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Abstract

Detecting human abnormal activities is the process of observing rare events that
deviate from normality. In this study, an automated camera-based system that is
able to monitor and detect irregular human behaviour is proposed. Pre-trained
pose estimation models are used to detect the person in the frame and extract the
body keypoints. Such data is used to train two types of AutoEncoders in a semi-
supervised approach where the goal is to learn a general representation of the nor-
mal behaviour. Specifically, the AutoEncoders are based on Long short term mem-
ory (LSTM) and convolutional layers respectively, for their ability to learn local tem-
poral features. To classify the data sequences, the reconstruction error of the model
is used. Evaluated on two types of datasets, the results show that both types of
models were able to correctly distinguish between normal and abnormal data se-
quences, with an average F-score of 0.93. The results also show that the proposed
method outperformed similar work done on the same dataset. Furthermore, it was
also determined that pose estimated data compares very well with sensor data. This
shows that pose estimated data can be informative enough to understand and clas-
sify human actions.
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1

Introduction

Our brains are capable of capturing data around us using senses, such as vision, and
creating a hierarchy of concepts. Throughout our lives we train our brain in various
ways. Human beings are able to make sense out of things and understand patterns.
We also learn how to identify and recognise objects as well as detect abnormal events.
A computer program such as a calculator can be programmed to perform arithmetic
operations by accepting numeric inputs and an operation. However, for a computer to
be able to recognise and detect events, for instance, it first needs to learn how real-world
things look (in terms of pixels or other representations) and then be able to classify them.

1.1 Motivation

Approximately 28 to 35% of people aged 65 and over fall twice or more throughout a
year [59]. According to the same report, individuals sustaining falls often require med-
ical attention, with some falls possibly also leading to injury deaths. It is also reported
that older people living in nursing homes fall more frequently than those residing in
their residences.

A person who is home alone doing some mundane task might suddenly feel sick and
could, in a matter of seconds, fall to the floor or wind up helpless on a chair. If no one is
around to help, the individual’s health might deteriorate, possibly to the point of death.
A system which detects such abnormal events can provide timely aid by triggering an
alarm when an anomalous event (such as a fall) is detected.

In anomaly detection, the main objective is to detect any events that are abnormal,
suspicious or rare [10]. With specific regard to human behaviour, abnormality refers
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Chapter 1. Introduction 1.2. Problem Definition

to behaviour that is unusual and deviates from normality. The day-to-day activities is
what defines ‘normal’ activities. On the other hand, activities (or behaviour) that do
not follow such normal day-to-day activities are defined as ‘abnormal’. For example, an
individual walking from point A to point B is considered normal; however if the indi-
vidual is walking and suddenly falls to the floor then that is considered abnormal. In
general, any instance not seen in the training set is considered as abnormal.

1.2 Problem Definition

Current abnormality detection systems focus on detecting irregular objects or under-
standing the scene in a holistic way [100], rather than on human behaviour. Other de-
tection systems rely on wearable sensors [98] that must be worn at all times. However
such method might be intrusive for some or some may simply forget to put the sensors
on. Others use special equipment such as depth cameras [23]. Such equipment, which is
usually not present in nursing homes, requires additional installation and could be ex-
pensive to acquire when compared to traditional cameras. Other studies aim to detect
falls by training models on specific features such as velocity characteristics and tracking
of the head [68] and joint positions [97]. However, such approaches only allow detec-
tion of specific changes in the body and might not capture other abnormal behaviour
performed by the individual. For example, a person might be showing signs of distress
by waving his/her hands.

1.3 Aims and Objectives

The majority of the work in anomaly detection focuses on general scene understanding
such as pedestrian tracking, crowd control, unrestricted areas and irregular object de-
tection [86; 100; 101]. This study focuses on individual-human based activities and the
detection of irregular human behaviour based on human posture from a single camera.
In this study, irregular or abnormal human behaviour refers to abnormality in the body
posture. This means that, from a sequence, consideration is given only to human repre-
sentation, specifically the body keypoints. In this case, any human sequence pose that
is not seen in the training set is considered as abnormal.

The main research questions that this study aims to answer include:
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1. How would human action classification models perform if they were to be trained
on pose data estimated from a 2D image instead of sensor data?

2. Is it possible to train a semi-supervised model using solely body estimated key-
points to detect anomalous sequences?

Based on these research questions, the main aim is to determine whether a set of hu-
man body keypoints extracted from RGB images can be used to detect abnormal human
behaviour such as falling. The study also seeks to determine whether human body key-
points extracted from RGB images are comparable to sensor data collected from humans
performing various actions.

In order to achieve these aims, the following objectives were set up:

� To process and collect body keypoints from video footage containing normal and
abnormal behaviour. This is presented in Chapter 4, Section 4.4.

� To train a number of supervised models in order to compare sensor data with es-
timated body keypoints from RGB images. This is presented in Chapter 4, Section
4.6.

� To train a number of semi-supervised models that should be able to detect abnor-
mal human behaviour. The methodology as well as the model architectures are
presented in Chapter 4, Section 4.5.

� To evaluate the effectiveness of all the models. This is presented in Chapter 5.

1.4 Proposed Solution

The proposed idea for this dissertation is a system that monitors the body posture of
an individual through a traditional camera, and learns the way the user behaves. The
system would learn patterns over time and would therefore be capable of building a
personalised user model. The set-up in itself is non-invasive and respects the individ-
ual’s privacy as only the skeletal data is used for processing. The individual’s body
posture would be extracted from live video footage. This is done by collecting body key
points such as left and right shoulders, elbows, hips and knees.

A model would be trained to learn the typical behaviour of the individual in terms of
body posture. Afterwards, the model would be capable of detecting body posture that
deviates from the behaviour it was trained on. In a real world scenario, a voice user
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interface (such as Google Assistant) could be used to communicate with the individual
if an abnormal event is detected. Such system would be able to act accordingly such as
calling the person’s relatives or the ambulance.

It is therefore desirable to have a system that can actually perform intelligent detec-
tion of irregular behaviour as a timely decision might possibly save a life. The main
contribution of this dissertation is the ability to detect abnormal behaviour using solely
data from a traditional camera. Having such intelligent detection in place, future devel-
opment such as systems that communicate directly with the individual could be imple-
mented.

In contrast to the current research, this study aims to detect abnormal or irregular be-
haviour by learning changes in the human skeleton (and thus focus on the action being
undertaken). Training the model with just a representation of the human being from
a whole frame allows the model to be trained solely on the human action being per-
formed. This ensures that the background itself or objects visible in the scene do not
contribute to detecting abnormalities. The type of architecture selected also allows the
model to learn in a semi-supervised approach. This means that the model only requires
data which contains the day-to-day behaviour. Unlike data that contains abnormal be-
haviour, such data is not scarce and usually is the only available data. Furthermore,
unlike some current camera-based solutions, this study allows detection of abnormal
behaviour using a traditional camera.

Evaluated on a challenging Activities of Daily Living (ADL) video dataset [5], the
proposed method achieved a promising average F-score of 0.93, an improvement of ≈
0.30 F-score on similar work by Debard et al. [19]. Furthermore, it is shown that pose
estimated data is comparable to sensor data and is informative enough to describe a
human action.

1.5 Document Structure

The document is structured into 4 main parts. The first part presents an overview of the
relevant literature and machine learning techniques employed in the area. The second
part outlines how the literature explored in the first part is applied to reach the aims of
this research. The third part presents the evaluation techniques employed to evaluate
the proposed solution. And finally, in the fourth part, a list of possible future work to-
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gether with a recap of the study is given.

Part 1 - Literature Review. This part is organised into two chapters as follows:

Chapter 2: Background and Machine Learning Techniques: This chapter gives
an overall context to the next chapter as it covers the background
and the machine learning techniques used in anomaly detection.

Chapter 3: Overview and Related Work: This chapter provides a review of the
work related to techniques employed in sequence-based data (such
as videos and time-series data) where the temporal aspect is impor-
tant. It also presents an overview of the related work in the field.

Part 2 - Methodology

Chapter 4: This chapter provides a detailed description of the methodology and
implementation adopted to develop a technique that aims to detect
abnormal behaviour, such as falls, from videos. An overview of the
different modules of the system and how these will be combined to-
gether are also outlined.

Part 3 - Results and Evaluation

Chapter 5: This chapter includes the results and interpretation of the experi-
ments outlined in Chapter 4. An overview on the datasets utilised
is also presented. This chapter includes two types of evaluations -
the first one is against the ground truth and the other one is against
similar work in the field.

Part 4 - Conclusion and Future Work

Chapter 6: In this chapter, a summary of the whole study is given. This is fol-
lowed by a detailed description of how each objective was achieved.
To conclude, a list of possible future work is given.
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Background and Machine Learning
Techniques

2.1 Introduction

Human action understanding and recognition have received much attention during the
last few years [4; 53; 63; 78]. Various machine learning techniques have been employed
to understand behaviour and activity patterns, scene understanding as well as intel-
ligent surveillance systems. In anomaly detection, the main objective is to detect any
events that are abnormal, suspicious or rare. Video abnormality detection is interesting
because it can be applied to various applications namely in the healthcare sector, such as
identifying an early onset of an epileptic fit and for security surveillance purposes such
as identifying terrorist activities. For this study, anomalies are defined as rare or unex-
pected events that were not observed in the dataset. Furthermore, human behaviour
refers to the body posture of the individual.

Video anomaly detection is a popular topic for many researchers. Various techniques
were employed ranging from the use of hand-crafted features and the use of traditional
machine learning algorithms such as Hidden Markov Models (HMM) [101], Support
Vector Machines (SVM) [98], to the use of neural networks (both shallow and deep)
such as Convolutional Neural Networks (CNN)[33; 76; 86], AutoEncoders (AE) [43; 55],
Recurrent Neural Networks (RNN) [53; 81] as well as a combination of networks (for
example: Convolutional AutoEncoders presented in [32]).

This chapter aims at providing an overview of the machine learning techniques men-
tioned above whilst the next chapter highlights key techniques and approaches in anomaly
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detection related to this study.

2.2 Anomaly Detection

Anomaly Detection (AD) deals with the process of detecting rare events or observations
that deviate from normality. The goal is to identify abnormal patterns from the data
which in nature are rare. Such abnormal patterns are also usually known as outliers,
anomalies or discordant observations. Some applications for AD include fault detection
in systems, video surveillance, health care and credit card fraud. The study for detect-
ing outliers in data has been on ongoing research topic.

Chandola et al. [10] argue that due to a number of challenges, the anomaly detection
problem is not always an easy task. The nature, availability and other factors of the data
make the problem more challenging to solve. Some factors that were mentioned in the
paper include:

� A data point which is very close to the normal cluster but not part of it can actually
be normal or abnormal.

� Different domains employ different types of anomalous data and therefore imple-
menting a technique in a specific domain does not imply that the same technique
will produce the same results for another domain.

� Since abnormal events are in nature rare, availability of annotated data is very
limited

� Noise in the data can be classified as abnormal when in actual fact it could be
otherwise

In their survey paper, Chandola et al. [10] highlight the three types of anomalies:
(1) Point Anomalies, (2) Contextual Anomalies and (3) Collective Anomalies. A point
anomaly is the simplest form as it deals with a single data point in the dataset and is
not part of a context. On the other hand, a contextual anomaly takes into account the
context of the data point. As a real world example, let us assume a temperature time
series data depicted in Figure 2.1 where both t1 and t2 values are equal however they
occur in a different context. t1 in this case can be considered as normal, however t2 is an
abnormal data point. In this case, the context is time. The third type, collective anomaly,
deals with a collection of related data points. As an example let us consider a bearing
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time series dataset whereby a group of data instances at times t1, t2, ..., tn is a complete
data sequence. In this case, a single data point in the sequence might not be anomalous
but the presence of it in a given sequence is abnormal. In relation to this study, the focus
will be on the last two types of anomalies, contextual and collective - where both the
context (time) and the sequence (different poses at different timestamps) of events are
important.

Figure 2.1: Temperature Time Series
Source: Chandola et al. [10]

Kiran et al. describe anomaly detection as an “unsupervised pattern recognition task that
can be defined under different statistical models". A model is trained to observe and learn
the general representation of the data. The normal class distribution D is calculated
using the training dataset. A loss function is then used to minimize the model’s error.
After training the model, unseen data points can then be checked for abnormality. An
abnormal instance is poorly reconstructed by the model where an anomaly threshold
score is used to detect where the point should be classified as normal or abnormal [43].

2.3 Machine Learning

Human beings are able to make sense out of things and understand patterns. We also
learn how to identify and recognise objects. A computer program such as a calculator
can be programmed to do additions and other arithmetic operations by accepting nu-
meric input and an operation. However, for a computer to be able to recognise cats and
dogs in an image, for instance, it first needs to learn what cats and dogs look like (in
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terms of pixels) in order to be able to classify them. This process is referred to as ‘ma-
chine learning’ whereby a model is able to learn data patterns automatically without
explicit coding rules [1].

“Machine learning is programming computers to optimize a performance criterion
using example data or past experience.” Alpaydin [1]

Machine learning can be sub-divided into 4 types: (1) Supervised learning, (2) Semi-
supervised learning, (3) Unsupervised learning and (4) Reinforcement learning.

Supervised learning refers to learning by example where a set of x values contain
a y value and the model learns to model x to y. This is further explained in Section
2.4. On the other hand, in unsupervised learning there are the x values but no ys. In
this case, the aim of the model is to be able to find patterns or clusters within the data.
Semi-supervised is very similar to supervised learning, however with a very important
difference - the model is trained with just one class of the data. This technique is very
common in anomaly detection and is explained further in Section 2.2. Last but not least,
reinforcement learning deals with learning by doing. In this case, the model learns from
previous action sequences that maximises a reward. A typical example is in a game
where a high reward is only given if the sequence of moves are correct [1].

2.3.1 Support Vector Machines

Traditional machine learning techniques such as Support Vector Machines (SVM) are
typically used in supervised learning for classification tasks. In its simplest form, an
SVM aims at learning the parameters of a hyperplane in N-dimensional space (where N
denotes the number of features) that best classifies the data. An example is illustrated
in Figure 2.2 where points are classified by two classes represented by blue and orange
points. The model, in this case, learns the parameters of the hyperplane that best seg-
regate the data. Data points closer to the hyperplanes are called support vectors. These
points are the most important for the algorithm as during parameter estimation, such
support vectors contribute to the position and orientation of the hyperplane. The aim
of an SVM is to find the hyperplane with the largest margin possible (denoted as 2/|w|
in the figure) [21].

In the example illustrated, the data can be linearly separable. However, data is not
always separated in with a linear model. Different kernel functions (also known as ker-
nel tricks) can be used to map the data into a higher dimensional space in order for the
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Figure 2.2: SVM: Learned hyperplane that best segregates the data
(Source: Durgesh and Lekha [21])

algorithm to find a hyperplane that can linearly separate the data. Depending on the
amount of samples, this process can be computationally expensive. Some examples of
kernel functions include linear, polynomial, radial basis function (RBF) and sigmoid. Ac-
cording to [21], the RBF kernel is the most used as it has fewer hyperparameters and
less “numerical difficulties”.

2.3.1.1 One-Class SVM

Originally proposed by Schölkopf et al. [73], one-class SVMs (OC-SVM) are models
trained to detect outliers or anomalies. As outlined in the beginning of this chapter, out-
liers are typically defined as rare events that deviate from the other observations. The
aim of a OC-SVM is to find a function that best describes the regions with high density
of data points (similar to SVM but to one-class only). As opposed to other models, this
is done without estimating the probability density of the data [73]. In anomaly detec-
tion, various studies use this unsupervised technique to classify normal and abnormal
events [30; 93; 98]. Such use cases are explored in the Chapter 3.

2.3.2 Hidden Markov Models

Hidden Markov Models (HMM) and other variants have been extensively used in the
field of detecting anomalous events [38; 95; 101]. Modelling time is a crucial step as
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most often, data in forms of speech or video contains the time dimension that makes up
the whole sequence. For instance, the natural form of the data in a speech recogniser is
in a sequence, so modelling all of it is important.

A HMM is a model that belongs to the Markov family. In probability theory, a Markov
model is a model that describes a sequence of possible events in terms of probability.
The Markov property states that in a Markov model the next state always depends on
the last state. However, in a Hidden Markov Model, the state itself is hidden (not ob-
servable) but the data leading to the state is observable. Thus, in a HMM, the computed
state (prediction) depends on the previous time steps states and the current observation.
Such conditional independence is depicted as a graphical model in Figure 2.3. The top
nodes in the graph St refer to the hidden state at time t whereas the nodes at the bottom
Yt refer to the observations at time t [25].

Figure 2.3: Graphical model for a Hidden Markov Model. (Source: Ghahramani [25])

2.3.2.1 HMM: Speech Recognition

One of the most popular application of HMM is Speech Recognition. At phoneme level,
words are modelled statistically to represent the various sounds of the language. Since
words are constructed in a temporal structure, a HMM is trained to learn the probability
transition model of various words based on the observations provided - audio in this
case. So in this case, the word is the hidden state and the audio features represent
the observations. After the model is trained, a word is recognised by calculating the
maximum likelihood of P(word|audio f eatures). Here, Bayes rule1 is used to transform
the equation to: P(audio f eatures|word)P(word) [22].

1P(A|B) = P(B|A)P(A)
P(B)
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2.3.2.2 HMM: Anomaly Detection

The goal of a HMM is usually to compute the state given a sequence. But HMMs were
also proven to detect anomalous sequences. A sequence is considered anomalous when
an observation is highly unlikely to happen. In such instances, a threshold is typically
used for classification. For example; in a similar fashion to one-class classifiers, Görnitz
et al. [27] propose an approach of detecting abnormal sequences from data by learning
the probability distribution of the normal data. Use cases on this technique are explored
further in Chapter 3.

2.4 Artificial Neural Networks

Artificial neural networks, which are also known as multilayer perceptrons (MLPs) or
feedforward neural networks, consist of mathematical functions with the main goal be-
ing the learning of an approximate function f ∗ that maps an input x to output y. The
term ‘feedforward’ refers to the fact that arrows from neurons are directed forward to
the output. On the other hand, the term ‘multilayer’ means that the network consists
of more than just the input and the output layer. Such intermediate layers are called
hidden layers and denoted as h [26].

Figure 2.4: Typical Neural Network architecture
Source: Wang [92]

A typical architecture of a neural network is shown in Figure 2.4. The network con-
sists of three layers: input, hidden and output. The nodes in the graph are usually called
neurons or units and each edge connecting them contains a number called weight. Dur-
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ing training, the network learns the values of such parameters (weights and biases) such
that the best function is approximated. A loss (or cost) function is used to calculate the
error between the predicted output and the actual output. The error is then minimised
using Gradient Descent - which is a gradient-based method that deals with updating
the weights of the network based on the error [26; 92]. A more detailed explanation is
provided in this section.

2.4.1 Activation Functions

An artificial neuron within a neural network computes a weighted sum of its input and
adds a bias value. The value of such neuron could range between −∞ to +∞. Such val-
ues could stop the network from proper training. To overcome such problem, activation
functions are used. Such functions are applied to the weighted sum of each neuron and
does not allow each neuron to increase indefinitely as more terms are added. Popular
activation functions include TanH, Sigmoid, and Rectified Linear Unit (ReLU). The output
of a Sigmoid (or logistic) function is always a number between 0 and 1 whereas that of
a TanH (also known as hyperbolic tangent) is between -1 and 1. ReLU’s output is quite
straight forward, 0 if the number is negative and the same number when the input is
equal or greater than 0. One of the drawbacks of ReLU is called the ’dying ReLU’ prob-
lem. This happens with neurons firing negative values and in turn having an activation
value of 0. Since the gradient is 0, such neurons will never recover. To mitigate this
issue, one of the variants of ReLU called Leaky ReLU allows for negative numbers to
be multiplied by a fixed parameter αi (small value such as 0.01) instead of 0 and thus
allowing such neurons to recover. Since these functions are non-linear, the network is
able to learn more complex non-linear functions, making it more robust in understand-
ing different relationships within the data. These functions are also differentiable which
means that an optimisation technique such as gradient descent (outlined in this section)
can be used to optimise the network [26; 92].

In classification tasks, the softmax activation function is typically used for the last
layer. Similar to the sigmoid function, the softmax function transforms the outputs of
each unit between 0 and 1. However, each output is divided such that the total sum is
equal to 1. This allows the network to output a categorical probability distribution for
all n different classes. The output from such function is then used to output a prediction
by finding the class with the highest probability.
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2.4.2 Training a Neural Network

The algorithm used to compute the gradients of the loss (or cost) function across the
network is called backpropogation. This algorithm was introduced by Rumelhart et al.
[70] whereby its goal is to update the weights and biases of every layer of the network
in order to minimise the loss function. Gradient descent (GD) and its variants is one
of the most popular optimisers for neural networks. It deals with minimising the cost
function J(θ) by computing the gradient of the cost function itself with respect to the
parameters (θ). The gradient value is then used to update the parameters as defined in
equation 2.1 [69].

θ = θ − α
∂J(θ)

∂θ
(2.1)

2.4.2.1 Optimising a Neural Network

A learning rate α is usually set to control the step size downward the slope (of the gra-
dient). A large learning rate might cause the network to never converge as it may over-
shoot the minimum value. On the other hand, if α is too small, convergence will be
much slower [69]. It is therefore desirable to tune such hyper-parameter in a way that
the network converges in the shortest time possible. Smith [80] argues that training neu-
ral network models with cyclical learning rates as an alternate to fixed rates improves
overall accuracy. The author reports that training the model with a very small learning
rate (for e.g. 0.001) for the first few iterations and then increasing it linearly or exponen-
tially yields good results.

One of the loss functions which is usually used for regression tasks is the mean-
squared error (MSE). The error between the predicted output and the actual output
is computed to calculate how ‘off’ the predicted value is from the ground truth. MSE
is defined by equation 2.2 where N refers to the number of samples, yi denotes the true
output value and ŷi denotes the predicted value. Since MSE is a quadratic function and
therefore is in a form of a U-shape curve, there will be only one (global) minimum. This
allows the network to optimise faster [26]. For classification tasks, a popular cost func-
tion used by researchers [53; 71; 81; 93] is called the cross-entropy or log-loss (equation
2.3). Such function measures the performance between a predicted probability value
and the ground truth probability. The cross-entropy loss is high as the predicted prob-
ability diverges from the actual label. Other variants of cross-entropy are also available
for multi-class classification and categorical multi-class classification [26].
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MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.2)

CrossEntropy = − 1
N

N

∑
i=1

[
y(i) log(ŷ(i)) + (1 − y(i)) log(1 − ŷ(i))

]
(2.3)

One of the variants of the vanilla gradient descent (also known as batch gradient de-
scent) is Stochastic Gradient Descent (SGD) [69]. Unlike batch gradient descent, SGD
updates the weights for every training sample in an epoch and thus learning is per-
formed faster. Such technique can be used for online learning too. In his paper, Ruder
[69] also outlines another variant of gradient descent - mini-batch gradient descent.
This method is “the best of both worlds" as it performs weight updates to mini-batches
within an epoch of n training samples. Such technique allows reduction of weight up-
dates variance. The author also lists algorithms used to improve SGD in terms of the
learning-rate being adaptive. Some include: Momentum, Adagrad, Adadelta, RMSprop
and Adam. Ruder also concludes that Adam is the preferred method overall mainly be-
cause according to [42], Adam’s bias-correction and Momemtum outperforms all the
techniques.

2.4.3 Underfitting and Overfitting

As outlined by Goodfellow et al. [26] in their book (Section 5.2 and 5.3), one of the chal-
lenges of a machine learning algorithm is to be able to perform well on new and unseen
data. In a supervised classification task, for instance, the model should learn how to
distinguish between the classes without being too closely fit to the data. On the other
hand it should also capture the underlying data patterns well enough to be able to pro-
vide correct output. Overfitting occurs when the model fits exactly the training data,
thus yielding a low error rate on the training set but a higher one on the test set. On
the contrary, underfitting occurs when the model is not able to learn the proper function
which results in high gap between the training and the test sets error values. Figure
2.5 illustrates the training and testing sets error when capacity is increased. The left
end of the graph shows a high error for both sets which shows underfitting, whereas
in the right end of the graph the generalisation gap is increasing (the training error is
decreasing whilst the testing error is increasing). All this goes to show that the model is
overfitting.

One of the techniques applied to allow the model to generalise and therefore reduce
the generalisation error is called regularisation. Regularisation aims at controlling the
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Figure 2.5: Under and Overfitting
Source: Goodfellow et al. [26]

model in a way not to be too complex when selecting weight values. Examples of such
methods include the L1 (Least Absolute Deviations) and L2 (Least Square Errors) regu-
larisers. A regulariser is added to the cost function and acts as weight decay. Most of the
times, the L2 regulariser is preferred as it decreases the weights of insignificant features
to 0 [26].

Another technique outlined by Goodfellow et al. in their book is to have a separate
validation set (apart from the training and testing sets) that will be used to tune the hy-
perparameters of the model. The hyperparameters of the model are important to tune
because they control the ’capacity’ of the network. The usual split is 80-20 where 80%
would be for training the model, and (20%) for evaluating the performance of the model.
20% of the 80% is typically used for validating the model and tuning the hyperparame-
ters. In small datasets, cross-validation (for e.g. k-fold cross validation) is typically used
in order to prevent statistical uncertainty.

Early Stopping is another popular technique outlined in [64] to reduce overfitting.
This deals with stopping the network from learning with the purpose of stopping it
from overfitting. Prechelt also argues that validation error curves usually contain more
than one minimum as it is not always a smooth curve. In view of this, the author out-
lines that a balance between training time and validation error needs to be achieved.

Dropout regularisation is another technique proposed by Srivastava et al. to prevent
overfitting. Its main idea is to randomly ‘switch off’ a number of neurons (typically 50%
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in a given layer) in order to force other neurons to learn, thus preventing the main neu-
rons from taking over. In their paper, the authors report that this method improves the
performance of supervised learning tasks in speech recognition and computer vision,
amongst others [82].

2.5 Deep Neural Networks

Results reported by researchers in the field show that the use of deep neural networks
and its variants outperform the traditional techniques (such as SVM and HMM) [43].
Recent studies also show that convolution neural networks and similar architectures
have established themselves as very powerful techniques in learning useful representa-
tions from raw data without the need for hand-crafted features [33; 44; 76; 86]. In this
section, an overview of deep neural networks and how they differ from vanilla artificial
neural networks is given.

Due to advancements in computer power (thanks to graphical processing units and
their ability to handle matrix calculations in parallel), deep models can be created and
trained. The term ‘deep’ refers to the increase in the number of hidden layers within
a neural network [26]. Deep architectures allow the model to learn both higher and
lower feature hierarchies. A typical ‘non-deep’ neural network might have 1 to 3 layers
of neurons however a deep neural network might comprise of 11 or more layers as
reported in the VGG paper [79]. In 2014, a deep network consisting of 16 or 19 layers
was considered very deep, however recent architectures such as a Residual Network
(ResNet) [34] can contain hundreds (or thousands) of residual layers and still perform
very well whilst outperforming other architectures.

2.6 Convolutional Neural Networks

The era of deep learning evolved in 2012, when Krizhevsky et al. trained a deep con-
volutional neural network (CNN) to classify a huge amount of image data into 1000
classes in the ImageNet competition2. At that time the authors claimed that their error
rates were much lower than the previous state-of-the-art. The network that they used
to train the model included 650K neurons with 5 convolutional layers [45].
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In anomaly detection, various researchers make use of CNNs in conjuction with other
networks (outlined in Chapter 3) to extract meaningful features for video frames and be
able to classify a sequence accordingly [4; 30; 40; 100].

The increase in computing power offered by GPUs and the huge amount of labelled
image data has contributed to the increase in popularity of deep CNNs. As outlined in
[50], a CNN is made up of a number of layers. A layer is a series of operations being
applied to an input. In a typical neural network, every neuron is usually connected to
every other neuron, forming a fully connected layer. However, in the case of CNNs
this is not always so. An image of 128x128 pixels would result in having a neuron with
16,384 parameters in order for it to learn which is not efficient. In order to overcome
this problem, each neuron can be connected to a few input neurons. For instance, in
an image classification task, each neuron in the network can be configured to look at
neighbouring pixels only rather than the whole input. Such network is inspired by the
fact that neurons in a human brain are also locally connected [48].

CNNs have been around for quite some time. In [49], LeCun et al. introduced an
end-to-end system capable of recognising images. In recent computer vision work, re-
searchers are getting more promising results with CNNs due to possibility of training
deeper networks [34; 79]. Furthermore, more efficient CNNs are now being trained to
detect and localise objects in a given frame in real-time [37].

CNNs are also capable of recognizing objects when they presented in a different way
(for e.g. different positions or smaller/larger appearance). This refers to the term trans-
lation invariance and is possible due to the fact that neuron connections (weights) are
shared with other neurons, making the network even faster to train. Figure 2.6 illus-
trates weight sharing in a basic CNN architecture, where the first set of input neurons
(3) is connected to the first neuron, the second set connected to the second neuron and
the third set connected to the third neuron. The figure also shows the neuron connec-
tions w1 to w9 where the colours indicate same values (i.e. w1 = w4 = w7 ...). Such
set of weights is usually called a ‘filter’. Therefore in a CNN, each region of the input
is applied the same filter which in this case allows the network to only learn and keep
w1, w2 w3 [48].

A typical input to a CNN is an image in its raw data which consists of 3 channels -
width, height and depth (usually Red, Green and Blue). For example, a 64x64 image
would be an input of 64x64x3 matrix. A typical architecture of a CNN looks like the
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Figure 2.6: CNN Weight Sharing
Source: Le et al. [48]

following:

INPUT – CONV – RELU – POOL – FC

The CONV layer will perform convolution in two-dimension to regions of the input
whereby each region of the image will be multiplied (dot product) by a filter containing
a set of weights (also known as feature map) determined during training. If 12 filters are
used, the result would be 64x64x12. The next layer is ReLU – this is an activation func-
tion (outlined in Section 2.4) that simply transforms negative values to 0 and keeps pos-
itive values. The POOL layer will then reduce the dimensions of the input to 32x32x12.
Max pooling is usually used whereby the maximum number in each ‘depth slice’ will
be picked. In order to create a deep convolutional neural network, these layers (CONV,
ReLU and POOL), which are called convolutional blocks, are added to the network as
another block layer after the POOL layer. The final layer in a typical architecture is the
fully connected layer, which is responsible for computing the class probabilities. The
softmax activation function is typically used at this level to output probabilities in a clas-
sification problem [50].

Backpropagation, which was outlined in Section 2.4, is also used to train a CNN.
Stochastic gradient descent together with an adaptive-learning method such as Adam
[42] is commonly used to update the weights at each layer. This process is referred to as
‘learning’ [50].

2.6.1 1D Convolutions

Since images in nature are 2-dimensional, many papers in computer vision focus on 2D
CNNs. Just like 2D CNNs, 1D CNNs are useful when the data is in one dimensional.
The use of 1D CNNs was recently explored by Kiranyaz et al. [44] and proven to work
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Figure 2.7: Deep Convolutional Neural Network Architecture showing activations at
each layer together with the final output

Source: Li and Karpathy [50]

well with extracting discriminative features from sequences such as electrocardiogram
signals. The researchers trained a 1D CNN with large 1D filter kernels for every patient
and used the model for classification and detection of anomalous signals. They also
point out that the speed and accuracy of such architecture make it a natural choice for
detecting anomalous signals within the data because it can be powered by mobile de-
vices [44]. Lim et al. [51] also explored the use of 1D CNNs to detect rare sounds. They
used a 1D CNN for extracting frame-level features from a spectrogram followed by two
LSTM layers to capture the temporal dimension of the features [51].

Another study which uses 1D ConvNets is presented by Zeng et al. [99]. They ex-
plore the use of 1D ConvNets on Human Action Recognition (HAR), specifically on
sensor data captured from smartphones to automatically acquire key features that con-
tribute to recognising activities. They show that their model is able to capture both local
dependency and scale invariance of a signal as shown in other domains such as image
and speech recognition. In a more recent study Cho and Yoon [13] present a ‘Divide
and Conquer’ approach to classifying HAR. The authors specifically make use of 1D
CNNs to create a two-stage modelling approach. The first stage deals with recognising
whether the action is dynamic or static. Afterwards, individual activities are classified
using 2 3-class classifiers.
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2.7 Recurrent Neural Networks

A Recurrent Neural Network (RNN), unlike a vanilla NN, is able to understand context
because it ’remembers what happened before’. In view of this, many researchers chose
to work with RNNs for modelling their anomaly detection methods. RNNs were also
proven to work effectively for sequence-based anomaly detection [4; 54; 55; 81].

A vanilla neural network accepts input as a fixed vector where it is processed by a set
of hidden layers and finally an output is computed. In this case, the model ignores the
previous input and therefore it is not able to model sequential data. In certain applica-
tions such as speech, language and video analysis, data is in a form of a sequence and as
such, it needs to be fed to the model in its original form. A recurrent neural network is
able to model such data sequence that is often in time steps. A recurrent neural network
is able to do so as the hidden layer h at time t is determined by the input xt and the
hidden output of the last time step ht−1. An RNN is also able to model variable-length
sequences due to the fact that the parameters for the hidden state are shared [52]. The
following equation specifies the calculations of a recurrent neural network for compu-
tation at every time step t.

h(t) = σ(Whxx(t) + Whhh(t−1) + bh) (2.4)

Where Whx represents the weight matrix between the input and the hidden layer, Whh

represents the weight matrix between the hidden layers, b holds a vector containing the
bias parameters and σ refers to the activation function, typically the logistic sigmoid
function or tanh.

Figure 2.9 shows an unfolded recurrent neural network across two timesteps (t1, t2)
where the neurons at the hidden layer at time t2 are determined by those of t1.

Similar to RNNs, HMMs, are able to model an observed sequence of data. How-
ever, when compared with each other, RNNs are able to use the hidden states in a more
efficient way. Furthermore, unlike HMMs, RNNs are able to handle long-term depen-
dencies and thus overcoming the limitation of Markov models where a hidden state
only depends on a previous state [52].

2.7.1 Long-Short Term Memory

Long-Short Term Memory (LSTM) as defined by Lipton [52] is a special type of RNN
with its main advantage being the ability to handle long-term dependencies better as
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Figure 2.8: Unfolded Recurrent Neural Network
Source: Lipton [52]

well as to overcome the vanishing or exploding gradients problem.

As outlined by Pascanu et al. [62], the vanishing gradient problem occurs during
the training of the model. When the gradients get very small there will be little to
no improvements at all to the parameters of the model and this causes the network
to stop training. This happens during backpropogation, when the gradients are back-
propogated through the all hidden states. The gradient will be multiplied to the weight
matrix over and over and eventually this will lead to a very small gradient signal until
it is 0. On the contrary, if there is a large increase of the gradient, the network could suf-
fer from the exploding gradient problem. The authors of the paper propose two meth-
ods of how these problems could be dealt with - to deal with the exploding gradient
problem they propose a technique called gradient clipping whose its job is to clip the
gradients between two numbers in order to prevent them from getting too big. On the
other hand, to overcome the vanishing gradient problem they propose a regularisation
term that forces the gradients not to vanish during the training of the network (back-
propogation) [62]. In LSTMs, the vanishing gradient problem was overcome with the
introduction of a gated architecture [26; 52].

The recurrent module in an LSTM is similar to that of a RNN but with a different
structure. Instead of having a single neural network layer, it is made of four - where
each interact together in order to preserve only the useful information. Introduced by
Hochreiter and Schmidhuber [36] and further enhanced by Gers et al. [24], an LSTM
contains a memory cell, usually denoted as c which contains the cell state. Data in the
LSTM network passes through the forget f , input i and the output o gates. Such gates
act like filters - allowing or limiting data to pass to or from other gates. Output from
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such gates will then update the memory cell c. The input i, forget f and output o gates
make use of the logistic sigmoid function to output values between 0 and 1 whilst the
vector that holds the internal state for c uses the tanh function [52].

Figure 2.9: Unfolded LSTM Network
Source: Olah [58]

2.7.1.1 Gated Recurrent Units

A simpler but similar LSTM-variant called Gated Recurrent Unit (GRU) was proposed
by Cho et al. [14]. The authors combined the input and forget gates into one, calling it
the ’update’ gate. Such gate controls how much information from the previous hidden
state should be kept. The other gate is called the ’reset’ gate - this controls how much in-
formation from the previous time-steps should be removed from the hidden state. They
also got rid of the cell state making it simpler and more efficient computation wise [14].

Apart from GRU there are other LSTM variants. However a study conducted by Greff
et al. [28] shows that the vanilla LSTM architecture performs very well on various tasks
like handwriting and speech recognition. None of the variants improves performance
significantly.

2.8 AutoEncoders

Autoencoders were first introduced by [70], aiming to reconstruct the input data at the
output layer. An AutoEncoder is a fully connected (FC) neural network which contains
one or more hidden layers. The main job of an AutoEncoder is to learn an approx-
imation of the identify function by compressing the input layer x into a latent-space
representation z (encoding) and then reconstruct the output from such representation
(decoding). The encoder forces the hidden layer to learn good representations of the
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inputs. Figure 2.10 illustrates a four input and output AutoEncoder with one hidden
layer consisting of two neurons. In this case, the network is forced to compress the
input to two neurons and then to reconstruct the original output. Since the model is
trained to reconstruct the input data (hence the input and output data are the same),
AutoEncoders are classified as unsupervised learning methods and thus no labelling is
required.

Figure 2.10: Structure of an AutoEncoder
Source: Nelwamondo et al. [57]

The difference between the input layer x and output layer y (reconstructed input) is
called the reconstruction error. The main goal of the AutoEncoder model is to minimise
the reconstruction error and therefore be able to reconstruct the input as close as possi-
ble. Typically, the cost (or loss) function J used to calculate the reconstruction error is
mean-squared error (equation 2.5) [43]. Furthermore, to minimise the cost function, the
backpropogation algorithm is used where stochastic gradient descent or its variants are
typically used [2].

J(θ) =
1
n

n

∑
i=1

(xi − x′i)
2 (2.5)

2.8.1 AutoEncoders: Dimensionality Reduction

AutoEncoders can be used to convert high-dimensional data to low-dimensional data,
forcing the network to learn good representations of the data [35]. Such technique facil-
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itates data communication, visualisation and storage. This is similar to Principal Com-
ponent Analysis (PCA), which is a technique used in statistical analysis to identify and
extract patterns from a dataset. However, unlike PCA, AutoEncoders are not restricted
to learning linear relationships only. This is because non-linear activation functions such
as Sigmoid or ReLU can be used to help the network generalise with the data and intro-
duce non-linearity [43]. In their paper, Hinton and Salakhutdinov [35] show that deep
AutoEncoders are very effective for non-linear dimensionality reduction and show that
such technique can be applied to large datasets as well.

Researchers also discovered that AutoEncoders can be used as an initialising method
to ‘pretrain’ deep neural networks [7]. One of the main goals of pretraining a neural
network is to overcome the generalisation problem of unseen data by pretraining one
layer at a time.

2.8.2 Denoising AutoEncoders

AutoEncoders can also be trained to remove noise from data (e.g. images), a technique
which is also referred to as ’denoising’. With specific regard to images; as input, a de-
noising autoencoder is fed with images that were tampered with noise. The model is
then trained to reconstruct the original (denoised) image. An AutoEncoder will be able
to deal with noise by learning meaningful specific characteristics [90]. Other use cases
for denoising autoencoders include audio, signal or document denoising.

Figure 2.11: Denoising AutoEncoder. Top: Noisy images fed to the model, Bottom:
Reconstructed by the model

Source: Chollet [15]

Figure 2.11 illustrates the noisy input fed to the model (top row) and the final recon-
struction output by the same network after training. The network was trained with syn-
thetic noisy MNIST digits that were generated by applying Gaussian noise. A stacked
Convolutional AutoEncoder with 32 filters in each convolution block was then trained
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to reconstruct the noisy images to the original images [15].

2.8.3 Variational AutoEncoders

As outlined by An and Cho [2], a Variational AutoEncoder (VAE) is a probabilistic
encoder-decoder that is able to generate new data samples of the same type the model
was trained on. Unlike general AutoEncoders, where their main goal is to learn an arbi-
trary function, VAEs learn the parameters of a probability distribution that represent the
data. Instead of forcing the network to learn a latent representation of the data, VAEs
are trained to learn the latent distribution which consists of the mean and variance of
the data. For calculating the reconstruction loss, the mean-squared error is typically
used. This is combined with the Kullback-Liebler divergence to act as a regularisation
term and therefore ’forces’ the latent values to be sampled from a normal distrubtion [2].

2.8.4 AutoEncoders: Anomaly Detection

Apart from the various uses outlined in this section, AutoEncoders can also be used for
detecting anomalous events or data. An AutoEncoder is expected to output a low re-
construction error if a normal event is fed to the network. On the other hand, it should
output a high reconstruction error for an abnormal event which implies that the abnor-
mal event is not ’similar’ to the normal events trained by the model [2; 43; 55; 100].

A threshold is typically defined to detect abnormal events. After training the model,
unseen data points can be checked for abnormality. An abnormal instance is naturally
poorly reconstructed by the model where an anomaly threshold score is used to detect
whereby the point should be classified as normal or abnormal. Furthermore, since the
data is reconstructed with the low dimension representations, only the interesting fea-
tures are retained and thus noise and features that do not contribute are automatically
discarded. Use cases on this technique are explored further in Chapter 3.

2.9 Conclusion

This chapter aimed to provide the reader with an overview of machine learning tech-
niques related to detecting anomalies in various domains. In particular; an overview of
SVMs, HMMs, ANNs, CNNs, RNNs and AutoEncoders was presented.
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In recent work, researchers discovered that deep neural networks such as deep convo-
lutional networks, AutoEncoders and other variants achieved remarkable performance
on learning difficult tasks and outperform the traditional methods such as SVM and
HMM [13; 43]. In particular, LSTMs, when compared to HMMs or vanilla RNNs have
shown excellent performance in learning sequence based data [55] as the architecture
is capable of learning long-term dependencies without suffering from vanishing gra-
dient problems [52]. AutoEncoders have also proven to be very effective in learning a
compressed representation of the data in complex datasets as they are able to also learn
non-linear relationships [35]. Furthermore, they can be used to train semi or unsuper-
vised models which is useful in anomaly detection where the anomalous data is scarce
or expensive to acquire. Recent studies also show that CNNs and similar architectures
have established themselves as very powerful technique in learning useful representa-
tions from raw data without creating hand-crafted features [33; 44; 76; 86].

The next chapter aims at providing an overview of the literature related to anomaly
detection techniques employed in sequence-based data (such as videos and time-series
data) where the temporal aspect is important.
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Overview and Related Work

3.1 Introduction

A video consists of a series of images each representing a time step of an event. In video
understanding, time is an important aspect and therefore appropriate networks that can
incorporate such dependency have to be used. In this chapter, an overview of literature
relating to human activity detection as well as sequence-based techniques related to
anomaly detection is provided. This chapter also provides an overview on a technique
called Pose Estimation which allows key body joints such as the hands and hips to be
estimated from an RGB image.

Several works in anomaly detection [3; 16; 30; 43; 84] argue that obtaining a labelled
dataset is difficult and expensive mainly as a group of human experts is required to
manually annotate the data. In view of this, they choose to go for semi-supervised or
unsupervised techniques.

In their paper, Kiran et al. [43] present an overview of deep learning techniques for
both unsupervised and semi-supervised anomaly detection in videos. They state that
both unsupervised and semi-supervised have become well-established in anomaly de-
tection. In this case, the main difference between unsupervised and semi-supervised is
important. The semi-supervised learning problem deals with data from one class only
- in this case the normal class (free from abnormalities). On the other hand, in unsu-
pervised anomaly detection, the model is trained with both normal and abnormal data
however with the assumption that normal instances are much higher than the abnormal
ones.
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In domains where labelled data is available, models can be trained in a supervised
manner. In this case, the dataset in question should have instances for both the ’normal’
and ’abnormal’ classes. A model is trained on both classes and any unseen instance is
then classified as ’normal’ or ’abnormal’ [10].

3.1.1 Model bias

An experiment undertaken by Ribeiro et al. shows that a classification model trained
on images containing wolves and huskies predicts ‘Wolf’ when there is snow (or a light
background) in the picture and ‘Husky’ otherwise. Figure 3.1 depicts the raw data fed
to the model (a) and the explanation of the prediction from the classifier (b). After this
experiment, the authors presented a balanced set of 10 predictions to a number of sub-
jects without explanations of huskies and wolves images. One image of a wolf did not
contain a snowy background and as such was predicted as a ‘husky’. Another image
of a husky did contain a snowy background and so it was predicted as a ‘wolf‘. Show-
ing just the model predictions 37% of the subjects trusted the model. Afterwards, the
same subjects were shown the explanation of the model and the number of people who
trusted the model dropped to 11%.

Figure 3.1: Raw data and Explanation of the ‘Wolf vs Husky’ experiment
Source: Ribeiro et al. [67]

This experiment shows that since the model was fed the whole raw picture (including
the background), the model picked the snow (or the background) as the most determin-
ing feature to classify a wolf. The model would have probably behaved differently if
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only the raw data related to the dogs (i.e. without the background) was fed. With ref-
erence to this study, training the model with just a representation of a human being
from a whole frame allows the model to be trained solely on the human action being
performed. This ensures that the background itself or objects visible in the scene do not
contribute to detecting abnormalities.

3.2 Abnormal Activity Detection

In more recent work in video anomaly detection, researchers have used deep learning
methods such as CNNs in conjuction with other networks such as LSTMs and AutoEn-
coders. The area of anomaly detection used to be computed using hand crafted fea-
tures. However, videos consist of non-linearity and more efficient methods are required
for achieving better results. As a result, deep learning-based techniques have been em-
ployed with the main objective being improving the end results [86].

In human activity detection, for example, hand-crafted features requires domain ex-
pertise. Statistical features such as mean and variance used to be the features fed into
a HMM [38; 95; 101] or an SVM [98]. However, recent studies show that CNNs have
established themselves as very powerful techniques in learning useful representations
from raw data [13; 33; 44; 51; 76; 86].

Zhao et al. [100] proposed a Spatio-Temporal AutoEncoder for detecting anomalies
in videos that is able to model both spatio and temporal features of a video using a 3D
convolution neural network also known as a 3D ConvNet. As input data, construct a
temporal cuboid using a sliding window of 16 frames and resize each frame to 128x128.
In order to detect abnormal instances from a video sequence they train an AutoEncoder
(after extracting spatio and temporal features from the 3D ConvNet) and use the re-
construction error as a measure to detect anomalous events. Specifically, they use the
Euclidean loss defined as:

Lrec =
1
N

N

∑
i=1

‖Xi − frec(Xi)‖2 (3.1)

Source: Zhao et al. [100]

where Xi is the spatio-temporal instance and frec(Xi) is the output of the AutoEn-
coder.

31



Chapter 3. Overview and Related Work 3.2. Abnormal Activity Detection

Furthermore, they design a prediction branch in the decoder in order to predict fu-
ture frames. They use the same Euclidean loss for the prediction loss, however they
propose a weight-decreasing method to the loss in order to cater for objects that grad-
ually increases as time goes by. To classify events as normal or abnormal, the authors
use the reconstruction errors of their training data to compute a ’regularity score’. Their
method was evaluated on the UCSD Pedestrian dataset (both Ped1 and Ped2), CUHK
Avenue and a Traffic dataset which the authors collected. To evaluate and compare their
work they used the Area Under the Curve (AUC) and Equal Error Rate (EER) from the
receiver operating characteristic (ROC) curve. Such graph is produced by varying the
anomaly score threshold. Compared with other research, their method outperformed
state-of-the-art approaches in all datasets presented.

Xu et al. [93] presented similar research to the above however they propose a differ-
ent architecture. They use a stacked denoising auto-encoder deep network in order to
extract feature representations for motion and appearance in videos. In order to predict
the anomaly score, they trained multiple one-class SVM models. As opposed to Zhao
et al. [100]’s work, the authors of this paper extracted image patches and optical flow
patches and as a result discarded the spatial information of the video. Gutoski et al. [30]
present a Convolutional AutoEncoder video anomaly detector. Using the reconstruc-
tion error as output from the Autoencoder and a one-class SVM for classification, the
authors report that their work produces acceptable performance. Baccouche et al. [4]
proposed a deep model that is able to classify sequences of human actions into one ac-
tion. Similar to the works in [44; 71; 76] the authors trained a CNN to extract spatial and
temporal features from a video. Using these features, they trained a recurrent neural
network in order to the action being undertaken.

In their paper, Simonyan and Zisserman proposed a two-stream convolution neural
network that combines spatial and temporal information retrieved from videos. The
first network (spatial stream) is trained on the raw images of the videos where it sees
just one video frame at a time whereas the second network (temporal stream) is trained
on the motion of the video – i.e. the optical flow of the frames within a video [78].
In more recent work, Peng and Schmid [63] outperformed the current state-of-the-art
by proposing a multi-region two-stream R-CNN model for human action detection in
videos. Their method, unlike Simonyan’s was based on Faster R-CNN, two-stream
CNNs (with optical flow) and multi-region CNNs [63].
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3.2.1 Skeleton-based approaches

Skeleton-based human representations have gained a lot of attention recently [31; 53].
Thanks to their robustness to variations of different viewpoints and human body scale,
space-time features can be extracted to generate human representation. Whilst 2D vi-
sual data can be enough to generate a human posture, 3D data allows for additional
depth information [31]. On the other hand, the low dimensionality of 2D data allows
for a simpler and faster learning process [56]. Trained models that are able to estimate
pose or skeleton data can be used to automate feature extraction for video data [43].

Recent work by Song et al. [81] presents a human action recognition model based on
spatio-temporal 3D skeleton data using RNNs with LSTM gates. The authors extract the
position of human joints from a set of given frames and use them as input to recognise
human actions. Furthermore, they proposed both spatio and temporal attention mech-
anisms on the extracted joints to capture discriminative joints for certain actions. Their
model managed to achieve remarkable performance when compared to other state-of-
the-art techniques. Other work by Ji et al. [40] shows the use of 3D CNN for action
recognition which is also similar to the work in [100].

Liu et al. [53] also explored the use of 3D skeleton joints for recognising human ac-
tions. In their paper they show that CNNs “can lead to state-of-the-art action recognition
performance using skeletal time-series data alone”. The authors argue that in CNN ar-
chitectures, the up-sampling process to images can add noise to and therefore propose
an atomic visual unit called Skepxel that constructs skeletal images ready for processing.
In their experiments, they use 3D joints from existing datasets and structure the data
into 2D grids in order to take advantage of the 2D kernels in CNNs. Their method,
which is claimed to have outperformed existing results, was evaluated on three stan-
dard datasets for human action recognition namely the NTU RGB+D Human Activity
Dataset [75], the UTD Multimodal Human Action Dataset [11] and the Northwesthern-
UCLA Multiview Dataset [91].

3.3 Pose Estimation

In a recent study, Papandreou et al. proposed a technique for detecting multiple persons
in a frame together with a 2-D pose estimation of each person. This can be done from an
RGB image without the need for a depth sensor. Using a 2-stage top-down approach,
first they predict the bounding boxes likely to contain human beings and then, for each
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bounding box (human), the model estimates the positions of 17 human body keypoints
(12 body joints and 5 face landmarks). Some examples of extracted keypoints include
face features (eyes, nose and ears), elbows, shoulders, hips and ankles. The Faster R-
CNN method [65] using the ResNet-101 [34] CNN architecture was used to detect peo-
ple from a given frame whereas a fully convolutional network was used to predict the
keypoints. They also trained their model using the MobileNet architecture [37] in order
to allow for real-time processing. The models were trained using the COCO keypoints
dataset1 as well as an additional in-house labelled dataset. They managed to achieve an
average precision (AP) of 0.685 on the test-dev set. The authors report that their model is
capable of performing well even in heavily cluttered scenes. Furthermore, it is also able
to predict keypoints of occluded areas [61].

Figure 3.2: PoseNet - A pose estimation algorithm that detects multiple persons in a
frame and outputs an estimation of 17 key body joints.

Source: Papandreou et al. [61]

Figure 3.2 depicts a high-level architecture for estimating the various keypoints of a
person’s pose. As already outlined above, in the first step the authors used a Faster
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R-CNN architecture to detect persons in a given image. The second step deals with
cropping each person from the image and estimate all 17 keypoints. This is done for all
persons detected in the frame. Since the detector needs to recognise humans only, the
Faster R-CNN detector was trained on the person category only from the COCO dataset.
The other 79 categories were not required and were therefore ignored. In order to es-
timate the overall pose, the authors combined a classification and regression approach.
For every spatial position, they first produce a heatmap to classify whether it is close
to any other keypoints or not. Afterwards, a 2D offset vector for each position is pre-
dicted independently in order to get a precise keypoint location. Figure 3.3 shows the
network target outputs for one keypoint only namely the left-elbow keypoint. The left
and middle images show the heatmap target whilst the right image shows the offset
field L2 magnitude (in grayscale) and the 2D offset vector (in red). The whole process is
depicted in Figure 3.4. The authors report that predicting separate heatmaps and offset
vectors together with aggregating them in a weighted voting process pinpoints the in-
dividual keypoints in a precise manner [61]. In their paper, the authors also claim that
their revised model achieved better higher accuracy than the work of [9].

Figure 3.3: Network target outputs
Source: Papandreou et al. [61]

The team at Google released their model codenamed PoseNet in a form of Tensor-
Flow.js2 library. Such library allows use of the pre-trained model for inference purposes.
The output of the model consists of a vector of 17 body keypoints (x and y values) to-
gether with a confidence score for each keypoint (for every person).

A similar multi-person 2D pose estimation model was proposed by Cao et al. [9]
in their paper titled “Realtime Multi-Person 2D Pose Estimation using Part Affinity
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Figure 3.4: Super-imposed network outputs from all keypoints
Source: Papandreou et al. [61]

Fields”. Unlike the approach in [61], the authors propose a bottom-up approach instead.
They argue that systems that employ a top-down approach can fail if the first step fails.
In this case if the person detector fails to detect any persons in a given frame, there is
no way to recover. Furthermore, they argue that the computational cost of top-down
approaches is proportional to the number of persons in the frame - i.e. the more people
in the frame the higher the cost. Cao et al. [9] propose a novel feature representation
called Part Affinity Fields (PAF). Essentially, PAF is comprised of a set of vectors that
encodes information (location and orientation) about body limbs. The overall pipeline
of the method is depicted in Figure 3.5. A two-branch CNN model takes an input im-
age (a) and predicts both the body part confidence maps (b) as well as the part affinity
fields (c) in a simultaneous manner. Bipartite matching is then performed in order to
associate body parts to the correct candidates (d) followed by the last step which joins
all body parts for all persons in the frame into full body poses (e). Despite the fact that
the model fails in rare poses or overlapping parts, results show that the model is able to
provide real-time performance for multiple people in images. Furthermore, they con-
clude that a greedy parsing algorithm is able to estimate high quality body poses even
as the number of persons in the frame increases.

The authors also released their pre-trained models on their GitHub3 for public use
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Figure 3.5: 2D Pose Estimation using Part Affinity Fields: Overall pipeline
Source: Cao et al. [9]

and packaged their work in a Python API and a CLI tool.

3.4 Encoder-Decoders for Anomaly Detection

Using a Variational AutoEncoder (VAE), An and Cho propose a way of detecting anoma-
lous data points. In their experiments, they used the MNIST and KDD network intru-
sion dataset to determine the effectiveness of using the reconstruction probability from
a VAE. They claim that their proposed method outperforms the PCA and the general
autoencoder methods [2].

In their paper titled ’Unsupervised Anomaly Detection via Variational Auto-Encoder for
Seasonal KPIs in Web Applications’, Xu et al. [94] trained a VAE in an unsupervised man-
ner that is able to detect anomalies in KPIs (Key Performance Indicators) such as number
of page views, orders and subscribers. Since VAEs are not ideal for sequence-based data,
the authors use a sliding window over their time-series data to create a suitable input.
Apart from the baseline VAE, the authors trained a VAE with a modified evidence lower
bound (M-ELBO) loss function to avoid learning the abnormal patterns of the data. Fur-
thermore, they used a technique proposed by [66] to approximate missing data points
with reconstruction values. Results reported by the authors indicate that their VAE vari-
ant (with M-ELBO) outperform supervised and anomaly detection based on VAE.
Typically, a sequence-to-sequence model is used for sequences where the time dimen-
sion is important. As outlined in [85], such model consists of an encoder that extracts
a latent representation of the input and a decoder that decodes the target sequence.
This is also similar to how an AutoEncoder for anomaly detection works, as outlined in
Section 2.8.4. In machine translation, Sutskever et al. present an end-to-end sequence-
to-sequence model consisting of stacked LSTMs that act as encoders and decoders. Due
to the nature of RNNs (LSTM in this case), such model is able to handle variable-length
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sequences. Figure 3.6 shows an example of this. They report that their architecture is
able to handle both short and long sentences. They also discover that reversing the or-
der of the input data improved the performance of the model significantly.

Srivastava et al. extended the idea of modelling machine translation sequences pre-
sented in [85] to videos. In a paper titled “Unsupervised Learning of Video Represen-
tations using LSTMs”, Srivastava et al. present an unsupervised approach of learning
video representations using LSTMs. They argue that videos, when compared to single
images, contain much higher dimensional data and therefore an unsupervised approach
is only natural. In their experiments, they also utilise an LSTM Encoder-Decoder to learn
video representations. In their experiments, they used image patches and high-level
’features’ extracted from the last hidden state of a pre-trained CNN. The authors pro-
pose a composite model that performs two main tasks: (1) reconstruct the input frame(s)
(described in Section 3.4.1) and (2) predict the future frames (see Section 3.5). In their
experiments they compared the AutoEncoder as a reconstruction model (more on this
in the next section), the future predictor and the composite model. The authors report
that the composite model performed the best and conclude that LSTMs can indeed learn
good video representations even to predict future motion frames [83].

Figure 3.6: Sequence-to-sequence model. Input: ABC, Output: WXYZ. (EOS) is a token
used to indicate the end of the sentence

Source: Sutskever et al. [85]

3.4.1 AutoEncoders as Reconstruction models

LSTMs have been proposed to deal with unsupervised anomaly detection. In their pa-
per, Malhotra et al. [55] propose an LSTM based on Encoder-Decoder networks that is
able to learn the data representation of normal multi-variate time-series events. Using
the same network, new events (possibly anomalous) are fed to the trained network and
using the reconstruction error, the authors detect abnormal events that do not ’belong’
to the normal time-series data. The approach is similar to the sequence-to-sequence
model described in this chapter but in this case, the target sequence is the same as the
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source.

The authors use 2 LSTM modules in total - one for encoding the data into fixed length
vector representation and the other to act as the decoder and reconstruct the input. To
train their model, they employ the semi-supervised approach outlined in Section 2.2
by feeding in the normal time-series data only. The reason behind this is to force the
encoder-decoder model to learn to reconstruct normal data but fail to reconstruct data
that deviates from the normal set. This, therefore, allows the network to act as a re-
construction model in order to be able to detect anomalous data samples [55]. Such
approach is very useful for anomaly detection tasks where abnormal instances are lim-
ited and expensive to collect.

Figure 3.7: LSTM Encoder-Decoder inference for input with length L = 3
Source: Malhotra et al. [55]

Similar to the approach undertaken in [54], the authors split their normal data into
various sets: one containing normal data for training the model, one containing normal
data to act as the validation set for early stopping and for estimating μ and Σ (more
on this in the next paragraph), another normal validation set for estimating model pa-
rameters and finally a normal test set. Figure 3.7 shows the an inference example of the
LSTM encoder-decoder model proposed by [55] with input sequence of length L 3. The
input x(i) together with hE

(i−1) are used to compute the hidden unit hE
(i) whereas hE

(L)

is used to initialise the decoder hD
(L). A linear layer consisting of weight matrix w and

bias vector b is then used to output the target sequence.

The reconstruction error vector for ti is given by e(i) = |x(i) − x′(i)| [55]. Such er-
ror vectors are then utilised to approximate the parameters μ and Σ using Maximum
Likelihood Estimation (MLE). Using these parameters, an anomaly score could be com-
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puted. The authors tested their model on 5 real-world datasets with various window
length size ranging from 30 to 500 depending on the domain. Furthermore, they ex-
perimented with converting multivariate time-series data to univariate using PCA for
some datasets. They also applied a sliding window with different step sizes and set the
hyper-parameters that maximize the F-score on the validation sets. These parameters
include the number of hidden units in each LSTM module (ranging from 40 to 90) and
the anomaly score threshold τ. In their results they claim that their technique works on
both short (≈ 30 time steps) and long (≈ 500 time steps) time-series data and show that
the method can detect anomalies from both unpredictable and predictable data.

In their paper titled ‘Learning Temporal Regularity in Video Sequences’, Hasan et al.
deal with learning normal sequences from videos by training an AutoEncoder to act
as a reconstruction model. Similar to the approach in [3; 16; 30; 84; 98], the authors also
employ a semi-supervised approach as they trained their models on the regular (i.e. free
from anomalous sequences) scenes only. Initially, the authors trained an autoencoder
with handcrafted spatio-temporal features extracted from the footage. However, they
later found out that handcrafted features was not the optimal solution for detecting
anomalous sequences so they trained a fully convolutional autoencoder (as it contains
no fully connected layers at the end) that processes short video clips with a temporal
sliding window. To detect anomalous events, they compute the reconstruction error in
a similar way as explained by [55]. When the model is able to reconstruct the scene
with a low error then it is considered to be regular. However, when the error is high
and exceeds a threshold, the scene is considered to contain anomalous sequences. The
authors tested their method on various datasets and claim that it is able to generalise
quite well.

3.5 Forecasting models

Other similar work by Malhotra et al. also uses LSTMs to detect anomalies in time-series
data. However, unlike the approach in [55], the authors uses stacked LSTMs to build a
forecasting model of the current data. In this case, past time-series values are fed to the
model and the next time-steps are predicted. The prediction error is used to assess the
likelihood of anomalous events. A high prediction error indicates an anomaly whilst a
low error indicates a normal data instance. Although the results of this technique were
promising, such method requires predictable time-series data such as sensor data [54].
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In [71] Sainath et al. present an architecture codenamed CLDNN which is a combina-
tion of CNNs, LSTMs and DNNs. They argued that since these different architectures
were proven to have different modelling capabilities, the combination of them should
be fruitful. In fact, through their experiments related to speech recognition the proposed
model is reported to have a 4 to 6% reduction in Word Error Rate (WER) when compared
to the strongest individual LSTM model.

On a parallel track, in their paper titled “Convolutional LSTM network: A machine learn-
ing approach for precipitation nowcasting", Shi et al. propose a new technique for modelling
spatio-temporal dependencies. They create a model that is able to predict the rainfall
in a given area. They leverage the power of CNNs and LSTMs in order to be able to
extract important spatial features as well as model the temporal dependencies within
the spatial features. Since a fully connected LSTM is not able to model spatial data, the
authors introduce convolutions in both the input-to-state and state-to-state transitions
of an LSTM. Similar to the work in Sutskever et al. [85], the authors use sequence-to-
sequence learning where a stack of ConvLSTM encoders compresses the input sequence
to a hidden state tensor and another stack of forecasting ConvLSTM modules decodes
the hidden state to provide a predicted output. The authors tested this architecture
on two datasets: a synthetic one called Moving-MNIST and another containing radar
weather maps. In their experiments, Shi et al. compared a fully connected LSTM with
2 layers containing 2048 hidden units each as well as 5 ConvLSTM architectures with
different number of layers and kernel sizes. Results reported by the authors show that
the ConvLSTM model outperforms the fully-connected LSTM model as well as an op-
tical flow based algorithm named ROVER. Although this was a classification task, the
method can be also utilised for detecting anomalous data patterns. This could be done
by measuring the error between the predicted outcome (forecast) and the ground truth.
During training, a threshold could be set which allows new data points to be classified
accordingly. In this case, a high prediction error would indicate an anomaly. This is
similar to the work done in [54] and [55].

In time-series classification tasks, literature usually focuses on processing data in one-
dimension. In a recent study researchers Hatami et al. [33] explore the use of CNN with
2D kernels on time-series classification tasks by transforming time-series data into 2D
images. More specifically they use recurrence plots to represent a time-series signal in
a 2D image. In their experiments they show that the their approach is competitive with
other deep architectures and state-of-the-art classifiers. A similar approach is presented
in Jiang and Yin [41] where the authors treat raw time-series signals from a set of ac-
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celerometer and gyroscope sensors as a signal image. Such images are then used to
train a deep CNN in an effort to recognise different human activities.

3.6 Sensor-based techniques

Yin et al. [98] use wearable wireless sensors attached to a human in order to detect ab-
normal events. The authors argue that other approaches to the problem are affected by
the issue of high false positives. To overcome this problem they train a one-class sup-
port vector machine (SVM) on the normal data only which in itself is able to act as an
outlier detector. They perform a kernel non-linear regression analysis in order to re-
duce the false positive rates. Yin et al. argue that it is very difficult to obtain a dataset
with abnormal activities however relatively easy to do for normal events and thus this
allows a model to be trained on the normal events which in turn will be able to detect
abnormal activities. They defined abnormal instances as activities that (1) occur rarely
and (2) were not expected in advance (not seen). In order to evaluate their work, they
generated a dataset containing both normal and abnormal instances. For the abnormal
instances, the dataset consisted of simulated actions such as “failing down", “slipping on
a wet floor" and others. They used both the detection rate (TN/(TN+FN)) and false alarm
rate (FP/(FP+TP)) as evaluation metrics. The AUC (area under the ROC curves) were
computed to compare the performance between three different algorithms; OneSVM,
SVM+MLLR and SVM+KNLR. Reported results indicate that the SVM+KNLR outper-
formed the other algorithms.

Other researchers also make use of various sensors to detect abnormal events [77; 87;
88]. The use of sensors on the subjects has its benefits such as continuous monitoring in
an un-intrusive way as well as disadvantages which includes rigorous set-up and con-
figuration, limited power and communication issues. In contrast, the method proposed
for this study extracts human joint key points from a small and cheap camera without
the need of recording the actual footage. The set-up in itself is non-invasive and respects
the individual’s privacy as only the skeleton data is used for processing.

3.7 Camera-based techniques

Several work also deal with fall detection in supportive home nursing or elderly people.
Zhong et al. [101] present an efficient and stable unsupervised technique model that is
trained on features such as moving objects trajectory, speed and the shape descriptor.
They choose to model the features using one of the graphical models - a Hidden Markov
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Model (HMM). The same approach as [3; 16; 30; 84; 98] is adopted here, the authors de-
tect unusual events by matching all event segments with the normal model. Anything
not fitting the normal model is considered to be abnormal. Similar work was also done
by Hung et al. [38] with the main difference being using RFID-based sensors and a com-
bination of HMM and SVMs to detect abnormal events of an elderly person.

Using multiple cameras, Antonakaki et al. [3] proposed a method of detecting normal
and abnormal behaviours by dividing the classification problem into two separate prob-
lems. The first is detecting the human action (e.g. Walking, running, sitting down, etc.)
and the second involves focusing on the trajectory. Using two one-class classifiers (SVM
and cHMM) they report good results in the task of behaviour recognition [3]. Other
related studies also seem to focus on monitoring and detecting falls. Some approaches
include the use of image depth sensor to detect falls without the use of wearable tech-
nology [23], while Rougier et al. aim to detect falls by tracking the head of a person and
classify the fall by velocity characteristics [68].

Debard et al. [19] propose a fall detection algorithm by using data from a camera
system. In their approach, the authors used background subtraction together with a
particle filter to locate and track the person from the video footage. After detecting the
human subject from the footage, they constructed a feature vector consisting of 5 el-
ements: aspect ratio, change in aspect ratio, fall angle, head speed and center speed.
Such features were then used to train an SVM to classify events as falls and non-falls.
To evaluate their proposed algorithm, they used a dataset [5] which consists of various
human subjects individually performing different activities in a room. The dataset con-
tains realistic fall activities as well as other activities that might cause false alarms. The
authors of this dataset created such abnormal activities by re-enacting real-life incidents
that were discovered in other studies. Since the dataset contains footage from 5 differ-
ent cameras, Debard et al. trained 5 models separately. To evaluate their models, they
calculated the precision-recall curve for every model (camera) and calculated the area
under the curve (AUC). The average precision for all cameras was 41% whereas the av-
erage recall was 62%. They concluded that the particle filter used to enhance foreground
segmentation yielded the best results. However, their algorithm still generated a large
amount of false alarms and 24% of the falls were not detected. They claim that the main
reasons were caused by room light changes and by the person leaving or entering the
camera field of view.

More recent work in activity recognition make use of depth sensors to collect depth
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information. In particular, Yang et al. [96] proposed a spatio-temporal context track-
ing over 3D depth images. The authors used the Kinect sensor that is able to collect
various data such as depth information and skeleton data. The method they employed
calculates the distance from the floor level to the person’s head position as well as the
centroid height and finally use an adaptive threshold to classify the event.

A recent approach to detecting anomalous human behaviour events such as falls was
proposed by Yao et al. [97] in their paper titled ‘A New Approach to Fall Detection
Based on the Human Torso Motion Model’. Their approach is similar to [96] as they are
extracting specific features from a 3D representation of a depth image. Using the joint
positions of the hip and shoulder centres, the person’s torso angle is calculated. When
such angle exceeds a set threshold, the changing rates together with centroid height are
computed for a given sequence of time. These rates are then used to classify a given
sequence as normal or abnormal. Testing on their own dataset, the authors claim that
their approach achieved a detection accuracy rate of 97.5%.

However, some of the literature reviewed above have shortcomings as they only focus
on detecting falls. Whilst it is reported that falls are one of the major health hazards
especially in elderly persons, there are other types of behaviour that could show that a
person is in some sort of difficulty or distress [60]. For example, in [96] and [97], specific
features related to just falls are being used to train a model. Other behaviour that a
person does not usually follow is not detected using these methods. Some examples
include odd trajectory motion such as waving hands or feet, limping and others.

3.8 Conclusion

In this chapter, an overview of the sequence-based techniques used in anomaly detec-
tion was given. In recent works, researchers discovered that deep convolutional neu-
ral networks, autoencoders and other variants achieved remarkable performance on
learning difficult tasks. In particular, deep LSTMs have shown excellent performance
in learning predictable and unpredictable sequences [55]. Furthermore, results reported
by researchers in the field show that the use of deep neural networks and their variants
outperforms the traditional techniques (such as SVM and HMM) [43]. Recent stud-
ies also show that CNNs and similar architectures have established themselves as very
powerful techniques in learning useful representations from raw data without the need
for hand-crafted features [33; 44; 76; 86].
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Various studies on skeleton-based human representations were also outlined in this
chapter. Researchers have extracted 2D and 3D space-time features from images to gen-
erate human representations and be able to classify sequences into actions. Others used
sensors and special thermal cameras to detect falls and/or irregular behaviour. The
approach investigated in this study uses human representations extracted from videos
in order to detect abnormal behaviour such as falls. Specifically, AutoEncoders will
be used to learn the normal activities of the individual and be able to detect abnormal
sequences. This is described in detail in the next chapter.
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4

Methodology

4.1 Introduction

This chapter provides a detailed description of the methodology and the implementa-
tion adopted to develop a technique that aims at detecting abnormal behaviour, such as
falls, from video footage. An overview of the modules of the system and how these will
be combined together are also outlined in this chapter.

This chapter is made up of two main parts. The first part aims at presenting the
proposed method of detecting abnormal behaviour from video data. In the second part,
the method used to compare different human action representations, consisting of pose
estimated and sensor data, is given. Both parts present the model architecture designs
used in the experiments.

4.2 Proposed Method

The greater part of the work in anomaly detection focuses on general scene understand-
ing such as pedestrian tracking, crowd control, unrestricted areas and irregular object
detection [86; 100; 101]. Other work in abnormal human behaviour uses multiple cam-
eras [3], depth sensors [96] or extract specific features that could contribute to abnormal
behaviour [97].

This study focuses on individual-human based activities and the detection of irreg-
ular body posture is given. In contrast to the work outlined in Chapter 3, a semi-
supervised approach with little to no supervision is proposed. This method extracts
human joint keypoints from a regular camera without the need for sensors or for record-
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ing the actual footage. Furthermore, the models are trained solely on the extracted key-
points, without any further feature engineering. In this dissertation, body keypoints
refer to the eyes, ears, nose, shoulders, elbows, wrists, hips, knees and ankles of an in-
dividual.

The set-up in itself is clean, non-invasive and respects the individual’s privacy be-
cause only the body keypoints are required to train a model. Although depth cameras
provide more information [31], this study will focus on 2D data which can be obtained
from any regular camera and existing setups, ranging from a cheap USB-powered web-
cam (or a Raspberry Pi) to a digital single-lens reflex (DSLR) camera. In this study,
irregular or abnormal human behaviour refers to abnormality in the body posture.
This means that, from a sequence, consideration is given only to human representation,
specifically the body keypoints.

As outlined in Chapter 1, the main aim is to determine whether a set of human body
keypoints extracted from RGB 2D images can be used to detect abnormal human be-
haviour, such as falls. This study also seeks to determine whether human body key-
points estimated from 2D images are comparable to data generated by sensors such as
depth cameras and wearable inertial sensors (see Section 4.6).

The general system overview of the proposed method is depicted in Figure 4.1. The
figure depicts the data flow diagram (DFD) of the proposed method. In this section,
each and every process depicted in the DFD is explained on its own merits.

The first step deals with processing the video footage. This involves extracting all the
frames from every video. Afterwards, the body keypoints such as eyes, nose, elbows
and hips are extracted from the footage using two pre-trained pose estimation mod-
els [9; 61]. As outlined in Chapter 3, Section 3.3, these machine learning models were
trained to detect humans in an image and estimate the 2D location (x and y) of key body
joints. The output of such models is then processed and used to train a model that is
able to learn a generalised representation of the normal daily activities. Such model is
then used as a reconstruction model to classify sequences as normal or abnormal.

Inspired by the work done by Malhotra et al. [55] and Hasan et al. [32], a semi-
supervised approach is employed throughout this study. By using the said approach,
the model is only exposed to the event sequences containing ‘normal’ behaviour. The
data used to train and test the model is made up of time-series data containing the x
and y values of every body keypoint. After training the model, test sequences consist-
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Figure 4.1: Data Flow Diagram: Level 1 - General System Overview

ing of both ‘normal’ and ‘abnormal’ are processed and fed to the model. Using a defined
threshold for the reconstruction error (based on the output of the model), a sequence is
classified as normal or abnormal. The main reasoning behind the model is similar to
how human beings detect abnormal activities. An activity that rarely happens or is not
common is usually considered as abnormal. Hence, the model is trained to learn and
reconstruct the daily normal activities only so as to detect activities that deviate from
normality (what it was trained on).

The rest of this chapter aims at providing the reader with a detailed description of
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each module of the system depicted in Figure 4.1. In the next section, an overview of
how the videos were converted to frames (Module 1) is given. In Section 4.4, a de-
tailed description on how the body keypoints are extracted from video datasets (Mod-
ule 2) is presented. Finally, Section 4.5, provides a detailed description on how the
extracted body keypoints were used to train different model architectures in order to
detect anomalous body posture (Module 4). This also includes the pre-processing steps
conducted on the data (Module 3) together with a justification of the model architectures
(Section 4.5.2).

4.3 Converting videos to frames (Module 1)

The first step involves extracting all the frames from every video. This allows each video
frame to be processed separately. FFmpeg1, which is a free-ware tool used to record,
convert and stream both audio and video was utilised. A Python script was written
to load all the folders and process all the videos. To retain image quality, the -qscale:v
(quality scale for video) option was used. A value of 2 (with 1 being the highest) was
used for extraction as it was observed that the default setting produced noisy output.

4.4 Extracting features: Pose Estimation (Module 2)

Generating hand-crafted features typically requires domain expertise. Recent studies in
the field show that deep CNNs managed to extract useful data representations from raw
video data [32; 43]. As outlined in Section 3.2.1, skeleton-based human representations
have gained a lot of attention recently. For example in [53] and [81], models were trained
on 3D skeleton data to recognise human actions. In both studies, the authors relied on
data generated by depth camera sensors such as the Kinect. In contrast, in this study,
the human skeleton will be extracted from an ordinary RGB video with pre-trained pose
estimation models. As outlined in 3.3, such models are trained to detect humans from a
frame and estimate the location of the body joint key-points. This approach allows the
extraction of human representations from existing footage without the need for further
equipment, body-worn sensors or installations. Furthermore, it allows the model to be
trained solely on the actions performed by the human subject. This helps to discard any
background noise in the video which could lead to the model learning features that do
not contribute to the action itself as seen in 3.1.1.

1FFmpeg - ������������	
��
� - a tool used to record, convert and stream audio and video
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Some of the techniques described in the previous chapter require a supervised ap-
proach based on labelled data [96; 97]. As outlined in Section 2.2, annotated data is
very scarce because the annotation process itself is time-consuming and expensive. In
view of this, a semi-supervised approach is employed, whereby the model is trained
on the normal sequences only, similar to [16; 31; 55]. This method, unlike the one in
[98], extracts human joint key points from a camera without the need for sensors or for
recording the actual footage.

Figure 4.2: Data Flow Diagram: Level 2 - Module 2 (Pose Estimation)

In this study, two pre-trained pose estimators namely PoseNet [61] and OpenPose-
CMU [9] are used and compared. Outlined in 3.3, these models are both available for
public use and are ranked well in dataset leader-boards such as COCO2. To date, the
PoseNet model is only available as a TensorFlow.JS3 model and as such, the estimation
process for extracting body keypoints has to be done in the browser using JavaScript.

Figure 4.2 depicts the sub-modules of Module 2 shown in Figure 4.1. Frames are
processed by both algorithms (2.1a and 2.1b) and their output is then converted to 1D
time-series data where the order of the video sequence is preserved. The next two sec-
tions describe in detail how both algorithms were utilised to extract body keypoints.
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4.4.1 PoseNet

As stated, the pre-trained PoseNet model is only available as a TensorFlow.JS model to
date. In view of this, a JavaScript program responsible for loading and processing all the
images was developed. After converting videos to frames (Section 4.3), folder batches
of 800 images were created. For instance, if a video contained 1600 frames in total, two
folders (named ‘1’ and ‘2’) are created whereby the first 800 frames are moved to folder
‘1’ and the rest are moved to folder ‘2’. This is was done due to a browser memory limi-
tation (in this case Google Chrome) that limits the amount of canvas items that could be
loaded into memory.

Initially, all folders are loaded by an asynchronous call that retrieves the list of fold-
ers ready to be processed. Then, for every folder, a Canvas element for every image is
created and the image is loaded. The model is then initialised and the ‘estimateSingle-
Pose()’ method is called. This method returns a total of 17 body keypoints consisting of
x and y values depicted in Figure 4.3. For every keypoint, a confidence score between 0
and 1 is generated. All the frame keypoints are then saved in the original sequence as a
JavaScript Object Notation (JSON) object. A sample of the JSON object for 3 keypoints
(out of 17) is shown in the appendix, in Listing A.1.

Figure 4.3: PoseNet body keypoints. (Source: [61])

In order to increase the accuracy of the model’s output, the parameters used to esti-
mate the body keypoints were tuned as suggested by the authors in [61] and the offi-
cial GitHub repository for tfjs-models4. Furthermore, the single-person pose estimation,

4
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which is simpler and faster than the multi-person, was used because the footage used
in this study was recorded containing one person only (except for one scenario in the
ADL dataset that was excluded). The key parameters in question include imageScaleFac-
tor, outputStride and multiplier. The imageScaleFactor scales the image down before it is
fed to the model. A value of 1 would not scale the image down. Due to the resolution
of the images used in this study, this value was set to 0.7 as a higher value would re-
sult in memory overflow error (this is a browser limitation and the amount of memory
available does not matter). The outputStride parameter was set to 8, which is the low-
est possible value for highest accuracy, at the expense of performance. This parameter
determines the scale factor of the output relative to the input image size. In turn, it de-
termines the size of the layers and the model’s outputs. Finally, the multiplier parameter
is passed during initialisation of the model. This specifies the MobileNet architecture to
be used. Specifically, it determines the float multiplier for the number of channels for
all convolutions. In this case, the parameter was set to the highest value (1.01) - which
allows for higher accuracy at the cost of speed.

When the whole folder is processed, every set of keypoints for every frame are con-
catenated and passed to a PHP script. The script is responsible for saving all the ex-
tracted keypoints in a JSON file (Module 2.3). A sample of the output file is shown in
the appendix, Listing A.2. Every frame in this file is represented by a total of 68 elements
(17 ∗ 4). Each keypoint is represented by 4 elements in the following order (as shown in
the listing): (1) the keypoint confidence score, (2) the x position, (3) the y position and,
(4) the frame file name. As an example, if 100 frames were processed, the total number
of elements in the final JSON file amounts to 6,800 (100 ∗ 17 ∗ 4).

In order to visualise the estimated body keypoints (Module 2.2), the canvas drawing
tools within JavaScript were used to: (1) draw a bounding box marking the detected
person, (2) plot the keypoints using the circle marker in different colours (where each
colour represents different body parts) and finally (3) draw the skeleton of the individ-
ual which joins adjacent key points together. Figure 4.4 shows a sample of 3 images from
different camera positions within the ADL dataset (outlined in Section 5.3.5) before and
after processing. It is interesting to note that the model is also capable of estimating key-
points that are occluded by other objects. For example, in Figure 4.4(f), both the knees
and ankle points were correctly estimated even though they were occluded by the table.

After manually observing the output of the algorithm, it was interesting to observe
that in some cases where a person is lying on the floor, PoseNet fails to recognise some

53



Chapter 4. Methodology 4.4. Extracting features: Pose Estimation (Module 2)

(a) Cam1 Before (b) Cam1 After

(c) Cam2 Before (d) Cam2 After

(e) Cam3 Before (f) Cam3 After

Figure 4.4: Body keypoint visualiser (Module 2.2). Before shots: screen shots from ADL
dataset, After shots: developed PoseNet visualiser

of the keypoints. In view of this, it was decided to rotate the input image to various 90◦

rotations to determine whether an improved score could be predicted. The idea behind
the rotation was to feed the model an upright position version of the human subject.
Figure 4.5 illustrates the data flow of this sub-module. In total, four versions of the in-
put image were fed to the model. These include: the original image (no rotation), 90◦

rotation, 180◦ rotation and 270◦ rotation. Figure 4.6 depicts the output for 2 versions of
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Figure 4.5: Data Flow Diagram: Level 3 - Module 2.1a. Image rotations

the input image - the original and the image rotated to 270◦. In the original image, the
algorithm scored 37%, whilst for the rotated image it managed a score of 92% - an out-
standing increase of 55% in confidence score. The highest scoring keypoints were then
mapped to match the original image and saved in the final JSON file. This was done
to preserve the original pose of the human subject. Such process is depicted in Figure
4.6(c). This experiment was conducted on 23,989 frames which contained various types
of falls. It was observed that 67% of the frames obtained a better score when rotated,
namely 47% when rotated 90 degrees, 43% when rotated 270 degrees and 10% when
rotated 180 degrees. The score difference between the original and the rotated image
ranged between 10% and 70%. Such difference can be visualised in Figure 4.7, which
plots the scores for all image versions for the first 300 frames.

The pose estimation process was computed on Windows 10 using Google Chrome.
The machine was equipped with an Intel Core i7 (6 cores) 8700k clocked at 3.70Ghz,
16GB RAM and an NVIDIA GeForce GTX 1080 as the graphical processing unit (GPU).
Overall, the GPU managed to process ≈ 60 frames per second if ran in simultaneous
mode.
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(a) Original Image (b) Rotated Image

(c) Best keypoints mapped to the original image

Figure 4.6: PoseNet output for Original (a) and Rotated image (b) and how the best
keypoints were mapped to the original image (c)

4.4.2 OpenPose

Outlined in Section 3.3, OpenPose is another 2D pose estimation pre-trained model that
employs a bottom-up approach. The authors proposed a novel feature representation
called Part Affinity Fields that encodes information such as location and orientation
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Figure 4.7: Confidence scores for different rotation angles. Higher scores are better. The
blue plot represent the confidence scores for the original image whilst the other plots

represent various rotations.

about the body limbs [9]. Figure 4.8 (source: OpenPose Github repo5) shows the output
of the 25 body keypoints estimated by the model.

In this study, the OpenPose CLI tool was used. The tool accepts both video and im-
age input and also comes with options such as write_json, display and render_pose. The
write_json flag, when enabled, writes a JSON file with all the estimated pose for every
frame whereas the display and render_pose flags are both used for visualisations pur-
poses. All the footage for the video datasets were processed by the CLI tool. Due to the
large amount of video files, a Python script was written to load all the videos and issue
the command. A sample of the JSON output for one frame is shown in the appendix,
listing A.3. After all footage was processed, another Python script was created to merge
all JSON files into one for every video. Unlike PoseNet, OpenPose estimates 25 key-
points in total (as opposed to 17). The model, codenamed BODY_25, was used in this
study as the authors claim that it is faster and more accurate than COCO6. Furthermore,
the parameters suggested by the authors for highest possible accuracy were used.

5

6
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Figure 4.8: OpenPose body keypoints. (Source: OpenPose Github page)

4.5 Detecting abnormal behaviour

This section aims at presenting the technique employed in this study to detect abnormal
human behaviour through body posture. The first two modules (marked 1 and 2) shown
in Figure 4.1 were outlined in Sections 4.3 and 4.4 respectively. In this part, modules
marked 3 and 4 are described in greater detail. Furthermore, the theories presented in
the previous chapters are coupled with the techniques proposed.

4.5.1 Pre-processing techniques (Module 3)

A video dataset is different from traditional numerical datasets and typically complex
to process. This is due to the fact that video frames are very dynamic and thus, such
changes need to be detected and processed. Figure 4.9 illustrates a data flow diagram
of how the data was pre-processed before fed to the models.

4.5.1.1 Computing confidence score statistics

The first sub-module (3.1) deals with computing the confidence score statistics for each
set of frames. Initially, the files containing the sequential body keypoints are loaded
in a Python script. Then, the mean score for a set of frames is computed in order to
determine whether the frames should be omitted or not.
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Figure 4.9: Data Flow Diagram - Level 2 - Pre-Processing

4.5.1.2 Retaining meaningful sequences

The second sub-module (3.2) aims at retaining only the meaningful sequences and omit
the ones not informative enough. Both pose estimation algorithms (PoseNet and Open-
Pose) return a very low confidence score between 0 and 0.09 when no human subject
is detected. These frames are naturally omitted as they carry no information. How-
ever, there are cases like the ones depicted in Figure 5.12 where a human subject is only
partially invisible for a few frames (1 second or so) and thus, in order to preserve the
sequence, these cases were processed as shown in Algorithm 1.

Algorithm 1: Extracting meaningful sequences
Input: frame body keypoints, min_conf_score, win_length
Output: data sequences framed in win_length

1 compute confidence score mean for L frames
2 foreach L mean do
3 keep L frames if mean conf_score > min_conf_score
4 preserve index of L frames
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Figure 4.10: Graph showing confidence scores for every sequence at L = 30 and the
retained sequences. Sample images represent one frame out of 30. Dotted black line

indicate the range of the high and low confidence scores.

The algorithm ensures that sequences as a whole are preserved in the way they were
captured. Additionally, this prevents sequences from having frames with mixed time-
steps; i.e. the case of having a sequence of 30 time-steps made up of 10 time-steps from
the current scene and the other 20 time-steps from a later scene is prevented. Figure
4.10 provides a visual representation of what was explained above. The graph shows
the mean confidence score for every sequence at L = 30 (1 second) in dotted line and
the extracted sequences in fixed colour lines (with min_conf_score set to 0.5). In this
specific video footage, the first few frames report 0% confidence scores; this is due to the
fact that no person was detected in the scene. A spike in the confidence score is seen at
≈ sequence number 70 - this represents the moment when the person entered the scene
(who happened to be on a wheelchair). At sequence numbers > 350, the person moves to
the lower right of the camera view-point having only the shoulders and hands visible.
This explains the low confidence scores from the pose estimation algorithm. In this
specific case, the retained sequences consist of the person entering the scene and moving
around. The scene in which the person is outside the view-point was not retained. Such
scene is however included in other camera views and therefore still processed. Different
confidence level cutoffs (min_conf_score) that best represent the data were explored.
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This is outlined in detail in Section 5.3.5.2.

4.5.1.3 Removing low scoring body keypoints

The next sub-module (3.3) aims at removing body keypoint locations that were poorly
scored. Body keypoints not visible in the scene due to occlusions or simply because they
are not visible in the camera’s view-point are estimated with a low confidence score. To
cater for this issue, points with low scores using the same minimum confidence cutoff
are set to 0. This approach is similar to the work done in [94] where missing values are
replaced with zeros. This technique only omits low scoring body keypoints, i.e. the rest
of the points are not altered.

4.5.1.4 Window Length and Overlapping

Sub-module 3.4 is responsible for framing the data sequences into windows. This is
done because in this problem, the temporal aspect is vital and thus the model is ex-
posed to multiple time-steps of data. According to Baños et al. [6], the window length
which best models a human activity is when windows are framed at 2 seconds or less.
With specific regard to the ADL dataset (outlined in Section 5.3.5), 30 frames represent 1
second and therefore, setting L to 30 frames is equivalent to modelling 1 second of video
footage. The authors also argue “that large window sizes do not necessarily translate
into a better recognition performance”. In view of this, the data was pre-processed with
3 different window lengths (1s - 30 frames, 2s - 60 frames and 3s - 90 frames). Such
data configurations were selected in order to empirically pick the best window length
for this problem. Similar to the approach undertaken in [19], in window lengths larger
than 1 second, information from before the start time of abnormal event was included.
This includes capturing 1 or 2 seconds earlier than the start time of the event.

On a parallel track, when the data is framed to sequences, the transition of an activity
to another may be missed. Researchers in the field argue that one way to tackle this
problem is by overlapping the window (sub-module 3.5) with the end of the previous
window [46].

In line with this, a ‘downsampling’ technique used by Malhotra et al. [55] in their
experiments is implemented. This technique (Sub-module 3.6) aims at downsampling
window lengths of sizes 60 and 90 frames to 30 frames. The idea behind this is to reduce
the amount of data processed while still retaining an approximation of the sequence.
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4.5.1.5 Scaling the data

The final sub-module (3.7) of the pre-processing module is responsible for scaling the
data between 0 and 1. According to [26], this process speeds up learning and conver-
gence as the model is not forced to learn large weight values. Such practice also prevents
the training process from getting stuck in local optima.

4.5.1.6 Inspecting the pre-processed data

In order to inspect the pre-processed data and verify that the correct sequences were
generated, a frame-keypoint visualiser was implemented. The visualiser was set to con-
vert the keypoints vector to an image by transforming the data back to 2D, and rescale
the data between 0 and 255, where a value of 255 denotes a white pixel. The original
frames representing the keypoint mapping were also included in the visualiser as this
allows one to manually verify and compare the output. Figure 4.11 illustrates a sample
output of the visualiser. The image on the left represents the original frame whereas the
image on the right shows the pre-processed pose data that is fed to the model.

4.5.1.7 Data Parameters

In order to find the ideal combination of the dataset parameters, the models outlined
in Section 4.5.2 are trained on different combinations of training sets. In this case, the
dataset parameters refer to the window length, whether to overlap the windows or not,
whether to remove low scoring points or not and whether to implement the down-
sample technique or not. Further details on how such data configurations were set are
explored in the next chapter in Section 5.3.3.

4.5.2 Model architectures (Module 4)

For the task of detecting abnormal behaviour using solely video footage, two types
of AutoEncoder models have been selected. Recent work in anomaly detection have
shown that AutoEncoders achieved remarkable performance on learning to detect anoma-
lous sequences in semi-supervised or unsupervised manners [32; 43; 55; 100]. The idea
of training a model in a these manners is important because in nature, abnormal in-
stances occur very rarely and therefore the acquirement of such data is expensive. Re-
search shows that LSTM AutoEncoders and similar models, led to promising results in
detecting anomalous events in sensor data [55] and video footage [32]. In this study, the
idea is to extend the method of detecting anomalous sequences on human pose body
keypoints instead.

62



Chapter 4. Methodology 4.5. Detecting abnormal behaviour

(a) Fall frame number 1

(b) Fall frame number 10

(c) Fall frame number 20

Figure 4.11: Frame-Keypoint Visualiser for one of the abnormal scenarios. Left:
original frame, Right: pre-processed pose data (body keypoints)

The diagram in Figure 4.12 shows the sub-modules for Module 4 shown in the first
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Figure 4.12: Data Flow Diagram - Level 2 - Models

DFD presented in Section 4.2. This section aims at providing a detailed description of
the two types of AutoEncoder models (shown in green) designed to answer the ques-
tions of this research. Since a semi-supervised approach is employed, the models are
only exposed to the normal instances of data. Furthermore, both models act as recon-
struction models where their goal is to reconstruct the input. The reconstruction error
has been widely used for detecting abnormal activities in various data representations
[32; 55]. Such error is used as an indication to determine whether the data sequence is
abnormal or not. For training the models, the data samples are fed into the model in
multiple time-steps of length L where each time-step consists of x and y body keypoint
values (as discussed earlier in this chapter). For example, a tensor shape of (200, 30, 34)
represents a total of 200 samples (S), where each sample contains 30 time-steps (L) and
each time-step contains 34 features (F). The value for F depends on the pose estimation
algorithm being used (PoseNet: 34, OpenPose: 50) and the value for L is determined
empirically after a number of experiments as outlined in Section 4.5.1.7.
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4.5.2.1 LSTM AutoEncoder

The first type of model is inspired by the work done by Malhotra et al. [55], which
comprises of a number of LSTM units based on Encoder-Decoder networks. According
to the authors, the model is able to learn the data representation of normal time-series
events in a semi or unsupervised manner. The model was also proven to work on both
short and long time-steps and can deal with both predictable and unpredictable data.
Similar to the architecture proposed in [55] and [32], the architecture was set to con-
sist of 3 LSTM layers where the first layer acts as the data encoder, the second is used
to store the latent space representation, and finally, the last layer acts as the decoder
(Sub-module 4.2.1). Figure 4.13 illustrates the architecture of the LSTM AutoEncoder
(LSTM-AE). As outlined in Section 3.4, a bottleneck layer is typically used to force the
network to learn a compressed representation of the data. The number of LSTM units
of the encoder and the decoder within the architecture is the same, but the number of
units of the bottleneck layer is half the number of units in the encoder/decoder layers.
For instance, if the number of LSTM units in the encoder/decoder layers is 128, then
the number of units in the bottleneck layer is 64 [93]. Since the model was trained to
reconstruct the input itself, and therefore considered as a regression problem, the mean
squared error loss function was used. This is a common loss function used in encoder-
decoder models [43] as its aim is to calculate the mean squared difference between the
input x and reconstructed output x′. For optimising the loss function, Adam, which is
a popular choice amongst researchers [13; 16; 55; 94] was used. The parameters of the
optimiser follow the default ones provided in the original paper [42], i.e the learning
rate was set to 0.001 and β1 and β2 were set to 0.9 and 0.999 respectively.

Figure 4.13: LSTM AutoEncoder: Model Architecture. Adopted from [55]

The hyper-parameters of this model were based on similar work done by [55] - LSTM
units: 128, 64 and 128 respectively. However, in the interest of finding the ideal number
of LSTM units, various experiments with different number of units were conducted.
The values included 64, 128 and 256.
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4.5.2.2 1DConv AutoEncoder

In a 2D image, a CNN is capable of identifying patterns by performing a couple of
convolutions. Similarly, in a 1-dimensional vector, CNNs were also proven to work
well with extracting discriminative features from sequences such as electrocardiogram
signals [44] and sensor data from smartphones [99]. The CNN’s ability to model data
sequences is similar to a RNN, however with the advantage of being able to process
data in parallel (unlike sequentially) [48]. Inspired by such abilities, an encoder-decoder
model that aims to derive features that model the normal behaviour was proposed (Sub-
module 4.2.2). The 1DConv AutoEncoder (1DConv-AE) is illustrated in Figure 4.14 and
consists of three 1D convolution layers. The architecture is similar to the LSTM-AE
model described earlier, in that the first layer is used to decode the sequence data, the
middle one to force the network to learn a compressed representation of the data and
finally the last layer is used to decode the input back to sequence data.

Figure 4.14: 1DConv AutoEncoder: Model Architecture

As for the loss and optimisation functions, the same approach described for the LSTM
AutoEncoder model is employed for this network. Initially, the hyper-parameters of this
model were based on similar work done by Chong and Tay [16] - filter sizes were set to
64, 32 and 64 respectively and the kernel size was set to 3. Different filter sizes were also
tested.

4.5.3 Computing the Anomaly Score

In AutoEncoders, the difference between the input and the output (reconstructed input)
is called the reconstruction error. When an AutoEncoder is trained, it is expected to
produce low reconstruction errors if a normal event is fed to the network and a high
reconstruction error if the sequence data is seen by the model [43]. The anomaly score α

is determined by the reconstruction error (Sub-module 4.3). After training the model on
the ‘normal’ data, the reconstruction error vector is computed using equation 4.1 where
X(i) is the input sample and X(i)′ is the reconstructed output of the model. The mean
error for each vector is then computed in order for each data sample to be represented
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by one scalar value.

e(i) =
∥
∥
∥X(i) − X(i)′

∥
∥
∥

2
(4.1)

In order to find the best threshold τ that separates both classes, the Precision-Recall
curve is plotted for various thresholds (Sub-module 4.4). Such curve is used to sum-
marise the trade-off between the true positive rate (recall) and the positive predictive
value (precision). The threshold τ that maximises the F-Score Fβ is used as a threshold
to determine whether a data sample is ‘abnormal’ or not. An instance is classified as
‘abnormal’ if the anomaly score α is greater than τ (Sub-module 4.5). The choice of β,
the thresholds selected, and how the F-score is calculated is explored further in the next
chapter in Section 5.3.2.

4.5.4 Training the models

All the architectures outlined in this chapter were constructed using Keras7 as frontend
and Tensorflow8 as backend. Being the official frontend for Tensorflow, Keras is a high-
level API for creating and running artificial neural nets written in Python. According to
a ranking computed by Jeff Hale9, Keras is the #2 most mentioned framework in scien-
tific papers. It is a favourite among researchers in the field as its consistent and simple
API allows a researcher to implement model architectures in a productive manner.

All models were trained on the latest version of Windows 10 using Python3, Keras
and Tensorflow. The machine was equipped with an Intel Core i7 8700k (consisting of 6
cores) clocked at 3.70Ghz, 16GB RAM and an NVIDIA GeForce GTX 1080 as the graphi-
cal processing unit (GPU). The GPU version for Keras and Tensorflow were installed to
take advantage of the multiple cores of the GPU.

In the next chapter, an analysis on the results together with how the models were
evaluated is presented.
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4.6 Comparing sensor data with estimated pose data

In human action recognition and anomaly detection, models trained on data generated
from sensors such inertial wearable sensors and depth cameras produced promising
results [13; 38; 97; 98; 99]. But how do models perform if they were trained on data es-
timated by another model (in this case by estimating the human’s posture), without the
use of sensors? How do they compare with each other? This section aims at outlining
the method employed to answer these questions.

In order to compare between sensor data with pose estimated keypoints (from RGB
footage), a dataset that recorded both the RGB footage and the sensor data at the same
time is required. The UTD-MHAD dataset is a good fit as it comprises of 3 modes that
were recorded in a simultaneous manner: RGB footage, skeleton (3D) data and inertial
sensor data. Figure 4.15 illustrates the process involved to compare sensor data with
estimated pose data on human action recognition. In this section, an overview of the
dataset is given. Furthermore, a description on each process shown in the flow chart is
outlined.

4.6.1 UTD-MHAD Dataset

A publicly available10 dataset named UTD-MHAD [11] consists of a total of 27 differ-
ent human actions recorded in four types of modes: RGB video, Depth video, skeleton
positions, and finally inertial signals. The video and skeleton data were acquired from
a Kinect camera and the inertial signals were collected from wearable inertial sensors.
All the modes were recorded at the same time; i.e. the subjects were recorded using
the four mentioned modalities. The footage was recorded in an indoor environment
and the actions were performed by 8 subjects (4 males and 4 females). Each action was
repeated 4 times by each subject. A total of 861 data sequences (after removing 3 cor-
rupted sequences) were recorded. Some of the 27 actions that were recorded include
daily activities (e.g. sitting, standing, walking, and jogging), sport actions (e.g. boxing,
bowling, and baseball swings), training exercises (e.g. lunges, squats, and arm curls)
and hand gestures (e.g. swiping, clapping, waving, and crossing arms). Figure 4.16 de-
picts a single frame example of the first 5 actions that were recorded.

For recording the inertial sensor signals, an inertial sensor as depicted in Figure 4.17
was worn on the subject’s right wrist or thigh (depending on the action being per-
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Figure 4.15: Flow chart showing the processes involved to compare sensor data with
pose estimated data in a human action recognition task

formed). Such sensor is capable of capturing 3-axis acceleration, 3-axis angular velocity
and 3-axis magnetic strength. The magnetic readings were not considered due to the
lack of magnetic fields in practice. A micro-controller together with a low energy blue-
tooth device were used to record and stream the data wirelessly to another device.
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Figure 4.16: UTD-MHAD Dataset: examples of actions.
Source: [11]

Figure 4.17: UTD-MHAD Dataset: Wearable sensor placement.
Source: [11]

The RGB video footage and the skeleton joint data were captured by one Kinect cam-
era, which was placed 3 meters in front of every subject to ensure that the whole body
appeared in the frame. Since the sampling rates of the wearable sensor and the frame
rate of the camera were different, a time-stamp for each sample (for every action) was
recorded in order to synchronise all the modes. In their paper, the authors also presented
a diagram (Figure 4.18) which shows all four modes recorded for the action ‘basketball-
shoot’.

Since the RGB videos of all the actions covering the full body were made available, the
body keypoints can be extracted using a pre-trained pose estimation model. This allows
comparison between data gathered from the wearable sensor and the body keypoints
estimated by the pose estimation model. Moreover, such extracted body keypoints can
be compared with skeleton (both 3D and 2D) extracted from sensors.
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Figure 4.18: UTD-MHAD Dataset: Example of all four modes recorded for the action
’basketball-shoot’: (a) RGB video footage, (b) depth images, (c) skeleton joint frames,

(d) inertial sensor data
Source: [11]

4.6.2 Data Pre-processing

Initially, the RGB footage from the UTD-MHAD dataset was processed as explained in
Sections 4.3 and 4.4 in that all the frames for every video were extracted and processed
with both pose estimation models (PoseNet and OpenPose). In total, 44,982 frames were
extracted and processed.

Table 4.1 summarises the data used in this experiment. In total, each dataset contains
861 sequences. The first dataset in the table refers to the RGB footage from the UTD-
MHAD dataset that was processed by PoseNet. The model returns the x & y position
of 17 keypoints. Such keypoints were converted to 1D and thus the number of features
amount to 34. In this experiment, the whole action sequence (list of frames) is fed to
the model as one sample. This allows the model to learn the temporal features of every
action. However, the action sequences have variable length. In view of this, due to the
fact that samples are trained in batches, they need to have the same length. A common
approach is to pad the sequence with a padding value (typically 0) in order to transform
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Dataset Format Description Tensor shape
RGB Videos
(->) PoseNet

Video -> JSON
17 body keypoints
for every frame (x,y)

(861, 96, 34)

RGB Videos
(->) OpenPose

Video -> JSON
25 body keypoints
for every frame (x,y)

(861, 96, 50)

Inertial sensors MATLAB Array
3-axis acceleration and
3-axis rotation signals

(861, 326, 6)

Skeleton data (2D) MATLAB Array 20 body keypoints (x,y) (861, 126, 40)
Skeleton data (3D) MATLAB Array 20 body keypoints (x,y,z) (861, 126, 60)

Table 4.1: List of datasets used to compare between pose estimated data and sensor
data

the data to a fixed-length shape [47]. This was done to each dataset listed in Table 4.1
by finding the maximum sequence length and padding the rest of the sequences. The
tensor shape shown in the table follows the following format:

(number of samples, number of time steps, number of features)

where the number of time steps refer to the sequence length and the number of fea-
tures indicate the amount of features in every time step (or sequence).

The skeleton data provided in the UTD-MHAD dataset was provided as a 3-dimensional
array of shape (20 x 3 x n_frames). The first dimension represents the number of body
keypoints, the second represents the x, y and z of every point and the third dimension
refers to the number of frames that make up the sequence. In order to include a 2D
representation of the data, it was decided to drop the z axis from the 3D skeleton data.
This allowed for an additional dataset in the comparison experiment. Figure 4.19 il-
lustrates the four types of skeleton representations (apart from the inertial dataset) that
were trained and compared.

4.6.3 Model Architecture

The model architecture used to compare the aforementioned representations is a su-
pervised model that aims at classifying given sequences as human actions. The model
architecture is depicted in Figure 4.20 and was inspired by recent work in human action
recognition that used 1D Convolutions to identify human actions [13]. The use of 1D
CNNs was also explored by Kiranyaz et al. [44] and proven to work well with extracting
discriminative features from sequences. The input shape of the model depends on the
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(a) 2D Estimated
Skeleton, PoseNet

(b) 2D Estimated
Skeleton, OpenPose

(c) 3D Skeleton,
Kinect

(d) 2D Skeleton, Kinect (removed z
axis)

Figure 4.19: The four types of skeleton representations used to train separate models.
Action: ‘Basketball Shoot’ from UTD-MHAD dataset. Top images were generated by

PoseNet and OpenPose respectively wheras the bottom images depict 3D and 2D plots
respectively of the skeleton data.

dataset. For instance, the input shape depicted in Figure 4.20 refers to the PoseNet esti-
mated skeleton data where the first value (marked B) refers to the batch size, the second
value refers to the amount of time-steps and finally the last value refers to the amount
of features for each time-step. The rest of the architecture is inspired by the work in [71]
where consecutive convolutional layers (2 in this case) are used to extract spatial and
temporal features from the data. Such features are then flattened and fed to an LSTM
layer to model the temporal aspect of the sequence. Finally, the output is passed to 2
fully-connected (dense) layers for final classification where the softmax activation func-
tion is used to normalise the predictions in a probability distribution. Such technique
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is common in classification tasks where multiple layers are used [45]. Dropout layers
were also added to the network as a regularisation technique to reduce over-fitting [82].

Figure 4.20: Model architecture used to compare different data representations
(through action recognition). Convolution layers adopted from [13].

The activation functions for the convolutional and the dense layers were chosen to
be ‘ReLU’. It was shown that such activation function makes the training process faster
[45]. On the other hand, the activation function for the LSTM layer was set to ‘tanh‘
because the output from such function can be both positive or negative (unlike ReLU),
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which allows the state to increase or decrease accordingly [52]. Since the task at hand is a
multi-class classification problem, the categorical cross entropy function is used as a loss
function. This function is able to handle multi-class probabilities and thus is appropriate
for such problem [26]. Finally, to minimise the loss function and therefore optimise the
network during training, an extension of stochastic gradient descent called Adam was
used. According to [42], this method outperforms all other techniques. Moreover, recent
studies show that Adam have shown capable results and therefore a very popular choice
for optimising the loss function [13; 16; 55; 94]. The parameters of the optimiser follow
the default ones provided in the original paper [42], i.e the learning rate was set to 0.001
and β1 and β2 were set to 0.9 and 0.999 respectively. The architecture was also designed
using Keras with Tensorflow as the backend.

4.6.3.1 Training the models

In order to compare all 5 data representations tabulated in Table 4.1, 5 models were
trained separately. This allows the different data representations to be compared with
each other and therefore one could measure the effectiveness of estimated keypoints
from a 2D image over sensor data. An overview of the techniques used to train the
models as well as how these were evaluated and compared is given in the next chapter
in Section 5.2.

4.7 Conclusion

This chapter aimed at providing the reader with the techniques employed to reach the
aims and objectives of this study. In the first sections of this chapter, the proposed
method is depicted in a block diagram which shows the main components of the sys-
tem: processing raw video footage, extracting body keypoints, pre-processing the data,
training the model and finally predicting data sequences. A more detailed overview of
such components together with the installation instructions are presented in Appendix
B.

The chapter also provided the reader with a detailed description on how the extracted
body keypoints were pre-processed and prepared to train different model architectures.
A detailed description of how experiments were conducted to determine whether hu-
man body keypoints extracted from RGB images are comparable to sensor data collected
from humans performing various actions was also presented.

75



Chapter 4. Methodology 4.7. Conclusion

The next chapter aims at presenting the results of the conducted experiments as well
as at evaluating the system to prove that the proposed technique is effective in the real-
world.
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5

Results and Evaluation

5.1 Introduction

This chapter aims at providing the reader with the results of the methods proposed in
the previous chapter. Furthermore, an overview of the evaluation criteria used to eval-
uate the system is given.

This chapter is divided into three main parts. In the first part, the results and evalu-
ation techniques for the comparison between sensor and estimated data are presented
and discussed. Positive results from this experiment indicate that pose estimation data
from a 2D image can be informative enough to describe a human action and thus can
replace the use of sensors. The second part deals with the presentation of the results and
evaluation metrics used to evaluate the performance of the models to detect abnormal
behaviour from video footage. In this section, the model’s output is used to indicate
whether a given data sequence is abnormal or not. Lastly, in the final and third part, the
results of this study are compared to similar work done on the same dataset.

5.2 Comparison between sensor and estimated data

This evaluation aims at evaluating the method outlined in Chapter 4, Section 4.6 and at
answering the following research question:

How would human action classification models perform if they were to be trained on
pose data estimated from a 2D image instead of sensor data?

This question begs the following hypothesis:
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Hypothesis: Pose estimated data from a 2D image can be informative enough to de-
scribe a human action.

As outlined in the previous chapter, 5 different data representations were constructed
to answer this question. All data representations represent the 27 human actions from
the UTD-MHAD dataset. These include:

1. Body keypoints estimated from 2D images using PoseNet pose estimation algo-
rithm

2. Body keypoints estimated from 2D images using OpenPose pose estimation algo-
rithm

3. 3D Skeleton data extracted from a camera capable of determining depth

4. 2D Skeleton data created from the 3D Skeleton data by dropping the z axis

5. Data from a wearable inertial sensor

Both PoseNet and OpenPose pose estimation algorithms managed to estimate the
majority of the body keypoints from the all video frames. Two histograms of the confi-
dence scores reported by both models are depicted in Figure 5.1. This diagram includes
all the scores for all actions (861) which in total amount to 44,955 frames. It was ob-
served that on average, the overall confidence scores for PoseNet are higher than those
of OpenPose. This is because the majority of the confidence scores reported by PoseNet
are between 0.9 and 0.98, whereas the ones generated by OpenPose are between 0.7 and
0.88.

A model for each data representation was trained for comparison purposes. In order
to assess the model performance and maximise the available data, stratified K-fold cross
validation (CV) was utilised. In these experiments, stratification was used to ensure that
each fold contains a good representation of the different actions (or classes). According
to James et al. [39], k values of 5 or 10 have empirically shown that test error rate esti-
mates do not suffer from high variance or high bias. In view of this and to reduce the
cost of training, a k value of 5 was chosen to conduct the comparison experiments. Fur-
thermore, the best model with the lowest loss value recorded was saved and used as the
final model.

To find the best hyper-parameters for each model, a grid search for the parameters
tabulated in Table 5.1 was conducted. The selected values are common ones usually

78



Chapter 5. Results and Evaluation 5.2. Comparison between sensor and estimated data

(a) PoseNet (b) OpenPose

Figure 5.1: Histogram showing confidence scores of extracted poses for UTD-MHAD
RGB footage for both PoseNet and OpenPose

Hyper-parameter Values
CNN filters {64, 128, 256}

CNN kernel size {1,2,3,4}
LSTM Units {64,128}

Number of subsequences {1,2}
Dropout rates {0.5, 0.7}

Total 96 combinations

Table 5.1: The parameter grid used to tune the hyper-parameters

used as hyper-parameters in similar work in the area [13; 16; 55]. All 5 models were
separately trained using 96 different combinations of hyper-parameters. Furthermore,
since 5-fold cross validation was employed, each model was trained for 5 times. This
amounts to a total of 2,400 trained models.

Since stratification was used, each action class is equally represented, both in the train-
ing and the testing sets. Such equal balance makes the accuracy metric (Equation 5.1) a
proper fit for this problem [26].

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Where TP refers to the True Positives, TN refers to True Negatives, FP refers to False Positives
and FN refers to False Negatives.
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The results for such experiments are illustrated in two ways. In Figure 5.2, a bar chart
illustrates the mean accuracy score for the best model for each data representation. The
bars coloured in blue represent the estimated pose data from RGB videos whereas the
bars coloured in black represent sensor data acquired from a depth camera (skeleton
data) and a wearable inertial sensor. The results are also tabulated in Table 5.3 where
the mean accuracy and standard deviation (st.d) of the 5-fold CV are reported. In this
table, only the results for the best performing model (for each data representation) are
reported. Additionally, Table 5.2 shows a summary of the hyper-parameters used for
each data representation which yielded the best results.

Dataset Batch Size
Dropout
rate (%)

CNN
Filters

CNN
Kernel

Size
LSTM
Units

#
Sub-sequences

Posenet 32 0.5 64 1 128 1
OpenPose 64 0.5 128 1 64 1

Skeleton 3D 64 0.5 64 1 128 1
Skeleton 2D 64 0.5 256 1 128 1

Inertial 64 0.5 64 1 128 1

Table 5.2: Best hyper-parameter combination for each data representation

Figure 5.2: Human action classification accuracy for different data representations.

These results demonstrate that pose estimated data from RGB videos is indeed com-
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Data Representation Mean accuracy st.d
PoseNet (estimated) 0.88 0.09

OpenPose (estimated) 0.75 0.1
Skeleton 3D (sensor) 0.91 0.26
Skeleton 2D (sensor) 0.92 0.14

Inertial (sensor) 0.86 0.04

Table 5.3: Human action classification accuracy and standard deviation (st.d) for
different data representations for k-fold cross validation with k=5

parable to sensor data from depth cameras such as the Kinect. Moreover, this experi-
ment shows that data estimated by PoseNet is indeed more informative than data gath-
ered from an inertial sensor. This could be explained by the fact that data estimated
from RGB videos captures the motion of all moving body parts whereas the inertial sen-
sor only captures the movements of where it is attached. The results also demonstrate
that the data representation estimated by PoseNet is better than that of OpenPose itself.
This explains the difference in confidence scores reported by both algorithms.

The results also indicate that human action classification seems to perform best when
skeleton data is generated by the depth camera. Taking into consideration that no extra
hardware was utilised, the results from this experiment are quite promising, as they
show that pose estimated data from a 2D image can be informative enough to describe a
human action. The key finding from these results is that pose estimated data compares
well to sensor data when it comes to human action classification from video footage.
Thus, pose estimated data from a video can indeed be informative enough to recognise
a human action being performed. This allows advanced understanding of existing video
footage for various applications such as health care and surveillance.

5.3 Detecting abnormal behaviour

This section aims at presenting the evaluation techniques for the method outlined in
Chapter 4, Section 4.5 and at answering the following research question:

Is it possible to train a semi-supervised model using solely body estimated keypoints
to detect anomalous sequences?

In consideration of the above question, the following hypothesis is being set:
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Hypothesis: Pose estimated data can be informative enough to represent normal ac-
tivities and therefore flag abnormal activities otherwise

5.3.1 Evaluation Criteria

Many researchers in this area [93; 98; 100] suggest the use of ranking-based evaluation
metrics when dealing with an unbalanced dataset. Instead of using accuracy, they rec-
ommend metrics such as the Area Under the Receiver Operating Characteristic curve
(AUROC) or the Area Under the Precision-Recall curve (AUPR) [8]. In a dataset where
a particular class has the majority of instances, an accuracy-based metric is not ideal
mainly due to the fact that the class with the majority will be favoured.

Davis and Goadrich [17] and Saito and Rehmsmeier [72] argue that in a skewed
dataset, the Precision-Recall curve is more informative than the ROC curve as it plots
the precision and the recall of the classifier at various thresholds, which takes into ac-
count the data imbalance. This allows for a “more informative picture of an algorithm’s
performance”. On the contrary, the ROC curve represents the relationship between the
true positive rate (TPR) which also known as recall, and the false positive rate (FPR) -
which is different from the precision score. The recall or TPR measures the fraction of
positive samples that were correctly classified and the FPR measures the fraction of neg-
ative samples that were incorrectly classified as positives. Lastly, the precision metric
measures the fraction of samples classified as positives that are truly positive.

In binary classification, the data is divided into two classes - positives (P) and nega-
tives (N). In order to present the performance of a classifier, a confusion matrix is usually
used. With reference to this study, positive samples refer to abnormal activities and neg-
ative samples refer to normal activities. Such matrix is usually formulated as a table that
tabulates four types of outcomes: True Positives (TP), True Negatives (TN), False Posi-
tives (FP) and False Negatives (FN). The aforementioned metrics such as the precision
and recall uses the outcomes from the confusion matrix to evaluate the performance of
a given model. The equations for the recall, precision and false positive rate metrics are
presented below.

Recall/True Positive Rate =
TP

TP + FN
(5.2)
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Precision =
TP

TP + FP
(5.3)

False Positive Rate =
FP

FP + TN
(5.4)

Figure 5.3: ROC Curve vs PR Curve. (Source: [17])

The visual representation of an ROC curve is different from a PR curve. In an ROC
curve, the performance of an algorithm is best when the space is in the upper left-hand
corner of the graph. On the other hand, an optimal PR curve would have its space in the
upper right-hand corner of the graph. Figure 5.3 shows a sample for an ROC and PR
curve that represent the same 2 algorithms. Such graphs represent two learned models
on a highly unbalanced dataset conducted by Davis et al. in [18]. In the first ROC graph
it is clear that both Algorithm 1 and 2 are comparable. However, the PR graph on the
right shows that the predictive power of Algorithm 2 is higher than Algorithm 1. Such
difference exists because the number of negative samples are larger than the number of
positive samples. The Area Under the Curve (AUC) is then used to measure the perfor-
mance of the model. An AUC value of 1 would indicate that the model is perfect.

In this study, the detection of true positive (abnormal) samples is vital. This is because
predicting false positives (normal events classified as abnormal) is of less risk than clas-
sifying an abnormal event as normal (false negative). Therefore, more weight to the
recall metric is to be given. On the other hand, the precision metric is also important
as the model should be able to classify normal events correctly. In statistical analysis,
the F-Score (equation 5.5) metric provides a weighted average of the precision and re-
call metrics [12]. The β parameter is used to control the balance between precision and
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recall. When β is equal to 1, the harmonic mean of the precision and recall is given.
However, when β < 1, more weight is given to the precision score and when β > 1,
more weight is given to the recall score. To evaluate the predictive power of the mod-
els a β value of 4 was chosen. This value allows the F-score to be more recall-oriented.
Furthermore, it is the same value used by Debard et al. [19] in their paper on the same
dataset that was used in this study.

Fβ =
(β2 + 1) · (precision · recall)
(β2 · precision) + recall

(5.5)

In light of the above, in the rest of this chapter, the AUC of the PR curve will be used to
measure the performance of the trained models. This is because the number of samples
for both classes is not equally balanced.

5.3.2 Computing and finding the best threshold

As outlined in Section 4.5.3, in order to find the best threshold τ that separates both
classes, the PR curve is plotted for various thresholds. This section aims at describing
the process undertaken to establish various thresholds. After an AutoEncoder model
outlined in Section 4.5.2 is trained, the reconstruction errors of the training set (normal
activities) together with the test sets (that contain both normal and abnormal samples)
are plotted in a histogram. In an ideal situation, the reconstruction errors for the normal
activities should be on the low side whereas the reconstruction errors for the abnormal
activities should be on the high side. This is because the model was trained in a semi-
supervised approach, i.e. to reconstruct the normal activities only.

Figure 5.4: Reconstruction errors for Training and Testing Sets
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A sample histogram for one of the models is shown in Figure 5.4. The histogram
shows 3 distributions, each representing a set of reconstruction errors. The blue dis-
tribution represents the reconstruction errors of the training data itself, i.e. the same
training data that was used to train the model, whilst the green distribution represents
the reconstruction errors of unseen normal activities. Lastly, the orange distribution rep-
resents the reconstruction errors of the abnormal activities, which are also unseen by the
model. In this case, the histogram demonstrates that the model was able to reconstruct
the normal activities quite well as the error range is similar to that of the training data.
Here, it is noticeable that the model reconstructed the abnormal sequences with higher
error and thus this shows that the model can be used to detect normal and abnormal
sequences. With direct reference to this histogram, the optimal anomaly threshold τ

would be ≈ 0.09 where instances > τ are classified as abnormal and instances < τ are
classified as normal.

Figure 5.5: Various thresholds considered at different bins

In order to determine various thresholds, a non-parametric approach was employed.
At every bin in the histogram, the area is calculated and considered as a threshold.
At each threshold, the precision and recall metrics are calculated and used to plot the
PR curve. This is depicted in Figure 5.5 where the various thresholds considered are
represented in red vertical lines. The AUC of the PR curve is then used to measure the
model’s performance. Additionally, at each threshold, the Fβ score is measured. The
maximum Fβ score is then used to find the threshold that best segregates the classes.
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5.3.3 Evaluation

This section aims at outlining how the all 4 modules depicted in the Section 4.2 were
linked together in order to train the models to detect abnormal behaviour. Since a
preliminary analysis was conducted, this section is divided into two parts. The first
part outlines the analysis done on the KTH dataset whilst the second part presents the
method conducted on the ADL dataset. In each part, an overview of the dataset utilised
is also given.

In both datasets, the LSTM-AE and 1DConv-AE models outlined in 4.5.2 are trained
and compared. Moreover, the same method for preparing the training and testing sets
was conducted for both datasets.

In order to evaluate the models, k-fold Cross Validation (CV) with k = 5 was used.
According to James et al. [39], k values of 5 or 10 have empirically shown that test error
rate estimates do not suffer from high variance or high bias. The training set, which
consists of data from the normal class only, is randomly shuffled at sample level (i.e. the
sequence order in each sample is preserved) and split into 5 folds. In order to be able
to generate the same folds for every model, the random_state parameter was set to fixed
number. This allows the ability for models to be compared with each other. In each
fold, since k is set to 5, the training set is split into two sets ( k−1

k : 1
k ): one used to train

the model (80%) and the other (20%) to test whether the model is able to reconstruct
‘normal’ (or negative) actions correctly. The other test set containing the ‘abnormal’ (or
positive) actions is pre-processed with the same configuration and added to the test set
(which already contains the ‘normal’ sequences). Additionally, 20% of the 80% data
used to train the model is used as a validation set. Such set is utilised to provide an
unbiased evaluation of the model being trained. Similar to the approach undertaken
by Chong and Tay [16], the models were trained for 200 epochs in mini-batches of size
64. Early stopping [64] with patience = 5 was used to stop further training when the
validation loss stops improving (in this case when it stops decreasing). Such practice is
common amongst researchers [13; 16; 55; 94] as it prevents the model from over-fitting.

As outlined in the previous chapter, the models were trained on frame sequences
rather than individual frames. In the rest of this document, 1 data sequence that consists
of 20 frames is represented as (1, 20, F), where F represents the number of features mak-
ing up each frame. In line with this, the tensor shape generated after the pre-processing
steps follows the following format:
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number of samples (S) x window length (L) x number of features (F)

where S refers to the amount of data samples, L refers to the number of time-steps
(frames) and finally F refers to the amount of x and y values that represent each body
keypoint (34 for Posenet, 50 for OpenPose).

5.3.4 Analysis on the KTH Dataset

To evaluate the proposed method, a preliminary analysis was conducted on the KTH
dataset [74]. The KTH dataset is a popular dataset for human action recognition. It con-
tains a total of 2,391 sequences consisting of 6 different types of human actions: walking,
jogging, running, boxing, hand waving and hand clapping. The actions were performed
by 25 subjects in four different environments: outdoors, outdoors with scale variation,
outdoors with different clothes and indoors. Figure 5.6 illustrates some examples of
human action sequences in different environments. Having a length of 4 seconds in av-
erage, the footage was recorded with a static camera at 25 frames per second and the
resolution was down-sampled to 160 by 120 pixels.

Figure 5.6: KTH Dataset: examples of sequences in different environments. Source: [74]

For this analysis, only the footage for actions walking and running were considered.
The main idea behind this selection was to determine whether the model is capable of
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learning ‘walking’ as normal behaviour and ‘running‘ as abnormal. Initially, the footage
was converted to frames as outlined in Section 4.3 and the body keypoints were ex-
tracted using PoseNet as described in Section 4.4. Such body keypoints were then pre-
processed as outlined in Section 4.5.1. Table 5.4 tabulates the amount of frames extracted
for each action.

Dataset Scenario # Frames
KTH Walking 65,795
KTH Running 35,505

Total # frames extracted 101,300

Table 5.4: Total number of frames extracted for the KTH dataset.

Two histograms of the confidence scores reported by PoseNet are depicted in Figure
5.7. These histograms show the confidence score distribution for all the frames that
scored between 0.1 - 1. The rest (0 - 0.09) were not included because they consist of
empty frames (i.e. no human subject). The average confidence scores for ‘walking’ and
‘running’ were 0.74 and 0.70 respectively. This shows that the pose estimation algorithm
managed to predict the majority of the frames with 0.70 confidence score.

(a) PoseNet: KTH Confidence Scores for Walk-
ing action

(b) PoseNet: KTH Confidence Scores for Run-
ning action

Figure 5.7: PoseNet confidence scores for KTH walking and running frames

5.3.4.1 Training the models

Both the LSTM-AE and 1DConv-AE models described in Section 4.5.2 were used to train
to reconstruct the walking actions. A total of 4 data configurations were created for this
experiment. Such configuration parameters are tabulated in Table 5.5. As depicted in
Figure 5.8, PoseNet manages to predict the correct body keypoints even if the human
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subject is partially visible. However, when only two body parts or so are visible in the
frame, the model fails to predict the keypoints. The minimum confidence score for these
experiments was determined after manually observing the processed frames. It was
observed that a score of 0.4 and upper produces promising results where the majority
of the keypoints are correctly predicted. This also includes frames where the human
subject is partially visible.

Parameter Values
Minimum Confidence Score (MCS) 0.4

Window Length (WL) 20
Window Overlap (WO) True, False

Remove Low Scores (RLS) True, False

Table 5.5: Data configurations for KTH dataset

(a) KTH: Person enter-
ing the scene from the
right. Score:0.29

(b) KTH: Person leav-
ing the scene. Score:
0.38

(c) KTH: Person left
the scene. Score: 0.00

(d) KTH: Person enter-
ing the scene from the
left. Score: 0.11

(e) KTH: Person run-
ning. Score:0.71

(f) KTH: Person walk-
ing. Score: 0.91

(g) KTH: Person run-
ning. Score: 0.90

(h) KTH: Person walk-
ing. Score: 0.90

Figure 5.8: KTH Dataset. Upper row shows output from PoseNet for challenging
scenes. Lower row shows scenes where subject is fully visible

In this experiment, the window length L of each sample was set to 20 frames. This
models ≈ 0.6 seconds of the action which, in literature, seems to be an acceptable value
to model human actions [6]. Furthermore, it was observed that both walking and run-
ning actions are represented well in 20 frames. The training and test sets were prepared
as described in the introduction of this section (Section 5.3.3). Since a semi-supervised
approach is proposed, the training data consisted of ‘walking’ instances only, i.e. the
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model was not exposed to the ‘abnormal’ instances. In light of this, the models were
expected to classify any action not ‘walking’ as abnormal as the model was not exposed
to it. The test set comprised of all the ‘running’ (abnormal) sequences and 20% of the
‘walking’ (normal) instances.

5.3.4.2 Results and their interpretation

Table 5.6 tabulates the results for the data configurations shown in Table 5.5. Both the
PR AUC and the Fβ scores reported are the mean values of 5 models trained for each
fold (since k was set to 5). In this table, the standard deviation (st.d) of the mean values
applies to both the PR AUC and Fβ measures as they happen to be identical. One can
note that both models performed very similar to each other. The number shown after
the model name indicates the number of units or filters used in the models (Section
4.5.2).

Model
Window
Overlap

Remove
Low Scores

Mean
PR AUC St.d

Mean
Fβ Score

LSTM-AE 128 � � 0.78 0.02 0.73
LSTM-AE 128 � � 0.87 0.01 0.76
LSTM-AE 128 � � 0.79 0.02 0.71
LSTM-AE 128 � � 0.90 0.01 0.76
1DConv-AE 64 � � 0.78 0.02 0.73
1DConv-AE 64 � � 0.87 0.01 0.75
1DConv-AE 64 � � 0.78 0.01 0.68
1DConv-AE 64 � � 0.90 0.00 0.77

Table 5.6: Results for LSTM-AE and 1DConv-AE models on the KTH dataset. β = 4

These results show that removing low scoring body keypoints (as outlined in Section
4.5.1.3) does not necessarily contribute to the model’s classification abilities. Moreover,
despite the fact that the window overlapping technique doubles the size of the train-
ing data, this did not prove to be very advantageous to this problem. The PR curves
and confusion matrices for the best two models (marked in bold) are shown in Figure
5.9. Both the PR curves demonstrate that at various thresholds, the models are able to
correctly classify normal and abnormal sequences of data. Both models were trained
on (1247, 20, 34) samples and evaluated on (312, 20, 34) negative (normal) samples and
(643, 20, 34) positive (abnormal) samples. In this case, since all ‘running’ actions were
considered, the dataset contained more positive samples.
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(a) PR Curve for LSTM-AE model (b) PR Curve for 1DConv-AE

(c) Confusion Matrix for LSTM-AE (d) Confusion Matrix for 1DConv-AE

Figure 5.9: KTH - PR Curves and Confusion Matrices for LSTM-AE and Conv1D-AE
models

The key finding of this preliminary analysis is that both the LSTM-AE and 1DConv-
AE models are able to learn to reconstruct the normal activities only for these to then
be used for detecting anomalous sequences. Taking into account that both walking and
running actions are very similar to each other in terms of body keypoints representa-
tion, the outcome of such approach is very promising. This also shows that the pro-
posed model architectures are able to learn a compressed representation of the normal
activities in a time-series fashion and use such output to ‘transform’ the model into a
classifier (by using the reconstruction error as an anomaly score).
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5.3.5 Analysis on a realistic and challenging dataset: ADL

The use of a realistic dataset is crucial for this study because it shows how the model
reacts to real-life situations. In a real-world environment such as a nursing home, indi-
viduals are usually unaware of the camera location. Room objects such as chairs, tables
and other furniture are typically in the scene. Such objects make detection and clas-
sification of human beings more challenging due to the possibility of occlusions. For
example, a person sitting at a table might have his/her lower body occluded by the ta-
ble itself. It is therefore desirable to have a dataset that simulates the real-world cases.

5.3.5.1 ADL Dataset

Activities of daily living (ADL) is a term that refers to a set of activities that are per-
formed on a daily basis by an individual, usually alone. Such activities range from
walking, sitting down, changing clothes, eating and more. Baldewijns et al. [5] present
a dataset consisting of various subjects performing different activities in a room. This
dataset bridges the gap between currently available datasets (which consist of simulated
activities) and real-life datasets as it contains more realistic abnormal activities such as
falls. The authors created such abnormal activities by re-enacting real-life incidents that
were discovered in other studies. The authors claim that their dataset is more realistic as
it contains a lot of ‘non-fall’ data which simulates the real-world; because typically, fall
activities do not happen very often. Furthermore, the dataset contains a good number
of different types of falls, was recorded in a realistic setting and contains a good balance
between normal and abnormal activity data.

The dataset, which is publicly available1, consists of a set of videos recorded in a real-
istic room from different angles. The videos are divided into two main classes: normal
and abnormal activities. The normal activities consist of a human subject performing ac-
tions such as walking, sitting, eating, drinking, sleeping, changing clothes, reading and
more. On the other hand, the abnormal activities contain various fall scenarios such as
slow and fast falls and falls with different starting and ending poses. The room in which
the footage was recorded was furnished to look similar to a nursing home room. In to-
tal, 5 web-cameras capturing 30 frames per second (fps) with a resolution of 800 by 480
were installed. In the paper it was reported that the cameras capture 12 fps with a reso-
lution of 640 by 480, however, the footage reports otherwise. These were positioned in
different locations within the room to capture various view-points. Figure 5.11 depicts
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(a) Cam1

(b) Cam2 (c) Cam3

(d) Cam4 (e) Cam5

Figure 5.10: All camera positions for ADL Scenario 2

the room layout as well as the camera positions. The entrance to the room is located
right of the first camera (marked C1). A frame from each camera for ADL Scenario 2
(ADL2) is shown in Figure 5.10.

A good balance between normal and abnormal data was recorded. Table 5.7 tabulates
a summary of the recorded footage. Each scenario in the normal set consists of various
set of activities. Furthermore, some alterations in the normal activity footage were in-
duced by using different props such as walking aids, changing the order in which the
activities were performed and changing the pace of the person. In both classes, real-life
challenges such as illumination changes, occlusions and falling partially or completely
out of camera view were also included. Every scenario (both normal and abnormal)
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Figure 5.11: ADL Dataset: Room layout and camera positions (marked with C1 - C5)
Source: Baldewijns et al. [5]

Class Number of Scenarios Average length per scenario Total length
Normal 17 20:39 mins 5:50 hours

Abnormal 55 2:44 mins 2:25 hours

Table 5.7: ADL Dataset Overview

was recorded with 5 different cameras. All video files were named in such a way that
both the scenario and the camera can be identified. For example, the first fall scenario
for camera one (C1) was named Fall1_Cam1.avi and the fifth normal scenario for C4 was
named ADL5_Cam4.avi. A meta file was also provided with the dataset. This includes
annotation details of the start and end time of the abnormal activity, together with the
scenario description.

The nature of the ADL dataset is different from the KTH dataset outlined earlier due
to a number of reasons. Firstly, the cameras installed in the ADL dataset are fixed to the
ceiling and thus do not capture the human subject from a front angle. Such view makes
the process for estimating the posture harder. Furthermore, in various camera angles
(such as Cam1 and Cam2) the person might be in areas of the room where his/her body
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is only partially visible. This makes the pose estimation process more challenging as
well. Another impediment in such dataset is the video quality, especially in low-light
situations where the only source of light is infrared. Some examples of such challenges
are depicted in Figure 5.12.

(a) Fall9 for Cam2 - Subject fell from the chair,
barely visible

(b) ADL7 for Cam2 - Subject under the bed sheets,
low quality image

(c) ADL9 for Cam3 - Subject bending to sit on a
bed

(d) ADL2 for Cam5 - The only visible body parts
are the subject’s legs on a bed

Figure 5.12: ADL Dataset challenges

5.3.5.2 Dataset Statistics

All the footage from this dataset was pre-processed as described in Sections 4.3 and 4.4
in that all the frames were extracted from each video and then processed with PoseNet
and OpenPose pose estimation algorithms. A list of frames extracted and processed for
this dataset is tabulated in Table 5.8. Each camera folder includes all 17 scenarios (for
normal) and all 55 scenarios (for abnormal). The footage for abnormal scenario 1 (Fall1)
and normal scenario 3 (ADL3) contained more than one person. As outlined in Chap-
ter 1, the focus of this study is on individual-human based activities and therefore these
scenarios were omitted from the datasets. Since the abnormal data was annotated by the
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Dataset Scenario # Frames
ADL Normal Camera 1 660,565
ADL Normal Camera 2 659,723
ADL Normal Camera 3 657,707
ADL Normal Camera 4 658,904
ADL Normal Camera 5 659,711

ADL Abnormal* Camera 1 13,680
ADL Abnormal* Camera 2 13,680
ADL Abnormal* Camera 3 13,650
ADL Abnormal* Camera 4 13,920
ADL Abnormal* Camera 5 13,920

Total # frames extracted 3,365,460

Table 5.8: Total number of frames extracted for the ADL dataset. * specific abnormal
activity frames only

authors of the dataset themselves, only the frames where the abnormal activity occurs
were extracted. Such data was then pre-processed as outlined in Section 4.5.1, and used
to test the models. The tensor shape generated after the pre-processing steps follows the
same format as described earlier in this section: number of samples (S) x window length (L)
x number of features (F).

Confidence scores histograms reported by both PoseNet and OpenPose for Camera
1 are depicted in Figure 5.13. Such histograms show the confidence score distribution
for all the frames that scored in the range 0.1 - 1. The rest of the scores (0 - 0.09) were
not included because, as outlined in Section 4.5.1, they consist of frames with no human
subject and thus not informative to this problem. The rest of the histograms for cam-
eras 2-5 for both algorithms can be found in Section A.2, in the Appendix. These his-
tograms demonstrate that on average, the PoseNet algorithm managed to predict more
frames with higher confidence scores than OpenPose. The median values for PoseNet
and OpenPose for the normal data are 0.72 and 0.44 respectively. On the other hand,
the median values for the abnormal frames are 0.53 and 0.44. Such difference is due to
the fact that PoseNet is also able to estimate points that fall outside the frame. On the
other hand, OpenPose only estimates the keypoints that are visible in the frame, setting
the rest of the keypoints as 0. This difference explains why OpenPose reports a lower
average score.

As underlined above, abnormal sequences consist of various types of falls. In some of
the falls, a person might be fully visible in the frame at any given time, whilst a second
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Algorithm

MCS
Partial and Full

Visibility
MCS

Full Visibility

PoseNet 0.4 0.5
OpenPose 0.1 0.4

Table 5.9: Minimum confidence scores (MCS) that best captures partial and full
visibility

later he/she might completely or partially be out of frame. After exploring the PoseNet
and OpenPose data at various configurations for all cameras, it was determined that dif-
ferent confidence scores can be used to report partial and full visibility of human beings.
Table 5.9 tabulates such confidence scores for both algorithms. At the minimum confi-
dence scores (MCS) shown in the table, it was observed that 98% of the abnormal data
is fully represented. The ‘MCS Partial and Full Visibility’ column in the table outlines
the minimum confidence score required for each algorithm to capture both partial and
full visibility of a human being. On the other hand, the other column shows the MCS
required to capture full body visibility only. The only excluded sequences (2%) include
those that only have 2 body parts or so visible in the frame as depicted in Figure 5.12.
The rest of the frames with lower confidence scores were not used in the training set as
due to heavy occlusions or limited visibility, the pose estimation model was unable to
correctly estimate the body keypoints.

5.3.5.3 Survey

A survey2 was also conducted in order to back such claims. 13 images from differ-
ent cameras (both normal and abnormal) were randomly selected and processed with
PoseNet. The reason for choosing PoseNet was because as demonstrated in Section
5.2, the algorithm performed better than OpenPose. In the survey, each processed im-
age consisted of the original image itself together with the estimated body keypoints
mapped onto the body. The participants were asked to inspect each image and mark
the appropriate numeric response, ranging from 1-5, that best described the output. The
confidence score originally output by the algorithm was also included in every image,
where the main question was: ‘How accurate was the pose estimation algorithm in its
output?’. A value of 1 would describe the output as ‘Not accurate’ whereas a value of 5
would signify a ‘Very accurate’ output.

2�����������	�
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(a) PoseNet: Camera 1 - Normal (b) PoseNet: Camera 1 - Abnormal

(c) OpenPose: Camera 1 - Normal (d) OpenPose: Camera 1 - Abnormal

Figure 5.13: ADL - PoseNet and OpenPose confidence score histograms for Camera 1

The survey, which was created with Google Forms3, was answered by 69 anonymous
participants. Table 5.10 summarises the images used in the survey together with the
participants’ average scores. In general, it was noted that the average score for all ques-
tions was 3.90 which shows that overall, participants believe that the output from such
algorithm on the ADL dataset is accurate. Specifically, in instances where the algorithm
reports confidence scores > 50%, the average score from participants was that of 4.09
(accurate to very accurate). In other cases where the person is heavily occluded (such as
images 6, 7, 10, 11 and 13), the confidence scores were between 8% and 43%. For such
scores, the participants, scored an average of 3.76. The lowest two scores reported by the
participants were for images 10 and 11 (3.03 and 3.00 respectively). In both instances,
the persons were barely visible in the frame and thus this explains the low confidence
scores reported by the algorithm.

3
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Image # Description
Confidence

Score
Participants’

Average Score

Image 1
Person sitting on a sofa. All points were
predicted.

96% 4.75

Image 2 No person in the scene. 5% 4.64

Image 3
Person walking using walking aid. Legs
slightly occluded.

89% 4.43

Image 4
Person sitting on a bed. All points were
predicted.

92% 4.19

Image 5
Person lying on the floor. Shoulder and
right elbow keypoints not predicted.

68% 3.87

Image 6
Person partially visible. Visible body
points were predicted

43% 4.40

Image 7
Person partially visible. Visible body
points were predicted but left shoulder
not predicted well.

42% 3.78

Image 8
Person sitting on a wheelchair. Slightly
occluded. Majority of the keypoints were
predicted.

83% 4.17

Image 9
Person lying on the floor with head
slightly occluded. Legs not properly pre-
dicted.

72% 3.59

Image 10
Person heavily occluded with legs only
visible. Visible body points not properly
predicted.

16% 3.03

Image 11
A person’s hand can be seen in the bot-
tom right hand corner. No points pre-
dicted.

8% 3.00

Image 12

Person lying on the floor with the ma-
jority of the keypoints predicted except
his right hands and legs, which were oc-
cluded.

56% 3.59

Image 13
Person partially occluded with a chair, ly-
ing on the floor. Some keypoints were not
predicted.

41% 3.15

Table 5.10: List of images used in the survey together with the participants average
score. Number of participants: 69.
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5.3.5.4 Training the models

In light of the above, it was decided to train the algorithm with different data config-
urations. This was done to determine how the model reacts to (1) instances where the
person is partially occluded and (2) when the person is fully visible in the frame (i.e.
excluding partial visibility). The WL parameter values were manually checked to en-
sure that at least, part of the abnormal activity is captured. The list of data configuration
parameters, which is tabulated in Table 5.11, shows a total of 40 combinations that were
used to train the models. Each combination was used to train both the LSTM-AE and
1DConv-AE models for both PoseNet and OpenPose data representations.

Parameter Values

Minimum Confidence Score (MCS)
{0.4, 0.5} (PoseNet)

{0.1, 0.4} (OpenPose)

Remove Low Scores (RLS) {True, False}
Window Length (WL) {1s, 2s, 3s}

Downsample (DS) {True, False}
Window 50% Overlap (WO) {True, False}

Total 40 combinations*

Table 5.11: List of parameter combinations used to train both models. * When window
length is equal to 1s, the downsample value is automatically set to False.

“Cross-validation is not a silver bullet. However, it is the best tool avail-
able, because it is the only non-parametric method to test for model general-
ization.” - Varoquaux [89]

The training and test sets were prepared as described in the introduction of this sec-
tion (Section 5.3.3). 5-fold CV was also used to test for model generalisation. Since as
already outlined a semi-supervised approach is employed, the training data consisted
of ‘normal’ ADL instances only. The test set comprised of all the ‘abnormal’ ADL se-
quences and 20% of the ‘normal’ instances. Initially, the data was randomly shuffled
by the first axis, i.e. by the number of samples. This was done to ensure that the tem-
poral order of the data is preserved. Furthermore, the random shuffle allowed for the
data used to train and test the model to represent the overall distribution of the data
[26]. Similar to the approach undertaken in the preliminary analysis, the models were
trained to reconstruct sequences (i.e. multiple frames).

Similar to the work by Debard et al. [19], a separate model for each camera was
trained. Both the LSTM-AE and the 1DConv-AE models were trained to reconstruct
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Model Algorithm
# Data

configurations # Cameras # folds (CV)
# Models
trained

LSTM-AE Posenet 40 5 5 1000
1DConv-AE Posenet 40 5 5 1000
LSTM-AE OpenPose 40 5 5 1000

1DConv-AE OpenPose 40 5 5 1000
Total # models trained 4000

Table 5.12: Total # models trained

the normal activities as described in Section 4.5.2. The models were trained for all 40
data configurations outlined in 4.5.1.7 with both skeleton representations extracted from
PoseNet and OpenPose algorithms respectively. This was done to determine the ideal
data configuration. The next step was to conduct the experiments to test all data con-
figurations. A summary of such experiments is shown in Table 5.12, showing a total of
4,000 models.

The majority of the models were able to learn a compressed data representation after
≈ 35 epochs and both models seem to have generalised well on the validation set. Figure
5.14 plots the training loss of both the training and the validation sets over different
number of epochs. This shows that this specific model managed to generalise well on
the training data.

Figure 5.14: Train and Validation loss for LSTM-AE model

101



Chapter 5. Results and Evaluation 5.3. Detecting abnormal behaviour

5.3.5.5 Results and their interpretation

In this section, the results for the experiments outlined above are presented and dis-
cussed. This section is divided into two main parts. The first part presents the results
of the models trained on data that was extracted by PoseNet whereas the second part
presents the findings on the OpenPose data representation. Specifically, Table 5.13 tab-
ulates the top results for PoseNet and Table 5.18 (found in the next subsection) presents
the top results for OpenPose. A summary is then presented in Section 5.3.5.6.

PoseNet data representation

Model WO RLS DS WL MCS

Mean
PR AUC
(all cams)

Mean
F4 Score

(all cams)

LSTM-AE 128 � � � 1 second 0.5 0.86 (0.10) 0.97 (0.02)
LSTM-AE 128 � � � 3 seconds 0.5 0.85 (0.14) 0.97 (0.02)
LSTM-AE 128 � � � 3 seconds 0.5 0.85 (0.10) 0.98 (0.01)
LSTM-AE 128 � � � 2 seconds 0.5 0.85 (0.10) 0.96 (0.02)
LSTM-AE 128 � � � 2 seconds 0.4 0.77 (0.15) 0.94 (0.03)
LSTM-AE 128 � � � 2 seconds 0.4 0.76 (0.12) 0.94 (0.02)
LSTM-AE 128 � � � 2 seconds 0.4 0.76 (0.11) 0.94 (0.02)
LSTM-AE 128 � � � 3 seconds 0.4 0.75 (0.16) 0.94 (0.03)

1DConv-AE 64 � � � 3 seconds 0.5 0.91 (0.10) 0.98 (0.02)
1DConv-AE 64 � � � 3 seconds 0.5 0.90 (0.13) 0.98 (0.03)
1DConv-AE 64 � � � 3 seconds 0.5 0.90 (0.07) 0.98 (0.01)
1DConv-AE 64 � � � 1 second 0.5 0.87 (0.12) 0.96 (0.03)
1DConv-AE 64 � � � 3 seconds 0.4 0.85 (0.15) 0.95 (0.03)
1DConv-AE 64 � � � 3 seconds 0.4 0.83 (0.16) 0.96 (0.03)
1DConv-AE 64 � � � 3 seconds 0.4 0.81 (0.16) 0.95 (0.03)
1DConv-AE 64 � � � 2 seconds 0.4 0.80 (0.17) 0.94 (0.04)

Table 5.13: Top 4 results for the first two rows for every MCS (PoseNet) in the data
configuration table.

Table 5.13 summarises the top 4 results for both models that were trained on the
PoseNet data representation. Both scores in each row represent the average score for
all camera models (that were each trained on 5 different folds). The PR AUC provides
the overall predictive power of the classifier whilst the F4 score indicates the predictive
skill for the best anomaly score threshold. The F4 score was calculated after finding
the optimal threshold that best segregates normal from abnormal errors, as described in
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Section 5.3.2. The values shown in brackets represent the standard deviation measure.

This table shows the parameters that best contribute to the skill of the model. With ref-
erence to the LSTM-AE model, results indicate that the WO parameter definitely helped
to improve the reconstruction ability of the model. However, the 1DConv-AE model
managed to perform quite well even without window overlapping. On the contrary,
similar to the results seen in the preliminary analysis, removing low scoring (RLS) body
keypoints did not prove to be effective to this problem. Furthemore, downsampling the
data does not seem to effect the results significantly. However, the models performed
better when the DS parameter was set to false.

The LSTM-AE model seemed to have performed best when the WL is set to 1 second
(i.e. 30 frames) for both MCS values of 0.5 and 0.4. On the other hand, the 1DConv-AE
model performed best when the WL is set to 3 seconds. A higher WL reduces the sam-
ple size but increases the number of time-steps. It was observed that at different WLs,
both models produced promising results as the difference in the results was marginal.
At a higher MCS (0.5), both models performed better. This can be explained by the fact
that the data used to train and test the models included higher scoring keypoints with
less noise. Overall, the performance of both models is similar for the same data config-
urations. However, the 1DConv-AE seems to outperform the LSTM-AE in both MCS
values when WL = 3 seconds.

As outlined, the WL parameter plays an important role in such experiments as a
higher value increases the time-step dimension of the data but decreases the sample
size. Table 5.14 outlines the training and testing sizes for various data configurations for
Camera 4 after data pre-processing. In this table, the RLS and DS parameters were not
reported because they do not contribute to the sample size. For generating this table,
both parameters were set to false. Overall, after data pre-processing, all cameras con-
tained the same amount of data however, cameras 2 and 4 contained ≈ 15% more data
than the others. Such difference is due to the fact that both cameras were positioned in
an area that captured more human activity data.

A breakdown for each camera model is given in Table 5.15. Such table tabulates the
average PR AUC for every camera model (for all 5 folds) together with the standard
deviation measure (shown in brackets). In this table, only the top performing model
for each MCS is shown. It is noticeable that on average, all models performed quite
well on cameras 1, 2 and 3. However, lower scores were reported by models trained on
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Data Conf
Training Data

(Normal)
Testing Data

(Normal)
Testing Data
(Abnormal)

WO: 1, MCS: 0.5, WL: 1 (14775, 30, 34) (3694, 30, 34) (248, 30, 34)
WO: 1, MCS: 0.4, WL: 1 (17212, 30, 34) (4303, 30, 34) (316, 30, 34)
WO: 1, MSC: 0.5, WL: 2 (7255, 60, 34) (1814, 60, 34) (138, 60, 34)
WO: 1, MSC: 0.4, WL: 2 (8423, 60, 34) (2106, 60, 34) (177, 60, 34)
WO: 1, MSC: 0.5, WL: 3 (4703, 90, 34) (1176, 90, 34) (62, 90, 34)
WO: 1, MSC: 0.4, WL: 3 (5440, 90, 34) (1360, 90, 34) (88, 90, 34)
WO: 0, MCS: 0.5, WL: 1 (7520, 30, 34) (1880, 30, 34) (148, 30, 34)
WO: 0, MCS: 0.4, WL: 1 (8788, 30, 34) (2198, 30, 34) (186, 30, 34)
WO: 0, MSC: 0.5, WL: 2 (3684, 60, 34) (921, 60, 34) (83, 60, 34)
WO: 0, MSC: 0.4, WL: 2 (4288, 60, 34) (1072, 60, 34) (102, 60, 34)
WO: 0, MSC: 0.5, WL: 3 (2406, 90, 34) (602, 90, 34) (47, 90, 34)
WO: 0, MSC: 0.4, WL: 3 (2799, 90, 34) (700, 90, 34) (64, 90, 34)

Table 5.14: Training and testing sample sizes with different parameters for Cam4
(PoseNet)

Model Cam1 Cam2 Cam3 Cam4 Cam5

LSTM-AE 128
(MCS 0.5)

0.93 (0.01) 0.97 (0.01) 0.91 (0.02) 0.72 (0.05) 0.77 (0.01)

LSTM-AE 128
(MCS 0.4)

0.85 (0.05) 0.82 (0.02) 0.90 (0.01) 0.48 (0.02) 0.76 (0.03)

1DConv-AE 64
(MCS 0.5)

0.99 (0.02) 1.00 (0.00) 0.99 (0.01) 0.78 (0.06) 0.88 (0.03)

1DConv-AE 64
(MCS 0.4)

0.95 (0.03) 0.96 (0.01) 0.98 (0.01) 0.60 (0.05) 0.75 (0.03)

Table 5.15: Camera average PR AUC scores and standard deviation values for the top
performing models (PoseNet)

cameras 4 and 5. The model for Cam4 also reports a higher standard deviation value,
when compared to the others. This shows that the model performed slightly different
with different data folds.

The PR curves and confusion matrices for the best LSTM-AE and 1DConv-AE models
for MCS = 0.5 are shown in Figures 5.15 and 5.16 respectively. The PR curves demon-
strate that at various thresholds, the model is able to correctly classify normal and abnor-
mal sequences of data. The PR curve also shows the precision and recall scores for each
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(a) LSTM-AE

(b) 1DConv-AE

Figure 5.15: PR Curves for LSTM-AE and 1DConv-AE for top performing models
(MCS: 0.5 - PoseNet)

camera for the maximum F4 score recorded. These are marked with a ‘star’ marker and
shown in the legend. The confusion matrices present a breakdown of the instances that
were correctly and incorrectly predicted. On average, the model was able to correctly
predict 99% of the abnormal instances and 97% of the normal instances from all cameras.
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(a) Cam1 (b) Cam2 (c) Cam3

(d) Cam4 (e) Cam5

Figure 5.16: Confusion Matrices for LSTM-AE model. Conf.: WO: �, DS: �, WL: 1,
MCS: 0.5 (PoseNet)

In cameras 4 and 5, 5% of the normal activities were incorrectly classified as abnormal.
A visualisation of the normal and abnormal points together with the set threshold for
Cam5 is depicted in Figure 5.17. These results demonstrate that both AutoEncoders
were able to correctly learn how to reconstruct the normal activities. Furthermore, the
technique of using the reconstruction errors to classify data sequences seemed to be
very fruitful for this problem and shows that a semi-supervised approach fits well to
this problem.

Comparing the models
It was also observed that on average, the 1DConv-AE model outperforms the LSTM-AE
model at certain data configurations. However, one should note that in Tables 5.13 and
5.15 the top performing models are not using the same data configurations and thus
cannot be directly compared. In light of this, a table which compares the top perform-
ing models using the same data configuration is tabulated in Table 5.16. For complete-
ness sake, the 2 seconds WL configuration was also added to the comparison. Results
demonstrate that the LSTM-AE performs better than the 1DConv-AE when WL = 1
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(a) Cam1 (b) Cam2

Figure 5.17: Normal and abnormal sequences visualisation for LSTM-AE. Conf.: WO:
�, DS: �, WL: 1, MCS: 0.5 (PoseNet)

however, for other WL values especially when WL = 3, the 1DConv-AE outperforms
the LSTM AutoEncoder model. Futhermore, since in a CNN weights are shared with
other neurons (as outlined in Section 2.6), the network trains faster. In fact, on average,
the 1DConv-AE model trains 70% faster than the LSTM-AE.

Model WO DS WL MCS

Mean
PR AUC
(all cams)

Mean
F4 Score

(all cams)

LSTM-AE 128 � � 1 second 0.5 0.86 (0.10) 0.97 (0.02)
1DConv-AE 64 � � 1 second 0.5 0.85 (0.13) 0.96 (0.03)
LSTM-AE 128 � � 1 second 0.4 0.74 (0.08) 0.94 (0.02)
1DConv-AE 64 � � 1 second 0.4 0.73 (0.14) 0.93 (0.03)
LSTM-AE 128 � � 3 seconds 0.5 0.84 (0.13) 0.97 (0.02)

1DConv-AE 64 � � 3 seconds 0.5 0.91 (0.10) 0.98 (0.02)
LSTM-AE 128 � � 3 seconds 0.4 0.74 (0.17) 0.93 (0.03)

1DConv-AE 64 � � 3 seconds 0.4 0.85 (0.15) 0.95 (0.03)
LSTM-AE 128 � � 2 seconds 0.5 0.85 (0.10) 0.97 (0.02)

1DConv-AE 64 � � 2 seconds 0.5 0.87 (0.13) 0.97 (0.03)
LSTM-AE 128 � � 2 seconds 0.4 0.76 (0.11) 0.94 (0.02)

1DConv-AE 64 � � 2 seconds 0.4 0.79 (0.13) 0.94 (0.03)

Table 5.16: Model comparison using the same data configurations (PoseNet)

Since in certain cases the difference in performance is marginal, the McNemar test was
used to test whether such difference is statistically significant or not. Recommended by
Dietterich [20], the McNemar test is a non-parametric statistical test used to compare
the performance of two classifiers. The test uses a contingency table which contains 4
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outcomes as shown in Figure 5.18. The outcomes include the number of predictions that
each model got right or wrong when the other model got right or wrong. As an exam-
ple, in Figure 5.18(a), the top left black cell shows the number of predictions that both
Model 1 and Model 2 got right. On the other hand, the top right white cell shows the
amount of predictions that Model 2 got incorrect that Model 1 got right. In this section,
Model 1 refers to LSTM-AE whereas Model 2 refers to 1D-ConvAE. The contingency
table can be used to pinpoint the best model. However, when the scores are very close,
it becomes less conclusive about which model is the better and thus the test is used to
determine if the difference is statistically significant or not [20].

(a) Cam1 - p-value: 1.0 (b) Cam2 - p-value: 0.00 (c) Cam3 - p-value: 0.09

(d) Cam4 - p-value 0.16 (e) Cam5 - p-value 0.00

Figure 5.18: Contingency tables for for LSTM-AE (Model 1) and 1DConv-AE (Model 2).
Conf.: WO: �, DS: �, WL: 1, MCS: 0.5 (PoseNet)

In the McNemar test, the null and alternate hypotheses are formulated as follows:

H0 = The two models have the same error rate (i.e. no statistical difference)
HA = The two models perform differently (i.e. different proportions of errors)

The test statistic only takes into consideration the discordant cells (white cells) from
the contingency table. It outputs a statistic together with a p-value where a p-value
> α would indicate that the null hypothesis cannot be rejected. On the other hand, if
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the p-value is smaller than α, the null hypothesis is rejected. For these tests, the alpha
threshold was set to be 0.05, which is a common value amongst researchers [20]. Table
5.17, which is linked to Table 5.16 shows the p-values for every camera for the data con-
figurations compared in this section. The main aim of this test is to determine whether
the mean PR AUC difference (for e.g. 86% vs 85%) between the models is statistically
significant. Ultimately, the test is used to select the best model. The first row in the table
shows that in cameras 1, 3 and 4 the p-value > 0.05. This means that the null hypoth-
esis cannot be rejected and thus both models performed in a similar way. However, in
cameras 2 and 5, the p-values are both < 0.05 which indicate that the models perform
differently (and the null hypothesis has to be rejected). The contingency tables used in
the first test (first row of the table) are illustrated in Figures 5.18(b) and (c) and shows
that the LSTM-AE model (Model 1) is better than 1DConv-AE in cameras 2, 3 and 5. On
the other hand, the 1DConv-AE model performed slightly better on Camera 4. This con-
cludes that the LSTM-AE model is indeed better than the 1DConv-AE for this specific
data configuration and the 1% difference is statistically significant (at least for Cam2 and
Cam5). This conclusion can also be applied to the rest of the data configurations where
it was observed that the models do indeed perform differently, especially for Cam3 and
Cam4. An interesting observation is that both models seemed to have the same error
rate in different data configurations for cameras 1, 2 and 5.

Configuration Cam1 Cam2 Cam3 Cam4 Cam5

WO: �, DS: �, WL: 1, MCS: 0.5 1.00 0.00 0.09 0.16 0.00
WO: �, DS: �, WL: 1, MCS: 0.4 0.00 0.56 0.00 0.00 0.00
WO: �, DS: �, WL: 3, MCS: 0.5 0.25 1.00 0.06 0.00 1.00
WO: �, DS: �, WL: 3, MCS: 0.4 1.00 0.04 0.02 0.00 0.11
WO: �, DS: �, WL: 2, MCS: 0.5 0.11 0.07 0.00 0.01 0.38
WO: �, DS: �, WL: 2, MCS: 0.4 0.21 0.00 0.00 0.00 0.33

Table 5.17: P-values for every camera model reported by McNemar test (PoseNet)

The top performing models were also tested with different number of LSTM units
(for LSTM-AE) and CNN filters (for 1DConv-AE) as outlined in Section 4.5.2. In gen-
eral, however, it was noted that the results were not significantly different from the
original hyper-parameters. The results are tabulated in the appendix in Table A.1.

OpenPose data representation
In this section, an interpretation of the results for OpenPose is given. Additionally, a
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comparison between both data representations (PoseNet and OpenPose) is presented.
Table 5.18 summarises the top 4 results for both models that were trained on two dif-
ferent MCS values (0.4 and 0.1). Similar to the results table for PoseNet, both scores in
each row represent the average score for all camera models. In this case, both models
for both MCS values performed best with the same data configuration. In all top per-
forming models, the WO parameter has shown to improve the reconstruction ability of
the models. Furthermore, neither the RLS nor the DS parameters proved to be effective.
Similar to the PoseNet representation results, these results indicate that the LSTM-AE
model outperforms the 1DConv-AE in all configurations. On the contrary to PoseNet,
both models seemed to have performed best when WL = 1. Interestingly, it looks like
both models performed best when the MCS parameter was set to 0.1 (which includes
partial visibility). This contrasts with the results obtained using PoseNet’s representa-
tion and could be explained by the fact that OpenPose only outputs keypoints that are
visible in the frame and thus, the data includes less noise.

Model WO RLS DS WL MCS

Mean
PR AUC
(all cams)

Mean
F4 Score

(all cams)

LSTM-AE 128 � � � 1 second 0.4 0.79 (0.06) 0.94 (0.02)
LSTM-AE 128 � � � 2 seconds 0.4 0.74 (0.08) 0.91 (0.01)
LSTM-AE 128 � � � 2 seconds 0.4 0.73 (0.08) 0.90 (0.02)
LSTM-AE 128 � � � 2 seconds 0.4 0.73 (0.08) 0.90 (0.05)
LSTM-AE 128 � � � 1 second 0.1 0.87 (0.04) 0.92 (0.02)
LSTM-AE 128 � � � 1 second 0.1 0.80 (0.07) 0.89 (0.03)
LSTM-AE 128 � � � 2 seconds 0.1 0.79 (0.09) 0.89 (0.03)
LSTM-AE 128 � � � 2 seconds 0.1 0.79 (0.07) 0.89 (0.03)
1DConv-AE 64 � � � 1 second 0.4 0.71 (0.08) 0.90 (0.02)
1DConv-AE 64 � � � 2 seconds 0.4 0.69 (0.08) 0.87 (0.03)
1DConv-AE 64 � � � 1 second 0.4 0.66 (0.09) 0.87 (0.03)
1DConv-AE 64 � � � 2 seconds 0.4 0.66 (0.08) 0.86 (0.02)
1DConv-AE 64 � � � 1 second 0.1 0.76 (0.09) 0.88 (0.03)
1DConv-AE 64 � � � 2 seconds 0.1 0.71 (0.10) 0.86 (0.03)
1DConv-AE 64 � � � 1 second 0.1 0.71 (0.09) 0.86 (0.03)
1DConv-AE 64 � � � 2 seconds 0.1 0.70 (0.11) 0.85 (0.04)

Table 5.18: Top 4 results for the second two rows for every MCS (OpenPose) in the data
configuration table.

Table 5.19, tabulates the training and testing sizes for various data configurations for
Camera 4. It was also observed that the OpenPose data representation includes ≈ 38%
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Data Conf
Training Data

(Normal)
Testing Data

(Normal)
Testing Data
(Abnormal)

WO: 1, MCS: 0.4, WL: 1 (12840, 30, 50) (3210, 30, 50) (286, 30, 50)
WO: 1, MCS: 0.1, WL: 1 (23354, 30, 50) (5839, 30, 50) (445, 30, 50)
WO: 1, MSC: 0.4, WL: 2 (6282, 60, 50) (1571, 60, 50) (150, 60, 50)
WO: 1, MSC: 0.1, WL: 2 (11500, 60, 50) (2875, 60, 50) (246, 60, 50)
WO: 1, MSC: 0.4, WL: 3 (4052, 90, 50) (1013, 90, 50) (71, 90, 50)
WO: 1, MSC: 0.1, WL: 3 (7527, 90, 50) (1882, 90, 50) (131, 90, 50)
WO: 0, MCS: 0.4, WL: 1 (6557, 30, 50) (1640, 30, 50) (170, 30, 50)
WO: 0, MCS: 0.1, WL: 1 (11854, 30, 50) (2964, 30, 50) (249, 30, 50)
WO: 0, MSC: 0.4, WL: 2 (3195, 60, 50) (799, 60, 50) (88, 60, 50)
WO: 0, MSC: 0.1, WL: 2 (5815, 60, 50) (1454, 60, 50) (136, 60, 50)
WO: 0, MSC: 0.4, WL: 3 (2088, 90, 50) (522, 90, 50) (54, 90, 50)
WO: 0, MSC: 0.1, WL: 3 (3820, 90, 50) (956, 90, 50) (89, 90, 50)

Table 5.19: Training and testing sample sizes with different parameters for Cam4
(OpenPose)

more test samples than PoseNet’s when MCS = 0.1. However, at higher confidence
scores, PoseNet contains ≈ 15% more data. This shows that OpenPose as a pose es-
timation model managed to predict more frames when the human subject is partially
visible. The same table for PoseNet was presented earlier in this chapter, marked 5.14.
Similar to PoseNet, all cameras contained a similar amount of data but cameras 2 and 4
contained ≈ 15% more.

Since in Table 5.18 the mean scores are given, a breakdown for each camera model for
the top performing models is given in Table 5.20. This table shows the average PR AUC
for every camera model (for all 5 folds) together with the standard deviation (shown in
brackets). It was observed that on average, the LSTM-AE model managed to perform
quite well on all cameras but excelled in Cam5. As opposed to PoseNet, both models
also managed to do quite well on cameras 4 and 5. This shows that the data represen-
tation for OpenPose is able to handle various camera angles better than PoseNet. On
the other hand, the PR AUC scores achieved by the models trained on PoseNet’s data
representation were much higher than OpenPose’s.

The PR curves and confusion matrices for the best models for MCS = 0.1 are shown
in Figures 5.19 and 5.20 respectively. The PR curves demonstrate that at various thresh-
olds, the models are able to classify normal and abnormal sequences of data. It also
shows that the model for Cam3 performed worst out of all 5 cameras. On average, the
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Model Cam1 Cam2 Cam3 Cam4 Cam5

LSTM-AE 128
(MCS 0.4)

0.78 (0.04) 0.77 (0.03) 0.77 (0.06) 0.74 (0.04) 0.92 (0.02)

LSTM-AE 128
(MCS 0.1)

0.85 (0.02) 0.87 (0.02) 0.79 (0.03) 0.89 (0.02) 0.93 (0.01)

1DConv-AE 64
(MCS 0.4)

0.67 (0.06) 0.65 (0.02) 0.72 (0.03) 0.65 (0.02) 0.87 (0.02)

1DConv-AE 64
(MCS 0.1)

0.80 (0.02) 0.72 (0.04) 0.61 (0.03) 0.80 (0.03) 0.87 (0.02)

Table 5.20: Camera average PR AUC scores and standard deviation values for the top
performing models (OpenPose)

LSTM-AE model outperformed the 1DConv-AE model in all data configurations. The
graphs also show the precision and recall scores for each camera for the maximum F4
score recorded. These are marked with a ‘star’ marker and shown in the legend. The
confusion matrices present a breakdown of the instances that were correctly and incor-
rectly predicted. On average, the LSTM-AE model was able to correctly predict 90% of
the abnormal sequences and 91% of the normal sequences from all cameras.

The top performing models were also tested with different number of LSTM units (for
LSTM-AE) and CNN filters (for 1DConv-AE) as outlined in Section 4.5.2. In general, it
was noted that the results were not significantly different for the LSTM-AE, which is
the best performer on partial visibility MCS. However, improvements were observed
for the 1DConv-AE model with different CNN filters. Such improvement however still
did not outperform the LSTM-AE model. The results are tabulated in the appendix in
Table A.2.

5.3.5.6 Summary

In this analysis, the ADL dataset was used to evaluate the proposed method on two
data representations extracted by PoseNet and OpenPose. The LSTM-AE and 1DConv-
AE models were trained to reconstruct the normal data at various data configurations.
Specifically, one of the data parameters (MCS) was used to train the model on partial
and full body visibility. In both data representations, both models produced promising
results. Table 5.21 aims at providing a summary of the results that were presented ear-
lier in this section.
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(a) LSTM-AE model

(b) 1DConv-AE model

Figure 5.19: PR Curves for LSTM-AE and 1DConv-AE models. Conf.: WO: �, DS: �,
WL: 1, MCS: 0.1 (OpenPose)

It was observed that the models trained on PoseNet data were able to handle full
visibility better than OpenPose. On the other hand, the models trained on OpenPose
data were able to handle partial visibility views much better. The LSTM-AE model per-

113



Chapter 5. Results and Evaluation 5.3. Detecting abnormal behaviour

(a) Cam1 (b) Cam2 (c) Cam3

(d) Cam4 (e) Cam5

Figure 5.20: Confusion Matrices for LSTM-AE model. Conf.: WO: �, DS: �, WL: 1,
MCS: 0.1 (OpenPose)

formed best when the WL was set to 1 second. On the contrary, the 1DConv-AE model
was able to perform better when the WL was set to 3 seconds. In comparison with
PoseNet’s representation, the models trained on OpenPose’s representation generated
more false positives. This explains why the mean F4 score for PoseNet is higher.

Finally, these results demonstrate that both AutoEncoders were able to correctly learn
how to reconstruct the normal activities. Furthermore, the technique of using the recon-
struction errors to classify data sequences proved to be very fruitful for this problem
and shows that a semi-supervised approach fits well to this problem. Additionally, the
results also indicate that a semi-supervised model trained on solely body estimated key-
points is indeed able to detect anomalous sequences without using extra hardware such
as depth sensors.
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Data
Representation Model Configuration

Mean
PR AUC
(all cams)

Mean
F4 Score

(all cams)

PoseNet 1DConv-AE
Full visibility
WL: 3 seconds

0.91 (0.10) 0.98 (0.02)

OpenPose 1DConv-AE
Full visibility

WL: 3 seconds
0.64 (0.12) 0.88 (0.03)

PoseNet LSTM-AE
Partial visibility

WL: 1 second
0.74 (0.08) 0.94 (0.02)

OpenPose LSTM-AE
Partial visibility

WL: 1 second
0.87 (0.04) 0.92 (0.02)

Table 5.21: Results summary for PoseNet and OpenPose data representations, for both
MCS values

5.4 Evaluation against other work

The proposed method which was presented in Chapter 4 and evaluated in the previous
section is compared with the models implemented by Debard et al. [19]. As outlined in
Chapter 2, Section 3.7, the authors used background subtraction together with a particle
filter to locate and track the person from the video footage. After detecting the human
subject from the footage, they constructed a feature vector consisting of 5 elements and
used them to train an SVM to classify events such as falls and non-falls. To evaluate their
method, they used the same ADL dataset used in this study and trained their models
using k-fold CV where k was set to 10.

In view of this, the data configurations that achieved the best performance were used
to re-train the models using 10-fold CV. Since in their approach the authors trained their
models on all frames (i.e. partial and full visibility), only the MCS values that cap-
ture both partial and full visibility (0.1 for OpenPose and 0.4 for PoseNet) were used
for comparison. To further ensure that the same testing environment is used, the same
window length used by Debard et al. (1 second) is utilised. Furthermore, to reduce the
false alarm rate, the authors removed single detections. Such approach was replicated
as described in Section 4.5.1. In this comparison, the LSTM-AE model is used because,
as outlined earlier in this chapter, it outperformed the 1DConv-AE model at such data
configuration.
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(a) Debard et al. [19]

(b) This study: LSTM-AE trained on PoseNet

(c) This study: LSTM-AE trained on OpenPose

Figure 5.21: PR Curves presented by Debard et al. [19] and this study

Figure 5.21 illustrates 3 PR curves. Figure (a) shows the results achieved by Debard
et al. [19] that were presented in [5] whereas (b) and (c) represent the results carried
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Debard et al. [19]
LSTM-AE 128

PoseNet
LSTM-AE 128

OpenPose

Cam1 P: 0.47 R: 0.67, AUC: 0.56 P: 0.78 R: 1.0 AUC: 0.94 P: 0.74 R: 0.96 AUC: 0.93

Cam2 P: 0.38 R: 0.51, AUC: 0.35 P: 0.81 R: 1.0 AUC: 0.86 P: 0.74 R: 0.89 AUC: 0.87

Cam3 P: 0.41 R: 0.64, AUC: 0.40 P: 0.76 R: 0.97 AUC: 0.90 P: 0.61 R: 0.97 AUC: 0.90

Cam4 P: 0.45 R: 0.71, AUC: 0.56 P: 0.54 R: 0.84 AUC: 0.58 P: 0.84 R: 0.89 AUC: 0.93

Cam5 P: 0.34 R: 0.58, AUC: 0.38 P: 0.66 R: 0.99 AUC: 0.82 P: 0.86 R: 0.95 AUC: 0.95

Table 5.22: Comparison of Precision, Recall and AUC for all three methods. Higher
values are better.

out in this study. From this quantitative evaluation it is evident that the method em-
ployed in this study outperforms the approach undertaken in [19]. The PR curves
clearly demonstrate that the models trained in this study have a higher precision-recall
ratio and thus the AUC scores are superior.

A summary of the precision (P), recall (R) and AUC for each camera and for all three
methods is presented in Table 5.22. Both the precision and recall for all methods were
selected after finding the maximum Fβ score (where β = 4) from the PR curve itself.
Having slightly higher precision and recall values, the models trained on PoseNet seem
to perform better for cameras 1, 2 and 3. However, in cameras 4 and 5, the models
trained on OpenPose data outperformed the models trained on PoseNet significantly.
It is evident that the employed LSTM-AE models were able to detect more normal and
abnormal events than the work in [19]. It can also be observed that the LSTM-AE models
for all cameras managed to score a considerably high recall score. This is vital because
in anomaly detection systems an abnormal event that is not detected (false negative) is
much riskier than an undetected false positive.

5.5 Conclusion

This chapter aimed to provide the reader with the techniques employed to evaluate the
proposed method. The results together with their interpretation and key findings were
presented and structured in 3 main sections.

In the first section, the results demonstrated that pose estimated data from RGB videos
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is indeed comparable to sensor data from depth cameras such as the Kinect for classify-
ing human actions. This is because the accuracy scores were considerably high for both
pose estimated and sensor data (88% and 92% respectively). Taking into consideration
that no extra hardware was utilised, the results from this experiment are quite promis-
ing as they show that pose estimated data from a 2D image can be informative enough
to describe a human action.

In the second section, the evaluation metrics used to evaluate the performance of the
models to detect abnormal behaviour from video footage were presented. Furthermore,
two different datasets were outlined and utilised to evaluate the effectiveness of the
proposed method. The KTH dataset was used to conduct a preliminary analysis and
the ADL dataset was utilised to determine whether the proposed method is capable
of detecting abnormal behaviour in a realistic environment. In both datasets, it was
determined that both AutoEncoder models (LSTM-AE and 1DConv-AE) were able to
correctly learn how to reconstruct the normal activities. Furthermore, the technique of
using the reconstruction errors to classify data sequences proved to be very fruitful for
the resolution of this problem and showed that a semi-supervised approach fits well
to this problem. Additionally, the results also indicated that a semi-supervised model
trained solely on body estimated keypoints is indeed capable of classifying between
normal and anomalous sequences as an average PR AUC of 0.86 was recorded.

In the final and third section, the results of this study were compared to similar work
done on the same dataset. It was determined that the method employed in this study
outperforms the approach undertaken in [19] with a significantly higher precision-recall
rate.
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Conclusion and Future Work

In this study, a method for detecting abnormal behaviour through video footage was
presented. The main aim of this dissertation was to determine whether the human body
keypoints extracted from RGB images can be used to train a model to detect abnormal
activities.

In order to achieve this goal, a number of objectives were set up. The first objective
involved extracting human body keypoints from a 2D image with the use of pre-trained
pose estimation algorithms.

The extracted body keypoints were then used to:

� To train a number of supervised models in order to compare sensor data with
estimated body keypoints from RGB images. This was presented in Chapter 4,
Section 4.6.

� To train a number of semi-supervised models that should be able to detect abnor-
mal human behaviour. This was presented in Chapter 4, Section 4.5.

The last objective was to measure the effectiveness of all the models, this was pre-
sented in Chapter 5, Sections 5.2 and 5.3.5. The rest of this chapter aims at providing the
reader with a detailed description of how each objective was achieved.

In the first chapters, an overview of machine learning techniques employed in anomaly
detection was given. This was followed by an in-depth background on recent tech-
niques used in the field. In these chapters, the focus was on networks that are able
to handle the temporal dimension of the data, such as RNNs. Furthermore, anomaly
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detection techniques employed in sequence-based data such as videos and time-series
data were reviewed and compared. This includes techniques employed in detecting and
recognising human activities as well as other techniques that use 3D convolutions and
similar architectures to process the whole video frames. An overview of pose estimation
algorithms and related work in the area was also presented.

In light of the principles that were explored and reviewed, the proposed solution was
developed. Two pose estimation algorithms were used to extract body keypoints from
each video frame. The data was organised to follow a time-series manner. Presented
in Chapter 4, Section 4.4, two pose estimation algorithms were used to extract the hu-
man representation from video footage. As reported in Chapter 5, Section 5.3.5.2, the
histograms show that both algorithms managed to estimate the majority of the key-
points even when the persons were partially visible or occluded by other objects. Such
data was then pre-processed and used to train two types of AutoEncoder models (Sec-
tion 4.5.2). The first model comprised of a number of LSTM layers, whereas the sec-
ond model was designed with a number of 1D Convolution layers. A semi-supervised
approach was employed whereby the models were trained to reconstruct the normal
sequences only. This technique is useful in domains such as anomaly detection where
the anomalous data is either scarce or expensive to acquire. In addition, the objective
of determining the effectiveness of 2D estimated points from an image, when compared
to data acquired from sensors (such as inertial and depth) was also evaluated after con-
ducting a number of experiments (Section 5.2).

The final objective of measuring the effectiveness of the models was presented in
Chapter 5 and was structured in three parts. In the first part, the results and evaluation
techniques for the comparison between sensor and pose estimated data were presented
and discussed (Section 5.2). The second part dealt with the presentation of the results
and evaluation metrics used to evaluate the main aim of this dissertation (Section 5.3.5).
And finally, in the third part, the acquired results were compared to similar work done
on the same dataset (Section 5.4).

The results from the first part demonstrated that pose estimated data from RGB videos
is indeed comparable to sensor data classifying human actions. This concludes that
with a traditional camera (which is cheap and easy to acquire) and a pose estimation
algorithm, one could collect human data as well as build models that recognise human
actions, without relying on extra hardware, setup and/or wearable sensors. This shows
that the objective of training a number of supervised models to compare sensor data
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with estimated body keypoints was achieved.

In the second part, both AutoEncoder models that were designed to learn the normal
behaviour (and subsequently detect anomalous behaviour through the reconstruction
error), were evaluated on two different datasets. Overall, in both datasets and with
both pose estimation algorithms, the models managed to correctly distinguish between
normal and abnormal sequences of data. On the challenging ADL dataset, the PR AUC
scores for 5 cameras ranged between 0.86 to 0.95. When compared to the work carried
out on the same dataset by Debard et al. [19], the obtained results contained an improve-
ment of ≈ 0.30 on the PR AUC. This answers the main research question of this study
and shows that the models trained on solely body estimated keypoints are indeed capa-
ble of detecting abnormal human behaviour from video footage.

6.1 Limitations and Future Work

This section presents a list of future improvements together with some limitations of
this study, the latter due to time constraints.

Variable length activities - At present, data sequences that exceed the set confidence
score are segmented into different window lengths of 1, 2 and 3 seconds. Distinct mod-
els are then trained on different window lengths as discussed in Section 4.5.1.7. Such
window lengths capture fixed length activities and may not capture the whole activity
taking place. An improvement to this would be to capture variable length activities.
This could be done by using a weighted similarity metric on the estimated keypoints
whereby a high value would imply a change in activity. Such metric was implemented
using the same technique used by Google in their AI experiment called ‘Move Mirror’1.
This metric, which captures a weighted similarity between two poses, was applied to
one of the ADL videos on the first 20,000 frames. Figure 6.1 illustrates the output of
such metric in green. The blue and orange line plots show the x and y values respec-
tively. The actions were manually marked on the plot where the change in posture is
clearly indicated by the higher weighted distance value. In this case, the activities will
be segmented when a change in posture is detected.
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Figure 6.1: Detecting change in posture

Low quality scenes - To date, the available pose estimation models are unable to handle
scenes which are very low in quality. As outlined in Section 5.3.5, the dataset contained
low light scenes where the human subject is seen on the bed covered with sheets. Apart
from the fact that a lot of body keypoints were ‘hidden’ by the bed sheets, the only avail-
able source of light was infra-red. Another limitation in realistic video datasets, as seen
in the ADL dataset, is when human subjects are heavily occluded by objects or even
if they are partially out-of-frame. Such conditions make the pose estimation process
harder and, as a result, the algorithm fails to provide any detections. An improvement
to this would be to manually collect and annotate challenging scenes and re-train the
pre-trained models. This process, however, may be expensive and time-consuming.

3D Pose Estimation - The method proposed in this dissertation uses 2D pre-trained
pose estimation model to extract raw features from 2D images. Such models, as out-
lined in Section 4.4 output a 2D vector containing the x and y positions for each body
keypoint. An extension to this study would be the exploration of the use of pose esti-
mation models that output a 3D representation. A recent model codenamed DensePose
[29] aims at mapping all human body parts to a 3D surface. It is also able to provide a
3D representation of the body keypoints in segmented body parts. Since this provides
more information, it allows a richer representation of the human subjects to be extracted
which could potentially contribute to the model’s skill.
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2D ConvLSTM - Outlined in Section 3.5, a ConvLSTM layer is a variant of LSTM where
unlike the fully-connected LSTM (FC-LSTM), the operations have convolution struc-
tures. Researchers observed that such a model is able to capture spatio-temporal corre-
lations better than the FC-LSTM [76]. Although the authors trained a model to classify
data, this method can also be utilised for detecting anomalous data patterns. In view of
this, a further improvement to this study would be to transform the data to a 2D repre-
sentation and then train an AutoEncoder model comprised of ConvLSTM layers.

Forecasting the next move - Both the LSTM-AE and the 1DConv-AE were trained to
reconstruct the given normal input. An interesting extension to this research would be
to train a forecasting model. In this case, instead of training the model to reconstruct
the whole input, the model would be trained to predict the next time-steps values and
to forecast the next values by feeding past time-series values as input and future time-
series values as output. The prediction error would then be used to assess the likelihood
of anomalous events. A low prediction error would indicate that the move was expected
and thus considered to be ‘normal’. On the contrary, a high prediction error would in-
dicate an anomalous event.

Do nearby objects contribute to the outcome? - Another extension to this study would
be determining whether context in a given environment, such as objects, contribute
to detecting abnormal behaviour. A pre-trained CNN model trained to detect various
objects can be used to output a vector representing the objects in the scene. A similarity
based metric (such as cosine similarity) can then be used to measure the similarities
between the training and the testing scene. Such similarity will act as a weight to the
anomaly score and indicate whether context contributes to detect irregular behaviour or
not. Such technique would be useful for transferring knowledge learnt from one camera
to another.

6.2 Final Remarks

This research introduced a novel semi-supervised learning technique for detecting ab-
normal human behaviour through videos. The proposed solution was extensively eval-
uated on two datasets, one of them including very challenging scenes. The outlined
results demonstrated the effectiveness of the proposed AutoEncoder models, that were
able to correctly distinguish between normal and abnormal data sequences. The results
also showed that the proposed method outperformed similar work done on the same
dataset. The fundamental findings of this approach are two-fold. Firstly, it was de-

123



Chapter 6. Conclusion and Future Work 6.2. Final Remarks

termined that pose estimated data from video frames compares well with sensor data
and moreover can be informative enough to classify human actions. Secondly, the high
F-score rates, which provide a combined metric, show that the models are capable of
classifying both normal and abnormal instances with a very low rate of false negatives.
Thus, this technique can be utilised by existing (or new) surveillance systems that are
aiming to enable the detection of human abnormal activities.
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Appendix

A.1 Pose Estimation Output

. . .
{

" score " : 0 . 9 9 4 2 1 2 4 4 8 5 9 6 9 5 4 3 ,
" par t " : " l e f t S h o u l d e r " ,
" p o s i t i o n " : {

" x " : 1 0 4 . 4 1 3 9 9 5 7 1 3 8 1 0 7 9 ,
" y " : 2 0 7 . 2 2 8 6 5 9 5 4 8 7 6 8 1

}
} ,
{

" score " : 0 . 9 8 9 2 1 6 6 8 5 2 9 5 1 0 5 ,
" par t " : " r ightShoulder " ,
" p o s i t i o n " : {

" x " : 1 6 0 . 6 0 6 3 3 6 9 7 0 4 5 9 7 2 ,
" y " : 1 9 3 . 8 2 6 5 5 3 3 1 7 1 3 3 8 3

}
} ,
{

" score " : 0 . 9 2 6 0 8 5 6 5 0 9 2 0 8 6 7 9 ,
" part " : " le f tElbow " ,
" p o s i t i o n " : {

" x " : 9 4 . 5 6 6 8 9 5 2 7 3 3 1 8 7 6 ,
" y " : 2 5 8 . 8 3 6 0 5 8 4 6 6 6 0 2 6

125



Appendix A. Appendix A.1. Pose Estimation Output

}
} ,

. . .

Listing A.1: Sample of JSON object for 3 keypoints returned by PoseNet. First key
“score” is the confidence score of the keypoint, second key “part” refers to the name of
the body part and the third key “position” contains the x and y location points of the

keypoint.

[
. . . ( other keypoints of t h i s frame )

0 .9942124485969543 ,
104 .41399571381079 ,
207 .2286595487681 ,
" images_tes t/Cam1/ADL2/1//ADL2_Cam1 . avi −0000000800. jpg " ,

0 .989216685295105 ,
160 .60633697045972 ,
193 .82655331713383 ,
" images_tes t/Cam1/ADL2/1//ADL2_Cam1 . avi −0000000800. jpg " ,

0 .9260856509208679 ,
94 .56689527331876 ,
258 .8360584666026 ,
" images_tes t/Cam1/ADL2/1//ADL2_Cam1 . avi −0000000800. jpg "

. . . ( other keypoints of t h i s frame )
] ,
[

. . . ( other keypoints of the next frame )
]

Listing A.2: Sample of final JSON file for 3 keypoints saved for further processing. First
element refers to the keypoint score, second and third elements refer to the x and y

positions respectively and the fourth element represents the file name.

{
" vers ion " : 1 . 2 ,
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Appendix A. Appendix A.1. Pose Estimation Output

" people " : [
{

" pose_keypoints_2d " : [
1 8 4 . 7 5 2 ,
5 3 . 1 5 8 6 ,
0 . 8 0 1 5 7 9 ,

1 8 6 . 0 9 2 ,
5 8 . 4 1 0 5 ,
0 . 9 0 0 7 8 4 ,

1 7 2 . 8 3 5 ,
5 9 . 7 4 7 7 ,
0 . 8 7 2 2 8 3 ,

. . . ( more keypoints )
]

}
]

}

Listing A.3: Sample ouput JSON file created by OpenPose. The file shows 3 keypoints
(out of 25) together with the confidence score of each. The first and second elements

refer to the x and y positions of the keypoint respectively and the third element refers
to the confidence score of the point.
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Appendix A. Appendix A.2. Histograms for all cameras for both models

A.2 Histograms for all cameras for both models

(a) PoseNet: Camera 1 - Nor-
mal

(b) PoseNet: Camera 2 - Nor-
mal

(c) PoseNet: Camera 3 - Nor-
mal

(d) PoseNet: Camera 4 - Nor-
mal

(e) PoseNet: Camera 5 - Nor-
mal

Figure A.1: ADL - PoseNet confidence score histograms for all cameras (normal)

(a) PoseNet: Camera 1 - Ab-
normal

(b) PoseNet: Camera 2 - Ab-
normal

(c) PoseNet: Camera 3 - Ab-
normal

(d) PoseNet: Camera 4 - Ab-
normal

(e) PoseNet: Camera 5 - Ab-
normal

Figure A.2: ADL - PoseNet confidence score histograms for all cameras (abnormal)

128



Appendix A. Appendix A.2. Histograms for all cameras for both models

(a) OpenPose: Camera 1 -
Normal

(b) OpenPose: Camera 2 -
Normal

(c) OpenPose: Camera 3 -
Normal

(d) OpenPose: Camera 4 -
Normal

(e) OpenPose: Camera 5 -
Normal

Figure A.3: ADL - OpenPose confidence score histograms for all cameras (normal)

(a) OpenPose: Camera 1 - Ab-
normal

(b) OpenPose: Camera 2 -
Abnormal

(c) OpenPose: Camera 3 - Ab-
normal

(d) OpenPose: Camera 4 -
Abnormal

(e) OpenPose: Camera 5 - Ab-
normal

Figure A.4: ADL - OpenPose confidence score histograms for all cameras (abnormal)
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Appendix A. Appendix A.3. Results for different hyper-parameter values

A.3 Results for different hyper-parameter values

Model

LSTM Units
or

CNN Filters MCS-WL

Mean
PR AUC
(all cams)

LSTM-AE 64 0.5-3 0.86
LSTM-AE 64 0.4-3 0.76
LSTM-AE 128 * 0.5-1 * 0.86
LSTM-AE 128 * 0.4-2 * 0.77
LSTM-AE 256 0.5-1 0.88
LSTM-AE 256 0.4-1 0.78

1DConv-AE 64 * 0.5-3 * 0.9
1DConv-AE 64 * 0.4-3 * 0.83
1DConv-AE 128 0.5-3 0.92
1DConv-AE 128 0.4-3 0.86
1DConv-AE 256 0.5-3 0.93
1DConv-AE 256 0.4-3 0.88

Table A.1: PoseNet - Top performing models with different hyper-parameter values.
Rows marked with * denote the results for the hyper-parameters originally set. The

results demonstrate marginal differences for the LSTM-AE model and a slight
improvement for the 1DConv-AE model.
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Appendix A. Appendix A.3. Results for different hyper-parameter values

Model

LSTM Units
or

CNN Filters MCS-WL

Mean
PR AUC
(all cams)

LSTM-AE 64 0.1-1 0.83
LSTM-AE 64 0.4-1 0.77
LSTM-AE 128 * 0.1-1 * 0.87
LSTM-AE 128 * 0.4-1 * 0.79
LSTM-AE 256 0.1-1 0.89
LSTM-AE 256 0.4-1 0.81

1DConv-AE 64 * 0.1-1 * 0.76
1DConv-AE 64 * 0.4-1 * 0.71
1DConv-AE 128 0.1-1 0.8
1DConv-AE 128 0.4-1 0.79
1DConv-AE 256 0.1-1 0.83
1DConv-AE 256 0.4-1 0.82

Table A.2: OpenPose - Top performing models with different hyper-parameter values.
Rows marked with * denote the results for the hyper-parameters originally set. The

results demonstrate marginal differences for the LSTM-AE model and a slight
improvement for the 1DConv-AE model.
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B

Installation Instructions

This section contains the installation instructions for executing the code presented with
this dissertation as well as replicate the results. The code was divided into four main
components:

1. Frame extraction and concatenation of body keypoint files

2. Pose Estimation

3. Detecting abnormal behaviour: Pre-processing data, training and evaluating the
models

4. Comparing Pose estimated data with Sensor data: Pre-processing data, training
and evaluating the models

B.1 Prerequisites

The following is a list of software that is required to execute the code:

� Python 3

� Keras

� Tensorflow

� Jupyter Notebook

� Numpy

� Pandas
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Appendix B. Installation Instructions B.2. Frame extraction and Concatenation

� OpenCV

� Sklearn

� OpenPose (Windows module)

� Apache/NGINX HTTP Server

� PHP

� FFmpeg

All components were fully tested on Windows 10 and partially tested on Ubuntu
16.04.

B.2 Frame extraction and Concatenation

The first component is responsible for processing and extracting frames from videos as
well as concatenating the data after it is processed by the pose estimation algorithm.
This covers the code for modules 1 and 2 outlined in Section 4.2. The file is called
ExtractFrames_ConcatenateFiles.ipynb and is in a form of a Jupyter notebook. The file
consists of a number of cells and is responsible for the following tasks:

� extracting frames from video (using FFmpeg)

� extract specific annotated frames from video

� splitting and sorting files into folders

� processes pose estimation for OpenPose

� handles all dataset processing for modules 1 and 2 (KTH, UTH-MHAD and ADL)

B.3 Pose Estimation

The second component is responsible for extracting the body keypoints from a set of im-
ages. This component was developed with Tensorflow.JS and uses a pre-trained model
called PoseNet. A screenshot of this component is presented in Figure B.1, which shows
a sample output on the KTH dataset. Since this component is in a form of a web appli-
cation, an HTTP server such as Apache is required. PHP also needs to be installed with
the server as the tool uses PHP to save the keypoints to file. This component contains
more than one file and therefore is packaged in a folder called PoseEstimator. The main
files in this package include:
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Appendix B. Installation Instructions B.4. Detecting abnormal behaviour

� index.html - Loads TensorFlow.JS and the required packages, then it loads and
processes all images stored in set folder and estimates the body keypoints for each
image.

� functions.js - Functions used by index.html to visualise the body keypoints and
perform image rotations, amongst others.

� save.php - PHP file responsible for saving the output for every folder in JSON
format.

� images folder - Folder with a number of images ready to be processed

� output folder - Contains list of estimated keypoints

Figure B.1: Pose Estimator demo on KTH dataset

B.4 Detecting abnormal behaviour

The third component is responsible loading and pre-processing the data extracted from
both pose estimation algorithms. This covers the code for modules 3 and 4 outlined in
Section 4.2. The file is called Preprocess_Train_LSTM_Conv1D.ipynb and is in a form
of a Jupyter notebook. The file consists of a number of cells, each of which are well
documented, and contains the following:

� library imports
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Appendix B. Installation Instructions B.5. Comparing Pose data with Sensor data

� functions for data pre-processing (including plotting functions)

� functions for training both AutoEncoder models (LSTM-AE and 1DConv-AE)

� functions for evaluating both models

� execution of the above functions (training, testing and evaluation)

B.5 Comparing Pose data with Sensor data

The final and fourth component is responsible for training separate models in order to
compare pose estimated data with sensor data. As outlined in Section 4.6, different data
representations are loaded, trained separately and compared. The code for such compo-
nent is also in a form a Jupyter notebook and is named PoseVsSensor_PreProcess_Train.ipynb.
This file contains the code for:

� importing required libraries

� loading all datasets (RGB - PoseNet and OpenPose representations, Inertial data,
Skeleton 2D and 3D)

� model architecture for training the supervised model

� padding sequences and preparing the dataset for training

� splitting datasets to training, testing and validation sets (CV)

� training the models

� evaluating the models

B.6 Pre-processed data and trained models

In addition to the code components presented with this study, folders containing the
pre-processed data and pre-trained models are included. Such pre-processed data was
used to train both models in various experiments that were documented in Chapter 5.
The trained models were saved for evaluation purposes and are being provided as an
additional resource. Due to size limitation, only a sample of the data is being provided.
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