A Dependency Parser for the Maltese

Language using Deep Neural Networks

Andrei Zammit
Supervisor: Dr. Claudia Borg

Department of Artificial Intelligence

University of Malta

Submitted in partial fulfilment of the requirements for the degree of

Master of Science in Artificial Intelligence

June 2018

L-Universita
ta' Malta

University of Malta Library — Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author’s rights in respect of
this work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified
by any successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information
contained in accordance with the Copyright Act provided that the author must be properly
acknowledged. Further distribution or reproduction in any format is prohibited without the
prior permission of the copyright holder.

Dedicated to the Maltese language; may its legacy be a beacon to those who nurture this
unique Semitic language, written in Latin letters, influenced by Romance Languages, spoken

by just 400,000 people.

Declaration

STUDENT: Andrei Zammit 487677M
FACULTY: Department of Artificial Intelligence
COURSE: Master of Science in Artificial Intelligence

TITLE: A Dependency Parser for the Maltese Language using Deep Neural Networks

1. AUTHENTICITY OF DISSERTATION

I hereby declare that I am the legitimate author of this Dissertation and that it is my

original work.

No portion of this work has been submitted in support of an application for another

degree or qualification of this or any other university or institution of higher education.

I hold the University of Malta harmless against any third party claims with regard to
copyright violation, breach of confidentiality, defamation and any other third party

right infringement.
2. RESEARCH CODE OF PRACTICE AND ETHICS REVIEW PROCEDURES

I declare that I have abided by the University’s Research Ethics Review Procedures.

As a Master’s student, as per Regulation 58 of the General Regulations for University
Postgraduate Awards, I accept that should my dissertation be awarded a Grade A, it

will be made publicly available on the University of Malta Institutional Repository.

Andrei Zammit

June 2018

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Claudia Borg for her
patience, guidance and encouragement which made this dissertation possible. I am honoured
for having the opportunity to work with her and hope that in the future we can work together
again. I would like also to thank Dr. Lonneke van der Plas and Dr. Slavomir Céplo, two
awesome individuals of great inspiration.

I am immensely grateful to my family and friends with their huge hearts, who have been
of great support.

Finally, I would like to thank Kenneth, for deciding together to start this adventure during
a dull night out over a couple of drinks. His friendship kept me sane during the late lonely

dark nights.

It was a good decision!

Abstract

Tasks such as information retrieval, sentiment analysis and question answering require the
processing of text analysis and natural language processing. Sentence parsing is one of the
tasks performed in NLP to analyse the grammar structure of a sentence, with the aim of
determining the relationships between the words in a sentence.

Whilst there are several parsers for many European languages, Maltese remains a low-
resourced and low-researched language and currently there are no parsers for the Maltese
language. This work investigates computational parsing of Maltese by using novel Deep
Learning and source bootstrapping techniques, with the aim of contributing not only to the
increase in computational resources for Maltese, but also to dependency parsing.

The evaluation of the parser was performed according to the Conference on Compu-
tational Natural Language Learning (CoNLL) standards and metrics. Experiments were
conducted using datasets provided during CoNLL 2017 except for the Maltese language
dataset which is provided directly by the author.

Results show an Unlabelled Attachment Score of 90% and Labelled Attachment Score of
86% by using a Quasi-Recurrent Neural Network (QRNN) with a bootstrapped data source
of Maltese and other Romance languages. Bi-directional LSTM Neural Networks outperform
QRNN by less than 0.2% in both metrics however, QRNN achieve a three-fold runtime
performance over bi-LSTM. To our knowledge, this is the first time that QRNN is applied to
the task of dependency parsing. The use of bootstrapped data sources is not documented in

the published papers and proceedings of the 2017 shared task we reviewed.

Contents

List of Figures

List of Tables

1

2

Introduction

I.1 Motivation oL e e e
1.2 Aims and Objectives L
1.3 Approach e

1.4 Chapter Overview o i it e e e e

Background and Literature Review

2.1 Traditional methodologies
2.1.1 Dynamic programming and Eisner’s algorithm
2.1.2 Constraint satisfaction L.
2.1.3 Transition-based approaches
2.1.4 Graph-based approaches

2.2 Neural Networks L

23 CoNLL 2017 e

2.4 Deep Learning methodologies
2.4.1 Neural Network Optimizers
242 Wordembeddings
2.4.3 Deep neural network architectures: RNN and LSTM

2.5 A bootstrapping approach for Maltese

ix

xi

N N RN

Contents

vii

2.6 The Universal Dependencies
2.7 The Maltese Universal Dependencies

2.7.1 Sample sentence from MUDTv1
2.8 EBvaluation

2.9 Conclusion

3 Methodology
3.1 Maltese Word Embeddings
3.2 Using Quasi-Recurrent Neural Networks
33 TheParser e e
3.4 The Bootstrapped Multi-source Treebank
3.5 CoNLL 2017 Evaluation standard

3.6 Conclusion,

4 Evaluation and Results
4.1 Evaluation Procedure oL
4.2 Evaluation metrics
4.3 EXperiments e e e e e e e e e
4.4 Neural Network Optimization algorithms evaluation
4.5 External Word Embeddings evaluation
4.6 Bootstrapped Multi-source Treebank evaluation
4.7 Neural Network Architecture evaluation
4.8 Alternate Languages evaluation
4.9 Summary of Experiments and Results

4.10 Conclusion

S Discussion
5.1 Neural Network Optimization algorithms
5.2 External Word Embeddings

5.3 Bootstrapped Multi-source Treebank

37
41
46
47
48

50
50
53
56
59
61
63

64
64
66
66
69
72
76
80
82
83
85

Contents viii
5.4 Neural Network Architecture 96
5.5 Alternate Languages 97
5.6 Contributions e 99
5.7 Limitations e 101
5.8 Conclusion 102
6 Conclusion 103
6.1 Achieved Aims and Objectives 103
6.2 Future work 104
6.3 Finalremarks 105
Bibliography 107
Appendix A Universal Dependencies specifications 113

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
33

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

Dependency structure for Maltese and English sentence 3

Word embeddings of capitals mapped to the countries after projection [40] . 27

Feed Forward Neural Network architecture 30
Recurrent Neural Network architecture 30
Elman’s Network [23] o 31
LSTM architecture 32
Dependency structure for sample English sentence. 41
Dependency structure for sample Maltese sentence. 47
Architecture of a traditional Convolutional Neural Network [33]. 54
QRNN architecture as compared to LSTM and CNN architectures [9] . . . 55
Graph-based parser architecture as proposed by Kiperwasser and Goldberg

[BI] . e 59
Evaluation using fasttext external word embeddings ID:9 73
Evaluation using GloVe external word embeddings ID: 10. 74
Evaluation using no external word embeddings ID: 11 75
UAS during training of models for experiments ID: 12to 17 77
LAS during training of models for experiments ID: 12to 17 78
Weighted LAS during training of models for experiments ID: 12to 17 . . . 79
Training of model for experimentID: 20 81

Optimizer performance through training phase for thirty epochs 87

List of Figures X

52
5.3
54
5.5
5.6

Prediction metrics using different optimizers 89
Prediction metrics using different external word embeddings 91
Word embeddings plotted on three dimensional scatter-plot 92
Prediction metrics using single-source and multi-source treebanks 95

Prediction for LAS metric using alternate languages 100

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Results for the best three language treebanks [58]. 35
Multi-source datasets [58]. 36
Multi-source projection models [58]. L. 36
CoNLL-U format [48]. 38
Universal POS tags [43]. 39
Universal features [43]. 40
Sample sentence from UD English treebank. 40
The Maltese Tagset v3.0 [48]. 44
The Maltese Tagset v3.0 mapped to Universal POS tags. 45
Sample sentence from UD Maltese treebank. 46
Sample sentence from MLRS. 52
Sample sentence from UD Maltese treebank with offset boundaries. 62
GPU Server e 65
Software and frameworks L L L Lo 65
Experiments 68
Neural Network Optimization algorithms experiments 69
Prediction metrics using different optimizers 69
Loss of Optimization algorithms during training 70
Loss of Optimization algorithms during training 71
External Word Embeddings experiments 72

Prediction metrics with different external Word Embeddings 72

List of Tables xii

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
52
5.3

54
5.5
5.6
5.7
5.8
5.9

Bootstrapped Multi-source Treebanks experiments 76
Evaluation metrics using Bootstrapped Multi-source Treebanks 76
Performance using Bootstrapped Multi-source Treebank 80
Neural Network Architecture experiments 80
Evaluation metrics using different Neural Architecture 82
Runtime performance using bi-LSTM Neural Architecture 82
Alternate Languages experiments 82
Evaluation metrics for Alternate Languages 83
Experimentsand Results 84
Treebank reference oL oo 84
Experiments reference for Figure 5.5 94
Comparing results from single-source and multi-source treebanks 94
Comparing results from multi-source treebanks to Tiedemann and van der

Plas [58] e 95
Prediction metrics using QRNN and bi-LSTM neural architectures 97
Runtime performance of QRNN and bi-LSTM neural architectures 97
Predicted metrics for English Language 98
Predicted metrics for Spanish Language 98
Predicted metrics for Uyghur Language 99

Predicted metrics for Kazakh Language 99

Chapter 1

Introduction

Parsing is a functionality that allows us to analyse the structure of a sentence and to check
whether it is expressed according to a specified grammar. In computer science, parsing is
used to analyse the structure and syntax of code prior to it being compiled and/or run, thus
alerting the developer of any errors that require adjustment. In natural language, parsing
allows us to see whether a sentence is appropriately structured [29]. Although humans
might not necessarily learn specific grammar rules, they naturally have a sense of whether
a sentence ‘sounds’ right or not. In the computational treatment of any language, parsing
can provide information with relation to which part of a sentence is the subject, and which is
the object. This type of information can then be used by other Natural Language Processing
(NLP) tools which can analyse say particular relations between words.

There are a number of computational parsing approaches that can be used - the main two
approaches are constituent-based parsing and dependency parsing. Constituent-based parsing
analysis a sentence by splitting it up into sub-phrases like a noun phrase, verb phrase, etc.
These phrases become the constituents in a sentence and a grammar would generally specify
the order in which these constituents can occur [29]. Dependency parsing on the other hand
focuses on the actual relations between words, such as the subject and the object, or words
that modify other words. Which type of parser should be used depends very much on the

type of application and end-goal of the NLP task at hand. For many NLP tasks, dependency

University of Malta
L-Universita ta Malta

University of Malta Library — Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author’s rights in respect of this
work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified by any
successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information contained in
accordance with the Copyright Act provided that the author must be properly acknowledged.
Further distribution or reproduction in any format is prohibited without the prior permission of the

copyright holder.

1.1 Motivation 2

parsing provides sufficient information without the need to look at the full syntactic structure
of a sentence.

The computational treatment of the Maltese language has lagged behind when compared
to the development of other major European languages [50]. However, there have been a
number of efforts aimed at improving the computational resource for Maltese, including
the development of a part-of-speech tagger [25] and further research at the development of
a morphological analyser [8, 7]. More recently, the development of a manually annotated
set of sentences with their respective dependency parse trees (Maltese UD Treebank, [48])
means that it is now possible to experiment with machine learning techniques and create
a dependency parser based on this annotated data. This research will be the first of its
kind, looking specifically at the computational dependency parsing of Maltese by using this
treebank. It will also be the first time that a particular deep learning architecture will be
applied to parsing, with the aim to contribute not just to Maltese dependency parsing, but
also to the broader field of dependency parsing in general.

This chapter provides an introduction to the research area and the particular goals and
objectives of this project. It will then provide a brief overview of the work carried out and an

outline of the remainder of the document.

1.1 Motivation

Modern Dependency Grammar theory is attributed to the work of the French linguist Tesniére
[56]. Since then, a number of different grammar schemes have been proposed and evolved.
However, the main idea behind this theory is that the syntactic structure consists of words
linked by asymmetrical relations called dependencies. A dependency relation holds between
a syntactic subordinate word, called dependent whilst the other on which it depends, called
the head or modifier. A sentence will always have a root, a word which has no head itself,
meaning that it is independent of all the words composing the sentence. An example of
a dependency parse tree is illustrated in Figure 1.1 for a Maltese sentence. The English

equivalent in this case also has the same parse tree, even though the languages are different.

1.1 Motivation 3

This is one of the advantages of dependency parse trees since relations between words might
be the same across some languages. Usually, the closer two languages are historically (e.g.
both derived from Latin), the more similarity they would share in sentence structure and
relations [45].

The dependency relations are represented with arrows originating from the HEAD pointing
to the DEPENDENT. Each of these arrows is labelled, denoting the type of dependency
relation between two words. For example, the noun Ganni is dependent on the verb fefa’, and
the label shows that the type of relation between the two words is that Ganni is the subject of
the word tefa’. By contrast, the noun ballun is a dependent of the verb tefa’ and also acts as
a head for the determiner /-. The dependency structures can be formally defined as labeled
directed graphs where the words are represented by the nodes and the typed dependencies by

labeled arcs.

PU

ROOT

SBJ

Ganni tefa’ 1- ballun lil Marija
John threw the ball at Mary

Figure 1.1 Dependency structure for Maltese and English sentence

Modern approaches to dependency parsing generally use an annotated treebank to train
their models on, using machine learning techniques. Once a model is built, it is then possible
to test the model on a portion of data which was not used in the training phase, referred to as
the test data or unseen data. Treebanks are generally regular corpora, with the exception that
they include an additional layer of annotation that specifies the dependencies between the
words and their labelled relations.

Recent efforts by Céplo [48] focused on the creation of a Universal Dependency Treebank
for Maltese. A treebank is simply a corpus of sentences, and each sentence is annotated with

its respective dependency tree — in this case, following the annotation guidelines of the Uni-

1.2 Aims and Objectives 4

versal Dependency project'. The Maltese treebank consists of over 2000 sentences annotated
with dependency parse trees. This recent development came at the opportune time for this
research to take a machine learning approach for the development of a dependency parser for
Maltese. We will also be exploring the possibility of using a novel neural architecture for the
parsing algorithm and at the same time experiment with bootstrapping the learning of the
model by using multi-lingual treebanks — thus looking at how other related languages to
Maltese could contribute to the modelling of a parser for Maltese.

Recent developments in deep learning have also seen a shift in the type of machine learn-
ing algorithms used to train a dependency parser. The most recent research in dependency
parsing has shown that the application of deep learning techniques improved results over
other machine learning techniques, and this is something that this project aims to harness.
The use of deep learning, coupled with resources such a word embeddings, might prove to be
advantageous for the development of a dependency parser. In particular, word embeddings
allow a neural network architecture to represent the semantic relations between words as
vectors, thus providing the opportunity to represent words as something that a neural network

can actually work with.

1.2 Aims and Objectives

The main aim of this work is to create a dependency parser for Maltese using machine
learning techniques. A secondary aim is to investigate the use of novel techniques in deep
learning to examine their effectiveness in the problem of dependency parsing. Thus, the
proposed implementation of a dependency parser for Maltese is based on the latest Deep
Learning technologies. The current state-of-the-art methodologies and architectures are
reviewed in this report, and a Quasi-Recurrent Neural Network (QRNN) is chosen as the
architecture since it seen both as a potentially novel approach to dependency parsing, but
also that it will provide the necessary dependency parser model. The main contributions

of this research are both in terms of the computational treatment of Maltese, as well as

'http://universaldependencies.org/introduction.html (Accessed: 2018-10-31)

1.3 Approach 5

dependency parsing in general. The stated aims will be accomplished by achieving the

following objectives:

1. Design and implement a dependency parser for the Maltese language.

2. Generate word embeddings for the Maltese language and create a visualisation site

that allows users to see the semantic relations between two words.

3. Evaluate and investigate the performance of the parser using a dedicated Maltese

annotated treebank by applying standard evaluation procedures.
4. Determine the effectiveness of using a multi-lingual treebank to parse Maltese.

5. Compare and contrast results with published research.

1.3 Approach

The aims of this project are twofold. First, the development of the first dependency parser for
Maltese, and secondly, to understand effectiveness of a Quasi-Recurrent Neural Network on
parsing, a novel deep neural network architecture for the task of dependency parsing. Initial
experiments were carried out to help determine the expectations of the processing time in
order to better plan and schedule the experiments. Since this is the first time that a dependency
parser is being built for Maltese, a number of experiments were carried out not only in terms
of architecture, but also in terms of the input data. Two approaches are used to structure the
input data; a Maltese language only training dataset and secondly training datasets composed
of multiple language supporting the Maltese-only dataset. This bootstrapping approach
using a multilingual training dataset does indeed provide better results than the Maltese-only
dataset, since it provides richer information and more data sample points to the machine
learning algorithm.

In the preparatory stage, features must be extracted from any given input sentence. The
sentence is tokenised and word embeddings are generated for each word. Each word and

punctuation mark is considered as a token forming the input. Word embeddings are a language

1.3 Approach 6

feature modelling technique whereby words from a corpus are mapped to vectors of real
numbers. Part of the research is to create and experiment with creating a word embedding
model based on the Maltese corpus. However, since Maltese is a morphologically rich
language [8], problems arise when encountering word formations that were not originally
part of the training corpus. For this reason, apart from experimenting with the Maltese model,
experiments also looked at the effectiveness of using fastText [6], a word embedding model
created by Facebook Research? and trained on multilingual corpora. The input sentence is
also augmented with information pertaining to its part-of-speech category, thus providing
further linguistic information about a word.

From a dependency parsing perspective, the experiments focus on two major strands. The
first set of experiments simply use the dependency parse trees as annotated by Céplo [48] —
thus having a Maltese-only dataset. The second strand focuses on the multilingual approach,
similar to the experiments carried out by Tiedemann and van der Plas [58]. The purpose is
to compare whether augmenting the datasets with other languages related to Maltese would
actually improve the results. The experiments focused on using data from Arabic, Hebrew,
English, Italian and Spanish.

From a technical perspective, the experiments focused on the use of a QRNN — a type
of deep learning architecture that is still relatively new in this field and to the best of our
knowledge, has never been applied to dependency parsing. In this approach, the composition
of the input sentence/features is fed into tensors which are multidimensional matrices on
which the deep neural network can operate. With each token and its representation fed, the

neural network would then proceed to output four vectors representing:
1. the token as a dependent searching its respective head
2. the token as a head searching its dependent tokens
3. the token as a dependent determining the lexical label

4. the token as a head determining the lexical labels of its dependent tokens

Zhttps://github.com/facebookresearch/fastText (Accessed: 2018-10-31)

1.4 Chapter Overview 7

Once a sentence is completely processed, the resulting vectors of each token are fed into
a neural classifier to compute a score. The dependency tree is then generated according to
the highest scores of these input vectors. The approach is very much based on a similar
parsing process used by Dozat et al. [18], which obtained the best performing results during
the Conference on Computational Natural Language Learning (CoNLL) 2017.

The evaluation of the parser will be performed according the CoNLL standards and
metrics. The experiments will be conducted using datasets provided during CoNLL 2017
except for the Maltese language dataset which is provided directly by the author. To perform
the evaluation, the CONLL 2017 evaluation script® was used. This ensures that this work
follows a defined standard by an institution and the results can be compared with those
achieved during CoNLL 2017. Results show that bi-directional LSTM Neural Networks
outperform QRNN by less than 0.2% in the main CoNLL metrics. However, rather than
using bi-LSTMs, this work focuses on experiments with QRNNs because of the superior
runtime performance over the traditional bi-LSTMs.

A visualisation component is also included as part of the output for this research, with
the aim to make the word embedding model for Maltese available as a a three dimensional
scatter-plot. This results in a cloud with dense and less dense points indicating the semantic

proximity of the Maltese words to each other.

1.4 Chapter Overview

This dissertation is structured as follows:

Introduction This chapter provided a brief overview of the work carried out in this research
project, including the motivation behind undertaking this research, the aims and
objectives of this work and the scope under which the research is carried out. It also

provides a brief overview of the approach taken to tackle the set aims and objectives.

Background and Literature Review This chapter first delves into the theoretical aspects

and approaches to grammar, sentence structure and dependency parsing, providing a

Shttp://universaldependencies.org/conll17/eval.zip (Accessed: 2018-10-31)

1.4 Chapter Overview 8

brief historical overview of how parsing evolved from the early traditional techniques
to dependency parsing and to the adoption of neural networks and deep learning
paradigms. This chapter then focuses on the shared task in dependency parsing, in
particular highlighting the rise of deep learning techniques and their applied success in
the field of dependency parsing. The only published work on dependency parsing for
the Maltese language is also reviewed in great detail. Finally, the literature review also
presents the annotation standards and the de facto framework for dependency parsing,
with a particular focus on the annotations used for the Maltese Universal Dependency

Treebank.

Methodology This chapter reports on how the research problem was tackled in order to
achieve the aims and objectives by using the acquired knowledge from the Background
and Literature Review chapter. Each method used and decision taken is supported with
pertinent arguments. The whole process is throughly documented to ensure that the

reader can replicate this work.

Evaluation and Results This chapter describes the experiments conducted to measure the
performance of the different models and setups, according to a pre-defined evaluation
plan. The evaluation is based on the same metrics as proposed by the CoNLL shared
task in dependency parsing, so as to ensure the possibility to compare results, albeit

using Maltese.

Discussion This chapter focuses on comparing and contrasting the results obtained against
published work. It provides a technical overview in terms of performance and optimis-
ers used. But it also provides an overview of the chosen approach, how it contrasts to
other work, and how it fares when applied to other low-resourced languages. The final
part of this chapter provides an overview of the contributions that this thesis makes to

the field of dependency parsing in Maltese.

Conclusion The concluding chapter revisits the fundamental aspects in this dissertation
and the methods used, together with the relevant experiments performed. The main

results are highlighted in order to summarise the achievements of this work. Finally,

1.4 Chapter Overview 9

the chapter outlines how this dissertation met the aims and objectives initially set out,

and proposes future work that can be undertaken to further research in this field.

Chapter 2

Background and Literature Review

In this section, we report on the different techniques used for dependency parsing. First, we
explore the early approaches to dependency parsing and then progress to the use of neural
networks and deep learning architectures. We also review a recent shared task in dependency
parsing, CoONLL2017, which highlights the current challenges in dependency parsing and the
prevalent use of deep learning to improve upon the results of the previous state of the art in
dependency parsing. We evaluate in detail the only work performed on dependency parsing
specifically for the Maltese language. Finally, we report on the defacto standard framework
for dependency parsing — the Universal Dependencies framework and the Maltese treebank

which has been released under this framework.

2.1 Traditional methodologies

Generally, traditional approaches to dependency parsing can be split into two distinct cate-
gories — data-driven or grammar-based. An approach is considered grammar-based when
the methods it applies rely on a formal grammar specification which represents a particular
language. An algorithm then detects if an input sentence adheres to the rules of the language
defined by its grammar. An approach is data-driven when machine learning is used to learn
automatically the grammatical relations between words from sentences annotated with their

respective parse trees. Although these two categories are distinct, it is possible for depen-

2.1 Traditional methodologies 11

dency parsing methods to adopt machine learning with the use of formal grammar and hence
such parsing methods are both data-driven and grammar-based. This type of approach is
referred to as a supervised technique since the machine learning algorithm is provided with
labelled data as part of its training phase.

There are two computational problems to be solved in this process. The first is called the
learning problem, which is the function of constructing a parsing model from a subset of the
sentences and their corresponding dependency structures. The other is the parsing problem,
which is the function of inferring the constructed model to an input sentence. In machine
learning, the parsing problem is also known as the inference problem or the decoding problem
which are terms used to describe the application of the model to data. The two problems are

represented as:

» Learning: For a given training set of sentences D with annotated dependency structures,

construct a model M to parse sentence S.

* Parsing: For a model M and sentence S, determine the dependency graph G for S by

inferring M.

There are two classes of data-driven approaches called transition-based and graph-based.
These two classes are distinguished by the algorithms used to construct the model from the
input sentences and annotated data, the type of model constructed and the parsing algorithm
adopted.

For most data-driven approaches, any input sentence is considered valid and the aim of the
parser is to retrieve the best possible dependency structure for the input based on the model;
regardless how much improbable it may result. By contrast, grammar-based approaches use
a formal grammar as a core component of the model. Only a subset of the possible sentences
are accepted by the model. Early approaches used manually created grammars, however
later approaches were also data-driven and hence the grammar was learned from linguistic
annotated data. Grammar-based parsing is also divided into two classes: context-free and

constraint-based. Context-free dependency parsing uses a map between the dependency

2.1 Traditional methodologies 12

structures and a Context Free Grammar (CFG) with the same parsing algorithms applied for
the CFG. Constraint-based approaches tackle parsing as a constraint satisfaction problem.
The four classes are reviewed in detail and the most important research and results

highlighted in the following sections.

2.1.1 Dynamic programming and Eisner’s algorithm

One of the traditional approaches to describe a grammar is through the use of Context-Free
Grammars (CFGs). A grammar is specified using a particular specification, and then a number
of algorithms, such as Cocke-Younger-Kasami (CKY) [62] and Earley’s algorithm [20],
would process the grammar specification and output a parse tree for any given sentence.
Initially, the aim of CFGs was to describe the structure of a sentence in terms of noun phrases,
verb phrases, efc., without going into the dependency relations between the actual words.
However, parsing algorithms used to process a CFG can also be adapted for dependency
parsing. Eisner’s dynamic programming algorithm [22] is such a parsing algorithm that
transforms a grammar specified in the CFG convention and extracts the type of word relations
that are central to dependency parsing.

One of the problems with parsing of sentences is that ambiguity can easily arise — a
typical example is: ‘I saw the man with binoculars’. This sentence is ambiguous because it
is not clear who is with binoculars, whether ‘I’ or ‘the man’. Techniques like the CKY or
Eisner’s algorithm use dynamic programming to deal with ambiguity since it provides all
possible parse trees. An extension of the CKY is a probabilistic one which includes statistical
information for each possible sub-parse-tree. There is also the problem of repeated parse
trees during the processing. Top-down parsing (naive search) is inefficient because each
sub-tree might be created over each iteration. Dynamic programming offers an efficient way
to record a particular sub-tree predicted over a specific range of the input sentence. Eisner’s
algorithm uses dynamic programming with a chart to keep track of partial derivations so no
trees have to be re-derived. Chart parsing uses dynamic programming with a chart to keep

track of partial derivations so nothing has to be re-derived.

2.1 Traditional methodologies 13

The main idea behind Eisner’s algorithm is to use a split-head representation in order
to enable the chart cells represent half-trees instead of full trees. The two indices for the
lexical heads are replaced by boolean variables indicating whether the head is at the left or
right location of the respective half-trees. Two operations are required; the first for adding a
dependency arc between the heads of two half-trees to form an incomplete half-tree. Hence,
combining this incomplete half-tree to a complete half-tree to form a larger complete half-tree.
The incomplete solutions are created and stored once. Furthermore, the algorithm never

explores trees that are not potential solutions [22].

2.1.2 Constraint satisfaction

Constraint satisfaction uses a dependency grammar where every rule is assigned as a con-
straint on word-to-word relations. This constraint based parsing approach was introduced
by Maruyama [35]. This work showed that a Constraint Dependency Grammar (CDG)
parsing can be formalised as a constraint satisfaction problem. To lower structural ambiguity
without the need to construct the individual parse trees, constraint-propagation algorithms are
used where the transitional parsing result is represented as a data structure called a constraint
network. The possible solution that satisfies all constraints concurrently is hence represented
as a parse tree. To reduce disambiguation, new constraints are added to the network which
are propagated using constraint propagation [35].

Menzel and Schroder [38] implemented a CDG parser for German using the same
technique but added weights to the constraints. The German grammar was developed
manually and consisted of nearly 700 constraints. Since this is a difficult and laborious task,
this was extended by Schroder et al. [52], who used a machine learning approach based on
genetic algorithms to assign weights. In the initial experiment Schroder et al. attempted to
improve the weights of the manually crafted grammar which were achieved in the previous
study by Menzel and Schroder [38]. Schroder et al. hence compared the results and acquired
an increase of the f-measure from 96.9% to 98.4%. In the subsequent experiment the authors
attempted to discover the required weights without referring to the weights discovered during

the study by Menzel and Schroder [38]. The final result from this experiment is an f-measure

2.1 Traditional methodologies 14

of 97.4%. Schroder et al. state that even if this is a significant result, it was not possible to

attain the quality of the grammar achieved during the first experiment [52].

2.1.3 Transition-based approaches

A transition-based system is an abstract machine composed of states and transitions between
the states. The simplest example of a transition system is a finite state machine, which
consists of a finite set of states and a list of transitions which cause the machine to move
from one state to another. The machine can be in only one state at any given point in time.

In dependency parsing, transition-based systems have complex states and the transitions
correspond to the stages of a dependency tree derivation. The sequence of a valid transition
for a given sentence starts from an initial state and ends in one of the possible final states.
Such a full path traversed by the machine defines a valid dependency tree for a given sentence.

The oracle is an important component of transition-based parsers. The aim of the oracle
is to predict the optimal sequence of transitions that will derive a specific gold tree for a
sentence. There are two categories of oracles; static and dynamic. In static oracles, a set of
rules is specified on which a single static sequence of transitions is produced. The major
disadvantage is that a parser would often get deviated from the gold standard sequence and
hence transitions to states which might not lead to the correct tree. On the other hand, a
dynamic oracle permits all valid transition sequences leading to the gold standard tree rather
than restricting a single sequence of transitions. Furthermore, a dynamic oracle is correct for
all possible states even if such states do not reach the gold standard tree. In such scenarios,
the dynamic oracle allows all possible states leading to a tree which has minimum loss
compared to the gold tree.

A transition-based dependency parser is typically composed of:
1. the stack where to store the processed words of the input sentence
2. the queue where the rest of the words of the input sentence are stored

3. the transition actions which determine which transitions have to be performed accord-

ing to the history of the stack and queue

2.1 Traditional methodologies 15

The transition actions are defined by the arc standard transition system. An arc is
a dependency between words in a sentence. The three transition operations as defined

by Collins [13] are:

* LEFT-ARC - create a relation (arc, dependency) between the word at top of the stack

and the second word on the stack. Remove the second word from the stack.

* RIGHT-ARC - create a relation between the second word of the stack and word on top

of the stack. Remove the word on top of the stack.
* SHIFT - remove the word from queue and push it onto the stack.

One of the most successful strategies in parsing is to use a data-driven approach by
applying classifiers on a treebank corpus. Classifier-based parsing is a very important
component of transition-based dependency parsing. Parsing using this technique is a greedy
search through the transition system, guided by the treebank trained classifier. This approach
was first proposed by Yamada and Matsumoto [61] who achieved state-of-the-art results using
the English language. The authors used the annotated Penn treebank [34] for the experiments.
Yamada and Matsumoto used two main metrics to evaluate their work; dependency accuracy
and root accuracy. The dependency accuracy is the number of correct parents in a tree divided
by the total number of parents. Root accuracy is the number of correct roots divided by the
number of sentences. Yamada and Matsumoto achieved a dependency accuracy of 90% and
a root accuracy of 92%. The main disadvantage of this technique is that it requires multiple
passes over the input.

Later, Nivre [41] developed the Nivre’s algorithm which is an evolved transition sys-
tem [41] based on Collins [13]. In Nivre’s algorithm, the transition actions are defined by the

arc-eager transition system which is defined as:

* LEFT-ARC - create a relation between the word in the queue and the word on top of

stack and perform a REDUCE operation.

* RIGHT-ARC - create a relation between the word on top of the stack and the word in

the queue and perform a SHIFT operation.

2.1 Traditional methodologies 16

* SHIFT - remove the first word from the queue and push it onto stack.

* REDUCE - remove the word on top of stack.

Nivre further improved the algorithm by having the system perform a single deterministic
pass over the input [42]. This improved system was evaluated during the shared task on

dependency parsing of CoNLL 2007 on ten different languages [44].

2.1.4 Graph-based approaches

Transition-based approaches are based on a state machine for mapping a sentence to its
dependency graph. The learning problem is to build a model that, given the state’s history,
is able to predict the next state. The parsing problem is to construct the optimal transition
sequence for the input sentence.

In contrast, graph-based methods define a search space for possible dependency graphs
for the input sentence. The learning problem is to compose a model for scoring the possible
dependency graphs for a sentence. The parsing problem here is to locate the highest scoring
dependency graph. This technique is called the Maximum Spanning Tree (MST) since the
problem of finding the highest scoring dependency graph corresponds to the problem of
finding the MST in a dense graph. The score represents the likelihood that a specific tree
is the correct one for the given input sentence. The most essential property of graph-based
parsing is that this score is assumed to propagate proportionally through all subgraphs of the
dependency tree.

The most common graph-based approach is the Chu-Liu-Edmonds algorithm [12, 21]

and a graph-based parser is typically built on the following four components:

1. the definition of the graph for the given dependency tree
2. the definition of the parameters
3. amethod for learning the parameters from the labelled data

4. aparsing algorithm

2.2 Neural Networks 17

Projective trees are the set of trees which match to the set of nested trees under the root
node. Projective dependency parsers are strongly related to CFGs and hence a large part of
the CFG parsing algorithms can be modified to parse projective trees. A dependency tree is
non-projective if it contains at least a tree which is not projective. In a projective dependency
tree, it is possible to graphically illustrate all arcs of the tree without any arcs crossing.
This property is known as the planar property. The first extensive work on graph-based

dependency parsing is attributed to McDonald et al. [36].

2.2 Neural Networks

Chen and Manning [11] were the first to propose and implement a neural network classifier for
greedy, transition-based dependency parsing. Traditional parsers perform feature extraction
based on templates. Lexicalized features are highly sparse, which is a common problem
in many NLP tasks. However, in dependency parsing the problem is worse since parsing
critically depends on word-to-word interactions. The problem of incompleteness is a problem
in all hand-crafted feature templates. Even with expertise involved, it is impossible to include
every conjunction of every useful word in the template. Feature generation and extraction is
computationally highly expensive. During experiments Chen and Manning discovered that
95% of the processing time was consumed by the feature computation.

The sparsity problem was solved using low-dimensional, dense word embeddings. A
word embedding is a function mapping words to a multi-dimensional vector. Similar words
were expected to have close vectors. For example, the words ‘was’, ‘were’ and ‘is’ were
represented as close vectors since they share a lot of similarity between them. The part-
of-speech tags (POS) and dependency labels were also represented as a multi-dimensional
vectors. The tags and labels are small discrete sets, however it was found that these still show
semantic similarities like words. For example, in POS tags, NNS (plural noun) should be
close to NN (singular noun) and in dependency labels, NUM (numerical modifier) should be

close to AMOD (adjective modifier).

2.3 CoNLL 2017 18

Incompleteness was solved by the neural network classifier. The classifier did not require
to enumerate all possible combinations available of the features. Chen and Manning [11]
employed a novel function called cube activation function in the neural network instead of
the traditional sigmoid functions. Hence, every hidden unit was computed by a non-linear
mapping. The cube activation elements were sourced from the three different embeddings:
word, POS tags and dependency labels embeddings.

Matrix multiplication with low-dimensional vectors solved the expensive processing
requirements. Chen and Manning precomputed the matrix multiplication of the top 10,000
most frequent words, all POS tags and dependency labels. Hence, rather than performing
matrix multiplications, only a lookup in a table was performed at each iteration. This pre-
computation step increased the speed of their parser by 8 to 10 times and was able to parse
1013 sentences per second with a 92% accuracy [11].

Chen and Manning also addressed the three stated problems and were the first to show
that neural dependency parsing can outperform conventional parsers. Their experimental eval-
uations showed that their parser is superior to other greedy parsers, such as MaltParser [45]
by Nivre et al., in both accuracy and speed.

Weiss et al. [60] at Google adopted this paradigm to improve the state-of-the-art parsing
with the release of SyntaxNet! which was considered as the world’s most accurate parser with
over 94% accuracy on well-formed English text. Trained linguists on this task agree between

96 to 97% of the cases, indicating that parsers are approaching human performance [60].

2.3 CoNLL 2017

The Conference on Computational Natural Language Learning (CoNLL) is a yearly confer-
ence organised by the Association for Computational Linguistics (ACL) which focuses on
statistical, cognitive and grammatical inference. One of the shared tasks of CoNLL 2017,
called ‘Multilingual Parsing from Raw Text to Universal Dependencies’ [67], was dedicated

to dependency parsers for an extensive number of languages that can operate in a real world

Thttps://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html (Ac-
cessed: 2018-10-31)

2.3 CoNLL 2017 19

setting. This task was possible because in the previous years, de Marneffe et al. [15] started
an initiative called Universal Dependencies (UD) which was setup with the aim to develop
cross-linguistically consistent treebank annotation for many languages and hence facilitating
multilingual parser development and cross-lingual learning.

UD developed 64 treebanks in 45 languages where 15 languages have two or more
associated treebanks. For CoNLL the 2017 shared task of dependency parsing, amongst the
treebanks eight were small and hence the whole dataset could be used for training. Out of the
45 languages, four were considered as surprise languages implying that these languages have
not been previously released in UD and were only available one week prior to the evaluation
stage. The aim of the surprise languages is to inspire participants to develop real multilingual
techniques to parsing, utilising data from other languages [67].

For CoNLL 2017 two baseline parsers were used; UDPipe by Straka et al. [55] and
SyntaxNet by Kong et al. [32]. The aim of the baseline parsers is to provide pre-trained
models for all languages which participants could improve upon. Both parsers are open
source and can be used without any restriction.

The ranking of each system was based on the main evaluation metric, Labeled Attachment
Score (LAS), averaged over all test sets representing all languages. Other secondary metrics
were used to evaluate the systems highlighting their strengths and weaknesses. The secondary
metrics included tokenization, sentence and word segmentation F; scores. In the 2017
shared task, the top ranked system was a neural dependency parser based on Long-Short
Term Memory (LSTM) networks submitted by the University of Stanford [18]. However,
this system placed fourth on the surprise languages and second on the small treebanks
classifications. The second ranked system was submitted by Cornell University, which was
an ensemble of three parsers: one graph-based and two transition based [54]. This system
ranked first on the surprise languages and small treebanks classifications. The third ranked
system, by the University of Stuttgart, was also an ensemble of two transition-based and one
graph-based parsers [4]. An important conclusion from CoNLL 2017 was that the surprise
languages and those languages which had small treebanks were difficult to parse with the

best accuracy under 50% [67].

2.3 CoNLL 2017 20

The process employed by Shi et al. [54], representing the University of Cornell, consisted
mainly of four phases; preprocessing, feature extraction, unlabelled parsing and arc labelling.
Their system solely focuses on dependency parsing. Hence, the tasks of tokenisation,
sentence boundary detection, POS tagging and morphological features were handled by
baseline models generated by UDPipe.

According to Shi et al., there were two major challenges in CoNLL 2017. The first
was that a large part of the datasets represent morphologically rich languages. Secondly, a
considerable fraction of the languages have limited training data. These two challenges were
encountered and tackled during the feature extraction phase. In this phase, the input sentence
was split into words and each word had its features extracted twice; one based on character
level and the other on word level. Amongst the most popular methods for word representation
is through word embeddings however, this methodology does not provide enough information
for morphologically rich languages. In order to overcome this challenge Shi et al. adopted bi-
LSTM vectors to obtain character level representation which often result in better information
coverage. The second challenge was tackled by transferring delexicalized information from
more resourced language datasets to a target lower resourced language. For languages with
low training data, the most linguistically similar languages were selected and delexicalized
models were trained and applied to the target language.

The unlabelled parsing phase was also composed of two stages. In the first stage, the
ensemble of parsers analyzed the input sentence, each producing a syntactic structure in
parallel. In the second stage, a parsing algorithm was applied to the original sentence by also
inferring the analysis produced by each parser in the first stage. This methodology is called
reparsing which was defined by Sagae and Lavie [51]. The graph-based parser was based
on Eisner’s algorithm [22] and used MST [12, 21] for scoring. The transition-based parsers
were based on dynamic programming; one arc—eager and the other arc—hybrid. For these
parsers, two bi-LSTM vectors were used to reduce the large search space, one from the top
of the stack and the other from the top of the buffer. The scoring during the reparsing stage

was performed using Dozat and Manning [17], which was the same scoring algorithm used

2.4 Deep Learning methodologies 21

by Stanford’s University’s winning entry [18]. For the arc-labeling phase, a labeler proposed
by Kiperwasser and Goldberg [31] was used.

For the arc-labeling phase, a labeler proposed by Kiperwasser and Goldberg [31] was
used. A predicted arc would have a head and a modifier. These tokens were concatenated
and passed through a multi-layer perceptron (MLP). The output with the highest score from
the MLP would be the potential label.

This system ranked second in the overall classification and first in the surprise languages
and small treebanks classifications. The better results of this system in the surprise languages
and small treebanks classifications over the system presented by the Stanford University[18]
were attributed to the feature extraction phase [67].

Most teams used a single parsing model except for four teams which submitted ensemble
systems. An ensemble system is composed of a set of individual parsers operating together.
The two top ranked parsers used Recurrent Neural Networks (RNN) whilst the third used
Convolution Neural Networks (CNN). Both of these architectures form part of a class of
Machine Learning techniques called Deep Learning where neural networks are composed
of several layers rather than the tradition single hidden layer. For this reason, we will now

provide a brief overview and review of Deep Learning.

2.4 Deep Learning methodologies

The thought process of humans does not start from scratch every time. The human thought
process is based on past experience and we use that experience to infer knowledge on current
decisions to be taken. We humans can do this because our thought process is persistent.
Traditional shallow neural networks cannot replicate this process.

The term ‘deep’ in deep learning refers to the number of layers which compose the neural
network. In deep learning, each layer performs a transformation on the input data according
to a function into an abstract representation such as a matrix. This representation is then fed
into the subsequent layer to achieve more featured representation. The process of feeding the

output of a layer as input to the next layer will continue until the neural network produces

2.4 Deep Learning methodologies 22

a final result. Three of the most popular deep learning technologies are Recurrent Neural
Networks (RNN), Long Short Term Memory (LSTM) networks and Convolution Neural
Networks (CNN).

RNNSs tackle the issue of persistent memory by simply implementing loops making use
of sequential information and hence allowing information to persist. A RNN can be thought
of as multiple copies of the same network, each passing a message to a successor, with the
output being dependent on the previous computations. RNNs have a memory which captures
specific information called dependency about what has been calculated previously. In theory,
RNNs should be capable of handling long-term dependencies; information collected and
attributed to the early computation stages of the network. However, in practice, RNNs fail
in this problem. LSTM networks are a special kind of RNNs, capable of learning long-
term dependencies and remembering information for long periods of time as their default
behaviour. In CoNLL 2017, many of the top ranked parser systems made extensive use of
LSTMs.

CNNss are typically used to classify images although these type of networks were also
successfully used for NLP tasks. CNNs are composed of convolution and classification
layers. A convolution is a function which measures the overlap of two distinct functions. The
convolution layers perceive input and output as a three dimensional representation. Before
the classification step, the three dimensional representation is flattened to a two dimensional.

More detailed information about these architectures is given in the upcoming sections.
The Methodology chapter will describe how a compound of these architectures was used to

achieve a novel dependency parsing system.

2.4.1 Neural Network Optimizers

A Neural Network Optimizer is an optimization algorithm which is designed to maximise
or minimise an objective or error function. Typically, when the aim is to maximise, the
term objective is used whilst when to minimise the term error is preferred. The optimization

algorithm is a mathematical function based on the internal learnable parameters of a model.

2.4 Deep Learning methodologies 23

The parameters also also known as hyperparameters which are fundamental for training
efficiently and effectively the model to generate accurate results. Three of the most common
parameters are the learning rate, the weight and bias. Hence, the use of an neural network
optimizer is required to constantly fine-tune the values of such parameters which determine
the model’s training phase and its resultant output.

There are two major classes of optimization algorithms:

* First Order Optimization Algorithms which are algorithms that minimise or maximise

a function using the gradient acquired from the function with respect to the parameters.

* Second Order Optimization Algorithms which use a second order derivative to min-

imise or maximise a function.

The derivative of a function is a scalar that measures the rate of change of the function’s
value. A second order derivative of a function is the derivative of a derivative of that function.
The gradient is the vector representation of the derivative. The main disadvantage of Second
Order Optimization algorithms is that such algorithms are very expensive to compute and
hence are only used in particular cases. On the other hand, First Order Optimization
algorithms are much more easy to compute and require less resources.

Gradient Descent is the most important and popular First Order Optimization algorithm.
The aim is to find the minimum loss of the error function. The learning rate is the size of the
step to be performed with the aim to reach a minimum. In simple terms, follow the downhill
direction of the slope of a U-shaped graph until the lowest point (minimum) is achieved.
This process of slowly trying to reach the minimum is known as convergence. This algorithm

has four main challenges:

1. Optimal learning rate - to choose the most appropriate learning rate is difficult. A
learning rate which is too small leads to slow convergence. A learning rate which is

too high can prevent convergence.

2. Learning rate schedules - This is the schedule of updates for the learning rate during
the training phase. Such schedule must be predefined prior to training phase and cannot

adapt to the training dataset characteristics.

2.4 Deep Learning methodologies 24

3. Learning rate updates - the same learning rate must be applied to all parameter updates.

4. Convergence - typically the error functions are non-convex (not a U-graph) which
have a number of minima with different values. It is difficult to converge a non-convex

function and the algorithm can get trapped in a sub-optimal minimum.

Various algorithms were developed to optimize Gradient Descent and overcome these
challenges. The following is a description of the mostly used optimization algorithms in

practice.

AdaGrad

This algorithm allows the learning rate to adapt based on the parameters by performing small
updates for frequent and larger updates for sporadic parameters and hence this algorithm fits
well when training sparse data. The main advantage is that the learning rate does not need
any adjustments but on the other hand it has the disadvantage that the learning rate is always
decreasing. The constant decrease of the learning rate is known as the vanishing learning

rate problem. This algorithm has been proposed by Duchi et al. [19].

AdaDelta

This is an evolution of the AdaGrad algorrithm where the learning rate does not tend to
decrease, thus solving the vanishing learning rate problem. This problem is solved by using
an exponentially weighted moving average over a window of the history of updates. AdaDelta

was proposed by Zeiler [64].

Adam and Adamax

Adaptive Moment Estimation (Adam) is an algorithm similar to AdaDelta with the addition
that it keeps a history of the mean of the past gradients, consequently, Adam records two
distinct histories. The moment is defined a specific point in the recorded history. In practise,
Adam performs very well when compared to other similar adaptive algorithms because it

converges in a significant short period of time, in an efficient way. Adamax is a modified

2.4 Deep Learning methodologies 25

version of Adam which is more suitable for sparse parameter updates. Both Adam and

Adamax were proposed by Kingma and Ba [30].

SparseAdam

This is a variant of Adam which is suitable for sparse training data. SparseAdam restricts
the parameters updates only to the specific moments which caused an update in the gradient.
Rather than an algorithm in itself, it is more of a specific implementation by PyTorch?, the
deep learning framework used for this study. This implementation was reviewed because it

forms part of the experiments conducted.

SGD and ASGD

Stochastic Gradient Descent (SGD) performs a parameter update of each training data point.
These frequent updates should help to discover better minima, however, this advantage may
result in a problem because the frequent updates can cause the convergence to oscillate and
never reach a minimum. The Averaged Stochastic Gradient Descent (ASGD) is an extension
of SGD where the algorithm keeps a history of the average of the updated parameters. ASGD
was proposed by Polyak and Juditsky [49].

RMSProp

RMSProp is an algorithm very similar to AdaGrad which is unpublished and available as an
online resource?. To solve the vanishing learning rate, RMSProp dismisses the older gradient

history and divides the learning rate by a running average of the recent gradients only.

2.4.2 Word embeddings

Natural language is highly effective for us humans to relate to the world. Together with

emotions and body language, we can easily convey a message with little or no ambiguity.

Zhttps://pytorch.org/docs/master/_modules/torch/optim/sparse_adam.html (Accessed: 2018-
10-31)

Shttp://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (Accessed: 2018-
10-31)

2.4 Deep Learning methodologies 26

This is because we have senses which enable us to implicitly describe and structure such
complexity into our language. For a machine to learn a natural language it needs to understand
how we humans observe and relate to the world. Word embeddings is a learned representation
of natural text as a vector which is capable to capture morphological, semantic and contextual
information.

A vector is a series of real numbers and the amount of numbers in the series is called
dimension. The dimension determines how much detail of the information is stored. Typically,
word embeddings are generated using 100 dimensions; implying one vector is composed of
100 numbers, although 300 dimension is also common in research. The larger the dimension
the more computational resources are required. The vectors offer the unique capability of
performing mathematical operations on words. In a word embedding corpus, similar words
should converge to the same locations in a three dimensional space. Similarity is calculated
using the cosine distance between two vectors. The result of these operations is always a
vector which has to be fetched from the embedding corpus. From the embedding corpus the
closest, most similar vector has to be fetched. In practice, more than one vector is fetched
because the distance between vectors (similarity) is very close.

Consider the words re (king), regina (queen), mara (male) and ragel (female); the word
embeddings should be located in the same vector space since these words are similar and

related. The word embeddings are:

re -0.39504 -0.65514 0.39498, ..., -0.17863
regina -0.36358 -0.9966, 0.51852, ..., 0.13695
mara 0.4302, -0.23856, 0.7076, ..., 0.74989
ragel 0.57179 0.21929 -0.43828, ..., -1.0287

The following mathematical operation can be performed:

re - ragel + mara =~ redgina
re
—ragel \\\
N

b > regina

2.4 Deep Learning methodologies 27

Mikolov et al. state that the directions and distances between vectors in the same vector
space detail semantic relationships; for example male-female, verb tense such as walking-
walked and even country-capital, relationships between words, as illustrated in the Figure 2.1.
The authors also claim that the model is capable to organise concepts and learn the relation-
ships between them. The model was trained in completely unsupervised manner and no

information was given about what capital city means or relates to [40].

Figure 2.1 Word embeddings of capitals mapped to the countries after projection [40]

Country and Capital Vectors Projected by PCA
2 T T T T T T T

China¢
Beijing
15 Russia: 1
Japan«
1L Moscow |
Turkey Ankara *Tokyo
05 | .
Poland«
0+ Germany« i
France ANarsaw
« —Berlin
05 laly Paris i
Athens
Greecer "
1 L Spain Rome 4
i % “Madrid i
-1.5 |- Portugal Gisbon
_2 1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

The three most important and popular implementations to generate word embeddings are
word2vec by Mikolov et al. [39], GloVe by Pennington et al. [47] and fasttext by Bojanowski
et al. [6]. Word2vec is the very first implementation with GloVe similar to it but uses a
different algorithm.

Word2vec is primarily a predictive model whilst GloVe is a count-based model. In a
predictive model, the algorithm tries to minimise the loss of predicting the target words

from the context words using their vector representations. Count-based models build the

2.4 Deep Learning methodologies 28

vectors by performing dimensionality reduction on co-occurrence counts. Co-occurrence
counts are constructed in the form of a matrix which record the frequency of a word as a
row and the context of that word as a column. Since the contexts are large by definition,
the matrix is factorised to achieve lower dimensional version. In the case of GloVe, this
process is performed by first normalising all counts and then performing a log function on
the normalised counts. According to Pennington et al., this should increase the quality of the
learned vectors.

Fasttext is the latest word embeddings implementation created by the Facebook Research
for learning of word representation and sentence classification [6]. This library is currently
being used by Facebook to deliver targeted adverts based on posts and status updates. Fasttext
is an evolution of word2vec where each word is the aggregation of the character n-grams.
According to Bojanowski et al., this should give more context to the word embeddings and
produce more accurate results. Consider the word regina; the word embedding is the sum of

the vectors of n-grams:

<re, reg, regi, regin, regina>

One of the major advantages of fasttext is that better word embeddings for rare words
can be generated because all words are decomposed to n-grams and these n-grams of rare
words are shared with those of frequent words. In word2vec and GloVe, a rare word has very
few neighbours to be associated with and hence it lacks context.

Out of Vocabulary Words (OVW) are words that do not appear in the training corpus.
Fasttext can construct the word embeddings of such words because of the use of n-grams
whilst word2vec and GloVe are incapable because a word is considered as one atomic entity.
This is one of the reasons why Facebook is still capable of delivering targeted advertisements
when the posts or status updates contain spelling mistakes.

One of the drawbacks of fasttext is that it requires more time to generate word embeddings
than the other two implementations because each word in the corpus has to be decomposed
into n-grams. Furthermore, as the corpus size increases, the computational resources required

greatly increase because n-grams generation is exponential.

2.4 Deep Learning methodologies 29

2.4.3 Deep neural network architectures: RNN and LSTM

Recurrent Neural Networks (RNN) are a type of powerful and robust neural networks
especially adopted for sequential data. RNNs are the base of some of the most technologically
advanced services such as Apple Siri and Google Voice. It is an important architecture
because it was the first of its type which is capable of remembering the input by design of its
internal memory.

Due to this design, RNNs are capable of precisely predicting future data patterns based
on deep understanding and context and hence they are the preferred architecture for problems
where sequential data is involved such as text, speech and financial data.

RNNSs are based on Feed Forward Neural Networks (FFNN) which are more basic as
architecture. In FFNN, the information moves in one direction only; from the input layer,
through the hidden layers and finally out from the output layer as illustrated in Figure 2.2%.
The information is channelled through a sequence of mathematical operations performed at
the nodes. In a FENN, information always touches a particular node just once. In such neural
networks, there is no memory and the network only considers the current feed and hence a
FFNN is not capable of determining the upcoming input. The input is transformed to output
with supervised learning and the output is a label. A label is a name which is given to certain
input. For example, a FFNN is trained on labelled images to categorise cats and horses. The
FFNN would be trained until the error is minimised as much as possible when predicting
the categories. The labelled images are fed into the FFNN in a sequential manner, meaning
an image of cat a subsequent of a horse, the trained FFNN is not capable to perceive the
next image. A FFNN needs to always process the current input with the consequence that it
does not have a notion of order in time. The RNN architecture tries to solve this problem by
using an internal short term memory. This is achieved by simply looping the input which
was perceived previously as illustrated in Figure 2.3°. Therefore an RNN has two inputs; the

current feed and the recent past feed.

“https://tex.stackexchange.com/questions/364413 (Accessed: 2018-10-31)
Shttps://tex.stackexchange.com/questions/364413 (Accessed: 2018-10-31)

2.4 Deep Learning methodologies 30

Figure 2.2 Feed Forward Neural Network architecture

Input Hidden Ouput
layer layer layer

)

W\/

Figure 2.3 Recurrent Neural Network architecture

Input Hidden Ouput
layer layer layer

)

The main purpose of adding a memory to a neural network is that the sequence of data
being fed into the network is information in itself and RNNs use this information to perform

tasks; which FFNNs are not capable of. The Elman network was proposed Elman [23] which

2.4 Deep Learning methodologies 31

is an early implementation of RNN which are also known as Simple Recurrent Network

(SRN).

Figure 2.4 Elman’s Network [23]

DEDEuoG)

HIDDEN UNITS

DEDEuEE

CONTEXTUNITS

Such network is three-layered with a set of context units. This hidden layer is connected
to the context units. Figure 2.4 illustrates ElIman’s implementation, where the text string
BTSXVPE is the input string at time step 7. The decision which was reached at time step -1
is contained in the context unit and will influence the hidden layer at time step step . Like
FFNNs, RNNs assign weights to the inputs but RNNs also assign weights to the context.
These weights are modified through gradient descent and Backpropagation Through Time
(BPTT).

Backpropagation is a process which channels back the final error through all the layers
assigning a portion of the weights by calculating derivatives. BPTT is a series of backpropa-
gation linking one time step to another.

A FENN is capable only to map one input to one output whilst RNN can map one to many,
many to many and many to one. Example of applications of many to many are translations
from one language to another and for many to one is voice classification and recognition.

Long Term Short Term Memory (LSTM) networks are an extension of RNN proposed
by Hochreiter and Schmidhuber [27]. The main advantage of LSTMs over RNNs is that
they are capable to maintain memory for a longer period of time through the iterations of

the neural networks; thus the applied term Long Term. LSTMs can achieve this because it

2.4 Deep Learning methodologies 32

is a memory unit which is capable to determine what to store, when to read and when to
drop information. Figure 2.5° illustrates the LSTM unit decomposed with gates and flow of

information. These operations are achieved by opening and closing three gates:
1. the input gate which determines if the input should pass through.
2. the forget gate which drops information which is not considered important.

3. the output gate which influences the output at time step .

Figure 2.5 LSTM architecture

The gates are sigmoidal form meaning that their values range from O to 1. The forget
gate was introduced by Gers et al. [26]. One major problem of the work by Hochreiter
and Schmidhuber [27] was that the state of the LSTM network may grow indefinitely and
eventually fail. Gers et al. solved this problem by introducing the forget gate which drop the
information at appropriate times and hence gives resources back to the neural network.

Bidirectional Recurrent Neural Networks (BRNN) were proposed by Schuster and Paliwal

[53]. The main idea behind BRNN is that the output at time step t may also depend on

®https://tex.stackexchange.com/questions/332747 (Accessed: 2018-10-31)

2.5 A bootstrapping approach for Maltese 33

the future inputs. This is achieved by stacking two independent RNNs together which are
trained simultaneously. For one RNN, the input is fed in normal time known as positive time
direction. The other RNN is fed in reverse time and is known as negative time direction.
Typically, the outputs of both RNNSs are concatenated at each time step, with the possibility
of other mathematically operations. The aim of this architecture is to capture more context
which in turn improve the networks’ output results [53].

This section explained in detail how the basic Feed Forward Neural Networks evolved to
Recurrent Neural Networks which were in turn extended to Long Term Short Term Memory
networks to improve efficiency and performance. Finally, Bidirectional Recurrent Neural

Networks were discussed as another evolution.

2.5 A bootstrapping approach for Maltese

The work by Tiedemann and van der Plas [58], to our knowledge, is the only published
work which evaluated methods of dependency parsing for the Maltese language. The authors
focused their work on three widely used bootstrapping techniques; annotation projection,
model transfer and translated treebanks. The authors considered the Maltese language to be
an excellent test case to evaluate the performance and practicality of cross-lingual methods.
Maltese is a computationally low resourced language with no parsers and an annotated
dataset was not yet available at the time of this work. This meant that the authors had to
bootstrap annotations for Maltese using resources from other languages, making the task
harder than normal machine learning when annotated data is actually available.

Statistical approaches to natural language processing tasks require large annotated datasets
in order to be able to perform reliably and accurately. The task of annotating datasets is highly
time consuming, expensive and infeasible for large corpora. Automatic dataset annotation
often fails because the annotation required is the information to be discovered and fetched.
Bootstrapping techniques provide a viable way to manual annotation [59].

Early bootstrapping techniques concentrated on annotation projection which is also

known as data transfer [28]. In this approach, the annotations from well-sourced languages

2.5 A bootstrapping approach for Maltese 34

such as English and Spanish are projected to the target low-resourced language. Tiedemann
and van der Plas used the heuristics as proposed by Hwa et al. [28] that make it possible to
project the annotations from one language to another through bitext word alignment. Bitext
word alignment is the process of identifying the translation relationships between words the
bi-lingual parallel text. This process will result in a graph between the opposing sides of the
parallel text. Projection rules are applied to the resultant graphs to create the tree structures
required for the training process of the target language. The trees were further enriched with
morphological features and POS information.

In model transfer, models are trained on annotated language sources and implemented
onto the target language. This method works reasonably well only for closely related lan-
guages. To achieve good performance, the source and target languages must have significant
lexical overlap else the models have to be delexicalised as part of the preprocessing stage.
This method is considered to be the simplest transfer approach.

The third technique which was evaluated was translation of treebanks using Statistical
Machine Translation (SMT) models trained on parallel datasets. This cross-lingual parsing
would result in synthetic training data with the projected annotation from the source treebank.
This technique was proposed by Tiedemann et al. [57] and evaluation results proved that this
approach performed better than the annotation projection [58]. The two main problems of
this approach is the lack of quality translation and sufficient training data for creating the
models.

The Maltese treebank used by Tiedemann and van der Plas was the initial private ver-
sion of research conducted by Céplo [48] to release the first Maltese annotated treebank.
The parser used in the experiments is a graph-based parser which forms part of the Mate
Tools’ developed by Bohnet [5]. The two principal approaches of the study; annotation
projection and treebank translation depend on parallel translated datasets. This requirement
was satisfied by using publicly available translated legal documents. The European Union’s
(EU) legislative documents, Acquis Communautaire (AC), is a large corpus of official doc-

uments accumulated over a long period of time. The Directorate General for Translation

Thttps://code.google.com/archive/p/mate-tools (Accessed: 2018-10-31)

2.5 A bootstrapping approach for Maltese 35

(DGT-Translation) Memory is a large aligned translation memory of the AC covering the
twenty-two official EU languages and their 231 language pairs where each sentence of the
documents was professionally human translated. Hence, the DGT-Translation Memory was
used to create these necessary parallel datasets.

For the evaluation, Tiedemann and van der Plas used a subset of 19 languages, including
Maltese which had sufficient parallel translations. The corpus used for evaluation was
composed of over one million translated sentences and a range of 19 to 26 million tokens
per language. Maltese was tokenized using an in-house tokenizer whilst the rest of the
languages were tokenized using UDPipe [55]. No specific details were published on the
in-house tokenizer however, both tokenizers follow the standards of the UD treebanks. The
best performing models were achieved using the English, Spanish and Italian treebanks.
The translation treebank approach for the Spanish treebank achieved the highest Labeled
Attachment Score (LAS) of 60.50% and highest Unlabeled Attachment Score (UAS) of
70.32% as illustrated in Table 2.1. From the results, it can be noted that Italian and Spanish
are the languages which have the most lexical overlap with Maltese. The translated treebanks

approach generally performed better than the other two approaches.

Table 2.1 Results for the best three language treebanks [58].

Treebank Projection Transfer Translation

LAS UAS LAS UAS LAS UAS
English ~ 59.39 69.53 51.11 62.14 59.62 68.88
Spanish ~ 59.78 69.41 55.54 65.88 60.50 70.32
Italian 5770 66.74 56.04 65.11 60.35 68.80

Further to these experiments, Tiedemann and van der Plas tried to determine if multi-
source models can be used to overcome the individual deficiencies of the projected data sets.
Using the annotation projection technique, four further experiments were performed using
two other datasets. The two datasets were composed of an aggregation of treebanks from
English and Romance Languages and the another dataset was an aggregation of all treebanks

as illustrated in Table 2.2.

2.5 A bootstrapping approach for Maltese 36

Table 2.2 Multi-source datasets [58].

Dataset 1 Dataset 2

English Bulgarian
Spanish Czech
Italian English
Portuguese Spanish
Romanian Italian
Slovenian

The authors did not provide any reasons why the annotation projection technique was
used instead of the translated treebanks method which performed better. One of the exper-
iments was conducted with the inclusion of inflection information from the Korpus Malti.
Inflection information details how words in language are modified in different contexts such
as grammatical categories and tenses. These experiments resulted in minimal improvement

over the previous experiments as illustrated in Tale 2.3.

Table 2.3 Multi-source projection models [58].

Method Languages LAS UAS
Projection All languages 62.51 71.54
Projection Multi-source dataset 1 62.52 71.28
Projection Multi-source dataset 2 62.77 71.80

Projection with inflection info Multi-source dataset 2 63.03 71.54

At the conclusion of the final set of experiments, the authors stated that adding lexical in-
formation without contextual disambiguation provided insignificant increase in performance.
The scores achieved in all experiments have limited practical value despite interesting for
the research aspect. Tiedemann and van der Plas stated that cross-lingual parsing was still
lagging behind fully supervised models. As possible future work, the authors recommend to
study cross-lingual methods and their practicality over large-scale experiments which involve
many more languages because the successful use of such techniques is still unproven. Such
study and detailed analyses can comparatively explore the similarity between languages on

specific linguistic levels.

2.6 The Universal Dependencies 37

2.6 The Universal Dependencies

Universal Dependencies (UD) is an open community initiative with the aim to develop a
framework for cross-linguistically consistent grammatical annotation for a wide range of
languages. This framework should promote research on multi-language parsers, parsing
algorithms and cross-language learning [16]. The annotation scheme used in UD is the
evolution of previous efforts by the University of Stanford, Google and Interset [48].

The first effort to standardise dependencies was by the University of Stanford. In 2005,
Stanford developed a parser to support their Recognizing Text Entailment (RTE) systems.
RTE systems are systems which are capable to map a directed relation between pairs of text
expressions using inference. The Stanford Dependencies was the back-end component of the
parser used in this system. During that period, the Stanford Dependencies evolved as the de
facto standard for dependency analysis of English. At a later stage, these were adopted for
other languages such as Chinese, Italian and Spanish [16].

The Google universal tag set was developed as part of the cross-linguistic analysis of the
CoNLL-X shared task by McDonald and Nivre [37]. The tag set was used for the first time
for unsupervised part-of-speech (POS) tagging by Das and Petrov [14]. Subsequently this
work by Das and Petrov was used as a process for aligning the diverse tag sets to a standard
by De Marneffe et al. [16].

The Interset Interlingua is a tool developed by Zeman which maps and converts different
morphological tag sets amongst various languages [65]. This tool was later adapted as a
morphological layer in HamletDT. The morphological layer determines how the individual
words of a particular language are constructed. HamletDT is a collection of dependency
treebanks and dependency conversions annotated with a standard tag set [66].

UD is the consolidation of these three works into one consistent clear framework based
on the CoNLL-X format. The CoNLL-X format was defined during the previous editions
of the CoNLL shared task by Buchholz and Marsi [10]. The format of the UD treebanks
was later updated and named CoNLL-U with the initial guidelines published in October
2014. Subsequently, there were a number of releases of treebanks for various languages. In

March 2017, the second version of the UD specification was released and in July 2018, the

2.6 The Universal Dependencies 38

second revision of this version will be published. Currently, UD is composed of more than

100 treebanks in over 60 languages with a number of upcoming treebanks for low resourced

languages, including Maltese.

The CoNLLU-U format represent the dependency trees of that particular language in

text format. The plain text file is UTF-8 encoded in order to support the large variety of

characters of the different languages. Each entry must be stored in one line and there are

three types of lines defined:

* Word line which is a word of a particular sentence with tab delimited fields.

* Empty line which marks a sentence boundary.

* Hashtag line which indicates a comment.

The word line contains the actual annotation defined by ten fields which are described in

Table 2.4 and documented by Nivre et al. [43].

Table 2.4 CoNLL-U format [48].

Field Layer Description

1 ID Word index, integer starting at 1 for each new sentence; may be a
range for tokens with multiple words.

2 FORM Word form or punctuation symbol.

3 LEMMA Lemma or stem of word form.

4 UPOSTAG Universal part-of-speech tag drawn from the revised version of the
Google universal POS tags.

5 XPOSTAG Language-specific part-of-speech tag.

6 FEATS List of morphological features from the universal feature inventory
or from a defined language-specific extension.

7 HEAD Head of the current token, which is either a value of ID or zero (0).

8 DEPREL Universal Dependency relation to the HEAD (root iff HEAD = 0) or
a defined language-specific subtype of one.

9 DEPS List of secondary dependencies (HEAD-DEPREL pairs).

10 MISC Any other annotation.

The UD schema defines morphological and syntactical representations. The morpholog-

ical representation is indicated through grammatical notions whilst syntactically through

dependency relations. The three levels of morphological representation defined by UD are:

2.6 The Universal Dependencies

39

* Lemma which is the root of the word defined by the field LEMMA.

* POS tag which marks a sentence boundary defined by fields UPOSTAG and XPOSTAG.

* Feature set which show the characteristics of the word defined by the field FEATS.

The lemma is determined by the specific natural language dictionary whilst the POS tags

and features are defined by UD. Some languages do not use all Universal POS tags whilst

others require specific POS tags which are listed under XPOSTAG. The Universal POS tags

are described in Table 2.5.

Table 2.5 Universal POS tags [43].

Tag Class Description
1 ADJ adjective
2 ADP adposition
3 ADV adverb
4 AUX auxiliary verb
5 CONJ coordinating conjunction
6 DET determiner
7 INTJ interjection
8 NOUN noun
9 NUM numeral
10 PART particle
11 PRON pronoun
12 PROPN proper noun
13 PUNCT punctuation
14 SCONJ subordinating conjunction
15 SYM symbol
16 VERB verb
17 X other

The aim of features sets is to categorize words in a more precise way by offering

additional annotations about the word which give more specific information on its speech

and morphological properties. A feature is of the form name=value and every word can have

any number of features assigned to it. The UD framework provides the list of features in

Table 2.6 and each feature is described in detail in Appendix A. For a treebank to be officially

considered as a valid UD treebank, fields 1, 2, 4, 7 and 8 are required whilst the remaining

can be left empty marked by an underscore [43].

2.6 The Universal Dependencies

40

Table 2.6 Universal features [43].

Lexical features Inflectional features
Nominal Verbal
PronType Gender VerbForm
NumType Animacy Mood
Poss Number Tense
Reflex Case Aspect
Foreign Definite ~ Voice
Abbr Degree Evident
Polarity
Person
Polite

Listing 2.7 shows a sample sentence from the English UD treebank which can be down-

loaded from the Universal Dependencies repository®.

Table 2.7 Sample sentence from UD English treebank.

sent_id = reviews-187266-0007
text = This chef knows what he is doing.

1

[c<BEN le) NNV, N NS I \9)

This
chef
knows
what
he

is
doing

this
chef
know
what
he

be

do

DET
NOUN
VERB
PRON
PRON
AUX
VERB
PUNCT

DT
NN
VBZ
WP
PRP
VBZ
VBG

Number=Sing 2 det 2:det
Number=Sing 3 nsubj 3:nsubj
Mood=Ind 0 root O:root
PronType=Int 7 obj 7:0bj
Case=Nom 7 mnsubj 7:nsubj
Mood=Ind 7 aux 7:aux
Tense=Pres 3 ccomp 3:ccomp
3 punct 3:punct

The first two lines are hashtag lines which contain comments describing the sentence. The

first comment shows the source of the sentence which is ‘reviews’ whilst the second comment

is the actual text of the sentence. Although this is not a defined standard of commenting,

many authors have adopted this style. The first word line has an ID value of ‘1’ with word

value of “This” and a POS tag of type DET. From Table 2.5 it can be deducted that this POS

tag is a ‘determiner’. For display purposes, the feature set of each word line was reduced to

$https://github.com/UniversalDependencies/UD_English-EWT (Accessed: 2018-10-31)

2.7 The Maltese Universal Dependencies 41

one feature. The full feature set for this word line is ‘Number=Sing|PronType=Dem’ indicate
features ‘Number’ and ‘PronType’ separated by a pipe. This word line depends on word
line 2 which determines part of the dependency tree of the sentence. The full dependency

tree is illustrated in Figure 2.6.

PUNCT

ROOT - VERB

This chef knows what he is doing

Figure 2.6 Dependency structure for sample English sentence.

2.7 The Maltese Universal Dependencies

For this work, a private first version of the Maltese UD Treebank (MUDTv1) was provided
by Céplo [48]. Private communication with the author reveals that this first version of
the Maltese treebank was not intended to be fully UD complaint. The upcoming version,
MUDTYV2, due to be officially released in November 2018 will be fully UD complaint and
distributed via UD website” with the other languages’ treebanks.

Cépl states that the UD framework was adopted to create the Maltese treebank because it
has emerged as the de facto tree annotation standard for NLP functions. UD is well organised
and coherent which can be confirmed by its adoption by the industry and growth of the
available treebanks.

The source of MUDTV1 is two independent corpora which were published from earlier
initiatives. The Maltese Language Resource Server (MLRS) hosts a number of Maltese

corpora. The Korpus Malti v3.0 (2016)' is the latest available and was one of the corpus

*https://github.com/UniversalDependencies/universaldependencies.github.io (Accessed:
2018-10-31)
Ohttp://mlrs.research.um.edu.mt/index.php?page=corpora (Accessed: 2018-10-31)

2.7 The Maltese Universal Dependencies 42

used by Céplo. This corpus was tagged with the Maltese Tagset v3.0 (MTSv3) and has
an accuracy of approximately 97%. This tagset is not compatible with the UD standard
but is well documented'!. Both the corpus and tagset were developed by Albert Gatt at
the University of Malta. The other corpus is called bulbulistan maltiV3 (BCv3) which was
developed by Cépls, the same author of MUDTv1. Currently, Korpus Malti is provided as
the main Maltese corpus whilst BCv3 is maintained for legacy purposes. Although these two
corpora were developed independently, both works were published under one study by Gatt
and Céplo [25] themselves.

The fields used in the Maltese UD treebank are the ID, FORM, LEMMA, UPOSTAG,
XPOSTAG and FEATS. These fields are previously described in Table 2.4. It is important
to note that the UPOSTAG and XPOSTAG tagsets are not UD standard and it is the use of
these tagsets cause MUDTV1 not to be fully UD complaint. The following describe these

fields as adopted by Céplo with respect to the UD framework.

ID

This is the consecutive incremental integer used as the identification number of the word of
the sentence. According to the UD framework, a word is a syntactic unit but also allow ranges
to indicate multi-words. This is applicable to Maltese, however it was not implemented in
MUDTV1 with the main reason being complications arising from the morphological analysis

of the Maltese verbs.

FORM

The FORM field is based on the tokenization work of MLRSv3 and BCv3. Since Maltese is
a morphological rich language, it was a difficult task to perform tokenization which fully
follows the rules of the Maltese language. Hence, tokenization was performed as regular

expression followed by rile based error corrections [48]. This process is described in detail

by Céplé in [48] Section 5.3.3.4.

Thttp://mlrs.research.um.edu.mt/resources/malti03/tagset30.html (Accessed: 2018-10-31)

2.7 The Maltese Universal Dependencies 43

LEMMA

In MUDTVI, this field was not used and was populated with an underscore as per UD

specification.

UPOSTAG

The tagset used for this field is the Maltese Tagset v3.0 (MTSv3), the same used in MLRSv3
and BCv3 and not the UPOS tagset as described in Table 2.5. This is one of the reasons
why MUDTV1 is not 100% complaint with UD. Part-of-speech (POS) tagging was manually
applied to a subset of the two source corpora whilst the rest was applied using annotation
software. Detailed information of the whole process is documented by Céplé in [48] Section
5.4.1. Table 2.8 illustrates the MTSv3 as used in MUDTv1. Table 2.9 illustrates the
possible mapping between UPOS and MTSv3. It is important to state that this map was not
documented in [48] and the author left it to the reader to build it. ééplé also notes that the
most difficult part of building the map is when MTSv3 combines two word classes such as
LIL_DEF and PRON_INT. This process of constructing the map must be performed to update
MUDTVI1 and make it fully complaint with the UD specifications. However, due to the fact
that this map was not documented by Cépls, there is the possibility that the map described in

this work will not follow the reasons and decisions that will be adopted to release MUDTV2.

2.7 The Maltese Universal Dependencies

44

Table 2.8 The Maltese Tagset v3.0 [48].

ID Tag Description ID Tag Description
1 FIX_THIS Make corrections 26 NUM_WHD number one
to this token
2 _IGNORE_ ignore 27 PART_ACT active participle
3 ADJ adjective 28 PART_PASS passive participle
4 ADV adverb 29 PREP preposition
5 COMP complementizer 30 PREP_DEF preposition with
article
6 CONJ_CORD coordinating con- 31 PREP_PRON preposition with
junction pronoun
7 CONJ_SUB subordinating con- 32 PROG progressive parti-
junction cle
8 DEF article 33 PRON_DEM demonstrative pro-
noun
9 FOC focus particle 34 PRON_DEM_DEF demonstrative pro-
noun with article
10 FUT future particle 35 PRON_INDEF indefnite pronoun
11 GEN genitive particle 36 PRON_INT interrogative pro-
noun
12 GEN_DEF genitive particle 37 PRON_PERS personal pronoun
with article
13 GEN_PRON genitive particle 38 PRON_PERS_NEG personal pronoun
with pronoun with negative suf-
fix
14 HEMM existential verb 39 PRON_REC reciprocal pro-
noun
15 INT interjection 40 PRON_REF reflexive pronoun
16 KIEN the verb kien 41 QUAN quantifier
17 LIL oblique particle 42 VERB verb
18 LIL_DEF oblique particle 43 VERB_PSEU pseudoverb
with article
19 LIL_PRON oblique particle 44 X_ABV abbreviation
with pronoun
20 NEG verbal negator 45 X BOR unclassified
21 NOUN noun 46 X _DIG digits
22 NOUN_PROP proper noun 47 X_ENG English words
23 NUM_CRD cardinal numeral 48 X FOR other foreign
words
24 NUM_FRC fractions 49 X PUN punctuation
25 NUM_ORD ordinal numeral

2.7 The Maltese Universal Dependencies

45

Table 2.9 The Maltese Tagset v3.0 mapped to Universal POS tags.

ID MTSv3 tag UPOS tag ID MTSv3 tag UPOS tag
1 FIX_THIS X 26 NUM_WHD NOUN
2 _IGNORE_ X 27 PART_ACT PART
3 ADJ ADJ 28 PART_PASS PART
4 ADV ADV 29 PREP AUX

5 COMP DET 30 PREP_DEF PART
6 CONJ_CORD CCONJ 31 PREP_PRON PART
7 CONJ_SUB SCONIJ 32 PROG PART
8 DEF DET 33 PRON_DEM PRON
9 FOC PART 34 PRON_DEM_DEF PRON
10 FUT PART 35 PRON_INDEF PRON
11 GEN PART 36 PRON_INT PRON
12 GEN_DEF ADP 37 PRON_PERS PRON
13 GEN_PRON ADP 38 PRON_PERS_NEG PRON
14 HEMM ADV 39 PRON_REC PRON
15 INT INTJ 40 PRON_REF PRON
16 KIEN VERB 41 QUAN ADJ

17 LIL ADP 42 VERB VERB
18 LIL_DEF ADP 43 VERB_PSEU ADV
19 LIL_PRON ADP 44 X_ABV SYM
20 NEG VERB 45 X_BOR X

21 NOUN NOUN 46 X_DIG NUM
22 NOUN_PROP PROPN 47 X_ENG X

23 NUM_CRD NUM 48 X_FOR X

24 NUM_FRC NUM 49 X_PUN PUNCT
25 NUM_ORD NUM

2.7 The Maltese Universal Dependencies 46

XPOSTAG

This field was populated with the same value of UPOSTAG.

FEATS

In MUDTVI, this field is empty and was marked with an underscore. Some work related
to features was already performed by Cépld and in the upcoming version, MUDTV2, the

treebank will contain features as described in Section 2.6.

2.7.1 Sample sentence from MUDTv1

Table 2.10 shows a sample sentence from MUDTV1. The sentence in Maltese reads ‘Qaltlu
li mhux vera li x-xmajjar kollha ghandhom memorji koroh.” which translates to English as
‘She told him that it is not true that all rivers carry unpleasant memories.” Figure 2.7 shows

the dependency tree of the sample Maltese sentence.

Table 2.10 Sample sentence from UD Maltese treebank.

1 Qaltlu _ VERB VERB 0 root L
2 1l _ COMP COMP _ 4 mark _ _
3 mhux _ PRON_PERS_NEG PRON_PERS_NEG 4 neg o
4 vera _ ADJ ADJ _ 1 ccomp _ _
5 Ik _ COMP COMP 9 mark _ _
6 x- _ DEF DEF _ 7 det _
7 xmajjar _ NOUN NOUN _ 9 nsubp _ _
8 kollha _ QUAN QUAN _ 7 det o
9 ghandhom _ VERB_PSEU VERB_PSEU _ 4 ccomp _ _
10 memorji _ NOUN NOUN _ 9 dobj _
11 koroh _ ADIJ ADIJ 10 amod _ _
12 _ X _PUN X_PUN 1 punct _ _

2.8 Evaluation 47

X_PUN

ROOT - VERB VERB_PSEU

ADJ

7N N

Qaltlu 1i mhux vera 1li x- xmajjar kollha ghandhom memorji koroh

Figure 2.7 Dependency structure for sample Maltese sentence.

2.8 Evaluation

The standard evaluation procedure for dependency parsers is similar to other types of parsers;
to apply the parser being evaluated to a test set. The test set is a subset taken from the
annotated treebank which was not seen or used by the parser. The output of the parser is
compared to the gold standard of the treebank.

The Maltese treebank will be split into a training and a test dataset with an approximate
ratio of 80:20. The training dataset will be used to train the model and get the empirical risk.
The empirical risk is the measurement of the performance of the model on the training data.
The true risk is the accuracy of the model on the test data which is computed after building
the model. The empirical risk must be in line with the accuracy of the model on the test
dataset. Overfitting occurs when the empirical risk is almost zero and the accuracy of the
test data is low. In such cases, the model is too specialised on the training data and does not
generalise well. Overfitting is reduced through cross validation techniques such as random

sub—sampling and k-folds approaches. The most widely used metrics are:

1. EXACT MATCH which represents the percentage of the parsed sentences with the

exactly matched of the gold standard.

2.9 Conclusion 48

2. ATTACHMENT SCORE is defined as the percentage of words that have the correct head
of the dependency tree. This metric is possible in depends parsing since the trees
always have one head. On the other hand, evaluation of constituency-based parsing is
based on precision and recall since it is not possible to exact match the constituents in

the parser’s output to those in the treebank.

3. PRECISION is the percentage of dependencies from the parser’s out that were correctly

parsed.
4. RECALL is the percentage of dependencies in the test set that were correctly parsed.

5. F-MEASURE is the result of the harmonic mean of the precision and recall.

These metrics can be used for evaluation in a labelled or unlabelled approaches. For this

work, the following two metrics will be used for evaluation:

1. LABELED ATTACHMENT SCORE (LAS) represents the percentage of words that are
assigned both the correct head and correct dependency label. This is the main evaluation

metric for dependency parsing and the main evaluation metric for CoNLL [67].

2. UNLABELED ATTACHMENT SCORE (UAS) is the percentage of words that are as-
signed only the correct head. In every evaluation, UAS should always score better than

LAS.

2.9 Conclusion

In this chapter, we reported in detail the various approaches for dependency parsing. Consid-
erable attention was given to the techniques involving deep learning architectures, their use
in CoNLL 2017 and the published work on dependency parsing for the Maltese language.
Further to these detailed analysis, the methods proposed by Kiperwasser and Goldberg
seem to be the most appropriate choice for the current state of the art for Maltese dependency
parsing. Given the time and hardware resources for this work, these methods are the most

feasible. The parser by the University of Stanford [17] employed these methods and placed

2.9 Conclusion 49

first in CoNLL 2017 shared task. Another advantage that it also makes it possible to compare
the evaluation of any techniques implemented with those obtained by Kiperwasser and
Goldberg. Since the aim of this work is to also contribute to the field of dependency parsing,
we will be using a Quasi-Recurrent Neural Network [9] as the main deep learning architecture,
instead of the traditional bi-LSTM. To our knowledge, this architecture was never applied to
dependency parsing.

Experiments will be conducted using the Maltese UD treebank and the results reported
in detail in the upcoming chapters. The Maltese UD treebank will be further enriched with
trees from other languages’ treebanks with the aim to improve results. This process of
bootstrapping of the source treebank was not documented by any of the participants of
CoNLL 2017. Shi et al. [54] in their work employed similar techniques but by employing
parallel datasets and inferring models on lower resourced languages. Our process is easier to

implement and execute but should still achieve better evaluation metrics.

Chapter 3

Methodology

This chapter will detail the methods and processes employed to achieve the stated aims and
objectives. These are based on the knowledge acquired during the previous chapter and are

all justified with the necessary reasons.

3.1 Maltese Word Embeddings

One of the first tasks required for this type of work is the ability to represent words in a
description that can be used by a neural network architecture. Word embeddings offer this
functionality since words are represented as vectors. Moreover, once the word embeddings
are generated, they can be mapped into a three dimensional scatter plot. This section describes
the sequence of tasks required, starting from the source text from which the word embeddings
will be generated. From the word embeddings, a model is created and finally the model is
mapped to the scatter plot.

The first step in generating word embeddings for the Maltese language is to acquire a
source text in Maltese. Bojanowski et al. [6] published pre-trained word embeddings for 294
languages, including Maltese using fasttext. The vectors are in 300-dimension and were
generated using the skip-gram model and parameters as detailed by Bojanowski et al. [6]. The
authors used Wikipedia articles as their textual source through which the word embeddings

were modelled. There are some disadvantages in using this corpus. Since the vectors are

3.1 Maltese Word Embeddings 51

in 300-dimension, more computing resources are required and furthermore training will
be more time consuming. Analysis of the corpus reveals that it contains several html tags
and keywords which also ended up as part of the word embeddings model. Bojanowski
et al. performed the necessary cleaning procedures of the Wikipedia articles. However, in
practice, it is impossible to automatically acquire a completely clean text source from these
articles and the only way would be to manually check for these type of occurrences that
need to be removed manually. Another disadvantage is that the use of Wikipedia as the sole
source for training limits the diversity of the text — especially when working with Maltese
which has a limited number of entries/article!. Diversity is an important aspect for creating
a word embedding model since it gives different context to words. In this research, a word
embedding model was created using the MRS corpus as a source for the Maltese text. The
corpus is more diverse that the content of the Maltese Wikipedia and has more text, thus
making it more appropriate as a textual source for word embeddings.

The MLRS corpus (also known as Korpus Malti, Gatt and Céplo [25]) was developed
using a variety of texts as source including fiction and non-fiction works, academic writings,
legal documents and news-website articles. This variety of sources should cover a wide range
of subjects and contexts. A sample annotated sentence from MLRS is illustrated in Table 3.1.

To recreate the source, the tokens of each word line have to be extracted and sequenced
into one sentence. For many tokens, MLRS also includes the lemma for that token. A lemma
is the root of a word from which the word originates. The lemma does not originate from the
sources of MLRS but was added as part of the annotation task. The lemma can be exploited
for better word embeddings. As discussed in Section 2.4.2, similar words will result in
closely related vectors. The lemma should be located close to the centre of a vector space
and should also enhance context by adding more neighbours.

In the process used, the lemma of a word is inserted after the word token to form a
sentence which grammatically and syntactically does not make sense but which should result
in an enriched vector. Taking the sample sentence shown in Table 3.1, the composed sentence

with the lemmas inserted would be as follows:

'As of May 2018, there were 3,368 articles on the Maltese Wikipedia — https://stats.wikimedia.org/
EN/ChartsWikipediaM T.htm

3.1 Maltese Word Embeddings 52

Table 3.1 Sample sentence from MLRS.

Word Tag Lemma Root
Libset ~ VERB null null
iz- DEF il- null
zarbun NOUN zarbun z-r-b-n
tat- GEN-DEF ta’ null
takkuna NOUN null null
gholja ADJ null null
u CONJ-CORD u null
rqiqa ADJ rqiq r-q-q
u CONJ-CORD u null
ghamlet VERB ghamel gh-m-I
7ewg NUM-CRD 7ewg null
passi NOUN passa p-s-j
X-PUN . null

Libset iz- il- zarbun tat- ta’ takkuna gholja u

rgiga u ghamlet ghamel zewd passi passa.

Note that if the lemma is the same as the word token, the lemma is simply not inserted.
To process the MRS corpus and generate all of the sentences, a C# tool was developed.
This tool opens a stream to MLRS and reads one annotated sentence per step. The word lines
of the MLRS are parsed for the word token and lemma, which are then queued sequentially
in an array. At the end of the step, the array is iterated and a sentence formed. Finally, the
sentence is flushed to a text file. This process is performed for all sentences of the MLRS
corpus. The final result is a text file which is over four gigabytes large. This was the textual
source on which the word embeddings were generated.

As discussed in Section 2.4.2, the word embedding models will be generated using
fasttext [6] and GloVe [47]. Implementations of both algorithms are available from public
repositories. Furthermore, the default parameters were used in this research, with only the
100 dimension parameter being specified. Zeman et al. state that for CoNLL 2017, a 100
dimension was chosen after a thorough discussion between the organisers and authors. This

value is expected to yield good results and previous work by Andor et al. showed that it is

3.2 Using Quasi-Recurrent Neural Networks 53

possible to achieve state-of-the-art results with just a 64 dimension. Both implementations
generated two files each; one text and the other binary based. For this work, the text-based
corpus is used since a client library would be required to load the binary format. Furthermore,
using the text-based word embedding corpus gives the possibility to interchange between the
corpora without any changes to the code. GloVe also generates a vocabulary file which lists
the token words and their respective frequencies.

One of the stated objectives is to map the word embeddings corpus to a three dimensional
scatter plot. TensorFlow and Tensorboard [1] are used in this research to achieve this objective.
One of the tools of Tensorboard is the Projector? and this tool is used for visualisation. Three

files are required for a successful mapping:

1. a ‘tsv’ file which contains the labels. In this case the labels are the actual words.
2. a ‘ckpt’ file which is the model file that actually contain the vectors.

3. a ‘log’ file which contains the meta data of the model.

A Python tool was developed to create the files. The first step was to load the whole
word embeddings corpus into a list structure. From this list a tensor is created. A Tensorflow

3 is initialised and the created tensor loaded. The labels (words) are written

Interactive Session
to the ‘tsv’ file during the session. A Tensorflow Summary Writer* was used to write the
‘ckpt’ model file to disk and the respective meta data written to the ‘log’ file. The log file
is required to have a complete model. To load the Projector with the map, Tensorboard is

called with a parameter indicating the directory where all three files should be located.

3.2 Using Quasi-Recurrent Neural Networks

In deep learning there are two distinct ways to process input; sequentially or simultaneously.

Sequential processing is associating with sequential data such as voice and text data while

https://www.tensorflow.org/versions/r1.2/get_started/embedding_viz (Accessed: 2018-10-31)
Shttps://www.tensorflow.org/api_docs/python/tf/InteractiveSession (Accessed: 2018-10-31)
“https://www.tensorflow.org/api_docs/python/tf/summary/FileWriter (Accessed: 2018-10-31)

3.2 Using Quasi-Recurrent Neural Networks 54

simultaneous processing is more associated with image processing. LSTMs are the typical
neural networks architectures for processing sequential data whilst CNNs are more adept to
process simultaneous data. Quasi-Recurrent Neural Networks (QRNN), proposed by Brad-
bury et al. [9] is an architecture which is capable to perform simultaneous processing on
sequential data. In simple terms, processing text data as if it was an image. Since most of the
processing happens simultaneously in parallel, Bradbury et al. state that QRNN is up to 16
times faster than conventional RNN whilst still achieving state-of-the-art results.

CNNss are one of the most popular deep learning architectures which are mostly applied
to tasks which involve image processing, although they were also successfully utilized for
sequence processing in particular Zhang et al. [68]. A CNN is constructed similar to a
traditional neural network with an input, an output and a number of hidden layers. These
hidden layers typically consist of convolution, pooling, fully-connected and normalisation
layers. The convolution and pooling layers are used for feature extractions whilst the
fully-connected and normalisation layers are used for classification. Convolution layers
are the most important unit in a CNN. The architecture of the original CNN, as introduced
by LeCun and Bengio [33], alternates between convolutional layers and subsampling layers
as illustrated in Figure 3.1. The feature maps of the final subsampling layer are then fed
into the actual classifier consisting of a number of fully connected layers. The output layer

usually uses softmax activation functions.

Figure 3.1 Architecture of a traditional Convolutional Neural Network [33].

C3: 1. maps 16@10x10

C1: feature maps 54: f. maps 16@5x5

INPUT

|
Full oomjlactiun ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

3.2 Using Quasi-Recurrent Neural Networks 5§

A convolution is a mathematical operation between two functions which results in a
third function. In CNNs, the convolution will create two sets of data which are the input
and convolution filter (or kernel) to produce a feature map. The pooling layers merge the
outputs of neuron clusters at one layer into a single neuron in the next layer. For example,
max pooling uses the maximum value from each cluster of neurons at the prior layer, whilst
the average pooling uses the average value from each cluster of neurons. Since the fully
connected layers accept one dimensional vectors whilst convolution and pooling layers
operate with three dimensional vectors, the last pooling layer has to flatten the output to feed
the fully connected layers.

Bradbury et al. [9] describe QRNN as a merge of the two architectures which like
CNNss allow parallel processing and thus permitting high throughput and scaling for long
sequences and similar to RNNs, QRNNs are able to output depending on the order of the
sequence. The authors constructed a number of QRNN versions customised to perform
several natural language tasks such as document-level sentiment classification, language
modelling, and character-level machine translation. This work on dependency parsing has
overlap on language modelling and the experiments by Bradbury et al. provided insights
and encouraging results to consider QRNN as an alternative to the bi-LSTM architecture.

Bidirectional LSTM is the defacto standard architecture for dependency parsing.

Figure 3.2 QRNN architecture as compared to LSTM and CNN architectures [9]

LSTM CNN QRNN
¥ } ¥
Linear Convolution Convolution
LSTM/Linear Max-Pool [e | fo-Pool B ————— >
Linear Convolution Convolution #
LSTM/Linear — Max-Pool fo-Pool = ———— — >
1]] v

Figure 3.2 illustrates the computation structure of the QRNN when compared with the
traditional LSTM and CNN architectures. Red denotes convolutions or matrix operations
whilst a continuous block indicates that these computations are parallel. The blue denotes

functions that work simultaneously along the channel.

3.3 The Parser 56

A QRNN layer consists of two types of components which correspond to the convolution
and pooling layers in CNNs. The convolutional component behaves similarly to the convo-
lutional layer in CNNs which allows full parallel computation of the sequence dimension.
Also like CNNss, the pooling component, does not have any trainable parameters and also
allows full parallel computation.

In a QRNN, for an input sequence of n-dimensional vectors, the convolutional component
performs convolutions with a set of filters producing a new sequence of m-dimensional
vectors at a particular timestep. For the prediction of the upcoming token, the filter set allows
computation to be performed on information from future timesteps. This process is known as
masked convolution which was proposed by Oord et al. [46].

The functions of the pooling component is based on the traditional LSTM unit however
the function of the gates is based on dynamic average pooling which was defined by Balduzzi
and Ghifary [3]. This type of pooling was called ‘fo-pooling’ by Bradbury et al. [9].

Hence a single QRNN layer can perform input-dependent pooling with subsequent gated
convolutional features. Similarly to CNNs, two or more QRNN layers must be stacked to
build models which are capable to perform more complex functions.

For the language modelling experiments, Bradbury et al. performed the same experiments
by Zaremba et al. [63] and Gal and Ghahramani [24] using the Penn Treebank [34]. In the
main result, QRNN obtained a validation of 85.7% whilst [63] experienced a validation
of 86.2% with a difference of just a 0.5%. However, QRNN outperformed the runtime
performance of the implementation of Zaremba et al. by a maximum of 16 times. These

results provide a valid reason to consider QRNN as an alternative to bi-LSTM architecture.

3.3 The Parser

In this section, the methods utilized to construct the parser are described in detail. The feature
function is analysed and hence the architecture and actual parsing processes involved are

outlined.

3.3 The Parser 57

This work is based on the research by Kiperwasser and Goldberg [31] which was also
used by Dozat et al. [18], placing first in CoNLL 2017 shared task of dependency parsing.
Kiperwasser and Goldberg define two parsers one graph-based and the other a transition-
based. The parser of this work is specifically based on the graph-based parser and the
reference code® by Kiperwasser. The contributions which make this parser different is
the utilisation of a Quasi-Recurrent Neural Network instead of bi-LSTM and bootstrapped
multi-source treebanks.

Kiperwasser and Goldberg state that one of the most critical phases in the design
process of the parser is the choice of the feature function. The feature function is a major
challenge and is composed of mainly two tasks; which components to consider and which
combinations of such components should be included in the function. Typically, state-of-the-
art parsers depend on models rather than fully hand-crafted feature functions to focus on core
features and the models perform the necessary combinations. In the many works reviewed
by Kiperwasser and Goldberg, the feature function was highly complex. For example, the
work of Chen and Manning [11] uses 18 different elements as feature function. Hand-crafted
feature functions are highly prone to errors and time consuming to create. The feature
functions describe the context of a word in an input sentence and the context of that whole
input sentence. Such feature functions are based on on templates which when initialised

would result in features of the form of:

* word on top of stack is X
e leftmost child if Y

e distance between head and modifier is Z

Typically, a published feature set which demonstrates its efficiency is adopted by other
authors and modified to increase performance. An example of such feature set suggested
by Kiperwasser and Goldberg is proposed by McDonald et al. [36] for graph-based parsing
which consists of 18 templates whilst the actual implementation of the feature function

consisted approximately of 100 templates [31].

Shttps://github.com/elikip/bist-parser (Accessed: 2018-10-31)

3.3 The Parser 58

Kiperwasser and Goldberg propose a simple approach to this problem which is based on
bi-LSTMs. As stated before, bi-LSTMs are highly capable of encoding sequences together
with their respective contexts. Each word of an input sentence is encoded by its respective
bi-LSTM. A small set of these encodings, are concatenated and hence used as a feature
function to be passed through a non-linear scoring function.

For an input sentence s composed of n-words with a sequence of wy,...,w, and corre-
sponding POS tags 11, ...,1,, two embedding vectors e(w;) and e(t;) for each word and POS
tag are constructed. Each of the vectors e(w;) and e(t;) are concatenated to form x;. For
all n-words in sentence s, x|, is the sequence of concatenated vectors. These embeddings
are trained with the model and the context is introduced at a later stage. The context is
the bi-LSTM vector of the whole x;_, with respect to the word. The feature function is a
bi-LSTM encoding of the head word and the modifier word of which the resulting vectors
are then scored using a Multi-Layer Perceptron (MLP). Compared to other functions, this
proposal by [31] is much more simpler.

The graph-based parser follows the model as proposed by McDonald et al. [36]. For
an input sentence s with corresponding sequence of vectors x; _,, the highest scoring parse
tree y is searched from a space Y (s) of dependency trees. In cite McDonald et al. [36], the
parser is arc-factored which breaks down a dependency tree to the sum of the score of its
head-modifier arc. Using the break-down of scores, the highest scoring tree can be fetched
using Eisner’s MST algorithm as proposed by Eisner [22]. Labelled parsing uses this same
procedure but after the arc is predicted, the label is predicted. The resulting vectors from the
label prediction are fed into a different MLP.

Figure 3.3 illustrates the neural model architecture for the graph-parser during the calcu-
lation of the score for the sentence "the brown fox jumped.”. Each dependency relation is
scored using a MLP which is fed the bi-LSTM encoding. The colours of the dependencies
match to the colours of the MLP inputs.

These methods were implemented using the reference code for both the bi-LSTM and

QRNN architectures. This will give the possibility to generate results for the two architectures

3.4 The Bootstrapped Multi-source Treebank 59

Figure 3.3 Graph-based parser architecture as proposed by Kiperwasser and Goldberg [31]

and compare them for effectiveness and efficiency. The methods and architecture of QRNN

were described during the previous section.

3.4 The Bootstrapped Multi-source Treebank

In this section the methodology employed to build the bootstrapped multi-source treebank
for the Maltese language is described in detail.

As detailed in Section 2.7, the Maltese annotated treebank, MUDTV1, was privately
provided by Céplé for this work. MUDTYV] currently is composed of just one text file whilst
the CoNLL evaluation requires three files. Hence, the first required step was to split MUDTv1

as follows:

1. the training dataset which will contain the annotated sentences to be used for the
training of the parser’s model. This dataset should contain 60% of all sentences in

MUDTVvI1. The filename should be ‘mt-ud-train.conllu’.

2. the development dataset which will contain 20% of the annotated sentences of MUDTVv1.
These sentences should not be present in the training set. This dataset should be used

for performing evaluation of the model. The filename should be ‘mt-ud-dev.conllu’.

3.4 The Bootstrapped Multi-source Treebank 60

3. the test dataset which will contain the annotated sentences to perform the prediction
based on the model. This file should contain the remaining 20% of MUDTVv1. Hence,
also for the test dataset, no sentences should be contained in the training dataset. The

filename should be ‘mt-ud-test.conllu’.

MUDTVI contains approximately 2000 sentences, with the split training dataset now
containing 1200 sentences and the rest split between the development and training datasets.

To perform the split another tool in C# had to be developed. Using a ready-made tools
and text editors would risk splitting an annotated sentence and the split would have to be
performed sequentially without having any randomization of the annotated sentences. The
newly developed tool loads MUDTV1, or any CoNLL format text file and segments each
annotated sentence into a list. The list is then shuffled and split into 60%, 20% and the rest
20%, representing the training, development and testing datasets respectively. The shuffling
is required to make sure that the sentence originating from a specific source would not be
concentrated in one of the datasets. Each list was finally streamed to disk to create the three
required files. From this process, the standard Maltese treebank was acquired.

As discussed in Section 2.3, Shi et al. [54] used parallel dataset and projected unlexicalised
data to improve performance of low-resourced languages. To execute the same process by Shi
et al. would require much more computational resources, time and additional datasets. Eisner
[22] states that dependency parsing is primarily a search problem. The aim is to correctly
predict the tree of a sentence from the unseen testing dataset using the pre-trained model.
The model itself is composed of a variety of trees which were fed into the neural network
during the training phase. When a sentence is not parsed correctly, the only non-technical
reason is because that tree was not present in the model. From this conclusion it can be stated
that increasing the variety of trees in the model should result in better prediction.

Since the whole Maltese treebank was used, the other varied annotated trees must be
sourced from other languages. Using the work of Tiedemann and van der Plas [58], the
languages which performed best for parsing Maltese can be derived. These languages are

listed in Table 2.1 with their respective achieved metrics.

3.5 CoNLL 2017 Evaluation standard 61

To generate the multi-source treebank, the tool developed to split MUDTv1 was enhanced.
The updated tool is capable of receiving a list of CoONLL formatted files. Each file is iterated
and parsed into an individual list which is hence shuffled. This is the same procedure as
it was performed to split MUTV 1. From each list, 1200 sentences are chosen and finally
all sentences are merged with the Maltese training dataset. The value of 1200 sentences
was chosen to match the Maltese training set and keep the treebank balanced amongst all
languages. The final result is a training dataset of Maltese, English, Spanish and Italian
languages, each with 1200 sentences. The development and test datasets were not modified.

This whole process can be easily performed on other low-resourced languages. The
difficult part is to determine those languages which have syntactic overlap with the target
language. This process could be performed for the Maltese language because of the previous

work by Tiedemann and van der Plas [58].

3.5 CoNLL 2017 Evaluation standard

The evaluation of the parser will be performed according the CoNLL standards. To perform
the evaluation, the CoNLL 2017 evaluation script® was used. This ensures that this work
follows a defined standard by an institution and the results can be compared with those
achieved during CoNLL 2017.

For an evaluation to take place, the parser must output a valid CoNLL-U format file
which is then compared to the gold standard. The gold standard for the Maltese for this work
is the test dataset (mt-ud-test.conllu). During the training phase, at the end of each epoch an
evaluation is performed using the development dataset (mt-ud-dev.conllu). The evaluation is
important because the progress of the model can be monitored. The metrics should steadily
increase over each epoch. For the prediction phase, the parser’s output is compared to the
test dataset (mt-ud-test.conllu). During the shared task, the test datasets for all languages

will be released only when the models are completed. The whole process is controlled by a

®http://universaldependencies.org/conll17/eval.zip (Accessed: 2018-10-31)

3.5 CoNLL 2017 Evaluation standard 62

system called TIRA” which ensures that all participants have a level playing field and none
of the participant gain access to the gold standards before the test phase.
A valid output CoNLL-U file must:

1. contain no cycles - a cycle is a cyclic graph where a node (word) is reachable from

itself.

2. have one root per sentence - every sentence must have one single root. If just one

sentence has multiple roots, the file will be considered as invalid.

3. have the correct number of columns - the output must follow the file format as detailed

in Section 2.6

4. not have the wrong indexing of the nodes - wrong indexing occurs when the order of

the words of the sentence is modified.

If during evaluation, one of these rules is not adhered to, the file will be considered
invalid, the processing halts and metrics are set to zero.

The first process to be performed by the script is to align the output from the parser to
the gold standard. The alignment is performed in a series of steps. A multi-word token is
a word which is composed by two or more than word tokens and hence it occupies more
than one word line. If there are no multi-words in the parser’s output, the token sequences
should share the same underlying text without considering spaces. The token sequences are

the offset boundaries of each token. This process is illustrated in Table 3.2.

Table 3.2 Sample sentence from UD Maltese treebank with offset boundaries.

Qaltlu li mhux vera li X- Xmajjar
0-5 7-8 10-13 15-18 20-21 23-24 26-32

kollha ghandhom memorji koroh
34-39 41-48 50-56 58-62 63

"http://www.tira.io/tasks/conll/#universal-dependency-learning (Accessed: 2018-10-31)

3.6 Conclusion 63

If multi-words are present, the multi-words from the parser’s output must be aligned to
the individual words of the gold standard. In this case, the alignment is performed using the
Longest Common Subsequence (LCS) algorithm. In LCS, the longest subsequence common
to all sequences must be found. This is different from the longest common substring problem.
Subsequences are not required to occupy consecutive positions with the original sequences
like the substrings.

After the alignment is complete and successful, the parser’s output and the gold standards

are attached and hence the script can compute the metrics. The three metrics used are:

1. Labelled Attachment Score is the standard evaluation metric for dependency parsing.
LAS represents the percentage of words that are assigned both the correct head and
dependency label. To calculate LAS, only the Universal Dependency Labels are con-
sidered, which should be located in column 4 as per CoNLL-U format and illustrated

in Table 2.4. Language specific dependency labels are ignored.

2. Unlabelled Attachment Score is the percentage of words that are assigned only the

correct head.

3. Weighted Labelled Attachment Score is similar to LAS but the dependency labels are
assigned a weight. The weights file is included with the CoNLLU 2017 evaluation

script. This metric should always be lower than LAS.

3.6 Conclusion

This chapter provided an in-depth analysis of the processes and algorithms which were
employed in developing the parser, associated datasets and tools. Following the development
and implementation of the parser, the next step is to perform a number of experiments to
gather results and evaluate the performance of the parser, which will be described in the

following chapter.

Chapter 4

Evaluation and Results

In this chapter we describe in detail the full evaluation process conducted with the aim to
benchmark the parser. All of the experiments devised are listed and documented to sustain the
necessity of each set of experiments. In total, there are twenty five experiments categorized
into five distinctive sets, with each set targeting a specific component of the parser. The results
are presented after each set of experiments conducted. The experiments were constructed
in a way that there is a natural progression of parser’s design decisions by varying just one

component.

4.1 Evaluation Procedure

The experiments were firstly constructed, ordered and split into five sets. The first set of
experiments concern the neural network Optimizer which is one of the basic components
of the neural network. The second set of experiments determine if there are any benefits
of using an external word embedding. The third, establish the contribution of bootstrapped
multi-source treebanks in the evaluation metrics, whilst the fourth set of experiments are
based on a different neural network architecture with the aim to achieve a ground truth for
the preferred architecture. The last set of experiments is aimed to provide metrics to compare

with parsers which participated in CoNLL 2017.

4.1 Evaluation Procedure 65

The hardware used for the evaluation process was provided by the University of Malta
and is detailed in Table 4.1. A virtual environment was provided on the server configured as
in Table 4.2. The experiments were performed consecutively accord to their identification
number. For each epoch performed, the model and validation results were stored. At the end
of the training phase for each experiment, the prediction process was performed to produce

the metrics as detailed in Section 3.3.

Table 4.1 GPU Server

CPU 2 x Intel Xeon E5-2640 with 8 cores (16 cores with hyperthreading)
RAM 64 GB DDR3 1600MHz
2 GB RAMdisk
GPU 2 x NVIDIA Tesla K20m
Storage 1 TB Harddisk
OS Ubuntu 14.04.5 LTS

Table 4.2 Software and frameworks

Python environment Python 3.5

GPU support nvidia CUDA 8.0
nvidia drivers for CUDA 8.0
libcupti-dev

Deeplearning framework PyTorch 0.3.1 with CUDA 8.0 support
Word embedding implementation fasttext
GloVe

It is important to note that the Optimizers provided by PyTorch require a number of
hyperparameters. These parameters and their relative default values are different for each
Optimizer and are specifically configured for the specific Optimizer. Some of these hyperpa-
rameter values were tweaked by performing a small number of experiments to try to minimise
the loss without overfitting the neural network. These experiments were not documented
because we believe that the task of locating the best hyperparameters is too time consuming

and would be out of scope for this work. For this reason, it was hence decided that for all

4.2 Evaluation metrics 66

experiments, the default hyperparameter values provided for the Optimizers by PyTorch were

used.

4.2 Evaluation metrics

The metrics used to evaluate the performance of this work are defined by CoNLL. These
metrics are calculated by the CoNLL 2017 evaluation script as detailed in Section3.5. The use
of CoNLL standard metrics enables comparison to the published CoNLL 2017 submissions.

The metrics used for evaluation are:

1. LABELLED ATTACHMENT SCORE (LAS) which is the de-facto standard evaluation
metric for dependency parsing. LAS is calculated as the percentage of words that are

assigned both the correct head and dependency label.

2. UNLABELLED ATTACHMENT SCORE (UAS) is determined as the percentage of words

that are assigned only the correct head.

3. WEIGHTED LABELLED ATTACHMENT SCORE (WEIGHTED LAS) is calculated like
LAS but each of the dependency labels are assigned a weight. The weights file is
included with the CoNLLU 2017 evaluation script. This metric should always score
lower than LAS.

4.3 Experiments

Table 4.3 details all the experiments conducted during this work. The fields outlining the

experiments are described as follows:
* ID is a consecutive integer value given to each experiment to be used as identification.
* TREEBANK is the annotated treebank used for the experiment.

* NEURAL ARCHITECTURE is the neural network architecture of the parser for the

specific experiment. Valid values are QRNN and bi-LSTM.

4.3 Experiments 67

* EXTERNAL EMBEDDING is the algorithm of the external word embedding used. When

no word embedding was used, this field was populated with ‘none’.

* OPTIMIZER is the neural network optimizer used for the specific experiment.

The experiments consist of a training phase of thirty epochs with the aim to acquire a
model. At the end of each epoch, a model is created and evaluated using the evaluation
treebank. From this evaluation, the three metrics; UAS, LAS and Weighted LAS are
determined. Therefore, for each epoch in each experiment, a model is created together
with the evaluation metrics. The prediction is always performed on the last model of the
experiment against the test treebank. At the end of the experiments, 750 models and 750

evaluation metric sets were acquired resulting in 25 prediction metric sets.

4.3 Experiments

Table 4.3 Experiments
ID Treebank Neural External Optimizer
Architecture Embedding
1 Maltese QRNN fasttext AdaDelta
2 Maltese QRNN fasttext AdaGrad
3 Maltese QRNN fasttext Adam
4 Maltese QRNN fasttext SparseAdam
5 Maltese QRNN fasttext Adamax
6 Maltese QRNN fasttext ASGD
7 Maltese QRNN fasttext SGD
8 Maltese QRNN fasttext Rprop
9 Maltese QRNN fasttext Adam
10 Maltese QRNN GloVe Adam
11 Maltese QRNN None Adam
12 Maltese & Romance QRNN None Adam
13 Maltese, Romance & Arabic QRNN None Adam
14 Maltese, Romance & Hebrew QRNN None Adam
15 Maltese & Romance QRNN fasttext Adam
16 Maltese, Romance & Arabic QRNN fasttext Adam
17 Maltese, Romance & Hebrew QRNN fasttext Adam
18 Maltese bi-LSTM fasttext Adam
19 Maltese bi-LSTM None Adam
20 Maltese & Romance bi-LSTM fasttext Adam
21 Maltese & Romance bi-LSTM None Adam
22 English QRNN fasttext Adam
23 Spanish QRNN fasttext Adam
24 Uyghur QRNN fasttext Adam

25 Kazakh QRNN fasttext Adam

4.4 Neural Network Optimization algorithms evaluation 69

4.4 Neural Network Optimization algorithms evaluation

The experiments detailed in Table 4.4 are intended to determine the best neural network
optimizer for the implemented parser. All components of the parser were kept constant
except for the optimizer. The best optimizer should give a loss which is closest to zero and
the highest evaluation metrics. Tables 4.6 and 4.7 detail the loss of each optimizer during
each epoch. The loss of each epoch is hence outlined in Figures 4.6 and 4.7. Table 4.5

illustrates the predicted metrics for each experiment using the specific optimizer.

Table 4.4 Neural Network Optimization algorithms experiments

ID Treebank Neural External Optimizer
Architecture Embedding
1 Maltese QRNN None AdaDelta
2 Maltese QRNN None AdaGrad
3 Maltese QRNN None Adam
4 Maltese QRNN None SparseAdam
5 Maltese QRNN None Adamax
6 Maltese QRNN None ASGD
7 Maltese QRNN None SGD
8 Maltese QRNN None Rprop

Table 4.5 Prediction metrics using different optimizers

ID Optimizer Prediction Metrics
UAS LAS Weighted LAS

1 AdaDelta 78.09 73.03 67.05
2 AdaGrad 73.77 63.01 51.92
3 Adam 79.02 73.90 68.08
4 SparseAdam 74.39 69.46 63.49
5 Adamax 79.14 74.16 68.49
6 ASGD 7798 73.05 67.15
7 SGD 12.49 01.84 01.85
8 Rprop 77.92 72.68 67.10

4.4 Neural Network Optimization algorithms evaluation

70

Table 4.6 Loss of Optimization algorithms during training

Epoch 1. AdaDelta 2. AdaGrad 3. Adam 4. SparseAdam

1 22.14
2 22.13
3 20.32
4 16.34
5 13.63
6 11.68
7 10.41
8 9.33
9 8.46
10 7.77
11 7.07
12 6.53
13 5.95
14 5.51
15 5.07
16 4.71
17 4.31
18 3.95
19 3.60
20 3.32
21 2.98
22 2.76
23 2.52
24 2.33
25 2.12
26 1.97
27 1.79
28 1.61
29 1.51
30 1.33

22.12
21.50
18.62
15.73
13.24
11.51
10.28
8.93
7.90
6.94
6.20
5.55
491
4.39
4.00
3.69
3.39
3.07
2.78
2.60
2.45
2.29
2.13
2.01
1.89
1.85
1.62
1.51
1.35
1.20

19.41
10.54
7.78
6.08
4.73
3.72
2.93
2.27
1.88
1.58
1.39
1.24
0.93
0.86
0.85
0.68
0.67
0.64
0.61
0.57
0.55
0.55
0.43
0.46
0.48
0.46
0.39
0.39
0.36
0.40

22.14
22.14
22.14
22.14
22.14
22.14
22.14
22.14
22.13
22.11
22.11
21.88
21.66
21.26
18.31
14.82
12.20
10.46
9.01
7.91
6.85
6.00
5.29
4.72
4.14
3.56
3.04
2.67
2.35
2.12

4.4 Neural Network Optimization algorithms evaluation

71

Table 4.7 Loss of Optimization algorithms during training

Epoch 5. Adamax 6. ASGD

7. SGD 8. RMSProp

1 22.13
2 17.62
3 12.00
4 9.56
5 8.03
6 6.80
7 5.85
8 5.02
9 4.19
10 3.58
11 3.05
12 2.57
13 2.12
14 1.70
15 1.51
16 1.36
17 1.11
18 1.04
19 0.81
20 0.81
21 0.72
22 0.66
23 0.53
24 0.61
25 0.52
26 0.46
27 0.46
28 0.40
29 0.38
30 0.35

22.14
22.14
22.14
22.14
22.14
21.43
15.27
11.47
9.33
7.94
6.91
5.92
5.20
4.43
4.10
3.68
3.10
2.90
2.69
2.35
2.05
2.08
1.97
1.95
1.70
1.54
1.56
1.46
1.39
1.35

22.11
22.14
22.13
22.13
22.14
22.13
22.13
22.13
22.14
22.14
22.14
22.13
22.14
22.14
22.14
22.13
22.14
22.14
22.13
22.14
22.14
22.14
22.14
22.14
22.14
22.14
22.14
22.14
22.14
22.14

22.14
22.14
22.14
22.14
21.95
16.27
11.87
9.83
8.28
7.04
6.36
5.69
5.12
4.40
3.93
3.45
3.09
291
2.57
2.21
2.24
1.97
1.82
1.67
1.66
1.58
1.53
1.53
1.37
1.29

4.5 External Word Embeddings evaluation 72

4.5 External Word Embeddings evaluation

As documented in Section 2.4.2, there are three main word embedding algorithms; word2vec,
fasttext and GloVe. This section reports the experiments using fasttext, GloVe and no external
embeddings. Word2vec was not included because of time considerations and most probably
this algorithm would not outperform the others because it is the legacy algorithm on which
fasttext and GloVe were built upon. The aim of these experiments is to find which word
embedding algorithm gives the highest contribution to the evaluation metrics.

Table 4.9 illustrates the metrics which resulted from the three experiments. Figures 4.1, 4.2

and 4.3 show the progression of these experiments at each epoch for the prediction metrics.

Table 4.8 External Word Embeddings experiments

ID Treebank Neural External Optimizer
Architecture Embedding

9 Maltese QRNN fasttext Adam

10 Maltese QRNN GloVe Adam

11 Maltese QRNN None Adam

Table 4.9 Prediction metrics with different external Word Embeddings

ID External Word Embeddings Prediction Metrics

UAS LAS Weighted LAS
9 fasttext 80.68 76.27 71.02
10 GloVe 80.41 75.73 70.45

11 None 80.65 74.92 68.74

4.5 External Word Embeddings evaluation

73

Metric Score

102

100

98

96

94

92

90

88

86

84

82

80

78

76

74

72

70

Figure 4.1 Evaluation using fasttext external word embeddings ID: 9

— UAS
—LAS
W.LAS

| S A A S R N
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Epochs

4.5 External Word Embeddings evaluation 74

Metric Score

102

100

98

96

94

92

90

88

86

84

82

80

78

76

74

72

70

68

Figure 4.2 Evaluation using GloVe external word embeddings ID: 10

— UAS h
——LAS
W.LAS | |

8

10 12 14 16 18 20 22 24 26 28 30 32
Epochs

4.5 External Word Embeddings evaluation

75

Metric Score

102

100

98

96

94

92

90

88

86

84

82

80

78

76

74

72

70

Figure 4.3 Evaluation using no external word embeddings ID: 11

— UAS
——LAS
W.LAS

8

10 12 14 16 18 20 22 24 26 28 30 32

Epochs

4.6 Bootstrapped Multi-source Treebank evaluation 76

4.6 Bootstrapped Multi-source Treebank evaluation

This section details the experiments performed using the different bootstrapped multi-sourced
treebanks. The aim of this phase of experiments is to determine whether bootstrapped multi-
sourced treebanks perform better than the single source treebank. Furthermore, some of
the experiments in this set were performed without an external word embedding in order to
extended the previous set and determine the actual contribution of the word embedding on
the evaluation metrics.

Table 4.10 lists these experiments whilst Table 4.11 shows their respective results.
Table 4.12 shows the average runtime performance per epoch of each experiment. Fig-
ures 4.4, 4.5 and 4.6 show the progression of these experiments at each epoch for each
evaluation metric.

Table 4.10 Bootstrapped Multi-source Treebanks experiments

ID Treebank Neural External Optimizer
Architecture Embedding
12 Maltese & Romance QRNN None Adam
13 Maltese, Romance & Arabic QRNN None Adam
14 Maltese, Romance & Hebrew QRNN None Adam
15 Maltese & Romance QRNN fasttext Adam
16 Maltese, Romance & Arabic QRNN fasttext Adam
17 Maltese, Romance & Hebrew QRNN fasttext Adam

Table 4.11 Evaluation metrics using Bootstrapped Multi-source Treebanks

ID Treebank External Evaluation Metrics
Embedding
UAS LAS Weighted LAS

12 Maltese & Romance None 88.49 85.07 81.85
13 Maltese, Romance & Arabic None 87.97 84.40 81.07
14 Maltese, Romance & Hebrew None 87.94 84.21 80.70
15 Maltese & Romance fasttext 89.77 86.33 83.17
16 Maltese, Romance & Arabic fasttext 88.86 85.45 81.81

17 Maltese, Romance & Hebrew fasttext 88.61 85.21 82.10

4.6 Bootstrapped Multi-source Treebank evaluation 77

UAS Score

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

Figure 4.4 UAS during training of models for experiments ID: 12 to 17

—— 12. Maltese & Romance =

—— 13. Maltese, Romance & Arabic
14. Maltese, Romance & Hebrew |
15. Maltese & Romance w. fasttext

—— 16. Maltese, Romance & Arabic w. fasttext
17. Maltese, Romance & Hebrew w. fasttext

8

10 12 14 16 18 20 22 24 26 28 30 32
Epochs

4.6 Bootstrapped Multi-source Treebank evaluation 78

LAS Score

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78

Figure 4.5 LAS during training of models for experiments ID: 12 to 17

—— 12. Maltese & Romance .

—— 13. Maltese, Romance & Arabic
14. Maltese, Romance & Hebrew *
15. Maltese & Romance w. fasttext

—— 16. Maltese, Romance & Arabic w. fasttext
17. Maltese, Romance & Hebrew w. fasttext

8

10 12 14 16 18 20 22 24 26 28 30 32
Epochs

4.6 Bootstrapped Multi-source Treebank evaluation 79

Figure 4.6 Weighted LAS during training of models for experiments ID: 12 to 17

100 | 8

98

-

9% |

94 |

92 | | :

Weighted LAS Score

80

78 |-

—— 12. Maltese & Romance
—— 13. Maltese, Romance & Arabic -
14. Maltese, Romance & Hebrew
15. Maltese & Romance w. fasttext
4\ —— 16. Maltese, Romance & Arabic w. fasttext | |
17. Maltese, Romance & Hebrew w. fasttext

76 |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Epochs

4.7 Neural Network Architecture evaluation 80

Table 4.12 Performance using Bootstrapped Multi-source Treebank

ID Treebank Neural Elapsed time per Epoch
Architecture in minutes
12 Maltese & Romance QRNN 35
13 Maltese, Romance & Arabic QRNN 37
14 Maltese, Romance & Hebrew QRNN 39
15 Maltese & Romance QRNN 40
16 Maltese, Romance & Arabic QRNN 38
17 Maltese, Romance & Hebrew QRNN 40

4.7 Neural Network Architecture evaluation

This section details the experiments performed using bi-LSTM as neural network architecture

of the parser. This set of experiments was required in order to compare the performance of

QRNN with bi-LSTM. Table 4.13 lists these experiments which are the same as the previous

set but using bi-LSTM as neural network. Table 4.14 shows the results obtained from these

experiments whilst Table 4.15 shows the average runtime performance per epoch of each

experiment.
Table 4.13 Neural Network Architecture experiments
ID Treebank Neural Architecture External Embedding Optimizer
18 Maltese bi-LSTM fasttext Adam
19 Maltese bi-LSTM None Adam
20 Maltese & Romance bi-LSTM fasttext Adam
21 Maltese & Romance bi-LSTM None Adam

4.7 Neural Network Architecture evaluation 81

Figure 4.7 Training of model for experiment ID: 20

100

9 |

94 |-

90 |

88|

Metric Score

84 |

82

—— UAS
——LAS
W.LAS

76 |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Epochs

4.8 Alternate Languages evaluation 82

Table 4.14 Evaluation metrics using different Neural Architecture

ID Treebank Neural Architecture Evaluation Metrics
UAS LAS Weighted LAS
18 Maltese bi-LSTM 81.05 76.72 71.41
19 Maltese bi-LSTM 80.98 75.28 68.96
20 Maltese & Romance bi-LSTM 89.89 86.51 83.38
21 Maltese & Romance bi-LSTM 88.70 85.31 82.12

Table 4.15 Runtime performance using bi-LSTM Neural Architecture

ID Treebank Neural Architecture Elapsed time per Epoch
in minutes

18 Maltese bi-LSTM 120

19 Maltese bi-LSTM 120

20 Maltese & Romance bi-LSTM 122

21 Maltese & Romance bi-LSTM 121

4.8 Alternate Languages evaluation

This set of experiments gauges the performance of this parser with other parsing systems
which participated in CoNLL 2017. Since the Maltese treebank was not used in the shared
task, two well-resourced languages; English and Spanish and two low resourced languages;

Uyghur and Kazakh, were used for the experiments.

Table 4.16 Alternate Languages experiments

ID Treebank Neural Architecture External Embedding Optimizer

22 English QRNN fasttext Adam
23 Spanish QRNN fasttext Adam
24 Uyghur QRNN fasttext Adam

25 Kazakh QRNN fasttext Adam

4.9 Summary of Experiments and Results 83

Table 4.17 Evaluation metrics for Alternate Languages

ID Alternate Languages Evaluation Metrics

UAS LAS Weighted LAS
22 English 87.12 84.58 81.63
23 Spanish 91.99 89.23 84.28
24 Uyghur 73.10 56.13 47.25
25 Kazakh 53.95 3452 27.22

4.9 Summary of Experiments and Results

This section details the overall experiments and results obtained in this work for easier
reference and lookup. Table 4.18 summarises all the experiments categorised in the different
sections together with the respective results. The best performing result in each category is
highlighted. Shortened descriptions of the treebanks are used in order have a better visual
presentation of the table. Detailed descriptions of the treebanks are provided in Table 4.19.
The first set of experiments determined which neural network optimizer performed best
for this task. SparseAdam achieved the best results, however, Adam was used for all other
experiments because convergence to zero error was achieved at a much earlier stage and the
difference in the results when compared to SparseAdam is negligible. The second set of
experiments showed that fasttext offers the best word embeddings algorithm for our parser.
The aim of the third set of experiments was to determine if multi-sourced treebanks offer
better performance over the single-sourced Maltese treebank. The Maltese and Romance
languages multi-sourced treebank achieved the best metrics amongst all experiments. The
forth set of experiments was performed using a bi-LSTM neural architecture in order to
contrast the results achieved by the novel QRNN architecture. The bi-LSTM architecture
achieved the better results when compared to the same experiment using QRNN, albeit with
a slight difference of 0.12% in performance. The last set of experiments was to determine

the performance of our parser when compared to the published CoNLL 2017 submissions.

4.9 Summary of Experiments and Results 84
Table 4.18 Experiments and Results
ID Treebank Neural External Optimizer Prediction
Arch. Embedding Metrics
UAS LAS W.LAS

1 Maltese QRNN fasttext AdaDelta 78.09 73.03 67.05
2 Maltese QRNN fasttext AdaGrad 73.77 63.01 5192
3 Maltese QRNN fasttext Adam 79.02 7390 68.08
4 Maltese QRNN fasttext SparseAdam 74.39 69.46 63.49
5 Maltese QRNN fasttext Adamax 79.14 74.16 68.49
6 Maltese QRNN fasttext ASGD 7798 73.05 67.15
7 Maltese QRNN fasttext SGD 1249 01.84 01.85
8 Maltese QRNN fasttext Rprop 7792 72.68 67.10
9 Maltese QRNN fasttext Adam 80.68 76.27 71.02
10 Maltese QRNN GloVe Adam 80.41 75.73 70.45
11 Maltese QRNN None Adam 80.65 74.92 68.74
12 Maltese, R QRNN None Adam 88.49 85.07 81.85
13 Maltese, R, A QRNN None Adam 87.97 84.40 81.07
14 Maltese, R, H QRNN None Adam 87.94 84.21 80.70
15 Maltese, R QRNN fasttext Adam 89.77 86.33 83.17
16 Maltese, R, A QRNN fasttext Adam 88.86 85.45 81.81
17 Maltese, R, H QRNN fasttext Adam 88.61 85.21 82.10
18 Maltese bi-LSTM fasttext Adam 81.05 76.72 71.41
19 Maltese bi-LSTM None Adam 80.98 75.28 68.96
20 Maltese, R bi-LSTM fasttext Adam 89.89 86.51 83.38
21 Maltese, R bi-LSTM None Adam 88.70 85.31 82.12
22 English QRNN fasttext Adam 87.12 84.58 81.63
23 Spanish QRNN fasttext Adam 91.99 89.23 84.28
24 Uyghur QRNN fasttext Adam 73.10 56.13 47.25
25 Kazakh QRNN fasttext Adam 53.95 3452 27.22

Table 4.19 Treebank reference

Reference Treebank
Maltese, R Maltese & Romance
Maltese, R, A Maltese, Romance & Arabic

Maltese, R, H

Maltese, Romance & Hebrew

4.10 Conclusion 85

4.10 Conclusion

In this chapter we presented the evaluation procedure which was utilised to evaluate the
parser. We reviewed and described all the experiments which were conducted and the results
of each experiment were duly reported. In the next chapter the results will be compared and

contrasted and a discussion will take placed with the aim to critically appraise this work.

Chapter 5

Discussion

Following the experiments and acquired results, in this chapter we compare and contrast
these results and critically discuss their relevance and contribution of this work. We will
determine if the aims and objectives of this dissertation were achieved and highlight any

limitations of the implemented parser.

5.1 Neural Network Optimization algorithms

All of the optimizers used for this work form part of the PyTorch framework. The hyper-
parameters of all optimization algorithms were kept with their default configured values as
supplied by PyTorch. As discussed in Section 2.4.1, the aim of a neural network optimization
algorithm is to minimise the error function effectively and efficiently.

As demonstrated in Figure 5.1, all of the algorithms converge except for SGD. At epoch
thirty, the most effective optimizer is Adamax with a loss of 0.40% and the least effective
is SparseAdam with 2.12%. The difference between Adamax and Adam, the second most
effective optimizer, is of 0.05%. Since, the difference is very low, the efficiency of the

optimizer had to be considered.

5.1 Neural Network Optimization algorithms 87

Figure 5.1 Optimizer performance through training phase for thirty epochs

247 —— AdaDelta |
—— AdaGrad
| Adam |
—— SparseAdam
—— Adamax
ASGD
201 SGD)
—— Rprop
18 -
16 | R
14 + -
. 12 R
8
.
10 R
8 [|
6 [|
4 i
2 [|
0 [|

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Epochs

5.2 External Word Embeddings 88

A threshold of 1.00% was considered where the graphs will start converging to a nearly
straight line approaching zero. The Adam optimizer hits this threshold at epoch 13 whilst
Adamax at epoch 19. This is a considerable difference when the computing and runtime
resources are taken into account. It can be determined that Adam is the most efficient and
ideal optimizer for this work. The fact that Adam converges more efficiently will be discussed
in future work as detailed in Section 6.2.

Figure 5.2 compares the predicted metrics from the use of different optimizers. These
results do not exclude the possibility that the other optimizers perform well with other
treebanks. Adam also performed well during the last batch of experiments where the English,
Spanish, Uyghur and Kazakh treebanks were used. Due to the limited time and resources,
experiments for the other optimizers were not performed using these treebanks.

We can conclude that Adam performed particularly well for the implemented parser using
a number of different treebanks. We cannot exclude that other optimizers outperform Adam

when using treebanks other than the Maltese treebank.

5.2 External Word Embeddings

The word embeddings algorithms used for this work are fasttext and GloVe. The implemen-
tations used for both algorithms are from their respective authors in order to make sure that
the implementations follow their published research. In both cases, embeddings were created
in 100 dimensions based on the same MLRS source text.

Figure 5.3 gives a clear overview of the predicted metrics from the use of the two
external word embeddings and without any use. In LAS, the most important metric, fasttext
outperforms GloVe by only 0.54%. In UAS, the two algorithms are even closer with fasttext
surpassing GloVe by only 0.27%. If these values are considered in isolation, the performance
of the algorithms is approximately the same. The results do not give any practical situation
when to use a specific word embedding over the other. Such minimal differences can be

beneficial during academic research or a shared task like CoNLL’s Multilingual Parsing from

5.2 External Word Embeddings

89

Figure 5.2 Prediction metrics using different optimizers

70 +

60

40

Metric score

O,

T T T T
AdaDelta AdaGrad Adam SparseAdam Adamax ASGD

IIUuASIILAS TW.LAS

T
SGD

Rprop

Raw Text to Universal Dependencies, where such small variances can affect the placing of a

participant.

The most interesting outcome of these tests is the performance of the parser when

no external embeddings were used. In UAS, without using external word embeddings,

better scores are achieved rather than using GloVe. Furthermore, when using fasttext word

embeddings, it will only result in 0.03% better performance. From these results, it can

be stated that for the UAS metric, when using a GloVe embedding, performance actually

5.2 External Word Embeddings 90

degrades. This phenomenon was observed by Kiperwasser and Goldberg [31], but no reason
was given for this occurrence. The authors state, "Interestingly, when adding external word
embeddings the accuracy of the graph-based parser degrades. We are not sure why this
happens, and leave the exploration of effective semi-supervised parsing with the graph-based
model for future work" [31]. This was the only instance when the authors refer to this issue.
It also important to note that Dozat and Manning [17] do not discuss this observation and
we do not know if it was encountered or not. Dozat and Manning [17] based their work on
the graph-parser of Kiperwasser and Goldberg [31]. This phenomenon cannot be further
analysed in this work because it requires more expertise and specific research as proposed

by Kiperwasser and Goldberg.

5.2 External Word Embeddings 91

Figure 5.3 Prediction metrics using different external word embeddings

80.68 0.41 80.65
o 75.73 |
§ 74.92
.8
= |
=

fasttext GloVe None

IiuAsSIILAS TW.LAS

As a result of the generated word embeddings, the MLRS source dataset was plotted on
three dimensional scatter-plot using Tensorboard, the interactive dashboard of Tensorflow [1].
This result can be observed in Figure 5.4 in a cloud with dense and less dense points indicating

the proximity of the Maltese words to each other.

5.3 Bootstrapped Multi-source Treebank 92

Figure 5.4 Word embeddings plotted on three dimensional scatter-plot

DATA 1) B | Potx 100000 | Dimenaicn 100

MLRS_100d - @ - . ¥ bl -

% Sphereize data @

Load data

BOOKMARKS (0) @ ~

5.3 Bootstrapped Multi-source Treebank

Using bootstrapped multi-source treebanks, better performance was obtained in all experi-
ments over the single-source, Maltese language treebank. One of the main resources of this
study is the work of Tiedemann and van der Plas [58] which revealed the languages which
have the greatest influence on the Maltese language for the dependency parsing task. Private
communication with Cépld suggests that Arabic and Hebrew should also favourably impact
the metrics.

Figure 5.5 demonstrates that all the prediction metrics attained from the bootstrapped
multi-source treebanks outperform the single-source Maltese treebank. The most important
metrics of this work are those of experiment with ID 15 where the Maltese and Romance
treebank was used together with fasttext external word embeddings. Comparing these metrics
with experiment ID 9, the multi-source treebanks results increase performance of 9.09% for
LAS, 10.06% for UAS and 12.15% from Weighted LAS. This comparison is demonstrated
in Figure 5.2.

These results were also compared to those obtained by Tiedemann and van der Plas [58]

during two different experiments in order to compare the best predicted metrics. This parser

5.3 Bootstrapped Multi-source Treebank 93

significantly surpasses the results obtained by Tiedemann and van der Plas as demonstrated
in Table 5.3.

Another significant result is that the use of Arabic or Hebrew did not improve performance
but actually lowered the metrics, albeit by a small percentage. This is very interesting
since according to Céplo the metrics should have actually improve over using the Maltese
and Romance treebank. In the work by Tiedemann and van der Plas [58], this fact was
also observed. In their last batch of experiments, the experiment which made use of all
European languages performed less than that which made use only of the Romance languages.
Tiedemann and van der Plas state that "This suggests that adding lexical information without
contextual disambiguation provides only little help but coverage issues may also be good
reason for the failure of this approach" [58]. Cépld and van der Plas were provided with
these results for feedback. As a reason Céplo suggested that typology is to blame for
degraded results. The Arabic of Arabic UD treebank is Modern Standard, so basically
the same grammar as that of Sibawayh from circa 750 AD and thus it is a completely
different language typologically. Hebrew may share a few similarities with Maltese, but it
has been argued that in its syntax, it’s more Slavic and Germanic than Semitic. Sibawayh is a
famous grammarian of the Arabic language and is credited with writing the first grammar of
the language. Tiedemann and van der Plas [58] confirmed that during their work they did
encounter problems with Arabic and they had to leave the language out of further experiments.
At the time of their work, van der Plas also contacted other linguists who confirmed that
the word order of the Arabic UD treebank is very different for modern standard Arabic and
Maltese.

It also important to keep in context how the model performed during training. As already
stated, for every experiment, the model attained during the last epoch was used for prediction.
Referring to Figure 4.5, the best performing model at the end of the last epoch is actually
achieved during experiment ID 16, when the parser is used with the Maltese, Romance and
Arabic treebank. Interestingly, this model did not outperform the model achieved when using
Maltese and Romance treebank for the prediction metrics. We are nearly certain that there

is a correlation with the previous finding. The most plausible reason is that the addition of

5.3 Bootstrapped Multi-source Treebank

94

the Arabic treebank to the Maltese and Romance multi-source treebank did not affect the

performance of the parser since the evaluation and predicted metrics of the two experiments

are very close.

We can determine that multi-source treebanks performed exceptionally better when

comparing to the work of Tiedemann and van der Plas [58]. Considering only the most

important metric, LAS, an increase of 10.06% is a significant improvement over the single-

source Maltese only treebank. There are a number of questions which this set of experiments

pose in relation with the use of Arabic and the performance of certain models. Analysing the

possibilities which can offer valid answers is out of scope of this project.

Table 5.1 Experiments reference for Figure 5.5

ID Treebank

Neural

External
Architecture Embedding

9 Maltese

QRNN

12 Maltese & Romance QRNN
13 Maltese, Romance & Arabic QRNN
14 Maltese, Romance & Hebrew QRNN
15 Maltese & Romance QRNN
16 Maltese, Romance & Arabic QRNN
17 Maltese, Romance & Hebrew QRNN

fasttext
None
None
None
fasttext
fasttext
fasttext

Table 5.2 Comparing results from single-source and multi-source treebanks

ID Treebank

Neural External
Architecture Embedding

Prediction Metrics

UAS LAS Weighted LAS
9 Maltese QRNN fasttext 80.68 76.27 71.02
15 Maltese & Romance QRNN fasttext 89.77 86.33 83.17
15 Performance +09.09 +10.06 +12.15

5.3 Bootstrapped Multi-source Treebank

95

Table 5.3 Comparing results from multi-source treebanks to Tiedemann and van der Plas [58]

Metric score

ID Author

Prediction Metrics

15 Zammit
Tiedemann and van der Plas 71.80 63.03

UAS LAS Weighted LAS

89.77 86.33

83.17

15 Performance

+17.97 +23.30

Figure 5.5 Prediction metrics using single-source and multi-source treebanks

90

88

86

84

82

80

78

76

74

72

70

80.68

76.27

88.49

89.77

88.86 g8.61

‘ 85.07
12

87.97 87.94
86.33
84.4 84.21
13 14 15

IHUASIILAS TW.LAS

‘ 85.45 ‘ 8521
16 17

5.4 Neural Network Architecture 96

5.4 Neural Network Architecture

One of the most important aspects of the work is the use of QRNN as the neural network
architecture of the parser. QRNN is a novel architecture which was not ever used for the task
of dependency parsing. On the other hand, bi-LSTM is the traditional neural architecture for
all tasks involving NLP and is the natural choice for dependency parsing. Several published
works confirm that bi-LSTM performs consistently and reliably.

Table 5.4 compares the two best performing experiments for QRNN and bi-LSTM. In
all metrics, bi-LSTM performed better with a margin of 0.18% for LAS. Although in these
experiments, bi-LSTM is superior by a very small degree, it is important to note that bi-
LSTM is bi-directional and hence more context is given to the input sentence. Currently,
the only available implementation for QRNN available' is unidirectional. It is not possible
to predict the increase of performance of the parser with the use of a bi-directional QRNN.
However, given that currently the margin difference is minimal, a bi-directional QRNN
should outperform bi-LSTM.

According to Bradbury et al. [9], one of the most important contributions of QRNN is
the runtime performance. Comparing the runtime performance results as demonstrated in
Figure 5.5, QRNN executes three times faster than bi-LSTM.

We can determine that QRNN is a viable alternative to bi-LSTM. The runtime perfor-
mance of QRNN greatly outperforms bi-LSTM. As regarding to prediction metrics, QRNN
is at par to bi-LSTM and the release of a bi-directional QRNN as promised by Bradbury et al.
should outperform bi-LSTM.

'https://github.com/salesforce/pytorch-qrnn (Accessed: 2018-10-31)

5.5 Alternate Languages 97

Table 5.4 Prediction metrics using QRNN and bi-LSTM neural architectures

ID Treebank Neural External Prediction Metrics
Architecture Embedding

UAS LAS Weighted LAS

20 Maltese & Romance bi-LSTM fasttext 89.89 86.51 83.38
15 Maltese & Romance QRNN fasttext 89.77 86.33 83.17
Performance +00.12 +00.18 +00.21

Table 5.5 Runtime performance of QRNN and bi-LSTM neural architectures

ID Treebank Neural External Elapsed time per Epoch

Architecture Embedding in minutes
20 Maltese & Romance bi-LSTM fasttext 122
15 Maltese & Romance QRNN fasttext 40

5.5 Alternate Languages

The objective of this set of experiments is to compare the predicted metrics from this parser to
metrics from the proceedings of CoNLL 2017 [67] and two participants; Dozat et al. [18] and
Shi et al. [54]. Two well-resourced languages; English and Spanish and two low-resourced
Uyghur and Kazakh were used for the experiments. This exercise should gauge how well
the parser performs when compared to other parsers. Dozat et al. [18] placed first overall
and achieved the best scores for the well-resourced languages. Shi et al. [54] placed second
overall and achieved the best scores for the low-resourced languages. In the proceedings, the
Weighted LAS was not reported and hence during comparison this metric was omitted.

Tables 5.6 to 5.9 compares the predicted metrics for the four languages. For the English
language, this parser surpasses Dozat et al. [18] by approximately 2.35% on each metric. The
results for the Spanish language are similarly positive with approximately 2.25% additional
performance.

The performance of the parser on the two low-resourced treebanks is superior. For the

Uyghur language, this work registered approximately 12.50% performance improvement

5.5 Alternate Languages 98

across all three metrics when compared to Shi et al. [54]. For the Kazakh, the improvement
was nearly of 9.00% for each metric when comparing again to Shi et al. [54]. Kazakh is the
language with the smallest UD treebank [67]. These observations are illustrated in Figure 5.6.

These comparatives establish that the parser performs substantially well when compared
to other parsers which participated in CoNLL 2017. We attribute this performance to the
use of PyTorch as the deep learning framework with its Autograd and Dynamic Networks
features and the choice of Adam as the neural network optimizer. From our knowledge,
PyTorch was not used by any of the top participants whose choice was Tensorflow [1] or
Dynet?. It is important note that there were a number of participants who were affected by an
issue in Dynet which caused to produce suboptimal metrics when the training and prediction
machines are different [67]. However, neither Dozat et al. [18] or Shi et al. [54] report this
issue. This set of experiments demonstrate that the choices we performed through this work

we the most appropriate and offered the best performance.

Table 5.6 Predicted metrics for English Language

ID Author Prediction Metrics
UAS LAS Weighted LAS
18 Zammit 87.12 84.58 81.63
Dozat et al. 84.74 82.23 78.99
Performance +02.38 +02.35 +02.64

Table 5.7 Predicted metrics for Spanish Language

ID Author Prediction Metrics
UAS LAS Weighted LAS
19 Zammit 91.99 89.23 84.28
Dozat et al. 90.01 87.29 82.08
Performance +01.98 +01.94 +02.20

Zhttps://github.com/clab/dynet (Accessed: 2018-10-31)

5.6 Contributions 99

Table 5.8 Predicted metrics for Uyghur Language

ID Author Prediction Metrics
UAS LAS Weighted LAS
20 Zammit 73.10 56.13 47.25
Shi et al. 60.57 43.51

Performance +12.53 +12.62

Table 5.9 Predicted metrics for Kazakh Language

ID Author Prediction Metrics
UAS LAS Weighted LAS
21 Zammit 53.95 34.52 27.22
Shi et al. 4425 2529

Performance +09.70 +09.23

5.6 Contributions

This work investigates the computational parsing of the Maltese language using novel
machine learning techniques and the latest Deep Learning technologies. The current state-of-
the-art methodologies and architectures were researched and reviewed and proposed a novel
approach to dependency parsing with the aim to contribute to the Maltese computational
resources and NLP.

This work proposed, designed and implemented the first dependency parser for the
Maltese language. To our knowledge, there are no dependency parsers for Maltese and
this is one of the main contributions of this work to Maltese, which is computationally
low-resourced.

Furthermore, the Maltese language has also attained a corpus of embedded words based
on MLRS, which can be used for further research. The word embeddings were mapped
and visualised on a three-dimensional scatter-plot using Tensorboard. Further analysis and

research can also be performed directly from Tensorboard on the Maltese word embeddings.

5.6 Contributions 100

Figure 5.6 Prediction for LAS metric using alternate languages

89.23
0 87.29 i
84.58
)
S
8 |
o 56.13
5
b= |
34.52
T T =
English Spanish Uyghur Kazakh

l1Zammitl1Dozat et al.” ¥ Shi et al.

This work also explored the possibility of using bootstrapped multi-source treebank
to enhance the performance of the parser. The solution proposed by Shi et al. [54] is a
long complicated process which requires several iterations of pre-processing to achieve the
necessary datasets. Our approach of merging different UD treebanks is simple to accomplish
and uses already available datasets. This technique increased performance by 10% on the

LAS metric compared to the single-source treebank.

5.7 Limitations 101

As confirmed by the results detailed in Table 4.17, the implemented dependency parser
is capable to perform on any language based on a trained model. Our parsing algorithm is
executed using a Quasi-Recurrent Neural Network, a novel deep neural network architecture.
To our knowledge, this is the first time and the only published work that QRNN is used for
the task of dependency parsing. The comprehensive results in Tables 5.4 and 5.5 confirm
that QRNN is a viable alternative to the traditional bi-LSTM, offering superior runtime
performance and at par predictive metrics.

The composition of these techniques and technologies gave our parser a performance
which surpassed other parsers which participated in CoNLL 2017 as demonstrated in Ta-
bles 5.6 to 5.9. Comparing the results for the Maltese language to that of Tiedemann and
van der Plas [58], our parser surpassed their best LAS metric by approximately 23%.

Currently, this work can be applied and used for upcoming CoNLL shared tasks. Fur-
thermore, this work proved that there exist alternatives to the standard neural network
architectures. In our case, we proved that QRNN is a possibility. The parser can also be used
as a template to explore the possibility of using more simplified data sources, especially for
low-resourced languages, which offer a higher metrics performance. The results from the

use of bootstrapped multi-source treebanks confirmed the validity of such process.

5.7 Limitations

From a technical perspective, one of the main limitations of this work is that currently there
is no bidirectional implementation of QRNN. A bidirectional QRNN would receive more
context from the input sentence, and therefore, theoretically, should achieve better results. Of
course, it would be essential to run experiments with similar settings to measure and compare
the actual performance. According to Bradbury et al. [9] there four modifications required to
the QRNN implementation to achieve the bidirectional feature; one related to the CUDA?
kernel, one to PyTorch and two related to the QRNN implementation. The modification of

the CUDA kernel is the most difficult task out of the four modifications®.

https://docs.nvidia.com/cuda (Accessed: 2018-10-31)
“https://github.com/salesforce/pytorch-qrnn (Accessed: 2018-10-31)

5.8 Conclusion 102

Another limitation directly related to the parser is the training phase to construct the
model. In the current form, the parser receives a parameter on how many epochs must be
performed for the training phase. For each epoch, a model and an evaluation are performed.
This process has two main disadvantages; the first is that we cannot know which model,
during all epochs, was evaluated with the best metrics if we do not check manually the results
of evaluations performed. The second disadvantage is closely related to the first; the training
phase will continue until all epochs terminate. Currently, we cannot deduct if the best model
was achieved and hence concluded the training phase successfully.

For all of the experiments, we performed thirty epochs and used the model created during
the last epoch. As it can be observed in Figure 4.5 this choice was not always the best option.
Furthermore, several epochs were performed when there was no need, wasting time and
resources.

The final limitation of this work is the discovery of the languages which should compose
the bootstrapped multi-source treebank. For the Maltese multi-source treebank, the work
of Tiedemann and van der Plas [58] was used by observing which languages achieved the
best metrics. If this process is to be used on another language other than Maltese, there

should be a similar study beforehand.

5.8 Conclusion

In this chapter we compared, contrasted and discussed the results acquired from the experi-
ments. The findings and limitations were determined with the relevant reasons given. The
contributions of this work to the computational resources of the Maltese language and NLP
were emphasised, based the critical discussion of the experiments’ results. In the next chapter

we summarily review the contributions, conclude our work and propose future improvements.

Chapter 6

Conclusion

6.1 Achieved Aims and Objectives

In conclusion, it can be stated that all of the aims and objectives set for this dissertation
were met within the scope of this project. The literature was reviewed with an emphasis on
CoNLL 2017 and Deep Learning technologies in order to comprehend the latest techniques.
The aim was to construct an intelligible set of experiments to decide which technologies and
process should compose the parser. The results from the experiments were evaluated and
critically discussed. Furthermore, these results were compared to published work and hence
the conclusions were stated.

One of the major objectives is to increase the computational resources for the Mal-
tese language. The MLRS was rebuilt as text source from which word embeddings were
generated using fasttext. These word embeddings were hence mapped and plotted on a
three-dimensional scatter plot using Tensorboard. Tensorboard will enable further analysis
of the Maltese vocabulary and additional research can be performed on the word embedding
corpus. From the knowledge gained during the background work and literature review, a
dependency parser was built. According to our knowledge, this is the first parser for the
Maltese language.

Another objective is to contribute to NLP and we achieved this by demonstrating that

QRNN is a viable alternative to the standard bi-LSTM. The parsing architecture is based

6.2 Future work 104

on QRNN and we attained constant at par prediction metrics when compared to bi-LSTM
and three times better runtime performance. We also proved that bootstrapped multi-source
treebanks enhance metrics performance over single-source treebanks.

Comparing results for the English language to Dozat et al. [18], the first placed participant
of the shared task at CoONLL 2017, our parser accomplished superior metrics with an UAS
of 87% and a LAS of 84%. For the Maltese language, our parser outperformed the work
of Tiedemann and van der Plas [58] by approximately 23% for an UAS of 90% and a LAS
of 86%.

6.2 Future work

There are various opportunities for future work to overcome the limitations and extend this
work. This section describes some of these opportunities which vary in degree of difficulty.

A bidirectional QRNN will surely offer better performance and should surpass the
metrics results of the bi-LSTM architecture. This parser can switch between the various
neural networks’ architectures available from PyTorch such as bi-LSTM and third parties
which are compatible with the framework. Bradbury et al. [9] adhered to the PyTorch
standards when implementing QRNN. We believe that the upcoming release of QRNN, with
the bidirectional feature, should remain compatible and hence it should be considerably
easy to implement in our parser. This will also give the opportunity to perform comparative
experiments between unidirectional and bidirectional QRNN, thus giving clear indications of
the effectiveness of the bidirectional feature.

One of the discussed limitations is the fact that the training phase concludes when all
epochs finish. The current implementation does not have any indication in which epoch
the optimal model has been achieved. One potential solution is to keep a history of the
evaluation metrics through all epochs and a pointer to the epoch which resulted with the
best evaluation metrics. The history earlier than the highest scoring epoch can be discarded.
A threshold is required to determine how many consecutive epochs have to result in lower

evaluation metrics in order to stop the training process. For example; if epoch ten has the

6.3 Final remarks 105

best evaluation metrics and hence the best model, models from epochs one to nine can be
discarded. Assuming that the threshold is set to three, if epochs eleven to thirteen result
in lower evaluation metrics, the testing phase can be successfully concluded. The model
from epoch ten will be used for prediction. This solution should overcome the some of the
limitations discussed in the previous chapter. Although such solution does require some
work, the implementation should not be arduous.

One of the main contributions of this work is the use of bootstrapped multi-source
treebanks. We could use the correct language UD treebanks because Tiedemann and van der
Plas performed a study from which we could acquire those languages which performed best
for Maltese dependency parsing [58]. There are a considerable number of other low-resourced
languages such as Uyghur and Kazakh for which the same process can be applied. The
most difficult task is discovering those languages which should be used for the multi-source
treebank. This work can be extended to enable the parser to detect which UD trees of the
target language are close in terms of LAS to other UD trees in other languages. This technique
is known as Projection and was used by Tiedemann and van der Plas [58]. Implementing such
solution would require time and effort which are beyond our possibilities and this technique
does not guarantee that the system would attain the desired results as Tiedemann and van der

Plas [58] experienced in their work.

6.3 Final remarks

Dependency parsing is a thriving research area within NLP, with a yearly shared task
dedicated to its research and development. It is a challenging task and many academics are
consistently working in this area both for research and industrial purposes. Its broad spectrum
offers a wide range of innovation and novelty in processes and system architectures.
Maltese is the only Semitic language written in Latin script, which is also influenced by
Romance languages and is still a computationally low-resourced language but it is positively

experiencing a surge in interest.

6.3 Final remarks 106

This work contributes to the Maltese language by provisioning a dependency parser and
a corpus of embedded Maltese words. The contribution to dependency parsing is the use
of Quasi-Recurrent Neural Networks as the basis of the parsing architecture and the use
of bootstrapped multi-source treebanks. This work achieved state-of-the-art results for the
Maltese language with Unlabelled Attachment Score (UAS) of 90% and Labelled Attachment
Score (LAS) of 86% whilst for the English language an UAS of 87% and a LAS of 84%.

The importance of a dependency parser for any language can only be highlighted as
more technological advanced in Human-Computer/Machine communication is achieved.
For instance, in speech recognition, it is possible to communicate using a highly-resourced
language such as English. However, it cannot be considered as a blanket solution that
will work for everyone. It could be that people are not fluent enough to speak such a
main language or it could also be that the accent spoken is not understood by the system.
The continuous development of computational processing tools for Maltese is essential to
ensure that computer systems have the possibilities and facilities to communicate in different

languages seamlessly.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.

[2] Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and
Collins, M. (2016). Globally normalized transition-based neural networks. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 2442-2452. Association for Computational Linguistics.

[3] Balduzzi, D. and Ghifary, M. (2016). Strongly-typed Recurrent Neural Networks. In
Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’ 16, pages 1292—-1300. JMLR.org.

[4] Bjorkelund, A., Falenska, A., Yu, X., and Kuhn, J. (2017). IMS at the CoNLL 2017 UD
Shared Task: CRFs and Perceptrons Meet Neural Networks. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages
40-51, Vancouver, Canada. Association for Computational Linguistics.

[5] Bohnet, B. (2010). Very high accuracy and fast dependency parsing is not a contradiction.
In Proceedings of the 23rd international conference on computational linguistics, pages
89-97. Association for Computational Linguistics.

[6] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors

with subword information. Transactions of the Association for Computational Linguistics,
5:135-146.

[7] Borg, C. (2015). Morphology in the Maltese language: A computational perspective.
PhD thesis, University of Malta.

[8] Borg, C. and Gatt, A. (2014). Crowd-sourcing Evaluation of Automatically Acquired,
Morphologically Related Word Groupings. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14).

[9] Bradbury, J., Merity, S., Xiong, C., and Socher, R. (2017). Quasi-Recurrent Neural
Networks. In International Conference on Learning Representations (ICLR 2017).

Bibliography 108

[10] Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural Language
Learning, pages 149-164. Association for Computational Linguistics.

[11] Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 740-750.

[12] Chu, Y.-J. (1965). On the shortest arborescence of a directed graph. Science Sinica,
14:1396-1400.

[13] Collins, M. (2003). Head-driven statistical models for natural language parsing. Com-
putational linguistics, 29(4):589-637.

[14] Das, D. and Petrov, S. (2011). Unsupervised part-of-speech tagging with bilingual
graph-based projections. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1, pages 600—609.
Association for Computational Linguistics.

[15] de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and
Manning, C. D. (2014). Universal Stanford dependencies: A cross-linguistic typology. In

Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), Reykjavik, Iceland.

[16] De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed
dependency parses from phrase structure parses. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’06), volume 6, pages 449—-454.
Genoa Italy.

[17] Dozat, T. and Manning, C. D. (2017). Deep biaffine attention for neural dependency
parsing. In International Conference on Learning Representations (ICLR 2017).

[18] Dozat, T., Qi, P., and Manning, C. D. (2017). Stanford’s Graph-based Neural Depen-
dency Parser at the CoNLL 2017 Shared Task. In Proceedings of the CoNLL 2017 Shared

Task: Multilingual Parsing from Raw Text to Universal Dependencies, Vancouver, Canada,
August 3-4, 2017, pages 20-30.

[19] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-
2159.

[20] Earley, J. (1970). An Efficient Context-Free Parsing Algorithm. Commun. ACM,
13:94-102.

[21] Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau
of Standards B, 71(4):233-240.

[22] Eisner, J. M. (1996). Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th conference on Computational linguistics-Volume
1, pages 340-345. Association for Computational Linguistics.

[23] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179-211.

Bibliography 109

[24] Gal, Y. and Ghahramani, Z. (2016). A theoretically grounded application of dropout in
recurrent neural networks. In Advances in neural information processing systems, pages

1019-1027.

[25] Gatt, A. and Céplo, S. (2013). Digital corpora and other electronic resources for Maltese.
In Proceedings of Corpus Linguistics 2013, Lancaster, UK.

[26] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12:2451-2471.

[27] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural Comput.,
9(9):1735-1780.

[28] Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., and Kolak, O. (2005). Bootstrapping
parsers via syntactic projection across parallel texts. Natural language engineering,
11(3):311-325.

[29] Jurafsky, D. (2000). Speech and language processing: An introduction to natural
language processing. Computational linguistics, and speech recognition.

[30] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR).

[31] Kiperwasser, E. and Goldberg, Y. (2016). Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations. Transactions of the Association for
Computational Linguistics, 4:313-327.

[32] Kong, L., Alberti, C., Andor, D., Bogatyy, 1., and Weiss, D. (2017). DRAGNN:
A Transition-based Framework for Dynamically Connected Neural Networks. CoRR,
abs/1703.04474.

[33] LeCun, Y. and Bengio, Y. (1995). Convolutional Networks for Images, Speech, and
Time-Series. In Arbib, M. A., editor, The Handbook of Brain Theory and Neural Networks,
pages 255-257. MIT Press.

[34] Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large
annotated corpus of English: The Penn Treebank. Computational linguistics, 19(2):313—
330.

[35] Maruyama, H. (1990). Structural disambiguation with constraint propagation. In
Proceedings of the 28th annual meeting on Association for Computational Linguistics,
pages 31-38. Association for Computational Linguistics.

[36] McDonald, R., Crammer, K., and Pereira, F. (2005). Online large-margin training
of dependency parsers. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 91-98. Association for Computational Linguistics.

[37] McDonald, R. and Nivre, J. (2007). Characterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL).

Bibliography 110

[38] Menzel, W. and Schroder, 1. (1998). Decision Procedures for Dependency Parsing
Using Graded Constraints. In Proceedings of ACL’90, pages 78-87.

[39] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of Word
Representations in Vector Space. International Conference on Learning Representations
(ICLR) Workshop.

[40] Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119.

[41] Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceed-
ings of the 8th International Workshop on Parsing Technologies (IWPT.

[42] Nivre, J. (2006). Inductive Dependency Parsing. In Text, speech and language technol-
0gy. Springer.

[43] Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., Mc-
Donald, R. T., Petrov, S., Pyysalo, S., Silveira, N., et al. (2016). Universal Dependencies
vl: A Multilingual Treebank Collection. In LREC.

[44] Nivre, J., Hall, J., Kiibler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D.
(2007a). The conll 2007 shared task on dependency parsing. In Proceedings of the

2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL).

[45] Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kiibler, S., Marinov, S., and Marsi,
E. (2007b). MaltParser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering, 13:95-135.

[46] Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel Recurrent Neural
Networks. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1747-1756, New York, New York, USA. PMLR.

[47] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532—1543.

[48] Cépld, S. (2018). Constituent order in Maltese: A quantitative analysis. PhD thesis,
Charles University.

[49] Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of Stochastic Approximation by
Averaging. SIAM J. Control Optim., 30(4):838-855.

[50] Rosner, M. and Joachimsen, J. (2012). [Il-Lingwa Maltija Fl-Era Digitali — The
Maltese Language in the Digital Age. META-NET White Paper Series. Georg Rehm and
Hans Uszkoreit (Series Editors). Springer. Available online at http://www.meta-net.eu/
whitepapers.

Bibliography 111

[51] Sagae, K. and Lavie, A. (2006). Parser Combination by Reparsing. In Proceedings
of the Human Language Technology Conference of the NAACL, Companion Volume:
Short Papers, NAACL-Short °06, pages 129-132, Stroudsburg, PA, USA. Association for
Computational Linguistics.

[52] Schroder, 1., Pop, H. F., Menzel, W., and Foth, K. A. (2001). Learning Grammar
Weights Using Genetic Algorithms. In Recent advances in Natural Language Processing,
RANLP-2001, pages 235-239.

[53] Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. /IEEE
Transactions on Signal Processing, 45(11):2673-2681.

[54] Shi, T., Wu, E. G., Chen, X., and Cheng, Y. (2017). Combining Global Models
for Parsing Universal Dependencies. In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 31-39, Vancouver,
Canada. Association for Computational Linguistics.

[55] Straka, M., Hajic, J., and Strakov4, J. (2016). UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and
Parsing. In Proceedings of the Tenth International Conference on Language Resources

and Evaluation (LREC 2016), Paris, France. European Language Resources Association
(ELRA).

[56] Tesniére, L. (2015). Elements of Structural Syntax (English Translation of Tesniere
1966). John Benjamins Publishing Company.

[57] Tiedemann, J., Agié, 7., and Nivre, J. (2014). Treebank translation for cross-lingual
parser induction. In Eighteenth Conference on Computational Natural Language Learning
(CoNLL 2014).

[58] Tiedemann, J. and van der Plas, L. (2016). Bootstrapping a dependency parser for
Maltese - a real-world test case. In From Semantics to Dialectometry : Festschrift in honor
of John Nerbonne, pages 355-365, Milton Keynes, England. College Publications.

[59] Waegel, D. (2013). A Survey of Bootstrapping Techniques in Natural Language
Processing. Department of Computer Science, University of Delaware, Literature Survey
Reports.

[60] Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for neural
network transition-based parsing. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 323-333. Association for
Computational Linguistics.

[61] Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support
vector machines. In Proceedings of IWPT, volume 3, pages 195-206. Nancy, France.

[62] Younger, D. H. (1967). Recognition and Parsing of Context-Free Languages in Time
n"3. Information and Control, 10:189-208.

[63] Zaremba, W., Sutskever, I., and Vinyals, O. (2015). Recurrent Neural Network regular-
ization. In International Conference on Learning Representations (ICLR 2015).

Bibliography 112

[64] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. CoRR,

abs/1212.5701.

[65] Zeman, D. (2008). Reusable Tagset Conversion Using Tagset Drivers. In Proceedings

of the Ninth International Conference on Language Resources and Evaluation (LREC’08),
volume 2008, pages 28-30.

[66] Zeman, D., Marecek, D., Popel, M., Ramasamy, L., Stepének, J., Zabokrtsky, Z., and

Hajic, J. (2012). HamleDT: To parse or not to parse? In LREC, pages 2735-2741.

[67] Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J., Ginter, F., Luotolahti, J., Pyysalo,

S., Petrov, S., Potthast, M., Tyers, F., Badmaeva, E., Gokirmak, M., Nedoluzhko, A.,
Cinkova, S., Hajic jr., J., Hlavacova, J., Kettnerova, V., Uresova, Z., Kanerva, J., Ojala,
S., Missild, A., Manning, C. D., Schuster, S., Reddy, S., Taji, D., Habash, N., Leung, H.,
de Marneffe, M.-C., Sanguinetti, M., Simi, M., Kanayama, H., dePaiva, V., Droganova,
K., Martinez Alonso, H., Coltekin, c., Sulubacak, U., Uszkoreit, H., Macketanz, V.,
Burchardt, A., Harris, K., Marheinecke, K., Rehm, G., Kayadelen, T., Attia, M., Elkahky,
A., Yu, Z., Pitler, E., Lertpradit, S., Mandl, M., Kirchner, J., Alcalde, H. F., Strnadova,
J., Banerjee, E., Manurung, R., Stella, A., Shimada, A., Kwak, S., Mendonca, G., Lando,
T., Nitisaroj, R., and Li, J. (2017). CoNLL 2017 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 1-19, Vancouver,
Canada. Association for Computational Linguistics.

[68] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for

text classification. In Advances in neural information processing systems, pages 649—657.

Appendix A

Universal Dependencies specifications

Universal Features

The list of Universal features with the corresponding descriptions from the Universal Depen-

dencies online documentation!.

Abbr abbreviation
AbsErgDatNumber number agreement with absolutive/ergative/dative argument
AbsErgDatPerson person agreement with absolutive/ergative/dative argument

AbsErgDatPolite politeness agreement with absolutive/ergative/dative argument

AdpType adposition type

AdvType adverb type

Animacy animacy

Aspect aspect

Case case

Clusivity clusivity

ConjType conjunction type

Definite definiteness or state

Degree degree of comparison

Echo is this an echo word or a reduplicative?

'http://universaldependencies.org/u/feat/index.html Last accessed: 2018-10-31

114

ErgDatGender
Evident
Foreign
Gender
Hyph

Mood
NameType
NounType
NumForm
NumType
NumValue
Number
PartType
Person
Polarity
Polite

Poss
PossGender
PossNumber
PossPerson
PossedNumber
Prefix
PrepCase
PronType
PunctSide
PunctType
Reflex

Style

Subcat

gender agreement with ergative/dative argument
evidentiality

is this a foreign word?

gender

hyphenated compound or part of it
mood

type of named entity

noun type

numeral form

numeral type

numeric value

number

particle type

person

polarity

politeness

possessive

possessor’s gender

possessor’s number

possessor’s person

possessed object’s number

Word functions as a prefix in a compund construction

case form sensitive to prepositions
pronominal type

which side of paired punctuation is this?
punctuation type

reflexive

style or sublanguage to which this word form belongs

subcategorization

115

Tense
Typo
VerbForm
VerbType

Voice

tense

is this a misspelled word?
form of verb or deverbative
verb type

voice

116

Universal Dependency Relations

The list of Universal Dependency Relations with the corresponding descriptions from the

Universal Dependencies online documentation?.

acl

advcl
advmod
amod
appos
aux

case

cc

ccomp
clf
compound
conj

cop

csubj

dep

det
discourse
dislocated
expl
fixed

flat
goeswith
iobj

list

clausal modifier of noun (adjectival clause)
adverbial clause modifier
adverbial modifier
adjectival modifier
appositional modifier
auxiliary

case marking
coordinating conjunction
clausal complement
classifier

compound

conjunct

copula

clausal subject
unspecified dependency
determiner

discourse element
dislocated elements
expletive

fixed multiword expression
flat multiword expression
goes with

indirect object

list

Zhttp://universaldependencies.org/u/dep/index.html Last accessed: 2018-10-31

117

mark marker

nmod nominal modifier
nsubj nominal subject
nummod numeric modifier
obj object

obl oblique nominal
orphan orphan

parataxis parataxis

punct punctuation
reparandum overridden disfluency
root root

vocative vocative

xcomp open clausal complement

