus of text to boost its performance.
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Chapter 5

Transfer learning using the merge
architecture

1

1This chapter has been released separately as a pre-print paper (Tanti et al., 2019a).
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5.1 Aims

Up to now we have focussed on comparing the different caption generation architectures
in order to tease out any advantages one architecture might have over the others. But
there is one practical advantage of the merge architecture over the others which has to
do with transfer learning. In this chapter we will investigate what this advantage is and
perform experiments with it.

As has been explained in previous chapters, image caption generators make use of
a convolutional neural network, typically pre-trained on a separate image-only dataset,
in order to extract visual features from images. Using pre-trained neural networks to
transform inputs into high level features for other neural networks makes it easier to avoid
overfitting (Vinyals et al., 2015). In this chapter we investigate whether the language part
of the image caption generator can also be handled by a pre-trained neural network that
has been trained on a separate text-only dataset.

The language encoding part of a caption generator is the recurrent neural network
(RNN) together with the embedding layer. We collectively call the parameters of these
two layers ‘prefix encoding parameters’ because they encode a partially generated caption
prefix into a single vector. The source model from which we want to transfer these
parameters is a trained neural language model and the target model is an untrained
image caption generator.

Not all caption generator architectures allow for this kind of parameter transferring.
If the image is provided as an initial state to the RNN, as in the case of the init-inject
architecture, then the image would need to be taken into account when training the RNN
and hence cannot be trained separately. The merge architecture on the other hand leaves
the vision encoding part and language encoding part of the caption generator separate,
which allows each to be trained separately. An illustration of what gets transferred is
shown in Figure 5.1.

Figure 5.1: The architectures of the language model (top) and caption generator
(bottom) with the part that is transferred having a bold outline.
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5.2 Background

Transfer learning (Pan and Yang, 2010) is the act of exploiting the knowledge gained by
a trained model in order to improve another model’s learning process in a different task
or domain. In NLP tasks, it is common to transfer word embeddings from other tasks,
such as word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014), in order
to have more meaningful word vectors which were optimised using large text corpora.
Apart from the word embedding layer, there is also work on transferring the RNN layer
as well (Zoph et al., 2016; Ramachandran et al., 2017; Howard and Ruder, 2018; Mou
et al., 2016). Howard and Ruder (2018) conjecture that language modelling is a universal
source task for transfer learning in natural language processing. They perform transfer
learning by using a language model as an initial sentence encoder for classification tasks
such as sentiment analysis, question classification, and topic classification. Ramachandran
et al. (2017) also perform transfer learning from the source task of language modelling
but transfer to generative tasks like machine translation and abstractive summarisation
instead.

As in the present work, Ramachandran et al. (2017) implement an architecture that
makes it possible to re-use the unconditioned source language model in a target task that
requires a conditioned language model, which we solved by using the merge architecture.
In their case, they made it possible to use an init-inject architecture by using two RNNs
in series. The first RNN encoded the input text only. The second RNN was initialised
with the source sentence vector (for a translation task) but took as input the hidden state
vectors of the first. Hence, the first RNN could be pre-trained. In our case, the merge
architecture obviates the need for a dual RNN architecture, which is less computationally
demanding.

Another important consideration in transfer learning is the relative value of freezing
parameters versus fine-tuning during training. Yosinski et al. (2014) performed exper-
iments on transfer learning in CNNs and tried transferring a variable number of layers
from the input side of the neural network. With regards to the difference between freezing
and fine-tuning, the first half of the layers tend to encode features that when frozen are
difficult to exploit by randomly initialised later layers. Fine-tuning allows the transferred
and randomly initialised layers to co-operate at reaching a suitable middle-ground rep-
resentation. This observation has been called fragile co-adaptation. Mou et al. (2016)
found similar results for text classification tasks. When transferring the embedding layer
and RNN, performance is always better when the transferred parameters are fine-tuned
rather than left frozen. Mou et al. (2016) also found that when transferring between sim-
ilar tasks, such as from a sentiment analysis task to a different sentiment analysis task,
performance always improves when both the embedding layer and the RNN are trans-
ferred. On the other hand, when transferring between unrelated tasks, such as from a
sentiment analysis task to a question classification task, only transferring the embedding
layer without the RNN improves performance.

A third consideration in transfer learning is the relationship between the performance
of the source model on the source task and the performance of the transferred model on
the target task. In particular, we show below that the best performing language model
does not transfer as well as lesser-performing models. Kornblith et al. (2018) found
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similar results with CNNs. Image features produced by different CNNs were used as
inputs to logistic regressors that were trained to perform an image classification task. It
turns out that the state of the art CNNs do not produce the best fixed image features
(according to the final trained logistic regressor’s performance) but that it was some of
the lesser CNNs that do. On a similar note, Hessel et al. (2015) found something similar
with image caption generators. Different pre-trained CNNs were used to extract image
features to be used for training image caption generators. It was found that using AlexNet
(Krizhevsky et al., 2012) results in slightly better captions than using VGG-16 (Simonyan
and Zisserman, 2014), even though the first CNN has an object recognition top-1 accuracy
of 57.1% whilst the second’s accuracy is 75.6%. These results are evidence that as a neural
network becomes better at performing the source task, its internal feature representations
become overspecialised for the task and become less useful for performing other tasks.

Finally, the work of Hendricks et al. (2016) is similar to what we have done here. An
image caption generator that uses the merge architecture (like we do) was developed in
such a way that the vision handling part and the language handling part can be trained
separately and then combined together. However, this work focusses on ways to extend
the model’s vocabulary after training whereas we focus on treating the language handling
part of a caption generator in the same way as the vision handling part: using a pre-trained
neural network to extract fixed features.
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5.3 Experiments

There are several factors that could affect the performance of the final caption gener-
ator, and rather than arbitrarily picking one configuration over the others, we set our
experiments to vary across three dimensions:

• Domain: The corpus training data for the language model varies from data sampled
from the image caption domain to data sampled from general (news) text.

• Corpus size: The size of the corpus that is used to train the language model is varied
from being one tenth to ten times the size of the captions dataset.

• Frozen prefix encoding parameters: After transferring the embedding layer and RNN
parameters to the caption generator, they can either be frozen or fine-tuned during
training of the caption generator.

Our experiments consist of comparing the performance of the resulting caption gen-
erators with that of the non-transferred merge architecture that was described in the
previous chapters. We also compare the performance of the caption generators with that
of the language models they are derived from.

In these experiments, we train and evaluate image caption generators on Flickr8K
(Hodosh et al., 2013). The rationale for doing so is that this is a relatively small dataset,
which enables us to experiment with language models that are trained on corpora up
to 10 times the number of sentences of the target corpus using our available hardware
resources.

We train the neural language model on one of three different corpora. Each corpus’s
domain is of a varying degree of similarity to the final caption dataset’s domain (Flickr8K).
This allows us to see how the performance of the final caption generator changes as its
parameters are transferred from more and more distant source domains. The three corpora
are

• Same captions: An in-domain corpus consisting of the sentences in the Flickr8K
dataset itself, which is a performance ceiling since the source corpus cannot have a
closer domain to the target corpus than the target corpus itself.

• Different captions: Another in-domain corpus consisting of the sentences in the
MSCOCO (Lin et al., 2014) dataset, which is another image captions corpus but
which is different and larger than Flickr8K.

• General text: An out-of-domain corpus consisting of the sentences in the Google
one billion token language modelling benchmark corpus2 (LM1B), which is a corpus
consisting mostly of news texts.

Flickr8K and MSCOCO were both obtained from the distributed versions provided by
Karpathy and Fei-fei (2015)3.

2See: https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
3See: http://cs.stanford.edu/people/karpathy/deepimagesent/
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Language model Caption generator
Type Dataset Size multiple (10x) Dataset Frozen/Fine tuned

No transfer N/A N/A Flickr8K ‘Fine tuned’ only
Same captions Flickr8K -1, -0.5, 0 Flickr8K Frozen and fine-tuned

Different captions MSCOCO -1, -0.5, 0, 0.5, 1 Flickr8K Frozen and fine-tuned
General text LM1B -1, -0.5, 0, 0.5, 1 Flickr8K Frozen and fine-tuned

Table 5.1: Experimental configurations that were compared. Size multiple refers to
the number of sentences in the language model corpus such that a size multiple of x
means that the corpus has 10xth the number of sentences in Flickr8K (10x×30 000).
Frozen/Fine tuned refers to whether the transferred parameters were frozen during
training of the caption generator or allowed to be optimised together with the rest
of the parameters.

We also vary the size of the language model corpus training sets in order to measure
the effect of size apart from domain, where sizes are measured in number of sentences. To
vary corpus size, a random sample of sentences from one of the above corpora is selected
as a subcorpus. Each size of the subcorpus is computed as a multiple of the number of
captions in Flickr8K (each caption is one sentence long), where the multiple is an exponent
of 10. This allows us to measure how the performance of the caption generator changes
as the corpus size is changed on a logarithmic scale, which gives us corpora sizes of 3 000
sentences (10−1 of Flickr8K), 9 487 sentences (10−0.5 of Flickr8K), 30 000 sentences (100 of
Flickr8K), 94 868 sentences (100.5 of Flickr8K), and 300 000 sentences (101 of Flickr8K).

Finally, we alternate between using frozen and fine-tuned transferred parameters.
Freezing the parameters means that the prefix encoding parameters of the caption gen-
erator are not changed during training and are left as they were in the source language
model. Fine-tuning the parameters means allowing them to be further optimised whilst
training the caption generator.

Table 5.1 shows all the different experimental configurations being compared. As
a reference for comparing performance, we also train a caption generator on Flickr8K
without using transfer learning (‘no transfer’).

In all these corpora and in all their sizes, only words that occur at least 5 times in
their respective training subcorpus were included in the vocabulary, with the remaining
words being replaced by the unknown token. The vocabulary is one of the challenges
one will encounter when doing transfer learning of language models as it would differ
between the language model’s training set and the caption generator’s training set. We
set the vocabulary of the caption generator to be the intersection between the vocabulary
extracted from the language model corpus and the vocabulary that would have been
extracted from the captions dataset. This means that the final vocabulary of the caption
generator would be smaller than that of a non-transferred caption generator, with any
word out of the vocabulary being replaced by the unknown token. Note that this is what
would happen in practice when an off-the-shelf language model is used to initialise a
caption generator. Note also that the language model’s vocabulary would not be affected
by the caption generator’s vocabulary.

All sentences were preprocessed by lowercasing all characters, replacing strings of digits
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with a ‘NUM’ token, and removing all non-alphanumeric non-space characters. In order
to reduce the memory requirements of running these experiments, the LM1B corpus was
filtered so that only sentences that have no more than 50 tokens were included.

Early stopping was used on both language model training and caption generator train-
ing such that training is stopped on the epoch when the geometric mean of the perplexity
on the validation set is worse than it was in the previous epoch. These validation sets were
the ones provided with each dataset (Flickr8K, MSCOCO, and LM1B) which means that
they are in the same domain as the training set. This is so that the language model would
be closer to what would be expected from an off-the-shelf language model. Furthermore,
the validation sets were not varied in size with the training sets. It is worth noting that
in the case of ‘same captions’, the validation set used for training the language model is
the same as the one used whilst training the caption generator.

A GRU (Chung et al., 2014) was used as an RNN for both language models and
caption generators. Biases were initialised to zero. Image features were extracted from
layer ‘fc7’ (the penultimate layer) of the VGG OxfordNet 16-layer convolutional neural
network (Simonyan and Zisserman, 2014). All of this is similar to what was mentioned
in the previous chapters.

5.3.1 Hyperparameter tuning

The hyperparameters of each of the four different experimental configurations (rows shown
in Table 5.1), both of the language model and of the derived caption generator, were tuned
independently and automatically using Bayesian optimisation. In order to avoid spending
too much time on tuning, only the training set size multiple of 100 was used together with
frozen prefix encoding parameters when tuning for each configuration. The rest of the
variations on the same row in Table 5.1 shared the same hyperparameters found. The
prefix encoding parameters of the (trained) best language model (found whilst tuning
its hyperparameters) are transferred to the caption generator when it is being tuned.
The reason for choosing this method is that, in practice, the language model is tuned
independently of the caption generation task, while the caption generator itself would be
tuned to take advantage of the pre-trained language model. The ‘no transfer’ model is
exactly the same as the merge architecture described in the previous chapters.

Just like in the previous chapters, the library Scikit-Optimize4 was used to perform
hyperparameter tuning using Bayesian optimisation. As an optimisation cost function,
geometric mean of perplexity was used for the language model whilst the Word Mover’s
Distance (WMD) metric (Kusner et al., 2015; Kılıçkaya et al., 2017) was used on the cap-
tion generator. This process was performed twice for each hyperparameter combination
and the average perplexity or WMD resulting from the two independent train and gener-
ation sessions was used as a score for the hyperparameter combination. This makes the
score more robust than if the model was only trained and evaluated once. As a reminder,
the model, whose purpose is to predict the fitness of a given hyperparameter combina-
tion, is a random forest and was initialised using 32 random hyperparameter combinations
paired with their evaluated fitness (the perplexity or WMD). The hyperparameter com-
binations were then optimised by exploring a sequence of 64 candidate hyperparameters

4See: https://scikit-optimize.github.io/
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No transfer Same captions Different captions General text

weight init. method N/A Xavier Normal Xavier
max. init. weight N/A 1.72e-01 8.25e-02 4.45e-01
embed size 276 502 255 132
RNN size 227 201 427 330
optimiser N/A RMSProp Adam Adam
learning rate N/A 2.49e-03 8.34e-04 5.98e-03
weight decay weight N/A 3.72e-10 4.21e-08 1.45e-05
embedding dropout rate 0.01 0.01 0.07 0.03
RNN dropout rate N/A 0.33 0.13 0.23
max. gradient norm N/A 6.96 7.54 47.90
minibatch size N/A 210 104 68

(a) Hyperparameters for the language models.

No transfer Same captions Different captions General text

weight init. method Xavier Xavier Xavier Normal
max. init. weight 1.96e-01 2.43e-03 3.06e-04 4.52e-05
post-image size 268 430 511 307
post-image activation ReLU ReLU ReLU none
optimiser Adam RMSProp Adam Adam
learning rate 2.64e-04 2.83e-04 4.59e-05 1.30e-03
normalise image false false false true
weight decay weight 3.01e-07 2.45e-04 1.18e-10 2.87e-10
image dropout rate 0.02 0.06 0.13 0.20
post-image dropout rate 0.21 0.29 0.01 0.31
RNN dropout rate 0.28 0.41 0.18 0.01
max. gradient norm 685.80 366.97 841.50 153.06
minibatch size 237 227 18 162
beam width 5 4 4 4

(b) Hyperparameters for the caption generators.

Table 5.2: Best hyperparameters found for each experimental configuration.

that the model suggests will maximise the expected improvement in fitness. The best
hyperparameters found for each configuration are shown in Table 5.2. Again, the ‘no
transfer’ model’s hyperparameters were copied over from those of Chapter 3. Refer back
to Subsection 3.2.3 for more information regarding each hyperparameter.
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5.4 Results

Each experiment was run five times, each time using a different randomly chosen subset of
the corpus sentences to train the language model (as well as having different initial random
weights, minibatches, and other non-deterministic values). The mean of the results for
the quality of generated captions using METEOR (Banerjee and Lavie, 2005), CIDEr
(Vedantam et al., 2015), SPICE (Anderson et al., 2016), and WMD (Kusner et al., 2015;
Kılıçkaya et al., 2017) is shown in Table 5.3.

5.4.1 Transfer learning versus non-transfer learning

Transfer learning always improves over non-transfer learning. In fact, for WMD and
CIDEr, the best value shown here is better than the values obtained by any architecture
shown in Table 3.3a in Chapter 3. Looking at the WMD scores, fine-tuning only improves
the caption generator’s performance more than freezing for the ‘same captions’ corpus,
and even then it is by a minuscule amount, meaning that the prefix encoding parame-
ters are transferable between language models and caption generators as is. Regarding
the language model corpus, domain plays an important role: the ‘general text’ corpus
(LM1B) never performs better than an in-domain corpus with 9 487 sentences, even when
300 000 sentences are used. In fact, when 300 000 sentences are used to train the ‘general
text’ language model, the resulting caption generator performance is on a par with the
performance obtained by the ‘no transfer’ model.

It is interesting that simply pre-training the prefix encoding parameters on the text
of the same captions dataset that will be used to train the caption generator will improve
the performance of the final caption generator. This fact could be of great practical im-
portance when training neural networks, possibly as a form of smart initialisation where
the caption generator’s prefix encoding parameters are initialised at a sensible point in
parameter space. It could be argued that this is instead the result of more effective hyper-
parameter tuning due to a transferred caption generator having less hyperparameters to
optimise: the embedding and RNN sizes are determined and fixed by the source language
model whilst the non-transferred caption generator needs to optimise them as well. This
is in fact however a practical advantage of transfer learning where the dimensionality of
the hyperparameter search space is reduced.
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Type Frozen? Size METEOR CIDEr SPICE WMD

no trans. no 30 000 0.190 (0.001) 0.457 (0.011) 0.128 (0.002) 0.137 (0.003)

same caps. yes 3 000 0.189 (0.002) 0.467 (0.022) 0.126 (0.003) 0.139 (0.004)
same caps. yes 9 487 0.193 (0.001) 0.476 (0.015) 0.131 (0.002) 0.140 (0.002)
same caps. yes 30 000 0.194 (0.002) 0.476 (0.010) 0.132 (0.001) 0.140 (0.002)

same caps. no 3 000 0.190 (0.004) 0.447 (0.017) 0.127 (0.003) 0.137 (0.003)
same caps. no 9 487 0.194 (0.001) 0.485 (0.009) 0.130 (0.002) 0.141 (0.002)
same caps. no 30 000 0.194 (0.003) 0.478 (0.011) 0.131 (0.003) 0.140 (0.003)

diff. caps. yes 3 000 0.187 (0.001) 0.431 (0.007) 0.124 (0.001) 0.136 (0.002)
diff. caps. yes 9 487 0.189 (0.001) 0.451 (0.006) 0.126 (0.002) 0.139 (0.001)
diff. caps. yes 30 000 0.191 (0.001) 0.475 (0.007) 0.130 (0.001) 0.140 (0.002)
diff. caps. yes 94 868 0.192 (0.002) 0.478 (0.009) 0.132 (0.002) 0.141 (0.003)
diff. caps. yes 300 000 0.190 (0.001) 0.469 (0.010) 0.130 (0.001) 0.139 (0.002)

diff. caps. no 3 000 0.190 (0.002) 0.438 (0.005) 0.126 (0.002) 0.137 (0.002)
diff. caps. no 9 487 0.191 (0.002) 0.459 (0.013) 0.129 (0.002) 0.138 (0.002)
diff. caps. no 30 000 0.195 (0.002) 0.482 (0.010) 0.133 (0.002) 0.140 (0.003)
diff. caps. no 94 868 0.194 (0.002) 0.471 (0.013) 0.132 (0.002) 0.137 (0.002)
diff. caps. no 300 000 0.194 (0.002) 0.482 (0.008) 0.133 (0.001) 0.140 (0.002)

gen. text yes 3 000 0.145 (0.006) 0.245 (0.017) 0.071 (0.005) 0.095 (0.004)
gen. text yes 9 487 0.171 (0.004) 0.364 (0.015) 0.113 (0.003) 0.123 (0.003)
gen. text yes 30 000 0.182 (0.002) 0.425 (0.004) 0.122 (0.001) 0.134 (0.001)
gen. text yes 94 868 0.183 (0.002) 0.446 (0.011) 0.125 (0.002) 0.135 (0.003)
gen. text yes 300 000 0.186 (0.002) 0.453 (0.010) 0.127 (0.001) 0.137 (0.002)

gen. text no 3 000 0.156 (0.003) 0.220 (0.011) 0.074 (0.002) 0.097 (0.002)
gen. text no 9 487 0.183 (0.002) 0.370 (0.008) 0.118 (0.003) 0.124 (0.002)
gen. text no 30 000 0.187 (0.001) 0.419 (0.011) 0.125 (0.001) 0.130 (0.003)
gen. text no 94 868 0.187 (0.001) 0.431 (0.015) 0.125 (0.002) 0.133 (0.004)
gen. text no 300 000 0.190 (0.002) 0.440 (0.012) 0.128 (0.002) 0.134 (0.002)

Table 5.3: Results for the final generated captions after transfer learning. Under-
lined values are the best results for each experiment type whilst boldfaced values
are the best results across all types. The ‘no transfer’ values were copied from Ta-
ble 3.3a. Legend: no trans. - no transfer learning, frozen - frozen parameters (vs.
fine-tuned), size - corpus size, diff. caps. - different captions, gen. text - general
text.
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Interim summary

• Transferring the prefix encoding parameters of a language model to a caption gen-
erator without fine tuning, just as is done with a convolutional neural network, is
possible and leads to improvements over not using transfer learning.

• Transfer learning with the merge architecture results in better performance than
any other architecture with no transfer learning (on Flickr8K).

• Transfer learning from a non-captions corpus requires 10 times the number of sen-
tences in a caption dataset in order to achieve equal performance to non-transfer
learning on the caption dataset.

• Transfer learning on the text of the same captions dataset (that the resulting caption
generator will be trained on) results in better performance than not using transfer
learning.

5.4.2 Size of language model corpus

One important observation in Table 5.3 is that increasing the language model corpus size
does not automatically increase the resulting caption generator performance. In the case of
the ‘same captions’ and ‘different captions’ models, on most quality metrics, pre-training
on part of the language model corpus gives a better performance than pre-training on
the largest size. Figure 5.2 shows more clearly how the caption generator’s WMD score
changes as the language model’s corpus size changes.

The reason for the performance getting worse after a certain point in corpus size could
be related to the language model’s performance. In order to check for this, we measured
the geometric mean of the perplexity of the language models on their respective validation
set corpus in order to measure the performance of the language model rather than that
of the caption generator.

Comparing perplexities given differently sized vocabularies

One must be careful when comparing the perplexity of language models with different
vocabularies as we have done. This is because the unknown token gives an unfair advan-
tage to smaller vocabularies. To understand this, imagine if, in the extreme case, all the
words were omitted from the vocabulary and were all replaced with the unknown token.
This would make every word almost perfectly predictable (save for the end of sentence
token) and the language model would assign almost 100% of the probability to the un-
known token each time, leading to a perplexity that is almost perfect. Adding words to
the vocabulary would then make the prediction more uncertain and thus lead to a worse
perplexity, with larger vocabularies resulting in more uncertainty than smaller ones. This
means that language models with smaller vocabularies have an unfair advantage over
language models with larger vocabularies, regardless of what probabilities they actually
output.

To get around this problem and make the unknown token behave more fairly, we
divide the probability assigned to the unknown token by the number of different words it
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(a) In-domain: same cap-
tions

(b) In-domain: different
captions

(c) Out-of-domain: gen-
eral text

Figure 5.2: The WMD score of the different language models measured on the
Flickr8K test set captions after transfer learning. Each colour bar shows the number
of sentences that the language model was trained on. The black dotted line indicates
what WMD score the ‘no transfer’ model obtained. Note how the largest in-domain
corpora do not result in the best WMD. As for the out-of-domain corpus, whilst
there is a monotonic increase in WMD with corpus size, it also does not perform as
well as the in-domain corpora.

replaces in the corpus we are using it on. For example, if the number of different words in
the corpus being used to evaluate the language model is 1 000 and the known vocabulary
covers 400 of those word types, then the unknown token will be replacing the remaining
600 word types. Given that the language model does not give any information about
those 600 word types, we assume that they are uniformly distributed and assume that
the probability assigned by the language model to the unknown token is evenly divided
between all those 600 word types. Now, whenever we encounter an unknown token in
the corpus, we replace its probability p by p

600
. This effectively makes the vocabulary size

equal to 1 000 again, with the 600 out-of-vocabulary words dividing the unknown token’s
probability mass equally among themselves. This eliminates the advantage gained by
smaller vocabularies as all vocabularies are effectively of equal size now.

Perplexity results

Figure 5.3 shows the perplexity of every language model on its corresponding validation
set corpus. It shows that the language models do not perform worse as the corpus size
grows, apart from the general text corpus. The general text language model might start
performing worse after a certain corpus size due to the vocabulary being too large for
the hyperparameters chosen for the language model (which were tuned using a smaller
corpus). On the other hand, the performance of the caption generator that was transferred
from the largest general text corpus language model was the best. There is an interesting
relationship between the performance of the language model and the performance of the
transferred caption generator which we can highlight with a scatter plot.

Figure 5.4 shows a scatter plot that illustrates the relationship between language
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(a) In-domain: same cap-
tions

(b) In-domain: different
captions

(c) Out-of-domain: gen-
eral text

Figure 5.3: The language model perplexity of the different language models mea-
sured on their respective validation set corpus. Each colour bar shows the number of
sentences that the language model was trained on. Smaller perplexities are better.
Note how the perplexity keeps improving when larger corpora are used which means
that the reason for the degradation in the transferred caption generator performance
is not due to a degradation in the performance of the source language model.

model perplexity and the transferred caption generator WMD. The WMD score starts
off correlating with the perplexity until the best perplexity is reached, at which point the
WMD score dips. There seems to be an exception in the case of the fine-tuned version of
the ‘different captions’ model where an outlier seems to disrupt the trend but everywhere
else the trend is preserved.

So why does the WMD score stop correlating with the corpus size after a point?
We explain this as a case of overspecialisation. A language model that is too good at
language modelling will produce an internal representation of the sentence prefix that is
too specialised in language modelling to be also useful (and hence transferable) to the
caption generation task. We are thus in agreement with Kornblith et al. (2018) that state
of the art neural networks in a source task might not be ideal to perform transfer learning
in a target task.

Interim summary

• The resulting caption generator’s WMD performance does not increase monotoni-
cally with the corpus size that the language model is trained on.

• The language model’s perplexity improves with every increase in corpus size but
this stops correlating with the resulting caption generator’s WMD beyond a certain
perplexity value. We hypothesise that this is due to the language model becoming
overspecialised in language modelling and the internal representations not being
generic enough to be useful in other tasks.
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(a) In-domain: same cap-
tions

(b) In-domain: different
captions

(c) Out-of-domain: gen-
eral text

Figure 5.4: Scatter plot relating language model perplexity and transferred cap-
tion generator WMD score. To the right of each point is the number of sentences
used to train the language model. Points that are vertically higher have a better
WMD score whilst points that are further to the left have a better perplexity. Note
how, in general, the best perplexity does not give the best WMD score.

5.4.3 Partial training of language models

The previous results led us to a new hypothesis that, rather than varying the perplexity of
the language model by varying the training corpus sizes, we can instead prematurely stop
the language model’s training process before peak validation performance is reached and
check if this will also lead to better transferability. We tested this hypothesis by partially
training the language model for a fixed number of epochs before transferring the prefix
encoding parameters and measuring the resulting caption generator’s WMD score.

Given a number of epochs n, we trained the language model for n epochs and then
transferred its prefix encoding parameters to the caption generator. We varied n to be
between 0 (no language model training, just transfer the random parameters as is) and
15. For each n, we retrain both the language model and caption generator for five times,
just like the main experiments described above.

We only accepted a trained language model if its perplexity on the validation set kept
improving after every epoch. If not, we started training over again. If after five attempts
at re-training a language model the validation perplexity kept peaking before reaching
the nth epoch, we terminated training there, and recorded at which n this happened.
We then continued increasing n without early stopping in order to see if an overfitted
language model (overfitted according to the language model’s validation set) resulted in
a better or worse caption generator. The largest n we reached with early stopping (no
overfitting) was 13.

For each language model corpus, we included both frozen and fine-tuned prefix encod-
ing parameters. Since this experiment takes a long time to complete, we only used one
corpus size which is 30 000 sentences, that is, the full size of Flickr8K, with the other cor-
pora consisting of a random sample of sentences as described before. The results, shown
in Figure 5.5, reveal several interesting points.
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(a) In-domain: same cap-
tions. Best WMD (0.142)
reached at epoch 10 with
frozen prefix encoding pa-
rameters. Overfitting oc-
curred after epoch 13.

(b) In-domain: differ-
ent captions. Best WMD
(0.141) reached at epoch 9
with frozen prefix encod-
ing parameters. Overfit-
ting occurred after epoch
7.

(c) Out-of-domain:
general text. Best WMD
(0.136) reached at epoch
12 with frozen prefix
encoding parameters.
Overfitting occurred after
epoch 10.

Figure 5.5: How the WMD score in the transferred caption generator changes as
the language model is trained for a varying number of epochs. The dark vertical
line shows the last epoch before the language model started overfitting (in terms of
perplexity measured on the validation set).

After training for two epochs, the transferred frozen parameters are sufficient for gen-
erating captions that are close to the best quality. In fact, for the ‘different captions’
and ‘general text’ corpora, using the randomly initialised prefix encoding parameters and
leaving them frozen (frozen zero epoch training) does not result in substantially degraded
performance.

This can be explained on the grounds that although an RNN has random weights, it
does not act non-deterministically. In fact, it still encodes something about the prefix of
the partially generated caption; it is just that the encoding is not optimised to work well
on the training set. The neural layer that reads and processes the RNN’s hidden state
vector can still find some useful features about the prefix from the ‘wild’ encoding given
by a random RNN. This recalls findings in research on echo state networks (Jaeger and
Haas, 2004), where a randomly initialised simple RNN is frozen during training and only
the layer that reads the RNN’s hidden state vector is trained. With echo state networks,
however, the RNN’s random weights are supposed to have a spectral radius that is less
than one, whereas here we do not use any such restriction.

Although the ‘same captions’ corpus does result in substantially degraded performance
for the frozen zero epoch training version, we determined that this is due to differences
in the chosen hyperparameters. In fact, we found that a single hyperparameter change
can give substantial improvement to the frozen zero epoch training version: initialising
weights using a normal distribution instead of using Xavier initialisation. This results in
a WMD of 0.118, exceeding the WMD of 0.115 of frozen zero epoch ‘different captions’.
Xavier initialisation uses a smaller variance in random values which probably results in
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most of the activations in the RNN’s hidden state vector being similar and hence making
it harder to accidentally encode enough useful distinct features. That said, the frozen
zero epoch training version of the ‘general text’ language model still works relatively well
with Xavier initialisation so this explanation is not complete.

Finally, and most importantly, partial training does not seem to have the same effect
as limiting the amount of data to train on. Whereas the previous results showed that
changing the amount of data results in a predictable change in performance, changing
the amount of epochs for which to train the language model seems to result in a more
haphazard change in performance.

Interim summary

• Partial training does not seem to have the same effect as training on less data when
it comes to avoiding overspecialisation in the language model.

• Randomly set prefix encoding parameters work reasonably well if left frozen when
training the rest of the caption generator. Randomly determined features can still
accidentally include useful features.
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5.5 Conclusion

In this chapter we have taken advantage of an interesting property of the merge architec-
ture, which is that its RNN and embedding layer can be pre-trained on text-only data.
This is done by training text-only language model on a corpus and then transferring its
RNN and embedding layer parameters to those of the caption generator. Inject architec-
tures do not allow for this to happen easily as their RNN needs to be trained with visual
information present since it is inputted into the RNN.

We have shown that a caption generator benefits from having its embedding layer and
RNN transferred from a language model, but only when transferring from an in-domain
corpus. When a general text corpus is used rather than captions, the model does not
perform better than a non-pre-trained caption generator.

We also found that simply pre-training the embedding layer and RNN on the text of
the same captions dataset that it will eventually be trained on after transferring is also
beneficial, even if less data is used to pre-train the RNN and embedding layer. Interest-
ingly, this will only work if the language model is exclusively trained on a fraction of the
dataset. Beyond a certain number of sentences in the training corpus, the performance
of the final caption generator begins to drop. We called this phenomenon overspecialisa-
tion, which is when the internal features produced by the language model become overly
specialised in the task of language modelling, which interferes with their ability to be
useful in other tasks such as the caption generation task. This is not the same as overfit-
ting, which is when the model memorises the training data and does not generalise. An
overspecialised model can still generalise, but only in one task.

Furthermore, partial training of the language model does not seem like a reliable way
to prevent this overspecialisation from happening as the performance of models that were
trained for a fixed number of epochs seems haphazard at best.
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Chapter 6

Conclusion
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6.1 Summary and answers to research questions

We have determined from the literature on caption generation that there are four main
neural network architectures for including visual information into neural language models.
These architectures were named init-inject, pre-inject, par-inject, and merge, and are
illustrated in Figure 2.14 in Subsection 2.5.3.

We started this thesis with research questions about the theoretical nature of ground-
ing language in vision followed by three more specific questions. We shall now be answer-
ing these questions.

6.1.1 Research questions 1 and 2

Should the visual information be encoded together with the words as a single mixed repre-
sentation?
Should it be introduced just once at the beginning only?

Different measures to rank these architectures by their performance agreed that the
best performing architecture is the init-inject architecture. This was confirmed by both
automatic and human evaluation. This is evidence in favour of mixed representations and
one-time image input. There could be a number of reasons for this.

One-time image input architectures like init-inject and pre-inject have their image layer
size tied to another layer size such as the embedding layer size or the RNN size. This
(1) creates a shared image representation with the RNN state/embedding representation
that could result in a better represention for both and (2) it reduces the number of
hyperparameters needed to tune them since there would be fewer independent layer sizes
to change, which makes it more likely to find a quasi-optimal hyperparameter combination.

Another reason is that, since the image representation is stored inside the RNN’s
hidden state vector together with the caption prefix information, and since the hidden
state vector changes for every word in the prefix, then the image representation gets
to evolve with every word in the prefix. This might have an effect similar to attention
mechanisms where the image representation changes depending on what has been already
generated.

Finally, the absolute values of the initial state of the GRU are not bounded by a
squashing function and can be as large as needed. This might help init-inject work better.
This can also be the case with LSTM provided that the cell state is what is initialised
with the image.

On the other hand, an analysis of the visual influence on the output of the models
showed that the visual influence on init-inject goes down quickly as the number of words
generated grows. This means that init-inject might suffer when generating long captions.
The visual influence of par-inject and merge goes down more slowly meaning that these
two architectures could work better when longer captions are generated.

6.1.2 Research question 3

What are the merits of each architecture?
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Here is a summary of all the interesting features observed in each architecture through-
out the whole thesis:

Init-inject: The init-inject architecture was found to generally be the best performing
architecture according to our experiments. It also has its most probable next word being
the most sensitive to the image content, the fact that the image representation is shared
by the RNN state representation might allow it to learn to perform well with a small
model, and it has fewer hyperparameters to tune due to having tied layer sizes. Finally,
it seems that the GRU is well suited for init-inject since it allows its initial state to grow
without bound from a squashing function and the LSTM might also be well suited if the
cell state is initialised with the image.

Pre-inject: Although it produced captions using very high frequency words only, the
pre-inject architecture happened to generate the most fluent sounding captions. Also, the
fact that the image representation is shared by the embedding word representation might
allow it to learn to perform well with a small model and it has fewer hyperparameters to
tune due to having tied layer sizes.

Par-inject: The par-inject architecture requires a large model in order to perform well.
On the other hand, the fact that the image is re-input after every time step allows it to
keep the caption influenced on the image more than the other two inject architectures. It
is likely that as the caption gets longer, par-inject will perform better than the other inject
architectures as its visual information is continuously refreshed rather than provided once
at the beginning only.

Merge: Although it does not have any representation shared with the that of the image,
the merge architecture can still perform well with small models. It also has its most
probable next word being the most sensitive to the previous word, its output probabilities
as a whole are the most influenced by the image data, and it is likely that as the caption
gets longer, merge will perform better than init- and pre-inject as its RNN’s hidden state
vector does not need to remember any visual features, meaning that it is better able
to remember a long caption prefix. Merge is also the only architecture that can copy
parameters over from a text-only language model without further fine-tuning, and as a
result performs better than all the other architectures.

6.1.3 Research question 4

Are there architectures that are influenced less by visual information than others?

Yes, the merge architecture is the one whose entire output probability distribution
gets changed the most by changing the image whilst the init-inject architecture is the
architecture whose maximum output probability is most sensitive to the image.
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The init-inject architecture is also the one which loses its sensitivity the fastest as the
caption gets generated one word at a time. This could be because, as the caption gets
longer, the RNN needs to remember all the words that were generated in order for the
model to predict the next sensible word. Given that the RNN’s hidden state vector is
finite, this linguistic information would start to ‘crowd out’ the visual information. It is
possible that crowding out the visual information might even be a strategic optimisation
given the RNN’s finite state size since the generated words might be enough to predict
the next word even if the image is partly forgotten.

6.1.4 Research question 5

Is it possible to train the visual and linguistic parts of the merge architecture separately?

Yes, and not only is it possible but the performance improves as well and it performs
better than the init-inject architecture. We accomplished this by first pre-training the
embedding layer and RNN in a language model and then passing the trained parameters
over to the merge architecture. This works even when the same text of the captions
dataset is used to pre-train the embedding layer and RNN. This could be due to a number
of reasons.

Transfer learning results in fewer independent hyperparameters to tune as the layer
sizes in the caption generator will be tied to those of the language model in order to be
compatible. This makes it more likely to find a quasi-optimal hyperparameter combina-
tion.

It is possible to leave the embedding layer and RNN parameters set randomly during
training and the caption generator’s performance will not go down drastically. This means
that most of the work is done by the rest of the model which is even able to work with a
randomly set RNN. Therefore, providing a pre-trained RNN would not disrupt the rest of
the model’s training and could instead start the model off from a sensible starting point
from which to train.

Although pre-training RNNs in language models generally improves the caption gen-
erator’s performance, it is worth noting that better language models do not necessarily
translate into better caption generators. If the language model’s performance goes beyond
a certain point, the resulting caption generator starts to perform worse than it would with
a worse language model. This means that the language model would be overspecialised in
language modelling and the internal representations would not be useful in other tasks.
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6.2 Limitations

The present work opens up several new questions which, in retrospect, also suggest alter-
natives to some of the methodological decisions taken in the experiments reported in the
previous chapters.

After automatically searching for suitable hyperparameters to use when training each
neural network architecture, we only took the best hyperparameter combination found
for each architecture and used only that throughout the experiments. We then retrained
and evaluated each model using the same hyperparameter combination five times and
took the average of the five results. This explores the variation in results from the same
model definition but does not explore how sensitive the architecture is to changes in
hyperparameters. It would be more informative if the top 5 (different) hyperparameter
combinations found were used such that a different one is used for each run.

In the human evaluation of the generated captions it would have been useful to also
ask whether a given caption was pleasing as well as accurate and fluent. Although human-
written captions were annotated as less fluent than the automatically generated ones, this
does not mean that the generated captions would be preferred over the human-written
ones. The variation in a human-written caption might be more pleasing to read than
the rigorously structured generated captions, even if the latter were more fluent. As the
evaluation stands, we know whether the generated captions are accurate and fluent but
not if they are desirable.

Also in the human evaluation, the fact that human-written captions were shown to-
gether with the automatically generated ones might have influenced the annotators to-
wards being more judgemental towards the less accurate machine generated captions. It
would have been better to show one caption per image and to only ask about that cap-
tion. It would also have been better if the fluency question was asked separately from
the accuracy question and if the image was not shown when asking it. Unfortunately
this would have also required more annotators in order to be able to still have multiple
responses per question.

There are also some minor details in the experiments that might make more sense had
they been changed but this was realised after all the experiments were complete. These
are:

• Rather than use a uniform distribution as a possible hyperparameter for initialising
random weights, it would have been better to use only normal distributions and use
the standard deviation of the normal distribution to control the range of weights
instead of clipping them.

• Rather than replacing all strings of digits with a single pseudo-word, it would have
been better to have treated each digit as a separate token in order to avoid losing
information whilst still avoiding low frequency strings of digits.
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6.3 Future work

The work presented here opens up several avenues for further research. Here we have
listed some ideas we would like to pursue in the future.

In the present work we have investigated each individual architecture in isolation, but
in the literature several systems consist of combining two or three architectures at once
such as init-inject together with par-inject together with merge (Xu et al., 2015). An
analysis of the effect of combining these architectures together would be useful in order
to investigate whether emergent properties develop where the whole is greater than the
sum of its parts.

As stated in the introduction, we do not use attention mechanisms in the present work
because that would typically exclude init-inject and pre-inject architectures. It would be
interesting to see if the use of attention mechanisms works better on merge rather than
par-inject, but now that we know that init-inject gives the best performance, perhaps it
is also worth considering the use of init-inject in attention mechanisms by using the less
efficient basic language model training method described in Subsection 2.4.4.

In chapter 5 we performed transfer learning on the merge architecture by pre-training
the RNN and embedding layer on a text corpus and then evaluating the resulting caption
generator on the small Flickr8K dataset. Flickr8K was used in order to train on text
corpora that are up to 10 times larger than the captions dataset without requiring more
hardware than we had available. Nonetheless, an interesting observation was that even
by just training the RNN and embedding layer on the text part of Flickr8K itself, better
performance would be obtained than when not using transfer learning. We would now
like to see whether this would also happen if the captions dataset was the large MSCOCO
dataset and the text corpus was the text part of the MSCOCO dataset itself.

It would also be interesting to confirm what the effect of using an LSTM instead of a
GRU would be and to confirm that using init-inject on the cell state would work better
than on the hidden state.

Finally, we would like to apply the experiments performed in the present work on
tasks other than image caption generation. It would be interesting to see whether the
same results hold for other conditioned language models such as those used in machine
translation.
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