
A Big Data Approach
for Clustering Large
Chemical Datasets
JURGEN CASSAR

Supervised by Dr Charlie Abela,
Dr Jean-Paul Ebejer

Department of AI

Faculty of ICT

University of Malta

September, 2018

A dissertation submitted in partial fulfilment of the re-

quirements for the degree of M.Sc. AI.

ii

Statement of Originality

I, the undersigned, declare that this is my own work unless where otherwise
acknowledged and referenced.

Candidate Jurgen Cassar

Signed

Date June 22, 2019

iii

Acknowledgements

A number of people have helped me during my life and especially dur-

ing the period of my dissertation. Special thanks goes to my girlfriend,

family and friends for their constant support throughout the duration of

this dissertation. Their support ensured that I continued to strive forward

even when times were difficult. Also a big thanks goes to my supervisors

Dr Charlie Abela and Dr Jean-Paul Ebejer for their constant guidance and

help through the period of the dissertation.

iv

Abstract

Physically testing compounds for their biological activity with respect

to a target protein is an expensive and time consuming problem in the drug

discovery process. Clustering is one of the techniques that enables a more

efficient method of selecting compounds for testing. This is done by group-

ing similar molecules together with the advantage of testing only the com-

pounds from the clusters which contain compounds which exhibit some

activity. However, large molecular datasets pose a challenge to efficiently

cluster the dataset. Hierarchical clustering techniques are shown to be the

most effective in separating active compounds from inactive ones, however

the time and space complexity make them impractical for large datasets.

Distribution of clustering algorithms may be a possible solution, with Big

Data techniques enabling large scale distribution of tasks. In this research,

D-Butina a distributed version of Butina clustering algorithm was imple-

mented. The algorithm was extended to create DLSH-Butina algorithm

which uses approximation method to identify neighbours. Both implemen-

tations obtain satisfactory results, with D-Butina implementation providing

increasing speedup of 2.4 and 3.9 when using 5 and 10 distributed nodes,

while DLSH-Butina achieves a speedup of 4.1 and 8.4 respectively over

the serial approach. Additionally, the clusters achieved by the D-Butina

and DLSH-Butina algorithms achieve better separation of actives within the

clusters generated than Bisecting k-means.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and Objectives . 4
1.3 Proposed Solution . 4
1.4 Document Structure . 5

2 Background & Literature Overview 7
2.1 Computational Representation of Molecules 7

2.1.1 Graph Representations . 7
2.1.2 Connection Tables . 8
2.1.3 Linear Notations . 9

2.2 Molecular Similarity . 10
2.2.1 Molecular Structure . 10
2.2.2 One dimensional Molecular Descriptors 11
2.2.3 Two dimensional Molecular Descriptors 12
2.2.4 Three dimensional Molecular Descriptors 14
2.2.5 Similarity Measures . 15

2.3 Clustering . 16
2.3.1 Non-Hierarchical Clustering 16
2.3.2 Hierarchical Clustering . 21
2.3.3 Big Data Clustering . 25

v

CONTENTS vi

2.4 Big Data Paradigm - Map Reduce 28
2.5 Big Data Techniques . 29

2.5.1 Hadoop MapReduce . 29
2.5.2 Apache Spark . 30

2.6 Evaluation Criteria . 31
2.6.1 Evaluating Quality of Clusters 31
2.6.2 Evaluating Performance . 34

2.7 Related Work . 35
2.7.1 Clustering Small Molecules 35
2.7.2 Clustering Large Datasets 37

2.8 Chapter Summary . 40

3 Methodology 41
3.1 Decision of Proposed Approach . 41

3.1.1 Experiment Setup . 42
3.1.2 Scalability Results . 43
3.1.3 Clustering Quality Results 45

3.2 Approach Overview . 49
3.3 Spark Framework . 51
3.4 Datasets . 52

3.4.1 DUD-E . 52
3.4.2 ZINC . 52

3.5 D-Butina . 54
3.5.1 Neighbours Identification Phase 54
3.5.2 Clustering Phase . 57

3.6 DLSH-Butina . 68
3.6.1 Locality Sensitive Hashing 70
3.6.2 Clustering Phase . 73

3.7 Chapter Summary . 73

4 Results & Evaluation 75
4.1 Experiments Design . 75
4.2 Cloud Infrastructure . 76

CONTENTS vii

4.3 Evaluation Dataset . 77
4.4 Results . 78

4.4.1 Selecting the Butina Similarity Threshold 78
4.4.2 Locality Sensitive Hashing (LSH) Parameters 83

4.5 Evaluation . 85
4.5.1 Clustering Efficiency . 85
4.5.2 Clustering Quality Results 90

4.6 Chapter Summary . 94

5 Conclusion 95
5.1 Contributions . 96
5.2 Critique and Limitations . 97
5.3 Future Work . 98
5.4 Final Remarks . 100

A Unknown Activity molecules 101

B CD Contents 105

C Installation Instructions 106
C.1 Environment Setup . 106
C.2 Running D-Butina . 107
C.3 Running DLSH-Butina . 107
C.4 Running Output Analysis . 108

Bibliography 109

List of Figures

1.1 Small-molecule binding example . 2

2.1 Vanillin molecule . 8
2.2 Connection Table for Vanillin molecule. 9
2.3 Similarity calculation of two SMILES strings. 11
2.4 Image showing iterations to create Extended Connectivity Fingerprints. 14
2.5 Classification of clustering algorithms 16
2.6 Exclusion Sphere Example . 20
2.7 Dendrogram for hierarchical clustering algorithms. 23
2.8 Example showing Bisecting k-means clustering results. 25
2.9 Example showing the steps of Locality Sensitive Hashing process. . . 28
2.10 Lineage Graph . 31

3.1 Scalability analysis on four serial clustering algorithms. 44
3.2 Comparison of QPI results for the four selected serial clustering algo-

rithms. 47
3.3 Comparison of F-measure results for the four selected serial cluster-

ing algorithms. 48
3.4 High level diagram of the presented distributed clustering approaches. 50
3.5 Architecture of the distributed Spark clusters 51
3.6 D-Butina process flow. 55
3.7 Example showing the calculation of the complete similarity matrix

distributed among the worker nodes 56

viii

List of Figures ix

3.8 Example showing the clustering scenario in the Butina approach. . . 59
3.9 Example showing local computation and synchronisation of the clus-

tering approach. 66
3.10 Example showing the clustering scenario in the Butina approach. . . 67
3.11 DLSH-Butina process flow. 69
3.12 Minhash process example. 71
3.13 Locality Sensitive Hashing example 72
3.14 Process flow of neighbour identification process using LSH in a dis-

tributed environment. 74

4.1 Parameter estimation using QPI results 79
4.2 Parameter estimation using F-measure results 81
4.3 Speed performance comparison in logarithmic time for five workers 88
4.4 Speed performance comparison in logarithmic time for ten workers . 89

List of Tables

2.1 Example of Fingerprint Representations of SMILES strings. 13
2.2 Review of clustering algorithms applied to clustering small-molecules. 38

4.1 Characteristics of evaluation datasets 78
4.2 F-measure results for Butina on Renin dataset 81
4.3 F-measure results for Butina on THB dataset 82
4.4 F-measure results for Butina on ABL1 dataset 82
4.5 Locality Sensitive Hashing parameter estimation 84
4.6 D-Butina processing time. 86
4.7 DLSH-Butina processing time. 87
4.8 Bisecting k-means processing time. 87
4.9 Quality based comparison of clustering results. 91

A.1 Comparison of unknown activity molecules with activity potential . 104

x

1

Introduction

The process of getting a drug to market takes on average 14 years to complete
with costs reaching approximately 1.8 billion USD [1, 2]. This affects both phar-
maceutical companies with the aim of investing in new drugs and patients in a
negative way. One way of improving the process is through the use of Chemoin-
formatics. Chemoinformatics can be defined as the application of computational
methods to the process of drug discovery to aid with gaining knowledge from
the information available [3]. Clustering is one of the techniques used, with the
aim of grouping large datasets of small-molecules, to enable informed selection
of molecules having the properties required to become drugs.

1.1 Motivation

One of the first steps in the drug discovery process is the identification of a
subset of small-molecules having the potential of being active with respect to
the target protein. A target protein is the compound that is responsible for a
disease state [2]. For a drug to function against such disease, a small molecule
must bind to the protein and alter its behaviour as shown in Figure 1.1. A small
molecule with the necessary properties to bind to a target protein is called an
active molecule, with a molecule being only active against a small number of
proteins. Conversely, a molecule which does not bind with a target protein is
inactive with respect to that protein. Molecular activity is one of the first criteria

1

University of Malta Library – Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author’s rights in respect of this
work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified by any
successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information contained in
accordance with the Copyright Act provided that the author must be properly acknowledged.
Further distribution or reproduction in any format is prohibited without the prior permission of the
copyright holder.

CHAPTER 1. INTRODUCTION 2

to determine the application of a molecule on a target, however additional tests
must be performed to determine its applicability and viability to become a drug.

Figure 1.1: An image showing a target protein, a small molecule and binding of
the two molecules. Adapted from [4].

The methods of High Throughput Screening (HTS) and Virtual Screening
(VS) are two of the methods employed to test for small-molecule activity. HTS
is a manual method whereby molecules are manually synthesised and screened.
This process is both costly and time consuming. VS is a computational process
using computational models to test molecules’ binding ability with respect to the
target protein. Since it is a computational process, costs are kept lower, however
it is still a time consuming process as large number of molecules require testing
against each separate target protein. Additionally VS is not as accurate as HTS
methods and therefore they may be used together to further enhance accuracy
[5].

Not all active compounds end up being marketable drugs. In fact [6] high-
lighted that the success rate of identifying a drug from an initial number of
tested compounds is 0.001%. Therefore a large number of molecules need to
be tested for their activity until a successful batch is found. The selection of
molecules for testing is an important process as it is done from a larger library
of compounds. A random selection of compounds will lead to longer times of
activity testing as more molecules are selected than may be required. Addi-
tionally, important molecules may be missed altogether. Therefore structured
selection may be done to select molecules with a higher chance of achieving the

CHAPTER 1. INTRODUCTION 3

desired aim, by testing less compounds [7]. Selection should occur depending
on the aim of the test. Initial screening happens when no actives are available
for a given target protein. It should focus on getting a diverse subset such that
the activity of the chemical space is covered. However, should actives be known,
more focused approach can be done to select similar molecules to known actives
[6].

This structured selection is only possible if the dataset is clustered such that
similar molecules are grouped together. Clustering is technique used in data
mining with the aim of grouping highly related data points together. It aims
to generate groups that have high intra cluster similarity between the points
inside the cluster while having a high inter cluster dissimilarity among clusters
[8, 9]. This is required to create segregations in data, with similar items being
represented in the same cluster, to enable better analysis and faster retrieval of
the data having the required properties. It is used in various scenarios such as
pattern recognition, drug discovery and community detection to identify new
patterns in the data which may not be obvious to the users, thus enabling better
predictive analysis on the data [8].

A challenge in this regard is that dataset sizes are increasing at fast rates. The
size of the virtual chemical library is around 1060 [10, 7]. Although this is not
used in its entirety, publicly and privately available datasets reach up to mil-
lion of compounds and are increasing yearly, therefore making the initial subset
selection a difficult one. This amount can be reduced by filtering only those
having the correct ADMET (absorption, distribution, metabolism, excretion and
toxicity) properties, however this amount is still huge and therefore each small
molecule cannot be tested in a brute force manner with respect to every target
protein as it is time consuming. Even after years of research, there are molecules
that have not yet been tested and could potentially contain solutions for todays’
not yet cured diseases. The volume of the dataset make the clustering process
more difficult as standard algorithms applied in this field do not cater for large
datasets [11]. Therefore clustering algorithms require adaption to process the
datasets in a distributed manner. This would enable the use of cloud infrastruc-
ture to scale the algorithm and handle larger datasets.

CHAPTER 1. INTRODUCTION 4

1.2 Aims and Objectives

The aim of the research is to apply Big Data paradigms to cluster large small-
molecule datasets. The drug discovery process is an expensive and time con-
suming one, requiring sampling of compounds to identify active compounds
with respect to a target protein. Therefore this research aims to investigate and
implement a distributed clustering algorithm to increase the efficiency of a clus-
tering method while keeping satisfactory cluster quality of the algorithm.

The following are the objectives of this study:

� Investigate a number of clustering algorithms within Big Data context

� Investigate Big Data techniques to be used as a distribution framework

� Implement a distributed version of the algorithm using the Big Data frame-
work’s processing capabilities.

� Apply approximation to the distributed approach to increase the perfor-
mance of the algorithm

1.3 Proposed Solution

The proposed solution is a clustering algorithm enabling large scale diversifica-
tion of molecular data by their properties to enable more accurate identification
of active molecules. Research is ongoing in separating active compounds from
non active ones to enable faster molecular screening. Current advances enable
the clustering of small datasets, thus limiting the advantages of such systems.
The proposed research will investigate and apply methods in clustering larger
datasets, creating a more scalable solution through distributed means using Big
Data Technologies. The results will be investigated in relation to the quality of
the clusters produced. The proposed solution should be one which maintains a
satisfactory level of cluster results while providing better scaling abilities. The
extent to which distribution affects the clustering results will then be evaluated
with respect to results of research.

CHAPTER 1. INTRODUCTION 5

An investigation of molecular descriptors will be performed, reviewing the
current standards in representing molecules to better discriminate active molecules
from non active ones. As found in the research, the choice of descriptors highly
affects both the clustering results and the performance of the clustering in terms
of speed, therefore correct molecular representation is important to subset the
dataset successfully [12, 13]. Multiple descriptor types have been identified,
with structural and pharmacophoric fingerprints being extensively used. Com-
bination of fingerprints were also used to represent multiple property groups of
the data with the aim of increasing accuracy of the clustering results. Clustering
techniques will then be analysed for two groups of properties:

1. The applicability of the algorithm to molecular datasets, producing sepa-
ration of active from inactive molecules.

2. The algorithm’s applicability to the big data context

These properties enable the algorithm to remain relevant as the dataset increases,
with algorithm chosen being updated to increase its performance with respect
to the identified areas.

1.4 Document Structure

Following the Introduction section, the document is divided into five other sec-
tions. Chapter 2 Background & Literature Overview section provides explana-
tion of the information that is required to understand the subsequent parts of
the document. This is followed by a review of the literature found, discussing
and comparing research previously performed by other researchers while pro-
viding a basis for the arguments and decisions taken during the dissertation.
Chapter 3, the Methodology section contains an in depth explanation of the pro-
posed solutions, highlighting the architecture, frameworks and datasets used.
It also provides explanation of the distributed algorithms implemented. Chap-
ter 4 then presents results obtained throughout the research to provide a basis
for decisions taken. It is followed by the evaluation of the approaches created,
compared to the serial algorithm and another approach chosen from literature to

CHAPTER 1. INTRODUCTION 6

enable comparison. In the end, final remarks of the document are done within
the Conclusion section, highlighting the limitations of the research and future
work that is worth investigating.

2

Background & Literature Overview

Clustering is based on similarity calculations among the elements to enable the
grouping of the molecules together. This chapter details the concepts of how
molecules can be represented to enable processing by machines, followed by
the various ways molecules can be transformed to enable comparisons and the
clustering applications that have been successfully applied in this context. Fi-
nally a review of the literature on the applications of such methods and the use
of clustering datasets is done.

2.1 Computational Representation of Molecules

The first thing required is to represent molecules in a machine readable manner
such that these can be read, stored and processed by computers. Ideally the
representation needs to be small, to reduce storage requirements for millions of
molecules and enable fast processing.

2.1.1 Graph Representations

One way of representing Chemical Structures is through graphs. A graph is a
structure that has been widely used in Computer Science and applied to a num-
ber of areas, to represent entities and their relationship. In Chemoinformatics,
graphs are used to map atoms as vertices while bonds between atoms are rep-
resented as edges. Ring compounds are represented using a cyclic graph while

7

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 8

trees may be used to represent acyclic structures. The topology of the resultant
graph is then used as a representation of the chemical structure [14, 5].

2.1.2 Connection Tables

Connection Tables is a way to represent molecules in a tabular format. A ta-
ble having two sections is created, with the first one using rows to represent
the atoms in the chemical structure, while the second one identifies the bonds
among the atoms. Vanillin molecule shown in Figure 2.1 is represented in a
connection table in Figure 2.2.

For each atom, the connection table includes the coordinates of that atom in
2D or 3D space, depending on the options defined, to allow reconstruction. Ad-
ditional columns are available for properties pertaining to the atom which may
be included depending on the format of the connection table. Most chemical
structure datasets provide the data in this format with separate molecules being
in mol files, or combinations of mol files provided in sdf format [15].

Figure 2.1: Vanillin molecule image from Pubchem1. This is normally used as a
flavouring agent in food.

1https://pubchem.ncbi.nlm.nih.gov/compound/vanillin (last accessed 25th May 2019)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 9

Figure 2.2: Connection Table in mol22 format for the molecule Vanillin generated
using OpenBabel software. The first table shows 3D aromatic coordinates of the
atoms, with the other properties being 0. The second table shows the bonds
between the atoms.

2.1.3 Linear Notations

Linear Notations are a representation of a chemical structure by using a string of
alphanumeric characters in a sequence. One standard notation is the Simplified
Molecular Input Line Entry Specification (SMILES). It is a compact representation
of molecules, using upper case letters for aliphatic atoms and lower case letters

2http://www.csb.yale.edu/userguides/datamanip/dock/DOCK_4.0.1/html/Manual.41.html
(last accessed 25th May 2019)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 10

for aromatic atoms. Bonds are represented by having either adjacent atoms, in
case of single bonds, or through the use of ’=’ and ’#’ symbols for double and
triple bonds. Parenthesis enclosures are used to represent branching from one
atom into separate paths [16].

An example SMILES string for the molecule Vanillin shown in Figure 2.1 is
COC1=C(C=CC(=C1)C=O)O. The construction of the molecule is done by pars-
ing the string and reading each atom only once. Considering its compactness,
SMILES format is the ideal method to store and transfer large datasets of chemical
structures.

2.2 Molecular Similarity

Molecular similarity provides a score representing the similarity between two
molecules, with two identical molecules having a score of 1. This similarity
computation is an important step in the clustering process as it enables to iden-
tify similar molecules to group together, thus having an important impact on the
final clustering result. Molecules are first converted into a format to represent
the properties requires, which then is used in a similarity measure to calculate
the score of similarity as seen in Figure 2.3. For this to be successful, the correct
representation of the data in conjunction with the correct similarity compari-
son must be selected to convey the required meaning of similarity. Two main
molecular representation methods exist for the calculation of molecular similar-
ity. These are graph representation of the molecular structure, with the similarity
being calculated using the topological structure or molecular descriptors. De-
scriptors can be divided into three further groups depending on the data being
represented, one dimensional, two dimensional and three dimensional descrip-
tors.

2.2.1 Molecular Structure

All the molecular representations can be converted into molecular graphs for
the purpose of similarity comparison. Graphs enable the representation of small
molecules without losing information, representing all of its atoms and bonds.

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 11

Figure 2.3: A schematic diagram, based on a diagram by [17], of the steps re-
quired to calculate the similarity between two molecules starting from their
SMILES string.

Molecular similarity is then calculated by matching the sub structure over-
lap between two molecules by using Maximum Common Substructure (MSC)
method. One advantage of such method is that there are no properties that are
ignored when computing such similarity, and the original components are be-
ing compared. Additionally, the comparison can be visualised in an intuitive
manner, making it ideal and easy to understand. MCS is found using graph iso-
morphism, however such computation is expensive and considered as an NP-
complete problem [18]. Therefore it may not be ideal for large datasets [19].

2.2.2 One dimensional Molecular Descriptors

One dimensional molecular descriptors are single values calculated from the
molecular structure to represent one of the properties of the molecule. These can

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 12

be simple counts, representing elements from the structure of the molecule such
as number of hydrogen bond donors, hydrogen bond acceptors, aromatic rings,
rotatable bonds or molecular weight. Other descriptors may be more complex
to calculate however they offer more value as a representation of the molecule.
One such value is the hydrophobicity represented by logP. This represents how
much a small molecule is repelled from water. It can be used as one of the
properties to indicate the molecule’s binding chances to a protein, and is a good
indicator of biological activity. Many different descriptors were proposed, each
highlighting different properties [5].

Since similarity is subjective, the selection of the descriptors is determined by
the user and the aim of the similarity calculation. When changing the descriptor
used, the similarity between two molecules may drastically change. A similarity
between two molecules based on the number of atoms is different from a simi-
larity based on hydrophobicity. Additionally, one such value by itself is most of
the times useless in offering enough discrimination between different molecules.
Therefore combination of descriptors are normally used to get averaged results
in similarities [20, 21]

2.2.3 Two dimensional Molecular Descriptors

Two dimensional descriptors encode data from the 2D structure of a molecule.
These can be either a single values calculated from a substructure or properties
of the molecule, or a longer representation encoding more information.

Two types of string based descriptors are the Atom pairs and Topological
Torsions. Atom pairs encode the shortest path between all pairs of atoms in a
molecule. Similarly Topological Torsion encode sequences of components con-
nected together. The result is a string representing the paths and the atoms
found while traversing it [5].

Fingerprints are a type of descriptor that are commonly used to represent
combinations of 2D molecular data. Fingerprints take the form of either bit-
strings or count strings with the aim of encoding more data and provide a better
representation of the molecular properties as seen in Table 2.1. Two types of 2D
fingerprints exist, fragment dictionary and hashed fingerprints. Fragment dic-

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 13

Smiles String Fingerprint
Mol1 C11H12N2O2 001011001100010001100000
Mol2 C1CCCCC1 001011001010000000100010

Table 2.1: Example of Fingerprint Representations of SMILES strings.

tionary fingerprints represented as bitstrings are created in a way such that each
bit position represents the presence or absence of a structure fragment from the
molecule, with count based fingerprints represent the number of instances of
each structure. Hashed fingerprints represent molecule substructures and prop-
erties in a hashed manner making an interpretation of the results more difficult.
These are normally used in cases where the possible combinations of properties
to represent are very large and therefore it is impossible to assign a unique bit
for each pattern. Therefore each combination serves as an input to a hashing
function that returns a bit pattern of 4 or 5 bits [17].

Fingerprints can be of varying length, although normally they are found to
be either 1024 or 2048 bits. The flexibility of fingerprints enable them to en-
code variety of formats. In fact, even atom pairs and topological torsions can be
themselves represented as part of a fingerprint, with each bit position represent-
ing the presence of an atom pair or topological torsion combination. Chemically
Advanced Template Search (CATS) are one such type of descriptor representing
this data [5].

Extended Connectivity Fingerprints are another type of 2D fingerprint, en-
coding circular substructure data by representing atoms using their neighbour-
ing atoms in form of a radius. A variant of Morgan algorithm is used to calculate
the extended connectivity of atoms, with the ability to vary the number of bonds
or radius extension to use [22]. Extended Connectivity Fingerprints were created
with the intent of representing molecular biological activity, with two popular
fingerprints in this group being Extended Connectivity Fingerprints (ECFP) and
Functional Connectivity Fingerprints (FCFP) [10, 23].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 14

Figure 2.4: An example of how Extended Connectivity Fingerprints are created,
with each circle representing the neighbours considered in each iteration to gen-
erate the fingerprint [22]. Image from Chemaxon3.

Daylight4 fingerprints are another widely used type of hashed fingerprints.
A pattern is created for each atom, atoms and their bonds to neighbours and
patterns for groups of atoms and bonds. The patterns are then used to generate
a fixed hash for every input pattern that are then combined [17].

2.2.4 Three dimensional Molecular Descriptors

3D Descriptors are fingerprints that are generated from the three dimensional
molecular structure. Fingerprints encoding 3D data are also used, representing
spatial features and relationships of elements in molecules. These encode data
such as distances and angles between atoms, position of rings and planes. A
number of 3D descriptors exists, however one drawback with respect to the 2D
counterparts is that 3D descriptors are more time consuming to generate and
therefore they are less ideal to use for large datasets [5].

Pharmacophoric keys are a type of 3D fingerprints that encode molecular
properties such as steric and electronic features. These are properties of molecules
that are thought to be important for molecular binding with target proteins.
These have been applied both in Virtual Screening (refer to Introduction Section
1.1) and molecular docking scenarios to try and predict small molecule binding
[24].

3https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP
(last accessed 25th May 2019)

4http://www.daylight.com/dayhtml/doc/theory/theory.finger.html (last accessed 25th
May 2019)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 15

2.2.5 Similarity Measures

Once the required descriptor is selected, a way of calculating similarity between
them is required. This is done by using one of the similarity measures avail-
able. The most commonly measures used are presented in Equations 2.2-2.4,
showing Euclidean Distance, Cosine Similarity and Hamming Distance. The
variables pi and qi represent element at position i of the two descriptor vectors
that are being compared [11, 10]. However, the most popular and most widely
used metric is the Tanimoto Coefficient (also known as Jaccard coefficient) as
shown in Equation 2.1, with a representing the number of 1 bits in fingerprint
1, b representing the number on 1 bits in fingerprint 2 and c representing the
number of common 1 bits between fingerprints 1 and 2. This stems from the fact
that based on the theory by [25], molecules having similar properties also tend
to have similar activity, therefore similarity based on the overlap of properties
provides the most reliable measures for activity prediction. This is infact what
Tanimoto Coefficient does, which measures similarity by dividing the amount
of similar properties (the intersection) by the total number of properties of both
entities (the union) [7, 26].

TanimotoCoe f f icient =
c

a + b − c
(2.1)

EuclideanDistance =

√
n

∑
i=1

(pi − qi)2 (2.2)

CosineSimilarity =
∑n

i=1(piqi)√
∑n

i=1 p2
i ∑n

i=1 q2
i

(2.3)

HammingDistance =
n

∑
i=1

|pi − qi| (2.4)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 16

2.3 Clustering

Clustering is a term used to represent unsupervised learning techniques that
group items based on their similarity with each other. When grouping elements,
the aim is that of maximising intra cluster similarity while minimising inter clus-
ter similarity, with the result being diverse groups with each group having com-
ponents as similar as possible. Clustering is normally done at initial stages of
the process to understand the data and provide information to proceed forward.
Clustering algorithms are divided in two main categories, non-hierarchical and
hierarchical clustering techniques with the two groups being further divided
into subgroups as shown in Figure 2.5. Both approaches have been successfully
applied to cluster small molecules [11].

Figure 2.5: Classification of clustering algorithms adapted from [11]

2.3.1 Non-Hierarchical Clustering

Non-hierarchical clustering algorithms are those methods which do not generate
a hierarchy of clusters as part of their result. Their output is the partitioned
data, with no relations between the partitions. Non-hierarchical techniques are

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 17

further divided into multiple groups, determined by the process used to build
the clusters, with the most popular ones as presented by [11] being:

� Relocation techniques

� Nearest Neighbours techniques

� Density Based techniques

� Single Pass techniques

Relocation techniques work by moving points within different clusters with the
aim of improving an objective criteria. Data points are moved multiple times
around clusters until the optimal cluster is found. K-means is the most popular
algorithm within this group and has been widely applied to variety of contexts
both because of its O(kn) scalability and its performance in identifying the cor-
rect clusters, with k being the number of clusters and n the number of data points
[11]. Single Pass methods tend to be the most efficient unless some preprocess-
ing step, such as sorting, is required. Single Pass techniques aim to identify the
correct cluster by vising each data point only once, however at times they are
undeterministic.

Density based clustering techniques identify the distribution of the data with
the aim of finding dense regions to cluster them together. Normally a threshold
density is used to add members to clusters. Nearest Neighbours techniques
calculate the neighbours of each datapoint and use that information to cluster
common neighbours together [27, 28].

Non-hierarchical clustering algorithms have been used to cluster small molecules
because of their speed when compared to hierarchical counterparts. The most
popular within this group is the Jarvis Patrick algorithm, having obtained suc-
cessful results [29]. Variants of k-means have also been applied. Exclusion
sphere clustering and other algorithms built on its concept have also been used
both for clustering and diversity selection, with Butina clustering being one of
the main algorithms created for small-molecule clustering [11].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 18

Jarvis Patrick Clustering

Jarvis Patrick is a non-hierarchical clustering technique using the nearest neigh-
bour approach to create non overlapping clusters. Jarvis Patrick works in two
phases. In the first phase, the top k neighbours for each compound are identi-
fied, with k being a user defined parameter.

In the second phase, clusters are created. This is done by going through the
list of nearest neighbours created and for each molecules x and y, y is added to
cluster x if it satisfies three conditions.

1. y is in the list of nearest neighbours of x, calculated in phase one

2. x is in the list of nearest neighbours of y, calculated in phase one

3. x and y have kmin number of common neighbours, with kmin being a pa-
rameter chosen by the user whose value cannot be greater than k.

Any two compounds satisfying these conditions are clustered together, thus us-
ing the concept of neighbourhood as a basis of clustering [30, 29]. The parameter
of k, to determine the number of neighbours calculated, affects the performance
of the algorithm in both speed and quality of clusters. Smaller values lead to
a faster algorithm, but smaller clusters, while more neighbours lead to slower
computation and larger clusters.
This technique has been used in various scenarios in chemical clustering [17, 29],
mainly due to the fact of having the ability to scale better than its hierarchical
counterparts with better results compared to other non-hierarchical methods.
However, when compared to hierarchical methods, the effectiveness of the al-
gorithm was not as good. Jarvis Partick however, still requires O(N2) time to
compute, while requiring O(N) space to store the intermediate results [31].
A major problem as identified by [18] is that the two parameters k and kmin need
to be changed for every dataset. Therefore no ideal parameter exists for chem-
ical information, but the values need to be found for every dataset used. This
may create a problem as an element of trial and error is included in the process,
which for large datasets may not be an ideal solution.

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 19

Butina Clustering

The Butina clustering algorithm is an adaptation of the Single Pass technique Ex-
clusion Sphere algorithm, with the aim of inducing an order independent step.
This ensures that multiple runs of the same algorithm produce consistent results.

Exclusion Sphere algorithm works by having three sets. The first set contains
all the unvisited data points, which at first would contain all the initial elements.
A second set representing cluster centroids is initially empty and a third set con-
taining the visited points and their assigned cluster.

An initial element is selected at random from the list of unassigned data
points. This is assigned to be a cluster centroid and is added to the respec-
tive list. Similarity is then calculated to all other unassigned elements in the
dataset. Any elements having a similarity equal to or greater than a user de-
fined threshold is assigned to the cluster of the current selected element, added
to the set of assigned data points and removed from the unassigned set. This
excludes them from further processing [9]. Another element is then selected at
random from the unassigned list of molecules to become cluster centroid and is
compared to the remaining elements, repeating the same process of assigning
similar elements to the current cluster. This is done until all elements have been
assigned to a cluster. The result achieved would be non overlapping clusters as
can be observed in Figure 2.6.

Although this method is efficient, it has the drawback of being non deter-
ministic [9]. It is dependent on the order of selected cluster centroids. Therefore
Butina was created based on the concept of Exclusion Sphere algorithm, with an
added preprocessing step to create order in the way centroids are selected.

A stage is added before Exclusion Sphere clustering with the aim of iden-
tifying elements that have potential of being the best cluster centroids. Butina
argues that molecules having a high number of neighbours are good candidates
for cluster centroids as they are similar to a number of other molecules. There-
fore as an initial step, all the neighbours for each data point are calculated, us-
ing a user defined threshold to define neighbourhood. Once all the neighbours
are identified, all the elements are sorted by their number of neighbours in a
descending manner, thus having the elements with most neighbours as high

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 20

Figure 2.6: Exclusion Sphere Example using 0.2 similarity as represented by [33]

candidates for cluster centres. The second step is Exclusion Sphere clustering,
choosing as centroid a not yet assigned datapoint having most neighbours at
this stage. The potential members of the cluster are the neighbours previously
calculated. However for each new cluster centroid, the neighbours that have
already been assigned to other clusters are removed from the current cluster, as
they would be already taken by a more strong centroid having more neighbours.

An important observation in this process is that, not all singletons generated
are actual singletons with no neighbours at the given range. However, some
singletons may actually have neighbours that were already added to clusters of
previous centroids, thus ending being singletons even if they are similar to other
elements [32].

Butina clustering algorithm guarantees that all centroids are at least equal to
or similar up to a threshold to each molecule in the cluster. Therefore it increases
the homogeneity within the clusters. Additionally, the threshold similarity is the
only input required for the algorithm, thus making it relatively easy to use [17].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 21

K-Means Clustering

K-means clustering is a popular relocation clustering algorithm that is used in
a number of fields. It works by randomly selecting a user defined k number
of cluster centroids. Each other object in the dataset is assigned to the closest
cluster centroid. Once each object is assigned to a cluster, the cluster centroid
is recalculated to become a better representation of the cluster. This is done
by selecting a new cluster centroid from the cluster that better represents the
mean distances of the cluster, with the aim of minimising the distance of each
cluster member to the centroid [34, 11]. All the members of the clusters are
again assigned to the nearest cluster centroids, which could have changed from
the previous ones.

The process continues in iteration until the cluster centroids do not change
position or no object changes cluster membership. This approach is efficient,
having O(kn) time complexity, with k being the number of clusters and n the
number of elements in the dataset. However the drawback of such method is
the selection of k and the random selection of the centroids that may affect the
final clustering results [11].

2.3.2 Hierarchical Clustering

Hierarchical algorithms are divided into two groups, agglomerative and divi-
sive algorithms. Agglomerative hierarchical methods start with all data points
as singleton clusters. The clustering works in iterations, with each iteration
combining the two most similar clusters into a single one. A tree relationship
between the newly created cluster and the previous separate clusters is then cre-
ated with the new cluster being represented as a parent of the joined ones. This
process is repeated until all clusters are merged into a single cluster containing
all the data set [3, 11].

Divisive Hierarchical clustering starts with one cluster containing all the data
points, with the aim being that of dividing the cluster rather than combining. At
each iteration a cluster chosen by the condition established, is divided into two
or more separate clusters, also creating a relationship between the old and new
clusters [3, 35, 21].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 22

The most common hierarchical agglomerative clustering algorithms are known
as sequential agglomerative hierarchical non-overlapping methods (SAHN), such
as Single Link, Group Average Link and Ward’s Clustering. These are similar in
their process of clustering, with the only difference being the condition to deter-
mine which clusters to join at a given step [11]. This can be based on the distance
of the centroids between the clusters, the average distance of all the data points
or the distance between the nearest or farthest points, as deemed appropriate.
Other hierarchical clustering methods such as K-means hierarchical clustering
implemented by [35] created a custom way of clustering with the aim of creat-
ing a hierarchy of clusters.

Hierarchical clustering is usually implemented using the stored matrix ap-
proach, which requires that a matrix of all the pairwise distances is calculated
for all the datapoints. At each iteration, the stored matrix is updated to reflect
the new clusters, therefore such algorithms have O(N3) performance and O(N2)

memory requirements. Performance can be improved by using the Reciprocal
Nearest Neighbour (RNN) approach, requiring O(N2) time.

RNN is a way of identifying the clusters to join at any step in an efficient way
compared to a whole scan of the similarity matrix. This works by initially setting
all points as unused. A random unused point I is selected as a starting point. A
chain of nearest neighbours is calculated until a pair of reciprocal nearest neigh-
bours P and Q are found. P and Q are merged in a single cluster, Q is marked as
used, while P is updated to be represented by the centroid on the newly created
cluster. The nearest neighbour process is continued from the point before P or a
new starting point, should P be the first point chosen [30].

As a result of the relationships created by hierarchical algorithms, a dendro-
gram, as in Figure 2.7 is created, representing all the relationships of the clusters.
This is in the form of a tree or inverted tree depending whether the algorithm
is agglomerative or divisive. For agglomerative clustering, the topmost layer
contains the separate elements while the bottom layer contains the single large
cluster. Dendrograms allow for better data visualisation, facilitating the inspec-
tion of similar clusters and providing the functionality to drill into more fine
grained clusters to obtain more constrained results [11].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 23

Figure 2.7: Dendrogram for hierarchical clustering algorithms. The y-axis rep-
resents the distance between cluster centers at that level, while the x-axis repre-
sents the data points being clustered. Adapted from [3].

Ward’s Clustering

Ward’s Clustering is a hierarchical agglomerative clustering method. The merg-
ing condition defined for Ward’s clustering is the error sum of squares (or within
cluster variance) e2, with the optimal value being 0 [36]. This property represents
the loss of information incurred when representing the members of a cluster as
a whole group and is represented by the equation:

ESS(onegroup) =
n

∑
i=1

x2
i −

1
n
(

n

∑
i=1

xi)
2 (2.5)

where xi is the score of the data point at position i and n being the number
of elements in the dataset. Using this objective function, Ward’s clustering aims
to create clusters whose data points are close around the center of the cluster, as
adding point further from the cluster center would increase the error. At each

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 24

iteration, Ward’s clustering algorithm checks for the two clusters which when
joined, result in having the least error sum of squares thus emphasizing on the
reduction of intracluster(within cluster) variance and increase of inter cluster
variance.
Ward’s clustering has been widely used in clustering chemical compounds, with
successful results in separating active from inactive molecules (refer to Introduc-
tion Section 1.1). Its results have been consistently better than competing algo-
rithms, thus being considered as the standard algorithm within this context [8].
The drawback of the algorithm is its time and space complexity. Considering its
efficiency it tends to be useful only for small datasets, as it would be intractable
for larger ones [36, 31, 11].

Bisecting K-means

Bisecting K-means approach is divisive hierarchical clustering method that uses
k-means clustering (see Section 2.3.1) algorithm to divide clusters at each hi-
erarchy level. The divided clusters create a parent child relationship with the
original cluster, creating the hierarchy dendrogram as shown in Figure 2.7.

Bisecting K-means works by selecting a cluster to divide into two splits. A
popular implementation by [37] and is implemented in Apache Spark5, divides
the selected cluster multiple times into two sub clusters, creating P pairs of sub
clusters, of which only one will be selected. The two sub clusters that produce
the best results based on the overall similarity among the cluster members are
selected. P is a user defined value to determine the number of splits to be done,
from which the most optimal split is then selected. This process of selecting a
cluster and dividing it into two sub clusters is repeated until k, user defined,
number of clusters are obtained. The cluster to split can be chosen based on
different criteria. One typical implementation is to select the largest cluster at
the current hierarchical level.

Although it has not been widely used in chemical clustering, bisecting k-
means was evaluated in comparison to Ward’s clustering by [38] showing that
it produces more quality clusters than standard K-means and obtaining better

5http://spark.apache.org/ (last accessed 25th May 2019)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 25

scalability than Ward’s clustering. [35] also used a similar approach however it
included variations in the bisecting process at each iteration and the stopping
criteria.

Figure 2.8: Bisecting k-means clustering diagram taken from [35], with left im-
ages showing nested clusters, while right images showing the hierarchical struc-
ture.

2.3.3 Big Data Clustering

When choosing a clustering algorithm for big data contexts, it must be ensured
that it is able to cater for the properties of the data in use, such as the size of the
dataset, its changing nature in time or the use of multiple format simultaneously.
It may not be practical to employ clustering algorithms used for small datasets
directly on big data. This is not feasible as some techniques employ methods
that may be inefficient for that context. Some clustering algorithms iterate mul-
tiple times over the dataset while others may require to store temporary data
in memory, such as similarity matrix, which may be quadratic to the number of
elements in size. Other techniques may not be able to handle changing datasets
and therefore may not be directly applicable to datasets that change over time
[39].

As data grows, issues are encountered, with these becoming more prominent
in scenarios of big data. Therefore when selecting or implementing an algorithm
for big datasets, some criteria as discussed by [40] and [41], must be considered:

� Scalability: Algorithms should be scalable to ensure that they can cater for

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 26

the large datasets, enabling the discovery of the clusters present in reason-
able time frames.

� Stability: an ideal property would be to provide consistent results over
multiple runs. If the algorithm is non deterministic, then non optimal clus-
ters may be returned in different runs, with no indication of how to choose
the ideal clusters.

� Handle Dimensionality of the data: when having high dimensionality,
data becomes sparser therefore the clustering algorithm and similarity mea-
sure should handle such data to have relevant clusters. This issue is rep-
resented by the idea of the curse of dimensionality, where as dimensions
increase the density of the data at any point becomes low.

� Handle Outliers: outliers should be handled effectively such as not to neg-
atively affect the resultant clusters.

� Reduced dependency on input parameters: the setting of parameters af-
fects the clustering quality and speed performance. Therefore it would be
ideal to reduce this dependency, limiting the cases where incorrect param-
eters are chosen, thus negatively affecting the clustering results.

As the size of the dataset increases, different methods to handle the large
datasets are required. Distributed clustering techniques are one way of dealing
with this issue. Distributed techniques work by dividing the data and share it
among different nodes, performing local computations on subsets of the data,
with additional steps to agglomerate the results.

This method enables scaling out, as nodes may be added to the task as re-
quired. However care must still be taken when implementing such systems, as
communication between nodes is expensive and therefore should be kept to a
minimum. Although speed of a clustering algorithms may increase with dis-
tribution, these optimisations may lead to a reduced accuracy when compared
to serial implementations [42]. This occurs as the algorithm could be altered to
cater for reduced communication. The algorithm at each node would not have

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 27

full visibility of the dataset and therefore the result would not be globally opti-
mum.

Although clustering should be deterministic, approximation techniques are
still used because of their performance enhancement. Approximation methods
offer a trade off between speed and accuracy for the clustering produced, and
even though not desirable, they are used because of the size of the data at hand.
One such technique is Locality Sensitive Hashing (LSH).

Approximation Method - Locality Sensitive Hashing

LSH is a similarity searching method popularly used in contexts of high dimen-
sionality and has been applied to contexts such as document similarity searching
and audio files [43]. LSH technique uses hash functions with a high probability
of hashing similar items in the same bucket, while dissimilar items in different
buckets. Objects in the same bucket are then considered as candidate neigh-
bours and therefore reducing the similarity search space [43, 44]. LSH process
for Tanimoto similar objects is divided into two sections, Minhash and LSH.

Minhash is a fast approximate calculation for the Tanimoto distance between
two objects. It is used for high dimensionality objects, with the aim of speeding
up the performance [44]. Given a fingeprint F1, X random permutations for
the positions of the fingerprints are generated. The fingerprint bits are ordered
according to the permutations produced, each time noting the position of the
first ’1’ bit found. The minhash result is the list of signatures representing ’1’ bit
positions for each permutation.

The process of LSH starts by grouping signatures from minhash into Y bins.
Each group is hashed into a single value using a hashing function where similar
items are hashed together. Each hash result corresponds to a dictionary key (or
bucket), with the values being fingerprints or data objects that hash to that result
[46]. The complete process can be seen in Figure 2.9.

To identify similar elements, a new fingerprint is hashed and the buckets it
hashes into are identified. The other elements in the buckets are considered as
potential neighbours, with similarity being computed with them rather than the
whole dataset.

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 28

Figure 2.9: LSH process starting by converting fingerprints into signatures us-
ing Minhash method. Then signatures are used to hash the values inside into
buckets. A signature will hash to multiple buckets according to the number of
minhash values that make up the signature and the amount of minhash values
that are grouped together for every hash. Image based on [45].

2.4 Big Data Paradigm - Map Reduce

Map Reduce is a concept that enables the processing of large datasets on dis-
tributed clusters [47]. This paradigm defines two main processing phases, the
Map phase and the Reduce phase. Input tuple data in the form of < key, value >
is provided to the model. Data is then automatically split and shared among the
nodes to allow for distributed processing [48].

The Map phase takes the input data and performs a user defined action on
each separate tuple, with the output being an intermediate < key, value > pair.
The intermediate output is then shuffled and passed on to the reduce stage.
Shuffling occurs in a way such that all tuples with the same key are grouped
together into the same reducer (processing node) [47].

The Reduce phase then aggregates the values by key. When the data is
passed on to the reducer, a function is defined to determine how the grouping
of the values pertaining to the same key is done. Since Map Reduce ensures that
all tuples with the same key are collected in the same node, local processing can
be done without the need to communicate with other nodes. Finally, this results

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 29

in a final < key, value > pair as output [48].

2.5 Big Data Techniques

Through the use of cloud computing, the process of adding processing power
for distributed systems can be done on demand, thus reducing the setup costs.
However, this change in setup also requires a different way of thinking to ex-
ploit the distributed environment. Two of such frameworks that implement
the Map Reduce paradigm to handle large datasets and that have recently in-
creased in popularity both in academia and industry are Hadoop Map Reduce6

and Apache Spark7. Both frameworks were created as an abstraction of the com-
munication framework between the nodes, to enable and empower developers
to focus on the algorithm implemented rather than on the communication be-
tween them. Therefore these frameworks aim to reduce time and cost of imple-
mentation of distributed algorithms.

2.5.1 Hadoop MapReduce

Hadoop MapReduce is a distributed processing framework implementing the
Map Reduce concept. It defines a master node being a job tracker and worker
nodes. Hadoop MapReduce handles the process of splitting the task among
the nodes to enable running in a distributed manner, monitoring of the job and
reassignment of the failed tasks to new nodes. Input is taken from the file system
and sent to the map tasks, with the output being shuffled and redirected to the
reduce task. The output of such task is again written on the file system.

Map Reduce operations can be chained to perform more complex algorithms.
At each iteration data is stored and retrieved from the file system. This can be of
a bottleneck in data heavy operations.

6https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html (last accessed 25th May
2019)

7http://spark.apache.org/ (last accessed 25th May 2019)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 30

2.5.2 Apache Spark

Spark is a framework that builds upon the concept of Map Reduce with the
aim of extending its capabilities. A Spark cluster consist of master nodes and
worker nodes, with masters mainly handling work that is related to synchro-
nisation among the workers such as shuffling of the data among the nodes, or
recollecting and distributing the data. Workers on the other hand are the main
computation nodes that Spark uses to perform the distributed work. Both mas-
ters and worker are long lived, meaning that once created they are alive through
multiple queries [49].

One main noticeable difference from Hadoop MapReduce is the treatment
of data in Spark, where the abstract concept of Resilient Distributed Datasets
(RDDs) was created. RDDs enable easier implementation by abstracting dis-
tributed data as a normal list. Transformations, such as filtering, map, and group-
ing can then be applied on this dataset, with the processing being automati-
cally distributed by the Spark Framework. These type of transformations are
lazily evaluated until actions are called. Actions such as collect and reduce-
ByKey are commands that retrieve the data and execute the transformations un-
til that stage. This concept of lazy evaluation enables Spark to optimise steps of
transformations done by the user by combining multiple operations together or
thinking ahead for subsequent steps [50].

One performance optimisation Spark has over Hadoop MapReduce, is the
diminished reliance of the framework on persistent storage. In Spark, main
memory is utilised to store intermediate results while processing the data. In
contrast Map Reduce must store and retrieve results from the file system, thus
making it inefficient in tasks heavy on data operations.

Additionally Spark does not use replication as a way to implement fault tol-
erance. Instead, Spark uses lineage graphs. Lineage Graphs are graphs storing
the transformations that are done on the data in the order occurred, as seen in
Figure 2.10. When a node is lost, it reuses the lineage graph to reconstruct the
lost section by rerunning the same operations on that subset of the data. This is
more efficient when compared to replication as less storage and communication
with file system is used [50, 51].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 31

Figure 2.10: Lineage Graph. Boxes represent RDDs and arrows represent opera-
tions on the RDDs, adapted from [50].

2.6 Evaluation Criteria

Evaluation of clustering techniques on large datasets should focus on two as-
pects, the effectiveness of the clustering method and the performance of the al-
gorithm. Effectiveness represents the quality of clusters produced, such that
the grouping should be one where similar elements are grouped together while
being separate from other less similar items [13]. In small molecules cluster-
ing context, effectiveness represents the extent which active small molecules are
grouped together and separate from non active ones. Performance of clustering
deals with the aspect of speed and the algorithm’s ability to cater for increasing
data, evaluating its ability to scale for larger datasets.

2.6.1 Evaluating Quality of Clusters

Various methods have been employed to determine the correctness of the group-
ing process, with some researchers using visual methods [52]. Standard meth-
ods that are used in the clustering context, such as Precision, Recall and F-
Measure have also been widely used, while others have adapted existing meth-

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 32

ods to specifically cater for the given context of molecular clustering.

Precision, Recall, F-Measure

As discussed in [27], F-measure was used in the evaluation process of cluster-
ing documents. This was also used, less frequently, in chemical compounds
clustering. To calculate F-measure, Precision and Recall are used. Precision rep-
resents the proportion of actives with respect to the total number of compounds
in the cluster, while Recall is used to represent the proportion of actives clus-
tered together out of all the actives available. Given that the total compounds
in a cluster is represented using n, active compounds in a cluster using a and
total active compounds in the dataset as A. Then Precision and Recall can be
calculated using the following equations:

P =
a
n

(2.6)

R =
a
A

(2.7)

The results for Precision and Recall are then used to calculate the F-measure,
representing the harmonic mean of the two results. The is calculated using:

F =
2PR

P + R
(2.8)

In their application by [53] and [23], these three measures were calculated for
every cluster produced and the highest F-value was used as the final result.

Quality Partition Index

Quality Partition Index (QPI) was first presented by [31], where algorithms were
compared on their ability to separate active compounds from inactive ones. This
was done by identifying the proportion of active compounds that were grouped
in active clusters.
In their paper, [31] define an active cluster as a non singleton cluster which
contains at least one active compound and active cluster subset as all the com-
pounds within active clusters. The proportion of actives in the active cluster

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 33

subset is calculated, and is compared to the proportion of actives in the whole
dataset. The increase, if any of the proportion is considered as an increase in the
quality of the subset compared to the whole dataset.

[13] formalised the Quality Partition Index. However, the definition of active
cluster was changed to a non singleton cluster which contains a higher propor-
tion of actives compared to the whole dataset. This was done to reduce the
negative effect that one active may have if it is misplaced in a large cluster [13,
23, 53].

Four properties are then defined, with p representing the number of active
molecules in active clusters, q representing the number of inactives in active
clusters, r representing actives in inactive clusters and s representing singleton
active clusters [13, 23, 53]. QPI is then defined as:

QPI =
p

p + q + r + s
(2.9)

The QPI measure incorporates the two types of errors in it. These are:

1. False Negatives, which are the active molecules treated as inactives and
are represented by r in the QPI measure.

2. False Positives, showing the inactive molecules treated as actives and are
represented by q in the QPI measure.

These are mentioned as Error1 and Error2 respectively by [54]. However, for
Error2 to be calculated correctly, the activity of every molecule with respect
to the target protein must be known. When the activity for some molecules
is unknown, then an unknown activity molecule being clustered with active
molecules cannot be classified as an incorrect result unless manual testing is
done. This was discussed by [54] where tests on big datasets were performed.
In their research, actives with respect to one target protein are mixed with a large
set of other molecules whose activity is unknown, with the aim of clustering ac-
tive molecules together. The number of no activity compounds being clustered
in active clusters was not directly treated as an error. They were later visually
inspected to determine whether they were similar to the active compounds with
which they were clustered.

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 34

2.6.2 Evaluating Performance

As data gets bigger, performance evaluation becomes more important to deter-
mine the applicability of the clustering algorithms on larger datasets. It enables
the comparison of algorithms and how they would perform, in a theoretical con-
text, on different dataset sizes. The two most popular measures are Scalability
and Speedup.

Scalability

Evaluating scalability is done by tracking the algorithm’s performance with re-
spect to a changing dimension of the system. One common way is to divide the
dataset into subsets of data instances of increasing sizes. Efficiency readings in
seconds or minutes are then taken, to determine the speed of the algorithm for
each subset of data, identifying the scalability of the method proposed [19, 55,
56, 57].

This method is frequently used when evaluating parallel and distributed sys-
tems. As seen in [40, 58, 51] and [59], this method of evaluating efficiency is
used to determine how scalable the proposed methods are. In these scenarios,
the number of cores or nodes used for distribution are taken as the variable to
change, to see how their increase affects the performance of the method. This
shows how increasing the number of nodes in the system affects the perfor-
mance and provides insight on any overheads that may exist [51].

Speedup

Speedup is another way of representing the efficiency of the system in compar-
ison to a standard method whose time is represented by TS. The time taken for
the newly proposed method is represented by TP [56, 55]. The final result of
speedup is a ratio representing the magnitude of increase or decrease in per-
formance of a new algorithm with respect to a reference algorithm. Speedup is
calculated using using:

S =
TS

TP
(2.10)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 35

2.7 Related Work

Clustering small molecules takes two dimensions. One is the creation of cluster-
ing methods, used on small datasets to test the quality of the clusters produced.
The other is the creation or adaptation of clustering techniques to handle large
datasets, which focuses also on the scalability and performance of the algorithm,
coupled with the quality of the clusters.

2.7.1 Clustering Small Molecules

Most research has focused on clustering of small datasets with the aim of in-
creasing the quality of the clusters. Various clustering approaches have been
tried, with the most effective methods being hierarchical clustering algorithms
[5]. Early studies by [30] and [31] compared different clustering algorithms.
Although being slow, the hierarchical approaches used; Ward’s, Group Aver-
age and Guenoche Divisive clustering obtained better results when compared
to non-hierarchical ones. Results have been confirm in other research by [52]
and [60] for hierarchical clustering.

From the hierarchical approaches, Ward’s clustering is considered as the state
of the art for small molecules clustering, producing best separation for actives
and inactives. It is repetitively used as a base algorithm on which to compare
results, as can be seen used repetitively in Table 2.2, representing the use of
clustering algorithms for small molecules. The effectiveness of this algorithm is
attributed to the generation of clusters having high intra cluster similarity, pri-
oritising the combination of clusters that minimise the distance between all the
elements. Comparison to consensus clustering by [23], showed that Ward’s still
produced better results. It was found that multiple runs of the same algorithm
do not perform consistently better than Ward’s for varying datasets. Although
at some particular cluster amount, one consensus clustering technique would
obtain better results, a comparison on different number of cluster runs would
prove otherwise.

On the other hand, a Weighted Voting based consensus clustering by [53]
showed promising results. The Weighted consensus clustering managed to in-

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 36

crease QPI results minimally depending on the number of iterations for the
algorithm and the algorithms chosen. This is a small increase with respect to
Ward’s clustering, resulting through the aggregated results of multiple cluster-
ing algorithms. Although the single algorithms chosen may be efficient such as
k-means clustering, their repeated runs may make this approach not viable for
large datasets. Notwithstanding the performance of hierarchical clustering algo-
rithms, their quadratic time and space complexity make them unable to cluster
large datasets.

Other researchers have investigated different methods of hierarchical clus-
tering to try and improve efficiency results. [35] have implemented a way of
creating a hierarchical clustering technique using k-means algorithm. This en-
ables the algorithm to improve its running time with expected average case of
O(nlogn). This continued improving in later research, proposing an improved
algorithm to reduce the number of singletons by applying fusion of clusters and
singletons based on MCS methods.

Non-hierarchical techniques are normally employed when larger datasets
are to be clustered. Jarvis Patrick clustering is regarded as the standard clus-
tering for molecules in this group, with k-means and modifications of it being
also employed [31]. However even though Jarvis Patrick is popularly used, [18]
argued that the two parameters k and kmin for Jarvis Patrick need to be found
for each new dataset. This makes it difficult and time consuming to use as each
dataset would require multiple runs of the algorithm to identify the correct val-
ues.

A linearly scalable stochastic method was presented by [21], where initially
diverse probes are identified, which are then used as cluster representatives.
Evaluation showed that clusters represented by an active probe have an in-
creased chance of having other active members when compared to clusters rep-
resented by inactive ones. In [32], Exclusion Sphere Algorithm was implemented,
however the combination of structure extraction has made the algorithm slow,
and thus not scalable for datasets having millions of compounds. This was en-
hanced by [17] by using fingerprints as comparison method and adding a pre-
processing step to add determinism to the clustering process. An important
advantage of such algorithm is that the representative compound in the cluster

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 37

is always within a threshold similarity to all the other compounds in the clus-
ter. This enables the use of representative compounds for faster searches. [57]
implemented Leaders’ algorithm for fast clustering. The main drawback of the
original algorithm was its nondeterministic nature, however the proposed algo-
rithm sorts the input compounds such that different runs of the same procedure
always returns consistent results. One drawback of the proposed algorithm is
that the focus was on the speed rather than on the effectiveness of the results
produced. Therefore further studies need to be done to determine how results
compare to current methods.

2.7.2 Clustering Large Datasets

Public available datasets are getting larger in size at increasing rates. In 2005,
ChemDB8 had 4.1 million compounds available while ChemNavigator9 had 10
million compounds [63]. Within 10 years, Pubchem10 had 16 million available
structures, while ZINC1511 had 120 million drug like compounds [64]. Nowa-
days ZINC15 has more than 700 million available drug like compounds [65].

This fast growth in data requires algorithms that are able to meet the demand
to process such data. In fact, some research has started targeting increasing
dataset sizes with methods such as approximation methods, distribution and
parallelisation techniques. These aim to enable scaling of the algorithms.

Notwithstanding the increasing datasets, only few researchers have yet started
applying clustering algorithms for large molecular datasets. [61] implemented
a Map Reduce version of Ward’s clustering, however this was only applied to
small datasets. It managed to increase performance by around 60% when using
6 map tasks, enabling better performance than the serial version. On the other
hand, approaches by [54, 26] and [19] distribute a custom implementation, fol-
lowing a similar pattern of identifying or creating an initial set of coarse grained
partitions on which further clustering can then be done. [54] created a divisive
hierarchical clustering with the aim of clustering 2 million compounds. Itera-

8http://www.chemdb.com/ (last accessed 25th May 2019)
9https://www.chemnavigator.com/ (last accessed 25th May 2019)

10https://pubchem.ncbi.nlm.nih.gov/ (last accessed 25th May 2019)
11http://zinc15.docking.org/ (last accessed 25th May 2019)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 38

Clustering Algorithms in Research
Clustering Algorithms Used In Applied

to Large
Datasets

Ward’s Hierarchical Clustering [13, 8, 53, 27, 31, 18, 23, 61]
Jarvis-Patrick [31, 18, 20, 29]
Exclusion Sphere [27, 33, 32, 17]
Butina Clustering [17, 32]
Hierarchical K-Means [35, 62]
Consensus Clustering [8, 23]
Average Link Hierarchical Clustering [26, 60] �
Leader’s Clustering [57] �
Stochastic Clustering [21]
Szekely-Rizzo [13]
SCAP [19] �
CVAA [53]
W-CVAA [53]
A-CVAA [53]
Guenoche Hierarchical Clustering [31]
Modified K-Means [56]
Group Average Hierarchical Clustering [31]
Custom Divisive Hierarchical Clustering [54]
CAST [18]
Yin Chen [18]
UPGMA Hierarchical Clustering [52]

Table 2.2: Review of clustering algorithms applied to clustering small-molecules.
Applied to Large Dataset column shows whether the algorithm has been applied
to datasets larger than 1 million molecules.

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 39

tively, using an incremental similarity threshold, the algorithm selects the most
diverse compounds in each cluster, using a variant of MinMax algorithm. All
compounds in that cluster are assigned to the most similar selected probes, with
each group creating its own sub cluster. Once all the clusters are split, the thresh-
old is increased, and each cluster is further split until each component resides in
a unique cluster. This method managed to cluster the available data in 13 hours
on a single machine.

[26] followed a similar approach, where components were first grouped us-
ing similarity searching, with each partition being further clustered using Av-
erage Link clustering. A parallel implementation of this approach was done to
increase the performance of similarity computation, where all pairwise similar-
ities were required.

Although Fingerprint based comparisons are faster, [19] chose to use a struc-
ture based approach to cluster the data. Considering that it is slow, a precluster-
ing stage using set abstraction of graphs was used to enable fast partitioning of
the data. Although partitions were bigger, this ensured that only structures hav-
ing potential of being similar were clustered together. Slower and more accurate
sub structure searching was then done on subsets of the data.

Both [19] and [26] used parallel processing approach on a server, to increase
the performance of the algorithm. This enabled faster comparisons by using 32
and 64 cores concurrently for the respective researches. Table 2.2 shows the clus-
tering algorithms applied to small-molecule clustering, highlighting the meth-
ods that were used to cluster large datasets.

[66] implemented integrated LSH approximation to accelerate similarity search-
ing, with an additional contribution by combining it with the Jarvis Patrick al-
gorithm. The results improved drastically, with results showing that there were
improvements of 20-80 folds. The system was run on a computer cluster, further
enhancing its scaling capabilities. One drawback of the LSH method is the mem-
ory required when implementing it in distributed environments. These would
require data shuffling among the nodes and use of replication to handle nodes
failures. This might result in large memory consumption [43, 44].

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW 40

2.8 Chapter Summary

This chapter presented the current state in clustering small molecules. It anal-
ysed the necessary steps that are required to correctly represent molecules, and
a classification of the algorithms that are available. However, in the presented
related work there is a lack of clustering large datasets. In the current age of
increasing dataset sizes and generation of data, this requirement is increasing in
its importance.

3

Methodology

In this chapter, the design and implementation details of our approaches for
distributed clustering of large small-molecules datasets are outlined. The chap-
ter starts by first providing details about the experiment done to determine the
approach which was to be distributed. This is then followed by details of the
approaches implemented based on the selected algorithm. Following tests in a
serial environment, Butina algorithm was found to provide good quality clus-
ters while requiring less memory and minimal parameter settings therefore it
was chosen as the method to distribute using the Spark framework.

3.1 Decision of Proposed Approach

The decision of the approach to distribute was taken following experiments to
determine the best approach among the algorithms discussed in this section.
The decision was based on the the scalability and result quality aspects of the al-
gorithms. Experiments were required as nothing was identified in literature that
comparatively evaluates the performance of the algorithms identified together
on the same dataset and evaluation measures. Through literature analysis, four
algorithms were identified having the potential of further investigation, keeping
in mind the aims of the research discussed in Section 1.2. The chosen algorithms
are:

41

CHAPTER 3. METHODOLOGY 42

1. Ward’s Hierarchical Clustering - This clustering algorithm is the standard
algorithm for chemical clustering, achieving the most effective clustering
[53]. Therefore it merits to be further investigates in addition to the fact
that it can be used as a base case for the results of other algorithms to be
compared with.

2. Jarvis Patrick - This non-hierarchical clustering techniques has also been
widely used in chemical clustering, providing better space complexity than
Ward’s clustering algorithm. Although mixed results have been achieved
as seen in [30], its application has been widespread.

3. Butina Clustering - Butina clustering has been applied in a number of sce-
narios but is not widespread as Ward’s or Jarvis Patrick as seen in Sec-
tion 2.7.2. However it is based on the Exclusion Sphere approach, which
has been used in a number of studies and therefore it is a technique worth
visiting because of its interesting approach of selecting centroids. It was
developed with the aim of creating more homogeneous clusters and achieved
promising results when compared to Jarvis Patrick clustering [17]. Addi-
tionally, it requires minimal parameter setting, thus making it ideal for
large datasets.

4. Exclusion Sphere Clustering - Exclusion Sphere clustering is a non deter-
ministic single pass algorithm that has been applied in a number of studies
for clustering of data and diversity selection of molecules as shown in Ta-
ble 2.2. Compared to the other chosen algorithms, this method is the most
scalable and therefore considering the large datasets scenario, it was added
to the list of algorithms chosen.

3.1.1 Experiment Setup

Whenever possible, RDKit1 implementations were sought since it is a standard
library for chemical compounds manipulation. Both Wards and Butina cluster-
ing algorithms were available. Jarvis Patrick clustering was then implemented

1http://www.rdkit.org/ (last accessed 25th May 2019)

CHAPTER 3. METHODOLOGY 43

using the library jarvispatrick2, with Exclusion Sphere clustering being imple-
mented as per literature [32]. Extended Connectivity fingerprints, a type of
Circular Fingerprint, were used based on the Morgan algorithm using RDKit
library. Circular fingerprints have been applied in a wide manner in research
with positive results when compared to other representations [13, 22, 67]. Tan-
imoto similarity was then used as a similarity metric because of its consistent
use in research as [26]. Tests were run in a serial manner on a node having the
following specifications:

� OS: Ubuntu 16.04 (Virtual Machine)

� CPU: Intel(R) Core(TM) i7-6700HQ 2.60GHz

� Cores Allocated: 4

� RAM Allocated: 8GB

The dataset used for this experiment was the DUD-E dataset, further ex-
plained in Section 3.4.1. Three targets from different protein categories were cho-
sen, with their respective active and decoy molecules being obtained and com-
bined in a single dataset. Renin (Protease), Tyrosine-protein kinase ABL1 (Ki-
nase) and Thyroid hormone receptor beta-1 (Nuclear Receptor) were selected.
The choice of different categories enables us to get a better picture of the cluster-
ing quality on different types of small molecules.

3.1.2 Scalability Results

Scalability results were performed to determine the applicability of the algo-
rithms on large datasets. Scalability was tested by obtaining one of the datasets
chosen and creating nine subsets from it, with each subset containing more data
than the previous one, starting from 10% of the dataset up to 100%.

Figure 3.1 shows the results obtained from the tests performed. Exclusion
Sphere clustering was run two times with different similarity threshold as it af-
fects the number of similarity calculations required, hence the scalability of the

2https://github.com/llazzaro/jarvispatrick (last accessed 25th May 2019)

CHAPTER 3. METHODOLOGY 44

Figure 3.1: Scalability analysis for the selected clustering algorithms on increas-
ing datasets from 761 up to 7610 molecules.

algorithm. As seen from the results, Ward’s, Jarvis Patrick and Butina have the
same scalability. The main contributor for this is the calculation of similarity
matrix where it is required for all the three algorithms. Jarvis Patrick although
having the same scalability, seems to be the slowest. This is mainly due to im-
plementation differences, where both Wards and Butina clustering use RDKit
library, which is optimised for molecular data manipulation. Exclusion Sphere
algorithm scalability is dependent on the similarity threshold used, reaching
O(N2) as the similarity threshold reaches to 1.

With regards to memory usage, Ward’s clustering is the most demanding,
having space complexity of O(N2) as it requires to store the complete similarity

CHAPTER 3. METHODOLOGY 45

matrix. Both Jarvis Patrick and Butina clustering require only the list of neigh-
bours, a subset of the similarity matrix, therefore being more scalable for larger
datasets. Exclusion Sphere does not require any storage for the similarity com-
putations, as a molecule is assigned the moment similarity computation is done,
making the similarity value useless thereafter.

3.1.3 Clustering Quality Results

The aim of the approach to be chosen is to cluster the data based on the activity
classes of the molecules within the dataset such that active molecules with re-
spect to one target protein are separate from non active ones. This helps when
selecting initial molecules for diversity screening, such as not to get molecules
from the same activity class and therefore reduce the amount of molecules screened.
Additionally, it also enables the selection of molecules from known activity classes
as molecules in the same cluster have similar activity. QPI and F-measures (ex-
plained in Section 2.6.1) were therefore used as criteria to determine quality of
clusters as these were found to represent best this idea of separation.

To obtain the results, the algorithms were run with a number of parame-
ters and the highest results achieved by each algorithm were recorded. For
Ward’s clustering, clusters were selected at 100 intervals and readings were
noted. For Butina and Exclusion Sphere algorithms, readings were taken for
similarity thresholds at increments of 0.1, starting from 0.1 up to 0.9. Finally
for Jarvis Patrick, a set of k and kmin parameters were identified according to
[12], which uses the k value of 16 as a default value as used in Daylight suite of
programs. Similar parameters were also used by [29] and [20], with kmin values
being normally set as multiples of 4. However after some unsatisfactory results,
additional parameters were added. k value was halved and doubled to get a
wider ranges of k and kmin values.

Figures 3.2 and 3.3 shows the QPI and F-measure results obtained respec-
tively. With respect to QPI, Wards is consistently the algorithm that manages
to separate actives from inactives in the most optimal manner. Butina and Ex-
clusion Sphere achieved comparable results, with Butina being better than Ex-
clusion Sphere method. This is understandable considering that Butina is based

CHAPTER 3. METHODOLOGY 46

on Exclusion Sphere approach but with a better selection of cluster centroids.
Jarvis Patrick obtained unsatisfactory results. Research by [30] also found that
Jarvis Patrick is not as effective as Ward’s clustering, however considering its
widespread use one would presume that better results would be obtained. One
possible cause of such results may be that the parameters chosen were not opti-
mal as each dataset requires a different set of parameters. This is a known issue
of Jarvis Patrick algorithm, being also mentioned by [18].

Analysing the clusters produced, Wards clustering resulted in having less
singleton molecules than the other competing methods, with only 1 molecule
being clustered as singleton from the three datasets. However it tends to in-
clude more non active molecules into active clusters when compared to results
obtained from Butina clustering.

F-measure values are recorded for every cluster, and the results of the high-
est scoring cluster were then used, as used by [53]. From the results obtained,
and seen in Figure 3.3, although Ward’s clustering manages to separate actives
from inactive molecules in the most optimal way, it also tends to separate ac-
tives into smaller clusters. This was noted by the contrasting scores of Precision,
representing the fraction of the molecules within the cluster that are active, and
Recall, representing the fraction of actives clustered together out of all the actives
in the dataset. High Precision rates were recorded, with all molecules in the clus-
ter being actives, while the largest cluster of actives contained an average of 28%
of active molecules. These results were obtained at a different hierarchical level
than those of the QPI values. The results are consistent with those obtained by
[53], where QPI values were the highest for Ward’s clustering among the meth-
ods tested while F-measure results were comparatively low. Additionally, result
by [23] have also shown that QPI values tend to increase when more clusters are
selected from the hierarchical tree at lower levels, while F-measure is inversely
proportional to the number of clusters.

Butina obtained similar results to Ward’s clustering with regards to Preci-
sion, with all the molecules in the cluster being active. Additionally, the average
Recall rate among the datasets was that of 51%, meaning that half of the actives
were clustered together in the same cluster. The highest F-measure scores for
Butina were recorded at 0.3 similarity threshold for all the three datasets tested.

CHAPTER 3. METHODOLOGY 47

Figure 3.2: Comparison of the effectiveness of the algorithms using the QPI mea-
sure on the three selected datasets.

The results for Exclusion Sphere clustering and Jarvis Patrick follow the same
results for the QPI, with Exclusion Sphere achieving similar results to Butina
clustering while Jarvis Patrick obtaining low results.

Based on the results obtained, Butina clustering algorithm is an interesting
approach to further investigate. It managed to obtain comparable results to
Wards clustering, even though some active molecules were separated as sin-
gletons. Singletons may be a problem as these would not be encompassed by
a group, therefore requiring individual testing. On the other hand, it managed
to cluster half of the active molecules together, making it easier to identify addi-
tional actives when an active is already known. One drawback of such approach

CHAPTER 3. METHODOLOGY 48

Figure 3.3: Comparison of the effectiveness of the algorithm using the F-measure
on the three selected datasets.

is that the output is not in a hierarchical format. A hierarchical output enables
better insight on the data as it allows drilling down to get more specific subsets
or getting larger clusters.

Butina is also more scalable with regards to memory requirements. O(N2)

may become unsustainable when dealing with datasets of millions of molecules,
hence this should be also taken into account. In comparison to Jarvis Patrick,
Butina also requires only one parameter being the similarity threshold. This
makes it ideal to use by non technical users, while also requiring less investi-
gation to identify the correct set of parameters. Exclusion Sphere clustering ap-
proach also obtained results similar to those by Butina and hence merits further

CHAPTER 3. METHODOLOGY 49

investigation. However considering that Butina algorithm is an enhancement
on the Exclusion Sphere approach and it helps to obtain better results, it was
decided that Butina clustering would be selected for distribution.

3.2 Approach Overview

Following the choice of the Butina clustering algorithm, two approaches were
implemented based on this method. These are:

1. D-Butina: Distributed Butina (D-Butina) clustering algorithm was imple-
mented, with the new approach producing the same results as the Butina
clustering, however the algorithm was re-written to fit in a distributed en-
vironment.

2. DLSH-Butina: Distributed Locality Sensitive Hashing Butina (DLSH-Butina)
was implemented by applying Locality Sensitive Hashing approximation
method to the Butina clustering algorithm, substituting the calculation of
the complete similarity matrix. This was done with the aim of improving
the speed performance of the algorithm.

The Tanimoto similarity metric was then used for the similarity calculations
among the fingerprints since it is the most widely used metric in the field as
discussed in Section 2.2.5. Extended Connectivity fingerprint was then used for
molecular representations as discussed in Section 3.1.1. All the processes in the
flow are implemented to run in a distributed environment to enable scaling out
of the system. A high level of this approach can be seen in Figure 3.4, where tasks
are divided among n nodes, with each node computing local computation on a
unique subset of the data. The distribution and synchronisation is managed by
the master node assigning the tasks and handling data synchronisation among
the workers. An overview of the distributed architecture is shown in Figure 3.5.

For the implementation, Python version 2.7.63 was used, with Apache Spark
version 2.3.0 4 being used for the distribution. RDKit library version 2016_03_01

3https://www.python.org/download/releases/2.7.6/ (last accessed 25th May 2019)
4https://spark.apache.org/releases/spark-release-2-3-0.html (last accessed 25th May 2019)

CHAPTER 3. METHODOLOGY 50

Figure 3.4: Abstract view of the approaches presented, with the tasks being split
among n number of nodes, with each node performing local computation of the
task at hand on a unique subset of the data. Diagram based on [61].

5 was used to enable handling of molecular data, conversions between the for-
mats and similarity comparisons. Python was used as the language of choice
because of its wide applicability for Machine Learning. Additionally RDKit li-
brary is natively written in Python using C compiled libraries, therefore the use
of Python was optimal for this case for ease of use and integration with this li-
brary. The implementation and tests were run on Ubuntu Linux version 16.04
LTS.

5https://github.com/rdkit/rdkit/releases?after=Release_2016_09_1a1 (last accessed 25th
May 2019)

CHAPTER 3. METHODOLOGY 51

Figure 3.5: Architecture of the distributed Spark clusters, adapted from [44].

3.3 Spark Framework

The Apache Spark framework was used for the implementation of the approach
presented. Spark is built on the Map Reduce Paradigm using a distributed data
model to abstract how the distribution of data is performed. It uses Resilient
Distributed Datasets (RDDs), a collection of data partitioned among nodes, to
abstract the distribution of data. It enables in-memory data processing, provid-
ing better performance than Apache Map Reduce6 framework [50].

Functions provided by Spark are called on an RDD and automatically dis-
tribute or shuffle the data as necessary. It offers the functions Map and ReduceByKey

that work in a similar way to the functions offered by the Map Reduce frame-
work. However in addition to that, Spark also offer other functions to filter the
data in a distributed manner and to flatten the data as necessary.

Another important functionality of Spark is the broadcast. Broadcast is the

6https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-
client-core/MapReduceTutorial.html (last accessed 25th May 2019)

CHAPTER 3. METHODOLOGY 52

process of sending the same set of data to all the worker nodes. For this to be
done, it must collect all the subsets of data from each worker, combine them into
a single dictionary in the form of < key, value > and replicate the result to all
the workers. Although it is a useful functionality, it is a heavy operation as data
needs to be transferred back and forth between the driver node and the workers.
If abused it may easily become a bottle neck for the system.

3.4 Datasets

Two datasets have been used for the tests performed. These are the Directory of
Useful Decoys-Enhanced (DUD-E) and the ZINC datasets. In addition to these
datasets, other datasets were also used in literature, however these were not
freely available.

3.4.1 DUD-E

DUD-E7 dataset provides active and generated decoy molecules for target pro-
teins. This dataset is useful as actual activity of the data with respect to a target
protein is known. Decoys are molecules from a larger dataset that were care-
fully selected and tested to be physically similar to ligands, yet they do not
bind to the target protein. Additionally, eight different categories of proteins
are made available, making the dataset more diverse. These are: Nuclear Recep-
tors, GPCR, Ion Channel, Other Enzymes, Cytochrome, Protaese, Kinase, and
Miscellaneous Proteins. The data is available in sdf format and is subdivided
by target molecule [68].

3.4.2 ZINC

ZINC8 dataset is a non commercial and freely available dataset. It is continu-
ously updated with new compounds, which at the time of download amounted
to 761,841,197 molecules which can be either downloaded in SMILES format or

7http://dude.docking.org/ (last accessed 25th May 2019)
8http://zinc15.docking.org/ (last accessed 25th May 2019)

CHAPTER 3. METHODOLOGY 53

accessed through an API. From this dataset, those relevant to this research were
selected, this was done using the provided filtering to select only ’drug-like’
compounds. This reduced the dataset to 749,376,606 molecules, selecting only
those having Molecular Weight between 250 and 500 Daltons. Additionally
these compounds also have LogP < 5.0 [65].

CHAPTER 3. METHODOLOGY 54

3.5 D-Butina

The Butina clustering algorithm can be conceptually divided into two steps:

1. Neighbours identification phase: The exact list of neighbours is required
for each molecule in the dataset.

2. Clustering of the molecules: Given the molecules and their list of neigh-
bours, molecules are clustered accordingly starting from the molecule hav-
ing most neighbours.

The steps of the algorithm can be seen in Figure 3.6. Initially data is pre-
processed to provide the necessary input for the neighbour identification phase.
SMILES data is read from file storage, indexed and divided into equally sized
splits D1, D2...Dn. The splits are then distributed among the workers, which in
turn convert the SMILES data into fingerprints.

3.5.1 Neighbours Identification Phase

Neighbours can be defined as those molecules whose similarity γ with a target
molecule is equal to or greater than a defined threshold T. The identification
of exact neighbours requires the calculation of all pair-wise similarities. This
is a demanding task that requires O(N2) time to complete, with N being the
number of molecules. Similarity calculation is the most time consuming opera-
tion in this clustering method, therefore an implementation of similarity calcu-
lation and neighbour identification in a distribution manner is done. Although
time complexity of the calculation still remains the same, the time is distributed
among the nodes and therefore it can handle more data in the same amount of
time.

Firstly, the master node, takes the entire list of fingerprints Fall and broadcasts
it to all the worker nodes. Secondly, the same list of indexed fingerprints is di-
vided into splits F1, F2...Fn and distributed among the nodes in the spark cluster,
with each molecule fingerprint being present in only one split. This technique
of calculating the values of a matrix by replicating all the columns to all nodes,
and then dividing the rows among them is a technique normally used in cases

CHAPTER 3. METHODOLOGY 55

Figure 3.6: High level diagram of the D-Butina process. The pre-processing is
required by all the clustering algorithms, while the neighbours identification
phase is required by all the methods requiring either neighbours or similarities
among the molecules.

CHAPTER 3. METHODOLOGY 56

Figure 3.7: Calculation of the complete similarity matrix distributed among the
worker nodes. The columns are replicated on all the nodes, while the rows are
divided among the workers as shown. The highlighted section of the matrix is
the only part that is calculated. Diagram adapted from [61]

when the amount of coloumns is less than that of rows [69]. This occurs because
data transfer is heavy and therefore, distributing the smallest list of the two is
always suggested. However in our case, the number of rows and coloumns are
equal and therefore all the list is broadcasted.

A subset of the similarity matrix is then computed on each separate worker
as per Figure 3.7. Considering the symmetry of an N by N matrix, only the
lower triangle of the similarity matrix requires computation. This reduces the
time required by half.

Each element from split Fi in the form < id, f ingerprint > is matched with
a subset of Fall also of the same form. The subset is chosen by selecting those
fingerprints whose identifier is smaller than the matching fingerprint to obtain
the lower triangle of the similarity matrix. The resultant combination is stored
as an RDD as < key, value > pairs. Each element is represented by a key of
type molecule identifier and fingerprint, with the value being the subset list of
fingerprints.

Similarity is then computed between the key molecule and the list of values.

CHAPTER 3. METHODOLOGY 57

RDKit is used to compute the similarity mainly because of its efficiency. It pro-
vides a bulk similarity function whereby given two parameters, a fingerprint
and a list of fingerprints, the similarity of parameter one against all the others
is computed. This is more efficient with respect to calculating similarity of each
pairwise combination separately, as it benefits from caching in CPU memory to
increase its performance.

To make the algorithm efficient with regards to space consumed, compar-
isons are instantly filtered to maintain only those having γ > T. This means
that any γ values below T are discarded. This reduces space complexity of the
algorithm from O(N2) to O(Nm) with m being the average number of neigh-
bours. The value of m depends on the similarity threshold. It gets closer to N
as γ gets closer to 0, while getting smaller as the γ reaches 1. Once molecules
below the threshold are filtered out, the data is flattened such that a row of <
molecule, list_o f _neighbours > becomes multiple rows of < molecule, neighbour >.
Since initially, only the lower triangle of the matrix was computed, only half of
the neighbours are found. Therefore each subset of the RDD containing neigh-
bours, that is spread among the workers, is replicated, with the replicated ver-
sion having its target molecule and neighbour molecule values inverted. There-
fore, the complete list of neighbours is obtained.

Finally a reduce operation groups all the rows having the same key molecule
in the same worker. The rows are combined by the key to convert multiple rows
into a single one having the target molecule fingerprint and a list of neighbours.

3.5.2 Clustering Phase

No distributed implementation for the Butina clustering algorithm was found
in literature on which improvements could be made. Therefore a number of
approaches were tried before identifying a successful implementation. A dis-
tributed implementation of the serial algorithm as presented by [17] was not
possible, as each potential cluster centroid required the results of all the previ-
ous generated clusters to determine whether a centroid should create its own
cluster or not, making it non distributable.

A second idea was to treat the process as a set difference approach. Each row

CHAPTER 3. METHODOLOGY 58

would be considered as a set, computing a set difference with all the rows hav-
ing more neighbours than itself. This would remove molecules in the set, that
were owned by clusters having more neighbours. However this approach was
also unsuccessful because of incorrect results obtained. The problem with this
approach stems from fact that clusters generated by Butina are dependent on
previous cluster results and a cluster may be invalidated by another previously
created cluster owning its cluster centroid. This issue is shown in Figures 3.8a
and 3.8b, where the placement of a molecule may change based on the compo-
sition of higher clusters.

Therefore, the result at any given row depends on all the previous clusters.
This dependency makes it challenging to distribute the process as row y de-
pends on the outcome of all rows from 1 to y − 1. To overcome this problem, the
solution had to be divided into two steps.

1. Identification of cluster centroids: This step identifies the molecules that
will become cluster centroids.

2. Assignment of molecules to clusters: After cluster centroids are known,
clustering can be performed without the issue of clusters being removed
during the process as seen in Figures 3.8a and 3.8b.

Identification of Cluster Centroids

To identify cluster centroids, an iterative algorithm was created whereby molecules
are temporarily assigned to different clusters until a molecule is either desig-
nated to be a cluster centroid or removed from the list of potential cluster cen-
troids. The temporary assignment of molecules to clusters will not be the actual
cluster of a molecule, however this process is only used to identify cluster cen-
troids. To reduce the dependency that exists in serial Butina, among potential
clusters while they are being created, the commutative property of neighbour-
hood is used.

If molecule a is a neighbour of molecule b, then b is also a neighbour of a.

CHAPTER 3. METHODOLOGY 59

(a)

(b)

Figure 3.8: Assignment of molecule having identifier 21 to a cluster in two dif-
ferent scenarios. The reference molecules, in gray, are ordered in a descend-
ing order by the count of neighbours. (a) Molecule 21 (highlighted in red) is a
neighbour of both molecules 54 and 12. However it is assigned to cluster having
centroid 54 since it has more neighbours than 12, therefore taking precedence.
(b) A similar scenario to (a) is shown, however 54 is assigned to cluster having
centroid 75 as it is in its neighbourhood. Therefore it cannot have a cluster of its
own, leading molecule 21 to be free. This can then be owned by cluster having
12 as its centroid.

CHAPTER 3. METHODOLOGY 60

From this, it can be concluded that a molecule can either be in a cluster whose
centroid is itself, or any other cluster whose centroid is in its neighbourhood.
This can be seen in Figure 3.8a, where molecule 21 can be assigned to clus-
ters having centroids 54 or 12. Both 54 and 12 are within the neighbourhood
of molecule 21. Molecules within the neighbourhood of a reference molecule
can be:

� Molecule having more neighbours than the reference molecule

� Molecule having same amount of neighbours as the reference molecule

� Molecule having less neighbours than the reference molecule

Based on the rules of the Butina clustering, a molecule may only be assigned
to a cluster having either more neighbours or the same amount of neighbours
than itself. If there is no molecule satisfying this condition, then the molecule
creates a cluster for itself, encompassing the remaining neighbours. Should
there exist any two molecules having the same amount of neighbours, then a tie
breaker is used for determinism purposes as implemented in RDKit 9. This tie
breaker determines that the molecule having the smallest identifier takes prece-
dence.

To identify cluster centers, and to reduce the amount of data transfer, the
algorithm treats each row (molecule and list of neighbours) as a separate entity,
performing a task in iterations with synchronisation at every iteration. This idea
is similar to the one used by [61] to perform hierarchical clustering using Spark,
where the most similar compounds are found in an iterative manner and shared
among all the workers. It is also equivalent to a bulk synchronous parallel (BSP)
approach, where a number of steps are processed in iteration, with each iteration
requiring a synchronisation step [50].

This algorithm requires the count of neighbours for every molecule in the
dataset. To do this, the output of neighbour identification process explained in
Section 3.5.1 was altered by adding the count of neighbours to each molecule,
such that the output becomes an RDD of rows having the properties:

9http://www.rdkit.org/Python_Docs/rdkit.ML.Cluster.Butina-pysrc.html (last accessed
25th May 2019)

CHAPTER 3. METHODOLOGY 61

molecule id No. Neighbours List of Neighbours
65 15 [<neighbour id, No. Neighbours>, ...]

The neighbours are ordered in a descending order based on their count of
neighbours. This enables faster performance to identify the neighbour having
the most count of neighbours at each iteration.

The distributed algorithm to identify centroids accepts an RDD of molecules
and their neighbours as input, with both the molecules and the neighbours be-
ing in the form of < molecule_identi f ier, count_o f _neighbours>. The RDD is
distributed among the workers, with each worker performing the same opera-
tions on different subsets of the data.

Each molecule is assigned a cluster centroid. This can be, either one of its
neighbours having the most count of neighbours or the molecule itself. Since
neighbours are already ordered by their count of neighbours, the assigned clus-
ter centroid can only be the first element in the neighbour list or the molecule
itself, depending on which molecule has the largest count of neighbours. There-
fore only a check on the first element is required.

Two lists are created, whereby molecules are assigned to either one or the
other:

1. valid_cluster_centroids - any molecule assigned to this list during the pro-
cess of the algorithm is a confirmed cluster centroid as part of the final
result for D-Butina.

2. invalid_cluster_centroids - any molecule assigned to this list during the
process of the algorithm cannot be a cluster centroid as part of the final
result. Therefore it is considered invalid.

Any molecule assigned to a cluster that is not itself, may have the clus-
ter changed as that cluster centroid may be present in another cluster as seen
in Figure 3.8b. Therefore it remains pending for further computation. How-
ever, any molecule that is assigned to its own cluster will not have its cluster
changed. This happens as a molecule is assigned to its own cluster in cases
where no neighbours having more count of neighbours than itself exist. As per

CHAPTER 3. METHODOLOGY 62

Butina rules, a molecule may be either assigned to a cluster centroid having
more neighbours than itself or it creates its own cluster. Therefore the clusters
of such molecules are confirmed and as such they are obtained and stored in
valid_cluster_centroids list. Any neighbouring molecules to cluster centroids in
valid_cluster_centroids list will belong to those clusters and therefore cannot be-
come cluster centroids of their own. Hence they are retrieved and assigned to
invalid_cluster_centroids list.

At this stage, each worker in the Spark cluster will have a subset of RDDs
valid_cluster_centroids and invalid_cluster_centroids. Therefore, at each itera-
tion, the list of invalid_cluster_centroids is collected on the master node and com-
bined in a single list. This is converted into a dictionary all_invalid_cluster_centroids
with the key being the molecule identifier and an empty value. The change to
a dictionary ensures that checking whether a molecule identifier exists in the
dictionary takes only O(1) time. The dictionary is then shared among all the
workers. The list valid_cluster_centroids does not require collection, as the list
valid_cluster_centroids and the molecules in that subset are both present on the
same worker node.

The molecules in all_invalid_cluster_centroids have no chance of being a
centroid and hence are removed from the data being processed. Therefore el-
ements having their molecule identifier in all_invalid_cluster_centroids are re-
moved from the RDD. Additionally, any neighbour molecule that has its molecule
identifier in all_invalid_cluster_centroids is also removed. This process of dele-
tion aids to increase the performance of the algorithm at each iteration by having
less data to compute.

Molecules in the list valid_cluster_centroids are also removed to further re-
duce data that requires computation. However since they are recorded in the
list valid_cluster_centroids, they are not lost.

After the molecules are deleted, the iteration starts again by assigning each
molecule a new cluster centroid as per the process explained. Some molecules
may have their cluster changed as their previously assigned centroid would
have been removed during the process of deletion. Others may remain as-
signed to the same neighbour as it would have not been removed yet. As per
above, any molecules assigned to their own clusters are appended to the list of

CHAPTER 3. METHODOLOGY 63

valid_cluster_centroids, while their neighbours are assigned to invalid_cluster_centroids.
However, in the case of invalid_cluster_centroids, it is emptied and reassigned
at each iteration as it is useless to keep removed molecules. The process of se-
lecting valid_cluster_centroids and invalid_cluster_centroids repeats itself until
the list of all_invalid_cluster_centroids is empty. This signifies that all centroids
have been found and that no other molecule with the potential of being a cen-
troid remains. Finally, all the subsets of valid_cluster_centroids are collected in
a single list and becomes the final output of this algorithm, representing all the
cluster centroids of the Butina algorithm. Figures 3.10a-3.10g show a working
example of the algorithm to identify cluster centroids.

Pseudo Code for the algorithm is shown in Algorithms 1, with Algorithms
2 and 3 showing in detail the sections of assigning a molecule to a cluster and
the removal of neighbour molecules that exist in all_invalid_cluster_centroids.
Figure 3.9 then shows the distribution of the tasks between the workers and the
communication required among the nodes.

Assignment of molecules to clusters

The final step is to assign molecules to the cluster centroids identified. The list of
neighbours for each molecule is obtained for each molecule in valid_cluster_centroids.
A set difference is required by every cluster centroid to all the other cluster cen-
troids that have more neighbours than itself. Conceptually, the cluster centroids
are ordered in a descending way by count of neighbours and each centroid does
a set difference of its neighbour molecules with all the previous cluster cen-
troids. This is done using a cartesian operation, discarding any cartesian result
of type ((molecule1, listo f neighbours), (molecule2, listo f neighbours)), where the
count of neighbours for molecule1 is greater than the count of neighbours for
molecule2. This time, no clusters will be removed. The results from the set dif-
ference are intersected by key (molecule identifier) to keep only those molecules
that were not assigned to larger clusters. The final result is the same as the serial
Butina Clustering. This was confirmed through tests using various datasets.

The distribution of this section is done by dividing the calculation of set dif-
ference among the nodes. The result is then grouped by cluster centroid.

CHAPTER 3. METHODOLOGY 64

Algorithm 1 Identification of cluster centroids algorithm in worker.

Input: RDD of molecules M having key <molecule_id, count of neighbours>
and value [<neighbour_id, count of neighbours>, ..]

Output: list of molecule cluster centroids

1: Divide M into s splits: M1, M2, ..., Ms

2: procedure IDENTIFYCENTROIDS(Mi)

3: valid_clusters ← []

4: invalid_clusters ← []

5: repeat

6: Call AssignCluster() on every element in Mi � Algorithm 2

7: valid_cluster_centroids ∪ molecules that are assigned to their own
cluster

8: invalid_cluster_centroids ← valid_cluster_centroids.GetAllNeighbours()

9: Send invalid_cluster_centroids to master

10: all_invalid_cluster_centroids ← Get all invalids from master node

11: Mi ← Remove entries having molecule_id present in either
all_invalid_cluster_centroids or valid_cluster_centroids

12: Call UpdateNeighbours() on every element in Mi � Algorithm 3

13: until len(all_invalid_cluster_centroids) == 0

14: return valid_cluster_centroids

CHAPTER 3. METHODOLOGY 65

Algorithm 2 Assignment of cluster to a molecule.

Input: Key Value pair element mol having having key <molecule_id, count of
neighbours> and value [<neighbour_id, count of neighbours>, ..]

Output: Same as Input with assigned cluster_id

1: procedure ASSIGNCLUSTER(mol)

2: molecule ← mol.key

3: m_id ← molecule.molecule_id

4: m_count ← molecule.neighbour_count

5: neighbours ← mol.value

6: nbr_id ← neighbours[0].neighbour_id

7: nbr_count ← neighbours[0].neighbour_count

8: if m_count < nbr_count then

9: molecule.cluster = nbr_id

10: else if m_count == nbr_count AND m_id < nbr_id then

11: molecule.cluster = nbr_id

12: else

13: molecule.cluster = m_id

Algorithm 3 Update of neighbour molecules

Input: Key Value pair element mol having key <molecule_id, count of neigh-
bours> and value [<neighbour_id, count of neighbours>, ..]. Dictionary
all_invalid_cluster_centroids

Output: Same as Input with removed neighbours

1: procedure UPDATENEIGHBOURS(mol, all_invalid_cluster_centroids)

2: neighbours ← mol.value

3: for each nbr ∈ neighbours do

4: if all_invalid_cluster_centroids has key nbr.neighbour_id then

5: Remove nbr from neighbours

CHAPTER 3. METHODOLOGY 66

Figure 3.9: Distribution of Algorithm 1. Local computation is done on the work-
ers from steps 1 -3. Then a synchornisation process is done in steps 4 and 5,
followed by further local computation. This process is repeated until a condi-
tion is met.

CHAPTER 3. METHODOLOGY 67

(a) Molecules (represented using molecule
id and count of neighbours) in gray and
their list of neighbours

(b) Assign cluster centroid to each
molecule

(c) Select all molecule which have been as-
signed to their own cluster

(d) Remove neighbours of cluster cen-
troids from the working set

(e) Assign cluster centroid to remaining
molecules

(f) Select all molecule which have been as-
signed to their own cluster

(g) Remove neighbours of cluster cen-
troids from the working set

Figure 3.10: Identification of cluster centroids

CHAPTER 3. METHODOLOGY 68

3.6 DLSH-Butina

The second approach implemented was that of calculating neighbours using an
approximation technique. Neighbours identification is the most time consum-
ing process in the Butina clustering algorithm, hence approximation was im-
plemented as a way of increasing the speed of this process. LSH was used as an
approximation method as it was already applied to the process of molecules sim-
ilarity searching by [66] and [45] with successful results, providing better speed
performance. However it does not provide exact neighbours. A high level view
of the process can be seen in Figure 3.11. The implementation of this method is
also done in a distributed way with the aim of handling even larger datasets.

The preprocessing stage for DLSH-Butina also involves reading SMILES data,
indexing it and dividing it into equally sized splits D1, D2...Dn. The splits are
then distributed among the workers, which in turn convert the SMILES data into
fingerprints.

CHAPTER 3. METHODOLOGY 69

Figure 3.11: High level diagram of the DLSH-Butina process. The pre-processing
is required by all the clustering algorithms, while the identification of neigh-
bours phase is the implemented section introduced in this algorithm.

CHAPTER 3. METHODOLOGY 70

3.6.1 Locality Sensitive Hashing

LSH implementation was based on the approach by [45], where it was adapted
to be run in a distributed manner using Apache Spark. The implementation is
divided into three parts:

1. Creation of Minhashes: Minhash is a process where high dimensional data
is hashed to reduce its dimensionality, enabling faster estimation of Jaccard
similarity when compared to using the complete bit fingerprint.

2. LSH: Minhash output are hashed and placed in buckets with collisions in
buckets being considered as neighbours.

3. Identification of Neighbours: Potential neighbours of a query molecule are
obtained by retrieving molecules hashed to the same buckets as the query
molecule.

To perform Minhash, a list is created enumerating all the numbers starting
from 0 up to fingerprint length - 1, representing all the bit positions of a fin-
gerprint. A list Px having x permutations of the bit positions of a fingerprint is
created. Each entry represents one permutation of bit positions. List Px is shared
among all the worker nodes in the Spark cluster such that it is common to all.
Fingerprints are then divided into approximately equal-sized splits F1, F2, ...Fn
and distributed among the workers, with each worker getting a different and
unique split. Hashing is then performed on each fingerprint.

Hashing of a fingerprint is performed by ordering the fingerprint bits accord-
ing to each entry in Px. Once a bits in the fingerprint are ordered, the position
of the first ’1’ bit is stored in a list of signatures Si. This is done for every finger-
print, where each fingerprint is ordered once for every entry in Px. The output
is a list of signatures S for every fingerprint. The hashing process for one finger-
print is shown in Figure 3.12.

CHAPTER 3. METHODOLOGY 71

Figure 3.12: The Minhash process is shown. In this example, one fingerprint and
a list of permutations P are provided as input. The fingerprint bits are ordered
according to P. For each permutation, the position of the first 1 bit is recorded
and stored in a list of signatures S. As seen in the example, ordering fingerprint
1 according to permutation 1, results in position 2 being the first 1 bit. Image
adapted from [45].

Locality Sensitive Hashing hashes the signatures into buckets such that molecules
hashed in the same dictionary bucket would be considered as neighbours. This
creates indexes based on hashes such that fast retrieval of neighbour molecules
can be done. Each n number of elements in a signatures Si are grouped together
into b bins, such that bn is equal to the length of Si. b is a user defined threshold
and affects the the similarity of objects in the buckets. A large value of b results
in a small value of n, allowing low similarity molecules to be hashed into the
same bin. A larger n would require two molecules to have multiple signatures
that are similar to each other. Therefore non similar molecules has less proba-
bility of having a large number of similar signatures and hence hashing into the
same bucket.

The bin elements are then hashed into a single value, as can be seen in Fig-
ure 3.13. The hash function used is one that does not create a unique value for

CHAPTER 3. METHODOLOGY 72

every different input, but it hashes similar inputs into the same value. The op-
eration left shift binary conversion was used, which combines n values into a
single number [45]. The hash results are then used to create two dictionaries.
The first dictionary is buckets_dictionary. It uses the hash result as a key and
the value being a list of molecule identifiers that hash to that value. A second
dictionary, called molecule_hashes, is created using the molecule identifier as a
key and the list of hash results as a value, as seen below:

buckets_dictionary {Hash id, [Molecule ids]}
molecule_hashes {Molecule id, [Hash ids]}

Figure 3.13: n number of signature elements are grouped and hashed into a
single value.

The molecule_hashes dictionary is used to get the list of buckets that a molecule
hashes into, in a single operation. The values are then used in the buckets_dictionary,
where each key is used to access the list of molecules that hash into the same
buckets.

In a distributed environment, fingerprint F are already divided among the
workers for the minhash process. Therefore the resultant signatures S belonging
to those fingerprints are also divided. LSH is then performed on each separate
worker, with separate dictionaries being created. The dictionary buckets_dictionary,
results in being distributed among all the workers, with values for the same key
being also distributed. Therefore a merging process is required, combining all
the values for the same key. buckets_dictionary is collected and the combined
result is then broadcasted to all the workers.

The final step is to identify the neighbours of a query molecule m. This is
done in a distributed manner by using the two dictionaries created. First, the
dictionary molecule_hashes is used to obtain the buckets that m is in. Then

CHAPTER 3. METHODOLOGY 73

buckets_dictionary is used to obtain the list of molecules that hash to each of
those bucket positions. This list represents molecules that hash to the same
bucket and therefore are potential neighbours. Finally, similarity calculation
using threshold T is done for m against each molecule obtained from the buck-
ets. This removes any non similar molecules that were incorrectly hashed to
the same bucket. For our case, quality of clusters is important therefore the
step of calculating similarity was included to remove any incorrect results. Al-
though similarity calculation is still required, each molecule is only compared to
those molecules having a potential of being neighbours, rather than all the other
molecules, thus reducing O(N2) complexity. The complete flow of the LSH pro-
cess can be seen in Figure 3.14, showing the computation done on each worker
and the communication required with the master node. The format of the final
output is identical to the one produced from actual neighbour identification in
Section 3.5.1.

3.6.2 Clustering Phase

The final step is to perform the clustering process. The process remains un-
changed from that explained in Section 3.5.2. Since the output of the neighbours
is identical in both actual neighbour identification and LSH, no difference in
implementation is required. Cluster centroids are first identified, followed by
assignment of molecules in clusters.

3.7 Chapter Summary

This chapter presented the implementation details of approaches designed to
target the problem at hand. It highlighted the problems and issues that were
targeted with the solutions implemented. The environment and datasets used
were also discussed to provide a holistic view of the solution.

CHAPTER 3. METHODOLOGY 74

Figure 3.14: Process of identifying neighbours using LSH method, showing the
execution of one worker and its communication requirements with the master
node.

4

Results & Evaluation

This chapter first details the results of the experiments performed to obtain the
optimal parameters for our approaches (implemented in Section 3) to run the
evaluation. This is followed by an evaluation of the approaches and a discussion
of the results obtained.

4.1 Experiments Design

A number of experiments were designed throughout this study to enable in-
formed decisions. The experiments were focussed around the aim proposed in
Chapter 1, that of implementing a distributed clustering algorithm to increase
the speed performance of clustering while maintaining good quality of clusters
produced by having active molecules grouped together.

The algorithms evaluated are D-Butina and DLSH-Butina. The decision was
taken after a number of serial approaches were compared in Section 3.1, with the
selected algorithm being distributed and approximation applied to the process.
Initial experiments were performed to determine the optimal parameters for the
D-Butina and DLSH-Butina approaches.

Tests were then performed on a distributed environment to evaluate the
speed, scalability and performance accuracy of the approaches presented. The
distributed approaches implemented in Chapter 3 were compared to the se-
rial version to determine the speedup gain while also analysing the scalability
of the algorithms. The scalability and performance accuracy results produced

75

CHAPTER 4. RESULTS & EVALUATION 76

were then analysed and compared with bisecting k-means, an algorithm that
has good scalability and therefore can handle large datasets [38].

[38] found that clusters generated by Ward’s clustering are better than bi-
secting k-means in terms of Sum of Squared Error. However results by bisecting
k-means have similar standard deviation to results produced by Ward’s cluster-
ing. Additionally, the algorithm has the advantage of better scalability especially
for large datasets. Therefore it was used to compare the speed and results with
the approaches implemented.

Throughout all the experiments, extended connectivity fingerprint (see Sec-
tion 2.2.3) from the RDKit library was used as molecular representation. These
are a type of circular fingerprints, with the implementation being based on Mor-
gan’s algorithm. Circular fingerprints were chosen since these have been widely
applied in research with positive results to identify molecular activity [13, 22,
67]. Similarity between fingerprints was handled by RDKit using the Tanimoto
similarity metric, with this metric being a standard in comparing descriptors
[26].

4.2 Cloud Infrastructure

Experiments performed on the distributed versions of D-Butina and DLSH-Butina
were done using a Spark cluster on Azure Batch1. Batch was selected as it is cost
efficient with respect to other providers, allowing the use of low priority VMs to
save further costs. It further provides the functionality of ready made Spark en-
abled Docker2 containers, which can be extended to install the required libraries.

To perform the tests, six and eleven nodes were used, having one master
node and the remaining as workers. E2_v3 memory intensive instances were
employed, with the following specifications for each node:

� 2.3 GHz Intel XEON E5-2673 v4 (Broadwell) processor

� 2 Cores
1https://azure.microsoft.com/en-us/services/batch/ (last accessed 25th May 2019)
2https://www.docker.com/ (last accessed 25th May 2019)

CHAPTER 4. RESULTS & EVALUATION 77

� 16Gb RAM

� 50Gb Temporary Storage

� Ubuntu 16.04 LTS

A Docker container was created with the required installed libraries. It was
based on the image available by aztk, aztk/spark:v0.1.0-spark2.3.0-base, hav-
ing all the necessary Spark libraries installed. Additional libraries were then
installed and current ones updated to the necessary versions. Anaconda version
5.2.0 was installed to handle modules installed. Python version 2.7.63 was used,
with Apache Spark version 2.3.0 4 being selected. Hadoop library 2.7.0 was
installed, and two required jar files azure-storage-2.0.0.jar and hadoop-azure-
2.7.0.jar being copied to SPARK_HOME. RDKit library version 2016.03.04 5 was
finally installed to enable handling of molecular data, conversions between the
formats and similarity comparisons.

Interaction with the Azure Spark cluster was done using the Azure Dis-
tributed Data Engineering Toolkit6. This allows to easily interface with Batch
to setup Spark clusters, deploy jobs and monitor the activity through Spark UI.

4.3 Evaluation Dataset

Due to time and resource limitations, subsets from the ZINC (Section 3.4) dataset
were used to create the evaluation datasets shown in Table 4.1. The subsets were
then combined with actives from DUD-E (Section 3.4) dataset to determine the
ability of the implemented approaches to cluster active molecules together. Four
datasets were created to evaluate the speed of the approaches presented.

Considering that the research focuses on large datasets, a decision was taken
to keep file sizes as small as possible by opting to represent the data as SMILES

3https://www.python.org/download/releases/2.7.6/ (last accessed 25th May 2019)
4https://spark.apache.org/releases/spark-release-2-3-0.html (last accessed 25th May 2019)
5https://github.com/rdkit/rdkit/releases?after=Release_2016_03_04 (last accessed 25th

May 2019)
6https://azure.microsoft.com/en-us/blog/on-demand-spark-clusters-on-docker/ (last ac-

cessed 25th May 2019)

CHAPTER 4. RESULTS & EVALUATION 78

Dataset Name No. Molecules Size (Megabytes)
Dataset1 50,000 2.5
Dataset2 100,000 5.27
Dataset3 200,000 11.63
Dataset4 500,000 32.13

Table 4.1: Characteristics of evaluation datasets

string rather than SDF. This increased the efficiency in storage since each molecule
is only represented by a short string as described in Section 2.1. In compari-
son, storing 2D and 3D encoded information of 500,000 molecules as SDF format
would have resulted in approximately 2.4Gb.

For quality evaluation, Dataset4 was combined with ABL1 active molecules
obtained from DUD-E dataset, removing any duplicate actives from the ZINC
subset in the process. Dataset4 was clustered to determine how the different
approaches selected above group the active molecules together.

4.4 Results

Parameters for D-Butina and DLSH-Butina were required to evaluate the per-
formance of the two approaches. D-Butina requires the similarity threshold as
explained in Section 2.3.1, while DLSH-Butina requires the amount of signatures
to hash together when creating buckets.

4.4.1 Selecting the Butina Similarity Threshold

The parameter required for the D-Butina clustering algorithm is the similarity
threshold γ. It represents the neighbourhood boundary of the cluster centroids.
An experiment was done to determine the optimal value of γ to separate ac-
tivity classes among the dataset. To determine γ, results obtained from serial
Butina clustering were analysed. Serial Butina was used since the results of the
distributed approach D-Butina are identical to the serial version.

Serial Butina clustering was performed on three datasets, ABL1, THB and
Renin inhibitors as explained in Section 3.1.1. For each dataset, clustering was

CHAPTER 4. RESULTS & EVALUATION 79

run for γ = 0.1 up to 0.9 at 0.1 increments. Increments of 0.1 were chosen as a
research by [70] found that 0.3 and 0.8 were optimal parameters for two differ-
ent fingerprints. Hence increments of 0.1 are a good fit to most molecular de-
scriptors. Quality Partition Index (QPI) and F-measure results were computed,
plotted in Figures 4.1 and 4.2, and analysed.

Figure 4.1: Analysis of the QPI results for parameter estimation of the Butina
clustering approach.

Figure 4.1 shows the QPI results obtained at increasing similarity thresholds.
The highest results are obtained between the range of 0.3-0.4 similarity. QPI re-
sults then tend to decrease gradually as similarity is increased. The results are
similar to those obtained by [70], where it was found that the optimum value
of similarity using ECFP4 fingerprints was at 0.3. They concluded that the like-
lihood for two same activity molecules to have at least a similarity of 0.3 was
hundreds of times higher than the similarity of an active and a random com-
pound.

F-measure results were plotted in Figure 4.2 to analyse the generated clus-
ters. Precision, Recall and F-measure were calculated for each generated cluster

CHAPTER 4. RESULTS & EVALUATION 80

and we used the highest scores in accordance with [53]. The results are shown
in Tables 4.2- 4.4. As can be seen in Figure 4.2, the highest F-measure values
were also obtained at a threshold of 0.3 similarity for the three datasets selected,
similar to the QPI. It is worth noting that the precision value is 1.0 for γ ≥ 0.3,
showing that the clusters contain only active molecules. However, the recall
values differ among the datasets. At a threshold of γ=0.3, the recall value for
Renin inhibitors was 0.739, while that for THB and ABL1 were 0.548 and 0.254
respectively.

Possible reasons for the large difference in Recall values among the datasets
maybe be related to the distribution of actives for a target protein and the dis-
tribution of the known actives. For ABL1, the actives may be more spread out.
Therefore smaller clusters of actives are created. Additionally the actives that
have been identified for Renin and THB may be more similar to each other com-
pared to ABL1 which are more widespread. Another possibility could be that
DUD-E dataset may have only a subset of all the actives for ABL1. Therefore
other molecules within the range of active centroids, that are not yet identified,
may be missing altogether from the dataset. In fact the number of actives for
Renin is larger that that for ABL1, having 387 actives when compared to 272
actives for ABL1. However this does not justify the higher result achieved by
THB, where only 168 actives are available.

In comparison to the QPI results, F-measure results decrease at a faster rate
when the similarity threshold is increased. This is affected by the size of the
created clusters. In fact, the recall rates at γ=0.4 drop to 0.54, 0.33, 0.15 for Renin
inhibitors, THB and ABL1 respectively.

CHAPTER 4. RESULTS & EVALUATION 81

Figure 4.2: Analysis of the F-measure results for parameter estimation of the
Butina clustering approach.

Dataset Threshold Precision Recall F-measure

Renin

0.1 0.05 1 0.10
0.2 0.94 0.47 0.62
0.3 1 0.74 0.85
0.4 1 0.54 0.70
0.5 1 0.30 0.46
0.6 1 0.12 0.22
0.7 1 0.12 0.22
0.8 1 0.04 0.08
0.9 1 0.04 0.08

Table 4.2: Precision, Recall and F-measure values for different thresholds of
Butina algorithm on the Renin dataset.

CHAPTER 4. RESULTS & EVALUATION 82

Dataset Threshold Precision Recall F-measure

THB

0.1 0.02 1 0.04
0.2 0.81 0.53 0.64
0.3 1 0.55 0.71
0.4 1 0.33 0.50
0.5 1 0.27 0.42
0.6 1 0.16 0.29
0.7 1 0.07 0.13
0.8 1 0.04 0.08
0.9 1 0.02 0.05

Table 4.3: Precision, Recall and F-measure values for different thresholds of
Butina algorithm on the THB dataset.

Dataset Threshold Precision Recall F-measure

ABL1

0.1 0.03 0.98 0.05
0.2 0.94 0.10 0.18
0.3 1 0.25 0.41
0.4 1 0.15 0.26
0.5 1 0.11 0.19
0.6 1 0.08 0.16
0.7 1 0.05 0.09
0.8 1 0.24 0.05
0.9 1 0.01 0.02

Table 4.4: Precision, Recall and F-measure values for different thresholds of
Butina algorithm on the ABL1 dataset.

CHAPTER 4. RESULTS & EVALUATION 83

4.4.2 Locality Sensitive Hashing (LSH) Parameters

As described in Section 2.3.3, LSH requires signatures S to be grouped into b bins
such that each bin contains h signatures that are hashed into a value to represent
a bucket. The value h affects the similarity values that are hashed to the same
buckets.

The number of signatures S was selected to be a value around 100. This
value determines the dimensionality of S, with larger values requiring longer
computation times. However, a value around 100 is representative enough for
most fingerprints when considering the redundancy and correlation in the bits
of fingerprints [66].

The aim of using LSH is to correctly place molecules in buckets that have
pairwise similarity γ ≥ 0.3. In an ideal scenario, no two molecules having γ <

0.3 are placed in the same bucket. The probability of two objects being hashed
into the same bucket is determined by the value h. By hashing multiple sig-
natures together, the chance of two molecules having a low similarity, getting
hashed together is reduced. Therefore as h increases, the molecules placed in
the same bucket have higher similarity values.

To identify the optimal parameter, three values of h were compared. The
chosen values for comparison are h2, h3 and h4, with the percentage of correctly
identified molecules at every similarity level being shown in Table 4.5. Initially,
the complete similarity matrix of the test dataset was computed, and each result
being grouped at 0.1 intervals such that a count of all the similarity values was
obtained.

LSH was then applied on the same dataset using different h values. For each
value, the similarity of every molecule with its potential neighbours was cal-
culated. In LSH, potential neighbours are those molecules that collide with a
molecule in at least one bucket.

Once the similarities were calculated, these were compared with the actual
count of similarities obtained to determine the effect LSH has in reducing low
similarity collisions.

CHAPTER 4. RESULTS & EVALUATION 84

h2 h3 h4

Similarity Range # Actual Similarities % identified % identified % identified
0.0 - 0.1 26,967,186 0.85 0.09 0.00
0.1 - 0.2 92,422,870 0.92 0.21 0.01
0.2 - 0.3 4,924,396 0.97 0.44 0.03
0.3 - 0.4 441,460 0.99 0.79 0.13
0.4 - 0.5 154,148 0.99 0.95 0.33
0.5 - 0.6 43,928 1.00 0.99 0.67
0.6 - 0.7 17,600 1.00 1.00 0.88
0.7 - 0.8 6,302 1.00 1.00 0.98
0.8 - 0.9 1,876 1.00 1.00 0.99
0.9 - 1.0 1,454 1.00 1.00 1.00

Table 4.5: Percentage of the similarity matrix, grouped at intervals, that is iden-
tified for each value of h signatures hashed together.

From the results shown in Table 4.5, h = 3 provided the most optimal bal-
ance of reducing computation and memory costs. This was achieved by elimi-
nating low similarity collisions while also keeping an acceptable percentage of
molecule similarities having γ ≥ 0.3. At this value, only 9% of the 26,967,186
similarities in the similarity matrix having a threshold between 0 and 0.1 were
incorrectly hashed in the same buckets. However when h = 3 it managed to
identify 79% of the total similarities for 0.3 < γ ≤ 0.4, and 95% for 0.4 < γ ≤ 0.5.
h = 4 filters out a large number of valid similarities at 0.3 < γ ≤ 0.6. When h =
2 the similarities are reduced by a minimal amount, thus having little effect on
the computation time of neighbour calculation.

Therefore h = 3 was selected for LSH. The signatures S need to be grouped
into groups of 3. However, since S = 100 is not divisible by 3, S = 102 was chosen
as it is the nearest divisible value larger than 100. This means that an additional
2 hash value need to be added to the signatures during the minhash process.

CHAPTER 4. RESULTS & EVALUATION 85

4.5 Evaluation

We first evaluated the efficiency of the approaches by considering speed and
scalability. This was followed by the quality of the clusters produced by evalu-
ating the ability of the clustering algorithms to separate active molecules from
non actives ones.

4.5.1 Clustering Efficiency

D-Butina and DLSH-Butina were compared with the serial version of the Butina
clustering algorithm, using the RDKit implementation, to determine the effect
of applying distribution and approximation on the clustering efficiency. Addi-
tionally, the approaches are also compared to the results produced by bisecting
k-means. Although bisecting k-means was not applied on a wide range of stud-
ies in clustering small-molecules datasets, it can be applied to large datasets
because of its scalability [38]. The mllib7 library of Apache Spark was used for
the bisecting k-means algorithm. The implementation is based on the approach
proposed by [37]. The value of the parameters were kept as default apart from
the value of k. It is a user defined value used to determine the number of clusters
required as output from the bisecting k-means approach and therefore serves as
a stopping criteria. The value of k was chosen by selecting the same number of
clusters generated by Butina algorithm at the threshold selected.

Considering differences in the experimental setup, the experiments performed
cannot be directly compared to results from literature with respect to quality.
This is mainly due to variables in the research, being either molecular represen-
tations, dataset used and the hardware used to run the systems. Additionally,
some algorithms of interest did not have their implementation available, hence
could not be used as part of the evaluation.

To record the performance of the algorithms, time of the computation was
calculated from the point of reading the molecules data from the cloud storage
up to assigning a cluster to each molecule. The sections where the data is con-

7https://spark.apache.org/docs/latest/mllib-clustering.html#bisecting-k-means (last ac-
cessed 25th May 2019)

CHAPTER 4. RESULTS & EVALUATION 86

verted into specific formats, prepared to be written to persistent storage and the
actual process of writing the data was not considered for speed purposes. Addi-
tionally for similarity calculation, all the Butina based approaches were imple-
mented to make use of optimised bulk similarity calculation as implemented by
RDKit. Bisecting K-means uses an internal implementation for similarity calcu-
lations using a custom parametrised similarity function.

To get a complete picture of speed and scalability of the presented approaches,
tests were run on the four datasets explained in Section 4.3 using two different
Azure Batch Spark cluster configurations. The approaches were first run on six
nodes, with five workers and one master node. Then the same datasets were
again run on eleven nodes, with ten workers and one master node. This pro-
vides a clearer picture how the approaches scale with respect to data and nodes,
enabling a comparison among the approaches and individually as the size of
the dataset is increased. Tables 4.6 - 4.8 show the running time results of the im-
plemented approaches D-Butina and DLSH-Butina compared to Serial Butina
algorithm, and the time taken for bisecting k-means. The data is then shown
graphically in Figures 4.3 and 4.4.

Serial Butina D-Butina

Dataset
Execution Time

(minutes)

Execution Time
(minutes)
5 workers

Execution Time
(minutes)

10 workers
1 50,000 12 9 5
2 100,000 58 25 15
3 200,000 277 102 62
4 500,000 1650 682 414

Table 4.6: Showing the time taken in minutes by D-Butina algorithm to cluster
the datasets compared to the Serial Butina approach.

Compared to the serial implementation, D-Butina has a speedup of 2.40 on
Dataset4 when using five worker nodes. The speedup is increased to 3.98 when
using ten worker nodes. Having less speedup than the number of nodes was
expected considering that distributed systems have overhead costs, requiring

CHAPTER 4. RESULTS & EVALUATION 87

Serial Butina DLSH-Butina

Dataset
Execution Time

(minutes)

Execution Time
(minutes)
5 workers

Execution Time
(minutes)

10 workers
1 50,000 12 4 3
2 100,000 58 8 5
3 200,000 277 49 23
4 500,000 1650 401 197

Table 4.7: Showing the time taken in minutes by DLSH-Butina algorithm to clus-
ter the datasets compared to the Serial Butina approach.

Serial Bisecting
k-means

Bisecting k-means

Dataset
Execution Time

(minutes)

Execution Time
(minutes)
5 workers

Execution Time
(minutes)

10 workers
1 50,000 18 13 8
2 100,000 33 20 18
3 200,000 66 40 38
4 500,000 156 90 96

Table 4.8: Showing the time taken in minutes by Bisecting k-means algorithm to
cluster the datasets.

distribution of the data that negatively effect performance. This is shown in Am-
dahl’s law that states that parallel speedup using P processors cannot reduce the
time taken for a serial fraction f of the algorithm, therefore the expected speedup
is given by Speedup = 1

f+ 1− f
P

[71]. Therefore in this case, it is expected to not

achieve a speedup of 5.00 when using five workers. The difference between
nodes and speedup is also present in similar results found in literature, where a
distributed Ward’s clustering by [61] using Map Reduce achieved a speedup of
1.19 when using three mapper tasks and speedup of 2.40 when using six mapper
tasks compared to a serial implementation. Similarly a Spark implementation of
a hierarchical clustering algorithm by [51] also achieved speedup that is not of

CHAPTER 4. RESULTS & EVALUATION 88

Figure 4.3: Comparison of the speed performance in logarithmic scale of the
algorithms on the four datasets when using 5 worker nodes.

the same magnitude of the number of cores used, achieving a speedup between
200 and 310 on 392 cores depending on the dataset and vector dimensions rep-
resenting the data. DLSH-Butina achieved better speedup, with a speedup of
4.11 when using five workers and 8.37 when using ten workers. This results are
promising as speedup increased when more nodes were added to the cluster.
Large performance improvements were also noted by [66] when implementing
LSH for Jarvis-Patrick algorithm. A speedup of approximately 76 was obtained
when LSH was used in conjunction with a Jaccard coefficient > 0.98. Overall,
bisecting k-means obtained the most optimal speedup on Dataset4, achieving
approximately a speedup of 18 using both five and ten workers.

In terms of scalability, bisecting k-means is the most optimal algorithm as
is scales approximately in a linear way. However it was noticed that increas-
ing the workers did not increase the performance of the algorithm. This merits
further investigation to determine the reason of not having performance gains

CHAPTER 4. RESULTS & EVALUATION 89

Figure 4.4: Comparison of the speed performance in logarithmic scale of the
algorithms on the four datasets when using ten worker nodes. Time taken is
shown on a logarithmic scale.

when adding more workers. Additionally, bisecting k-means has a performance
gain of 87% and 78% when compared with the results obtained by D-Butina and
DLSH-Butina on Dataset4 using five workers. This is substantial considering
that bisecting k-means was performing worse than both D-Butina and DLSH-
Butina on smaller dataset sizes.

Runtime scalability for D-Butina and DLSH-Butina starts at less than O(N2).
One reason for this may be the data transfer overhead across the nodes, hid-
ing the quadratic complexity. However as can be seen between the readings for
200,000 and 500,000 molecules, the scalability was higher than the expected mag-
nitude of 6.25 increase. One of the reasons for this is the data shuffling among
the nodes. This is an expensive process that negatively affects the performance
as more data is added. Additionally, the low threshold of neighbourhood fur-
ther reduces the performance of the algorithm as each molecule has more neigh-

CHAPTER 4. RESULTS & EVALUATION 90

bours, hence requiring handling of more data during computation and transfer
of data.

As expected, DLSH-Butina has a better scalability and speedup than D-Butina
since it requires less similarity comparisons, computing only those that collide
in the same bucket as results have shown in Table 4.5. Additionally, some ac-
tual neighbours are not hashed into the same buckets, hence molecules would
have less neighbours. This reduces the amount of data to distribute albeit lower
clustering quality.

Automatically Spark shuffles/transfers the data among the workers in pro-
cesses of broadcast (see Section 3.3), when data is aggregated among the nodes
and when a request for some data cannot be satisfied with the data present on
that particular worker. With regards to data shuffling among nodes in the pro-
cess of clustering the data, bisecting K-means is the most efficient with 400 Mb
and 500 Mb data transferred to cluster 200,000 and 500,000 molecules respec-
tively. On the other hand, DLSH-Butina transfers 900Mb and 7 Gb of data while
D-Butina transfers 1 Gb and 9 Gb of data respectively for 200,000 and 500,000
molecules. Although this data does not reside in memory all at once, the trans-
fer of this data negatively affects the performance of the algorithm. This shows
that scalability of the transfers of the data is not efficient for D-Butina and DLSH-
Butina.

4.5.2 Clustering Quality Results

The quality of the cluster result produced is analysed to determine the ability
of the algorithms in separating active molecules from putative inactive ones.
Output files from the dataset, mentioned in Section 4.3, were obtained for D-
Butina, DLSH-Butina and bisecting k-means.

Unfortunately the activity data of the whole dataset is not known, there-
fore molecules whose activity is not known cannot be considered as inactives.
To determine molecular activity against a target, a number of lab experiments
are required to manually test all the molecules with respect to a target protein.
Nonetheless, clustering could be performed to analyse the clusters created and
investigate the grouping of known active molecules [54, 35].

CHAPTER 4. RESULTS & EVALUATION 91

For the purpose of analysing the results obtained, an active cluster is consid-
ered as one having the percentage of active molecules in the cluster greater than
the percentage of actives in the whole dataset [13]. As discussed in Section 2.6.1,
actives which are incorrectly grouped with non active clusters or clustered as
singletons are considered as FalseNegatives, or the combination of r and s in the
calculation of the QPI value. Inactive molecules that are clustered in active clus-
ters are FalsePositives, however since no dataset contain the actual activity data
of a large dataset, this cannot be known. Therefore FalsePositives will be used in
the context of unknown activity molecules being clustered within active clusters
as done by [54]. These will then be analysed, as they may provide an insight on
additional small molecules that may be active with respect to the target protein
selected.

Given enough time and resources, the molecules whose activity is not known
in active clusters may be tested experimentally for their actual activity. This
would show whether unknown activity molecules clustered with active molecules
would be active with respect to a target protein or not.

Table 4.9 shows the results obtained for the two approaches implemented,
D-Butina and DLSH-Butina with results for bisecting k-means. The results for
serial Butina were not included since D-Butina and Butina produce the same
output.

Approach D-Butina DLSH-Butina Bisecting k-means
No. clustered ABL1

inhibitors
257 242 272

False Negatives 15 30 0

False Positives 315 98 5838
% ABL1 molecules

included in active clusters
94.4 88.9 100

No. Active Clusters 36 44 76

Table 4.9: Comparison of clustering results obtained using the two approaches
proposed compared to Bisecting k-means.

D-Butina managed to cluster more active molecules compared to DLSH-

CHAPTER 4. RESULTS & EVALUATION 92

Butina with 257 molecules being successfully clustered in active clusters. 14
active molecules were clustered as singletons, with 1 active molecules being
clustered in an unknown activity cluster. In comparison to this, DLSH-Butina,
had more singleton clusters. However D-Butina clustered 315 unknown activ-
ity molecules within active clusters, while DLSH-Butina had only 98 unknown
activity molecules clustered within active clusters. This merits further inves-
tigation to determine the similarity of unknown activity molecules to the ac-
tive molecules in the same cluster, as potentially some of these molecules could
also be actives. Bisecting k-means did not create any singletons. Although this
seems a good result as it managed to cluster all the molecules into active clusters,
5,838 unknown activity molecules were clustered with the 272 active molecules.
This is a large percentage amount when compared to only 272 active molecules,
and therefore requires to be investigated. Out of 76 clusters, 37 active clusters
contain only 1 active molecule together with large number of unknown activity
ones. Therefore these 37 clusters would provide minimal to no added informa-
tion to a random dataset. Having one active molecule that is inside one of the 37
clusters, would not provide further actives when searching in its cluster. Addi-
tionally most other clusters also contain a large proportion of unknown activity
molecules, hence reducing their potential of having only actives in them. In fact,
out of the 76 active clusters, only 7 clusters contain only active molecules.

With regards to the number of active clusters created, D-Butina obtained a
positive result when compared to both DLSH-Butina and bisecting k-means,
since it has the lowest number of clusters. This is ideal as having all the ac-
tives clustered together makes it easier to identify additional active compounds.
This was also noted by [19] during the comparison of the presented approaches.
In fact this is contrary to what was achieved by bisecting k-means where active
molecules were spread out on 76 clusters with most clusters having minimal
number of actives.

The distribution of unknown activity molecules within active clusters pro-
vides an insight of the unknown activity molecules to determine whether these
have the potential to also be active. For D-Butina, the 315 unknown activity
ZINC molecules are grouped in five active clusters. DLSH-Butina has 98 un-
known activity molecules spread among seven active clusters. For Bisecting

CHAPTER 4. RESULTS & EVALUATION 93

k-means, unknown activity molecules are spread among 69 active clusters with
most clusters containing a few number of actives. Although tests are required to
determine the actual activity of the molecules, the distribution obtained by D-
Butina seems to be of more interest than the other approaches. Considering that
the unknown activity molecules are contained within a few clusters, this might
show that there are structures within molecules that may exhibit activity. This
can be useful for Structure Activity Relationship (SAR), to identify substructures
within molecules for activity [35].

The cluster results obtained by D-Butina were selected to be investigated
as they are the most promising among the three sets of results obtained. The
similarity of each unknown activity molecule was calculated against the actives
in the same cluster. [70] found that the similarity γ > 0.3 of two same activ-
ity molecules is hundreds of times greater compared to two random molecules,
when the molecules are being represented by ECFP4 fingerprints. Therefore the
similarity of unknown activity molecules was calculated against actives, and
those achieving a similarity greater than 0.3 with any active molecule within
the same cluster are listed in Appendix A as being potentially actives them-
selves. Out of 315 unknown activity molecules, nine molecules were identified
as being potential active when considering their similarity with respect to active
molecules. Some molecules had a similarity γ > 0.3 when compared to all the
actives within the cluster, however the highest similarity pair was selected to be
shown in the table.

This is a real world application where clustering can be used to identify new
active compounds through the use of already known active molecules. The ad-
vantage offered is that molecules require a similarity comparison against other
members within the cluster and not with every element in the dataset, hence
this increases efficiency in the process.

CHAPTER 4. RESULTS & EVALUATION 94

4.6 Chapter Summary

This chapter started by performing experiments to find parameters for the two
approaches presented, D-Butina and DLSH-Butina. Evaluation was then done
based on the speed performance and quality of clusters produced when com-
pared to the serial Butina approach and bisecting k-means. Finally, the results
obtained were analysed and discussed in comparison to literature found.

5

Conclusion

This chapter presents a summary of the dissertation. It is then followed by a
discussion on the aims and objectives achieved, while also discussing limitations
of the research and what could be improved or extended. Finally future work is
discussed providing areas within the research that merit further investigation.

Clustering is an important step in the drug discovery process such that struc-
tured selection of molecules for activity testing can be done [7]. This helps to
reduce the time and costs required to identify active molecules with respect to a
target protein. One challenge is the size of the datasets available. The datasets
available contain millions of molecules and their size is constantly increasing,
therefore widely used methods are not able to cluster these large datasets in
reasonable time.

From the literature review in Chapter 2, it was found that Ward’s clustering is
the standard algorithm for small-molecule clustering [8]. However, considering
its time and space complexity, it is unable to handle large datasets. Four clus-
tering algorithms were selected and experiments were performed to determine
which algorithm has the potential to be implemented in a distributed approach.
The Butina clustering algorithm was chosen considering its good performance
in separating actives from inactive molecules, better memory scalability than
Ward’s clustering and minimal parameter setting.

In Chapter 3, two distributed approaches were implemented based on Butina
clustering algorithm, D-Butina and DLSH-Butina. D-Butina is a distributed clus-
tering approach using Spark framework, with the clusters created being identi-

95

CHAPTER 5. CONCLUSION 96

cal to the serial Butina algorithm. DLSH-Butina improves on the speed aspect
of D-Butina by using approximation technique LSH in the process of neighbour
identification.

In Chapter 4, the two approaches implemented were evaluated in compari-
son to the serial Butina clustering algorithm and bisecting k-means algorithm.
Evaluation was done with the aim of comparing the speedup with respect to the
serial approach and the scalability of the methods implemented in comparison
to serial Butina and bisecting k-means. Finally evaluation was done to deter-
mine the ability of the algorithms to separate active molecules from putative
inactive ones, followed by an analysis of grouping active molecules together.

5.1 Contributions

The aim of the dissertation was to create a distributed small-molecule clustering
algorithm using a Big Data paradigm to cluster large small-molecule datasets.
Since the clustering process of large datasets is a time consuming one, applying
big data technologies to this process would aid to increase the performance,
enabling to scale out the system. The approaches presented manage to achieve
this aim of distributing the Butina clustering algorithm, achieving an increasing
speedup as more nodes are added to the distributed cluster. Hence the primary
aim was achieved.

The first objective was to identify a clustering algorithm that has been ap-
plied to small-molecule clustering and has the potential to handle larger datasets.
An experiment was performed to compare algorithms found in literature high-
lighting the scalability both in terms of speed and memory and the quality of
the clustering produced. Finally, Butina clustering algorithm was selected af-
ter taking into consideration its relative efficiency in terms of memory used, its
minimal parameter setting and the good quality results achieved.

Through analysis of literature, the Apache Spark big data framework was
selected as the most appropriate for the work required. The distributed imple-
mentation of the Butina clustering algorithm was then performed by creating a
new approach to enable the distribution of the algorithm, D-Butina. No litera-

CHAPTER 5. CONCLUSION 97

ture was found which attempted the distribution of this algorithm before. The
implemented approach can scale as more worker nodes are added to the Spark
cluster, achieving a speedup of 2.40 when using five workers and 3.89 when us-
ing ten workers on a dataset of 500,000 molecules, compared to the serial imple-
mentation. This was achieved while still obtaining the same clustering results
of the serial approach. Although the scalability of the approach suffers from the
distribution of data as the size of the dataset increases, our approach can still of-
fer a benefit in clustering large datasets by adding more workers. This achieved
the aim of distributing the Butina technique to enable large scale clustering.

Considering the O(N2) runtime scalability required by D-Butina to compute
similarity matrix during the neighbour identification phase, LSH was used as an
approximation technique. This was done to try and improve the performance of
the algorithm in terms of speed. The change resulted in increasing the speedup
to 4.11 for five workers and 8.37 when using ten workers compared to the se-
rial Butina algorithm. On the other hand, the results obtained are of a lower
quality with clusters being more fragmented into smaller ones and more active
compounds being clustered into putative non-active clusters, making it more
difficult to identify new actives.

Although both approaches suffer from the distribution of data among the
worker nodes, they offer an approach to cluster the data in a distributed way
using a technique that obtains good quality clusters, comparable to the standard
algorithm Ward’s clustering as seen in the comparison of serial approaches in
Section 3.1. Hence the objectives of distributing the Butina clustering algorithm
and applying an approximation method to improve the performance have been
achieved.

5.2 Critique and Limitations

The dissertation is focussed on distributing the Butina clustering algorithm us-
ing a big data framework. This entailed distributing an algorithm that has never
been distributed before. However limitations exist in the current approach. One
such drawback is the high dependency on the shuffling of the data as seen in

CHAPTER 5. CONCLUSION 98

Section 4.5.1. Compared to the bisecting k-means method the data shuffled by
D-Butina and DLS-Butina is magnitudes higher, hence being more limited in
scaling up. Unfortunately due to lack of resources, the algorithm could not be
tested on a larger scale to identify the limits of its scalability. By testing the
approaches on larger datasets and incrementing the number of workers, a bet-
ter picture of the scalability of the implemented approaches could be identified.
Additionally the limit at which scaling continues to grow at satisfactory rates,
giving a performance benefit, would be determined.

With regards to clustering quality, there are no available activity-labeled large
datasets of small molecules. Considering this limitation, given enough resources,
experimental work could be done to determine the activity of unknown activity
molecules that were clustered in active clusters. This would further validate
the results produced. Some researchers evaluate clustering quality on small
datasets, however this may hide some aspects on the quality of the results ob-
tained. Some scenarios with regards to the data distribution might not be en-
countered. Therefore it would be ideal to have larger datasets of labeled data
available, while also having a number of datasets that are standard to use for ac-
tivity classification and clustering. This would enable better comparison among
different research.

5.3 Future Work

Although the primary aim of this research has been achieved, the approaches
presented can still be improved to increase their usability in the real world
scenario. Butina algorithm and the presented approach D-Butina create good
quality clusters, separating actives molecule from inactive ones even when the
dataset is large, with only five clusters having mixed activity. This algorithm
merits further research considering the positive results obtained by having un-
known activity molecules being present in only a small number of active clus-
ters. Additionally 272 active molecules were contained within 36 clusters, mak-
ing it easier to identify new active compounds.

One possible improvement is to improve D-Butina approach to reduce the

CHAPTER 5. CONCLUSION 99

amount of data shuffling. Considering the large difference in the size of the
shuffled data between D-Butina and bisecting k-means, there may be room for
improvement to make the algorithm more efficient. This would aid the perfor-
mance of the algorithm as the overhead of data distribution is reduced.

With regards to DLSH-Butina approach, it also achieved satisfactory results
considering that approximation is involved. Although they are of less quality,
the results obtained take approximately half the time D-Butina takes. This may
be applied in cases where a reduced quality may be accepted in return for better
speed performance. Notwithstanding its results, further optimisations with re-
gards to the performance of the algorithm can be done. Methods implemented
by [44] can be used to reduce the amount of data shuffled among the workers
when using LSH. This approach entails partitioning the data in a way such that
after hashing the data, all the elements hashed to the same key are already in the
same partition, hence not requiring a shuffle to combine the data with the same
key that is otherwise distributed among the workers. Additionally, when query-
ing for a value, the query is not sent in broadcast to all the worker nodes, but a
calculation is done to identify the partition that contains the required subset of
data. The improvements presented in the research by [44] offer 87% reduction in
the amount of data shuffled, while also 60% time reduction in the indexing time.
This can benefit DLSH-Butina approach to further increase its performance and
handle larger datasets.

From evaluation aspect of the research, the large scale evaluation was per-
formed on one type of protein target. Ideally this process is repeated for a num-
ber of targets from different categories discussed in Section 3.1.1. This would
provide a better overview of the clustering results that Butina achieves. Ad-
ditionally, considering that only research by [54] was identified of having per-
formed a similar quality evaluation on such a large dataset, it would be bene-
ficial to perform a similar experiment using a number of standard algorithms
used in this area of small-molecule clustering. This would provide information
on how the algorithms deal with large datasets.

CHAPTER 5. CONCLUSION 100

5.4 Final Remarks

The dissertation presents a big data approach to cluster large small-molecules
datasets. A distributed approach based on Butina clustering algorithm was cre-
ated while also being improved using approximation to increase the speed per-
formance of the algorithm. These approaches performed well and we are now
able to cluster millions of molecules by distributing the computation on a com-
puter cluster. This research offers a contribution to the scientific community by
extending an existing approach to handle larger datasets while evaluating its
performance on a larger scale than ever performed before.

A

Unknown Activity molecules

Molecules

active unknown activity similarity

0.310345

O=C(Nc1cccc(Nc2nccc(-c3cccn

c3)n2)c1)c1ccncc1
O=C(Nc1cccnc1)NC(CO)(CO)CO

0.366197

Cc1cc(Nc2ncc(C(=O)Nc3c(C)cc

cc3Cl)s2)nc(C)n1

Cc1cccc(Cl)c1NC(=O)Cn1ncc([

N+](=O)[O-])c1N

101

APPENDIX A. UNKNOWN ACTIVITY MOLECULES 102

0.365854

Cc1[nH]c(C=C2C(=O)Nc3ccc(F)

cc32)c(C)c1C(=O)NCC(O)CN1CC

OCC1

C=CCn1cc(C(=O)NCC(O)CN2CCOC

C2)nn1

0.312500

Cc1[nH]c(C=C2C(=O)Nc3ccc(F)

cc32)c(C)c1C(=O)NCC(O)CN1CC

OCC1

C=CCS(=O)(=O)CCNCC(O)CN1CCO

CC1

0.307692

O=C(Nc1ccc(OCCN2CCOCC2)cc1)

Nc1ccc(Cl)c(C(F)(F)F)c1
O=C1CC(NCCN2CCOCC2)C(=O)N1

APPENDIX A. UNKNOWN ACTIVITY MOLECULES 103

0.305556

Cc1nc(N)sc1-c1ccnc(Nc2cccc(

[N+](=O)[O-])c2)n1

CC(C)C(O)CCNCC(O)COc1cccc([

N+](=O)[O-])c1

0.323944

Cc1nc(N)sc1-c1ccnc(Nc2cccc(

[N+](=O)[O-])c2)n1

Cc1nc(Cc2noc(COc3cccc([N+](

=O)[O-])c3)n2)no1

0.323529

Cc1nc(N)sc1-c1ccnc(Nc2cccc(

[N+](=O)[O-])c2)n1

Cc1nn(C)c(C)c1S(=O)(=O)Oc1c

ccc([N+](=O)[O-])c1

APPENDIX A. UNKNOWN ACTIVITY MOLECULES 104

0.306667

Cc1nc(N)sc1-c1ccnc(Nc2cccc(

[N+](=O)[O-])c2)n1

CC(=Cc1cccc([N+](=O)[O-])c1

)CNCCc1ncn(C)n1

Table A.1: Showing unknown activity molecules compared to active molecules
clustered together, having a similarity of γ > 0.3.

B

CD Contents

The attached CD contains the following contents:

� Soft copy of this report in pdf format

� Source code for D-Butina in D_Butina

� Source code for DLSH-Butina in DLSH_Butina

� Source code for quality analysis of the clusters output in folder Output_Analysis

� Data files used to perform evaluation in folder Data

� Docker script and necessary files to create docker image used in folder
Docker

105

C

Installation Instructions

This appendix provides a guide to run D-Butina and DLSH-Butina on aztk Spark
cluster.

C.1 Environment Setup

A number of steps are required such that the environment can be setup to create
Spark clusters using aztk and enabling access to Azure Storage.

1. Install and setup aztk library

2. Create a Storage Account on Microsoft Azure. Upload data to cluster in
repository file as a blob in the Storage account.

3. Update configuration in hidden file secrets.yaml, which can be found in
the location where aztk was installed.

� Setup azure batch account on Azure portal by running the script found
at https://github.com/Azure/aztk/blob/master/docs/00-getting
-started.md on the Azure Cloud Shell.

� Complete in the installation

� Copy the service_principal output in your .aztk/secrets.yaml.

4. Set the Azure Storage path containing the data in the file
Distributed_Approaches/dataPath.txt

106

APPENDIX C. INSTALLATION INSTRUCTIONS 107

C.2 Running D-Butina

After having the environment set up, the necessary files can be copied, which
allow D-Butina to run on Spark clusters.

1. Copy folder Distributed_Approaches to the same directory that aztk was
installed

2. Open terminal in the containing folder and create cluster using the com-
mand aztk spark cluster –id <cluster_name> –size <number of nodes>

–vm-size <type of node> –docker-repo cassar1/rdkkitimage

3. Check cluster status using the command aztk spark cluster get –id

<cluster_name> until all the nodes have status idle

4. Submit task using aztk spark cluster submit –id <cluster_name>

–executor-memory <memory of each node in the form ’2G’>

–name <name of task> Distributed_Approaches/clustering.py

<number of partitions> –py-files Distributed_Approaches/helpers/py

5. Check the status by connecting to the master node through ssh using the
command aztk spark cluster ssh –id <cluster_name> –username <username>

C.3 Running DLSH-Butina

After having the environment set up, the necessary files can be copied, which
allow DLSH-Butina to run on Spark clusters.

1. Copy folder Distributed_Approaches to the same directory that aztk was
installed

2. Open terminal in the containing folder and create cluster using the com-
mand aztk spark cluster –id <cluster_name> –size <number of nodes>

–vm-size <type of node> –docker-repo cassar1/rdkkitimage

3. Check cluster status using the command aztk spark cluster get –id

<cluster_name> until all the nodes have status idle

APPENDIX C. INSTALLATION INSTRUCTIONS 108

4. Submit task using aztk spark cluster submit –id <cluster_name>

–executor-memory <memory of each node in the form ’2G’>

–name <name of task> Distributed_Approaches/clustering.py

<number of partitions> –py-files Distributed_Approaches/helpers/py

5. Check the status by connecting to the master node through ssh using the
command aztk spark cluster ssh –id <cluster_name> –username <username>

C.4 Running Output Analysis

Having the output file from either D-Butina or DLSH-Butina:

1. Copy output file to Output_Analysis/results

2. Run script using python evluation_main.py

Bibliography

[1] K. C. Nicolaou, “Advancing the drug discovery and development process”, Angewandte
Chemie - International Edition, vol. 53, no. 35, pp. 9128–9140, 2014, ISSN: 15213773. DOI:
10.1002/anie.201404761.

[2] B. E. Blass, Case Studies in Drug Discovery. 2015, pp. 499–529, ISBN: 9780124115088. DOI:
10.1016/B978-0-12-411508-8.00013-X.

[3] J. D. Maccuish and N. E. Maccuish, “Chemoinformatics applications of cluster analysis”,
vol. 4, no. February, pp. 34–48, 2014. DOI: 10.1002/wcms.1152.

[4] M. M. Kemp, M. Weïwer, and A. N. Koehler, “Unbiased binding assays for discover-
ing small-molecule probes and drugs”, Bioorganic and Medicinal Chemistry, vol. 20, no. 6,
pp. 1979–1989, 2012, ISSN: 09680896. DOI: 10.1016/j.bmc.2011.11.071.

[5] A. R. Leach and V. J. Gillet, An Introduction to Chemoinformatics. Springer International
Publishing, 2007, ISBN: 978-1-4020-6290-2.

[6] B. E. Blass, Drug Discovery and Development. 2015, pp. 1–34, ISBN: 9780124115088. DOI:
10.1016/B978-0-12-411508-8.00001-3.

[7] M. J. Valler and D. Green, “Diversity screening versus focused screening in drug discov-
ery”, Drug Discoveries and Therapeutics, vol. 5, no. 7, p. 286, 2000.

[8] F. Saeed, N. Salim, A. Abdo, and H. Hentabli, “Graph-Based Consensus Clustering for
Combining Multiple Clusterings of Chemical Structures”, Molecular Informatics, vol. 32,
no. 2, pp. 165–178, 2013, ISSN: 18681743. DOI: 10.1002/minf.201200110.

109

BIBLIOGRAPHY 110

[9] M. A. Liebert and P. Willett, “Dissimilarity-Based Algorithms for Selecting Structurally
Diverse Sets of Compounds”, vol. 6, pp. 447–457, 1999.

[10] A. Koutsoukas, S. Paricharak, W. R. J. D. Galloway, D. R. Spring, A. P. Ijzerman, R. C.
Glen, D. Marcus, and A. Bender, “How Diverse Are Diversity Assessment Methods? A
Comparative Analysis and Benchmarking of Molecular Descriptor Space”, 2014.

[11] G. M. Downs and J. M. Barnard, “Clustering Methods and Their Uses in Computational
Chemistry”, in Reviews in Computational Chemistry, vol. 18, 2003, ch. 1, pp. 1–40.

[12] R. D. Brown and Y. C. Martin, “An Evaluation of Structural Descriptors and Cluster-
ing Methods for Use in Diversity Selection”, SAR and QSAR in Environmental Research,
no. September, 1998. DOI: 10.1080/10629369808033260.

[13] T. Varin, R. Bureau, C. Mueller, and P. Willett, “Clustering files of chemical structures
using the Székely-Rizzo generalization of Ward’s method”, Journal of Molecular Graphics
and Modelling, vol. 28, no. 2, pp. 187–195, 2009, ISSN: 10933263. DOI: 10.1016/j.jmgm.
2009.06.006.

[14] P. J. Hansen and P. C. Jurs, “Chemical applications of graph theory. Part I. Fundamentals
and topological indices”, Journal of Chemical Education, vol. 65, no. 7, p. 574, 1988, ISSN:
0021-9584.

[15] A. Dalby and J. Nourse, “Mdl Computer Chemical Structure File Formats”, Journal of
Chemical Information and Computer Science, vol. 32, pp. 244–255, 1992, ISSN: 1549-9596. DOI:
10.1021/ci00007a012.

[16] D. Weininger, “SMILES, a Chemical Language and Information System: 1: Introduction to
Methodology and Encoding Rules”, Journal of Chemical Information and Computer Sciences,
vol. 28, no. 1, pp. 31–36, 1988, ISSN: 00952338. DOI: 10.1021/ci00057a005.

[17] D. Butina, “Unsupervised data base clustering based on daylight’s fingerprint and tani-
moto similarity: A fast and automated way to cluster small and large data sets”, Journal of
Chemical Information and Computer Sciences, vol. 39, no. 4, pp. 747–750, 1999, ISSN: 00952338.
DOI: 10.1021/ci9803381.

[18] J. W. Raymond, C. Blankley, and P. Willett, “Comparison of chemical clustering methods
using graph- and fingerprint-based similarity measures”, Journal of Molecular Graphics and

BIBLIOGRAPHY 111

Modelling, vol. 21, no. 5, pp. 421–433, 2003, ISSN: 10933263. DOI: 10.1016/S1093-3263(02)
00188-2.

[19] M. Seeland, A. K. Johannes, and S. Kramer, “Structural clustering of millions of molecular
graphs”, Proceedings of the 29th Annual ACM Symposium on Applied Computing - SAC ’14,
pp. 121–128, 2014. DOI: 10.1145/2554850.2555063.

[20] C. Humblet, “Enhancing the diversity of a corporate database using chemical database
clustering and analysis”, vol. 9, pp. 407–416, 1995.

[21] C. H. Reynolds, R. Druker, and L. B. Pfahler, “Lead Discovery Using Stochastic Cluster
Analysis (SCA): A New Method for Clustering Structurally Similar Compounds”, Journal
of Chemical Information and Computer Sciences, vol. 38, no. 2, pp. 305–312, 1998, ISSN: 1549-
9596. DOI: 10.1021/ci970056l.

[22] D. Rogers and M. Hahn, “Extended-connectivity fingerprints”, Journal of Chemical Infor-
mation and Modeling, vol. 50, no. 5, pp. 742–754, 2010, PMID: 20426451. DOI: 10.1021/
ci100050t. eprint: https://doi.org/10.1021/ci100050t.

[23] C. W. Chu, J. D. Holliday, and P. Willett, “Combining multiple classifications of chemical
structures using consensus clustering”, Bioorganic and Medicinal Chemistry, vol. 20, no. 18,
pp. 5366–5371, 2012, ISSN: 09680896. DOI: 10.1016/j.bmc.2012.03.010.

[24] A. Kumar and K. Y. J. Zhang, “Hierarchical virtual screening approaches in small molecule
drug discovery”, Methods, vol. 71, no. C, pp. 26–37, 2015, ISSN: 10959130. DOI: 10.1016/
j.ymeth.2014.07.007.

[25] M. A. Johnson and G. M. Maggiora, Concepts and Applications of Molecular Similarity, M. A.
Johnson and G. M. Maggiora, Eds. New York, New York, USA: Wiley, 1990, p. 393, ISBN:
0471621757 9780471621751.

[26] P. Thiel, L. Sach-Peltason, C. Ottmann, and O. Kohlbacher, “Blocked inverted indices for
exact clustering of large chemical spaces”, Journal of Chemical Information and Modeling,
vol. 54, no. 9, pp. 2395–2401, 2014, ISSN: 15205142. DOI: 10.1021/ci500150t.

[27] W. Liu and D. E. Johnson, “Clustering and its application in multi-target prediction.”,
Current opinion in drug discovery & development, vol. 12, no. 1, pp. 98–107, 2009, ISSN: 2040-
3437.

BIBLIOGRAPHY 112

[28] J. Cordeiro, S. Hammoudi, L. Maciaszek, O. Camp, and J. Filipe, “Towards an Efficient and
Distributed DBSCAN Algorithm Using MapReduce”, Lecture Notes in Business Information
Processing, vol. 227, pp. 75–90, 2015, ISSN: 18651348. DOI: 10.1007/978-3-319-22348-3.

[29] M. G. Malhat, H. M. Mousa, and A. B. El-Sisi, “Improving Jarvis-Patrick algorithm for
drug discovery”, 2014 9th International Conference on Informatics and Systems, INFOS 2014,
DEKM61–DEKM66, 2015. DOI: 10.1109/INFOS.2014.7036710.

[30] G. M. Downs, P. Willett, and W. Fisanick, “Similarity Searching and Clustering of Chemical-
Structure Databases Using Molecular Property Data”, Journal of Chemical Information and
Computer Sciences, vol. 34, no. 5, pp. 1094–1102, 1994, ISSN: 00952338. DOI: 10 . 1021 /
ci00021a011.

[31] R. D. Brown, Y. C. Martin, R. D. Brown, Y. C. Martin, P. P. Division, A. Laboratories, D. E.
Ap, A. P. Road, and A. Park, “Use of Structure Activity Data To Compare Structure-Based
Clustering Methods and Descriptors for Use in Compound Selection Use of Structure -
Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use
in Compound Selection”, Journal of Chemical Information and Computer Sciences, vol. 36,
no. May, pp. 572–584, 1996. DOI: 10.1021/ci9501047.

[32] M. Stahl and H. Mauser, “Database clustering with a combination of fingerprint and
maximum common substructure methods”, Journal of Chemical Information and Modeling,
vol. 45, no. 3, pp. 542–548, 2005, ISSN: 15499596. DOI: 10.1021/ci050011h.

[33] D. J. Huggins, A. R. Venkitaraman, and D. R. Spring, “Rational Methods for the Selection
of Diverse Screening Compounds”, ACS Chemical Biology, pp. 208–217, 2011.

[34] A. Böcker, G. Schneider, and A. Teckentrup, “NIPALSTREE: A new hierarchical clustering
approach for large compound libraries and its application to virtual screening”, Journal of
Chemical Information and Modeling, vol. 46, no. 6, pp. 2220–2229, 2006, ISSN: 15499596. DOI:
10.1021/ci050541d.

[35] A. Bocker, S. Derksen, E. Schmidt, A. Teckentrup, and G. Schneider, “A hierarchical clus-
tering approach for large compound libraries”, Journal of Chemical Information and Model-
ing, vol. 45, no. 4, pp. 807–815, 2005.

[36] J. H. Ward, “Hierarchical Grouping to Optimize an Objective Function”, Journal of the
American Statistical Association, vol. 58, no. 301, pp. 236–244, 1963.

BIBLIOGRAPHY 113

[37] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of Document Clustering Tech-
niques”, KDD workshop on text mining, vol. 400, pp. 1–2, 2000, ISSN: 978-1-4244-2874-8. DOI:
10.1109/ICCCYB.2008.4721382.

[38] M. G. Malhat, H. M. Mousa, and A. B. El-Sisi, “Clustering of chemical data sets for drug
discovery”, 2014 9th International Conference on Informatics and Systems, DEKM-11-DEKM-
18, 2014.

[39] O. Kurasova, V. Marcinkevicius, V. Medvedev, A. Rapecka, and P. Stefanovic, “Strategies
for Big Data Clustering”, 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence, pp. 740–747, 2014, ISSN: 1082-3409. DOI: 10.1109/ICTAI.2014.115.

[40] M. Jain and C. Verma, “Adapting k-means for Clustering in Big Data”, International Journal
of Computer Applications, vol. 101, no. 1, pp. 19–24, 2014.

[41] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, and A.
Bouras, “A survey of clustering algorithms for big data: Taxonomy and empirical anal-
ysis”, IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 3, pp. 267–279, 2014,
ISSN: 21686750. DOI: 10.1109/TETC.2014.2330519.

[42] C. Radhika and D. Parameswari, “Distributed Clustering for Big Data with MapReduce”,
IOSR Journal of Computer Engineering, vol. 19, no. 03, pp. 25–28, 2017, ISSN: 22788727. DOI:
10.9790/0661-1903032528.

[43] W. Zhang, D. Li, Y. Xu, and Y. Zhang, “Shuffle-efficient distributed Locality Sensitive
Hashing on spark”, Proceedings - IEEE INFOCOM, vol. 2016-Septe, pp. 766–767, 2016, ISSN:
0743166X. DOI: 10.1109/INFCOMW.2016.7562179.

[44] D. Li, W. Zhang, S. Shen, and Y. Zhang, “SES-LSH: Shuffle-Efficient Locality Sensitive
Hashing for Distributed Similarity Search”, Proceedings - 2017 IEEE 24th International Con-
ference on Web Services, ICWS 2017, pp. 822–827, 2017. DOI: 10.1109/ICWS.2017.99.

[45] M. Nowotka and A. Hersey, Locality sensitive hashing for compound similarity search. Poster,
Seventh Joint Sheffield Conference on Chemoinformatics, University of Sheffield, Sheffield,
University of Sheffield, Jul. 2016.

[46] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing”,
in Proceedings of the 25th International Conference on Very Large Data Bases, ser. VLDB ’99,
1999, pp. 518–529, ISBN: 1-55860-615-7.

BIBLIOGRAPHY 114

[47] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”, in
OSDI’04: Sixth Symposium on Operating System Design and Implementation, San Francisco,
CA, 2004, pp. 137–150.

[48] N. Hans, S. Mahajan, and S. N. Omkar, “Big Data Clustering Using Genetic Algorithm On
Hadoop Mapreduce”, vol. 4, no. 04, pp. 58–62, 2015.

[49] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open source
tools for machine learning with big data in the Hadoop ecosystem”, Journal of Big Data,
vol. 2, no. 1, p. 24, 2015, ISSN: 2196-1115. DOI: 10.1186/s40537-015-0032-1.

[50] M. Zaharia, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica, R. S. Xin, P. Wen-
dell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, and S. Venkataraman, “Apache
Spark: a unified engine for big data processing”, Communications of the ACM, vol. 59,
no. 11, pp. 56–65, 2016, ISSN: 00010782. DOI: 10.1145/2934664.

[51] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, “A Scalable Hier-
archical Clustering Algorithm Using Spark”, Big Data Computing Service and Applications
(BigDataService), 2015 IEEE First International Conference on, pp. 418–426, 2015. DOI: 10.
1109/BigDataService.2015.67.

[52] M. Stahl, H. Mauser, M. Tsui, and N. R. Taylor, “A robust clustering method for chemical
structures”, J Med Chem, vol. 48, no. 13, pp. 4358–4366, 2005. DOI: 10.1021/jm040213p.

[53] F. Saeed, A. Ahmed, M. S. Shamsir, and N. Salim, “Weighted voting-based consensus
clustering for chemical structure databases”, Journal of Computer-Aided Molecular Design,
vol. 28, no. 6, pp. 675–684, 2014, ISSN: 15734951. DOI: 10.1007/s10822-014-9750-2.

[54] S. V. Trepalin and A. V. Yarkov, “Hierarchical clustering of large databases and classifica-
tion of antibiotics at high noise levels”, Algorithms, vol. 1, no. 2, pp. 183–200, 2008, ISSN:
19994893. DOI: 10.3390/a1020183.

[55] M. Seeland, S. A. Berger, A. Stamatakis, and S. Kramer, “Parallel structural graph cluster-
ing”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol. 6913 LNAI, no. PART 3, pp. 256–272, 2011,
ISSN: 03029743. DOI: 10.1007/978-3-642-23808-6_17.

BIBLIOGRAPHY 115

[56] R. E. Higgs, K. G. Bemis, I. A. Watson, and J. H. Wikel, “Experimental Designs for Selecting
Molecules from Large Chemical Databases”, Journal of Chemical Information and Computer
Sciences, vol. 2338, no. 97, pp. 861–870, 1997. DOI: 10.1021/ci9702858.

[57] W. Li, “A fast clustering algorithm for analyzing highly similar compounds of very large
libraries”, Journal of Chemical Information and Modeling, vol. 46, no. 5, pp. 1919–1923, 2006,
ISSN: 15499596. DOI: 10.1021/ci0600859.

[58] Z. Feng, B. Zhou, and J. Shen, “A parallel hierarchical clustering algorithm for PCs cluster
system”, Neurocomputing, vol. 70, no. 4-6, pp. 809–818, 2007, ISSN: 09252312. DOI: 10.1016/
j.neucom.2006.10.034.

[59] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang, “An Efficient Hierarchical Clustering
Method for Large Datasets with Map-Reduce”, 2009 International Conference on Parallel
and Distributed Computing, Applications and Technologies, pp. 494–499, 2009, ISSN: 2379-5352.
DOI: 10.1109/PDCAT.2009.46.

[60] M. Dehmer, F. Emmert-streib, and S. Tripathi, “Large-Scale Evaluation of Molecular De-
scriptors by Means of Clustering”, PloS one, vol. 8, no. 12, 2013. DOI: 10.1371/journal.
pone.0083956.

[61] M. G. Malhat and A. B. El-Sisi, “Parallel ward clustering for chemical compounds using
MapReduce”, Proceedings - 2015 10th International Conference on Computer Engineering and
Systems, ICCES 2015, pp. 23–27, 2016, ISSN: 18650929. DOI: 10.1109/ICCES.2015.7393011.

[62] A. Bo, “Toward an Improved Clustering of Large Data Sets Using Maximum Common
Substructures and Topological Fingerprints Toward an Improved Clustering of Large
Data Sets Using Maximum Common”, Journal of chemical information and modeling, pp. 2097–
2107, 2008.

[63] J. Chen, S. J. Swamidass, Y. Dou, J. Bruand, and P. Baldi, “ChemDB: A public database of
small molecules and related chemoinformatics resources”, Bioinformatics, vol. 21, no. 22,
pp. 4133–4139, 2005, ISSN: 13674803. DOI: 10.1093/bioinformatics/bti683.

[64] “PubChem substance and compound databases”, Nucleic Acids Research, vol. 44, no. D1,
pp. D1202–D1213, 2016, ISSN: 13624962. DOI: 10.1093/nar/gkv951.

BIBLIOGRAPHY 116

[65] T. Sterling and J. J. Irwin, “ZINC 15 Ligand Discovery for Everyone”, Journal of Chemical
Information and Modeling, vol. 55, no. 11, pp. 2324–2337, 2015. DOI: 10.1021/acs.jcim.
5b00559.

[66] Y. Cao, T. Jiang, and T. Girke, “Accelerated similarity searching and clustering of large
compound sets by geometric embedding and locality sensitive hashing”, Bioinformatics,
vol. 26, no. 7, pp. 953–959, 2010, ISSN: 13674803. DOI: 10.1093/bioinformatics/btq067.

[67] G. Hu, G. Kuang, W. Xiao, W. Li, G. Liu, and Y. Tang, “Performance Evaluation of 2D
Fingerprint and 3D Shape Similarity Methods in Virtual Screening”, Journal of Chemical
Information and Modeling, vol. 52, no. 5, pp. 1103–1113, 2012.

[68] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, “Directory of useful decoys, en-
hanced (DUD-E): Better ligands and decoys for better benchmarking”, Journal of Medicinal
Chemistry, vol. 55, no. 14, pp. 6582–6594, 2012, ISSN: 00222623. DOI: 10.1021/jm300687e.

[69] R. B. Zadeh, X. Meng, A. Staple, B. Yavuz, L. Pu, S. Venkataraman, E. Sparks, A. Ulanov,
and M. Zaharia, “Matrix Computations and Optimization in Apache Spark”, 2015. DOI:
10.1145/2939672.2939675. arXiv: 1509.02256.

[70] S. Jasial, Y. Hu, M. Vogt, and J. Bajorath, “Activity-relevant similarity values for finger-
prints and implications for similarity searching”, F1000Research, vol. 5, p. 591, Apr. 2016.

[71] J. L. Gustafson, “Amdahl’s law”, in Encyclopedia of Parallel Computing, D. Padua, Ed. Boston,
MA: Springer US, 2011, pp. 53–60, ISBN: 978-0-387-09766-4. DOI: 10.1007/978-0-387-
09766-4_77.

