
ELD:
Event TimeLine Detection
A Participant-Based Approach to Tracking Events

NICHOLAS MAMO

Supervised by Dr Joel Azzopardi

Co-supervised by Dr Colin Layfield

Department of Artificial Intelligence

Faculty of ICT

University of Malta

October, 2019

A dissertation submitted in partial fulfilment of the require-

ments for the degree of M.Sc. AI.





Copyright c©2019 University of Malta

WWW.UM.EDU.MT

First edition, October 28, 2019



Statement of Originality

I, the undersigned, declare that this is my own work unless where otherwise
acknowledged and referenced.

Candidate Nicholas Mamo

Signed

Date October 23, 2019

iii

b 23 2019



Acknowledgements

I would like to thank the lecturers at the University of Malta, and especially
those in the department of Artificial Intelligence, who prepared me for this disser-
tation. Most importantly, ELD would not have become what it is today without the
guidance and expertise of my supervisor, Dr. Joel Azzopardi, and my co-supervisor,
Dr. Colin Layfield.

Special thanks goes out to Hervé Boisdé and Jorge Rodrigues for their help in
the evaluation of the USA Midterm Elections of 2018, and to Christian Camilleri for
contributing his knowledge of UFC in the corresponding analysis. I would also like
to express my gratitude to Paul Doyle, football writer at The Guardian, who found
time in his schedule to give an interview for the qualitative analysis.

Finally, I would like to express my appreciation for the continuous support of
family members and friends throughout this dissertation.

iv





Abstract

People all over the world watch and talk as events unfold, but what does it take
for a machine to truly track an event through this crowd-sourced narration?

Event TimeLine Detection (ELD) is a real-time Topic Detection and Tracking
(TDT) solution to track events using Twitter with the hypothesis that it takes a
deeper understanding of the event’s domain for a machine to describe its evolu-
tion thoroughly. We test this hypothesis predominantly on football matches as we
propose the novel concept of Automatic Participant Detection (APD) to extract an
event’s participants before it even starts.

We use the detected participants to track events in the TDT component, in which
we contribute a novel feature-pivot algorithm. Seeking to explain developments
within events, TDT hands our two novel summarization algorithms not only the
corpus they are meant to describe, but also the topical keywords within.

Our evaluation demonstrates APD’s potential to discover participants early on
while exposing the algorithm’s dependency on well-defined environments. As a
result, TDT boosts its event coverage through the newly-found participants.

TDT’s understanding of developments and their make-up also leads to im-
proved expressiveness in summaries when compared to authoritative content from
Twitter and the mainstream media. In fact, an interview with Paul Doyle, a football
writer at The Guardian, reveals that ELD’s improvements shift the focus of event
tracking from TDT to summarization.

Through ELD and its contributions we show that although machines may not
have the same understanding that humans accrue over time, they can gain it. In
turn, this comprehension permits them to track events closely.
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1

Introduction

Late in 2010, a fruit-seller by the name of Mohamed Bouazizi set himself on fire. Few
could have predicted what would follow. Bouazizi’s despaired flame spread like wild-
fire from the small city of Sidi Bouzid to the whole of Tunisia and beyond [1, 2].

The Arab Spring forever changed the faces of countries like Tunisia, Egypt and
Libya. Thousands took to the streets to voice their discontent over inflation and grow-
ing political oppression. However, the revolution did not only happen in those streets -
it extended beyond the towns, grew bigger than countries, and played out globally on
social media [1].

During the Arab Spring, Facebook and Twitter contributed to organise activists and
coordinate protests in Northern Africa1, so much so that the demonstrations became
known as the Facebook and Twitter Revolutions. Today, those labels sound hyperbolic.
Even a short time later, research described the social networks as instrumental, but not
necessarily catalytic [2]. Nevertheless, that was a turning point for Twitter, which now
assumes the role of a news outlet for many of its users [3, 4].

Over time, Twitter has helped narrate anything from terrorism-related news [3, 5,
6] to natural disasters [7, 8]. Literature too looked to Twitter to understand what is
happening around the world, with several systems looking broadly for news that is
breaking worldwide [9, 10, 11]. However, Twitter does not only talk about the news
that shocks or disturbs, but also about that which thrills and impassions people.

For years Twitter has been used to discuss sports. In 2018, tweets about the FIFA
World Cup alone were viewed billions of times; people reacted, speculated and cele-
brated on the social network2. Over the years, algorithms appeared in literature that
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Chapter 1. Introduction 1.1. Proposed Solution

focus narrowly on these kinds of events, including American football [12], basketball
[13] and, most predominantly, football [14, 15].

Nevertheless, while everybody contributes to the global conversation, the content
can rapidly spiral out of control. Even back in 2012, Twitter’s conversation about Hurri-
cane Sandy peaked at 16,000 tweets per minute [7]. Provide these microblogs to a citizen
and they will be none the wiser, only over-burdened.

It is for this reason that focus has gradually shifted from retrieving information to
using Artificial Intelligence to understand this data and explain it back to the consumer.
Event TimeLine Detection (ELD) is our proposed solution in this research area, taking
on the information overload problem and instead allowing users to follow the dialogue,
rather than be buried underneath it.

1.1 Proposed Solution

Event TimeLine Detection (ELD) is predominantly a Topic Detection and Tracking (TDT)
solution that aims to leverage the velocity, volume and low latency of Twitter to con-
sume information and instead provide its users with news. Our approach is inspired
and based on our previous work – FIRE: Finding Important News REports (FIRE) [9].

FIRE’s model looks for breaking news around the world using Twitter, splitting the
TDT approach into two steps. Firstly, it clusters incoming tweets to identify what people
are talking about. Then, it looks at how these topics are being discussed to verify that
they are indeed emerging. This set-up allowed FIRE to capture breaking news very
early and with a fine granularity [9]. In ELD, we build on this model, but we turn our
attention towards specific events.

Throughout this dissertation, we think of an event similarly to the rest of literature –
a definition that revolves around two principal notions. Most studies think of an event
as something that happens in a certain time window in a particular location [8, 16, 17,
18, 19, 20, 21, 22, 23]. We follow a similar definition, but we do not exclude that in a
planned event, a number of participants may be instrumental in its developments.

Definition 1 (Event) A series of semantically-related developments that happen over a fixed or
indefinite time window and in a particular space, possibly driven by any number of participants.

Each such event may comprise any number of small developments, or topics, that
shape the event. This is implicit in most studies, but a general understanding of a topic
within an event is a surge in discussion of a subject [16, 24]. Allan et al. describe this facet

���������	
���	
��
���������������������, last accessed on February 10, 2019
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Chapter 1. Introduction 1.1. Proposed Solution

in similar terms, citing the importance of a topic being unexpected [21]. Our definition
of a development is in line with this research:

Definition 2 (Development) A significant moment, or a semantic topic, within an event.

The last piece of the puzzle is the participant - an actor that shapes the event’s course.
Sakaki et al. and Zhao et al. both consider them to be the users tweeting about an event
[8, 20]. Others interpret them as the actors in the unfolding event. Few studies consider
the importance of participants in this way, but those which do share similar definitions.

A number of studies track football matches using not only team names, but also the
names of the players [13, 15, 25, 26] and the coaches [13]. Similarly, Han et al. tracked
Superbowl XLVII using the names of coaches and key players [27]. Along the same
vein, McMinn and Jose’s system looks for named entities in tweets, considering their
importance within events like political debates [18].

We adopt a similar interpretation of participants to enrich the definition of an event.
In this way, an event is not described solely in terms of its temporal and spatial effects,
but also as a product of its participants’ contributions:

Definition 3 (Participant) An animate or inanimate entity that actively influences an ongo-
ing event.

Following these definitions, ELD takes as inputs a short description and the time
window of the event, and follows proceedings on Twitter to create a timeline that caters
to particular interests. In ELD, we focus extensively on football matches since they
are events that generate a lot of discussion and are simple to evaluate. However, we
postulate that our approach can be applied not only to other types of events, but may
also be applicable on other microblogging platforms that provide sufficient coverage of
events. We identify three desirable characteristics that ELD should exhibit.

Firstly, it should minimize latency in delivering news. Twitter is the peak represen-
tation of fast streams, with the brevity of the microblogging environment contributing
not only to volume, but also immediate publication times. Nonetheless, the insistence
of literature on using batch or near-real-time workflows introduces latency.

Secondly, a successful system maximizes the granularity of detected topics. The
coarse beauty of Twitter’s scale is that each distinct voice adds its own character to an
evolving story. Many existing systems compromise on granularity [25, 28, 29], resulting
in timelines that are limited to the inescapable facts without enriching the narrative.

Thirdly, the returned updates should be human-readable and understandable. TDT
systems like ELD harbour a lot of potential to reduce inundating streams to consumable

3



Chapter 1. Introduction 1.1. Proposed Solution

pieces of information. To serve this purpose, these systems need to go beyond detecting
important topics; they need to understand moments and explain them back.

In this dissertation, we make contributions in various areas of Artificial Intelligence,
including big data, text mining and TDT. In fact, ELD’s central hypothesis is that TDT
systems need to understand the domain if they are to achieve the above goals. It is from
this point that ELD departs.

A machine’s understanding differs fundamentally from a human’s understanding.
In ELD, we think of a machine’s understanding as learning about the domain, which
ultimately yields tools with which to achieve the broader goal of TDT better. The process
of understanding starts with Automatic Participant Detection (APD) even before the
event itself starts.

The novel concept of APD is placed at the beginning of ELD’s process and allows our
system to find the main participants that drive an event. It does so from an initial Twitter
stream, before extrapolating other participants from Wikipedia. Once APD concludes,
this understanding phase yields a list of participants, such as the players in a football
match. ELD considers them as tools gleaned from the understanding of the domain and
uses them to broaden coverage of an event by tracking them during the proceedings.

The second phase builds on FIRE’s novel document-pivot and feature-pivot combi-
nation to identify important topics as they emerge throughout the event. In this area,
we present our own novel, feature-pivot algorithm that facilitates the transition towards
a real-time system. TDT too is a process that goes beyond detecting developments and
guides summarization through understanding.

The document-pivot algorithm uses clustering to find the documents responsible
for the salient moments. Then, our feature-pivot approach identifies the topical key-
words that lead to a breaking development and quantifies their importance. In this
way, the document-pivot technique provides the documents that discuss a topic and
the feature-pivot approach extracts from these tweets the topical keywords. It is this
in-depth understanding of each individual moment that fuels our two summarization
approaches.

The third and final summarization phase transforms the machine-readable results
of TDT into legible summaries to form a timeline. The two novel approaches - the
Fragmented MMR (FMMR) and the Document Graph Summarizer (DGS) - seek to ex-
plain developments in the same multi-faceted way that Twitter users describe the mo-
ments; the former picks documents iteratively, and the latter uses graphs to extract the
different conversation perspectives.

It is around these novelties that we formalize our hypotheses for ELD. We look to
create a system that continuously tries to understand an evolving event to finally explain

4



Chapter 1. Introduction 1.2. Aims andObjectives

its developments in detail. The next section takes these contributions and uses them to
formulate the aims and objectives of ELD.

1.2 Aims and Objectives

Machines have an understanding of a domain that is not only different from a human’s,
but also essentially simpler. ELD’s methodology is our attempt to find an answer to
the hypothesis that a deeper understanding of an event’s domain leads to improved
results in the subsequent processes. Therefore to achieve a global understanding of
ELD’s strengths and weaknesses, we work towards the following objectives:

� Determine how well participants can be identified before an event has started;

� Explore the ways in which APD contributes to topic detection;

� Identify the effects of the combined document- and feature-pivot approach on
topic detection in a narrow stream;

� Examine the link between the fragmentation of topic detection and summariza-
tion, and how TDT can contribute to summarization; and

� Analyse summarization’s performance in describing developments.

Although literature points towards certain benefits of identifying participants within
an event, the concept of APD as presented in this dissertation is novel. The first of
our objectives is to explain this research problem in terms of its motivation and bene-
fits. Moreover, we aim to explore its viability and challenges in the scope of microblog
streams.

Our solution to extract participants from a stream affects the TDT component. Thus
it is important to quantify APD’s contribution to topic detection algorithms to under-
stand the potential of this area and how it could be applied in future research.

TDT is at the core of ELD. In our proposed approach, we bring the novel combina-
tion of document-pivot and feature-pivot algorithms to a narrow stream. We perform
an analysis of whether the positive results noted in FIRE [9] carry over to narrow Twitter
streams. Moreover, we contribute a new feature-pivot algorithm. We evaluate its effects
on ELD’s TDT component and its link to summarization.

With the help of the TDT algorithm, the two summarization algorithms consider
topic fragmentation to be an asset, rather than a liability. The last objective of ELD is
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to explore this idea and analyse its results through quantitative and qualitative evalua-
tions.

We evaluate our APD novelties in the domains of sports and politics. We pursue our
evaluation by following popular literature in focusing predominantly on the domain of
football. As enumerable environments, football matches allow for an easily-quantifiable
analysis of ELD’s struggles and qualities.

This quantitative analysis demonstrates the potential of APD to accurately identify
the main participants before the event starts. However, it also brings out its fragility in
loosely-defined contexts.

Football’s popularity also permits for an understanding of how our TDT approach
performs in different scenarios. By using widely-available ground truth, we perform an
analysis that shows how our TDT approach is impervious to tweeting habits.

Moreover, the coverage that football enjoys allows an analysis of the summaries gen-
erated by our algorithms. We perform an evaluation that reveals improvements when
comparing our summaries with tweets by authoritative Twitter accounts and reports
in the mainstream media. We round up the analysis by conducting a semi-structured
interview with Paul Doyle, a football writer at The Guardian.

In this dissertation, we demonstrate that TDT approaches struggle when they are
not allowed to comprehend the domains of events. Through an initial understanding,
ELD exhibits benefits throughout its process, although its timelines leave room for im-
provements to be comparable with media reports. The rest of this dissertation revolves
around how we answer the questions posed by these aims and objectives.

1.3 Dissertation Overview

Next, Chapter 2 provides a brief overview of background principles behind ELD and
Chapter 3 looks at existing literature. Chapter 4 shifts the focus from existing research
to ELD, describing the proposed system’s workflow and the motivations behind our de-
cisions. We move on to the implementation details in Chapter 5 before evaluating ELD
and discussing its results in Chapter 6. Chapter 7 concludes this dissertation, including
how the developed system can benefit from future work.
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2

Background

For much of its process, ELD is either dealing with Twitter or the content derived from
it. This chapter examines the characteristics that have made Twitter the standard base
for many TDT projects. Next, we present the link that transforms human-readable in-
formation into a machine-readable representation.

2.1 Twitter

It is difficult to look at a microblog and imagine how a few hundred characters can tell
a story. In the world of blogs and long articles, tweets are the antithesis of narrative.
Consider, however, the democratization of information dissemination that results in the
small contributions of individuals all over the world to form one whole picture.

Far from the long status updates of Facebook1 and the forum-like structure of Red-
dit2, the concept of microblogging has been gaining popularity. Shedding lengthy com-
ments in favour of terse messages, normally referred-to as microblogs, these networks
provide various benefits to its users.

This family of platforms encompasses some of the largest social networks in exis-
tence. Although unpopular in Europe and in the United States of America, Sina Weibo3

has amassed a huge following in China [30]. Tumblr4, a blogging-oriented platform has
rivalled with Twitter5 in the past [31].

More than any other network, Twitter has become a popular platform not only for
regular netizens, but also for the scientific community. Its huge user base and the incre-

1����������	
���
���, last accessed on February 17, 2019
2��������	����
���, last accessed on February 17, 2019
3���������	�
�
���������
���, last accessed on February 17, 2019
4�����������
��
����, last accessed on February 17, 2019
5������������	�
���, last accessed on February 17, 2019
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mental changes refined the microblogging recipe. Although other modern social net-
works, like Mastodon6, have tried to emulate its success, Twitter remains one of the
most commonly-used social networks.

Up until recently, Twitter was synonymous with its 140-character microblogs, called
tweets [4, 32, 33, 34]. All of the text, user mentions, hyperlinks and media had to share
these 140 characters, nibbling away from users’ expressive freedom. Since September
of 2017, Twitter has relaxed these limitations to permit 280 characters, but users venture
only cautiously beyond the historical restrictions7.

The platform also developed its social aspect built atop a graph structure. Twitter
allows its users to follow other users to get updates on their timelines. This results in
a directed mesh that connects all users based on their follower-followee relationship
[1, 4, 32]. Users can then interact with each other and their content in various ways.

One popular conversation tool is the ability to tag other users by using the @ sym-
bol, followed by their handle, or username. Twitter connects together replies to tweets,
gradually constructing a chain of microblogs to form a conversation among users [4, 16,
32, 33]. Content interaction is another important facet of conversation on Twitter.

Users can like microblogs and retweet, or share, tweets on their own timeline for
their own followers to see. Over time, this facility has climbed to become a predomi-
nant means of conversation. Furthermore, users can add their own comments to these
retweeted microblogs [4, 16, 32, 33].

Retweets are particularly useful in the context of news dissemination, as was the
case during the Arab Spring [1]. However, whereas retweeting is a convenient way of
sharing content, spreading tweets requires a mix of considerable following and luck.
A Twitter-born solution is the hashtag convention, which tags tweets using the hash
symbol (#) followed by a keyword [16, 35].

This convention has found many uses on Twitter, from building social movements
to categorizing tweets, thereby facilitating their discovery [1, 32, 36]. Hashtags also pack
a lot of semantics into a single keyword, countering the relative brevity of tweets [36].
In turn, the short nature of microblogs elicits two main advantages that have attracted
researchers as much as users.

Firstly, the short messages take less time to write than an elaborate blog post, for
example [4, 37, 38]. Zhao et al. examined real-time events and concluded that users
comment about developments within 13 seconds of them happening [12]. Secondly,
users post more often than they do on traditional mediums [4, 6, 34, 37, 39].

6������������	
	���	
������	��, last accessed on February 21, 2019
7��������������
�����	��������������������������������	����������
	��	���
����������

�	��
����	
�
����� �����������
������������, last accessed on March 2, 2019
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The sheer volume of tweets published at a rapid velocity create a big data problem
that has to be managed carefully. Nonetheless, the prospect of this extensive, low la-
tency knowledge has made Twitter an alluring venture for those researchers that found
ways to navigate it properly. However, managing the inundating stream of tweets is
only the start of a list of challenges.

As expected of a real-time social network, Twitter is teeming with emotions, and
this sentiment works its way into the tweets [16, 17, 29, 34]. This proved problematic
in studies like Löchtefeld et al.’s, which looks at sport events - environments that are
especially emotionally-charged and riddled with colloquialism [29].

Emotion is only the tip of the iceberg when it comes to colloquialism. Social media’s
open nature means that anyone can contribute to any subject and language can be quite
incoherent. Twitter’s brevity encourages this behaviour, such as through abbreviations
[17, 34, 40].

This growing understanding of Twitter has been facilitated since tweets are predom-
inantly published publicly [32, 40]. Although this is a desirable feature, publicity also
breeds spam and noise. Even early in Twitter’s life, Java et al. observed that the major-
ity of the tweets are what they called “daily chatter”, interesting to very few users [4].
Other times, bots exploit Twitter’s openness to serve their own agenda, in the meantime
creating a lot of spam [9, 28].

A more recent problem is fake news, which gained prominence during the US Pres-
idential Election Campaign of 2016, and again a few months later, while Britain was
voting to leave the European Union [41]. Research into verifying online information is
still in its infancy, but it does point towards an ever-increasing need of wariness when
mining social media.

Researchers who brave these challenges discover an immense source of knowledge
about the world. Twitter’s API makes all of the public microblogs available for col-
lection - albeit with some limits - which puts a lot of data in the hands of researchers.
Through this set of tools, prospective miners of the Twitter stream can listen to general
discussions or focus on a narrower stream [37].

Most prominently, Twitter has been used to commentate events of historical impor-
tance from all over the world, from major disasters [6] to political upheavals [1]. To this
end, systems like FIRE [9] and TwitterMonitor [10] use Twitter’s API to extract major
breaking news from all over the world. Other, more specific projects, like Marcus et al.’s
TwitInfo, focus on singular events, like football matches [42].

Twitter has also taken an important role in emergency situations. As early as in
2010, Vieweg et al. monitored conversations that centred around flooding and wildfire
emergencies to build an overview of what was happening [43]. Perhaps driven by the
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disastrous implications of earthquakes, they have also been the focus of many research
projects, often permitting detection within a few minutes [6, 8, 42, 44].

In such events, beyond recounting and reporting news, it could be argued that Twit-
ter becomes a microcosm of the world itself. The changes in sentiment [16] and commu-
nication habits [26, 45] reflect the real-life dynamics, but who is Twitter?

As FIRE looks to extract important news by mining Twitter’s conversations, the defi-
nitions too reflect the meaning of importance. Mamo and Azzopardi reason that what is
significant to Twitter may not always be representative of what the world thinks is im-
portant. For this reason, FIRE adopts a narrow definition of importance that is relative
only to what the social network finds important [9].

Apart from being a networking platform, Kwak et al. find that Twitter serves the
function of being a news outlet to many of its users [33]. It is therefore unsurprising
that Twitter’s user base also includes many journalists [46] who seek to simultaneously
push news and learn about it from sources present in the heart of the action [1].

It is for these reasons that research, rather than stopping at understanding the digital
world of Twitter, is attempting to figure out the real world through this social network
[26]. Many systems have considered Twitter to be more than simply a social network,
but a window into the world [6]. The next section takes a more technical view of the
machine representations of tweets.

2.2 Vector Space Model

Like most data on the web, tweets represent information created by and aimed at hu-
mans. In spite of all the content that they harbour, these messages are useless in their
raw form to an algorithm. To make sense of human-readable information, the natural
approach is to convert it into a more adept representation.

In most cases, the go-to solution is the Vector Space Model (VSM), which has its
basis in vectors. As mathematical constructs, vectors deal more comfortably with num-
bers than with the ambiguity of words. The model represents documents in a multi-
dimensional space. Each dimension is a feature with a weight that is proportional to
its importance in the document. In this way, the mathematical representation allows
comparisons between documents based on their feature make-up [47, 48].

For this reason, the choice of features depicts a caricature of the content, bringing
out the most important characteristics according to the system’s interpretation. In their
system, Sarmento et al. were interested in how entities interact with each other, which
they represented as co-occurrence features [47].
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Petkos et al. and Ratinov et al. consider the semantics of words by harnessing the
knowledge embedded in WordNet and Wikipedia [49, 50]. Ultimately, Petkos et al.
abandoned this representation in favour of a simpler approach, resembling the popular
Bag of Words (BOW) representation [49].

The BOW’s dimensional space is synonymous to that of the words [50]; each word,
or token, in the document is represented with its own dimension, with a weight that is
normally proportional to the number of times that it occurs. Implicitly, since the vector
space has no ordering, this model also ignores the order of words.

Although the BOW model is fairly simple, it is also flexible. To reduce dimension-
ality, one common preprocessing step is to coalesce words with similar morphologi-
cal origins using word normalization. Mamo and Azzopardi adopt the wildly popular
suffix stripping approach introduced by Porter [51], commonly referred to as a Porter
Stemmer [9].

Petkos et al. go in a different direction by reducing a word to its lemma [49]. This
approach has the advantage of reducing a word to another real term, but it is also over-
reliant on a dictionary [52, 53]. Although stemming may not necessarily map words
to real terms, it minimizes dimensionality more than lemmatization [53]. Moreover,
whereas both approaches have been shown to improve results [53], various studies
noted the complexities of lemmatization, which weighs on the efficiency [52, 53, 54].

Additional preprocessing steps depend on the application. One distinction of note
is the approach taken by both Ozdikis et al. and Löchtefeld et al., who deal with sports
commentary on Twitter. In these cases, developments often result in emotions, which
manifest themselves in repeated characters, like GOOOAAAL. Both studies overcome
these issues by removing repetition in tokens [17, 29].

Stopword removal is another regular occurrence in VSM models, filtering out terms
like is and when [9]. Seen in a wider context, the decision to ignore common words is
akin to assigning them a weight of zero. In fact, it is common for terms to have different
weightings.

Various authors have surveyed term weighting schemes and explain how feature
values are made up of three components - the local weight within the document, the
global importance of a keyword, and a normalization factor [48, 55].

The local weight measures the importance of words within one document, and it is
usually combined with the global context to put the importance of a token in a broader
perspective. The Term Frequency-Inverse Document Frequency (TF-IDF) scheme has
become one of the most commonly-used methods to weight terms [56].

The TF component assigns a value that is proportional to the frequency of a term in
the content [55]. Other variations were introduced over time, including the augmented
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normalized term frequency of Salton and Buckley [55]. The IDF part deals with the
discrimination value of terms [48, 55].

As early as in 1972, Sparck Jones argued that infrequent terms contribute to their
specificity [57]. From this argument sprang the idea that those terms which are fre-
quent in the local context, but do not appear often globally, characterize the document.
This comprises the Inverse Document Frequency (IDF) [48, 55], which appears in many
systems [49, 58, 59].

Lastly, the normalization factor has to be understood within the context of domains
where the length of documents varies greatly. This prompted Salton and Buckley to
introduce popular measures so as not to promote long content, including vector nor-
malization [55].

Although by definition, microblogs limit the discrepancy in length among docu-
ments, they present another problem. Brevity often limits the frequency of terms to at
most one per document, in this way transforming the IDF component into the inverse
term frequency. Moreover, the entire corpus may not be available beforehand to create
the IDF table.

Reed et al. propose that a static corpus can approximate the distribution of a set of
documents. The scheme, which they call Term Frequency-Inverse Corpus Frequency
(TF-ICF), does not make any reference to microblogs at all [60]. However, FIRE uses it
to overcome the challenges of a microblogging environment. By collecting an external
corpus of tweets, the authors could measure the impact of keywords with knowledge
of past usage [9].

2.3 Summary

Twitter being a stalwart component of TDT projects is not merely anecdotal. The social
network’s benefits are evident in the slew of projects in literature that uses its data.
This chapter explored Twitter’s possibilities and possible representations of tweets. The
next part of this dissertation explores systems in literature that incorporate any of ELD’s
characteristics.
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Literature Review

The world of possibilities afforded by Twitter has been explored from several angles,
and many researchers preceded ELD in their ventures. This chapter starts by giving an
overview of systems with a similar scope to our proposed solution.

Many of these systems blend together various approaches to reach their end-goal.
ELD itself is an amalgamation of three research problems. Throughout the chapter we
explore the various methodologies associated with these problems, and how the state-
of-the-art approaches are relevant to this project.

3.1 Similar Systems

The sheer volume of tweets and the immediacy of their publication has made Twitter
a thriving area of study. This section looks at existing systems in literature that sift
through the content generated on the social network to extract meaningful topics.

The abundant microblogs, complemented with copious data about the interactions
between users do more than fulfil human communication needs. With the Twitter API
putting all this data at researchers’ fingertips, many studies view Twitter as a running
commentary of the world’s events and try to bring order to this unstructured stream,
reducing it to a more manageable narrative [61].

FIRE [9], TwitterMonitor [10], NewsStand [11] and others exploit a sample of the
public Twitter stream to identify the major breaking news items around the world.
Then, these prototypes compress thousands of messages into a more meaningful rep-
resentation of what is happening around the world, whether as a timeline [9, 10, 62] or
as an annotated map [11].

Unfortunately, these systems are inhibited by the number of tweets provided by
Twitter API’s and the noisy environment of the social network. In fact, the API pro-
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vides only a random sample that represents anywhere between 1% and 2% of all public
tweets. As a result, projects that rely on the public Twitter stream also find news in
the general discourse. Owing to these limitations, this research area branches out into
another family of solutions that focuses on specific areas of interest.

In such cases, the goal - and in many cases, the approach - is similar to the former
class of Twitter use cases. However, instead of mining the entire public Twitter stream,
the approaches use Twitter’s filtering API to exploit a flow of tweets centred around
particular topics [42, 63, 64, 65]. These artefacts can operate in different areas, such as
politics [63, 66, 67, 68], sports [42, 63, 67], yearly events [63] and emergency situations
[42, 66, 67, 68].

Both families of solutions share common components and face similar challenges.
Building atop the Twitter API, these artefacts need to handle an emotionally-charged
environment where spam and noise thrives [25] while identifying the salient talking
points. Moreover, it is essential that such systems effectively deal with the velocity and
volume of Twitter publications [69].

The general workflow of both types of artefacts starts with streaming, filtering and
preprocessing incoming tweets before extracting salient developments. The detected
sub-topics are presented to users in a human-readable form, commonly as textual sum-
maries or ordered in a descriptive timeline. As these solutions diverge and move from
the general public Twitter stream to more specific streams, so do they come with their
own, specific challenges, starting with the very first step - defining the topic of interest.

The starting point of these systems is describing the subject, or how the Twitter
stream should be filtered. These tracking keywords are often manually-defined, but
the end-goal is to have a list of filtering keywords to cover the event. The simplest
approach to track a topic is to select a small set of keywords that approximate the event.

For example, when Shou et al. sought breaking news about Chelsea F.C., they looked
for tweets mentioning Chelsea [63]. However, such an approach on its own does not
represent semantics adequately. While tracking typhoons and earthquakes, Sakaki et al.
explain that polysemy could pose problems, and highlight the importance of filtering
tweets according to their semantics [8].

Studies like [28], [29], [64] and [65] adopt a sounder solution by embracing hashtags
as a classification tool defined and driven by Twitter users [16, 25, 33, 36]. Gillani et al.’s
study, for example, employs hashtags like #Euro2012 to collect tweets about the UEFA
EURO 2012 football competition [64].

Nonetheless, a study of how the tweetosphere engages in conversation by Zhao et
al. claims that only 11% of messages contain hashtags [12]. This is the reason why many
studies do not depend solely on hashtags as a means to filter the Twitter stream [8, 26,
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42]. Instead, studies consider what constitutes an event.
Some approaches describe the participants that drive the event, rather than simply

the name of the event itself. For example, Corney et al.’s system, which focuses on
football matches, tracks the teams and their players for the entirety of the event [15].
Shen et al. follow a similar approach when working in the domain of basketball [13].

These tracking solutions are not mutually-exclusive. Löchtefeld et al.’s main method
of collecting football matches’ corpora is by using hashtags, but they follow this up by
extracting participants using a knowledge base [29].

Natural Language Processing (NLP) tools substitute the knowledge base in Shen
et al.’s and McMinn and Jose’s research, but like Löchtefeld et al., they do not exploit
information about participants to broaden coverage of an event [13, 18]. Instead, they
seek only to obtain a better understanding of the stream.

Naturally, the scope of an event has to be described adequately before it can be
tracked, but what happens when a user is not knowledgeable enough about the event?
Many researchers skirt this issue, implicitly or explicitly assuming that users have in-
depth knowledge and define keywords that provide sufficient coverage [26].

After defining the starting point, these solutions proceed to reduce an endless stream
of messages into a few salient topics. Some studies tightly couple their approaches with
a class of events, or even a single event due the choice of algorithms.

Gillani et al. use the K-Means clustering algorithm to detect the most important de-
velopments during one football match [64]. Khan et al. [65] and Gao et al. [70] relax this
heuristic by estimating the number of topics using various automated algorithms.

Timing is another important consideration during ongoing events. Batch systems
are the most predominant, with algorithms like FIRE [9] and Sumblr [63] accumulating
tweets in time windows before processing them. One downside of these approaches is
that they introduce latency into the system, keeping these approaches from exploiting
Twitter’s velocity.

Corney et al. alleviate this problem by using smaller batches of a few hundred tweets
at a time and only then processing them [15]. Conversely, Shen et al. create timed bins,
processing tweets every ten seconds [13], and Nichols et al.’s algorithm uses a one-
minute window [14]. Very few go a step further, applying their algorithms in real-time.

One of these real-time systems is Zhao et al.’s artefact [12], which uses a sliding
time window to detect sub-events from American football matches less than a minute
after they happened. Kubo et al.’s approach analyses the number of tweets per second,
comparing it with a normal state [25].

Closely linked with the timing mechanism is the granularity, which very often de-
pends on the underlying topic detection approach. Some studies, like [12], [28] and
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[71], limit the types of detectable sub-events by training classifiers. This is a common
occurrence in sport summarization systems since these kinds of events adhere to rigid
rules. These approaches ensure that more machine-readable knowledge is available to
the respective systems, but classification cannot handle unexpected developments

Others focus on the evolution of tweet volume. Just like Kubo et al.’s approach [25],
several studies extract salient events by monitoring changes in the volume of tweets. In
many cases, this simple approach only provides the incontestable sub-events - a phe-
nomenon that is clearly observable during sporting events.

Low-profile developments, like yellow cards in football, are difficult to capture. This
is because minor moments do not evoke the same emotions, and nor do they generate
as many tweets [12, 14, 29, 42, 64, 71, 72]. Fetching topics with a finer granularity calls
for more sophisticated means, such as by examining bursts in term usage [9, 73].

The final step in many of these systems is a description of the event in a form that
end-users can understand. The simplest approach extracts the tweets that are at the
heart of an event. [62] takes a very simplistic interpretation of summarization, returning
only the first relevant tweet. Other variations promote tweets that contain entities [25],
or the most representative documents [9, 13].

Since events are constantly evolving, some projects promote their temporal notion
by representing them as a timeline. For example, in their study, Alonso et al. detect
emerging news revolving around hashtags, and add contextual information to a time-
line [67]. Lin et al. consider not only the temporal notion, but also how different sub-
events link together to form a storyline [74].

Many of these systems’ summarization modules revolve around the same concepts,
but some take different routes. Certain approaches explain the sub-events that they
unearth by constructing a graph made up of tweets or words. This graph is then used to
extract tweets [68], or construct brand new messages from individual words or phrases
[40].

Summarization concludes the workflow that starts from tweet filtering before de-
tecting and describing emerging topics. The rest of this chapter will take a deeper look
at these three main components of the systems that relate to ELD in some way. Sec-
tion 3.2 lays out some basic definitions, and looks at the most influential approaches
when it comes to expanding a list with similar entities, with the end-goal of providing
broader coverage to an event.

Next, Section 3.3 examines how a stream of tweets can be reduced to a few salient
topics. Section 3.4 concludes this chapter by outlining major contributions in the area
of summarization, and explaining how different methods explain sub-events in such a
way that is understandable to human users.
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3.2 Entity Set and Query Expansion

As alluded to in the previous section, systems that seek to understand a specific stream
share common ground - they must all define a starting point. In Twitter, this translates
to a seed set of keywords that filter out voices that are not discussing one narrow subject
or event. The aim of the stream filtering step, facilitated through the Twitter API, is to
obtain coverage of an event. In ELD we hypothesise that by tracking participants, we
can maximize the coverage of an event.

To the best of our knowledge, existing systems do not automatically extract partici-
pants before the event starts. Instead, they use a few select keywords to define an event
or identify participants manually [13]. Thus, literature about this methodology, which
we coin as Automatic Participant Detection (APD), is lacking. However, the importance
of such an approach is implicit in a few systems.

Within the context of a football match, Shen et al. reason that a search is not only
concerned with the teams, but also with their players and coaches [13]. McMinn and
Jose detect participants later during the tracking phase using Named Entity Recognition
(NER) techniques and then look for entity-specific developments [18].

These systems do not always extract entities automatically. However, they indicate
that for the search to cover an event, it should also include the participants that are
directly relevant. In lack of relevant literature, APD can be thought of as a function of
two other popular areas of study - entity set expansion and query expansion.

The simpler of the two is entity set expansion. The idea behind this approach is to
work up from a small set of items to an enlarged list of entities that belong to the same
class as the initial group. In this way, the seed set is thought to contain examples of a
class of elements, and the approach tries to complete this class by finding missing items
[47, 75, 76, 77].

Although some concepts carry over from entity expansion to APD, our proposed
method is arguably closer to the second approach - query expansion. The goal of query
expansion is to fine-tune a search to reflect the information that a user really needs
[37, 50].

In their study, Efron et al. explain how the brevity of Twitter could mean that tweets
do not have enough space for all relevant terms. In this case, query expansion could
capture more valuable content [78]. In a later study, Nakade et al. further add that
although Twitter generates a lot of data, events that are either small or not in English
may still suffer from a scarcity of tweets. The authors see query expansion as a means
to maximize coverage by listening to all facets of an event [37].

APD aims to bring these advantages to real-time topic detection by maximizing in-
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formation flow from Twitter. Nevertheless, APD differs from these two approaches.
Unlike the research area of entity set expansion, in APD the seed set provided by the
user before the event does not necessarily serve as a list of examples of a class that
needs to expanded. It may be a simple reference to an event, like a hashtag. Moreover,
unlike general query expansion, the described workflow is only interested in fetching
participants of events, and not simply any related terms.

Thus, this approach is akin to a more specific case of query expansion, but under-
standing of the domain is necessary to filter out keywords that are not participants. In
fact, as Gabrilovich and Markovitch explain, domain understanding is imperative in
any query expansion task [79].

Query expansion usually starts off with understanding the concept behind the origi-
nal query, in a broad sense. In this context, Ratinov et al. describe conventional searches
as conceptual searching; the terms provided to this search do not necessarily cover the
whole concept, but they describe its main aspects [50].

To obtain a general idea of the concept, query expansion normally starts with an
initial search, regardless of the scope of the query [39, 50, 75, 77, 80, 81]. Zingla et al.
outline the three ways of performing this look-up - using the local or global contexts, or
using an external source altogether [81].

The local context simply performs a search within the corpus itself, using the re-
turned documents to understand the query and grow the seed set. The global context
uses the entire corpus to try and understand the domain. The alternative is an external
source - usually a large knowledge base - to gain a more global understanding of the
query beyond what is given in the corpus [81].

The authors’ query expansion method for Twitter complements the local context
with Wikipedia [81]. In fact, this encyclopaedia has soared to become one of the most
popular choices in these kinds of algorithms, owing no little to its enormous size [82].

Gabrilovich and Markovitch describe its massive size and openness as two virtues
that make Wikipedia an ideal source of information [79]. Egozi et al.’s system looks
beyond the text for the meaning behind words, constructing a representation of doc-
uments based on the vector space of all Wikipedia concepts [83]. Furthermore, the
structures of pages and the links among articles themselves are two options that have
been exploited for their semantics in research studies, including to expand entity sets
[35, 39, 47, 79, 81, 82].

For example, Zingla et al. explain how articles can give the general idea of a page
without necessarily using all of the text [81]. Conversely, Milne et al. use the links con-
necting articles as the basis to build a thesaurus that would later serve to boost searches
[82]. Wikipedia is also ideal for its organization in the way that it dedicates one page for
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each such concept or named entity [47].
If structure is the priority, formal knowledge bases like DBpedia [81] and Freebase

[84] are preferred to expand queries, and to understand and rank documents better
respectively. An alternative for less sophisticated search queries are thesauri, which
Nakade et al. use to back up searches [37].

Time-sensitive queries have also been explored in literature. In their study, Mas-
soudi et al. consider that as topics and events evolve, so does Twitter’s language. Thus,
the authors opt to assign a higher score to keywords that are temporally-closer to the
query [85].

Whatever the route that is taken, this additional knowledge is conceptually repre-
sented as a set of candidate keywords that can be used to expand the query. Naturally,
both entity set and query expansion methods often result in an inundating list of can-
didates. To prune candidate keywords that are not related to the user’s intended query,
these methods conclude with a ranking and filtering stage [47, 81].

The results of entity set expansion and query expansion are often ranked in the end
- a sort of assessment of the semantic similarity between the original query and the
candidates. To this end, Milne et al.’s solution represents Wikipedia concepts using
their outgoing links and bases their semantic relatedness on this overlap [82].

Various other similarity measures have been used depending on the application,
ranging from cosine similarity [47] to graph-based approaches [39, 75, 80]. A threshold
on the similarity can then filter out unrelated keywords, or the top candidates make up
the final list.

Naturally, extending the candidate set also widens the scope of a search task that is
already overwhelming on its own. TDT makes sense of the stream to reduce it to a few
updates about the event. The next section explains this problem by exploring popular
approaches to detect significant changes in a stream of messages.

3.3 Topic Detection and Tracking

Twitter’s standard public API limits consumers to 50 tweets per second [12]. It is a
generous limit, and one that is very rarely reached when dealing with narrow streams.
However, it still represents momentous volumes that researchers have to curb.

Before being a problem for Twitter-based systems, this volume is an insurmountable
step for the end-users themselves, for whom the immense data is humanly-impossible
to consume. For this reason, the TDT track has proved essential in reducing a slew of
microblogs into manageable pieces of information that describe an ongoing event.
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The objective of TDT algorithms is to analyse a stream of documents, identifying
the defining moments that indicate a change in discourse. By consuming this stream
and reducing it to a list of developments, this methodology hides all the intricacies and
retains only the important moments [19].

In one way or another, evolutions are the result of unusual developments. In his
seminal study, Kleinberg represents topics that originate from unexpected patterns in
conversations as an automaton. In its most basic form, this automaton has two states
representing the two extremities of topic developments [86].

The automaton’s first state represents the topic in its normal disposition. The sec-
ond state of the automaton is the topic in an agitated position, indicating a change in
language that abstracts a real-life development. As time passes and the nature of the
event evolves, the automaton moves from one state to the other. Tracking is implicit in
this workflow when the automaton remains in the same state through time [86].

This movement across states over time represents one of the two major approaches
to TDT - feature-pivot methods. Central to this methodology is the temporal nature of
the stream; features change with time, and a significant movement signals an important
development [19, 26].

The second major family of TDT solutions is document-pivot algorithms. These
approaches are usually centred around clustering methods. Although the cluster algo-
rithms themselves consider the features of documents, the ideology of document-pivot
approaches is that the resulting clusters each represent a single topic [26, 19].

An important concept of feature-pivot approaches is the measurement of a develop-
ment’s unexpectedness, which indicates a possible salient topic within an event. Klein-
berg is among those who formalized the notion of ‘burst’, or an unnatural surge in usage
[86].

Cataldi et al.’s feature-pivot method is one of the approaches that hinges on burst.
Their algorithm calculates burst over ‘nutrition’ - a term that was later also adopted in
FIRE [9]. Cataldi et al. understand nutrition to be a function of a term’s usage and the
authority of the bloggers that contributed to the associated documents [73].

In its process, Cataldi et al.’s algorithm calculates the burst value of each term from
all documents in one window. Then, it ranks the features according to their relative
importance. The approach automatically detects a cut-off point where the burst - based
on nutrition - dips [73].

FIRE adapts Cataldi et al.’s approach to achieve a finer granularity and to make
it more democratic by considering all authors as being equal [9]. In their own way,
systems like Olariu et al.’s [40] too calculate the burst measure for each term. However,
the majority of approaches calculate the surges in one simple feature - volume.
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Dealing with the massive content that is generated online requires meticulous plan-
ning and difficult decisions to curb the number of documents. A simpler alternative
does not look at each document individually, but assumes that when a significant topic
change occurs, it leads to an overall increase in discussion volume [86].

Nichols et al.’s research confirms the notion that key moments in football matches,
such as goals and red cards, prompt more discussions. However, they also make an
unsettling revelation - moments that are less emotive, like yellow cards, do not spark
quite the same surge in overall discussion [14]. Numerous other studies confirm these
findings [12, 29, 64, 71, 72].

These results also say a lot about the nature of Twitter. No matter how one looks
at Twitter, it remains a social network. TDT algorithms in this area depend on its users
and the saliency of extracted topics has to be understood within this context. As we
previously explained in FIRE’s definition of importance, the topics in the stream are
those that Twitter users find most interesting [9].

Other studies go the way of statistics to seek out developments. Sakaki et al. use
Twitter to detect earthquakes in Japan, considering users as sensors that give signals
when the ground shakes. Using the number of published tweets similarly to tweet
volume, they approximate the probability that an earthquake really occurred [8].

Like Sakaki et al., other studies use statistical tests [87, 88] and other probabilistic
approaches [18, 89, 90, 91] to analyse the significance of appearances in terms. These
methods mean that these systems do not have to deal with arbitrary thresholds, or with
the unbounded burst values that appear with the aforementioned methods [9, 73].

As events change and new topics emerge, it is only fair to expect that the language
used to discuss them changes as well. Although Sumblr is predominantly a document-
pivot method, the system compares the language models of successive summaries to
determine whether new topics have surfaced [63]. Shen et al. put language models on
the forefront, foregoing clustering altogether [13].

An alternative methodology for feature-pivot topic detection is based on graph the-
ory. Weng and Lee [92], and Aiello et al. [26] describe approaches that create a graph
linking together keywords using the strength of their association in the corpus. Us-
ing graph partitioning techniques, sets of terms can be found and considered to be the
event’s topics.

A central theme of these approaches is how they revolve around the usage of fea-
tures, whether terms or the overall volume. The outcome gives little to no context to the
words apart from knowing that they experienced a significant evolution. This problem
is usually rectified by grouping together co-occurring breaking terms [40, 73, 87].

Document-pivot techniques are a contrasting sight with their idealistic reasoning
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that if documents deal with the same topic, then they would share enough similarities
to be naturally grouped together. This is in line with the general idea behind cluster-
ing algorithms, and indeed these approaches are the backbone of document-pivot topic
detection [19, 26, 49].

Traditional algorithms, like K-Means have occasionally been the subject of experi-
mentation [19, 93]. Nonetheless, such approaches often require heuristic knowledge,
such as the number of clusters, or topics that are in the stream [19]. Naturally, this ne-
cessitates in-depth knowledge of the domain. For this reason, these algorithms are very
rarely used in literature except as baselines.

Graph-based algorithms make an appearance in document-pivot methods as well.
Instead of having nodes represent terms, the documents themselves assume the role
of vertices, with the edges between them representing some sort of pairwise similarity
[20, 49]. Similarly to before, graph partitioning, or clustering, finds document groups,
akin to topics.

Hierarchical approaches have also gained footing in literature because they allow
control over the granularity of topics by limiting the hierarchy’s depth. Some approaches
require prior knowledge about the number of clusters that exist [94], but others prune
the hierarchy automatically [15, 95]. Nevertheless, a case could be made that hierarchi-
cal clusters are not well-armed to deal with the immense data of social networks [19].

It is this increasing demand of growing data streams that has pushed for approaches
to sacrifice quality to cope. The demands of real-time streams that use Twitter have
made incremental clustering the default choice [9, 13, 17, 19, 26, 49, 56, 96, 97].

Although the specifics vary from one method to the other, the underlying concept is
almost identical; the algorithm receives documents sequentially and adds them to the
most similar cluster if the similarity exceeds a certain threshold. If no such group is
found, a brand new cluster is formed [17, 19, 98].

Sometimes, to limit the number of comparisons, clusters are allowed to die out after
a period of inactivity. This could be interpreted in terms of temporal idleness [17], or
based on the number of documents that have been processed since a cluster was last
updated [98].

Nonetheless, incremental approaches are heavily-parametrized. In lack of sufficient
research, these parameters are usually set empirically based on validation data [19, 26,
49]. Still, fragmentation and merging emerge as two major issues, incorrectly separating
or combining topics respectively [19, 26, 49].

The crux of document-pivot algorithms is being able to assign relevant tweets to the
same group. Twitter’s brevity shackles clustering since short messages often have little
overlap, even if they talk about the same topic, thereby fragmenting discussion. For this
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reason, Phuvipadawat and Murata boosted the term weights of hashtags and pronouns
as they saw them as components that are more identifiable and topical than simpler
terms [99].

In reality, even the theoretical ideation of document-pivot algorithm rarely holds
true. Daily rambling is the norm on social networks like Twitter [4], and thus, many of
the generated clusters may not be actual developments, but noise or spam black holes
[19].

To avoid this problem, most systems include a filtering stage. FIRE, for example,
removes clusters that are likely to contain spam using a general neural network [9]. In
similar fashion, Becker et al. classify clusters as on-topic or not [96], whereas Abdelhaq
et al. score groups and retain only the top clusters as legit topics [97].

Both feature-pivot and document-pivot approaches have their fair share of usage in
literature, and both families of solutions have their application. Although many feature-
pivot algorithms bypass fragmentation, their reliance on co-occurrences may lead to
unreliable results [26]. On the other hand, it is unusual for feature-pivot methods to
require parameters barring the essentials. By avoiding clustering, they do not rely on
an external algorithm’s performance [6].

In general, TDT algorithms either involve a lot of calculations - especially in the
case of feature-pivot methods - or a lot of comparisons and processing - notably in the
document-pivot approaches. Since TDT algorithms are the cornerstone of many sys-
tems cited in Section 3.1, these challenges are usually behind the applications’ major
limitations.

The majority of systems that rely too heavily on the volume of the input stream
suffer from very coarse granularity. Moreover, analysing document volume or keyword
usage across time windows forces most feature-pivot methods to abandon real-time
processing. Their dependency on time windows is a double-edged sword, promoting
reliability and precision, but restricting timeliness.

Real-time topic detection within voluminous streams greatly limits the available op-
tions. It rules out algorithms that are not scalable, such as traditional approaches and
hierarchical methods [19]. Due to all of these considerations, most of the systems pre-
sented in Section 3.1 are either batch or near real-time processing applications.

Systems that are not time-sensitive can venture beyond the data that Twitter pro-
vides and use supporting knowledge bases to improve results. De Maio et al. look to
Wikipedia to perform a process that they term Wikification. The authors use Wikifica-
tion to represent tweets not with keywords, but with the richer Wikipedia concepts [68].
Wikipedia has also been used as a source of confirmation for the news captured on Twit-
ter [100] and to help link semantically-similar terms together [101].
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Historically, feature-pivot and document-pivot methods were two opposing and
mutually-exclusive approaches, as noted in any literature overview of the TDT track
[19, 26, 49]. Nonetheless, scattered throughout literature are examples of systems that
point towards the benefits of integrating these two classes of approaches.

Clustering is not central to feature-pivot algorithms, and neither is the grouping
mechanism associated with the documents. However, studies are aware that terms do
not provide enough context in isolation, thus requiring some form of grouping [40, 73,
87].

Elsewhere, Shen et al. [13], and by McMinn and Jose [18] heap importance on the
participants, or named entities, when plotting the evolution of events. Their approaches
are both founded on feature-pivot methods. However, their algorithms split streams
according to the named entities that they mention.

Arguably, this stream-splitting approach does not necessarily fit the conventional
definitions of document-pivot algorithms. In contrast with the idea behind these tech-
niques, the resulting groupings are splits in the streams, not candidate topics. Never-
theless, the loose forms of clustering improve results thanks to a finer granularity of
detected topics [13, 18]. FIRE consolidated these findings [9].

To the best of our knowledge, FIRE is the only system that combines the two distant
approaches together in one. The approach clusters documents using an incremental
algorithm and considers each resulting group as a candidate topic. Then, an adapted
version of Cataldi et al.’s [73] algorithm finds any breaking terms in each cluster [9].

Apart from a finer granularity, FIRE achieves a high precision score because the com-
bination of techniques adds another layer of confirmation to the process. Moreover, the
feature-pivot technique itself yields knowledge about which terms are breaking since
the features come from a single cluster with a common semantic basis [9].

These topic detection approaches reduce streams into a handful of terms or docu-
ments. Nonetheless, the result is often robbed of context, making it difficult for human
readers to make sense of it. The next section presents an overview of summarization
techniques that transform machine-readable knowledge into a breakdown of events that
can be more easily consumed by human users.

3.4 Summarization

A Twitter stream for an event is impossible for human readers to consume in its raw
form. The TDT track is providential in this regard because it reduces the abundant
documents into its salient talking points. Nonetheless, the output of these algorithms is
still only machine-readable.
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Whereas TDT extracts important developments from a stream, summarization is the
extra mile that transforms topics into a human-readable form. Summaries can take var-
ious forms, from timelines to snippets of text, but their objective is to concisely describe
the most important information within a document or a corpus [102].

To achieve their goal, summaries should be fluent and legible [102] without over-
whelming readers with the copious information that such systems aim to curb in the
first place. To this end, existing literature outlines some desirable features of the gen-
erated summaries; namely, machine excerpts should be made up of relevant content
[7, 103], maximize coverage [7, 102, 104] while minimizing redundancy [7, 102, 104],
and be grammatically-correct [7, 102].

Historically, summarization operated within the local context of a single document,
reducing it to a concise version. With the internet generating so much data, recent re-
search has shifted its focus towards multi-document summarization. The analogous
task creates a short write-up from the individual tidbits in a collection of documents
[102, 105, 106].

Multi-document summarization adds another side to the problem because corpora
often include overlap, which is practically non-existent in a single document [105, 106,
107, 108]. Furthermore, the variation of sources likely results in structural incoherency,
unless ordering is somewhat enforced [102].

Two predominant summarization approaches have emerged in literature - abstrac-
tive and extractive summarization. The former creates summaries using the words in
the corpus, possibly creating sentences that do not even appear in the original docu-
ments. Extractive methods form summaries by picking among the key sentences in
documents [63, 102, 109, 110].

Of the two approaches, abstractive summarization is the least popular. One con-
tributing factor is that it encompasses a number of sub-problems. Yao et al. [102], and
Erkan and Radev [110] both explain how abstractive summarization can be split into nu-
merous other complex research tracks tasked with understanding the existing content
and generating the new summary.

With research progress in these smaller areas still in its infancy, and a limited selec-
tion of popular methods, there is little guidance to prospective new studies [102, 110]. In
fact, Yao et al.’s survey of existing approaches notes that most summarization systems
focus on narrow, domain-specific subjects. Word or sentence graphs are commonly used
as the basis of abstractive summarization. Edges connecting words or phrases represent
a scoring function that boosts weight when one component follows another [102].

One popular approach, used among others by Nichols et al. [14], Olariu [40], and
Mane and Kulkarni [111], is Sharifi et al.’s Phrase Reinforcement Algorithm [112]. Al-
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though the authors describe it as an extractive approach in [113], the algorithm is often
the starting point for most abstractive approaches [102].

Sharifi et al.’s algorithm uses a directed graph built around a topical keyword and
connects adjacent words together. The strength of the directed associations is propor-
tional to the frequency of the two words appearing in the given order in the corpus. The
one-sentence summary starts from the topical keyword and works its way back to the
beginning, and then to the end of the sentence, retaining the highest-scoring path [112].

Nonetheless, due to the absence of sufficient research, abstractive summarization
techniques give way to extractive algorithms. Since humans write the content them-
selves, extractive summaries ensure, to a certain degree, legibility and correct grammar.
Extractive summarization is a three-piece approach whose goal is to extract the sen-
tences that describe a corpus most succinctly.

The first component scores and ranks sentences according to their importance rela-
tive to the corpus. The second component - the extractor - uses these scores to choose
a set of sentences that minimize redundancy while maximizing coverage and legibil-
ity. The optional third component is especially useful when the chosen fragments come
from different documents or authors as it reformulates sentences to improve the flow of
the summary [102].

Sentence scoring is the necessary preamble to extraction. The majority of TDT sys-
tems, which do not focus extensively on summarization, prefer a simple route. Cluster-
ing often simplifies the process. MEAD, a summarization system created by Radev et
al. back in 2001, is a popular procedure that incorporates cluster centrality when choos-
ing representative content [114]. Others follow in selecting documents or sentences that
incorporate important keywords [71, 96, 102, 107, 115].

Some systems exploit the brevity of Twitter to choose entire tweets, rather than split
microblogs into individual sentences. For instance, Zubiaga et al.’s topic detection sys-
tem picks the tweets that contain the most integral event terms [72]. When dealing with
more specific domains, some authors favour instead tweets that contain domain-specific
discourse, such as numbers or participant names [7, 25, 38].

Others still, like Alonso et al., incorporate Twitter metrics in their sentence scoring
mechanism. They consider retweets, for example, as endorsements and score tweets in
proportion with their popularity and their authors’ following [67, 70].

Another common approach is Carbonell and Goldstein’s Maximal Marginal Rele-
vance (MMR) model. This model extracts sentences progressively, choosing those that
are most relevant to the query, while simultaneously dissimilar to already-chosen frag-
ments. In case of summarization, which has no query, relevance focuses instead on the
key terms in the document [103, 116].
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More complex extractive algorithms exist to exploit other research domains’ capa-
bilities. Like in abstractive summarization, graphs make significant appearances in sen-
tence extraction as well. One such algorithm, by Wan and Yang, creates an affinity graph
of sentences. This mesh structure also computes the worth and novelty of information
in each sentence [105].

Two of the most influential document-graph approaches were originally presented
by Erkan and Radev in 2004 - LexRank [110] and LexPageRank [117]. One notable in-
troduction in these systems is the concept of prestige, or the importance of nodes based
on eigenvector centrality. Erkan and Radev explain how their solutions can isolate sen-
tences that are subsumed by others [110, 117].

LexRank and LexPageRank have been used frequently in the context of microblogs
[63, 118, 119]. Once more, systems that deal with tweets, like Shou et al.’s Sumblr, rep-
resent each microblog in this graph as a node without splitting it into sentences. Shou
et al. later combine the approach with Carbonell and Goldstein’s MMR to select a few
microblogs and create a summary [63].

Other graph-based methods ingrain the social structure of Twitter within the graph
itself. Duan et al.’s method, for example, creates a three-tiered graph connecting tweets,
uni-grams and authors together. The algorithm uses this graph to score and rank tweets,
before finally using MMR to construct a summary [89]. Celikyilmaz and Hakkani-Tur
use a tree-based approach [120].

Most literature considers abstractive and extractive summarization to be apart, but
one notable, recent effort by Rudra et al. attempts to join the two. Rudra et al.’s approach
identifies a subset of qualitative tweets that describe what is happening and uses them
to generate brand new content [7]. Nonetheless, to date, extractive summarization is the
predominant choice in Twitter and similar microblogging environments [102, 109].

The concept of readability is important even when it comes to extractive summariza-
tion. A lot of effort has gone into identifying quality content [7, 119] and the approaches
vary wildly, with some scoring sentences based on their temporal features [121]. The
peculiarities of microblogs present their own challenges, like colloquialism [102].

Naturally, multi-document summarization is the de facto approach when operating
in social networks like Twitter, where individual messages are already short [63, 109].
Song et al. consider the evolutionary effects of the Twitter timeline. They suggest that
summarization algorithms can also set their sights on the temporal nature and network
context [104].

Ng et al. consider that as a timeline evolves, so does its language. To reflect this
evolution, they present an alternative to MMR [103], which they coin TIMEMMR. Their
model goes beyond lexical similarity and considers the publication time of sentences
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since temporally-distant documents have different contexts [121].
This problem is similar to that of the TDT track - both tackle the problem of novelty

in a corpus. Similarly to McCreadie [122], Chua et al. deal with perplexity [123], and Ren
et al. use novelty as a feature [30]. This problem constitutes incremental summarization.

Incremental, or update, summarization assumes that the user already knows what
has happened earlier, and that they are only interested in new information [102]. Due to
its nature, it is most appropriate in event summarization, as introduced by McCreadie
et al. [122] and by Wang et al. [124].

This section concludes a long road that sets off to process and understand human-
readable tweets. Summarization is the last stage that serves to transform the machine-
readable information of TDT back into a cohesive, informative and non-redundant form
that can be understood easily by end-users.

3.5 Summary

Like this chapter, ELD’s process takes a representation of a topic and uses Twitter to
build knowledge about an event and understand its progression. Naturally, the method-
ologies presented in this chapter greatly influence the direction that ELD takes. Chap-
ter 4 explains how the outlined literature shapes the design of ELD. We also explain
how our approach diverges from other systems to reach the objectives laid out for it.
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Design

4.1 General Workflow

Literature has examined the basic components of ELD from different facets. In our pro-
posed solution, we consider the virtues and flaws of existing systems to model an event
and pursue its development. The point of departure is what it means to follow an event.

Definition 1 on page 2 reduces the complexities of an event to four components - the
semantics, the space and the temporal dynamics, and the participants. ELD operates in
the context of Twitter, and thus it is safe to ignore the locality of an event. In contrast,
the semantics and the temporal backdrop of an event need describing.

The temporal notion describes when the event will exist. Although an event may
go on for an indefinite period of time, in this dissertation we focus on events that are
bound to rigidly-defined time windows. What we consider to be the most fundamental
aspect of an event is its semantic composition, which translates into what ELD would
track. This is not dissimilar to what Ratinov et al. describe as a conceptual search, or the
idea that people do not look for a particular set of terms, but a richer concept [50].

For many people, a handful of terms, like the names of two teams, gives enough of
an understanding because they had spent years absorbing knowledge from the world
around them. On the other hand, a machine has no such upbringing.

ELD uses the conceptual search as the foundation on which to build a deeper se-
mantic comprehension of an event. APD is our primary mechanism to nurture this
understanding by looking beyond keywords, and instead seeing events as the products
of actors interacting with their environments.

The conceptual search terms are the necessary preamble to follow an event, and thus
they are required inputs. So is the time window, which cannot be easily extracted auto-
matically [28]. Whether explicitly stated [26] or implied in the workflow [42], existing
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systems use these two inputs as the instruments to track an event. We follow this idea
in ELD, accepting three inputs - a seed set of keywords and two time window lengths.

The two time windows reflect the system’s two roles, as shown in Figure 4.1. First,
the understanding phase builds a semantic comprehension that fills in any voids in user
knowledge about the subject. The second phase takes this enhanced understanding and
uses it to track the event and identify its developments.

The semantic decomposition happens before the event starts. It is desirable for this
period to be extensive to capture as much of the domain as possible, and for the ensuing
understanding to be reliable. ELD bases its comprehension on a corpus of tweets that it
would have gathered using the user’s initial seed set of keywords. The resulting dataset
serves two purposes.

Firstly, ELD uses this corpus to build an understanding of the domain’s vocabulary,
inspired by Reed et al.’s TF-ICF scheme to maintain the IDF component of the TF-IDF
term-weighting scheme. Reed et al.’s experiments demonstrate that the corpus should
share the domain with the application [60]. It is for this reason that we create the Inverse
Corpus Frequency (ICF) table using the event’s domain, not from a general corpus.

Secondly, the tweets expose semantics that the user might not be expected to de-
scribe in the seed set, which is also ELD’s principal deviation from literature. Unlike ex-
isting systems [26], we make no assumptions about the users and their comprehension
of the event’s domain. At best, it is unreasonable to expect users to provide a compre-
hensive description of an event. At worst, users themselves may not have a solid grasp
of the domain and are unable to be thorough. This is where APD steps in.

Like Shen et al. [13] and McMinn and Jose [18], with our concept of APD we rec-
ognize the importance of participants in understanding the event. Our method uses a
combination of what Zingla et al. describe as the local and external sources [81].

The local context is the sample of the event conversations collected in the beginning
using the user’s seed set. We look for participants in the tweets, but consider them to
be candidates to be confirmed by the external source. Like Zingla et al. [81], we choose
Wikipedia as the supporting external knowledge base to prune irrelevant candidates.

The corpus explains a domain, but only from the very narrow perspective of Twitter
users. Mamo and Azzopardi evoke the definition of important content, finally conclud-
ing that like an echo chamber, Twitter distorts the definition to fit the interest of the
masses [9]. We similarly assume that tweets do not give the full picture of an event.

In all likelihood, the candidates that are found are the prominent or controversial
persons that attract attention. APD overcomes this problem by exploiting Wikipedia’s
link structure to look for the missing participants. At the end of this process, detailed in
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Figure 4.1: ELD’s workflow is split into two non-overlapping processes - an understand-
ing phase, and the topic tracking phase.
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Section 4.2, lie waiting the individual participants that populate the new, enlarged set
of keywords to track the event.

The actual topic tracking stage starts a few minutes before the event. As tweets
arrive, ELD uses the ICF table to convert them into vectors in the VSM by using the
BOW model. The algorithm calculates the weight wk,t of keyword k in tweet t as follows:

wk,t = fk,t · log10(
|Cu|

|{d ∈ Cu : k ∈ d}| ) (4.1)

fk,t is the number of times that keyword k appears in tweet t - the TF component.
The logarithm is the ICF component. |Cu| is the size of the corpus that ELD collected
during the understanding period. |{d ∈ Cu|k ∈ d}| is the number of tweets in this same
corpus in which keyword k appears. We subsequently normalize the document vectors.
In the rest of this dissertation, we refer to tweets and documents interchangeably.

By incorporating TF-ICF, we diminish terms that are consistently popular within the
domain, instead promoting those that gain traction throughout the event. During the
first minutes of tracking, the core system of ELD establishes a baseline of the event’s
discourse based on this representation.

We construct the initial baseline using Cataldi et al.’s definition of nutrition [73]. We
follow in the footsteps of FIRE [9] and unlike Cataldi et al. [73] we exclude user authority
from the nutrition calculation. As the event progresses, ELD forgets this baseline, slowly
replacing it with a fresher memory of an ever-evolving environment.

This nutrition is the basis upon which topic detection is performed. Our algorithm,
detailed in Section 4.3, calculates the nutrition of each term, and saves it after every short
time window. Rather than use a sliding window mechanism, these periodic checkpoints
serve as approximations, thus detecting developments in real-time.

Following the results of [9], we combine document-pivot and feature-pivot approaches
to detect topics with a very fine granularity. Promising groups that emerge from the
document-pivot algorithm undergo further processing by the feature-pivot module to
determine the validity of topics. The TDT component passes on the detected develop-
ments to the summarization algorithm.

Throughout its lifetime, news develops and changes. We observe that this is also
true of short-lived news items, such as the rapid developments during an event. To
capture this element without delaying reporting, the summarization approach must also
be flexible to adapt to the dynamic nature of news.

When called upon, our summarization algorithms generate a summary using all the
clusters added to the active topic. In the meantime, all the clusters remain active and
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collecting tweets. As a result, the algorithms keep receiving new documents to polish
the summary, explaining developments without sacrificing timeliness.

The rest of this chapter explains each component in more detail. Section 4.2 outlines
the reasons why we adapt the definition of an event to include participants and formal-
ize APD. In Section 4.3, we present the principles to create a topic tracking system that
operates not only in real-time, but also with a fine granularity. Finally in Section 4.4, we
introduce our contributions to the field of summarization.

4.2 Automatic Participant Detection

Late in the match Alexandre Lacazette’s, clean strike equalized for Arsenal F.C. against
Liverpool F.C. in the Emirates Stadium1. In this scenario, it is almost unquestionable
that Lacazette is a participant, but other aspects are far from clear. Lacking flesh and
bones, is the Emirates Stadium a participant? For that matter, are the teams active par-
ticipants?

In Definition 3 on page 3 we specified that participants may be either animate or
inanimate. Within the loose bounds of this definition, in ELD we consider the teams,
their players, coaches, and even the stadium to be participants. On the other hand,
although integral to football, topical words like goalkeeper and striker do not make the
cut for reasons that we will explain shortly. It is this split between the two sets that
symbolizes the two restrictions on participants.

Consider a football match between Olympique Lyonnais and Saint-Étienne. The
heated rivalry is normally played on a Sunday evening. During this time window, the
football bonanza is alive beyond France. On such evenings, what sets apart this particu-
lar match from all the others is that Lyon captain Nabil Fekir is only playing in that one
game, and that there is only one Rhône Derby.

Placed in contrast, keywords like goalkeeper and striker pale in comparison. We see
these terms as describing the general domain of football. Conversely, the player names
discriminate among singular instances of the class of players. Therefore the first require-
ment of participants is that they must be discriminative.

Not all discriminative keywords are participants though. In July 2018, France met
Croatia in the FIFA World Cup final. The phrase FIFA World Cup 2018 final will forever
refer to that single stage of a one-time competition. Years from now, France and Croatia
will meet again, but on those occasions, the phrase FIFA World Cup 2018 final will not be
relevant. This characteristic shapes the second restriction - temporal relevance.
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Query expansion very rarely has any frivolous restrictions, but we introduce them
because they are meaningful to our end-goal. A query expansion of the keywords France
and Croatia could include both the terms football and FIFA World Cup 2018 final. The lax
problem definition of query expansion does away with the discriminative and temporal
characteristics.

It is because of these two restrictions that we consider APD to be a distinct research
area from query expansion, even if it is a specialization of it. Through the discriminative
and temporal characteristics, APD alters the direction of the expanded seed set.

We assume that the user’s seed set is sufficiently focused. With a specific focus on
real-time event tracking, we regard Twitter as a tool that facilitates this integration of
restrictions. Already, the temporal relevance is likely ingrained in this stream.

Consider the case where the initial seed set contains only the terms Croatia and
France. If the two were meeting each other in a football match, discussion before the
event starts would likely revolve around that match, not the nations. Even if at any
point APD captures the phrase FIFA World Cup 2018 final, discussion during the match
would be more focused on what is happening.

Moreover, it is reasonable to expect that some participants start showing semantic
value at that point in time. In such real-time environments, focusing on the discrim-
ination aspect of participation is far more meaningful. We simplify this problem by
considering what constitutes participants.

Among the few systems that we encountered with mentions of participants, McMinn
and Jose detect entities dynamically from the documents that they receive using NER
[18]. Shen et al. focus on sport events, and they too look for proper nouns as indicators
of participants [13]. Finally, Corney et al. do not look for participants automatically, but
they track football matches using player and team names [15].

What exists in this literature yields an apparent pattern about what a participant is
- a named entity. Therefore we make the simplifying assumption that participants are
either persons, organizations or locations. When NER has seemingly found its place in
similar systems, where does APD fit in?

NER implementations are normally designed for written content that is far more
formal than Twitter and its unruly orthography. We consider APD to be ELD’s response
to the issues that plague Twitter, although NER still has its use in this noisy medium.

The corpus collected during the understanding period revolves around a very nar-
row concept; usually, a hashtag or a general description of an event suffices. Unlike
Shen et al., who provide a more comprehensive tracking set [13], there is little machine-
readable knowledge about the event. Notwithstanding the limited scope of the corpus,
it represents Twitter’s initial knowledge about the event.
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Like McMinn and Jose [18], and Shen et al. [13], we start by extracting named en-
tities from the batch of tweets. The orthographic deficiencies of social media present a
challenging context to NER, but we rely on the crowd’s uncoordinated contributions to
overwhelm the noise.

At this stage, the list likely contains several false positives. To this end, like Shen
et al. [13], we filter out infrequent participants. What little literature exists in this area
halts at this point. It does not consider that, as we discussed in FIRE [9], Twitter talks
about the participants that it finds important, ignoring unpopular entities.

In these cases, NER is helpless to detect these participants because they do not exude
importance in the pre-event chatter. The corpus’ local context is insufficient to resolve
the problem because it created the issue itself. Our attention turns instead to Zingla et
al.’s external context [81] - Wikipedia.

Like Twitter, Wikipedia is voluminous, updated rapidly, and the fruit of a collabo-
rative effort of thousands of users. However, Wikipedia’s structure also complements
Twitter. It is organized into articles, each representing a single concept [79]. Commonly,
articles are written by several contributors that not only fact-check, but also ensure high
quality. These virtues make up for Twitter’s faults.

Like Egozi et al. [83], and Gabrilovich and Markovitch [79] before, we consider
Wikipedia as an encyclopaedia that can explain candidates in formalisms that Twitter
seldom includes. The unique structure of the encyclopedia, accompanied by a robust,
free API, allows for candidate resolution.

The process continues where NER left off by looking for the page of each identified
candidate, comparing its article with the local context. Candidates without a page, or
whose articles are not relevant to the event are filtered out immediately. ELD considers
the top remaining entities to be actual participants. At the same time, it maps them to
Wikipedia concepts.

Our APD algorithm enters the next phase with a set of entities that were deemed
important by Twitter users. Yet Twitter’s narrow focus is compounded by bias, leaving
a lacklustre set with only a slight improvement over the initial seed. The enlarged set is a
form of understanding that APD uses to find those entities that NER could not identify.

If enough information is available in the dataset, a few participants should have been
found at this point, and in turn they can serve as examples for entity set expansion. The
general concept of APD sets it apart from query expansion, but the environment also
thwarts entity set expansion.

Consider the previous example of the football match between Olympique Lyonnais
and Saint-Étienne. The participants detected during the first phase would likely contain
the two team names, and a few players from one or the two sides. Taken in isolation, the
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two teams make up a class of French football teams. The players of each team make up
two distinct classes - the players of each team. Clearly, this mixture does not fit entity
set expansion’s assumption that the examples represent a single class.

On top of confirming NER’s results, the first part resolves participants to Wikipedia
concepts. The encyclopaedia connects articles together in a network of concepts [47].
Outgoing and incoming links from articles create interconnections that literature ex-
ploits [35]. We use the mesh supporting Wikipedia’s structure to circumvent the prob-
lems when presented with multiple classes.

Starting from the resolved set of Wikipedia concepts, the expansion phase gathers
all outgoing links from their respective Wikipedia articles. The algorithm keeps a count
of incoming links for each Wikipedia article. To restrain the exponential growth, our
APD algorithm retains only the highest-linked pages using a predefined cut-off point.

The strenuous process repeats a second time, but using the enlarged set of Wikipedia
concepts as the new seed set. After the article gathering stage concludes for the second
time, the algorithm will have collected a large number of new candidates.

Similarly to Wikipedia’s conceptual representation of the encyclopaedia and Ferrag-
ina et al.’s research [35], our algorithm represents this network of articles using a graph
of its own. An edge is created between two candidates if either one links to the other.

However, not all edges are equal. We distinguish between a mention of a con-
cept made in passing and a closely-associated entity. For example, Donald Trump’s
Wikipedia page mentions the concept witch hunt2. However, concepts like his political
affiliation are more relevant to him.

Therefore we convert Wikipedia articles into vectors in the VSM using the textual
representation of their articles, as explained in more detail in Section 5.2. The edge
strength between the two Wikipedia pages is calculated using the cosine similarity of
the two vectors, retaining only heavily-weighted edges.

Whatever the semantic class of concepts, they come together to form a single graph.
What distinguishes the classes is their connectedness. We make the reasonable assump-
tion that if two concepts belong to the same class after this process, then their articles
link with each other. This assumption translates well in practice.

Concepts that belong to the same class are often tightly-knit with navigation links to
other entities in the same group. This assumption imagines the graph to be made up of
communities characterizing the different classes of participants. When our APD imple-
mentation dissects this graph, weak links break up to expose the underlying communi-
ties. It stands to reason that the larger communities represent the conceptual classes.
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Figure 4.2: APD increases the volume of tweets that are collected during an event.

Our APD methodology strips away isolated weakly-connected nodes and small
communities in favour of larger groups. From these sets, the technique picks the con-
cepts that are most related to the local context captured in the understanding phase. The
method returns the top entities as participants, joining those captured in the first phase.

ELD adds these participants to the original seed set provided by the user to broaden
the search during the event. Other literature showcases more elaborate use cases for this
automated methodology, but we leave this for future work. Nevertheless, extending
coverage may sound frugal; what are 50,000 additional tweets to an already 100,000-
strong corpus?

Figure 4.2 shows the volume of tweets every minute during a football match with
and without APD. Certain developments, like goals, alight discussion more than others.
In these moments, we hypothesize that a boost in tweets results in earlier reporting.
During other periods, APD boosts volume, making it easier for TDT to pick up on the
subtle moments.

There is also the issue of spam and noise, so abundant on social media [9, 96]. In
ELD, we take a conservative approach to filtering, but it is not uncommon for many
tweets to be classified as low-quality or outright spam. Even at its simplest, APD’s
ability to extend coverage can compensate for this constant bleeding out of content.
Later on, the added documents are a richer source of information for summarization.

The enhanced knowledge of the event through its participants in the form of an
enlarged corpus is merely the raw material - TDT must fill in the gaps itself. We describe
this process in the next section, explaining how our TDT approach harnesses this wealth
of information to make sense of an event and its evolution.
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Figure 4.3: An emotional event, like a goal, can dwarf other less emotional moments in
close temporal proximity.

4.3 Topic Detection and Tracking

Tottenham Hotspur had scored the second goal against Manchester United. A few min-
utes later, the Tottenham crowd started jeering opposing manager José Mourinho. But
you might not have known it by following the game using many of the existing systems.

When techniques like Zhao et al.’s [12] follow an event through the tweet volume,
they rely on developments so momentous that they force a shift in the public discourse.
The simplification sounds alluring, but it also glosses over the intricate emotions that
give the event its unique personality. Nichols et al.’s focus on volume slopes translated
into tangible improvements, but even this is not enough in some cases [14].

Figure 4.3 shows the first minutes of the game between Tottenham Hotspur F.C. and
Manchester City F.C. At a glance, it represents a single obviously significant moment -
a goal by Riyad Mahrez. What the naked eye misses is a surge of tweets that mention
Tottenham’s reaction to conceding - a Harry Kane shot that came close to equalizing.

The hundred-tweet increase is buried amid the euphoria of an early goal, and makes
no glaring dent in the slope. A multitude of scenarios contribute the same effect - a
substitution follows a goal, or a team scores two goals in a matter of minutes. It stands
to reason that to describe an event with a finer granularity, so must the algorithm take a
more delicate approach.

Yet while the level of detail increases, neither should the technique open up to spam
and noise. Mamo and Azzopardi’s FIRE satisfies these requirements. FIRE’s TDT ap-
proach, which we adopt, combines the two distinct families of TDT solutions by embed-
ding a feature-pivot method in a more traditional document-pivot algorithm [9].
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The document-pivot approach operates in the global context, consisting of all the
documents that are entering the stream. Due to time constraints, we adopt an incre-
mental approach to clustering. Like in popular literature, documents join an existing
cluster if their similarity exceeds a certain threshold; otherwise, the algorithm creates a
new group [18, 19, 26].

However, the approach does not assume that the clusters represent actual topics [9].
Unlike McMinn and Jose, who finalized topic detection by retaining sizeable clusters as
topics [18], FIRE’s premise takes a more tolerant approach. It allows smaller clusters to
pass the filter only to undergo in-depth verification by the feature-pivot algorithm [9].

The document- and feature-pivot algorithms operate in vastly different environ-
ments. Clustering considers all streamed documents, and thus resides in the global
context. In contrast, the feature-pivot algorithm considers only the documents within
the local context of a cluster. The feature-pivot technique compares the local and global
contexts to understand how the importance of each keyword has changed [9].

In ELD we present a new feature-pivot algorithm that harnesses this separation of
contexts. We focus our efforts on making the algorithm interpretable, which starts by
formalizing the distinction between the two contexts. Literature represents the global
context as routine snapshots, whether over volume [14] or individual terms [9, 73]. Ex-
isting systems create these snapshots at every time-window around the TDT approach’s
basic features, like nutrition. Over time, the snapshots represent a stream’s progression.

Whereas batch systems use snapshots, the analogous snapshot procedure for real-
time applications is to establish a sliding, or dynamic [12], time-window. However,
this approach piles on the calculations. Therefore ELD replaces the snapshot technique
by the routine checkpoints of batch systems. We refer to snapshots and checkpoints
interchangeably.

Like in our previous work [9], we represent feature importance using nutrition, but
we base it on the term-weighting scheme alone, setting aside user popularity. We calcu-
late nutrition for keyword k at time window t using the following equation:

nutrk,t = ∑
d∈Ct

wk,d (4.2)

The nutrition nutrk,t sums the weights wk,d of the keyword in question, calculated as
shown in Equation 4.1 on page 32, over all documents in the snapshot’s corpus Ct. Dif-
ferently from FIRE [9], each of these checkpoints are subsequently rescaled as follows:

nutrk,t =
nutrk,t

max(nutro,t|o ∈ v)
(4.3)
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Figure 4.4: The volume of tweets during a football match paints a rough picture of the
event’s progression.

The objective is to bind the keyword nutritions between 0 and 1, where the highest
and lowest values are the most common and least frequent tokens respectively in the
snapshot’s vocabulary v. As explained later on, this property contributes to the inter-
pretable nature of our feature-pivot TDT approach.

With the knowledge about past conversation habits stored in these checkpoints, the
feature-pivot algorithm can validate incoming clusters. Similarly to previous research
[12, 14, 18], TDT observes the evolution of an event over snapshots to detect deviations
from normal conversation.

The feature-pivot algorithm operates within clusters with the knowledge that their
topics were popular enough to be discussed by several people in close temporal proxim-
ity. Each cluster’s topic revolves around a small set of keywords, which shared enough
context to form a single group. Therefore for the topic to be a breaking development,
the validation step needs to ensure that the keywords at the core of the cluster should
also have been subjected to a burst in usage.

Mamo and Azzopardi approached this validation step using filtering [9]. How-
ever, our proposed feature-pivot algorithm ingrains this notion in the burst calculation.
The algorithm’s validation task is reduced to confirming or rejecting the hypothesis of
whether the cluster’s distinguishing keywords are valuable in the global context.

Verification starts by converting it into a representation that is comparable with the
knowledge accumulated in the historical checkpoints. Unlike in FIRE [9], we create a
snapshot from the cluster’s local context, which is also rescaled to permit a comparison
between the candidate topic and the entire stream. ELD’s novel feature-pivot algorithm
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can then calculate burst by comparing the local and global contexts.
The central concept of burst is in line of general expectations of a breaking topic

[9, 14, 73]. Even without knowing much about the match between Liverpool F.C. and
Fulham F.C., the spikes in tweet volume in Figure 4.4 betray the passionate moments.
The concept of burst quantifies these spikes by observing sudden changes in the event’s
landscape.

Like Cataldi et al. [73] and our previous work [9], we model ELD’s feature-pivot
algorithm to compute the burst for individual keywords. This is the reason why we
create checkpoints over all the received keywords. Equation 4.4 presents the calculation
of burst burstk,t of term k in time window t, which compares the cluster’s local context
with the previous s checkpoints in the global context:

burstk,t =
∑t−1

c=t−s((nutrk,l − nutrk,c) · 1√
et−c )

∑s
c=1

1√
ec

(4.4)

We purposefully skip the latest time-window t since it could overlap with docu-
ments in the local context. Burst calculations compare the nutrition of each keyword k
in the local context - the cluster - nutrk,l , with its nutrition in the global context of each
past checkpoint c, nutrk,c.

Old snapshots get exponentially less importance with the inclusion of a decay factor
in the numerator, based on Euler’s number e. This allows calculations to consider only
a handful of checkpoints s. As a result, the decay factor can help to recognize that
two spikes are different, for example when quick-fire goals are scored during a football
match. Beyond the basics in the burst calculations, we also felt the need to create an
algorithm whose results would be interpretable.

Cataldi et al. [73], and Mamo and Azzopardi [9], present approaches with unbounded
burst. This characteristic means that different developments are only understandable to
the algorithms. Therefore the denominator of Equation 4.4 places bounds by replicat-
ing the decay factor. By restraining the local and global contexts to stand between 0
and 1, the burst calculation inherits the upper bounds. In turn, the burst represents the
intensity of a spike.

Figure 4.5 exhibits the changing burst of Manchester City F.C.’s Riyad Mahrez, which
soars upon scoring against Tottenham Hotspur F.C. When nutrition plateaus, burst de-
creases and goes into negative values, reflecting the consistency of nutrition in previous
time windows. When the player becomes a protagonist a few minutes later, the burst
recovers along with the rising nutrition.
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Figure 4.5: Burst responds to the usage pattern of a term, reflecting not only surges, but
also downward trends and constancy.

Negativity in the burst values is no anomaly. The internal nutrl
k − nutrk,c calculation

does not only analyse upward trends in keyword usage. If the local context’s nutrition
of term k is consistently less than that of the global context, then the burst runs into
the negative numbers. Effectively, burst is bound between -1 and 1, indicating not only
when a development starts, but also when it ends. We do not exploit this property in
ELD, but we postulate that in future work, it could be used to improve topic tracking.

With modern computing power, the burst computations are almost negligible. This
means that an arbitrary number of past checkpoints may be considered to maximize
precision, although this becomes less useful with each added snapshot. One parameter
that is more delicate than the number of prior checkpoints is the time-window length.

The snapshots taken at the end of every time-window have an implicit smoothing
effect on topic detection, as observed previously [12, 42]. In Figure 4.6, a short window
improves timeliness of reporting, but is far too sensitive and impulsive. On the other
hand, a longer time window is slow in its reaction. The decision thus comes down not
only to the preference for accuracy, but also the expectation over the length of an average
development during an event.

Though common individually, chained together in this way, the document-pivot and
feature-pivot algorithms keep each other in check and permit a more adventurous ap-
proach to TDT. Unlike McMinn and Jose [18], ELD may consider clusters with as few
as two documents, achieving the sought fine granularity. The principal trade-off is that
this model inherits the parameters of both its components. Most glaringly, the arbitrary
thresholds of incremental clustering control fragmentation and specificity [19, 26].
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Figure 4.6: The length of the time window affects the sensitivity of the algorithm.

In ELD we do not explore these two issues in depth, but our novel summariza-
tion approach considers fragmentation as a natural occurrence in environments that are
teeming with emotions. The document-pivot approach described above provides the
documents that describe a development through clustering, while the feature-pivot al-
gorithm extracts the topical keywords. We pair up TDT and summarization, guiding
our techniques to capture the most important facets of a moment, as presented next.

4.4 Summarization

A development is seen through countless eyes and re-told by as many voices. However
simple the moment is, the language used to report it can vary wildly. While humans
create this lexical diversity, machines struggle to catch up.

Pulled from one side towards efficiency to perform in real-time, and from the other
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side to understand semantics, incremental clustering tries to balance between the two
extremes. When it fails to reach the utopia of documents segregated perfectly according
to semantics, it shatters developments into fragments.

Historically, fragmentation has been seen as the bane of incremental clustering [19,
26]. Fragmentation fails to reconcile all pieces to form one whole story, but we take a
more optimistic point of view - it splits a story into different perspectives.

The summarization module takes in sets of documents put together by the incre-
mental clustering algorithm and the keywords that drive those developments. These
two inputs serve as the foundation for summarization, whose end-goal is to create indi-
vidual summaries that when chained together form a timeline.

Literature evokes two forks in summarization solutions, as outlined in Section 3.4.
Abstractive summarization relies on copious and informative documents - something
that fine granularity does not contribute. This constrains ELD to an extractive approach.
We suggest that by chaining tweets together, we can create a narrative that describes
developments. To this end, we make one fundamental assumption.

In our summarization approaches, we assume that clusters that emerged as devel-
opments in close temporal proximity all describe the same moment, similarly to Shen
et al. [13]. If a summary is inactive for a long time, or an incoming cluster is wildly
different from the current one, then ELD considers the development concluded.

The assumption holds under normal circumstances. It is uncommon for multiple
developments to occur in the same minute. Moreover, we reason that even if two de-
velopments occur in a short timespan, there is little harm done in combining them. For
example, if a player fouls an opponent and gives away a penalty, it would make sense
for the kick’s outcome to be bundled with the initial decision.

By making this assumption, we present two novel algorithms that take the frag-
mented pieces of a development and combine them into a single summary. We see this
general approach as a route to maximizing coverage while simultaneously reducing re-
dundancy - two points that other authors raised before us [7, 102, 104].

The theoretical goal of clustering - that of collecting together semantically-similar
documents - captures relevance. As explained in this section, we also work redun-
dancy minimization into our algorithms, while keeping in mind literature’s warnings
that emotions risk compromising coherency and grammatical correctness [16, 17, 29, 40].

Our first of two approaches is the Fragmented MMR (FMMR), based on Carbonell
and Goldstein’s popular MMR [103, 116]. ELD’s clustering approach in TDT supplies
the documents that are relevant to a development. Furthermore, the feature-pivot al-
gorithm yields the terms that describe a development and their intensities. These key-
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words are most relevant to the summary that the algorithm needs to create, in similar
fashion to Sharifi et al.’s topical keywords [113].

For this reason, we do not create a query based on the core components of all the
documents, as imagined by Goldstein and Carbonell [116]. Instead, the query revolves
around the breaking terms, thereby ensuring that the summary captures the essence of
the development. We weight the breaking terms according to their burst, in this way
favouring keywords that emerged more intensely than others.

Moreover, in ELD we promote terms from popular clusters, as indicated by their
sizes. We create a query from each group and add it to a new cluster whose normalized
centroid constitutes the keywords weighted by importance in the topic. In the rest of
the FMMR approach, we input the query and a selection of documents from all clusters
into Carbonell and Goldstein’s MMR [103, 116], presented in Equation 4.5:

MMR = argmax
Di∈R\S

[λ(Sim1(Di, Q))− (1 − λ)max
Dj∈S

Sim2(Di, Dj)] (4.5)

The MMR repeatedly picks among all documents R that are not already part of the
summary - the set of documents S. The algorithm gives preference to those which are si-
multaneously similar to breaking terms - the query Q - and dissimilar to already-picked
tweets. Gradually, it creates the summary set of documents S [103, 116]. ELD factors
in a quality score and picks three tweets at most, or stops when the MMR score of the
next-best document is not positive.

Our second approach takes a different view of the collection of documents that make
up a development. Unlike TDT, the summarization algorithms are neither tightly con-
strained by time, nor shackled by overwhelming volume. Therefore the Document
Graph Summarizer (DGS) considers the corpus of documents anew, and tries to split
it into new facets.

Similarly to Erkan and Radev [110, 117], and Wan and Yang [105], DGS transforms
the clusters’ documents into a graph. We follow existing methods in exploiting Twitter’s
brevity, creating a graph made up of entire tweets, rather than sentences [9, 25, 38, 70,
72]. The edges connecting two microblogs is proportional to their similarity. As a result,
this operation connects documents that clustering could not reconcile.

From this graph, one or more communities are likely to arise, as shown in Figure 4.7.
One is expected to surface more prominently than others, describing the essence of the
development, while smaller groups describe secondary angles. We identify these struc-
tures using community detection, retaining only sizeable groups. The last step is to
extract one document from each community that best describes the facet.
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Figure 4.7: The facets of a development cluster together in DGS’s underlying graph.

We base this choice on the concept of centrality, previously adopted by Erkan and
Radev [110, 117] and Marujo et al. [125]. Freeman describes central vertices as those
nodes that best allow the flow of information [126]. Thus, we assume that the central
documents in the communities capture the spirit of each group.

Like Erkan and Radev [110, 117], we opt for eigenvector centrality to find central
nodes, but we apply it for each community. The communities are likely to be tightly-
knit, as shown in Figure 4.7. Thus, DGS combines centrality with the microblog’s quality
and its relevance to the development.
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The former score promotes coherency by analyzing lexical features, as explained
in more detail in Section 5.4. We quantify relevance using the same query that was
used in FMMR. Chained together, the highest scoring documents from each community
combine to create a comprehensive view of developments.

The specifics of the environment in which APD operates give an additional respon-
sibility to the summarization module. The granularity of the TDT task and the preva-
lence of retweets give ELD an added sensitivity to repeated moments. For these reasons,
the summarization algorithms must be wary of capturing old developments and guard
against repeating unnecessary information - the concept of update summarization.

Summarization shares this challenge with the TDT component. Topic tracking is
implicit in the document-feature pivot algorithm, but the lifetime of clusters eventually
expires. From a long-term perspective, the responsibility of identifying repeated up-
dates falls instead to the summarization algorithms. The novelty checks described in
Section 5.4 compare new developments with old topics before accepting them.

Another characteristic of these summarization algorithms arises from ELD’s real-
time incremental setting. As clusters form, they are regularly checked for any breaking
terms that they may harbour. These checks halt once a cluster is deemed to be emerging,
but it remains active and accruing microblogs.

This property of clusters means that when the TDT component detects a new devel-
opment, the summarization algorithms can create a summary right away and add it to
the timeline. As the fervour dies down and more tweets are posted, the algorithms get
a wider choice of documents, transforming a machine-readable representation of topics
into a human-readable summary.

4.5 Summary

From a handful of keywords, ELD moves on to an idea of an event that considers
the participants that drive its developments. As these actors influence the ongoing
event, the system listens to their actions through Twitter’s re-telling. The workflow
concludes with ELD taking breaking developments and summarizing them in Twitter’s
own terms. The next chapter explores the practical considerations of the individual
components and how when connected, they lead to one coherent system.
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5

Implementation

5.1 Architecture

The previous chapter detailed a workflow fixated on delivering a real-time solution to
the TDT problem. The design spells the direction of ELD to ensure the timeliness of
the approach. The implementation takes the broad theoretical basis of the design and
considers its minute details to create a working artefact.

ELD’s design choices make for a very lightweight solution; the system requires only
sufficient RAM to handle the incoming voluminous tweets, store historical nutrition
checkpoints and keep track of active clusters. We use a two-core CPU to ensure that we
miss no tweets, as explained further down.

Beyond the architecture, performance depends on the design choices explained in
the previous chapter. ELD is programmed in Python 3 and interfaces with Twitter us-
ing the Tweepy library1. We tested the described algorithms and supporting structures
using unit tests and experimentation during the implementation.

At its core, the system operates using this minimal set of tools, and the user-provided
seed set of keywords to describe the event and two time window lengths. During the
understanding period, Tweepy filters the Twitter stream. Any tweets that are in English
and which, in some way, mention at least one of the keywords in the seed set are added
to a queue. The collected corpus defines the event’s domain from Twitter’s perspective.

The first intended use of this dataset is to create an ICF table. Later on the crux
of the term-weighting scheme, the ICF uses the exact same tokenizer that ELD uses to
tokenize tweets during the actual event processing. In this way, all microblogs share the
same vocabulary.
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Throughout the entire workflow, unless otherwise specified, we adopt a uniform
document representation. Like many Information Retrieval (IR) applications, we use a
BOW approach to represent documents in the vector space. We perform various opera-
tions that are common in literature to transform textual documents into vectors.

We opt for a Porter Stemmer [51] over lemmatization due to the performance re-
quirements of ELD. ELD uses Python’s Natural Language Toolkit (NLTK) library2 to
stem tokens and to remove stopwords. Furthermore, we add extra preprocessing steps
based on Twitter’s language to reduce the dimensionality of the VSM [34]. For example,
we consider user mentions (such as @NicholasMamo) and URLs to be uninformative, and
thus exclude them from the VSM.

During data collection and experimentation, we also observed two types of be-
haviour when tweeting during live events, especially football matches. The first charac-
teristic concerns a popular Twitter convention - the use of hashtags, which often include
named entities chained together. We split them based on capitalization, transforming
hashtags like #ManchesterUnited into Manchester United. In this way, ELD splits these
kinds of hashtags into normal tokens – Manchester and United.

The second behaviour is prevalent during emotional spurts, especially in sports
events. In these cases, it is common to see words elongated by repeating characters – a
makeshift way to convey sentiment. We reduce letters that are repeated more than twice
to a single occurrence. This step nullifies the emotional effect on words like gooooaaaal
by transforming them into a simpler token – goal.

ELD stores the ICF table in a Python associative array, or a dictionary, to exploit the
underlying hashing for rapid look-ups. The ICF table is constructed using Equation 5.1,
associating each token k with the number of documents in the understanding corpus Cu

that contain it. A special key stores the total number of documents considered. Later
on, it is used to create vectors from tweets, as shown in Equation 4.1 on page 32.

ICFk = |{d ∈ Cu|k ∈ d}| (5.1)

Although the ICF table is crucial in the TDT component to calculate, among other
things, the nutrition on which burst is based, the APD component does not use it. We
discuss APD in more detail in Section 5.2, but it is worth noting that the term-weighting
scheme used to detect participants uses a different table.

APD looks for terms that distinguish themselves within the event’s domain, and
thus it measures keyword significance against the general discourse. To this end, we
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use Go et al.’s sentiment140 dataset3 - a 1.6 million-tweet corpus with tweets from vari-
ous domains [34]. ELD uses this dataset to create a general IDF table to elevate domain
keywords that appear commonly in the event’s stream, but seldom outside of it. Simul-
taneously, it dims the value of terms that are also common in general discourse.

By the time APD concludes, the small seed set that described the event expands to
include participants. The data collection task restarts in identical fashion, using Tweepy
to interface with the Twitter API. ELD listens to mentions of the keywords in the original
seed set and of the detected participants for the duration of the event.

Although ELD is a real-time system, the processing itself takes some time. The TDT
consumer is a cyclical process that gathers any newly-collected tweets and processes
them. ELD first converts microblogs into tokenized documents. The TDT component
clusters these documents and examines any groups that hint at breaking developments.
Emerging moments are later added to the timeline.

Clearly, emotional situations risk hogging the CPU with lengthy processing. There-
fore ELD forks into two processes during the main event execution cycle. ELD uses
Python’s multiprocessing library4 to create these processes. One process collects tweets,
and the other follows the TDT procedure to analyse microblogs. Regardless of the TDT’s
load, microblog collection can resume unperturbed on the other core, with the two pro-
cesses communicating using a shared queue structure.

ELD filters out noisy and spam tweets to facilitate the TDT task. We base some of the
criteria on FIRE’s [9]. For instance, we exclude non-English tweets and microblogs with
more than two hashtags. Like in FIRE [9], we remove tweets by users who never liked
another microblog or who have no more than one follower for every thousand tweets
that they published.

ELD also introduces two new filters. We observe that users who have an empty bi-
ography are usually career spammers, rendering their tweets harmful. Moreover, we
reason that tweets with more than a single URL are premeditated and thus do not dis-
cuss current developments. We remove these microblogs.

The tweets that make it through the filters fuel the TDT task, and eventually the
summarization algorithms. However, when ELD represents tweets as documents in the
vector space, the tokens lose a lot of the context. Without stopwords, word order and
all the other nuances of language, these documents lose semantic value. Therefore ELD
saves the original tweet and the full text alongside the document.
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The rest of this chapter delves into more detail about the individual responsibilities
of the three main components that make up ELD. Section 5.2 describes our modular
approach to detect participants. In Section 5.3, we explain how the checkpoint proce-
dure contributes to extract salient moments. We conclude the implementation with an
in-depth explanation of summarization and how ELD maximizes the information of its
summaries in Section 5.4.

5.2 Automatic Participant Detection

The general concept of APD is largely uncharted in literature; to the best of our knowl-
edge, no similar systems have been proposed. Therefore we use this section to present
a modular approach with six components, with the corresponding pseudocode in Ap-
pendix A.1.

APD commences after the understanding period has concluded. Each tweet is con-
verted into a document that is made up of tokens and the original text. APD uses the
dataset that ELD collected using the user’s seed set of keywords. We refer to this corpus
as the local context, which is the basis for the first module.

The first component extracts all candidate participants, no matter how unlikely they
are to affect the proceedings. Secondly, APD assigns each of these potential actors a
score to represent their worth in the local context. The third module simply selects the
best scored candidates and performs simple pre-processing.

The fourth stage resolves all candidates to an alternative, semantic representation,
considering them to be participants. The fifth stage deems these participants as exam-
ples of various entity classes and extrapolates them to create a larger participant set.
Post-processing concludes the workflow, adapting the representation of these entities to
the event’s domain. The rest of this section explores each of these six phases of APD.

5.2.1 Extraction

Extraction’s results intertwine with the entire process, outlining the main actors elected
by the Twitter user base, and later on influencing the extrapolated participants. In Sec-
tion 4.2, we assumed that named entities are the actors that drive an event. With this
in mind, candidate extraction is as simple as identifying the named entities in the mi-
croblogs.

We use NLTK for NER, but like other natural language libraries, it struggles with
Twitter’s erratic orthography. Mentions, hashtags, abbreviations and other parts of
speech in tweets are born out of Twitter’s constraints. However, the fact that the un-
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Figure 5.1: Twitter conversations often exhibit a clear bias towards certain candidates.

derstanding phase happens before any emotional developments occur diminishes the
impact of these conversation habits.

All the same, the extractor cleans microblogs as much as possible, including by re-
moving mentions and splitting hashtags on capitalization. Subsequently, it passes on
these documents to NLTK to extract candidates. By the end of the process, microblogs
become a bag-of-candidates representation, where each candidate is a named entity,
concluding the extractor process.

5.2.2 Scoring

The scorer receives documents described only by the candidates that they contain to
build an overall ranking of candidates. While APD relies on user contributions to un-
derstand the domain, Twitter itself is inherently flawed by humans’ predisposition to
bias.

Figure 5.1 shows how the initial distribution for the game between Chelsea F.C. and
Crystal Palace F.C. revolves around the two teams. This is predominantly a reflection
of the tracking terms - the team names. However, bias manifests itself even among the
individual participants. For example, star strikers, like Eden Hazard, attract much more
attention than goalkeepers due to their ability to change games.

The polarizing popularity among the classes of entities does not tell much of a story.
At one point, additional mentions of the same candidate do not contribute to APD; an
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increase of participant references from 100 to 110 would not change our opinion about
their importance, but an equivalent difference between 5 and 15 mentions is telling.

scorec = log10 ∑
d∈C

fc,d (5.2)

In these cases, simple summations would not be useful in separating common candi-
dates from uncommon ones. It would only serve to widen the divide and lump relevant
candidates with irrelevant ones. Using Equation 5.2, we count the number of times that
a candidate c appears in each document - fc,d - and sum these frequencies across all doc-
uments in corpus C. Then, we take the sum’s logarithm, toning down vast mismatches.
The final scores are rescaled between 0 and 1.

5.2.3 Filtering

The simple filtering stage is primarily aimed at retaining the best-scoring candidates.
The participant detector retains only those candidates whose score exceeds a pre-defined
threshold. Those that remain are likely to be valid candidates by virtue of the large cor-
pus that is normally collected.

Before retaining the top candidates we assume that if one candidate subsumes the
other, the longer version may be retained. For example, two of the candidates could
be the named entities Umtiti and Samuel Umtiti. This step merges the shorter version
and its score into the longer name. As a result, candidates are less ambiguous. The
top-scoring k candidates become the resolver’s input.

5.2.4 Candidate Resolution

Candidate resolution represents the shift from the local to the external context, provid-
ing a better understanding of the event in general. The resolver verifies the validity of
the candidates, transforming those that pass the test into full-fledged participants that
ELD tracks for the duration of the event.

We use the MediaWiki API5 to resolve the named entities, or candidate participants,
to Wikipedia concepts. The API provides the option of fetching the concept directly
through the title, but this route poses two problems.

Firstly, surnames are shared by many people, making them ambiguous. Secondly,
some named entities may be incorrect. For example, Arsenal F.C. supporters refer to the
club simply as Arsenal. However, this word has a different meaning altogether, which
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is distinct from Wikipedia’s Arsenal F.C. concept. To ensure accuracy, we opt for a more
general search.

Since we focus on the most mentioned entities, they are likely to be popular enough
to appear in the highest-ranked pages. We look up entities using the MediaWiki API’s
search functionality, retaining the top five results. From these hits, the resolver needs to
identify the one that is most likely to be the participant described by the candidate.

We approach this problem by considering that the participant should share a domain
with the event. The initial understanding corpus contains the event’s domain, which we
represent as a single normalized vector v. The weight of dimension k in this document
is the sum of the dimension across all vectors in the understanding corpus Cu:

vk = ∑
d∈Cu

dk (5.3)

A candidate’s domain is more complicated because Wikipedia articles do not only
contain the concept’s present state. For example, Donald Trump’s Wikipedia page does
not only describe him as the President of the USA, but lists his biography.

The article’s introduction is a slight improvement as it captures the essential, but it
may still contain tangential details. We observe that the first sentence of the article is
made up of the fundamental facts. More importantly, it is an account that focuses on the
concept’s present state.

We consider the first sentence to be a concentrated summary of the candidate. Since
we are only interested in the candidate’s domain to verify its relevance, we remove any
mentions of the candidate. We also exclude the date of birth because it is a personal
detail. We tokenize the processed sentence similarly to before.

The algorithm uses cosine similarity to compare the page’s content with the domain
of the event. We choose the concept with the highest similarity to act as the participant
if it exceeds a specified threshold; otherwise, we simply ignore the candidate. This
selection of concepts is the input to the extrapolator.

5.2.5 Extrapolation

With the knowledge that the accepted participants are also Wikipedia concepts, extrap-
olation looks for entities mentioned by the new seed set. We keep looking in Wikipedia,
which means that many of the principles that governed the candidate resolution process
carry over to extrapolation.

The extrapolator recursively fetches links twice, translating into extensive use of
the MediaWiki API’s links endpoint. The outgoing links grow exponentially from one
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iteration to the next. To improve efficiency, we discard pages that are unpopular after
the first iteration.

We count the number of incoming links of each article and retain the 100 Wikipedia
concepts with the most references. In the second iteration, we fetch the outgoing con-
cepts from these pages and again prune pages based on their popularity. This time, the
stopping condition is when the popularity threshold admits fewer than 1000 pages.

All of the returned articles populate a local NetworkX6 graph that is similar to
Wikipedia’s own structure. The articles become nodes, connected with undirected edges
if at least one of them links to the other concept.

We create stronger edges between pages if they are highly similar, based on the co-
sine similarity of their respective first sentences. The underlying shape of the graph is
an interconnected, almost chaotic mesh of concepts, but the structure holds a wealth of
information.

To make this structure more apparent, we exclude weak links. Edges from the first
iteration need to have a non-zero similarity, whereas links from the second iteration
require an empirically-set similarity of more than 0.5. We use NetworkX’s Girvan-
Newman algorithm to partition the resulting graph, in this way breaking it up into
classes of concepts.

We consider communities with at least 4 nodes to be semantic concepts, treating
the inundation of candidates similarly to the rest of the APD process. Like candidate
extraction and resolution, extrapolation attempts to find the intersection where the local
and external contexts meet.

We follow Gabrilovich and Markovich’s approach, excluding candidates that con-
tain a year in their title [79] since they usually represent historic events. The k concepts
whose first sentences are most similar to the local context and which exceed the user-
provided threshold are the extrapolated participants.

5.2.6 Postprocessing

The last stage embraces the conversation behaviour of Twitter by post-processing the
participants one last time to exploit their potential when extending coverage. When
conversing, people assume that those who are listening have domain knowledge. Twit-
ter users do not talk with glee about Corentin Tolisso scoring, but instead celebrate Tolisso.
The surnames on the back of players’ kits become the names on people’s tongues.
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We use Wikipedia’s adherence to syntax in the first sentence, which includes the
date of birth of players, to detect human participants. Mimicking human behaviour,
the algorithm uses just the surname to track the participant. The decision increases the
number of collected tweets, but it also introduces some risks.

For various reasons, players like Memphis Depay, Kepa Arrizabalaga and Rafael da Silva
are best known by their first names. Others are known by a nickname, at times used al-
most exclusively - Javier Hernández is commonly known as Chicharito - and on other
times sporadically. Others still are known by virtue of the uniqueness of their profes-
sion, such as President of the United States. However, these are exceptions.

A more serious problem is the fact that this technique introduces ambiguity. For
example, Joe Gomez’s name would be reduced to just Gomez, which also happens to be
the surname of Selena Gomez. Therefore tracking Joe Gomez by his surname would also
follow Selena Gomez. We tolerate this ambiguity since it is unlikely that multiple people
with the same surname become topics of conversation during the event. However, we
do make an exception when the last name is in any language’s vocabulary.

For example, Martin Terrier’s surname refers to a breed of dogs. Listening to his last
name in the stream would introduce a lot of noise to the stream. Instead, ELD tracks
his full name. Finally, we remove accents from participants since many Twitter users do
not write them.

Due to APD being in its infancy, any resolved or extrapolated team names are left
in their full form - Chelsea F.C. is retained instead of Chelsea. In this way, incorrect team
names do not interfere as much in the stream. We assume that colloquial references to
the event’s teams are given in the seed set.

The resolved and extrapolated participants become the newly-recognized instru-
ments of discussion. ELD automatically adds them to the user’s seed set and tracks
them for the duration of the event. The added microblogs become fuel for the core
processing of ELD, starting with TDT.

5.3 Topic Detection and Tracking

The numbers climb from 30,000 messages to 100,000 and beyond for popular events.
The volume scales, but the problem remains constant. Where do you draw the line?
Which messages discuss a development? ELD’s TDT approach, whose pseudocode is
presented in Appendix A.2, answers these questions.

Evaluating individual documents on their own merit is impractical in many events,
and infeasible in real-time systems. More practically, if a development is noteworthy,
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the audience would discuss it widely. Therefore ELD shifts its focus towards analysing
groups of documents.

We choose a method that is popular in such scenarios to group together documents
with lexical overlap - the incremental clustering algorithm. Simple in nature, the ap-
proach adds a document to a cluster if they are sufficiently similar, as determined by an
empirical threshold. If the document is dissimilar from anything else that came before
it, a new cluster is created.

The technique creates clusters that revolve around keywords with a time complexity
that grows proportionally with the number of clusters in activity. Although it is sim-
pler than other clustering algorithms, its complexity still needs controlling. To this end,
incremental clustering depends on two parameters - the threshold for new document
inclusion and the freeze period.

Since ELD, like FIRE, binds together two TDT approaches, the threshold needs to be
carefully fine-tuned as it dictates the rest of the process. A low threshold turns clusters
into microblog ‘blackholes’, absorbing any document that is remotely similar. A high
threshold is desirable because it contributes to specificity, but it fragments topics to such
a fine point that they could never be considered as potential developments.

The freeze period is less sensitive because it can vary based on the volatility of an
event if backed up by architectural capabilities. In fast-paced events, moments fade
quickly as newer developments take over. Analogously, the clusters that represent these
moments become irrelevant with time. Each old cluster spells more comparisons and an
increasing possibility of combining different developments that share topical keywords.

For this reason, we freeze inactive clusters out of circulation, in similar vein to what
Azzopardi et al. did [98]. The only difference is that we base the freeze period based on
time, like Ozdikis et al. [17], rather than the number of received documents. In this way,
the time complexity sways to the volume of incoming microblogs.

In practice, a longer freeze period may be desirable to collate enough documents
in one group to create a tentative development. Once frozen, groups serve no purpose
unless they constitute an actual development, except to hog RAM. Therefore we unlink
all frozen clusters from memory, unless they represent developments.

At this point, the clusters are unconfirmed developments because ELD’s feature-
pivot algorithm still needs to verify these candidate topics. Twitter gives way to crowd-
sourced journalism, with all the advantages, but also disadvantages of such an open
model, including spam and noise.

The entire purpose of TDT is defeated if detail is only interspersed among noise.
Before answering the question of what constitutes a real development, we filter out
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the speculative content. Although single documents can be newsworthy, ELD seeks
confirmation by necessitating that developments are discussed by multiple people.

Following this logic, singleton clusters are immediately ignored. Beyond this re-
striction, the minimum size can be as low as two documents, although the filtering
rules come down stricter on small clusters. The concept of newsworthiness is inviting
to another set of filtering rules.

When the users themselves become the purveyors of news, the intrinsic worth of the
item can be approximated from the size of the crowd that is creating the information,
not just relaying it. Like FIRE [9], ELD double-checks developments by capping the
maximum intra-similarity of clusters - the average cosine similarity of each document
with its cluster’s centroid. If people are regurgitating information, such as by retweet-
ing, the development would have a high intra-similarity, indicating that the moment is
not eliciting enough varied conversations. Therefore the cluster is not considered.

Once a development happens, there is little time to ponder - impulse kicks in and
people talk about it. However, career spammers write regularly with total disregard
to proceedings while including spam links. During the implementation, we observed
that these microblogs tend to cluster together. Therefore in ELD we count the number
of external or media links in each cluster across all of its documents. If the average is
greater than one, the algorithm rejects the cluster. The cluster is also rejected if more
than half the messages are replies.

The clusters that remain after filtering are potential new developments. The TDT
algorithm routinely polls clusters until they are found to contain breaking news or they
are frozen. Intuitively, developments represent an evolution that changes the state of an
event, and this is what the feature-pivot algorithm seeks.

The build-up to the feature-pivot technique happens before clustering starts. Mi-
croblogs stream into a buffer which ELD clears routinely to create global checkpoints.
Seen next to each other, these routine snapshots record the progression of the event
in terms of individual keywords, and they play a pivotal role in detecting evolutions
within it.

ELD stores checkpoints in a nutrition store. The associative array relates the snap-
shot’s timestamp with another Python dictionary of nutritions for all keywords ob-
served during the time window that it covers. In order to make all checkpoints compa-
rable, the TDT algorithm rescales the values of each snapshot between 0 and 1.

The decay rate employed in the feature-pivot approach reduces the relevance of old
checkpoints so much so that they can be safely removed alongside their memory foot-
print. However, the timespan covered by each checkpoint is a compromise between
timeliness and sensitivity, as shown in Figure 4.6 on page 43.
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Nonetheless, we note that the length of time windows is reminiscent of the assump-
tion of development continuity of summaries explained in Section 4.4. The length of
checkpoints should be comparable with that of an average development. If this as-
sumption holds true, comparisons with previous snapshots show a divergence from
old developments to mark new progressions.

Once ELD accumulates enough checkpoints, the feature-pivot algorithm can start
analysing clusters. The embedded TDT technique puts clusters in the context of an
evolving development. The algorithm calculates the nutrition of each term in the clus-
ter’s documents to create a checkpoint for the local context.

Then, it rescales the cluster’s snapshot between 0 and 1, as shown in Equation 4.3
on page 39 and calculates the burst of all of its terms. Combined with Equation 4.4 on
page 41, the previous rescaling step binds the burst of keywords between -1 and 1.

Since the highest nutrition value in a cluster is bound to be 1, the feature-pivot algo-
rithm tends to assign the most commonly-used keyword a high burst value. A notable
exception is when the topic emerged very recently with quasi-identical terms, which
tones down the burst. These two properties reduce the problem to whether the core
keywords of a candidate development are emerging, and if so, to what extent.

Nonetheless, the technique’s most important parameter is the minimum acceptable
burst. The rescaling step regularly leads to high burst values that do not necessarily
reflect the worth of a development. Thus, the threshold needs to be sufficiently high to
shut down any false positives.

We empirically set this threshold at 0.5, excluding terms whose burst is lower. ELD
considers clusters as breaking developments if at least three keywords have burst values
that exceed this threshold, or if the average burst of the emerging terms is higher than
0.9. The associated clusters and their documents are the summarizer’s input, alongside
a list of tuples of emerging keywords and their burst.

By grouping together documents, ELD not only avoids any performance issues. The
embedded feature-pivot algorithm verifies the validity of developments, allowing for
a fine granularity while blocking spam and noise. The implementation concludes with
summarization, described next, which wraps the TDT information in context.

5.4 Summarization

Often, there is a very thin line separating subsequent developments. Intuition would
have it that TDT would be responsible for delineating switches in progressions. TDT
does assume this role to a certain extent, with clusters taking on the role of trackers.
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However, preferably these groups should also be relatively ephemeral in order not to
hinder performance or incorrectly merge developments.

Conversely, Figure 4.4 on page 40 shows just how long it takes for hype surround-
ing developments to die down. Therefore TDT and summarization tackle this issue
together, with the latter focusing on the long-term aspect, or the problem of update
summarization.

The algorithms have the added role of ensuring that summaries contain only novel
content that the user had not seen earlier in the timeline. The pseudocode of the work-
flow and the algorithms as described in this section are presented in Appendix A.3.

As update summarization algorithms, FMMR and DGS generate summaries, which
we consider to be the nodes on the timeline. The latest node on the timeline is the
work-in-progress summary, which is committed after a period of inactivity or a shift in
discourse. The timeline structure allows the algorithms to minimize repetition.

Each timeline node comprises documents from the development’s clusters. When
breaking clusters and their emerging keywords arrive from the TDT component, the
summarization methods first check the age of the current timeline node. If it has been
inactive for a long time, then it is committed and a new node is added to the timeline.

Then, the algorithm uses cosine similarity to compare the centroid of the breaking
documents of each old node with the tweets of the incoming cluster. If the highest
similarity among these comparisons is higher than a predefined threshold, empirically
set at 0.6, FMMR and DGS decide that the new development is likely a resurfacing
moment. Therefore the corresponding node absorbs the cluster and the breaking terms
to boost its own information.

Clusters that pass the initial test prompt a choice among two routes. If the latest
summary has been active for a long time, a second test compares the similarity with
the new cluster similarly to before. If the similarity is sufficiently-low - a threshold that
we set at 0.1 - the algorithm creates a new summary on the timeline to reflect a change
in the event’s discourse. Conversely, if the latest node is relatively new, it immediately
absorbs the new cluster.

Two parameters play an important role in our update summarization approaches
- the maximum inactivity of a node before committing it and creating a new one, and
the minimum time coverage of a summary. The shorter the maximum inactivity, the
more singular the focus of the timeline’s summaries. However, it also adds unnecessary
strain on the algorithms’ absorption practice in order not to repeat developments.

The minimum coverage of a summary is a compromise between these two extremes.
It enforces a time period when any new clusters are unconditionally added to the cur-
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rent summary. Once the development exceeds a certain age, a diversion is permitted if
the new cluster varies enough.

The last common ground between FMMR and DGS is the way in which they rep-
resent the summary query. Both FMMR and DGS construct this query using only the
breaking terms, thereby guiding the summary to include the most topical keywords.

As per Equation 5.4, a query document is constructed for each cluster c. The equa-
tion weights component k proportionally to its burst in the corresponding cluster -
burstc,k - and the cluster size |c|. Each such group creates its own query, which is not
normalized. These individual queries come together in a new cluster. Consequently, the
bigger clusters influence the centroid more than smaller groups because they contribute
a stronger vector. The cluster’s normalized centroid becomes the summarization query.

queryk,c = burstk,c · |c| (5.4)

Both FMMR and DGS compute similarities among documents to reduce repetition.
To control the duration of execution, the algorithms retain the best 25 documents accord-
ing to a quality scoring mechanism described further down. Then, the algorithms pick a
set of documents to make up a summary in conjunction with the query representation.

The FMMR implementation is the simplest of the two approaches. The technique
starts by constructing a similarity matrix that incorporates the chosen documents and
the query. The first iteration picks the document with the highest similarity to the de-
velopment’s representation and quality score.

In subsequent iterations, our derivative MMR implementation chooses documents
that are simultaneously similar to the query, dissimilar to picked microblogs, and which
score highly in quality - a metric that we describe further down.

Normally, MMR stops after reaching a predefined length, but in ELD the documents
have a very narrow focus and repetition abounds. We alter the stopping condition to
exploit the score that MMR computes at each iteration. The algorithm stops looking to
add documents whenever the score drops below a pre-defined threshold or a number
of documents - which we empirically set at three - have already been picked.

DGS is similar in many respects. Instead of a similarity matrix, it represents the in-
terlinks between documents as edges weighted according to their lexical similarity in a
NetworkX graph. DGS segregates nodes similarly to the APD algorithm; the Girvan-
Newman method partitions the graph into the different angles of discussion. DGS con-
siders communities with at least three nodes. If it fails to find one that is large enough,
it uses the largest partition.
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As in Equation 5.5, a single document dp is chosen from each partition p. The de-
cision takes three factors into consideration - the document’s eigenvector centrality cd,
query relevance sim(dp, q), based on cosine similarity, and quality score sd.

dp = argmax(cd · sim(dp, q) · sd) (5.5)

Emotions are evoked throughout literature, influenced ELD’s design and finally
round off the implementation. Commentators assume that readers have domain knowl-
edge, and this behaviour peaks during the most emotional moments. Quality scoring
attempts to promote those documents that make the fewest assumptions, or which are
the most descriptive.

The score is the product of two components. Firstly, brevity often works against
expressiveness. Therefore the scorer includes a penalty inspired by Papineni et al.’s
evaluation metric - BLEU [127]. The brevity penalty is calculated as shown in Equa-
tion 5.6. It compares the number of keywords r in a document with a desired length c,
empirically set at 10.

BP =

⎧⎨
⎩

1 if c > r

e(1−r/c) if c ≤ r
(5.6)

Secondly, emotion best manifests itself in capitalization, such as writing made up
exclusively of upper-case letters, like GOOOOAAAAAL. We penalize messages which
make abundant use of capitalization, thus avoiding the inclusion of tweets written in
heated situations. This score is simply the fraction of lowercase letters in the document.

The chosen documents make up summary objects on the timeline, but to improve
coherency among the different tweets, the microblogs go through a cleaning process.
Processing starts by stripping new-lines and removing dangling spaces at either end.

We also strip away the embellishments that lose all meaning when taken out of Twit-
ter’s context. These include URLs, some emojis, ALT-codes and the RT prefix prepended
automatically to retweets. The cleaner also splits hashtags with camel-case notation, but
retains mentions in the likelihood that they refer to named entities.

The last processing step collapses consecutive spaces to a single one, and suffixes
documents that do not end in punctuation with a period. The microblogs are ordered
chronologically and concatenated to form the final summary node on the timeline.

Owing to the the popularity of retweets, authoritative tweets appear across different
summaries - a give-away of developments that are still being discussed. Thus, we cross-
check moments with older descriptions, removing duplicate documents, and possibly
summaries altogether, from the timeline.
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With the cleaning step, FMMR and DGS meet again at a common point. They take
fragments of a story, bring them to order and make sense of them. Through a metic-
ulous process, the approaches ensure coverage and refine the deliverable to maximize
coherency.

5.5 Summary

Tens of thousands of documents stream in, and one by one, they undergo stringent
filtering. Then, ELD processes and clusters them to form pieces of a larger picture.
Finally, the contributions of thousands of users become a succinct timeline.

In this chapter we described a process that does not simply consume an event, but
first and foremost understands it as a function of its participants. ELD’s process is
heavily-parametric, but it is one that aims to understand and explain events better. It is
in this setting that we evaluate ELD in terms of its individual components, and then as
an entity made up of its collaborating components.
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Evaluation

ELD’s architecture was created to track an event by understanding its domain. The
initial depiction of the event is all that APD gets as it goes on to influence the rest of
the proceedings. The TDT algorithm works directly on the content that ELD captures
through the individual participants to find the developments that characterize the event.

The output of the TDT component becomes the input to a summarization module
that transforms the machine-extracted knowledge into a more descriptive form. ELD
stacks these three components upon each other, and this chapter explores their individ-
ual capabilities and their combined strength.

Section 6.1 looks at the evaluation methodologies that similar research endeavours
adopted. ELD builds on this literature, basing its own evaluation plan on existing sys-
tems. Our methodology is explained in Section 6.2. The quantitative results follow next
in Section 6.3, where we also present a qualitative analysis with a football writer at The
Guardian. This chapter concludes in Section 6.4.

6.1 Evaluation in Literature

6.1.1 Automatic Participant Detection

In IR, evaluation approaches can often be reduced to a single question - how accurate
are the results that the algorithm returns? Query and entity set expansion vary wildly in
their scope, but they are essentially IR problems that attempt to improve search results;
the former by refining a query to perfect a user’s search, and the latter by extrapolating
the query itself.

The two fields have a thin, but clear separation from APD. Thus, in spite of their
differences, and in the absence of any APD approaches in literature, query expansion
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and entity set expansion are the only basis for ELD’s evaluation of its first component.
Nakade et al. take a very simplistic approach that borders on the naive. The authors

put their thesaurus-based query expansion algorithm to the test by counting the number
of additional retrieved tweets [37]. The approach is arguably too simple because in
reality, quality is as important as quantity.

This is why evaluation approaches prefer to turn towards the quality of the returned
items. Conventionally, IR thinks of quality in terms of precision and recall, shown in
Equations 6.1 and 6.2 respectively [44, 128].

precision =
tp

tp + f p
(6.1)

recall =
tp

tp + f n
(6.2)

The self-descriptive precision measure compares the true positives tp against the
entirety of the returned collection, including any false positives f p. The recall mea-
sures how many of the relevant documents were returned, measuring the true positives
against the set of false negative documents f n that were not retrieved [44].

The precision and recall metrics exhibit complementarity because they assess how
well an algorithm identifies relevant content and how much it misses. It can be tempt-
ing to maximize either of the two, but such an approach takes a one-sided view. The
harmonic mean, shown in Equation 6.3, combines the two in one simple metric that
penalizes systems that favour one over the other.

F1 = 2 · precision · recall
precision + recall

(6.3)

Query expansion finds its basis in these approaches because it is directly concerned
with refining search terms to improve document retrieval. The most notable hitch is that
in most cases, the recall metric is dependent on a labelled corpus that assigns relevance
judgements to documents.

In fact, manually creating enormous labelled corpora to simulate a search engine’s
performance is a time-consuming task to the point that it becomes infeasible. In the lack
of such a dataset, Milne et al. engaged human judges to assess the three metrics outlined
above [82].

The alternative is a compromise that excludes recall. Though extreme, this route is
not nonsensical either. It takes a practical view of what query expansion means in real
applications - a ranking mechanism to bring forth certain documents while relegating
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others. In this viewpoint, what matters is not the global relevance of the system’s output
as much as the point when it answers the query [128].

The Precision at k (P@k) metric, formally defined as shown in Equation 6.4, considers
that rankings are meant to deliver relevant content as high up as possible. Therefore
the measure cuts off the top k documents and evaluates precision on this subset. ri

is a boolean membership function that equates to 1 if the document is relevant, and 0
otherwise [47, 128].

P@k =
∑k

i=1 ri

k
(6.4)

From this metric appear other common ones that find a place in query expansion.
Average Precision (AP), shown in Equation 6.5 averages the P@k at each relevant doc-
ument [128]. More frequently, multiple queries are made to assess the algorithm’s per-
formance across different settings. The more popular Mean Average Precision (MAP),
shown in Equation 6.6, handles this case [128].

AP =
∑k

i=1 ri · P@i

∑k
i=1 ri

(6.5)

MAP =
∑

q
i=1 APi

q
(6.6)

The MAP metric averages the AP values over the q rankings that result from each
query [47, 128]. Turpin and Scholer note that MAP also considers recall, albeit very
lightly, since incorrectly-retrieved documents contribute a zero-score to AP [128]. MAP
has been the predominant route to evaluate query expansion techniques built to refine
rankings. As in the research undertaken by Turpin and Scholer [128], users are mainly
interested that a correct result is shown as early as possible.

In this way, Egozi et al. [83] base their evaluation on a TREC dataset. Others adopt
similar approaches, often using annotated datasets [50, 78, 81] or manually-collected
and tagged corpora [85]. Although other metrics make an appearance in some of these
studies, including P@k [78, 81, 85], MAP dominates as the metric of choice.

The trend continues in entity set expansion. Gabrilovich and Markovich’s evalua-
tion looks at the break-even point between precision and recall [79]. More commonly,
the class entities are returned with decreasing confidence, priming them for a ranked
evaluation.

Although precision and recall make spurious appearances [76], they are more often
discarded in favour of other metrics that measure the quality of rankings. The most
obvious method of evaluation is again the P@k metric, present in research by Letham et
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al. [77] and Zhang et al. [80]. Similarly to query expansion, MAP is commonly adopted
when the evaluation covers several classes [47, 75].

Unlike the innumerable environment of query set expansion, concept instances can
sometimes be limited to an irrefutable set. Among others, Sarmento et al., Pantel et al.
and Letham et al. take class instances to mean those elected by contributors in Wikipedia
List of articles; any entity not in the list is simply irrelevant [47, 76, 77].

This knowledge is inviting to another type of evaluation - the Ranked-Precision
(R-precision). When the number of instances in the class are known in advance, the
cut-off point of the ranked list is set at this figure, and the precision is calculated at this
rank [76]. Dalvi et al. [75] and Pantel et al. [76] use this metric in their analyses.

If evaluation methods in research show anything, it is that APD shares characteris-
tics with both query expansion and entity set expansion. It attempts to understand a
query, and extrapolate it with additional participants. These effects are subsequently
felt in TDT, whose background in evaluation follows next.

6.1.2 Topic Detection and Tracking

At face value TDT seems like the antithesis of APD. Instead of extrapolating informa-
tion, it looks inwards at a corpus to detect its salient developments. However, just like
APD, TDT is an IR task, and it is considered as one in popular literature. Systems that
are similar to ELD tackle the evaluation of TDT from various angles.

Ghelani et al. perform somewhat of an empirical evaluation that compares detection
times with Twitter’s Moments functionality [62]. Although Gao et al.’s system focuses
on summarization, the authors measure development segmentation by calculating the
similarity between subsequent moments [70]. As comfortable as they are in their sim-
plicity, these approaches are unconventional.

Instead, TDT builds an evaluation foundation on more common IR measures. What
sets apart TDT from query expansion and entity set expansion is that TDT’s value lies
in its ability to capture the topics that make up events. For this reason, recall is as
important as precision.

The existence of a ground truth corpus would be attractive for a comparison be-
tween similar systems, but this is hardly possible owing to the Twitter API’s policy1.
The social network only allows the publication of tweet IDs, which requires microblogs
to be downloaded anew. Tweets are often deleted and irretrievable, greatly hindering
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dataset re-use. Therefore it is usually on manually-collected datasets that evaluations
are carried out.

The point of departure is that a TDT algorithm that fails to isolate developments
and instead echoes noise is only a slight improvement over more traditional methods.
Therefore Nichols et al. and others incorporate precision in their quantitative evaluation
[14, 29, 42, 65]. Aiello et al., whose algorithm surfaces a long list of keywords, look
at P@k as an alternative to precision [26]. Recall often accompanies precision, with
research showing the usefulness of clear environments for such an analysis.

The list of existing similar systems in literature that focus on football matches is
long, and with reason [14, 26, 28, 29, 64, 72, 129]. With football’s most important devel-
opments, like goals, being unquestionable, not only are key moments enumerable, but
ground truth is also widely-available in mainstream media. However, an element of
interpretation prevails in literature about what constitutes the ground truth, sometimes
only explained as “interesting” moments [15].

Literature takes a wide view of important developments in an event. The solutions
vary from one extreme to the other; Löchtefeld et al. focus narrowly on goals and cards
[29], while Van Oorschot et al. incorporate substitutions [28]. No real consensus sur-
faces, but literature demonstrates a clear preference for irrefutable facts. This includes
game stoppages and resumptions [14, 26, 64, 72], goal situations [14, 26, 28, 29, 64, 72,
129], punishable offences [14, 26, 28, 29, 64, 72, 129] and scarcely, substitutions [28].

The evaluations look at the systems’ abilities to capture these events. Since the anal-
ysis is often a manual one, many studies focus on a narrow selection of events. Corney
et al. follow two matches [15], whereas others follow three [26, 42, 64, 129]. Authors
of classification systems afford to evaluate on more datasets. For example, Zubiaga et
al. collected 26 football matches [72]. Van Oorschot and Zhao et al. used 61 football
matches and 33 NFL games respectively [12, 28].

Notwithstanding the allure of a clearly-defined environment, football, like many
other domains, is not only about the facts. Emotions weigh heavy in more subjective
actions. Khan et al.’s way out is to forego recall completely and focus uniquely on
precision, altering the metric’s definition to include narration [65].

Eager to stick to the recall mechanism, Corney et al. shift their attention towards
evaluating the recall of “interesting” developments in two FA Cup Finals [15]. This de-
cision opens the evaluation to moments with a subjective truth value since interest is
not easily quantifiable. The issue comes back to the choice of what constitutes a devel-
opment in a football setting.

For instance, substitutions are essentially facts, but they are unpopular among sup-
porters because they do not immediately influence the proceedings. In fact, only Van
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Oorschot et al. include them in their evaluation [28]. This problem constitutes the level
of development detail, which is particularly close to ELD due to its fine granularity.

Granularity is not a commonly-evoked problem in similar systems, mainly because
sometimes they struggle even with the major facts, let alone subtler moments. One close
area that suffers from this issue is the more general TDT field. Algorithms like FIRE
operate in the public stream, consuming content from various events simultaneously
[9]. The broad nature of these streams render it impossible to enumerate every single
development [9, 73, 92] and ground truth is normally unavailable [23, 94].

Some researchers innovate; Brants et al. evaluate their system on the probability of
missing a story [56]. However, the most popular solution is deceptively-simple. Like
query expansion and entity set expansion, calculating recall is infeasible, and thus the
mere possibility is abandoned. Instead, many systems that operate in Twitter’s public
stream focus solely on precision [69, 73, 92, 94] or variants of it, like P@k [130].

Though admittedly challenging, recall can find a place in the evaluation of such
broad systems. This is usually approached with caution by using a labelled corpus to
control the domain [20, 22, 44, 131, 132, 133]. Lappas et al. evaluate their search system
by enumerating the major events listed on Wikipedia [134].

Twitter Trends, which are topics detected by the social network itself, have also been
adopted as ground truth. Since Twitter extracts these events from the network itself,
they offer the benefit of having similar input to that of systems built on tweets [9, 24].
Nonetheless, the nature of Twitter Trends makes them viable only in broad streams.

Otherwise, a slightly different definition of recall can limit the domain just enough
to permit it. This is the case in Krumm et al.’s research, who refer to “relative recall” as
detected topics that also originate from a particular geographical location [23].

Seen in isolation, precision and recall can work against each other. Therefore in prac-
tice, many studies that operate in clear domains strive for a balance between precision
and recall, reflected in the harmonic mean [8, 13, 28, 64, 72].

These evaluation techniques present the two worlds of TDT. On the one hand, nar-
row streams present a bounded environment. On the other hand, these same formalisms
can serve as a shackle. We borrow from these two areas of TDT evaluation to quantify
the performance of ELD.

6.1.3 Summarization

Summarization is a thorny field. It acts as a middleman between some form of knowl-
edge produced by a machine and a human reader. As an algorithmic component, sum-
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marization has a limited understanding of the content it is expected to transform into a
coherent message.

The evaluation of summarization is also split between these two worlds. These algo-
rithms are designed to cater to human readers, but human evaluation is expensive and
inviting to subjectivity. Beyond the struggle of choosing a middle ground between the
automatic and manual evaluation methods, the assessment itself is in a mature state.

An automated evaluation comes with many advantages, not least its simplicity.
Long et al., who summarize events using keywords, evaluate the system using the P@k
metric. However, this approach is uncommon. In fact, the authors only adopt it in lack
of a labelled dataset [94].

Two automated approaches exist in literature - BLEU and ROUGE. Created more
than a decade ago, the two metrics found their basis in IR. More specifically, BLEU and
ROUGE allude to the precision and recall metrics respectively.

BLEU was originally proposed by Papineni et al. in 2003 as an alternative, automated
evaluation approach for summarization. The metric compares machine-generated sum-
maries with those created by human writers analogously to the precision metric of Equa-
tion 6.1 on page 65. However, it is also adapted to handle n-grams [127].

The inclusion of n-grams works towards approaching the assessment to human in-
terests. Papineni et al. describe unigrams as working towards adequacy, or comprehen-
siveness. Bi-grams and n-grams of higher order contribute to fluency by considering
the coherency and overlap with the human summaries [127].

The BLEU metric also contributes a brevity penalty, which serves as the inspiration
for ELD’s own document quality assessor in Section 5.4 [127]. Despite BLEU’s applica-
bility, few studies include it in their analyses [14]. Instead, the metric mostly serves as a
springboard for another measure - ROUGE - that focuses more actively on coverage.

Lin presented ROUGE two years after BLEU, taking inspiration from it to create
the recall counterpart to BLEU. In this way, the metric focuses on the relevant value
that a machine-generated summary captures [135]. ROUGE borrows many of the ideas
from BLEU, and it has since become the de facto automated evaluation approach in
literature. In fact, the distinguishing feature between studies is commonly only the
source for ground truth.

Many researchers create their own gold standard, either by picking model docu-
ments [13, 30, 38, 63, 74, 89] or by having annotators generate a summary themselves
[112, 113, 115]. In other cases, researchers seek a gold standard, such as those provided
by TAC [121, 136, 137] and DUC [105, 106, 107, 110, 117, 120, 138, 139, 140].

Other public sources, most notably online resources, have also been explored in
cases where existing corpora did not meet the study’s requirements. Chua et al. map
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captured events to Wikipedia articles, which fuel their quantitative analysis. Later, they
complement this analysis with a qualitative one [123]. More commonly, researchers
adopt news reports as authoritative, human-generated summaries.

The mainstream media has proven to be useful in literature when up-to-date sum-
maries are required [64, 141]. Takamura et al. use online text reports in their ROUGE
evaluation [61]. Intuitively, the popularity of certain events leads to media coverage that
is simultaneously of high-quality and broad, especially in sports.

Nichols et al. construct their ground truth football summaries using ESPN’s and
FIFA’s own updates [14]. Kubo et al. reference Yahoo! News, but since their algorithm
operates on Twitter data, they supplement these summaries using tweets from author-
itative users [25]. Elsewhere, Liu et al. use Twitter’s trending topics and linked articles
to build reference summaries [142].

Although studies have shown that ROUGE and BLEU correspond with user evalu-
ations [127, 135, 143], the lexical variations befuddle these metrics. These shortcomings
can only be overcome by a human evaluator [140]. Although subjectivity is an issue
when human evaluators are employed, it is not uncommon for research studies to in-
corporate both an automated evaluation and a human assessment [113, 123, 140, 142].

Literature evaluations have given machine-generated summaries to readers to eval-
uate them on more practical aspects. The assessed properties vary from one paper to the
other, but they aim to capture the desirable characteristics of summaries as described in
Section 3.4.

Sharifi et al.’s content metric is one simple measure that they adopt from DUC 2002.
The metric captures the semantic similarity between an automatic summary and a ref-
erence description [113]. Becker et al. take a more specific approach by asking human
judges to assess the quality, relevance and usefulness of summaries. Using these met-
rics, the authors could understand the description’s expressiveness [119].

Other research assesses quality, but hones in on particular aspects. Twice, Olariu et
al. looked at grammatical correctness and the summary’s coverage [40, 109]. Nichols et
al. too consider completeness and grammaticality in the generated summaries, substan-
tiating it with a readability metric [14].

Rudra et al. look at four different characteristics - coverage, redundancy, novelty
and readability [7]. Dealing in sequential summarization, Gao et al. include sequence
assessment in addition to novelty and readability [70].

Alonso et al. go in a completely different direction by incorporating A-B testing.
Instead of comparing a generated summary with a referential one, the researchers pre-
sented five human judges with pairs of algorithmic timelines side-by-side and asked
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them to choose the better one, if any stood out [67]. De Maio et al. follow a similar
approach, asking readers to pick the optimal configurations [68].

The limited number of human judges is a limiting factor. Chua et al. sought a larger
pool of judges in Amazon Mechanical Turk2, which gives access to paid workers all
around the globe. Chua et al. paid some to participate in a qualitative evaluation that is
similar to De Maio et al.’s [68] preference-based assessment [123].

The approach is likeable enough, but Chua et al. ended up paying around $420 to
their 100 workers [123]. Perhaps it is because of this financial barrier that Amazon Me-
chanical Turk is uncommon in literature. Even less common are specific qualitative
analyses like Marcus et al.’s, who evaluated their system by presenting it to a journalist,
shedding light on the system’s usefulness and applicability [42].

Literature presents clear cases for evaluation approaches, not only for summariza-
tion, but also for APD and TDT. These methodologies are discussed in the next section,
which lays out ELD’s own evaluation strategy.

6.2 Evaluation Plan

6.2.1 Datasets

ELD’s process is a seamless one that transitions from APD to TDT, and then to summa-
rization. We build gradually, moving from one component onto the next and permitting
an analysis of the influence that each decision has on the ensuing process. To this end,
the analyses of this chapter are all based on the same datasets.

The TDT literature outlined in Section 6.1.2 culminates in one clear conclusion - a
controlled environment facilitates the evaluation. Constrained by Twitter’s policy, we
follow in the steps of other researchers in constructing our own datasets, largely based
on pre-planned, rigidly-defined sports events. Due to the demands of TDT, described
in Subsection 6.2.4, we base most of the quantitative evaluation on football matches.

The sport enjoys an immense popularity worldwide, which has cemented its place
as one of the most followed disciplines in existence. With many popular leagues, most
notably in Europe, big matches abound. Furthermore, the masses do not hold back in
discussing them, leading to frequent and voluminous discussions.

Nonetheless, ELD has a general scope so that the individual components are portable
to other systems and potentially applied in different fields altogether. For this rea-
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son, we include in our evaluation datasets from other areas, including planned political
events.

In total, we collect six football matches with different degrees of popularity, which
leads to a comparison of results among datasets of varying sizes. This number is around
double than what is usually taken in literature when the task is not a classification one.
The low figure reflects the time-consuming task of manually marking the algorithms’
results.

In addition to these matches, we also collect datasets from one UFC (mixed-martial
arts) main event, the Brazil presidential election of 2018, and the USA’s midterm elec-
tions of 2018. Naturally, the evaluation procedures adapt to the different environments,
as explained in the rest of this section.

We use the football match datasets throughout in the quantitative evaluation be-
cause they are adequate for the precision and recall analysis of TDT, as described in
Subsection 6.2.4. The APD evaluation is the only one that uses the UFC, election and
football datasets. We use these datasets to examine how our APD algorithm performs
in different scenarios. Since the APD evaluation focuses only on participant detection,
it uses only the corresponding understanding corpora.

We collect the datasets using the Twitter API and the Tweepy library for Python 3
using a manually-provided, case-insensitive seed set. The seed set varies according to
the event, but the general rule is to assume simple knowledge about the event.

Similarly to Aiello et al. [26], we initially track events using their principal parties
and hashtags, whenever available. This minimal set of keywords serves as the seed
set. For example, to collect the dataset for the football match between Liverpool F.C.
and Manchester United F.C., we used the seed set containing #LIVMUN, Liverpool and
Manchester United.

We collect each event three times using two different Twitter application credentials.
These datasets are the basis for the evaluation of one of the most fundamental hypothe-
ses in ELD - that an understanding of the event results in improved results.

The first dataset uses only the bare seed set, representing a person that has only
superficial knowledge of an event, or who chooses not to describe it in detail. In the
rest of this chapter, we refer to this dataset as the baseline corpus. The second dataset
incorporates the automated process of identifying participants, which are tracked for
the duration of the event - the APD corpus.

The third dataset collects data about every single participant in the event, provided
manually. This represents the best possible performance of APD. In this way, we also
permit an evaluation that is independent of APD’s imperfections. We refer to this corpus
as the manual or full dataset.
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We note that two of the six datasets contain inadvertent noise with the inclusion of
players who were not substitutes and did not participate in the match. However, we
show that TDT resists against this noise in Subsection 6.3.2.

Each APD dataset that results from this algorithm is split in two. We collect the first
corpus of tweets during the understanding period, which also represents the local con-
text of an event. The APD algorithm operates on this dataset to extract the participants
for the event. These entities became tracking keywords for the remainder of the event -
a time period that ultimately builds the boosted second APD dataset.

Like the initial seed set, the length of the understanding period varies from one type
of event to the other to maximize the information gain. For sports events, data collec-
tion starts 75 minutes before their scheduled start and ends an hour later. This win-
dow overlaps with the time when football line-ups are published, increasing discussion
about participants. Stopping a quarter of an hour before the game starts allows APD
ample time to perform its task without infringing on the event itself.

It should be noted that since APD’s execution time is unpredictable, the datasets start
being collected during slightly different times. However, by starting collection a quarter
of an hour early, all datasets capture the entire event. We follow a similar procedure for
events with an undetermined time slot.

The rest of the collection ends half an hour after the scheduled finish, when known.
This results in two and a half hour collection windows for football matches. This time
window applies to both APD and normal data collection tasks. Once more, since the
APD algorithm takes a few minutes to conclude, the participant-boosted datasets extend
until after the other corpora have already concluded.

Other events that are unpredictable by nature, like elections, necessitate a slightly
different approach. With conversations plentiful, a shorter understanding period is af-
fordable. After APD concludes, we provide an exaggerated window, but cut it short as
soon as the event ends.

An overview of the datasets used in this evaluation is in Table 6.1. We present the full
details in Appendix B, alongside complete information about their collection processes.
The rest of this section describes how we make use of these datasets to evaluate the
performance of ELD.

6.2.2 Ground Truth

An automated system depends on ground truth to evaluate its performance. In ELD’s
evaluation, we construct our reference output for all three components using widely-
available sources.
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Event Type Event

Football Match Manchester United F.C. - Arsenal F.C.

Liverpool F.C. - S.S.C. Napoli

Valencia CF - Manchester United F.C.

Liverpool F.C. - Manchester United F.C.

Tottenham Hotspur F.C. - Wolverhampton
Wanderers F.C.

Crystal Palace F.C. - Chelsea F.C.

Mixed Martial Arts Event UFC 232

Election Brazil Presidential Election 2018

USA Midterm Elections 2018

Table 6.1: The datasets used in the evaluation.

APD’s evaluation is perhaps the simplest in terms of ground truth availability. UFC’s
website contains the full line-up from UFC 2323, whereas election participants and re-
lated concepts can be verified using Google searches. We use LiveScore.com4 to estab-
lish the ground truth participants for the football matches. In all cases, we look for
participants that are discriminative and temporally-relevant. We discuss what this con-
stitutes in more detail in Subsection 6.2.3.

LiveScore.com also contains the ground truth for the entirety of TDT’s recall-based
evaluation, whose distinct enumerable developments are detailed in Subsection 6.2.4.
For the precision-based analysis, we use a combination of Twitter searches and The
Guardian5 to assess the veracity of reported developments.

The Guardian, a media outlet based in England, reports on football matches using
timelines in real-time, achieving the same objective as ELD. Therefore on top of being a
valid ground truth for TDT’s precision, it also serves as one of summarization evalua-
tion’s references.

Analyses that compare machine summaries with mainstream media reports have
been followed in literature [14, 25]. However, like Kubo et al. [25], we also supplement
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this evaluation by comparisons with authoritative Twitter accounts.
Particularly in sports events, franchises and teams alike curate accounts that com-

mentate proceedings as they happen. We collect the tweets published by these accounts
during the event to act as an alternative ground truth for the summarization evaluation.

This combination also permits an indirect analysis into just how different Twitter’s
conversations are from the masterful content of publishing houses. In our evaluation,
we consider the English Twitter accounts of the teams involved and, if available, the
competition’s own account. We explain how we use these datasets and the related
ground truth in the next subsections.

6.2.3 Automatic Participant Detection

In the literature review section, we showed how APD is a novel concept that borrows
from two other fields. Since we were unable to find any projects that incorporated ap-
proaches that are similar to APD, we are given a certain liberty to define the evaluation
approach. We associate this approach with ELD’s scope, exploiting the rigidity of foot-
ball matches.

Entity set expansion research often looks at Wikipedia List of articles, such as Lists
of Nobel Prizes, as loosely-defined classes. We refer to these classes as such because
even in literature, studies are wary of considering them to contain all instances of the
corresponding class. This consideration is what drove Sarmento et al., among others, to
focus solely on precision [47]. However, the TDT literature contributes to this cause.

In its pursuit of events with rigid rules, TDT yields environments that are welcoming
to APD’s evaluation. Contrary to the tentative List of Wikipedia pages, football matches’
participants are clear and unwavering. Departing from the fact that these participants
follow a rigid structure, then recall can also be calculated. Naturally, the definition of
participants has to be in line with the two rules that we laid out in Section 4.2 - they
have to be simultaneously discriminative and temporally-relevant.

Although literature has not explored the APD task to our best knowledge, we look
to existing research for a fitting definition of participants in sports events. On top of the
teams themselves, evaluation approaches consider players to be crucial in the proceed-
ings and track them to construct datasets [13, 15, 25, 26]. Shen et al. consider coaches as
well [13], just like Han et al., who tracked key players and team coaches during Super-
bowl XLVII [27].

Players and coaches fit our definition of participation, permitting a recall evaluation.
We include not only players in the starting line-up, but also those who are on the bench
since they could become active participants later on. On top of these entities, we also

76



Chapter 6. Evaluation 6.2. Evaluation Plan

include the stadium name. Other agents are technically participants, such as the referees
and assistant coaches. However, we observe that they are very rarely mentioned by
name and we exclude them.

Thus, for each football match dataset we create a factual ground truth that includes
the names of the involved teams, players, coaches and the name of the stadium. Simi-
larly for the UFC 232 event, we construct a factual ground truth that includes the fighters
participating in the event’s main card section.

Other environments do not present such a rigid environment, rendering a recall
analysis impractical. In the USA’s midterm elections of 2018, for example, the partic-
ipants could have been infinitely small. The major political parties fielded candidates
in smaller elections across a number of states. In cases such as this one, the stream
was broad in a relative sense - we tracked the USA election, rather than its individual,
smaller state-specific elections.

This decision poses difficulties that are not dissimilar to those encountered in the
entity set expansion evaluations, where a recall-oriented analysis is often infeasible. To
this end, we skip the recall evaluation in the elections datasets. Instead, we carry out
a precision-based analysis for all events, including not only the elections datasets, but
also the football matches and UFC datasets.

APD’s results determine the ensuing data collection process. All of the participants
that the algorithm identifies become tracking keywords for the event, no matter their
order. Therefore the precision over this set is the first metric that we calculate.

In football matches, we consider the participants mentioned above to be precise,
whereas in the UFC dataset we look only for the main card fighters. Thus, in these cases
we calculate precision and recall by manually matching the output with the ground
truth. In the less clear environments of elections, any concept that is relevant to the
proceedings and that adheres to the bounds of participation contributes to precision.
In the elections datasets, we mark the precision of participants manually by checking
whether they are discriminative and temporally-relevant.

Our algorithms contribute more than a few suggestions for participation. In prac-
tice, we set an empirical threshold of candidates that is approximately the number of
participants in the event. Nonetheless, moving this threshold around transforms the
problem into a ranking one - the higher an entity’s rank, the more likely it is to make the
cut as a participant.

The resolution and extrapolation phases described in Section 5.2 provide two lists
of participants, which we concatenate in this order. Resolved entities rank higher than
extrapolated actors on the basis that participants from the local context are discussed
in direct relation to the event, and thus the system is more certain of their validity. We
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adopt P@k and MAP to analyse how APD’s results change as this certainty fades away.
Choosing a baseline is far more problematic than determining the evaluation metric.

Query expansion techniques improve coverage through terms, rather than participants.
On the other hand, entity set expansion techniques require a manually-provided seed
set.

Having failed to find existing APD algorithms, and seeing as these two related areas
are far too different, we propose a new baseline for APD. We compare the results against
a frequency-based ranking of the named entities collected in the same dataset.

In ELD, the identified participants are just the ingredients that serve a higher pur-
pose - that of boosting the associated corpus with more tweets. The next subsection
details the plan to analyse how APD affects the generation of timelines through TDT.

6.2.4 Topic Detection and Tracking

A TDT system is expected to consume an often-voluminous stream and make sense of it.
This breaks down not only to surfacing the most important facets, but also to reduce the
noise. Our evaluation plan focuses on the football datasets to assess ELD’s centrepiece
component based on these two desirable characteristics.

The evaluation uses a custom-built simulator that feeds tweets from each dataset to
ELD’s implementation as if the event is happening at that moment. All consumption
tasks use the understanding corpus collected in the APD workflow to build the TF-ICF
table. We split the quantitative analysis in two parts like other IR systems [14, 42].

The first part of our evaluation assesses ELD’s ability to capture the most important
enumerable developments during an event, analogous to recall. The second part of our
evaluation takes granularity to heart and looks at precision to analyse how well ELD
detects and removes noise.

Recall cannot be easily calculated - at least, not without making a compromise. In
literature, that trade-off translates into the consensus of researchers that drifted towards
enumerable sporting events. We follow this convention in our evaluation, collecting
datasets from football matches as described in Subsection 6.2.1.

Enumeration necessitates objectivity, which literature seeks in fact-based moments
that leave no room for doubt. Game stoppages, goal situations, punishable offences and
substitutions cover these possibilities, and have been adopted in the research mentioned
in Subsection 6.1.2 for a recall-based evaluation.

Our recall evaluation excludes developments like offsides and fouls; they are com-
mon, have minimal impact on the proceedings and they are not considered in literature
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to the best of our knowledge. Instead, we consider all of the fact-based developments
that are present in literature:

� Stoppages or continuations

– Kick-off

– Half-time

– Second-half kick-off

– Full-time

� Goal situations

– Goals

– Own goals

– Penalties

– Disallowed goals

� Punishable offences

– Yellow cards

– Red cards

� Substitutions

Our TDT and summarization approaches are closely linked together. For this rea-
son, we base our evaluation on the generated timelines. We consider any of the above
developments to be captured if the summaries refer to them within a few minutes of
them happening. This leniency compensates for the fine granularity, which sometimes
results in too few descriptive tweets to describe a development in detail.

We hypothesize that a fine granularity contributes to detect the more forgettable
developments. Other subjective developments too evoke emotions, but they cannot be
easily demarcated. To this end, we adopt Marcus et al.’s approach since it eliminates
subjectivity; the authors evaluate using both precision and recall, reverting to precision
when developments are not easily enumerable [42].

The enumeration challenge is reminiscent of issues in broad streams - describing the
moments that attract interest - no matter how minimal - is hardly feasible. Therefore
we evaluate ELD’s timelines more generally by looking at whether or not a summary
mentions a development that happened in reality.
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Furthermore, we observe that an event is not simply about what happens, but also
about what is happening. We refer to Khan et al.’s approach, which considers narra-
tion. The authors explain that narrative comments illustrate the event’s setting, and
thus contribute to precision [65] - a decision that we adopt ourselves.

Precision and recall only describe the first role of TDT - detection. Tracking is a re-
sponsibility that is shared between this component and summarization. The two sum-
marization methods that we presented naturally vary in the timelines that they generate.
As a result, this affects the update summarization algorithms’ tracking component.

Although TDT shares this update track with summarization, we evaluate its results
alongside TDT. Thus, we repeat each experiment twice - once with each summarization
algorithm. Each time, we evaluate how well ELD manages to remove redundancy by
invalidating precision if a summary adds no new substance to the event timeline.

We use similar configurations across all football datasets. We established all speci-
fications empirically during the experimentation leading up to the evaluation, but we
fine-tune ELD’s parameters to adapt to the varying levels of discussion among datasets.
We list the full specifications in Appendix C.

We compare our TDT component with Zhao et al.’s algorithm [12]. Already used as
a baseline by Zubiaga et al. [72], Zhao et al.’s TDT approach is a traditional, volume-
based algorithm. Zhao et al.’s method, which can work in real-time, uses a dynamic
time-window solution [12].

Their algorithm starts with a time-window of 10 seconds, building up to 20, 30 and
60-second time-windows. The algorithm dissects each window into two halves, and
analyses the post-rate change between the two. If the second half has at least 1.7 times
as many tweets as the first half, then the window represents a breaking development
according to the algorithm [12].

It should be noted that Zhao et al.’s algorithm was originally a lexicon-based classi-
fier for the main NFL developments [12]. Since this lexicon is not public and unrelated
to football, and ELD itself prioritises granularity, we do not include this step. Instead,
we summarize the tweets using MMR to understand what the development represents.

The end-product - a timeline - represents the objective of TDT. It reduces corpora of
thousands of documents into a succinct representation of the highlights of an event. Yet
a timeline loses its purpose if it is incapable of communicating clearly with users. The
next subsection outlines our approach to evaluate the quality of the timelines.
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6.2.5 Summarization

In summarization, evaluation is man against machine. And ironically, in a field that
is so close in contact with humans, the efforts multiply to find an automatic way of
assessment. Though idealistic, human evaluation is subjective, and eliminating that
human blemish is unrealistically expensive.

Though sub-par in qualitative terms, an automated evaluation brings research in
agreement. ROUGE is the metric in the majority of cases, and not without reason. Stud-
ies reveal that ROUGE correlates with human judgements, de-emphasizing the flaws of
a machine evaluating a human-readable summary [135, 143].

Though ROUGE does not capture some human attributes, like cohesion, we follow
the majority of research studies in adopting the metric. Our evaluation plan adopts the
recall-based metric to measure our algorithms’ capability to capture the most important
aspects of developments. Since our summaries vary in length, like Nichols et al. [14] we
incorporate BLEU and the harmonic mean in our evaluation.

We use a ready-made Python library for the ROUGE evaluation, which pipes the
input to a standard perl implementation6. The package comes with default options for
the evaluation, but we append flags to remove common words and stem keywords.

Common words, such as stopwords, are excluded due to the variability in summary
length. This approach avoids inflating ROUGE scores with the inclusion of stopwords
by virtue only of a longer summary. Instead, we assign more importance to uncommon,
topical keywords.

We perform the evaluation on the football datasets that tracked all the participants
since they achieve the best results in Subsection 6.3.2. We compare the resulting time-
lines with The Guardian’s timelines and tweets by authoritative accounts, as described
in Subsection 6.2.2. Nonetheless, we cannot ensure total overlap between ELD’s sum-
maries and those written on The Guardian and Twitter.

Narration, for instance, is seldom discussed by official Twitter accounts. Therefore
we skip the evaluation of machine summaries that do not have a reference description.
The inverse applies too - some reference summaries discuss a moment that none of
the machine summaries do. We only include such comparisons if at least one machine
summary discusses the reference summary’s moment.

Whenever we make these comparisons, we include all of the machine summaries
that happened at approximately the same time, even if some machine summaries do not
capture the development. In this way, the evaluation does not only analyse the quality
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of summaries when they are correct, but also how well the approaches can pinpoint the
documents that are relevant to the development.

ROUGE’s correlation with human judgements has not been discussed. However, it
may not be purely incidental. The n-gram set-up, though in no way a replacement for
human attributes, can facilitate an approximation. The concatenation of lexemes can
approximate grammatical validity and thus we perform tests using bi-grams.

ELD’s two summarization approaches generate different timelines. Therefore to al-
low for a direct comparison with a baseline, we borrow Nichols et al.’s strategy. When
Nichols et al.’s algorithm finds a new moment, it proceeds to identify the documents
that best represent the development. Their solution to make summaries comparable is
to use the same documents as the input to the baseline [14]. We follow Nichols’ et al.
approach to calculate the baseline.

The timeline constitutes a number of nodes, each made up of documents scattered
across clusters. We re-create ELD’s real-time timelines using the final clusters and their
documents in each node to create retrospective summaries. The same process is fol-
lowed for each timeline, but this time using the baseline technique - MEAD - which is
also adopted as a comparison algorithm by Wan [137].

Radev et al.’s MEAD picks documents that are close to the corpus’ centroid [114].
Since the FMMR and DGS timelines vary, we dispatch MEAD twice, and it operates
individually over each node in the timeline to generate its own description.

By default, MEAD reduces corpora to 20% of the original size. However, we find that
voluminous moments, though describing one or two minutes, produce long summaries.
For this reason, we limit summaries to around 50 words, which is approximately the
average length of ELD’s generated descriptions. We use a standard MEAD package for
summary generation7.

MEAD gives us an idea of how FMMR and DGS compare with a basic summariza-
tion model. Nonetheless, an automated evaluation stops at the superficial, ignoring the
human qualities of a summary. Therefore to understand these subtleties, we perform a
qualitative analysis, as described in the next subsection.

6.2.6 Qualitative Analysis

ELD builds timelines to describe an event to humans, and similarly it takes a human
to evaluate its fine details. Whereas the previous subsections described how we will
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evaluate the individual components, the qualitative analysis that we outline next looks
at the bigger picture of ELD.

The timelines that ELD produces have a certain journalistic quality to them; like re-
porters, ELD follows an event, albeit from a second-hand view, and describes it. There-
fore it stands to reason that we seek the feedback of a journalist to understand how well
ELD performs this task.

The process to engage a journalist was a simple outreach effort. A public tweet called
for journalists for a short interview, with a few reporters tagged in a reply. Of these, one
journalist contacted us - Paul Doyle, football writer for The Guardian8. Initially, a for-
mer managing editor of FourFourTwo also reached out. However, since The Guardian
journalists write timelines for football matches, we selected Paul Doyle.

In the reviewed literature, only one study conducted a similar interview - Marcus
et al. [42]. The questions are naturally different, but we follow with a semi-structured
interview. Shedding a rigid question-and-answer structure, such an interview is more
akin to a discussion. Although we prepared a few questions, by letting the interviewee
speak his mind, he was free to voice his concerns and steer the conversation to focus on
ELD’s shortcomings.

We split the interview into two distinct sections - an experiment, and an ensuing dis-
cussion, as described below. To accommodate the journalist’s schedule, we sent all of
the described timelines in advance, giving him ample time to go over them at his conve-
nience. On the day, we conducted the telephonic interview using WhatsApp, obtaining
prior permission to record the call to transcribe it later.

The qualitative analysis has two distinct purposes, translating into its two parts. The
first aim is to get an idea of how ELD compares with curated systems. The second goal
is to understand the direction that ELD and TDT in general needs to work towards.

To achieve the first objective, we ask Paul Doyle to compare ELD directly with a
mainstream media website. We choose the match between Liverpool F.C. and S.S.C.
Napoli, generating the real-time timeline for it using the DGS algorithm based on its
full dataset. We compare ELD with the corresponding timeline by This Is Anfield9.

This Is Anfield is a popular Liverpool F.C. fan website with a writing style that be-
trays an undeniable bias towards the English club, not unlike ELD. Although it contains
no profanity or Twitter fragments, like mentions, it is still an informal blog with liberal
use of emojis.

8����������	
��
����
������	���������������������������
�����������

�����������

���������, last accessed February 9, 2019
9�����������
�������������

��������������� ��������� �� ������ ������ ��� ���� 


��
��� 
�������� ������ 
���� �����, last accessed on February 9, 2019

83



Chapter 6. Evaluation 6.2. Evaluation Plan

Figure 6.1: The frontend with the timeline that we gave to Paul Doyle.

We sent the two unedited textual timelines to Paul Doyle side-by-side in a spread-
sheet in advance. During the experiment, we asked him whether he could tell the time-
lines apart before revealing the correct answer.

In the second part of the interview, we show him a timeline from the match between
Crystal Palace F.C. and Chelsea F.C., constructed in similar fashion to the experiment.
We host the second timeline on a frontend website, shown in Figure 6.1. We use these
two timelines to understand how ELD performs in three different areas.

The first set of questions seek to understand how well the timelines provide cov-
erage of the events’ landscapes, analogous to TDT. With the second set of questions,
we look at how well the individual developments are described by the summarization
components. The final set of questions revolve around the applicability of systems like
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ELD to journalists, thereby tying all the components together.
This subsection concludes the evaluation plan, with the described strategy enacted

in the next section. We present and discuss the results that arise from this plan, thus ex-
ploring the strengths and weaknesses of ELD in the context of our aims and objectives.

6.3 Results

6.3.1 Automatic Participant Detection

It can be difficult to understand an event before it has even started, but that is the task
that APD takes on through an understanding of the event’s domain. In this subsection,
a focus on the environments of various domains serves to answer how possible this is,
even though the dependency on user participation shows through.

Football is one very narrow field, but the context surrounding each and every match
is unique. The first results in Table 6.2 show the varying degrees of success for different
events. Precision and recall fluctuate together in APD’s first results. We attribute a
big chunk of the algorithm’s failings in precision to players that are not participating,
perhaps ruled out due to suspension or injury. More commonly, the algorithm captured
adjacent concepts, bringing down the precision score.

In spite of its shortcomings, our APD algorithm showed improvements over the
baseline. The poor precision and recall scores are a symptom of an ailing NER perfor-
mance over the conversations of Twitter. We test the statistical significance of the results
on the football datasets using one-tailed Paired Sample T-Tests using the following hy-
potheses, applied analogously to precision and recall at a confidence level of 95%:

H0 : results remain the same

H1 : results improve with the APD algorithm

It turns out that our APD algorithm’s improvements are statistically-significant in
both precision and recall, with p-values of 0.04 and 0.006 respectively. In fact, the
only case when the baseline out-performed APD was when the understanding period
yielded confounding information, as described further down.

What is interesting in the results on football datasets is APD’s recall score, often
just below the 0.5 mark. This figure is anything but incidental. Capturing slightly less
than half the participants in an event is a reflection of Twitter’s conversations. Like the
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Precision Recall

Event ELD Baseline ELD Baseline

Manchester United F.C. - Arsenal F.C. 0.4286 0.3800 0.4878 0.3171

Liverpool F.C. - S.S.C. Napoli 0.4762 0.2400 0.4634 0.2683

Valencia CF - Manchester United F.C. 0.3778 0.3000 0.4146 0.3171

Liverpool F.C. - Manchester United F.C. 0.4681 0.3400 0.4634 0.3171

Tottenham Hotspur F.C. - Wolverhampton
Wanderers F.C.

0.1905 0.2600 0.1951 0.2195

Crystal Palace F.C. - Chelsea F.C. 0.3400 0.2200 0.4146 0.2195

UFC 232 0.0698 0.1200 0.2000 0.4000

Brazil Presidential Election 2018 0.3824 0.1800

USA Midterm Elections 2018 0.2321 0.3800

Table 6.2: Base performances of ELD’s APD component and the baseline in terms of
precision and recall.

rest of the event, the discussions that preceded events were unreservedly biased, which
influenced the extraction and extrapolation phases of APD.

The initial, resolved participants gave a biased example set to the extrapolation
phase. This led to extrapolated actors that covered almost the entirety of the majority
side, leaving little space for the minority team. This was also the case when both teams
were behemoths, as was the case in the match between Liverpool F.C. and Manchester
United F.C. - one side consistently came out on top.

The algorithm conceded to Twitter’s bias, but it did signal the potential of the APD
algorithm. When the context was clear, participation resolution yielded enough exam-
ples to come close to completing one class. This indicates that a shift towards identifying
this split in bias to process the classes separately could bridge this gap.

Table 6.3, which breaks down the evolution of precision, demonstrates the impor-
tance of the extraction and resolution stage. Amid a trend of ever-decreasing precision,
the baseline was especially weak in the first 10 results. Multiple factors contributed to
these results, ranging from Twitter’s conversation style to a struggling NER algorithm.

Table 6.4 confirms that our APD approach ranked valid participants higher than the
baseline. The algorithm’s results were consistently an improvement over the baseline,
even in the match between Tottenham Hotspur F.C. and Wolverhampton F.C. - a match
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P@10 P@20 P@30

Event ELD Baseline ELD Baseline ELD Baseline

Manchester United
F.C. - Arsenal F.C.

0.5000 0.3000 0.6000 0.4500 0.5667 0.4667

Liverpool F.C. - S.S.C.
Napoli

0.6000 0.5000 0.5500 0.3000 0.5333 0.2667

Valencia CF - Manch-
ester United F.C.

0.5000 0.5000 0.4500 0.3000 0.4333 0.3333

Liverpool F.C. -
Manchester United
F.C.

0.7000 0.3000 0.5500 0.3500 0.5333 0.3667

Tottenham Hotspur
F.C. - Wolverhampton
Wanderers F.C.

0.5000 0.4000 0.4000 0.3500 0.2667 0.2667

Crystal Palace F.C. -
Chelsea F.C.

0.6000 0.3000 0.4000 0.3000 0.4000 0.3000

Table 6.3: The evolution of precision in the rankings that the APD techniques produced.

that performed poorly overall, both in precision and recall.
As this match demonstrated, APD was not always successful, even in detecting the

majority class. The match between Tottenham Hotspur F.C. and Wolverhampton Wan-
derers F.C. was at the same time as four other matches. It kicked off early in the after-
noon, and it was not the most eagerly awaited fixture of the week-end, resulting in only
mild buzz.

Although the small understanding corpus is comparable to the one from the match
between Valencia CF and Manchester United F.C., these factors influenced the results.
In the Manchester United F.C. case, many English-speaking supporters focused almost
uniquely on the Champions League match. On the other hand, the Tottenham game
was seen in the context of multiple matches being played at the same time.

In the end, the resolver captured the teams involved elsewhere and misunderstood
the context to be the Saturday matchday. The extrapolated results built on this notion
and the majority of returned participants were other English teams. It is not only in
football that we observed this behaviour.

The dataset collected during the UFC 232 event focused specifically on the main
card. The high profile section of fights followed two other phases, each with their own
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Average Precision (AP)

Event ELD Baseline

Manchester United F.C. - Arsenal F.C. 0.6571 0.4507

Liverpool F.C. - S.S.C. Napoli 0.5656 0.5248

Valencia CF - Manchester United F.C. 0.5200 0.4788

Liverpool F.C. - Manchester United F.C. 0.6081 0.3944

Tottenham Hotspur F.C. - Wolverhampton
Wanderers F.C.

0.6958 0.4173

Crystal Palace F.C. - Chelsea F.C. 0.5560 0.3762

Mean Average Precision (MAP) 0.6004 0.4404

Table 6.4: Average Precision of automatically-detected participants in football matches.

fights. Thus, the understanding phase coincided with the phase that came before it - the
preliminary card. The captured fighters reflected this confused context.

As a result, ELD’s APD approach captured all the participants from the preliminary
card, but only two of the ten fighters from the main card. In contrast, as shown in
Table 6.2 on page 86, the baseline kept reading beyond APD’s cut-off point in the local
context. By considering more named entities, it correctly identified four main card fight-
ers. The improvement is slight, but it indicates that in some cases, the understanding
period itself may not suffice to understand an event.

The results do not just expose the insufficiencies of the understanding period in de-
veloping contexts, but it also admonishes the extrapolation phase. In spite of having
captured and resolved UFC fighters, the extrapolation step failed. Instead of surfacing
additional athletes, it returned related events.

More than just a misinterpretation of the event, this fault revealed the flaws of an
algorithm that depends on a tightly-connected underlying mesh. Unlike football play-
ers, inter-connectedness between fighters on Wikipedia is much less common, leading
to struggles to identify communities, and thus other athletes.

The peculiarities of an ill-defined domain are observable in other scenarios as well.
The relatively simple structure of the Brazilian election saw Jair Bolsonaro and Fernando
Haddad contest the presidency alongside their running mates. The results from ELD’s
APD algorithm were an echo of media coverage in the English-speaking world.

Bolsonaro was the eventual winner and source of worry for many dissidents world-
wide, and our APD algorithm captured him with ease, unlike his opponent. The base-
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line did manage to identify Haddad, but his name only cropped up in the 24th position.
The results demonstrate the polarizing character and policies of Bolsonaro, which ulti-
mately dictated conversations and biased the understanding phase.

In the USA, the complex structure of multiple elections that were held simultane-
ously was a more trying task. The specificity of certain regional elections was overshad-
owed by the broad coverage of the seed set. In their stead, the resolver recognized the
main actors that characterized election night of 2018.

The midterms too bore testament to the bias on a large-scale basis. Although the Re-
publicans suffered heavy defeats, ELD’s resolver captured the Republican Party, Presi-
dent Donald Trump, and other individuals for whom the result could have spelt trou-
ble. In such cases, extrapolation missed candidates because of the wide coverage of the
event. Instead, the extrapolator looked for adjacent concepts.

In the Brazil election, the extrapolator identified concepts like President of Brazil and
Vice President of Brazil. The fragmented space of the USA midterm elections complicated
matters as shown in Table 6.2 on page 86. Nonetheless, the extrapolator was still capable
of capturing concepts linked to the election, such as Republican Party of Wisconsin.

The results achieved by ELD’s APD algorithm expose a clear sensitivity to the way
Twitter views events themselves. Although prone to bias, the results from the football
domain also demonstrate APD’s potential. Other areas have to be understood further.
Most evident are the algorithm’s struggles in more confusing environments, which in-
dicates that the approach might need to be tailored for different applications. Next, we
analyse the effects of APD and participants in events through the evaluation of TDT.

6.3.2 Topic Detection and Tracking

There is a lot more that goes on during an average football match than just the fact-
based moments. It is also an emotionally-charged context in which the TDT algorithm
operates, and it shows. This subsection demonstrates just how much bearing this envi-
ronment has, and how a changing landscape of discussion influences TDT techniques.

The precision and recall metrics give a general indication of the performance of the
algorithms. The FMMR and DGS timeline construction techniques both started from
the same places, but the results in Table 6.5 show how they went their own ways when
it came to describing developments.

What stands out immediately is the small dip in precision when APD was factored
into the corpus, both in the FMMR and DGS timelines. Depending on the distribution of
differences, we performed one-tailed Paired Sample T-Tests and Wilcoxon Signed-Rank
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Tests to analyse the statistical significance of the drops in precision at a confidence level
of 95% with the following hypotheses:

H0 : precision remains the same

H1 : precision dips in-between corpora

Comparisons between the full and APD corpora reject the null hypothesis for the
FMMR timeline, but not for the DGS approach, with p-values of 0.0099 and 0.0604
respectively. The inverse is true when comparing the baseline corpus with the APD
dataset. The increase without APD is not statistically-significant in FMMR, but signifi-
cant in DGS with p-values of 0.1011 and 0.0034 respectively.

We note that although precision does dip in some cases, it remains consistently high,
dipping below 0.75 just once in ELD’s approaches. Even though the precision of the
APD algorithm was consistently less than 0.5, TDT managed to guard against the re-
sulting noise. One possible explanation is that the erroneous participants seldom broke
out during an event.

In other cases, just one out of every five developments were redundant, which we
contrast with the baseline. Zhao et al.’s algorithm struggled to come close to ELD. Its dy-
namic window approach captured the same development multiple times when it broke,
even though there was not enough novelty to justify it.

Other times, an overly-sensitive approach included too much noise. This observa-
tion was also made by Zubiaga et al., who used Zhao et al.’s technique as a baseline.
During phases of low activity, Zhao et al.’s volume-based approach was prone to de-
tecting false developments. In these cases, the only indication that pointed to a breaking
development was an even calmer period preceding a tentative moment [72].

In spite of the high precision values, we observe that Twitter commentary did not
always have a specific temporal focal point. Narration is one of the features that consis-
tently appeared in timelines, even in the baseline. That is not to say that these updates
were pointless because they described the general activity in the match.

For example, during the match between Valencia CF and Manchester United F.C.,
the English supporters discussed the poor performance in the context of the then-dismal
situation at the club. At other times, the performances of individual players emerged
repeatedly during an event.

Bias is often associated with the differences among the teams themselves, such as the
contrast between an English and a foreign team. However, the evaluation also exposed
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Method Precision Recall F1

FMMRFull 0.8238 0.6136 0.7033

FMMRAPD 0.7415 0.635 0.6841

FMMRBase 0.7992 0.4738 0.5949

DGSFull 0.8144 0.6739 0.7375

DGSAPD 0.7612 0.6663 0.7106

DGSBase 0.8309 0.5236 0.6424

BaselineFull 0.4843 0.3278 0.3910

BaselineAPD 0.3620 0.2410 0.2894

BaselineBase 0.4169 0.4574 0.4362

Table 6.5: Macro-average precision and recall, and F1 results of the APD techniques
across all football matches based on the various datasets.

certain actors that hogged attention. Whether a controversial foul or a glaring mistake,
some actions kept finding a way back into Twitter discussions.

What set the three algorithms apart was the recall, which measured the method’s
ability to extract the salient moments from among the narration. Generally, the FMMR
and DGS-based methods out-performed the baseline. The only exceptions came in cor-
pora that were not boosted. However, we note that in this case, a very low precision
score accompanied the baseline’s high recall.

A steep improvement in recall was evident in our own techniques as the corpus
grew and became more refined. More interestingly, the recall value hit a plateau with
the APD corpus. We analysed the significance of the evolution of recall results among
the corpora’s construction methods similarly to before, using the hypotheses:

H0 : recall remains the same

H1 : recall increases in-between corpora

The paired statistical tests between the FMMR timelines based on the full and APD
datasets failed to reject the null hypothesis with a p-value of 0.3274. The results were
similar for the DGS algorithm - a p-value of 0.3368 failed to show any significant differ-
ence between the two datasets’ results. The results flipped when comparing the APD
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Figure 6.2: Jones’ own goal sparked high-volume discussions that took a long time to
subside.

and baseline corpora. This time, both the FMMR and DGS timelines rejected the null
hypothesis with p-values of 0.0069 and 0.0099 respectively.

In other words, whereas tracking the participants found by the APD algorithm im-
proved results, adding the missing actors to these entities did not contribute signifi-
cantly. This climb in results confirms that the bias observed in APD persists in TDT.

The APD algorithm presented in ELD consistently captured most of the majority
class while ignoring the minority class. The minimal improvement in recall when we
considered the smaller class to build the full corpus points towards a gulf between the
teams. The difference in discussions among the two teams seemed too far to reconcile
just by tracking all participants, possibly necessitating a different TDT approach.

Interestingly, Zhao et al.’s approach saw reversed results, with the best recall value
coming with the baseline corpus. This was partly due to a phenomenon wherein emo-
tional developments kept volume high for an extended period of time, described by
Lanagan and Smeaton as an “event shadow" [129].

For example, Phil Jones’ own goal in Manchester United F.C.’s match against Valen-
cia CF raised volume in its aftermath, as shown in Figure 6.2. It took almost half an hour
for the volume to reach the previously-observed maximum rate.

This phenomenon kept the volume relatively stable on these occasions and compli-
cated matters for volume-based approaches, such as Zhao et al.’s. The tweeting rates did
not exhibit as sharp a rise amid the background hubbub and noise, unlike the defined
spikes in Nichols et al.’s datasets from almost a decade ago [14].

Small developments during this event shadow did not alter the dynamics enough
for the baseline to capture them. This is why the smaller corpora with more volatile
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Match Precision Recall

Manchester United F.C. - Arsenal F.C. 0.8095 0.6364

Liverpool F.C. - S.S.C. Napoli 0.8494 0.6961

Valencia CF - Manchester United F.C. 0.7852 0.4216

Liverpool F.C. - Manchester United F.C. 0.8253 0.7604

Tottenham Hotspur F.C. - Wolverhampton
Wanderers F.C.

0.7356 0.3922

Crystal Palace F.C. - Chelsea F.C. 0.7661 0.6795

Table 6.6: Macro-average of the precision and recall metrics of ELD’s models across all
datasets separated by football match.

tweeting rates led to a better performance, and why volume-based approaches may be
outdated in today’s Twitter.

On the other hand, our TDT approaches were impervious to this baseline of tweet
volume that appeared consistently throughout the event. Instead, its flaw came out in
its struggle to keep up when there were far too few tweets to create sizeable clusters.

In fact, results are highly-dependent on corpus richness. Table 6.6 shows how ELD’s
top three precision results across all algorithms coincided with the three biggest corpora.
Two of the best three recall results also came from this selection of corpora - an abrupt
reminder that ultimately, it is difficult to take away TDT’s dependency on Twitter’s
description of events.

Volume is not the only factor that affects recall. Literature shows its weakness in cer-
tain types of actions that make up events. Table 6.7 shows how this trend is ever-present
in ELD. Our algorithms captured almost every single goal situation. The only excep-
tions were disallowed goals and one of two very similar goals in the match between
Liverpool F.C. and Manchester United F.C.

Stoppages performed slightly worse, with the first- and second-half kick-offs per-
forming the worst in this section. These occasions followed quiet moments, and perhaps
Twitter users had nothing to recap, as opposed to the ends of both halves.

Punishable offences and substitutions were the two types of events that benefited
the most from the full corpora when compared to the baseline datasets. The FMMR al-
gorithm captured twice as many yellow cards, whereas DGS saw a boost of 50%. Substi-
tutions saw increases of 44% and 111% in the FMMR and DGS approaches respectively.

Notwithstanding these improvements, the two types of moments lagged behind
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Method Stoppages Goal Situations Offences Substitutions

FMMRFull 0.7500 0.9130 0.4348 0.4063

FMMRAPD 0.6667 1.0000 0.3913 0.5000

FMMRBase 0.7083 0.9130 0.2174 0.2813

DGSFull 0.7917 0.9565 0.3913 0.5938

DGSAPD 0.8333 0.9565 0.4348 0.4688

DGSBase 0.6667 0.9565 0.2609 0.2813

BaselineFull 0.3750 0.6087 0.1739 0.1250

BaselineAPD 0.2500 0.5217 0.0435 0.1250

BaselineBase 0.6250 0.7826 0.1304 0.2500

Table 6.7: Recall breakdown by development type using the different APD techniques.

other developments. The results confirm those found elsewhere in popular literature
- some developments are quite unpopular - but we make some observations that are
responsible for these trends.

Primarily, not all yellow cards are equal. A dangerous or controversial offence was
more likely to fuel conversation. Within the limited scope of these six matches, we note
that even the time of the offence seemed to influence results.

Generally, late substitutions and yellow cards had lower recall rates than those that
happened earlier during the game, and it is only intuitive. Yellow cards and substitu-
tions towards the end of the game were unlikely to affect proceedings beyond a tempo-
rary pause in play.

For example, in the dying moments of the match between Liverpool F.C. and S.S.C.
Napoli, two players picked up yellow cards. Although both were part of the majority
class, ELD failed to detect the developments. Instead, the impending end of the match
and the Champions League qualification that came with it overshadowed these actions.

More intuitively, the recall of developments from corpora boosted by APD exhib-
ited a dependency on the detected participants. Focusing only on the APD corpora, in
Table 6.8 we present a breakdown of recall results according to how many of the partic-
ipants were being tracked in the APD corpus. We split yellow and red cards, as well as
substitutions into the number of their participants that were being tracked in the APD
corpus.

One participant at a time is shown a yellow or a red card. Thus, we split these
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Offences Substitutions

Method All None All Partial None

FMMRAPD 0.4545 0.3333 0.6364 0.5000 0.4000

DGSAPD 0.6364 0.3333 0.7273 0.3333 0.3333

Table 6.8: Recall breakdown in two development types based on whether our APD
algorithm detected all, some or none of the involved participants.

moments into whether that participant was being tracked – All – or not – None. Since
substitutions involve two participants, we split these moments into whether or not the
two participants were being tracked – All – or whether just one of the two was being
tracked – Partial coverage – or whether none of them were being tracked – None.

Table 6.8 confirms that developments were more likely to be captured if their par-
ticipants were detected. This also applied when one of the two participants involved
in a substitution was captured by APD. In other words, when APD was able to extract
participants and track them for the duration of the event, it was more likely that related
moments would be captured.

In many cases APD exacerbated the bias towards the majority side by tracking its
participants. Nonetheless, we note that the bias towards the majority side contributed
indirectly to the minority class, though to a lesser extent. This arose because many
situations involved participants from both teams.

For example, Davinson Sánchez was one of the few participants who were captured
by our APD algorithm during the match between Tottenham Hotspur F.C. and Wolver-
hampton Wanderers F.C. This led to ELD producing the following summary:

65’ Wolves break through Cavaleiro but Sanchez manages to stop the dan-
gerous counter-attack. 1-0. Great defending from Sanchez, he’s looked sharp
today!

ELD improved Wolves’ coverage through Sánchez’s contribution, even though he
was not behind the attack. The bias is still visible in the way that that summary elevates
the defender’s contributions above anything else. However, we highlight the fact that
bias implicitly improved the overall quality of TDT, while transferring the challenge of
impartiality to summarization.

TDT systems are pointless if they’re not capable of describing developments. The
next subsection looks beyond what moments ELD is capable of extracting, and turns its
attention towards how well it explains the salient developments of an event.
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Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0958 0.1205 0.1006 0.1423

Liverpool F.C. - S.S.C. Napoli 0.1246 0.1556 0.1202 0.1786

Valencia CF - Manchester United
F.C.

0.0636 0.0961 0.0623 0.0882

Liverpool F.C. - Manchester United
F.C.

0.1264 0.1328 0.1373 0.1299

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.2569 0.2817 0.2553 0.3658

Crystal Palace F.C. - Chelsea F.C. 0.2062 0.2235 0.2315 0.2796

Macro-Average 0.1456 0.1684 0.1512 0.1974

Table 6.9: ROUGE-1 F1 results based on authoritative Twitter accounts.

6.3.3 Summarization

In ELD, we tie TDT and summarization closely together, with the former guiding the
latter in what the description should include. This subsection looks at the quality of
summaries generated by FMMR and DGS. For brevity, we present only F1 results here,
with the full precision and recall results reported in Appendix D.

The results in both Tables 6.9 and 6.10 demonstrate that the FMMR and DGS algo-
rithms led to improvements over the baseline in terms of unigrams. Throughout this
subsection, we use the following hypotheses to test the significance of improvements
using Wilcoxon Signed-Rank Tests and Paired Sample T-Tests:

H0 : F1 score remains the same

H1 : F1 score increases

All of the F1 improvements were statistically significant at a confidence level of 95%.
FMMR’s and DGS’ boosts over their respective MEAD comparisons in the evaluation
that considered The Guardian’s timelines came away with p-values of 0.0109 and 0.0022
respectively. When compared to authoritative Twitter accounts’ tweets, FMMR and
DGS obtained p-values of 0.0011 and 0.0168 respectively.
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Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.1224 0.1599 0.1225 0.1659

Liverpool F.C. - S.S.C. Napoli 0.1243 0.1651 0.1249 0.1868

Valencia CF - Manchester United
F.C.

0.1431 0.1860 0.1408 0.2064

Liverpool F.C. - Manchester United
F.C.

0.1673 0.1702 0.1654 0.1848

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.2688 0.2698 0.3109 0.3269

Crystal Palace F.C. - Chelsea F.C. 0.1796 0.2072 0.1899 0.2330

Macro-Average 0.1676 0.1930 0.1757 0.2173

Table 6.10: ROUGE-1 F1 results based on mainstream media reports.

A look at the recall results on Twitter and mainstream media reports in Tables D.5
and D.6 on pages 123 and 124 respectively yields a contrast between conversation styles.
ELD’s output is much more similar to Twitter’s way of conversing than it is to main-
stream media. From the lack of length restrictions to more formal writing, the me-
dia talks completely different from Twitter, and these aspects showed through in ELD.
Nonetheless, media timelines, longer than tweets, resulted in higher precision and F1
for ELD and MEAD.

Interestingly, ELD struggled in terms of recall when compared to MEAD in the last
two matches, which comprised two of the smallest datasets. We observe that the lack of
attention paid to these games promoted retweets from these accounts to the point that
MEAD picked them over other tweets.

The same observation explains the high recall values achieved by MEAD and ELD’s
approaches. In contrast, bigger matches generated diverse conversations that dwarfed
retweets. Faced with this indecision, MEAD opted for microblogs that did not describe
the development as well as ELD’s chosen tweets.

TDT’s granularity also shifted more responsibility to summarization to describe the
fine moments in detail. The inclusion of clusters with as few as 2 documents meant that
algorithms struggled to find descriptive content to explain developments. At times, this
was simply down to the moment being vague; other times it was too innocuous.

This observation on its own is not enough to explain the drop between high- and
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Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0239 0.0304 0.0258 0.0317

Liverpool F.C. - S.S.C. Napoli 0.0329 0.0299 0.0316 0.0435

Valencia CF - Manchester United
F.C.

0.0235 0.0374 0.0232 0.0246

Liverpool F.C. - Manchester United
F.C.

0.0488 0.0600 0.0556 0.0498

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.1320 0.1102 0.1268 0.148

Crystal Palace F.C. - Chelsea F.C. 0.1076 0.0935 0.1232 0.1156

Macro-Average 0.0615 0.0602 0.0644 0.0689

Table 6.11: ROUGE-2 F1 results based on authoritative Twitter accounts.

low-activity matches. In fact, token recall did not increase simply by virtue of the volu-
minous discussions of high-profile matches.

Although longer and supposedly more informative, the machine summaries strug-
gled with recalling all of the important tidbits as reported by authoritative accounts or
the media itself. Once again, a shift in discussion could be the reason behind this drop.

Unlike authoritative accounts or the media, supporters are neither bound by objec-
tivity nor formalism. Subjectivity was evident when reading the timelines generated by
ELD, but greatly limited in media and curated Twitter accounts. Similarly, emotions are
sparse in formal writing, but Twitter users need not adhere to these standards.

MEAD occasionally out-performed FMMR and DGS in recall by virtue of constantly
constructing summaries with around 50 words. In this way, MEAD included a lot of
repetition, which greatly brought down the precision score, even in the small datasets
of Tables D.1 and D.2 on pages 121 and 122. In contrast, FMMR and especially DGS
could decide better when to stop adding documents to a summary.

More popular matches generated enough content for the DGS and FMMR algo-
rithms to explore different facets of discussions. However, when few accounts were
tweeting about developments, the low volume reduced conversation to a narrow scope,
which led to shorter summaries than MEAD’s. In turn, FMMR’s and DGS’ precision
results shot up, with the latter being much stricter in reducing redundancy.

The results carried over into ROUGE-2. Naturally, both Twitter- and media-based
evaluations, presented in Tables 6.11 and 6.12 respectively, exhibited a drop in F1 score
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when considering bi-grams, as opposed to uni-grams.
The small number of datasets combined with the closeness of results meant that

none of the differences were statistically significant when using the above hypotheses.
FMMR’s and DGS’ performances in the Twitter-based evaluations when compared to
MEAD received p-values of 0.422 and 0.1798 respectively. Similar results followed in the
mainstream media-based evaluation, with FMMR’s and DGS’ differences from MEAD
getting p-values of 0.2282 and 0.2348 respectively.

Beyond the general trend of drops from unigram results, many of the observations
remain the same. This time, a stricter approach when evaluating word order saw the
algorithms under-performing in recall on average when compared to MEAD. The re-
sults in low-activity matches were largely responsible for the drop in average recall of
Tables D.7 and D.8 on pages 124 and 125, but ELD recovered in more popular matches
and obtained comparable scores with MEAD.

This seems to further confirm MEAD’s bias towards picking highly-retweeted con-
tent over diversity. On the other hand, the evaluation on media reports used a com-
pletely different medium and it did not promote this bias. Both of ELD’s algorithms
struggled when content was scarce, but outdid MEAD as volume grew.

Nevertheless, the improvements in ROUGE-2 recall results on small datasets be-
trayed a predilection for quality content. This observation points towards a need for
document scoring with preference for content posted by more authoritative users and
whose mannerisms are closer to those of the media.

Interestingly, DGS largely out-performed the FMMR algorithm in the media-based
evaluation, with boosts of 1.38% and 0.98% in the ROUGE-1 and ROUGE-2 recall results
of Tables D.6 and D.8 on pages 124 and 125. The gaps in precision were even wider at
4.66% for uni-grams and 1.7% for bi-grams, as shown in Tables D.2 and D.4 on pages
122 and 123. The improvements in DGS indicate that there could be a case for summa-
rization to spend more time understanding documents to improve coverage.

Above all, the one aspect that separates DGS and FMMR from MEAD is their query
formulation. Rather than provide a context-less corpus to the summarizer, the TDT
algorithm dictated to it what topical keywords are important to a development.

The results in this subsection cautiously point towards the benefits of this decision
on machine summaries. This was especially true when the context was muddled up as
a side-effect of voluminous corpora. Simultaneously, the results showed the importance
of a granular TDT approach to not only recognize that a development has occurred, but
also understand and explain why it occurred.

The next subsection moves on from the quantitative evaluation and looks at the time-
lines’ qualities from a more grounded perspective. We examine the totality of ELD’s
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Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0310 0.0249 0.0317 0.0368

Liverpool F.C. - S.S.C. Napoli 0.0211 0.0202 0.0211 0.0293

Valencia CF - Manchester United
F.C.

0.0430 0.0621 0.0432 0.0629

Liverpool F.C. - Manchester United
F.C.

0.0440 0.0420 0.0426 0.0419

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.0787 0.0635 0.0948 0.0798

Crystal Palace F.C. - Chelsea F.C. 0.0585 0.0348 0.0606 0.0651

Macro-Average 0.0461 0.0413 0.0490 0.0526

Table 6.12: ROUGE-2 F1 results based on mainstream media reports.

performance by performing a qualitative evaluation with Paul Doyle to examine its
practical shortcomings and values.

6.3.4 Qualitative Analysis

Do thousands of Twitter users compare to news agencies? When we contacted Paul
Doyle to conduct an interview, we wanted to understand how close ELD comes to de-
scribing events. The answer comes not in terms of numbers, but an expert opinion with
the high standards of a professional. We present the entire transcript in Appendix E.

In the first experiment, we sought the answer to a very simple question to start off
the interview - which timeline was generated by ELD, and which one was written by the
staff at This Is Anfield? In spite of the erratic discussions of Twitter, when Paul Doyle
was presented with the unlabelled write-ups, he could not discern between the two.

The answer indicates that, at least for the single match we showed him, ELD comes
close enough to be indistinguishable from This Is Anfield and its human-curated time-
line. Nonetheless, he identified critical faults in both of them, ultimately qualifying
them as being “as bad as each other.”

In light of this answer and the perceived similarity between This Is Anfield and ELD,
we asked Paul Doyle to consider our system to be an intern, or a trainee reporter. In the
rest of the interview, we could understand better what he was looking for that both
timelines missed so sorely.
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It turned out that the issues were ingrained in the mannerisms when describing
developments. In fact, when we questioned him about the event coverage, the TDT
component seemed to be ELD’s principal quality. Very few missing details seemed to
jump out at him. He only singled out one node on the timeline that mentioned an
unrelated participant due to surname ambiguity.

However, overall he seemed to think that ELD mapped the evolution of the event
correctly. Paul Doyle explained that was able to “see a general sense of overall under-
standing of the subtleties of how the match changed.” This was thanks no little to ELD’s
ability to capture the highlights of the match. Rather than seeing faults in TDT, ELD’s
failings were in summarization.

As a journalist, Paul Doyle was more interested in the in-depth movements of a foot-
ball match. “I did not see much tactical analysis in there. I did not see much indication
of how substitutions may have changed matches,” he explained. From this perspective,
the issues were more about how moments were described than whether or not they
were captured.

This aspect came out especially when he focused on the individual nodes on the
timeline. He found that the summaries seemed like the personal musings of users. He
speculated that the incomplete information was a failure of Twitter that made it into
ELD. “On Twitter most people are assuming that people can see the action. They don’t
give a detailed description of exactly what happened,” he told us.

The one thing that stuck out most during our interview was the subjectivity in some
of the nodes - perhaps the one thing which makes This Is Anfield and ELD so similar.
In this segment, Paul Doyle contrasted our system with more robotic systems, which he
described as “blunt and boring,” but also accurate.

Conversely, he said a timeline that is made up of subjective judgements with very
little objectivity means that “you have no idea whether it is accurate or not.” In his opin-
ion, such a timeline is even more useless than robotic summaries in terms of accuracy.

Elaborating on this point, he explained that the fault of subjective timelines is not
knowing who is writing. In Paul Doyle’s opinion, this bias would be fine, but the au-
thors need to be known to make it easier to assign value to their judgements. Beyond
subjectivity, he reduced other characteristics of the timeline to style decisions.

Paul Doyle explained that he is not opposed to emotion and profanity. Whereas the
former is normally acceptable, he warned of “slightly incoherent emotions” in some
of ELD’s summaries. These gave away the fact that tweets from different people were
stitched together. He found profanity similarly acceptable if used sparingly to preserve
its impact, while encouraging narration in timelines to “enrich the commentary” and
describe the context.
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We also quizzed Paul Doyle on how ELD could be useful to journalists. He expressed
concern that such systems could abolish journalists’ jobs, and thus could see little use in
the timelines. On the other hand, when we explained that ELD’s descriptions of events
are a reflection of what Twitter finds important, he reasoned that ELD could be useful
as an analysis tool.

Nonetheless, similar to the conclusions of Marcus et al.’s [42] interview, Paul Doyle
was reluctant to this idea due to Twitter’s nature. He expressed concern that the social
network is not representative of the community at large and is too extreme. According
to him, that may be Twitter’s biggest fault of all - being “a forum where people are
deliberately seeking attention.”

6.4 Summary

The general improvements that we presented in this chapter indicate that ELD’s model
to understand events before explaining them is not only desirable, but also possible. Far
from being premature, we showed how the time before an event starts can lead to an
understanding about the domain if it is well-defined.

This process showed its effects in the ensuing TDT task, which benefited greatly,
improving granularity without compromising on precision. Small progress was also
visible when the topic detection task was allowed to explain developments in conjunc-
tion with the proposed FMMR and DGS algorithms.

The qualitative analysis demonstrated that ELD has made meaningful progress in
identifying the salient points of events. Nonetheless, the discussion heaped importance
on constructing transparent and credible timelines - tasks for summarization. Going off
these findings, the next chapter summarizes this dissertation and lays down proposals
for future work.
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7

Conclusion

When Kleinberg proposed the idea of burst in his seminal 2003 paper [86], it seemed
like an elegant solution to the TDT research area. The simplicity of a two-state automa-
ton that travelled back and forth between one normal and another agitated state was a
sophisticated representation that explained the problem tersely.

Over the years, scientific research took Kleinberg’s proposal almost too literally. The
studies presented over the years reduced the TDT problem to the speed and resilience
of noticing state changes to the breaking state. But their bids focused far too much on
when the change happens, and not enough on how it happens.

ELD set out to create a TDT approach that could operate in real-time and with a fine
granularity, exploiting all that microblogging has to offer. By the end ELD challenged
the traditional definition of an event that ignores the intricacies of events and does not
permit machines the possibility of understanding for themselves.

In the rest of this chapter, we first take a look at how ELD achieved its aims and
the extent of their success based on the quantitative and qualitative evaluations. Sub-
sequently, we suggest ways forward to improve ELD’s performance before concluding
the dissertation with the final remarks.

7.1 Achieved Aims and Objectives

The principle that drove ELD was that a richer understanding is not only desirable, but
also necessary to sufficiently cover an event. We confirmed this hypothesis in Chapter 6,
demonstrating that a football match is not confined to the period between two whistles.
Supporters start thinking about their team well before the ball is kicked off and follow
their teams arduously during the entirety of the match. The hypothesis held true across
different domains, including politics.
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Chapter 7. Conclusion 7.1. Achieved Aims andObjectives

It is for this reason that ELD seeks to understand events before they even start. The
novel concept of APD demonstrates how the conversations leading up to an event paint
a rough picture of the hours that would follow. ELD looks at the discussions as a preface
to the event. In the rest of this section, we describe how ELD achieved the aims and
objectives outlined in Section 1.2.

7.1.1 Determine how well participants can be identified before an event has
started

Though the first goal was an ambitious one, in Subsection 6.3.1 we showed how our
APD algorithm is able to gain an insight into the key participants of an event before it
has even started. However, our method, so dependent on Twitter conversations, is also
too easily misled.

When it worked, APD inherited the bias of Twitter, succumbing to coverage that
favoured the majority side. When it did not work, it opened up to extraneous noise.
Nonetheless, even with our first presentation of APD, we showed that Wikipedia can
make up for the shortcomings of the insufficient Twitter stream.

7.1.2 Explore the ways in which APD contributes to topic detection

Using the found participants, our implementation of FIRE’s TDT model, helped on by
our novel feature-pivot algorithm, could pick out the fine details from event streams.
This was evident in the improved recall results of Subsection 6.3.2. The same results
showed that although APD displayed bias and imprecision, it impacted TDT negatively
only marginally.

On the contrary, the TDT algorithm operating over biased APD datasets routinely
climbed to the same heights as when using the full datasets. It is as encouraging a sign
as it is eye-opening - APD in its current state can improve results to an extent that is
similar to a manually-defined set of keywords. On the other hand, it points to a need
for a sharper TDT approach that overcomes the bias of Twitter streams.

7.1.3 Identify the effects of the combined document- and feature-pivot
approach on topic detection in a narrow stream

Our evaluation in Subsection 6.3.2 also demonstrated that unlike simpler methods, ELD
is impervious to the conversation habits of Twitter. While volume-based approaches os-
cillate between the overly-sensitive and outright powerless when faced with odd tweet-
ing habits, ELD looks for the saliency amid the noise.
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Chapter 7. Conclusion 7.2. FutureWork

TDT’s contributions extend beyond development detection. The document-pivot
method identifies the documents responsible for a shift towards an agitated state within
the event. Our novel feature-pivot algorithm drills down even deeper to find the topical
keywords around which the development revolves. Like APD, TDT seeks to understand
developments to explain them better.

7.1.4 Examine the link between the fragmentation of topic detection and
summarization, and how TDT can contribute to summarization

In ELD we reasoned that summarization builds atop of TDT, and thus the two should
not be considered separate. The understanding of TDT becomes the core around which
FMMR and DGS construct summaries that look at the documents as a mixture of per-
spectives.

By exploiting this enforced link between TDT and summarization in the evaluation
in Subsection 6.3.3, our novel algorithms showed encouraging results when compared
to the baseline. The analysis revealed a rift between the writing habits of regular Twitter
users, authoritative accounts and the mainstream media.

This aspect also resulted in the most glaring downfall of our summarization ap-
proaches, further confirmed in the qualitative analysis in Subsection 6.3.4 - subjectivity.
Though still succumbing to bias, ELD exhibited promise to detect developments even
when data is scant, but the same cannot be said for summarization.

7.1.5 Analyse summarization’s performance in describing developments

The final quantitative evaluation in Subsection 6.3.3 and the qualitative evaluation in
Subsection 6.3.4 raised the unexpected question of what happens when descriptive con-
tent is scarce or unavailable. The interview heaped more importance on summariza-
tion’s capabilities to explain developments in an impartial and transparent manner. For
TDT systems to move closer to the mainstream media could mean looking beyond Twit-
ter and its distinctive mannerisms. We explore avenues for future research in these areas
in the next section.

7.2 Future Work

In this dissertation, we confirmed the principal hypothesis that a deeper understanding
of an event presents opportunities for TDT and summarization to explain developments
better. Although the quantitative and qualitative analyses confirmed this hypothesis,
they also revealed shortcomings.
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Chapter 7. Conclusion 7.3. Final Remarks

Deeply ingrained in Twitter, and ultimately in humans, bias is the most prominent
issue of APD, albeit not as detrimental as feared. The resounding split between classes
is not entirely negative. It means that when the resolved participants are predominantly
one-sided, capturing the totality of this one class is within reach. Recognizing this divide
and repeating the process for each side is one possible way of overcoming bias.

APD as presented in this dissertation is a concept with a lot of untapped potential.
In ELD, we shielded TDT from the knowledge of APD, but the works of Shen et al. [13],
and McMinn and Jose [18] demonstrate models that ingrained participants in their core
workflows.

Even considered individually, our novel feature-pivot TDT algorithm was not ex-
ploited thoroughly in this dissertation. Literature often considers topic tracking only
implicitly, yet we postulate that our novel feature-pivot TDT solution can be used in
this regard. Its bounded burst opens up opportunities for tracking to be considered
more explicitly by looking at drops in burst as an indication of a development’s end.

Although bias in TDT remains a challenge that needs to be tackled, the interview
with Paul Doyle indicated that Twitter’s content is too superficial to bridge the gap
with human-curated timelines. When Twitter fails to contribute the right material for
timelines, where should systems look instead?

One avenue that has not been sufficiently explored in summarization literature is big
data. External sources, such as media reports themselves, could not only serve as more
comprehensive corpora, but they could also be the solution to more objective timelines.

7.3 Final Remarks

Before France and Croatia walked out onto the pitch for the 2018 World Cup final, there
was a road crafted by the players. Those same players fought for World Cup glory -
they scored, some celebrated and others wept.

While they played, the world talked about them - people talked because they un-
derstood what was happening, but an automated system does not. In ELD we demon-
strated that perhaps machines and humans are not so far apart. In their own peculiar
way, they both require more than instructions - an understanding to first reason about,
and then explain events.
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Algorithm Pseudocode

A.1 Automatic Participant Detection

Listing A.1: Extractor

1 ������ ��� 	
 �	��
���� �

2 ������� ��� 	
 �	��
���� �� ��� �	
 �����������

3
4 �	��
������������ � ��

5 
	� ���� �	��
��� � �� � �	

6 � � �����	�������

7 �������� � ��
�� �������� �� �

8 �	��
�����������������������������

9
10 ������ �	��
������������

Listing A.2: Scorer

1 ������ ��� 	
 �	��
���� �� ��� �	
 ����������� �

2 ������� ��� 	
 ��	��� ����������

3
4 ���������	��� � ��

5 
	� ���� �	��
��� � �� � �	

6 
	� ���� ��
�� ������ �� �� � �	

7 �
 �� �� ���������	��� ����

8 ���������	������ !� "

9 �#��

10 ���������	������ � "

11
12 
	� ���� ��
�� ������ $ ��	�� ��� $ �� �� ���������	��� �	
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Appendix A. Algorithm Pseudocode A.1. Automatic Participant Detection

13 ���������	
������ 
 �	����� � ��

14
15 
���
� ���������	
��

Listing A.3: Filter

1 ������ ��� 	� ��	
�� ���������� �

2 ������� ��	
� ������	
�

3 �����
 	� ���������� �

4  ������ ���� 	� ����������

5
6 ���������� 
 !"

7
8 � 
 ���������� �� � #��$ ��	
� %
 ������	
�

9
10 �	
 ���$ ��������� � �� � �	

11 �	
 ���$ ��������� 	�$�
 �� � �	

12 �� 	�$�
 �� � ������ 	� � �$��

13 ���� �
 ��	�$�
�

14 �&
��	'��	�$�
�

15
16 �	
� ���������� �� ���������� 	
��


17 
���
� �	� � ����������

Listing A.4: Resolver

1 ������ ���� 	� ���������� (

2 �	
��� )

3 ������� ��	
� ������	
�

4  ������ ���� 	� 
��	�'�� ��
���������

5
6 
��	�'�� 
 !"

7
8 �	�����	���*� 
 �	����������)�

9 �	
 ���$ ��������� � �� ( �	

10 �
������ 
 ���
�$+�����������

11 ������
����� 
 !"

12 �	
 ���$ �
����� #����������	����� �� �
������

13 �������� 
 ���,�
�����������#����������	������

14 ������
��� 
 �	������	�����	���*� - ���������

15 ������
������#����������	������ 
 ������
���

16
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Appendix A. Algorithm Pseudocode A.1. Automatic Participant Detection

17 �����������	���
� � ��
�����������������

18 �� ������������������������	���
�� � ������	��

19 ���	�����������������������	���
��

20
21 ������ ���	����

Listing A.5: Extrapolator

1 ��
��� ���� 	� ����
���� �	���
�� 	� 
������
���� �

2 �	�
��  

3 ������� ��	�� ������	��

4 ���!�� 	� ���������� �

5 "��
��� ���� 	� �����
	����� 
������
����

6
7 �����
	����� � #$

8
9 �	�����	����� � �	��������� �	������� ��  

10 
��
% � ��& '��
%

11
12 (( ����� �������	�

13
14 �����
	
������) � #$

15 ��������
�� � #$

16 �	� ���% ����
���� �	���
� 
 �� � �	

17 ��� �	�� 
 �	 
��
%

18 �������� � �������� ������ ��	� 


19 ��������
���
� � ��������

20
21 �	� ���% ������� � �� �������� �	

22 �� � �� �����
	
������) �%��

23 �����
	
������)��� *� +

24 ����

25 �����
	
������)��� � +

26
27 
	
������������� � �	
 +,, �	�� 
	
���� �����

28 �	� ���% 
������
��� �	���� �� � �	

29 ���
�����
�� � ��������
����	�����

30 ���
�����
�� � ��
�� �� ���
�����
�� �� �� 
	
�������������

31 �	� ���% ����
���� �	���
� ���
�� �� ���
�����
�� �	

32 ���������	����� � ����
���� ������� 	� ���
��

33 �������� � ����� �������� �� ���������	�����

34 ���������) � �	������	�����	����� - ���������
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35
36 ��� ���� ������ �� ���	


37 �� 
��������� � � �
��

38 ��� ���������� ���� 
����� �������

39 ���
 ����
� 
���������

40
41 �� 
����� ���������

42
43 �����	�	������� � ��

44 
����������
 � ��

45 ��� ���
 ����	���� �����	� � �� �������
 ��

46 �������
 � �������
 ������ ���� �

47 
����������
��� � �������


48
49 ��� ���
 ������� ��
�� �� �������
 ��

50 �� ��
�� �� �����	�	������� �
��

51 �����	�	����������
���  � !

52 ��
�

53 �����	�	����������
��� � !

54
55 
��� �����	�	������� �� ��
������� �����

56 ������� � 	�	������� �� �����	� �� ���� !���

57 	�	������������
 � �������
 �� �����	�	������� �� ����� �� �������

58 ��� ���
 ������� 
����� �� 
����������
 ��

59 �����������
 � 
����������
�
������

60 �����������
 � ����
 �� �����������
 �� �� 	�	������������


61 ��� ���
 ����	���� �����	� ������ �� �����������
 ��

62 ��������������� � ����	���� ������� �� ������

63 
������� � ���
� 
������� �� ���������������

64 
��������� � ��
���"�����������#� $ 
�������%

65
66 ��� ���� ������ �� ���	


67 �� 
��������� � �&' �
��

68 ��� ���������� ���� 
����� �������

69 ���
 ����
� 
���������

70
71 �� �#����� 	������	���


72
73 ����������
 � �#����� ����������
 ���� ���	


74 ����������
 � ����������
 ���
 �� ���
� ( �������


75 �������
 � ��
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76 ��� ���� ����	
��
 � �
 ����	
����� ��

77 ��� ���� ������� � �
 ����	
����� ��

78 ����������
��
� � ��������� ������� �

79 ��
��
�� � ����� ��
��
�� �
 ����������
��
�

80 ���������
 � ����
����������
���� � ��
��
���

81
82 �� ���������
 �� ��
������ ���


83 ����������� � ���������


84
85 ���	�
 ��� � �������� �
 ��������

Listing A.6: Postprocessor

1 �
�	�� ���� �� ���������
�� �

2  	��	�� ���� �� ������������� ���������
��

3
4 ���������
�� � !"

5
6 ��� ���� ���������
� �	���
��� �
 � ��

7 ������� � ��������� ������� �� �	���
���

8 �� ������� ��� � # $

9 �	�
��� � ���� %��� �
 �	���
���

10 �� �	�
��� �� 
�� �
 &
'���� %��� ���


11 ���������
��(�
������	�
����

12 ����

13 ���������
��(�
������	���
����

14
15 ���	�
 ���������
��

A.2 Topic Detection and Tracking

Listing A.7: Temporal No-K-Means

1 �
�	�� ���	��
� �

2 ��	����� )

3 ���������
 ��������� ��
����������


4 ����*� ������ ����*�

5
6 ++ ����,� �
����,� ��	����� �����

7 ���� � �	���
� ����

8 ��� ���� ��	���� � �
 ) ��
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9 �� ���� � ��	
���
��
��� � ������ ����

10 ������ � ���� �

11
12 �� ����
�� ��� ���
���� ���� �
�� �	
����

13 ����	
������ � ��

14 ��� �
�� �	
���� � �� � ��

15 ����	
���� � ��������� ���������� 

16 ����	
������!�" � ����	
����

17
18 �� �	
���� 
����#
����

19 �	
���� � �
$�����	
���� � 
�%�
$�����	
������ 

20 �� �
$�����	
���� �� ��������	
���� ����

21 �	
�����
���� 

22 �	
�����	
���
��
��� � ����

23 �	��

24 �	
���� � ��� �	
����

25 �	
�����	
���
��
��� � ����

26 �	
�����
���� 

27 �	
��������������	
���� 

Listing A.8: Burst calculation

1 &��
�' (������ (

2 (������ �
������� �
�������

3 �
������� ����� �����

4 �
�#�� �� ���� �� �������� �

5 ���
� �
�� ���
���
��

6
7 �
������������ � � ������ �
������� ����

8 �� ������� ������	�%��
	 �����

9
10 �������
��� � )

11 ��� � #������ * 
�� � ��

12 �������
��� +� �* � �
����$��� , ���
���
�� 

13
14 #
��� � )

15 ��� � #������ * 
�� � ��

16 ���������#
��� � �
������������!� � *"� (������

17 ���
� � �* � �
����$��� , ���
���
�� 

18 #
��� +� ��
������� � ���������#
��� - ���
�

19
20 #
��� �� �������
���
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Appendix A. Algorithm Pseudocode A.3. Summarization

21 ������ �����

A.3 Summarization

Listing A.9: New breaking development

1 ��	��
 �����
�� ������� �

2 ��	��� �� �����
�� ����� ��� ���
� ������ �

3 �
������	 �
��

4 �
����
���� �
����

5 ��
��	��
�� ��
�

6
7 ������������ � ���� ���� �� ��� �
���
��

8 
� �
�� � �������������������	����� � �
���� ����

9 ������ ��� �
���
�� ����

10
11 �����
�
���
�� � ���������� ���	���� � !� ����

12 ��� ���� ���� � 
� �
���
�� ��

13 �� ���	���� � ��� �������"�������
������������#

14 �
�
���
�� � ���
��"��������
� � �� ���	�����������
�#

15 
� �
�
���
�� � �����
�
���
�� ����

16 �����
�
���
�� � �
�
���
��

17 ���������� ���	���� � �

18
19 
� �����
�
���
�� � !�$ ����

20 ��� "�� �# �� ���������� ���	����

21
22 
� �����
�
���
�� %� !�$

23 ��� "�
�� � �������������������	����� � ��
�# ����

24
25 ���������� ���	���� �

26 ��� �������"������������������
������������#

27 �
�
���
�� � ���
��"��������
� � ���������� ���	�����������
�#

28 
� �
�
���
�� % !�& ����

29 ������ ��� �
���
�� ����

30
31 ������������ � ���� ���� �� ��� �
���
��

32 
� �����
�
���
�� %� !�$ ����

33 
� ���������������������������� �� ! ����

34 ������ �
���
�� ���� ����

35
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36 ����������	�
��������

����� ���� ���

37 ����������	�
�����
���	��������

�������
	���������

38 ����������	�
�������	���	 � �
��

Listing A.10: FMMR

1 ������ 	������� ��� �

2 �����
�� �������� ��
�� ������ ����� ��	 ���
� ������ �

3 ������� ������� �� ���

4
5 !! "���� #�������
��

6
7 "������������ � ��� �������

8 #�� ���� ������� � 
� � 	�

9 �
$� � ������ �# 	�������� 
� �

10 ������ � ������� � �����
�� ����� 
� �

11
12 	������� � ��� ��������

13 #�� ���� ����� � ������ 
� ������ � ������� 	�

14 	�������
���� � ����� % �
$�

15 "������������
�		�	��������

16
17 "���� � "������������
������
	
������
$� ��

18
19 ������ &&'��� "�����

Listing A.11: DGS

1 ������ 	������� ��� �

2 �����
�� �������� ��
�� ������ ����� ��	 ���
� ������ �

3 ������� ������� �� ���

4
5 !! "���� #�������
��

6
7 "������������ � ��� �������

8 #�� ���� ������� � 
� � 	�

9 �
$� � ������ �# 	�������� 
� �

10 ������ � ������� � �����
�� ����� 
� �

11
12 	������� � ��� ��������

13 #�� ���� ����� � ������ 
� ������ � ������� 	�

14 	�������
���� � ����� % �
$�
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15 ���������	
����

�
������
�

16
17 ����� � ���������	
������
���
���������� ��

18
19 �� ����� ����
���

20
21 ����� � ��� �����

22 ��� ���� 
������
 
 �� � 
�

23 �

 
 
� �����

24
25 ��� ���� ��
� � �� ����� 
�

26 	�������
� � ��	����
� ��
��
������
�

27 �� 	�������
� �  �! 
���

28 �

 ��
����
�
 �
�� 
"��
� ��
� �����
 	�������
�

29
30 �������
��	 � �#
���
 �������
��	 ���� �����

31 �� 
���� ��� �������
��	 ��
� �
 ���	
 ! ��
�	

32 �������
��	 � �������
��	 ��
� �
 ���	
 ! ��
�	

33 ��	�

34 �������
��	 � $����	
 �������
�

35
36 	������ � ��� %������

37 ��� ���� �������
� � �� �������
��	 
�

38 ���
����
��	����	 � �����&��
������
����
����

39
40 ��
��	����	 � '(

41 ��� ���� ��
� � �� � 
�

42 
������
 � ��
������


43
44 �����
��	���� � 	�����
������
�

45 ������	���� � ��	����
������
 � ������

46 ���
����
��	���� � ���
����
��	����	)�*

47 ��
��	����	)�* � �����
��	���� +

48 ������	���� +

49 ���
����
��	����

50
51 ���	���
������
 � �����#���
��	����	�

52 �

 ���	���
������
 
� 	������
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B

Evaluation Datasets

Event Seed Set

Manchester United F.C. - Arsenal F.C. #MUNARS, Manchester United, Arsenal

Liverpool F.C. - S.S.C. Napoli #LIVNAP, Liverpool, Napoli

Valencia CF - Manchester United F.C. #VALMUN, Valencia, Manchester United

Liverpool F.C. - Manchester United F.C. #LIVMUN, Liverpool, Manchester United

Tottenham Hotspur F.C. - Wolverhampton
Wanderers F.C.

#TOTWOL, Tottenham, Wolves

Crystal Palace F.C. - Chelsea F.C. #CRYCHE, Crystal Palace, Chelsea

UFC 232 #UFC232, UFC 232

Brazil Presidential Election 2018 Brazil election, Brasil election

USA Midterm Elections 2018 #MidtermElections2018, #ElectionDay, #Elec-
tionNight, midterm

Table B.1: The seed sets that we used to collect the different datasets.
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Ev
en

t
U

nd
er

st
an

di
ng

D
at

as
et

C
ol

le
ct

io
n

(U
TC

)
Ev

en
tD

at
as

et
C

ol
le

ct
io

n
(U

TC
)

M
an

ch
es

te
r

U
ni

te
d

F.
C

.-
A

rs
e-

na
lF

.C
.

18
:4

5-
19

:4
5

on
5

D
ec

em
be

r,
20

18
19

:4
5-

22
:1

5
on

5
D

ec
em

be
r,

20
18

V
al

en
ci

a
C

F
-

M
an

ch
es

te
r

U
ni

te
d

F.
C

.
18

:4
5-

19
:4

5
on

12
D

ec
em

be
r,

20
18

19
:4

5-
22

:1
5

on
12

D
ec

em
be

r,
20

18

Li
ve

rp
oo

lF
.C

.-
S.

S.
C

.N
ap

ol
i

18
:4

5-
19

:4
5

on
13

D
ec

em
be

r,
20

18
19

:4
5-

22
:1

5
on

13
D

ec
em

be
r,

20
18

Li
ve

rp
oo

l
F.

C
.

-
M

an
ch

es
te

r
U

ni
te

d
F.

C
.

14
:4

5-
15

:4
5

on
16

D
ec

em
be

r,
20

18
15

:4
5-

18
:1

5
on

16
D

ec
em

be
r,

20
18

To
tt

en
ha

m
H

ot
sp

ur
F.

C
.

-
W

ol
ve

rh
am

pt
on

W
an

de
re

rs
F.

C
.

13
:4

5-
14

:4
5

on
29

D
ec

em
be

r,
20

18
14

:4
5-

17
:1

5
on

29
D

ec
em

be
r,

20
18

C
ry

st
al

Pa
la

ce
F.

C
.

-
C

he
ls

ea
F.

C
.

10
:4

5-
11

:4
5

on
30

D
ec

em
be

r,
20

18
11

:4
5-

14
:1

5
on

30
D

ec
em

be
r,

20
18

U
FC

23
2

1:
45

-2
:4

5
on

30
D

ec
em

be
r,

20
18

2:
45

-7
:1

5
on

30
D

ec
em

be
r,

20
18

Br
az

il
Pr

es
id

en
ti

al
El

ec
ti

on
20

18
18

:4
5-

19
:4

5
on

28
O

ct
ob

er
,2

01
8

U
SA

M
id

te
rm

El
ec

ti
on

s
20

18
22

:0
0-

22
:3

0
on

6
N

ov
em

be
r,

20
18

Ta
bl

e
B.

2:
T

he
da

te
s

an
d

ti
m

es
w

he
n

w
e

co
lle

ct
ed

th
e

da
ta

se
ts

.

117



Appendix B. Evaluation Datasets

Number of Tweets

Event Understanding Base APD Full

Manchester United F.C. - Arsenal F.C. 41,586 121,329 183,459 212,729

Valencia CF - Manchester United F.C. 3,005 33,156 95,662 79,419

Liverpool F.C. - S.S.C. Napoli 15,841 93,761 153,927 165,132

Liverpool F.C. - Manchester United F.C. 29,785 186,116 290,696 303,982

Tottenham Hotspur F.C. - Wolverhampton
Wanderers F.C.

3,563 67,726 95,547 93,223

Crystal Palace F.C. - Chelsea F.C. 8,937 36,968 75,770 63,891

UFC 232 15,457 195,519 223,273 249,805

Brazil Presidential Election 2018 841

USA Midterm Elections 2018 41,668

Table B.3: The number of tweets in the datasets that we collected.
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Topic Detection and Tracking
Evaluation Configuration
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Appendix C. Topic Detection and Tracking Evaluation Configuration
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D

Summarization Results

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0694 0.0872 0.0735 0.1147

Liverpool F.C. - S.S.C. Napoli 0.0893 0.1258 0.0866 0.1570

Valencia CF - Manchester United
F.C.

0.0401 0.0620 0.0388 0.0585

Liverpool F.C. - Manchester United
F.C.

0.0926 0.0926 0.0992 0.0980

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.1822 0.2254 0.1816 0.3417

Crystal Palace F.C. - Chelsea F.C. 0.1595 0.1692 0.1760 0.2490

Macro-Average 0.1055 0.1270 0.1093 0.1698

Table D.1: ROUGE-1 precision results based on authoritative Twitter accounts.
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Appendix D. Summarization Results

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.1144 0.1455 0.1177 0.1841

Liverpool F.C. - S.S.C. Napoli 0.1055 0.1393 0.1064 0.1807

Valencia CF - Manchester United
F.C.

0.1439 0.2172 0.1620 0.2208

Liverpool F.C. - Manchester United
F.C.

0.1764 0.1648 0.1707 0.2054

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.2428 0.2321 0.2765 0.3539

Crystal Palace F.C. - Chelsea F.C. 0.1623 0.1897 0.1688 0.2231

Macro-Average 0.1576 0.1814 0.1670 0.2280

Table D.2: ROUGE-1 precision results based on mainstream media reports.

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0175 0.0211 0.0188 0.0242

Liverpool F.C. - S.S.C. Napoli 0.0223 0.0242 0.0214 0.0358

Valencia CF - Manchester United
F.C.

0.0143 0.0230 0.0138 0.0156

Liverpool F.C. - Manchester United
F.C.

0.0354 0.0430 0.0395 0.0365

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.0929 0.0882 0.0895 0.1378

Crystal Palace F.C. - Chelsea F.C. 0.0862 0.0668 0.0966 0.1094

Macro-Average 0.0448 0.0444 0.0466 0.0599

Table D.3: ROUGE-2 precision results based on authoritative Twitter accounts.
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Appendix D. Summarization Results

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0303 0.0223 0.0328 0.0485

Liverpool F.C. - S.S.C. Napoli 0.0169 0.0154 0.0169 0.0284

Valencia CF - Manchester United
F.C.

0.0393 0.0662 0.0386 0.0671

Liverpool F.C. - Manchester United
F.C.

0.0472 0.0410 0.0457 0.0467

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.0622 0.0538 0.0749 0.0824

Crystal Palace F.C. - Chelsea F.C. 0.0512 0.0278 0.0521 0.0559

Macro-Average 0.0412 0.0378 0.0435 0.0548

Table D.4: ROUGE-2 precision results based on mainstream media reports.

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.1705 0.2326 0.1763 0.2555

Liverpool F.C. - S.S.C. Napoli 0.2235 0.2257 0.2139 0.2410

Valencia CF - Manchester United
F.C.

0.1646 0.2488 0.1841 0.2520

Liverpool F.C. - Manchester United
F.C.

0.2236 0.2513 0.2542 0.2535

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.4491 0.3965 0.4424 0.4166

Crystal Palace F.C. - Chelsea F.C. 0.3553 0.3501 0.4143 0.3595

Macro-Average 0.2644 0.2842 0.2809 0.2964

Table D.5: ROUGE-1 recall results based on authoritative Twitter accounts.
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Appendix D. Summarization Results

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.1746 0.2154 0.1742 0.2500

Liverpool F.C. - S.S.C. Napoli 0.1904 0.2288 0.1904 0.2341

Valencia CF - Manchester United
F.C.

0.1583 0.1995 0.1605 0.2120

Liverpool F.C. - Manchester United
F.C.

0.1873 0.2011 0.1892 0.2188

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.3510 0.3344 0.4119 0.3166

Crystal Palace F.C. - Chelsea F.C. 0.2809 0.2967 0.3084 0.3271

Macro-Average 0.2238 0.2460 0.2391 0.2598

Table D.6: ROUGE-1 recall results based on mainstream media reports.

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0414 0.0638 0.0447 0.0586

Liverpool F.C. - S.S.C. Napoli 0.0650 0.0440 0.0624 0.0689

Valencia CF - Manchester United
F.C.

0.0677 0.1094 0.0777 0.093

Liverpool F.C. - Manchester United
F.C.

0.0843 0.1060 0.1050 0.0940

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.2333 0.1534 0.2225 0.1678

Crystal Palace F.C. - Chelsea F.C. 0.1884 0.1680 0.2243 0.1373

Macro-Average 0.1134 0.1074 0.1228 0.1033

Table D.7: ROUGE-2 recall results based on authoritative Twitter accounts.
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Appendix D. Summarization Results

Match MEADFMMR FMMR MEADDGS DGS

Manchester United F.C. - Arsenal
F.C.

0.0395 0.0348 0.0403 0.0559

Liverpool F.C. - S.S.C. Napoli 0.0349 0.0312 0.0349 0.0368

Valencia CF - Manchester United
F.C.

0.0548 0.0787 0.0553 0.0647

Liverpool F.C. - Manchester United
F.C.

0.0441 0.0457 0.0433 0.0479

Tottenham Hotspur F.C. - Wolver-
hampton Wanderers F.C.

0.1077 0.0798 0.1297 0.0808

Crystal Palace F.C. - Chelsea F.C. 0.1284 0.0914 0.1388 0.1342

Macro-Average 0.0682 0.0603 0.0737 0.0701

Table D.8: ROUGE-2 recall results based on mainstream media reports.
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Qualitative Analysis Transcript

Nicholas Mamo: First of all, thanks a lot for accepting to conduct this interview with me. I
realize that there were some issues that you couldn’t understand what I was saying. Just
to give you a little bit of background about the system. Basically, I am a postgraduate
student at the University of Malta and I am studying AI - Artificial Intelligence. In my
area, I am creating a system that tracks events and creates timelines for them. So for
example, we give it the keywords Crystal Palace and Chelsea and the system, the AI,
automatically collects tweets that mention Crystal Palace or Chelsea, reads them on its
own and creates its own timeline from the tweets.

The reason I wanted to have an interview in the dissertation was to have a sort of
qualitative analysis to understand how well it does its job because as journalists, you
cover matches. I wanted to get feedback from a journalist by asking a few questions. Is
that clear? Do you understand?

Paul Doyle: Just a question. For example, in the second of the things that you sent
me, it was a Chelsea match against Crystal Palace. Are you saying that the timeline was
a compilation of tweets from all over the internet?

NM: Yes, that is why there were some inconsistencies. That is why there was pro-
fanity, for example. It was created by an AI. Just to confirm. You work at The Guardian,
right? What is your job title, so to speak?

PD: Football writer.
NM: Is it okay if I mention you by name in the dissertation?
PD: If you want.
NM: Thank you. Do you want to start with the questions, or do you have any ques-

tions? Is something unclear?
PD: Yeah, the fundamental thing that was unclear to me. You want to know how

useful this would be to journalists. I thought that the whole purpose of systems like this
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Appendix E. Qualitative Analysis Transcript

was to abolish journalists, for machines to do the job instead. How could it possibly be
useful to journalists?

NM: I think it’s almost impossible to abolish journalism using systems such as this.
The reason being that, for example, for the Chelsea against Crystal Palace match that
you read, there were only like 60,000 tweets. It is very, very difficult to create a compila-
tion when the numbers are even smaller. For example, I remember I fed it [the system]
a game between - I think - Southampton and West Ham. The system struggled a lot
because there were only like 20,000 tweets. In its current stage, and I think within the
next ten years, it will not be able to come close to journalists in terms of comprehensive-
ness. The question that I wanted to ask - how it could help journalists - is knowing that
the timeline was created based on what people found important and interesting. If you
see the timeline for the Crystal Palace-Chelsea match, or the Liverpool-Napoli match,
you realize that there is a lot of bias, perhaps. Does it help knowing what the topics of
conversation are among the Twitterbase?

PD: In that case, it’s more of an analysis of what people think on Twitter more than
what is happening in the match. I guess if you’re a journalist interested on what’s hap-
pening on Twitter, it would be useful. We know that only a still very small proportion
of people use Twitter, so you’re never going to get a representative understanding. The
Twitter users are a distinct group, so maybe the system will help you get an opinion of
what people on Twitter are thinking of about the match or a particular player. From that
point of view I suppose it could be useful. Personally, I wouldn’t ever use it.

NM: Why not?
PD: A) I don’t care what people think on Twitter because I think that it is not repre-

sentative of what most people think. B) People are [...] more extreme on Twitter. It is
a forum where people are deliberately seeking attention. If you’re looking at accuracy,
it’s not interesting. I consider Twitter to be the “toilet walls” of the twenty-first century.
People would write graffiti on toilet walls to make their opinions known. Now, they use
Twitter. It’s not something that’s interesting or useful to journalists.

NM: Thanks for your honesty. Let’s take it from a different perspective then. Imag-
ine that the system was an intern and you were supervising. Do you remember the
spreadsheet that I sent you? The first part. PD: The comparison of the two, yes.

NM: Could you tell which one was written by our system, and which one was writ-
ten by the other blog - the other blog was ThisIsAnfield.com.

PD: Right, no, I couldn’t tell. They were both as bad as each other.
NM: Alright, that’s something - thanks. The second one was actually ours. There

was some profanity, some [Twitter] mentions. I was surprised that This is Anfield uses
emojis in their text, but that’s another story. Let’s move on to the actual timeline. How
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Appendix E. Qualitative Analysis Transcript

well do you consider the timeline to be comprehensive, if it was an intern. Do you think
that the timeline covers the most important moments? Or does it leave out certain parts?

PD: I didn’t see that match so I can’t say for sure. I didn’t study every entry in the
timeline because it was not good reading, but I did not see much tactical analysis in
there. I did not see much indication of how substitutions may have changed matches.
I can see a general sense of overall understanding of the subtleties of how the match
changed. The main chances etcetera seemed to be covered from what I could make out,
that was about it.

NM: You mentioned that it was bad reading. In what way? Was it incohesive? Is it
the fact that there was a lot of emotion. What made it “bad reading”?

PD: There was a lot of emotion, which is not necessarily bad. There was slightly
incoherent emotions, which is a lot of contradictory biases. You could tell that it was a
mish-mash of various people’s thoughts. There was congestion from that point of view.

The profanities, that’s a question of style for the individual reader and individual
publication. I always think that there is a time to use profanities, and it’s when you
are describing a particularly extreme situation because profanity is a rather extreme
language. If you use it willy-nilly, you use it to describe relatively-mundane events,
then how do you describe extreme situations? Honestly there was a lot of slang, which
again is fine, but there was inconsistent slang. I was puzzled that there was a woman
in it - Marie something [referring to Maine Mendoza] - not sure what she was talking
about.

NM: That was one of the failings of the system. It was Mendoza, I think? Something
like that.

PD: Yeah, I don’t know what was happening there.
NM: We tracked Marcos Alonso, and actually his [full] surname is Marcos Alonso

Mendoza, so I think it was Maine Mendoza or something like that. If that was it, we
captured some ambiguity with someone else named Mendoza, that’s what happened.
That’s a very good point, it’s something we’re actively working on [with APD]. You
mentioned that it struggles with subtleties and tactics. It’s a very fair point, it also
struggles with substitutions sometimes.

Let’s focus on what it gets rights - as you said, the big moments, such as Van Dijk’s
yellow card. How well do you think that the timelines describe what happened in the
big moments? The big moments are naturally easier to capture for the system because
they are very popular.

PD: I didn’t think that it described them well, presumably for the reason that on
Twitter most people are assuming that people can see the action. They don’t give a de-
tailed description of exactly what happened. So they will say, for example, “Oh Giroud
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Appendix E. Qualitative Analysis Transcript

missed a [...] chance, he should have scored.” They don’t tell you that the ball was
crossed from the right and he took it down onto his chest and he [...] a pass [...] and
then curled the shot over the bar, or whatever. You don’t get a detailed description of
exactly what happened. You just get one person’s impression or judgement.

NM: Fair enough.
PD: Similar to the yellow card. I don’t remember that exact entry, but I imagine that

the person might have said that "Van Dijk got a yellow card for fouling such a player. I
think that was harsh” or “I think he deserved it” or “I think it should have been red,”
but probably don’t describe exactly what happened.

NM: Yes, it struggles with emotions a lot and that is why it misses tactics and subtle
points that you mentioned earlier before.

PD: Yeah, and as far as the timelines that are done by machines certainly read like
they’re done by machines or some kind of software, things like that you sometimes
see on the BBC, which are very very bald data. It will say “corner kick to Chelsea.”
Or “throw-in to Liverpool.” Incomplete, something like that. Because it is so blunt and
boring, it probably is accurate. At least, it has that in its favour - the fact that it’s accurate.
When you have one [timeline] that is just judgements, but has very little objective data
in it, then you have no idea whether it is accurate or not, really. That’s what those people
tweeting are. [...] It is even more useless than those sort of BBC things.

NM: In your opinion, objectivity is much more important than expressing the emo-
tions associated with actions. You’re just interested in what happens, not how people
react.

PD: I think that the detailed description has to be accurate. Absolutely. That is
important both for the people that are following in real-time, but also in the future. We
very often have people who read back over the coverage, the next day or two days later,
or even weeks and months later to get an accurate record of what happened. The details
have to be correct.

You could also put in subject of commentary. So describe the action, you could then
say “I think that should have been a red card” or “I think he should have scored that
chance” or whatever. And then, it would be up to readers to decide over time whether
they agree with the writer’s judgement or not. However, in this system, where it’s a
compilation of various tweets, you don’t even know who the people tweeting are so
you don’t know how reliable their [...] is.

NM: So on top of subjectivity, you can’t even assess how reliable they are.
PD: If you know who the subject is, you can decide how much value to attach to the

subjectivity. If you don’t even know who the subject is, then the subjectivity has to be
worthless.
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NM: Okay, understood. Just one last question. There is a lot of narration and bias in
the timeline. Bias, as you said, in terms of subjectivity, but also narration, such as facts.
For example, Milner had assisted nine, or something like that. Do you think that bias
and narration are something that should be in the timeline, or are they things that you
would rather not see?

PD: First of all, in terms of the bias, I [...] to my previous point. I don’t mind, I like
bias, I like subjective judgements if I know who the subject is. Then I am free to decide
how much value I attach to that subject, that person’s judgements. If I have no idea who
the person is, then it’s worthless.

In terms of narration, if that helps, that can help us understand context. That’s ab-
solutely fine. This narration is just basic data, statistics, which is kind of the most basic
form of narration. At least, assuming that they’re giving the correct statistics, at least it
has the value of being objectively-correct. By all means, including that can enrich the
commentary.

NM: Thanks a lot, I think you covered all the questions that I had to ask, so thanks a
lot. I think I’m done on my end, unless you have any questions or anything else.

PD: No, I don’t have any more questions.
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