
A Dependency Parser for the Maltese

Language using Deep Neural Networks

Andrei Zammit

Supervisor: Dr. Claudia Borġ

Department of Artificial Intelligence

University of Malta

Submitted in partial fulfilment of the requirements for the degree of

Master of Science in Artificial Intelligence

June 2018

Dedicated to the Maltese language; may its legacy be a beacon to those who nurture this

unique Semitic language, written in Latin letters, influenced by Romance Languages, spoken

by just 400,000 people.

Declaration

STUDENT: Andrei Zammit 487677M

FACULTY: Department of Artificial Intelligence

COURSE: Master of Science in Artificial Intelligence

TITLE: A Dependency Parser for the Maltese Language using Deep Neural Networks

1. AUTHENTICITY OF DISSERTATION

I hereby declare that I am the legitimate author of this Dissertation and that it is my

original work.

No portion of this work has been submitted in support of an application for another

degree or qualification of this or any other university or institution of higher education.

I hold the University of Malta harmless against any third party claims with regard to

copyright violation, breach of confidentiality, defamation and any other third party

right infringement.

2. RESEARCH CODE OF PRACTICE AND ETHICS REVIEW PROCEDURES

I declare that I have abided by the University’s Research Ethics Review Procedures.

As a Master’s student, as per Regulation 58 of the General Regulations for University

Postgraduate Awards, I accept that should my dissertation be awarded a Grade A, it

will be made publicly available on the University of Malta Institutional Repository.

Andrei Zammit

June 2018

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Claudia Borġ for her

patience, guidance and encouragement which made this dissertation possible. I am honoured

for having the opportunity to work with her and hope that in the future we can work together

again. I would like also to thank Dr. Lonneke van der Plas and Dr. Slavomír Čéplö, two

awesome individuals of great inspiration.

I am immensely grateful to my family and friends with their huge hearts, who have been

of great support.

Finally, I would like to thank Kenneth, for deciding together to start this adventure during

a dull night out over a couple of drinks. His friendship kept me sane during the late lonely

dark nights.

It was a good decision!

Abstract

Tasks such as information retrieval, sentiment analysis and question answering require the

processing of text analysis and natural language processing. Sentence parsing is one of the

tasks performed in NLP to analyse the grammar structure of a sentence, with the aim of

determining the relationships between the words in a sentence.

Whilst there are several parsers for many European languages, Maltese remains a low-

resourced and low-researched language and currently there are no parsers for the Maltese

language. This work investigates computational parsing of Maltese by using novel Deep

Learning and source bootstrapping techniques, with the aim of contributing not only to the

increase in computational resources for Maltese, but also to dependency parsing.

The evaluation of the parser was performed according to the Conference on Compu-

tational Natural Language Learning (CoNLL) standards and metrics. Experiments were

conducted using datasets provided during CoNLL 2017 except for the Maltese language

dataset which is provided directly by the author.

Results show an Unlabelled Attachment Score of 90% and Labelled Attachment Score of

86% by using a Quasi-Recurrent Neural Network (QRNN) with a bootstrapped data source

of Maltese and other Romance languages. Bi-directional LSTM Neural Networks outperform

QRNN by less than 0.2% in both metrics however, QRNN achieve a three-fold runtime

performance over bi-LSTM. To our knowledge, this is the first time that QRNN is applied to

the task of dependency parsing. The use of bootstrapped data sources is not documented in

the published papers and proceedings of the 2017 shared task we reviewed.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Aims and Objectives . 4

1.3 Approach . 5

1.4 Chapter Overview . 7

2 Background and Literature Review 10

2.1 Traditional methodologies . 10

2.1.1 Dynamic programming and Eisner’s algorithm 12

2.1.2 Constraint satisfaction . 13

2.1.3 Transition-based approaches . 14

2.1.4 Graph-based approaches . 16

2.2 Neural Networks . 17

2.3 CoNLL 2017 . 18

2.4 Deep Learning methodologies . 21

2.4.1 Neural Network Optimizers . 22

2.4.2 Word embeddings . 25

2.4.3 Deep neural network architectures: RNN and LSTM 29

2.5 A bootstrapping approach for Maltese . 33

Contents vii

2.6 The Universal Dependencies . 37

2.7 The Maltese Universal Dependencies . 41

2.7.1 Sample sentence from MUDTv1 46

2.8 Evaluation . 47

2.9 Conclusion . 48

3 Methodology 50

3.1 Maltese Word Embeddings . 50

3.2 Using Quasi-Recurrent Neural Networks 53

3.3 The Parser . 56

3.4 The Bootstrapped Multi-source Treebank 59

3.5 CoNLL 2017 Evaluation standard . 61

3.6 Conclusion . 63

4 Evaluation and Results 64

4.1 Evaluation Procedure . 64

4.2 Evaluation metrics . 66

4.3 Experiments . 66

4.4 Neural Network Optimization algorithms evaluation 69

4.5 External Word Embeddings evaluation . 72

4.6 Bootstrapped Multi-source Treebank evaluation 76

4.7 Neural Network Architecture evaluation 80

4.8 Alternate Languages evaluation . 82

4.9 Summary of Experiments and Results . 83

4.10 Conclusion . 85

5 Discussion 86

5.1 Neural Network Optimization algorithms 86

5.2 External Word Embeddings . 88

5.3 Bootstrapped Multi-source Treebank . 92

Contents viii

5.4 Neural Network Architecture . 96

5.5 Alternate Languages . 97

5.6 Contributions . 99

5.7 Limitations . 101

5.8 Conclusion . 102

6 Conclusion 103

6.1 Achieved Aims and Objectives . 103

6.2 Future work . 104

6.3 Final remarks . 105

Bibliography 107

Appendix A Universal Dependencies specifications 113

List of Figures

1.1 Dependency structure for Maltese and English sentence 3

2.1 Word embeddings of capitals mapped to the countries after projection [40] . 27

2.2 Feed Forward Neural Network architecture 30

2.3 Recurrent Neural Network architecture . 30

2.4 Elman’s Network [23] . 31

2.5 LSTM architecture . 32

2.6 Dependency structure for sample English sentence. 41

2.7 Dependency structure for sample Maltese sentence. 47

3.1 Architecture of a traditional Convolutional Neural Network [33]. 54

3.2 QRNN architecture as compared to LSTM and CNN architectures [9] . . . 55

3.3 Graph-based parser architecture as proposed by Kiperwasser and Goldberg

[31] . 59

4.1 Evaluation using fasttext external word embeddings ID: 9 73

4.2 Evaluation using GloVe external word embeddings ID: 10 74

4.3 Evaluation using no external word embeddings ID: 11 75

4.4 UAS during training of models for experiments ID: 12 to 17 77

4.5 LAS during training of models for experiments ID: 12 to 17 78

4.6 Weighted LAS during training of models for experiments ID: 12 to 17 . . . 79

4.7 Training of model for experiment ID: 20 81

5.1 Optimizer performance through training phase for thirty epochs 87

List of Figures x

5.2 Prediction metrics using different optimizers 89

5.3 Prediction metrics using different external word embeddings 91

5.4 Word embeddings plotted on three dimensional scatter-plot 92

5.5 Prediction metrics using single-source and multi-source treebanks 95

5.6 Prediction for LAS metric using alternate languages 100

List of Tables

2.1 Results for the best three language treebanks [58]. 35

2.2 Multi-source datasets [58]. 36

2.3 Multi-source projection models [58]. 36

2.4 CoNLL-U format [48]. 38

2.5 Universal POS tags [43]. 39

2.6 Universal features [43]. 40

2.7 Sample sentence from UD English treebank. 40

2.8 The Maltese Tagset v3.0 [48]. 44

2.9 The Maltese Tagset v3.0 mapped to Universal POS tags. 45

2.10 Sample sentence from UD Maltese treebank. 46

3.1 Sample sentence from MLRS. 52

3.2 Sample sentence from UD Maltese treebank with offset boundaries. 62

4.1 GPU Server . 65

4.2 Software and frameworks . 65

4.3 Experiments . 68

4.4 Neural Network Optimization algorithms experiments 69

4.5 Prediction metrics using different optimizers 69

4.6 Loss of Optimization algorithms during training 70

4.7 Loss of Optimization algorithms during training 71

4.8 External Word Embeddings experiments 72

4.9 Prediction metrics with different external Word Embeddings 72

List of Tables xii

4.10 Bootstrapped Multi-source Treebanks experiments 76

4.11 Evaluation metrics using Bootstrapped Multi-source Treebanks 76

4.12 Performance using Bootstrapped Multi-source Treebank 80

4.13 Neural Network Architecture experiments 80

4.14 Evaluation metrics using different Neural Architecture 82

4.15 Runtime performance using bi-LSTM Neural Architecture 82

4.16 Alternate Languages experiments . 82

4.17 Evaluation metrics for Alternate Languages 83

4.18 Experiments and Results . 84

4.19 Treebank reference . 84

5.1 Experiments reference for Figure 5.5 . 94

5.2 Comparing results from single-source and multi-source treebanks 94

5.3 Comparing results from multi-source treebanks to Tiedemann and van der

Plas [58] . 95

5.4 Prediction metrics using QRNN and bi-LSTM neural architectures 97

5.5 Runtime performance of QRNN and bi-LSTM neural architectures 97

5.6 Predicted metrics for English Language 98

5.7 Predicted metrics for Spanish Language 98

5.8 Predicted metrics for Uyghur Language 99

5.9 Predicted metrics for Kazakh Language 99

Chapter 1

Introduction

Parsing is a functionality that allows us to analyse the structure of a sentence and to check

whether it is expressed according to a specified grammar. In computer science, parsing is

used to analyse the structure and syntax of code prior to it being compiled and/or run, thus

alerting the developer of any errors that require adjustment. In natural language, parsing

allows us to see whether a sentence is appropriately structured [29]. Although humans

might not necessarily learn specific grammar rules, they naturally have a sense of whether

a sentence ‘sounds’ right or not. In the computational treatment of any language, parsing

can provide information with relation to which part of a sentence is the subject, and which is

the object. This type of information can then be used by other Natural Language Processing

(NLP) tools which can analyse say particular relations between words.

There are a number of computational parsing approaches that can be used - the main two

approaches are constituent-based parsing and dependency parsing. Constituent-based parsing

analysis a sentence by splitting it up into sub-phrases like a noun phrase, verb phrase, etc.

These phrases become the constituents in a sentence and a grammar would generally specify

the order in which these constituents can occur [29]. Dependency parsing on the other hand

focuses on the actual relations between words, such as the subject and the object, or words

that modify other words. Which type of parser should be used depends very much on the

type of application and end-goal of the NLP task at hand. For many NLP tasks, dependency

University of Malta Library – Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author’s rights in respect of this
work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified by any
successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information contained in
accordance with the Copyright Act provided that the author must be properly acknowledged.
Further distribution or reproduction in any format is prohibited without the prior permission of the
copyright holder.

1.1 Motivation 2

parsing provides sufficient information without the need to look at the full syntactic structure

of a sentence.

The computational treatment of the Maltese language has lagged behind when compared

to the development of other major European languages [50]. However, there have been a

number of efforts aimed at improving the computational resource for Maltese, including

the development of a part-of-speech tagger [25] and further research at the development of

a morphological analyser [8, 7]. More recently, the development of a manually annotated

set of sentences with their respective dependency parse trees (Maltese UD Treebank, [48])

means that it is now possible to experiment with machine learning techniques and create

a dependency parser based on this annotated data. This research will be the first of its

kind, looking specifically at the computational dependency parsing of Maltese by using this

treebank. It will also be the first time that a particular deep learning architecture will be

applied to parsing, with the aim to contribute not just to Maltese dependency parsing, but

also to the broader field of dependency parsing in general.

This chapter provides an introduction to the research area and the particular goals and

objectives of this project. It will then provide a brief overview of the work carried out and an

outline of the remainder of the document.

1.1 Motivation

Modern Dependency Grammar theory is attributed to the work of the French linguist Tesniére

[56]. Since then, a number of different grammar schemes have been proposed and evolved.

However, the main idea behind this theory is that the syntactic structure consists of words

linked by asymmetrical relations called dependencies. A dependency relation holds between

a syntactic subordinate word, called dependent whilst the other on which it depends, called

the head or modifier. A sentence will always have a root, a word which has no head itself,

meaning that it is independent of all the words composing the sentence. An example of

a dependency parse tree is illustrated in Figure 1.1 for a Maltese sentence. The English

equivalent in this case also has the same parse tree, even though the languages are different.

1.1 Motivation 3

This is one of the advantages of dependency parse trees since relations between words might

be the same across some languages. Usually, the closer two languages are historically (e.g.

both derived from Latin), the more similarity they would share in sentence structure and

relations [45].

The dependency relations are represented with arrows originating from the HEAD pointing

to the DEPENDENT. Each of these arrows is labelled, denoting the type of dependency

relation between two words. For example, the noun Ġanni is dependent on the verb tefa’, and

the label shows that the type of relation between the two words is that Ġanni is the subject of

the word tefa’. By contrast, the noun ballun is a dependent of the verb tefa’ and also acts as

a head for the determiner l-. The dependency structures can be formally defined as labeled

directed graphs where the words are represented by the nodes and the typed dependencies by

labeled arcs.

Ġanni tefa’ l- ballun lil Marija .
John threw the ball at Mary .

ROOT

SBJ

VC

PU

OBJ

PCDET

Figure 1.1 Dependency structure for Maltese and English sentence

Modern approaches to dependency parsing generally use an annotated treebank to train

their models on, using machine learning techniques. Once a model is built, it is then possible

to test the model on a portion of data which was not used in the training phase, referred to as

the test data or unseen data. Treebanks are generally regular corpora, with the exception that

they include an additional layer of annotation that specifies the dependencies between the

words and their labelled relations.

Recent efforts by Čéplö [48] focused on the creation of a Universal Dependency Treebank

for Maltese. A treebank is simply a corpus of sentences, and each sentence is annotated with

its respective dependency tree — in this case, following the annotation guidelines of the Uni-

1.2 Aims and Objectives 4

versal Dependency project1. The Maltese treebank consists of over 2000 sentences annotated

with dependency parse trees. This recent development came at the opportune time for this

research to take a machine learning approach for the development of a dependency parser for

Maltese. We will also be exploring the possibility of using a novel neural architecture for the

parsing algorithm and at the same time experiment with bootstrapping the learning of the

model by using multi-lingual treebanks — thus looking at how other related languages to

Maltese could contribute to the modelling of a parser for Maltese.

Recent developments in deep learning have also seen a shift in the type of machine learn-

ing algorithms used to train a dependency parser. The most recent research in dependency

parsing has shown that the application of deep learning techniques improved results over

other machine learning techniques, and this is something that this project aims to harness.

The use of deep learning, coupled with resources such a word embeddings, might prove to be

advantageous for the development of a dependency parser. In particular, word embeddings

allow a neural network architecture to represent the semantic relations between words as

vectors, thus providing the opportunity to represent words as something that a neural network

can actually work with.

1.2 Aims and Objectives

The main aim of this work is to create a dependency parser for Maltese using machine

learning techniques. A secondary aim is to investigate the use of novel techniques in deep

learning to examine their effectiveness in the problem of dependency parsing. Thus, the

proposed implementation of a dependency parser for Maltese is based on the latest Deep

Learning technologies. The current state-of-the-art methodologies and architectures are

reviewed in this report, and a Quasi-Recurrent Neural Network (QRNN) is chosen as the

architecture since it seen both as a potentially novel approach to dependency parsing, but

also that it will provide the necessary dependency parser model. The main contributions

of this research are both in terms of the computational treatment of Maltese, as well as

1http://universaldependencies.org/introduction.html (Accessed: 2018-10-31)

1.3 Approach 5

dependency parsing in general. The stated aims will be accomplished by achieving the

following objectives:

1. Design and implement a dependency parser for the Maltese language.

2. Generate word embeddings for the Maltese language and create a visualisation site

that allows users to see the semantic relations between two words.

3. Evaluate and investigate the performance of the parser using a dedicated Maltese

annotated treebank by applying standard evaluation procedures.

4. Determine the effectiveness of using a multi-lingual treebank to parse Maltese.

5. Compare and contrast results with published research.

1.3 Approach

The aims of this project are twofold. First, the development of the first dependency parser for

Maltese, and secondly, to understand effectiveness of a Quasi-Recurrent Neural Network on

parsing, a novel deep neural network architecture for the task of dependency parsing. Initial

experiments were carried out to help determine the expectations of the processing time in

order to better plan and schedule the experiments. Since this is the first time that a dependency

parser is being built for Maltese, a number of experiments were carried out not only in terms

of architecture, but also in terms of the input data. Two approaches are used to structure the

input data; a Maltese language only training dataset and secondly training datasets composed

of multiple language supporting the Maltese-only dataset. This bootstrapping approach

using a multilingual training dataset does indeed provide better results than the Maltese-only

dataset, since it provides richer information and more data sample points to the machine

learning algorithm.

In the preparatory stage, features must be extracted from any given input sentence. The

sentence is tokenised and word embeddings are generated for each word. Each word and

punctuation mark is considered as a token forming the input. Word embeddings are a language

1.3 Approach 6

feature modelling technique whereby words from a corpus are mapped to vectors of real

numbers. Part of the research is to create and experiment with creating a word embedding

model based on the Maltese corpus. However, since Maltese is a morphologically rich

language [8], problems arise when encountering word formations that were not originally

part of the training corpus. For this reason, apart from experimenting with the Maltese model,

experiments also looked at the effectiveness of using fastText [6], a word embedding model

created by Facebook Research2 and trained on multilingual corpora. The input sentence is

also augmented with information pertaining to its part-of-speech category, thus providing

further linguistic information about a word.

From a dependency parsing perspective, the experiments focus on two major strands. The

first set of experiments simply use the dependency parse trees as annotated by Čéplö [48] —

thus having a Maltese-only dataset. The second strand focuses on the multilingual approach,

similar to the experiments carried out by Tiedemann and van der Plas [58]. The purpose is

to compare whether augmenting the datasets with other languages related to Maltese would

actually improve the results. The experiments focused on using data from Arabic, Hebrew,

English, Italian and Spanish.

From a technical perspective, the experiments focused on the use of a QRNN — a type

of deep learning architecture that is still relatively new in this field and to the best of our

knowledge, has never been applied to dependency parsing. In this approach, the composition

of the input sentence/features is fed into tensors which are multidimensional matrices on

which the deep neural network can operate. With each token and its representation fed, the

neural network would then proceed to output four vectors representing:

1. the token as a dependent searching its respective head

2. the token as a head searching its dependent tokens

3. the token as a dependent determining the lexical label

4. the token as a head determining the lexical labels of its dependent tokens

2https://github.com/facebookresearch/fastText (Accessed: 2018-10-31)

1.4 Chapter Overview 7

Once a sentence is completely processed, the resulting vectors of each token are fed into

a neural classifier to compute a score. The dependency tree is then generated according to

the highest scores of these input vectors. The approach is very much based on a similar

parsing process used by Dozat et al. [18], which obtained the best performing results during

the Conference on Computational Natural Language Learning (CoNLL) 2017.

The evaluation of the parser will be performed according the CoNLL standards and

metrics. The experiments will be conducted using datasets provided during CoNLL 2017

except for the Maltese language dataset which is provided directly by the author. To perform

the evaluation, the CoNLL 2017 evaluation script3 was used. This ensures that this work

follows a defined standard by an institution and the results can be compared with those

achieved during CoNLL 2017. Results show that bi-directional LSTM Neural Networks

outperform QRNN by less than 0.2% in the main CoNLL metrics. However, rather than

using bi-LSTMs, this work focuses on experiments with QRNNs because of the superior

runtime performance over the traditional bi-LSTMs.

A visualisation component is also included as part of the output for this research, with

the aim to make the word embedding model for Maltese available as a a three dimensional

scatter-plot. This results in a cloud with dense and less dense points indicating the semantic

proximity of the Maltese words to each other.

1.4 Chapter Overview

This dissertation is structured as follows:

Introduction This chapter provided a brief overview of the work carried out in this research

project, including the motivation behind undertaking this research, the aims and

objectives of this work and the scope under which the research is carried out. It also

provides a brief overview of the approach taken to tackle the set aims and objectives.

Background and Literature Review This chapter first delves into the theoretical aspects

and approaches to grammar, sentence structure and dependency parsing, providing a

3http://universaldependencies.org/conll17/eval.zip (Accessed: 2018-10-31)

1.4 Chapter Overview 8

brief historical overview of how parsing evolved from the early traditional techniques

to dependency parsing and to the adoption of neural networks and deep learning

paradigms. This chapter then focuses on the shared task in dependency parsing, in

particular highlighting the rise of deep learning techniques and their applied success in

the field of dependency parsing. The only published work on dependency parsing for

the Maltese language is also reviewed in great detail. Finally, the literature review also

presents the annotation standards and the de facto framework for dependency parsing,

with a particular focus on the annotations used for the Maltese Universal Dependency

Treebank.

Methodology This chapter reports on how the research problem was tackled in order to

achieve the aims and objectives by using the acquired knowledge from the Background

and Literature Review chapter. Each method used and decision taken is supported with

pertinent arguments. The whole process is throughly documented to ensure that the

reader can replicate this work.

Evaluation and Results This chapter describes the experiments conducted to measure the

performance of the different models and setups, according to a pre-defined evaluation

plan. The evaluation is based on the same metrics as proposed by the CoNLL shared

task in dependency parsing, so as to ensure the possibility to compare results, albeit

using Maltese.

Discussion This chapter focuses on comparing and contrasting the results obtained against

published work. It provides a technical overview in terms of performance and optimis-

ers used. But it also provides an overview of the chosen approach, how it contrasts to

other work, and how it fares when applied to other low-resourced languages. The final

part of this chapter provides an overview of the contributions that this thesis makes to

the field of dependency parsing in Maltese.

Conclusion The concluding chapter revisits the fundamental aspects in this dissertation

and the methods used, together with the relevant experiments performed. The main

results are highlighted in order to summarise the achievements of this work. Finally,

1.4 Chapter Overview 9

the chapter outlines how this dissertation met the aims and objectives initially set out,

and proposes future work that can be undertaken to further research in this field.

Chapter 2

Background and Literature Review

In this section, we report on the different techniques used for dependency parsing. First, we

explore the early approaches to dependency parsing and then progress to the use of neural

networks and deep learning architectures. We also review a recent shared task in dependency

parsing, CoNLL2017, which highlights the current challenges in dependency parsing and the

prevalent use of deep learning to improve upon the results of the previous state of the art in

dependency parsing. We evaluate in detail the only work performed on dependency parsing

specifically for the Maltese language. Finally, we report on the defacto standard framework

for dependency parsing — the Universal Dependencies framework and the Maltese treebank

which has been released under this framework.

2.1 Traditional methodologies

Generally, traditional approaches to dependency parsing can be split into two distinct cate-

gories — data-driven or grammar-based. An approach is considered grammar-based when

the methods it applies rely on a formal grammar specification which represents a particular

language. An algorithm then detects if an input sentence adheres to the rules of the language

defined by its grammar. An approach is data-driven when machine learning is used to learn

automatically the grammatical relations between words from sentences annotated with their

respective parse trees. Although these two categories are distinct, it is possible for depen-

2.1 Traditional methodologies 11

dency parsing methods to adopt machine learning with the use of formal grammar and hence

such parsing methods are both data-driven and grammar-based. This type of approach is

referred to as a supervised technique since the machine learning algorithm is provided with

labelled data as part of its training phase.

There are two computational problems to be solved in this process. The first is called the

learning problem, which is the function of constructing a parsing model from a subset of the

sentences and their corresponding dependency structures. The other is the parsing problem,

which is the function of inferring the constructed model to an input sentence. In machine

learning, the parsing problem is also known as the inference problem or the decoding problem

which are terms used to describe the application of the model to data. The two problems are

represented as:

• Learning: For a given training set of sentences D with annotated dependency structures,

construct a model M to parse sentence S.

• Parsing: For a model M and sentence S, determine the dependency graph G for S by

inferring M.

There are two classes of data-driven approaches called transition-based and graph-based.

These two classes are distinguished by the algorithms used to construct the model from the

input sentences and annotated data, the type of model constructed and the parsing algorithm

adopted.

For most data-driven approaches, any input sentence is considered valid and the aim of the

parser is to retrieve the best possible dependency structure for the input based on the model;

regardless how much improbable it may result. By contrast, grammar-based approaches use

a formal grammar as a core component of the model. Only a subset of the possible sentences

are accepted by the model. Early approaches used manually created grammars, however

later approaches were also data-driven and hence the grammar was learned from linguistic

annotated data. Grammar-based parsing is also divided into two classes: context-free and

constraint-based. Context-free dependency parsing uses a map between the dependency

2.1 Traditional methodologies 12

structures and a Context Free Grammar (CFG) with the same parsing algorithms applied for

the CFG. Constraint-based approaches tackle parsing as a constraint satisfaction problem.

The four classes are reviewed in detail and the most important research and results

highlighted in the following sections.

2.1.1 Dynamic programming and Eisner’s algorithm

One of the traditional approaches to describe a grammar is through the use of Context-Free

Grammars (CFGs). A grammar is specified using a particular specification, and then a number

of algorithms, such as Cocke-Younger-Kasami (CKY) [62] and Earley’s algorithm [20],

would process the grammar specification and output a parse tree for any given sentence.

Initially, the aim of CFGs was to describe the structure of a sentence in terms of noun phrases,

verb phrases, etc., without going into the dependency relations between the actual words.

However, parsing algorithms used to process a CFG can also be adapted for dependency

parsing. Eisner’s dynamic programming algorithm [22] is such a parsing algorithm that

transforms a grammar specified in the CFG convention and extracts the type of word relations

that are central to dependency parsing.

One of the problems with parsing of sentences is that ambiguity can easily arise — a

typical example is: ‘I saw the man with binoculars’. This sentence is ambiguous because it

is not clear who is with binoculars, whether ‘I’ or ‘the man’. Techniques like the CKY or

Eisner’s algorithm use dynamic programming to deal with ambiguity since it provides all

possible parse trees. An extension of the CKY is a probabilistic one which includes statistical

information for each possible sub-parse-tree. There is also the problem of repeated parse

trees during the processing. Top-down parsing (naïve search) is inefficient because each

sub-tree might be created over each iteration. Dynamic programming offers an efficient way

to record a particular sub-tree predicted over a specific range of the input sentence. Eisner’s

algorithm uses dynamic programming with a chart to keep track of partial derivations so no

trees have to be re-derived. Chart parsing uses dynamic programming with a chart to keep

track of partial derivations so nothing has to be re-derived.

2.1 Traditional methodologies 13

The main idea behind Eisner’s algorithm is to use a split-head representation in order

to enable the chart cells represent half-trees instead of full trees. The two indices for the

lexical heads are replaced by boolean variables indicating whether the head is at the left or

right location of the respective half-trees. Two operations are required; the first for adding a

dependency arc between the heads of two half-trees to form an incomplete half-tree. Hence,

combining this incomplete half-tree to a complete half-tree to form a larger complete half-tree.

The incomplete solutions are created and stored once. Furthermore, the algorithm never

explores trees that are not potential solutions [22].

2.1.2 Constraint satisfaction

Constraint satisfaction uses a dependency grammar where every rule is assigned as a con-

straint on word-to-word relations. This constraint based parsing approach was introduced

by Maruyama [35]. This work showed that a Constraint Dependency Grammar (CDG)

parsing can be formalised as a constraint satisfaction problem. To lower structural ambiguity

without the need to construct the individual parse trees, constraint-propagation algorithms are

used where the transitional parsing result is represented as a data structure called a constraint

network. The possible solution that satisfies all constraints concurrently is hence represented

as a parse tree. To reduce disambiguation, new constraints are added to the network which

are propagated using constraint propagation [35].

Menzel and Schröder [38] implemented a CDG parser for German using the same

technique but added weights to the constraints. The German grammar was developed

manually and consisted of nearly 700 constraints. Since this is a difficult and laborious task,

this was extended by Schröder et al. [52], who used a machine learning approach based on

genetic algorithms to assign weights. In the initial experiment Schröder et al. attempted to

improve the weights of the manually crafted grammar which were achieved in the previous

study by Menzel and Schröder [38]. Schröder et al. hence compared the results and acquired

an increase of the f-measure from 96.9% to 98.4%. In the subsequent experiment the authors

attempted to discover the required weights without referring to the weights discovered during

the study by Menzel and Schröder [38]. The final result from this experiment is an f-measure

2.1 Traditional methodologies 14

of 97.4%. Schröder et al. state that even if this is a significant result, it was not possible to

attain the quality of the grammar achieved during the first experiment [52].

2.1.3 Transition-based approaches

A transition-based system is an abstract machine composed of states and transitions between

the states. The simplest example of a transition system is a finite state machine, which

consists of a finite set of states and a list of transitions which cause the machine to move

from one state to another. The machine can be in only one state at any given point in time.

In dependency parsing, transition-based systems have complex states and the transitions

correspond to the stages of a dependency tree derivation. The sequence of a valid transition

for a given sentence starts from an initial state and ends in one of the possible final states.

Such a full path traversed by the machine defines a valid dependency tree for a given sentence.

The oracle is an important component of transition-based parsers. The aim of the oracle

is to predict the optimal sequence of transitions that will derive a specific gold tree for a

sentence. There are two categories of oracles; static and dynamic. In static oracles, a set of

rules is specified on which a single static sequence of transitions is produced. The major

disadvantage is that a parser would often get deviated from the gold standard sequence and

hence transitions to states which might not lead to the correct tree. On the other hand, a

dynamic oracle permits all valid transition sequences leading to the gold standard tree rather

than restricting a single sequence of transitions. Furthermore, a dynamic oracle is correct for

all possible states even if such states do not reach the gold standard tree. In such scenarios,

the dynamic oracle allows all possible states leading to a tree which has minimum loss

compared to the gold tree.

A transition-based dependency parser is typically composed of:

1. the stack where to store the processed words of the input sentence

2. the queue where the rest of the words of the input sentence are stored

3. the transition actions which determine which transitions have to be performed accord-

ing to the history of the stack and queue

2.1 Traditional methodologies 15

The transition actions are defined by the arc standard transition system. An arc is

a dependency between words in a sentence. The three transition operations as defined

by Collins [13] are:

• LEFT-ARC - create a relation (arc, dependency) between the word at top of the stack

and the second word on the stack. Remove the second word from the stack.

• RIGHT-ARC - create a relation between the second word of the stack and word on top

of the stack. Remove the word on top of the stack.

• SHIFT - remove the word from queue and push it onto the stack.

One of the most successful strategies in parsing is to use a data-driven approach by

applying classifiers on a treebank corpus. Classifier-based parsing is a very important

component of transition-based dependency parsing. Parsing using this technique is a greedy

search through the transition system, guided by the treebank trained classifier. This approach

was first proposed by Yamada and Matsumoto [61] who achieved state-of-the-art results using

the English language. The authors used the annotated Penn treebank [34] for the experiments.

Yamada and Matsumoto used two main metrics to evaluate their work; dependency accuracy

and root accuracy. The dependency accuracy is the number of correct parents in a tree divided

by the total number of parents. Root accuracy is the number of correct roots divided by the

number of sentences. Yamada and Matsumoto achieved a dependency accuracy of 90% and

a root accuracy of 92%. The main disadvantage of this technique is that it requires multiple

passes over the input.

Later, Nivre [41] developed the Nivre’s algorithm which is an evolved transition sys-

tem [41] based on Collins [13]. In Nivre’s algorithm, the transition actions are defined by the

arc-eager transition system which is defined as:

• LEFT-ARC - create a relation between the word in the queue and the word on top of

stack and perform a REDUCE operation.

• RIGHT-ARC - create a relation between the word on top of the stack and the word in

the queue and perform a SHIFT operation.

2.1 Traditional methodologies 16

• SHIFT - remove the first word from the queue and push it onto stack.

• REDUCE - remove the word on top of stack.

Nivre further improved the algorithm by having the system perform a single deterministic

pass over the input [42]. This improved system was evaluated during the shared task on

dependency parsing of CoNLL 2007 on ten different languages [44].

2.1.4 Graph-based approaches

Transition-based approaches are based on a state machine for mapping a sentence to its

dependency graph. The learning problem is to build a model that, given the state’s history,

is able to predict the next state. The parsing problem is to construct the optimal transition

sequence for the input sentence.

In contrast, graph-based methods define a search space for possible dependency graphs

for the input sentence. The learning problem is to compose a model for scoring the possible

dependency graphs for a sentence. The parsing problem here is to locate the highest scoring

dependency graph. This technique is called the Maximum Spanning Tree (MST) since the

problem of finding the highest scoring dependency graph corresponds to the problem of

finding the MST in a dense graph. The score represents the likelihood that a specific tree

is the correct one for the given input sentence. The most essential property of graph-based

parsing is that this score is assumed to propagate proportionally through all subgraphs of the

dependency tree.

The most common graph-based approach is the Chu-Liu-Edmonds algorithm [12, 21]

and a graph-based parser is typically built on the following four components:

1. the definition of the graph for the given dependency tree

2. the definition of the parameters

3. a method for learning the parameters from the labelled data

4. a parsing algorithm

2.2 Neural Networks 17

Projective trees are the set of trees which match to the set of nested trees under the root

node. Projective dependency parsers are strongly related to CFGs and hence a large part of

the CFG parsing algorithms can be modified to parse projective trees. A dependency tree is

non-projective if it contains at least a tree which is not projective. In a projective dependency

tree, it is possible to graphically illustrate all arcs of the tree without any arcs crossing.

This property is known as the planar property. The first extensive work on graph-based

dependency parsing is attributed to McDonald et al. [36].

2.2 Neural Networks

Chen and Manning [11] were the first to propose and implement a neural network classifier for

greedy, transition-based dependency parsing. Traditional parsers perform feature extraction

based on templates. Lexicalized features are highly sparse, which is a common problem

in many NLP tasks. However, in dependency parsing the problem is worse since parsing

critically depends on word-to-word interactions. The problem of incompleteness is a problem

in all hand-crafted feature templates. Even with expertise involved, it is impossible to include

every conjunction of every useful word in the template. Feature generation and extraction is

computationally highly expensive. During experiments Chen and Manning discovered that

95% of the processing time was consumed by the feature computation.

The sparsity problem was solved using low-dimensional, dense word embeddings. A

word embedding is a function mapping words to a multi-dimensional vector. Similar words

were expected to have close vectors. For example, the words ‘was’, ‘were’ and ‘is’ were

represented as close vectors since they share a lot of similarity between them. The part-

of-speech tags (POS) and dependency labels were also represented as a multi-dimensional

vectors. The tags and labels are small discrete sets, however it was found that these still show

semantic similarities like words. For example, in POS tags, NNS (plural noun) should be

close to NN (singular noun) and in dependency labels, NUM (numerical modifier) should be

close to AMOD (adjective modifier).

2.3 CoNLL 2017 18

Incompleteness was solved by the neural network classifier. The classifier did not require

to enumerate all possible combinations available of the features. Chen and Manning [11]

employed a novel function called cube activation function in the neural network instead of

the traditional sigmoid functions. Hence, every hidden unit was computed by a non-linear

mapping. The cube activation elements were sourced from the three different embeddings:

word, POS tags and dependency labels embeddings.

Matrix multiplication with low-dimensional vectors solved the expensive processing

requirements. Chen and Manning precomputed the matrix multiplication of the top 10,000

most frequent words, all POS tags and dependency labels. Hence, rather than performing

matrix multiplications, only a lookup in a table was performed at each iteration. This pre-

computation step increased the speed of their parser by 8 to 10 times and was able to parse

1013 sentences per second with a 92% accuracy [11].

Chen and Manning also addressed the three stated problems and were the first to show

that neural dependency parsing can outperform conventional parsers. Their experimental eval-

uations showed that their parser is superior to other greedy parsers, such as MaltParser [45]

by Nivre et al., in both accuracy and speed.

Weiss et al. [60] at Google adopted this paradigm to improve the state-of-the-art parsing

with the release of SyntaxNet1 which was considered as the world’s most accurate parser with

over 94% accuracy on well-formed English text. Trained linguists on this task agree between

96 to 97% of the cases, indicating that parsers are approaching human performance [60].

2.3 CoNLL 2017

The Conference on Computational Natural Language Learning (CoNLL) is a yearly confer-

ence organised by the Association for Computational Linguistics (ACL) which focuses on

statistical, cognitive and grammatical inference. One of the shared tasks of CoNLL 2017,

called ‘Multilingual Parsing from Raw Text to Universal Dependencies’ [67], was dedicated

to dependency parsers for an extensive number of languages that can operate in a real world

1https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html (Ac-

cessed: 2018-10-31)

2.3 CoNLL 2017 19

setting. This task was possible because in the previous years, de Marneffe et al. [15] started

an initiative called Universal Dependencies (UD) which was setup with the aim to develop

cross-linguistically consistent treebank annotation for many languages and hence facilitating

multilingual parser development and cross-lingual learning.

UD developed 64 treebanks in 45 languages where 15 languages have two or more

associated treebanks. For CoNLL the 2017 shared task of dependency parsing, amongst the

treebanks eight were small and hence the whole dataset could be used for training. Out of the

45 languages, four were considered as surprise languages implying that these languages have

not been previously released in UD and were only available one week prior to the evaluation

stage. The aim of the surprise languages is to inspire participants to develop real multilingual

techniques to parsing, utilising data from other languages [67].

For CoNLL 2017 two baseline parsers were used; UDPipe by Straka et al. [55] and

SyntaxNet by Kong et al. [32]. The aim of the baseline parsers is to provide pre-trained

models for all languages which participants could improve upon. Both parsers are open

source and can be used without any restriction.

The ranking of each system was based on the main evaluation metric, Labeled Attachment

Score (LAS), averaged over all test sets representing all languages. Other secondary metrics

were used to evaluate the systems highlighting their strengths and weaknesses. The secondary

metrics included tokenization, sentence and word segmentation F1 scores. In the 2017

shared task, the top ranked system was a neural dependency parser based on Long-Short

Term Memory (LSTM) networks submitted by the University of Stanford [18]. However,

this system placed fourth on the surprise languages and second on the small treebanks

classifications. The second ranked system was submitted by Cornell University, which was

an ensemble of three parsers: one graph-based and two transition based [54]. This system

ranked first on the surprise languages and small treebanks classifications. The third ranked

system, by the University of Stuttgart, was also an ensemble of two transition-based and one

graph-based parsers [4]. An important conclusion from CoNLL 2017 was that the surprise

languages and those languages which had small treebanks were difficult to parse with the

best accuracy under 50% [67].

2.3 CoNLL 2017 20

The process employed by Shi et al. [54], representing the University of Cornell, consisted

mainly of four phases; preprocessing, feature extraction, unlabelled parsing and arc labelling.

Their system solely focuses on dependency parsing. Hence, the tasks of tokenisation,

sentence boundary detection, POS tagging and morphological features were handled by

baseline models generated by UDPipe.

According to Shi et al., there were two major challenges in CoNLL 2017. The first

was that a large part of the datasets represent morphologically rich languages. Secondly, a

considerable fraction of the languages have limited training data. These two challenges were

encountered and tackled during the feature extraction phase. In this phase, the input sentence

was split into words and each word had its features extracted twice; one based on character

level and the other on word level. Amongst the most popular methods for word representation

is through word embeddings however, this methodology does not provide enough information

for morphologically rich languages. In order to overcome this challenge Shi et al. adopted bi-

LSTM vectors to obtain character level representation which often result in better information

coverage. The second challenge was tackled by transferring delexicalized information from

more resourced language datasets to a target lower resourced language. For languages with

low training data, the most linguistically similar languages were selected and delexicalized

models were trained and applied to the target language.

The unlabelled parsing phase was also composed of two stages. In the first stage, the

ensemble of parsers analyzed the input sentence, each producing a syntactic structure in

parallel. In the second stage, a parsing algorithm was applied to the original sentence by also

inferring the analysis produced by each parser in the first stage. This methodology is called

reparsing which was defined by Sagae and Lavie [51]. The graph-based parser was based

on Eisner’s algorithm [22] and used MST [12, 21] for scoring. The transition-based parsers

were based on dynamic programming; one arc–eager and the other arc–hybrid. For these

parsers, two bi-LSTM vectors were used to reduce the large search space, one from the top

of the stack and the other from the top of the buffer. The scoring during the reparsing stage

was performed using Dozat and Manning [17], which was the same scoring algorithm used

2.4 Deep Learning methodologies 21

by Stanford’s University’s winning entry [18]. For the arc-labeling phase, a labeler proposed

by Kiperwasser and Goldberg [31] was used.

For the arc-labeling phase, a labeler proposed by Kiperwasser and Goldberg [31] was

used. A predicted arc would have a head and a modifier. These tokens were concatenated

and passed through a multi-layer perceptron (MLP). The output with the highest score from

the MLP would be the potential label.

This system ranked second in the overall classification and first in the surprise languages

and small treebanks classifications. The better results of this system in the surprise languages

and small treebanks classifications over the system presented by the Stanford University[18]

were attributed to the feature extraction phase [67].

Most teams used a single parsing model except for four teams which submitted ensemble

systems. An ensemble system is composed of a set of individual parsers operating together.

The two top ranked parsers used Recurrent Neural Networks (RNN) whilst the third used

Convolution Neural Networks (CNN). Both of these architectures form part of a class of

Machine Learning techniques called Deep Learning where neural networks are composed

of several layers rather than the tradition single hidden layer. For this reason, we will now

provide a brief overview and review of Deep Learning.

2.4 Deep Learning methodologies

The thought process of humans does not start from scratch every time. The human thought

process is based on past experience and we use that experience to infer knowledge on current

decisions to be taken. We humans can do this because our thought process is persistent.

Traditional shallow neural networks cannot replicate this process.

The term ‘deep’ in deep learning refers to the number of layers which compose the neural

network. In deep learning, each layer performs a transformation on the input data according

to a function into an abstract representation such as a matrix. This representation is then fed

into the subsequent layer to achieve more featured representation. The process of feeding the

output of a layer as input to the next layer will continue until the neural network produces

2.4 Deep Learning methodologies 22

a final result. Three of the most popular deep learning technologies are Recurrent Neural

Networks (RNN), Long Short Term Memory (LSTM) networks and Convolution Neural

Networks (CNN).

RNNs tackle the issue of persistent memory by simply implementing loops making use

of sequential information and hence allowing information to persist. A RNN can be thought

of as multiple copies of the same network, each passing a message to a successor, with the

output being dependent on the previous computations. RNNs have a memory which captures

specific information called dependency about what has been calculated previously. In theory,

RNNs should be capable of handling long-term dependencies; information collected and

attributed to the early computation stages of the network. However, in practice, RNNs fail

in this problem. LSTM networks are a special kind of RNNs, capable of learning long-

term dependencies and remembering information for long periods of time as their default

behaviour. In CoNLL 2017, many of the top ranked parser systems made extensive use of

LSTMs.

CNNs are typically used to classify images although these type of networks were also

successfully used for NLP tasks. CNNs are composed of convolution and classification

layers. A convolution is a function which measures the overlap of two distinct functions. The

convolution layers perceive input and output as a three dimensional representation. Before

the classification step, the three dimensional representation is flattened to a two dimensional.

More detailed information about these architectures is given in the upcoming sections.

The Methodology chapter will describe how a compound of these architectures was used to

achieve a novel dependency parsing system.

2.4.1 Neural Network Optimizers

A Neural Network Optimizer is an optimization algorithm which is designed to maximise

or minimise an objective or error function. Typically, when the aim is to maximise, the

term objective is used whilst when to minimise the term error is preferred. The optimization

algorithm is a mathematical function based on the internal learnable parameters of a model.

2.4 Deep Learning methodologies 23

The parameters also also known as hyperparameters which are fundamental for training

efficiently and effectively the model to generate accurate results. Three of the most common

parameters are the learning rate, the weight and bias. Hence, the use of an neural network

optimizer is required to constantly fine-tune the values of such parameters which determine

the model’s training phase and its resultant output.

There are two major classes of optimization algorithms:

• First Order Optimization Algorithms which are algorithms that minimise or maximise

a function using the gradient acquired from the function with respect to the parameters.

• Second Order Optimization Algorithms which use a second order derivative to min-

imise or maximise a function.

The derivative of a function is a scalar that measures the rate of change of the function’s

value. A second order derivative of a function is the derivative of a derivative of that function.

The gradient is the vector representation of the derivative. The main disadvantage of Second

Order Optimization algorithms is that such algorithms are very expensive to compute and

hence are only used in particular cases. On the other hand, First Order Optimization

algorithms are much more easy to compute and require less resources.

Gradient Descent is the most important and popular First Order Optimization algorithm.

The aim is to find the minimum loss of the error function. The learning rate is the size of the

step to be performed with the aim to reach a minimum. In simple terms, follow the downhill

direction of the slope of a U-shaped graph until the lowest point (minimum) is achieved.

This process of slowly trying to reach the minimum is known as convergence. This algorithm

has four main challenges:

1. Optimal learning rate - to choose the most appropriate learning rate is difficult. A

learning rate which is too small leads to slow convergence. A learning rate which is

too high can prevent convergence.

2. Learning rate schedules - This is the schedule of updates for the learning rate during

the training phase. Such schedule must be predefined prior to training phase and cannot

adapt to the training dataset characteristics.

2.4 Deep Learning methodologies 24

3. Learning rate updates - the same learning rate must be applied to all parameter updates.

4. Convergence - typically the error functions are non-convex (not a U-graph) which

have a number of minima with different values. It is difficult to converge a non-convex

function and the algorithm can get trapped in a sub-optimal minimum.

Various algorithms were developed to optimize Gradient Descent and overcome these

challenges. The following is a description of the mostly used optimization algorithms in

practice.

AdaGrad

This algorithm allows the learning rate to adapt based on the parameters by performing small

updates for frequent and larger updates for sporadic parameters and hence this algorithm fits

well when training sparse data. The main advantage is that the learning rate does not need

any adjustments but on the other hand it has the disadvantage that the learning rate is always

decreasing. The constant decrease of the learning rate is known as the vanishing learning

rate problem. This algorithm has been proposed by Duchi et al. [19].

AdaDelta

This is an evolution of the AdaGrad algorrithm where the learning rate does not tend to

decrease, thus solving the vanishing learning rate problem. This problem is solved by using

an exponentially weighted moving average over a window of the history of updates. AdaDelta

was proposed by Zeiler [64].

Adam and Adamax

Adaptive Moment Estimation (Adam) is an algorithm similar to AdaDelta with the addition

that it keeps a history of the mean of the past gradients, consequently, Adam records two

distinct histories. The moment is defined a specific point in the recorded history. In practise,

Adam performs very well when compared to other similar adaptive algorithms because it

converges in a significant short period of time, in an efficient way. Adamax is a modified

2.4 Deep Learning methodologies 25

version of Adam which is more suitable for sparse parameter updates. Both Adam and

Adamax were proposed by Kingma and Ba [30].

SparseAdam

This is a variant of Adam which is suitable for sparse training data. SparseAdam restricts

the parameters updates only to the specific moments which caused an update in the gradient.

Rather than an algorithm in itself, it is more of a specific implementation by PyTorch2, the

deep learning framework used for this study. This implementation was reviewed because it

forms part of the experiments conducted.

SGD and ASGD

Stochastic Gradient Descent (SGD) performs a parameter update of each training data point.

These frequent updates should help to discover better minima, however, this advantage may

result in a problem because the frequent updates can cause the convergence to oscillate and

never reach a minimum. The Averaged Stochastic Gradient Descent (ASGD) is an extension

of SGD where the algorithm keeps a history of the average of the updated parameters. ASGD

was proposed by Polyak and Juditsky [49].

RMSProp

RMSProp is an algorithm very similar to AdaGrad which is unpublished and available as an

online resource3. To solve the vanishing learning rate, RMSProp dismisses the older gradient

history and divides the learning rate by a running average of the recent gradients only.

2.4.2 Word embeddings

Natural language is highly effective for us humans to relate to the world. Together with

emotions and body language, we can easily convey a message with little or no ambiguity.

2https://pytorch.org/docs/master/_modules/torch/optim/sparse_adam.html (Accessed: 2018-

10-31)
3http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (Accessed: 2018-

10-31)

2.4 Deep Learning methodologies 26

This is because we have senses which enable us to implicitly describe and structure such

complexity into our language. For a machine to learn a natural language it needs to understand

how we humans observe and relate to the world. Word embeddings is a learned representation

of natural text as a vector which is capable to capture morphological, semantic and contextual

information.

A vector is a series of real numbers and the amount of numbers in the series is called

dimension. The dimension determines how much detail of the information is stored. Typically,

word embeddings are generated using 100 dimensions; implying one vector is composed of

100 numbers, although 300 dimension is also common in research. The larger the dimension

the more computational resources are required. The vectors offer the unique capability of

performing mathematical operations on words. In a word embedding corpus, similar words

should converge to the same locations in a three dimensional space. Similarity is calculated

using the cosine distance between two vectors. The result of these operations is always a

vector which has to be fetched from the embedding corpus. From the embedding corpus the

closest, most similar vector has to be fetched. In practice, more than one vector is fetched

because the distance between vectors (similarity) is very close.

Consider the words re (king), reġina (queen), mara (male) and raġel (female); the word

embeddings should be located in the same vector space since these words are similar and

related. The word embeddings are:

re -0.39504 -0.65514 0.39498, ..., -0.17863

reġina -0.36358 -0.9966, 0.51852, ..., 0.13695

mara 0.4302, -0.23856, 0.7076, ..., 0.74989

raġel 0.57179 0.21929 -0.43828, ..., -1.0287

The following mathematical operation can be performed:

re - raġel + mara ≈ reġina

re

x regina

−ragel

+mara

2.4 Deep Learning methodologies 27

Mikolov et al. state that the directions and distances between vectors in the same vector

space detail semantic relationships; for example male-female, verb tense such as walking-

walked and even country-capital, relationships between words, as illustrated in the Figure 2.1.

The authors also claim that the model is capable to organise concepts and learn the relation-

ships between them. The model was trained in completely unsupervised manner and no

information was given about what capital city means or relates to [40].

Figure 2.1 Word embeddings of capitals mapped to the countries after projection [40]

The three most important and popular implementations to generate word embeddings are

word2vec by Mikolov et al. [39], GloVe by Pennington et al. [47] and fasttext by Bojanowski

et al. [6]. Word2vec is the very first implementation with GloVe similar to it but uses a

different algorithm.

Word2vec is primarily a predictive model whilst GloVe is a count-based model. In a

predictive model, the algorithm tries to minimise the loss of predicting the target words

from the context words using their vector representations. Count-based models build the

2.4 Deep Learning methodologies 28

vectors by performing dimensionality reduction on co-occurrence counts. Co-occurrence

counts are constructed in the form of a matrix which record the frequency of a word as a

row and the context of that word as a column. Since the contexts are large by definition,

the matrix is factorised to achieve lower dimensional version. In the case of GloVe, this

process is performed by first normalising all counts and then performing a log function on

the normalised counts. According to Pennington et al., this should increase the quality of the

learned vectors.

Fasttext is the latest word embeddings implementation created by the Facebook Research

for learning of word representation and sentence classification [6]. This library is currently

being used by Facebook to deliver targeted adverts based on posts and status updates. Fasttext

is an evolution of word2vec where each word is the aggregation of the character n-grams.

According to Bojanowski et al., this should give more context to the word embeddings and

produce more accurate results. Consider the word reġina; the word embedding is the sum of

the vectors of n-grams:

<re, reġ, reġi, reġin, reġina>

One of the major advantages of fasttext is that better word embeddings for rare words

can be generated because all words are decomposed to n-grams and these n-grams of rare

words are shared with those of frequent words. In word2vec and GloVe, a rare word has very

few neighbours to be associated with and hence it lacks context.

Out of Vocabulary Words (OVW) are words that do not appear in the training corpus.

Fasttext can construct the word embeddings of such words because of the use of n-grams

whilst word2vec and GloVe are incapable because a word is considered as one atomic entity.

This is one of the reasons why Facebook is still capable of delivering targeted advertisements

when the posts or status updates contain spelling mistakes.

One of the drawbacks of fasttext is that it requires more time to generate word embeddings

than the other two implementations because each word in the corpus has to be decomposed

into n-grams. Furthermore, as the corpus size increases, the computational resources required

greatly increase because n-grams generation is exponential.

2.4 Deep Learning methodologies 29

2.4.3 Deep neural network architectures: RNN and LSTM

Recurrent Neural Networks (RNN) are a type of powerful and robust neural networks

especially adopted for sequential data. RNNs are the base of some of the most technologically

advanced services such as Apple Siri and Google Voice. It is an important architecture

because it was the first of its type which is capable of remembering the input by design of its

internal memory.

Due to this design, RNNs are capable of precisely predicting future data patterns based

on deep understanding and context and hence they are the preferred architecture for problems

where sequential data is involved such as text, speech and financial data.

RNNs are based on Feed Forward Neural Networks (FFNN) which are more basic as

architecture. In FFNN, the information moves in one direction only; from the input layer,

through the hidden layers and finally out from the output layer as illustrated in Figure 2.24.

The information is channelled through a sequence of mathematical operations performed at

the nodes. In a FFNN, information always touches a particular node just once. In such neural

networks, there is no memory and the network only considers the current feed and hence a

FFNN is not capable of determining the upcoming input. The input is transformed to output

with supervised learning and the output is a label. A label is a name which is given to certain

input. For example, a FFNN is trained on labelled images to categorise cats and horses. The

FFNN would be trained until the error is minimised as much as possible when predicting

the categories. The labelled images are fed into the FFNN in a sequential manner, meaning

an image of cat a subsequent of a horse, the trained FFNN is not capable to perceive the

next image. A FFNN needs to always process the current input with the consequence that it

does not have a notion of order in time. The RNN architecture tries to solve this problem by

using an internal short term memory. This is achieved by simply looping the input which

was perceived previously as illustrated in Figure 2.35. Therefore an RNN has two inputs; the

current feed and the recent past feed.

4https://tex.stackexchange.com/questions/364413 (Accessed: 2018-10-31)
5https://tex.stackexchange.com/questions/364413 (Accessed: 2018-10-31)

2.4 Deep Learning methodologies 30

Figure 2.2 Feed Forward Neural Network architecture

Input

layer

Hidden

layer

Ouput

layer

Figure 2.3 Recurrent Neural Network architecture

Input

layer

Hidden

layer

Ouput

layer

The main purpose of adding a memory to a neural network is that the sequence of data

being fed into the network is information in itself and RNNs use this information to perform

tasks; which FFNNs are not capable of. The Elman network was proposed Elman [23] which

2.4 Deep Learning methodologies 31

is an early implementation of RNN which are also known as Simple Recurrent Network

(SRN).

Figure 2.4 Elman’s Network [23]

Such network is three-layered with a set of context units. This hidden layer is connected

to the context units. Figure 2.4 illustrates Elman’s implementation, where the text string

BTSXVPE is the input string at time step t. The decision which was reached at time step t-1

is contained in the context unit and will influence the hidden layer at time step step t. Like

FFNNs, RNNs assign weights to the inputs but RNNs also assign weights to the context.

These weights are modified through gradient descent and Backpropagation Through Time

(BPTT).

Backpropagation is a process which channels back the final error through all the layers

assigning a portion of the weights by calculating derivatives. BPTT is a series of backpropa-

gation linking one time step to another.

A FFNN is capable only to map one input to one output whilst RNN can map one to many,

many to many and many to one. Example of applications of many to many are translations

from one language to another and for many to one is voice classification and recognition.

Long Term Short Term Memory (LSTM) networks are an extension of RNN proposed

by Hochreiter and Schmidhuber [27]. The main advantage of LSTMs over RNNs is that

they are capable to maintain memory for a longer period of time through the iterations of

the neural networks; thus the applied term Long Term. LSTMs can achieve this because it

2.4 Deep Learning methodologies 32

is a memory unit which is capable to determine what to store, when to read and when to

drop information. Figure 2.56 illustrates the LSTM unit decomposed with gates and flow of

information. These operations are achieved by opening and closing three gates:

1. the input gate which determines if the input should pass through.

2. the forget gate which drops information which is not considered important.

3. the output gate which influences the output at time step t.

Figure 2.5 LSTM architecture

ct

����

× ht×

×

ft ������ 	
��

it��
�� 	
�� ot���
�� 	
��

xt

xt xt

xt

The gates are sigmoidal form meaning that their values range from 0 to 1. The forget

gate was introduced by Gers et al. [26]. One major problem of the work by Hochreiter

and Schmidhuber [27] was that the state of the LSTM network may grow indefinitely and

eventually fail. Gers et al. solved this problem by introducing the forget gate which drop the

information at appropriate times and hence gives resources back to the neural network.

Bidirectional Recurrent Neural Networks (BRNN) were proposed by Schuster and Paliwal

[53]. The main idea behind BRNN is that the output at time step t may also depend on

6https://tex.stackexchange.com/questions/332747 (Accessed: 2018-10-31)

2.5 A bootstrapping approach for Maltese 33

the future inputs. This is achieved by stacking two independent RNNs together which are

trained simultaneously. For one RNN, the input is fed in normal time known as positive time

direction. The other RNN is fed in reverse time and is known as negative time direction.

Typically, the outputs of both RNNs are concatenated at each time step, with the possibility

of other mathematically operations. The aim of this architecture is to capture more context

which in turn improve the networks’ output results [53].

This section explained in detail how the basic Feed Forward Neural Networks evolved to

Recurrent Neural Networks which were in turn extended to Long Term Short Term Memory

networks to improve efficiency and performance. Finally, Bidirectional Recurrent Neural

Networks were discussed as another evolution.

2.5 A bootstrapping approach for Maltese

The work by Tiedemann and van der Plas [58], to our knowledge, is the only published

work which evaluated methods of dependency parsing for the Maltese language. The authors

focused their work on three widely used bootstrapping techniques; annotation projection,

model transfer and translated treebanks. The authors considered the Maltese language to be

an excellent test case to evaluate the performance and practicality of cross-lingual methods.

Maltese is a computationally low resourced language with no parsers and an annotated

dataset was not yet available at the time of this work. This meant that the authors had to

bootstrap annotations for Maltese using resources from other languages, making the task

harder than normal machine learning when annotated data is actually available.

Statistical approaches to natural language processing tasks require large annotated datasets

in order to be able to perform reliably and accurately. The task of annotating datasets is highly

time consuming, expensive and infeasible for large corpora. Automatic dataset annotation

often fails because the annotation required is the information to be discovered and fetched.

Bootstrapping techniques provide a viable way to manual annotation [59].

Early bootstrapping techniques concentrated on annotation projection which is also

known as data transfer [28]. In this approach, the annotations from well-sourced languages

2.5 A bootstrapping approach for Maltese 34

such as English and Spanish are projected to the target low-resourced language. Tiedemann

and van der Plas used the heuristics as proposed by Hwa et al. [28] that make it possible to

project the annotations from one language to another through bitext word alignment. Bitext

word alignment is the process of identifying the translation relationships between words the

bi-lingual parallel text. This process will result in a graph between the opposing sides of the

parallel text. Projection rules are applied to the resultant graphs to create the tree structures

required for the training process of the target language. The trees were further enriched with

morphological features and POS information.

In model transfer, models are trained on annotated language sources and implemented

onto the target language. This method works reasonably well only for closely related lan-

guages. To achieve good performance, the source and target languages must have significant

lexical overlap else the models have to be delexicalised as part of the preprocessing stage.

This method is considered to be the simplest transfer approach.

The third technique which was evaluated was translation of treebanks using Statistical

Machine Translation (SMT) models trained on parallel datasets. This cross-lingual parsing

would result in synthetic training data with the projected annotation from the source treebank.

This technique was proposed by Tiedemann et al. [57] and evaluation results proved that this

approach performed better than the annotation projection [58]. The two main problems of

this approach is the lack of quality translation and sufficient training data for creating the

models.

The Maltese treebank used by Tiedemann and van der Plas was the initial private ver-

sion of research conducted by Čéplö [48] to release the first Maltese annotated treebank.

The parser used in the experiments is a graph-based parser which forms part of the Mate

Tools7 developed by Bohnet [5]. The two principal approaches of the study; annotation

projection and treebank translation depend on parallel translated datasets. This requirement

was satisfied by using publicly available translated legal documents. The European Union’s

(EU) legislative documents, Acquis Communautaire (AC), is a large corpus of official doc-

uments accumulated over a long period of time. The Directorate General for Translation

7https://code.google.com/archive/p/mate-tools (Accessed: 2018-10-31)

2.5 A bootstrapping approach for Maltese 35

(DGT-Translation) Memory is a large aligned translation memory of the AC covering the

twenty-two official EU languages and their 231 language pairs where each sentence of the

documents was professionally human translated. Hence, the DGT-Translation Memory was

used to create these necessary parallel datasets.

For the evaluation, Tiedemann and van der Plas used a subset of 19 languages, including

Maltese which had sufficient parallel translations. The corpus used for evaluation was

composed of over one million translated sentences and a range of 19 to 26 million tokens

per language. Maltese was tokenized using an in-house tokenizer whilst the rest of the

languages were tokenized using UDPipe [55]. No specific details were published on the

in-house tokenizer however, both tokenizers follow the standards of the UD treebanks. The

best performing models were achieved using the English, Spanish and Italian treebanks.

The translation treebank approach for the Spanish treebank achieved the highest Labeled

Attachment Score (LAS) of 60.50% and highest Unlabeled Attachment Score (UAS) of

70.32% as illustrated in Table 2.1. From the results, it can be noted that Italian and Spanish

are the languages which have the most lexical overlap with Maltese. The translated treebanks

approach generally performed better than the other two approaches.

Table 2.1 Results for the best three language treebanks [58].

Treebank Projection Transfer Translation

LAS UAS LAS UAS LAS UAS

English 59.39 69.53 51.11 62.14 59.62 68.88

Spanish 59.78 69.41 55.54 65.88 60.50 70.32
Italian 57.70 66.74 56.04 65.11 60.35 68.80

Further to these experiments, Tiedemann and van der Plas tried to determine if multi-

source models can be used to overcome the individual deficiencies of the projected data sets.

Using the annotation projection technique, four further experiments were performed using

two other datasets. The two datasets were composed of an aggregation of treebanks from

English and Romance Languages and the another dataset was an aggregation of all treebanks

as illustrated in Table 2.2.

2.5 A bootstrapping approach for Maltese 36

Table 2.2 Multi-source datasets [58].

Dataset 1 Dataset 2

English Bulgarian

Spanish Czech

Italian English

Portuguese Spanish

Romanian Italian

Slovenian

The authors did not provide any reasons why the annotation projection technique was

used instead of the translated treebanks method which performed better. One of the exper-

iments was conducted with the inclusion of inflection information from the Korpus Malti.

Inflection information details how words in language are modified in different contexts such

as grammatical categories and tenses. These experiments resulted in minimal improvement

over the previous experiments as illustrated in Tale 2.3.

Table 2.3 Multi-source projection models [58].

Method Languages LAS UAS

Projection All languages 62.51 71.54

Projection Multi-source dataset 1 62.52 71.28

Projection Multi-source dataset 2 62.77 71.80
Projection with inflection info Multi-source dataset 2 63.03 71.54

At the conclusion of the final set of experiments, the authors stated that adding lexical in-

formation without contextual disambiguation provided insignificant increase in performance.

The scores achieved in all experiments have limited practical value despite interesting for

the research aspect. Tiedemann and van der Plas stated that cross-lingual parsing was still

lagging behind fully supervised models. As possible future work, the authors recommend to

study cross-lingual methods and their practicality over large-scale experiments which involve

many more languages because the successful use of such techniques is still unproven. Such

study and detailed analyses can comparatively explore the similarity between languages on

specific linguistic levels.

2.6 The Universal Dependencies 37

2.6 The Universal Dependencies

Universal Dependencies (UD) is an open community initiative with the aim to develop a

framework for cross-linguistically consistent grammatical annotation for a wide range of

languages. This framework should promote research on multi-language parsers, parsing

algorithms and cross-language learning [16]. The annotation scheme used in UD is the

evolution of previous efforts by the University of Stanford, Google and Interset [48].

The first effort to standardise dependencies was by the University of Stanford. In 2005,

Stanford developed a parser to support their Recognizing Text Entailment (RTE) systems.

RTE systems are systems which are capable to map a directed relation between pairs of text

expressions using inference. The Stanford Dependencies was the back-end component of the

parser used in this system. During that period, the Stanford Dependencies evolved as the de

facto standard for dependency analysis of English. At a later stage, these were adopted for

other languages such as Chinese, Italian and Spanish [16].

The Google universal tag set was developed as part of the cross-linguistic analysis of the

CoNLL-X shared task by McDonald and Nivre [37]. The tag set was used for the first time

for unsupervised part-of-speech (POS) tagging by Das and Petrov [14]. Subsequently this

work by Das and Petrov was used as a process for aligning the diverse tag sets to a standard

by De Marneffe et al. [16].

The Interset Interlingua is a tool developed by Zeman which maps and converts different

morphological tag sets amongst various languages [65]. This tool was later adapted as a

morphological layer in HamletDT. The morphological layer determines how the individual

words of a particular language are constructed. HamletDT is a collection of dependency

treebanks and dependency conversions annotated with a standard tag set [66].

UD is the consolidation of these three works into one consistent clear framework based

on the CoNLL-X format. The CoNLL-X format was defined during the previous editions

of the CoNLL shared task by Buchholz and Marsi [10]. The format of the UD treebanks

was later updated and named CoNLL-U with the initial guidelines published in October

2014. Subsequently, there were a number of releases of treebanks for various languages. In

March 2017, the second version of the UD specification was released and in July 2018, the

2.6 The Universal Dependencies 38

second revision of this version will be published. Currently, UD is composed of more than

100 treebanks in over 60 languages with a number of upcoming treebanks for low resourced

languages, including Maltese.

The CoNLLU-U format represent the dependency trees of that particular language in

text format. The plain text file is UTF-8 encoded in order to support the large variety of

characters of the different languages. Each entry must be stored in one line and there are

three types of lines defined:

• Word line which is a word of a particular sentence with tab delimited fields.

• Empty line which marks a sentence boundary.

• Hashtag line which indicates a comment.

The word line contains the actual annotation defined by ten fields which are described in

Table 2.4 and documented by Nivre et al. [43].

Table 2.4 CoNLL-U format [48].

Field Layer Description

1 ID Word index, integer starting at 1 for each new sentence; may be a

range for tokens with multiple words.

2 FORM Word form or punctuation symbol.

3 LEMMA Lemma or stem of word form.

4 UPOSTAG Universal part-of-speech tag drawn from the revised version of the

Google universal POS tags.

5 XPOSTAG Language-specific part-of-speech tag.

6 FEATS List of morphological features from the universal feature inventory

or from a defined language-specific extension.

7 HEAD Head of the current token, which is either a value of ID or zero (0).

8 DEPREL Universal Dependency relation to the HEAD (root iff HEAD = 0) or

a defined language-specific subtype of one.

9 DEPS List of secondary dependencies (HEAD-DEPREL pairs).

10 MISC Any other annotation.

The UD schema defines morphological and syntactical representations. The morpholog-

ical representation is indicated through grammatical notions whilst syntactically through

dependency relations. The three levels of morphological representation defined by UD are:

2.6 The Universal Dependencies 39

• Lemma which is the root of the word defined by the field LEMMA.

• POS tag which marks a sentence boundary defined by fields UPOSTAG and XPOSTAG.

• Feature set which show the characteristics of the word defined by the field FEATS.

The lemma is determined by the specific natural language dictionary whilst the POS tags

and features are defined by UD. Some languages do not use all Universal POS tags whilst

others require specific POS tags which are listed under XPOSTAG. The Universal POS tags

are described in Table 2.5.

Table 2.5 Universal POS tags [43].

Tag Class Description

1 ADJ adjective

2 ADP adposition

3 ADV adverb

4 AUX auxiliary verb

5 CONJ coordinating conjunction

6 DET determiner

7 INTJ interjection

8 NOUN noun

9 NUM numeral

10 PART particle

11 PRON pronoun

12 PROPN proper noun

13 PUNCT punctuation

14 SCONJ subordinating conjunction

15 SYM symbol

16 VERB verb

17 X other

The aim of features sets is to categorize words in a more precise way by offering

additional annotations about the word which give more specific information on its speech

and morphological properties. A feature is of the form name=value and every word can have

any number of features assigned to it. The UD framework provides the list of features in

Table 2.6 and each feature is described in detail in Appendix A. For a treebank to be officially

considered as a valid UD treebank, fields 1, 2, 4, 7 and 8 are required whilst the remaining

can be left empty marked by an underscore [43].

2.6 The Universal Dependencies 40

Table 2.6 Universal features [43].

Lexical features Inflectional features

Nominal Verbal

PronType Gender VerbForm

NumType Animacy Mood

Poss Number Tense

Reflex Case Aspect

Foreign Definite Voice

Abbr Degree Evident

Polarity

Person

Polite

Listing 2.7 shows a sample sentence from the English UD treebank which can be down-

loaded from the Universal Dependencies repository8.

Table 2.7 Sample sentence from UD English treebank.

sent_id = reviews-187266-0007

text = This chef knows what he is doing.

1 This this DET DT Number=Sing 2 det 2:det _

2 chef chef NOUN NN Number=Sing 3 nsubj 3:nsubj _

3 knows know VERB VBZ Mood=Ind 0 root 0:root _

4 what what PRON WP PronType=Int 7 obj 7:obj _

5 he he PRON PRP Case=Nom 7 nsubj 7:nsubj _

6 is be AUX VBZ Mood=Ind 7 aux 7:aux _

7 doing do VERB VBG Tense=Pres 3 ccomp 3:ccomp _

8 . . PUNCT . _ 3 punct 3:punct _

The first two lines are hashtag lines which contain comments describing the sentence. The

first comment shows the source of the sentence which is ‘reviews’ whilst the second comment

is the actual text of the sentence. Although this is not a defined standard of commenting,

many authors have adopted this style. The first word line has an ID value of ‘1’ with word

value of ‘This’ and a POS tag of type DET. From Table 2.5 it can be deducted that this POS

tag is a ‘determiner’. For display purposes, the feature set of each word line was reduced to

8https://github.com/UniversalDependencies/UD_English-EWT (Accessed: 2018-10-31)

2.7 The Maltese Universal Dependencies 41

one feature. The full feature set for this word line is ‘Number=Sing|PronType=Dem’ indicate

features ‘Number’ and ‘PronType’ separated by a pipe. This word line depends on word

line 2 which determines part of the dependency tree of the sentence. The full dependency

tree is illustrated in Figure 2.6.

This chef knows what he is doing .

ROOT - VERB

DET NOUN

PRON

PRON

AUX

VERB

PUNCT

Figure 2.6 Dependency structure for sample English sentence.

2.7 The Maltese Universal Dependencies

For this work, a private first version of the Maltese UD Treebank (MUDTv1) was provided

by Čéplö [48]. Private communication with the author reveals that this first version of

the Maltese treebank was not intended to be fully UD complaint. The upcoming version,

MUDTv2, due to be officially released in November 2018 will be fully UD complaint and

distributed via UD website9 with the other languages’ treebanks.

Čéplö states that the UD framework was adopted to create the Maltese treebank because it

has emerged as the de facto tree annotation standard for NLP functions. UD is well organised

and coherent which can be confirmed by its adoption by the industry and growth of the

available treebanks.

The source of MUDTv1 is two independent corpora which were published from earlier

initiatives. The Maltese Language Resource Server (MLRS) hosts a number of Maltese

corpora. The Korpus Malti v3.0 (2016)10 is the latest available and was one of the corpus

9https://github.com/UniversalDependencies/universaldependencies.github.io (Accessed:

2018-10-31)
10http://mlrs.research.um.edu.mt/index.php?page=corpora (Accessed: 2018-10-31)

2.7 The Maltese Universal Dependencies 42

used by Čéplö. This corpus was tagged with the Maltese Tagset v3.0 (MTSv3) and has

an accuracy of approximately 97%. This tagset is not compatible with the UD standard

but is well documented11. Both the corpus and tagset were developed by Albert Gatt at

the University of Malta. The other corpus is called bulbulistan maltiV3 (BCv3) which was

developed by Čéplö, the same author of MUDTv1. Currently, Korpus Malti is provided as

the main Maltese corpus whilst BCv3 is maintained for legacy purposes. Although these two

corpora were developed independently, both works were published under one study by Gatt

and Céplö [25] themselves.

The fields used in the Maltese UD treebank are the ID, FORM, LEMMA, UPOSTAG,

XPOSTAG and FEATS. These fields are previously described in Table 2.4. It is important

to note that the UPOSTAG and XPOSTAG tagsets are not UD standard and it is the use of

these tagsets cause MUDTv1 not to be fully UD complaint. The following describe these

fields as adopted by Čéplö with respect to the UD framework.

ID

This is the consecutive incremental integer used as the identification number of the word of

the sentence. According to the UD framework, a word is a syntactic unit but also allow ranges

to indicate multi-words. This is applicable to Maltese, however it was not implemented in

MUDTv1 with the main reason being complications arising from the morphological analysis

of the Maltese verbs.

FORM

The FORM field is based on the tokenization work of MLRSv3 and BCv3. Since Maltese is

a morphological rich language, it was a difficult task to perform tokenization which fully

follows the rules of the Maltese language. Hence, tokenization was performed as regular

expression followed by rile based error corrections [48]. This process is described in detail

by Čéplö in [48] Section 5.3.3.4.

11http://mlrs.research.um.edu.mt/resources/malti03/tagset30.html (Accessed: 2018-10-31)

2.7 The Maltese Universal Dependencies 43

LEMMA

In MUDTv1, this field was not used and was populated with an underscore as per UD

specification.

UPOSTAG

The tagset used for this field is the Maltese Tagset v3.0 (MTSv3), the same used in MLRSv3

and BCv3 and not the UPOS tagset as described in Table 2.5. This is one of the reasons

why MUDTv1 is not 100% complaint with UD. Part-of-speech (POS) tagging was manually

applied to a subset of the two source corpora whilst the rest was applied using annotation

software. Detailed information of the whole process is documented by Čéplö in [48] Section

5.4.1. Table 2.8 illustrates the MTSv3 as used in MUDTv1. Table 2.9 illustrates the

possible mapping between UPOS and MTSv3. It is important to state that this map was not

documented in [48] and the author left it to the reader to build it. Čéplö also notes that the

most difficult part of building the map is when MTSv3 combines two word classes such as

LIL_DEF and PRON_INT. This process of constructing the map must be performed to update

MUDTv1 and make it fully complaint with the UD specifications. However, due to the fact

that this map was not documented by Čéplö, there is the possibility that the map described in

this work will not follow the reasons and decisions that will be adopted to release MUDTv2.

2.7 The Maltese Universal Dependencies 44

Table 2.8 The Maltese Tagset v3.0 [48].

ID Tag Description ID Tag Description

1 FIX_THIS Make corrections

to this token

26 NUM_WHD number one

2 _IGNORE_ ignore 27 PART_ACT active participle

3 ADJ adjective 28 PART_PASS passive participle

4 ADV adverb 29 PREP preposition

5 COMP complementizer 30 PREP_DEF preposition with

article

6 CONJ_CORD coordinating con-

junction

31 PREP_PRON preposition with

pronoun

7 CONJ_SUB subordinating con-

junction

32 PROG progressive parti-

cle

8 DEF article 33 PRON_DEM demonstrative pro-

noun

9 FOC focus particle 34 PRON_DEM_DEF demonstrative pro-

noun with article

10 FUT future particle 35 PRON_INDEF indefnite pronoun

11 GEN genitive particle 36 PRON_INT interrogative pro-

noun

12 GEN_DEF genitive particle

with article

37 PRON_PERS personal pronoun

13 GEN_PRON genitive particle

with pronoun

38 PRON_PERS_NEG personal pronoun

with negative suf-

fix

14 HEMM existential verb 39 PRON_REC reciprocal pro-

noun

15 INT interjection 40 PRON_REF reflexive pronoun

16 KIEN the verb kien 41 QUAN quantifier

17 LIL oblique particle 42 VERB verb

18 LIL_DEF oblique particle

with article

43 VERB_PSEU pseudoverb

19 LIL_PRON oblique particle

with pronoun

44 X_ABV abbreviation

20 NEG verbal negator 45 X_BOR unclassified

21 NOUN noun 46 X_DIG digits

22 NOUN_PROP proper noun 47 X_ENG English words

23 NUM_CRD cardinal numeral 48 X_FOR other foreign

words

24 NUM_FRC fractions 49 X_PUN punctuation

25 NUM_ORD ordinal numeral

2.7 The Maltese Universal Dependencies 45

Table 2.9 The Maltese Tagset v3.0 mapped to Universal POS tags.

ID MTSv3 tag UPOS tag ID MTSv3 tag UPOS tag

1 FIX_THIS X 26 NUM_WHD NOUN

2 _IGNORE_ X 27 PART_ACT PART

3 ADJ ADJ 28 PART_PASS PART

4 ADV ADV 29 PREP AUX

5 COMP DET 30 PREP_DEF PART

6 CONJ_CORD CCONJ 31 PREP_PRON PART

7 CONJ_SUB SCONJ 32 PROG PART

8 DEF DET 33 PRON_DEM PRON

9 FOC PART 34 PRON_DEM_DEF PRON

10 FUT PART 35 PRON_INDEF PRON

11 GEN PART 36 PRON_INT PRON

12 GEN_DEF ADP 37 PRON_PERS PRON

13 GEN_PRON ADP 38 PRON_PERS_NEG PRON

14 HEMM ADV 39 PRON_REC PRON

15 INT INTJ 40 PRON_REF PRON

16 KIEN VERB 41 QUAN ADJ

17 LIL ADP 42 VERB VERB

18 LIL_DEF ADP 43 VERB_PSEU ADV

19 LIL_PRON ADP 44 X_ABV SYM

20 NEG VERB 45 X_BOR X

21 NOUN NOUN 46 X_DIG NUM

22 NOUN_PROP PROPN 47 X_ENG X

23 NUM_CRD NUM 48 X_FOR X

24 NUM_FRC NUM 49 X_PUN PUNCT

25 NUM_ORD NUM

2.7 The Maltese Universal Dependencies 46

XPOSTAG

This field was populated with the same value of UPOSTAG.

FEATS

In MUDTv1, this field is empty and was marked with an underscore. Some work related

to features was already performed by Čéplö and in the upcoming version, MUDTv2, the

treebank will contain features as described in Section 2.6.

2.7.1 Sample sentence from MUDTv1

Table 2.10 shows a sample sentence from MUDTv1. The sentence in Maltese reads ‘Qaltlu

li mhux vera li x-xmajjar kollha gh̄andhom memorji koroh.’ which translates to English as

‘She told him that it is not true that all rivers carry unpleasant memories.’ Figure 2.7 shows

the dependency tree of the sample Maltese sentence.

Table 2.10 Sample sentence from UD Maltese treebank.

1 Qaltlu _ VERB VERB _ 0 root _ _

2 li _ COMP COMP _ 4 mark _ _

3 mhux _ PRON_PERS_NEG PRON_PERS_NEG _ 4 neg _ _

4 vera _ ADJ ADJ _ 1 ccomp _ _

5 li _ COMP COMP _ 9 mark _ _

6 x- _ DEF DEF _ 7 det _ _

7 xmajjar _ NOUN NOUN _ 9 nsubj _ _

8 kollha _ QUAN QUAN _ 7 det _ _

9 gh̄andhom _ VERB_PSEU VERB_PSEU _ 4 ccomp _ _

10 memorji _ NOUN NOUN _ 9 dobj _ _

11 koroh _ ADJ ADJ _ 10 amod _ _

12 . _ X_PUN X_PUN _ 1 punct _ _

2.8 Evaluation 47

Qaltlu li mhux vera li x- xmajjar kollha gh̄andhom memorji koroh .

ROOT - VERB

COMP

PRON_PERS_NEG

ADJ

COMP

DEF

NOUN

QUAN

VERB_PSEU

NOUN
ADJ

X_PUN

Figure 2.7 Dependency structure for sample Maltese sentence.

2.8 Evaluation

The standard evaluation procedure for dependency parsers is similar to other types of parsers;

to apply the parser being evaluated to a test set. The test set is a subset taken from the

annotated treebank which was not seen or used by the parser. The output of the parser is

compared to the gold standard of the treebank.

The Maltese treebank will be split into a training and a test dataset with an approximate

ratio of 80:20. The training dataset will be used to train the model and get the empirical risk.

The empirical risk is the measurement of the performance of the model on the training data.

The true risk is the accuracy of the model on the test data which is computed after building

the model. The empirical risk must be in line with the accuracy of the model on the test

dataset. Overfitting occurs when the empirical risk is almost zero and the accuracy of the

test data is low. In such cases, the model is too specialised on the training data and does not

generalise well. Overfitting is reduced through cross validation techniques such as random

sub–sampling and k-folds approaches. The most widely used metrics are:

1. EXACT MATCH which represents the percentage of the parsed sentences with the

exactly matched of the gold standard.

2.9 Conclusion 48

2. ATTACHMENT SCORE is defined as the percentage of words that have the correct head

of the dependency tree. This metric is possible in depends parsing since the trees

always have one head. On the other hand, evaluation of constituency-based parsing is

based on precision and recall since it is not possible to exact match the constituents in

the parser’s output to those in the treebank.

3. PRECISION is the percentage of dependencies from the parser’s out that were correctly

parsed.

4. RECALL is the percentage of dependencies in the test set that were correctly parsed.

5. F-MEASURE is the result of the harmonic mean of the precision and recall.

These metrics can be used for evaluation in a labelled or unlabelled approaches. For this

work, the following two metrics will be used for evaluation:

1. LABELED ATTACHMENT SCORE (LAS) represents the percentage of words that are

assigned both the correct head and correct dependency label. This is the main evaluation

metric for dependency parsing and the main evaluation metric for CoNLL [67].

2. UNLABELED ATTACHMENT SCORE (UAS) is the percentage of words that are as-

signed only the correct head. In every evaluation, UAS should always score better than

LAS.

2.9 Conclusion

In this chapter, we reported in detail the various approaches for dependency parsing. Consid-

erable attention was given to the techniques involving deep learning architectures, their use

in CoNLL 2017 and the published work on dependency parsing for the Maltese language.

Further to these detailed analysis, the methods proposed by Kiperwasser and Goldberg

seem to be the most appropriate choice for the current state of the art for Maltese dependency

parsing. Given the time and hardware resources for this work, these methods are the most

feasible. The parser by the University of Stanford [17] employed these methods and placed

2.9 Conclusion 49

first in CoNLL 2017 shared task. Another advantage that it also makes it possible to compare

the evaluation of any techniques implemented with those obtained by Kiperwasser and

Goldberg. Since the aim of this work is to also contribute to the field of dependency parsing,

we will be using a Quasi-Recurrent Neural Network [9] as the main deep learning architecture,

instead of the traditional bi-LSTM. To our knowledge, this architecture was never applied to

dependency parsing.

Experiments will be conducted using the Maltese UD treebank and the results reported

in detail in the upcoming chapters. The Maltese UD treebank will be further enriched with

trees from other languages’ treebanks with the aim to improve results. This process of

bootstrapping of the source treebank was not documented by any of the participants of

CoNLL 2017. Shi et al. [54] in their work employed similar techniques but by employing

parallel datasets and inferring models on lower resourced languages. Our process is easier to

implement and execute but should still achieve better evaluation metrics.

Chapter 3

Methodology

This chapter will detail the methods and processes employed to achieve the stated aims and

objectives. These are based on the knowledge acquired during the previous chapter and are

all justified with the necessary reasons.

3.1 Maltese Word Embeddings

One of the first tasks required for this type of work is the ability to represent words in a

description that can be used by a neural network architecture. Word embeddings offer this

functionality since words are represented as vectors. Moreover, once the word embeddings

are generated, they can be mapped into a three dimensional scatter plot. This section describes

the sequence of tasks required, starting from the source text from which the word embeddings

will be generated. From the word embeddings, a model is created and finally the model is

mapped to the scatter plot.

The first step in generating word embeddings for the Maltese language is to acquire a

source text in Maltese. Bojanowski et al. [6] published pre-trained word embeddings for 294

languages, including Maltese using ��������. The vectors are in 300-dimension and were

generated using the skip-gram model and parameters as detailed by Bojanowski et al. [6]. The

authors used Wikipedia articles as their textual source through which the word embeddings

were modelled. There are some disadvantages in using this corpus. Since the vectors are

3.1 Maltese Word Embeddings 51

in 300-dimension, more computing resources are required and furthermore training will

be more time consuming. Analysis of the corpus reveals that it contains several html tags

and keywords which also ended up as part of the word embeddings model. Bojanowski

et al. performed the necessary cleaning procedures of the Wikipedia articles. However, in

practice, it is impossible to automatically acquire a completely clean text source from these

articles and the only way would be to manually check for these type of occurrences that

need to be removed manually. Another disadvantage is that the use of Wikipedia as the sole

source for training limits the diversity of the text — especially when working with Maltese

which has a limited number of entries/article1. Diversity is an important aspect for creating

a word embedding model since it gives different context to words. In this research, a word

embedding model was created using the MLRS corpus as a source for the Maltese text. The

corpus is more diverse that the content of the Maltese Wikipedia and has more text, thus

making it more appropriate as a textual source for word embeddings.

The MLRS corpus (also known as Korpus Malti, Gatt and Céplö [25]) was developed

using a variety of texts as source including fiction and non-fiction works, academic writings,

legal documents and news-website articles. This variety of sources should cover a wide range

of subjects and contexts. A sample annotated sentence from MLRS is illustrated in Table 3.1.

To recreate the source, the tokens of each word line have to be extracted and sequenced

into one sentence. For many tokens, MLRS also includes the lemma for that token. A lemma

is the root of a word from which the word originates. The lemma does not originate from the

sources of MLRS but was added as part of the annotation task. The lemma can be exploited

for better word embeddings. As discussed in Section 2.4.2, similar words will result in

closely related vectors. The lemma should be located close to the centre of a vector space

and should also enhance context by adding more neighbours.

In the process used, the lemma of a word is inserted after the word token to form a

sentence which grammatically and syntactically does not make sense but which should result

in an enriched vector. Taking the sample sentence shown in Table 3.1, the composed sentence

with the lemmas inserted would be as follows:

1As of May 2018, there were 3,368 articles on the Maltese Wikipedia — https://stats.wikimedia.org/
EN/ChartsWikipediaMT.htm

3.1 Maltese Word Embeddings 52

Table 3.1 Sample sentence from MLRS.

Word Tag Lemma Root

Libset VERB null null

iż- DEF il- null

żarbun NOUN żarbun ż-r-b-n

tat- GEN-DEF ta’ null

takkuna NOUN null null

gh̄olja ADJ null null

u CONJ-CORD u null

rqiqa ADJ rqiq r-q-q

u CONJ-CORD u null

gh̄amlet VERB gh̄amel gh̄-m-l

żewġ NUM-CRD żewġ null

passi NOUN passa p-s-j

. X-PUN . null

Libset iż- il- żarbun tat- ta’ takkuna gh̄olja u

rqiqa u gh̄amlet gh̄amel żewġ passi passa.

Note that if the lemma is the same as the word token, the lemma is simply not inserted.

To process the MLRS corpus and generate all of the sentences, a C# tool was developed.

This tool opens a stream to MLRS and reads one annotated sentence per step. The word lines

of the MLRS are parsed for the word token and lemma, which are then queued sequentially

in an array. At the end of the step, the array is iterated and a sentence formed. Finally, the

sentence is flushed to a text file. This process is performed for all sentences of the MLRS

corpus. The final result is a text file which is over four gigabytes large. This was the textual

source on which the word embeddings were generated.

As discussed in Section 2.4.2, the word embedding models will be generated using

fasttext [6] and GloVe [47]. Implementations of both algorithms are available from public

repositories. Furthermore, the default parameters were used in this research, with only the

100 dimension parameter being specified. Zeman et al. state that for CoNLL 2017, a 100

dimension was chosen after a thorough discussion between the organisers and authors. This

value is expected to yield good results and previous work by Andor et al. showed that it is

3.2 Using Quasi-Recurrent Neural Networks 53

possible to achieve state-of-the-art results with just a 64 dimension. Both implementations

generated two files each; one text and the other binary based. For this work, the text-based

corpus is used since a client library would be required to load the binary format. Furthermore,

using the text-based word embedding corpus gives the possibility to interchange between the

corpora without any changes to the code. GloVe also generates a vocabulary file which lists

the token words and their respective frequencies.

One of the stated objectives is to map the word embeddings corpus to a three dimensional

scatter plot. TensorFlow and Tensorboard [1] are used in this research to achieve this objective.

One of the tools of Tensorboard is the Projector2 and this tool is used for visualisation. Three

files are required for a successful mapping:

1. a ‘tsv’ file which contains the labels. In this case the labels are the actual words.

2. a ‘ckpt’ file which is the model file that actually contain the vectors.

3. a ‘log’ file which contains the meta data of the model.

A Python tool was developed to create the files. The first step was to load the whole

word embeddings corpus into a list structure. From this list a tensor is created. A Tensorflow

Interactive Session3 is initialised and the created tensor loaded. The labels (words) are written

to the ‘tsv’ file during the session. A Tensorflow Summary Writer4 was used to write the

‘ckpt’ model file to disk and the respective meta data written to the ‘log’ file. The log file

is required to have a complete model. To load the Projector with the map, Tensorboard is

called with a parameter indicating the directory where all three files should be located.

3.2 Using Quasi-Recurrent Neural Networks

In deep learning there are two distinct ways to process input; sequentially or simultaneously.

Sequential processing is associating with sequential data such as voice and text data while

2https://www.tensorflow.org/versions/r1.2/get_started/embedding_viz (Accessed: 2018-10-31)
3https://www.tensorflow.org/api_docs/python/tf/InteractiveSession (Accessed: 2018-10-31)
4https://www.tensorflow.org/api_docs/python/tf/summary/FileWriter (Accessed: 2018-10-31)

3.2 Using Quasi-Recurrent Neural Networks 54

simultaneous processing is more associated with image processing. LSTMs are the typical

neural networks architectures for processing sequential data whilst CNNs are more adept to

process simultaneous data. Quasi-Recurrent Neural Networks (QRNN), proposed by Brad-

bury et al. [9] is an architecture which is capable to perform simultaneous processing on

sequential data. In simple terms, processing text data as if it was an image. Since most of the

processing happens simultaneously in parallel, Bradbury et al. state that QRNN is up to 16

times faster than conventional RNN whilst still achieving state-of-the-art results.

CNNs are one of the most popular deep learning architectures which are mostly applied

to tasks which involve image processing, although they were also successfully utilized for

sequence processing in particular Zhang et al. [68]. A CNN is constructed similar to a

traditional neural network with an input, an output and a number of hidden layers. These

hidden layers typically consist of convolution, pooling, fully-connected and normalisation

layers. The convolution and pooling layers are used for feature extractions whilst the

fully-connected and normalisation layers are used for classification. Convolution layers

are the most important unit in a CNN. The architecture of the original CNN, as introduced

by LeCun and Bengio [33], alternates between convolutional layers and subsampling layers

as illustrated in Figure 3.1. The feature maps of the final subsampling layer are then fed

into the actual classifier consisting of a number of fully connected layers. The output layer

usually uses softmax activation functions.

Figure 3.1 Architecture of a traditional Convolutional Neural Network [33].

3.2 Using Quasi-Recurrent Neural Networks 55

A convolution is a mathematical operation between two functions which results in a

third function. In CNNs, the convolution will create two sets of data which are the input

and convolution filter (or kernel) to produce a feature map. The pooling layers merge the

outputs of neuron clusters at one layer into a single neuron in the next layer. For example,

max pooling uses the maximum value from each cluster of neurons at the prior layer, whilst

the average pooling uses the average value from each cluster of neurons. Since the fully

connected layers accept one dimensional vectors whilst convolution and pooling layers

operate with three dimensional vectors, the last pooling layer has to flatten the output to feed

the fully connected layers.

Bradbury et al. [9] describe QRNN as a merge of the two architectures which like

CNNs allow parallel processing and thus permitting high throughput and scaling for long

sequences and similar to RNNs, QRNNs are able to output depending on the order of the

sequence. The authors constructed a number of QRNN versions customised to perform

several natural language tasks such as document-level sentiment classification, language

modelling, and character-level machine translation. This work on dependency parsing has

overlap on language modelling and the experiments by Bradbury et al. provided insights

and encouraging results to consider QRNN as an alternative to the bi-LSTM architecture.

Bidirectional LSTM is the defacto standard architecture for dependency parsing.

Figure 3.2 QRNN architecture as compared to LSTM and CNN architectures [9]

Figure 3.2 illustrates the computation structure of the QRNN when compared with the

traditional LSTM and CNN architectures. Red denotes convolutions or matrix operations

whilst a continuous block indicates that these computations are parallel. The blue denotes

functions that work simultaneously along the channel.

3.3 The Parser 56

A QRNN layer consists of two types of components which correspond to the convolution

and pooling layers in CNNs. The convolutional component behaves similarly to the convo-

lutional layer in CNNs which allows full parallel computation of the sequence dimension.

Also like CNNs, the pooling component, does not have any trainable parameters and also

allows full parallel computation.

In a QRNN, for an input sequence of n-dimensional vectors, the convolutional component

performs convolutions with a set of filters producing a new sequence of m-dimensional

vectors at a particular timestep. For the prediction of the upcoming token, the filter set allows

computation to be performed on information from future timesteps. This process is known as

masked convolution which was proposed by Oord et al. [46].

The functions of the pooling component is based on the traditional LSTM unit however

the function of the gates is based on dynamic average pooling which was defined by Balduzzi

and Ghifary [3]. This type of pooling was called ‘fo-pooling’ by Bradbury et al. [9].

Hence a single QRNN layer can perform input-dependent pooling with subsequent gated

convolutional features. Similarly to CNNs, two or more QRNN layers must be stacked to

build models which are capable to perform more complex functions.

For the language modelling experiments, Bradbury et al. performed the same experiments

by Zaremba et al. [63] and Gal and Ghahramani [24] using the Penn Treebank [34]. In the

main result, QRNN obtained a validation of 85.7% whilst [63] experienced a validation

of 86.2% with a difference of just a 0.5%. However, QRNN outperformed the runtime

performance of the implementation of Zaremba et al. by a maximum of 16 times. These

results provide a valid reason to consider QRNN as an alternative to bi-LSTM architecture.

3.3 The Parser

In this section, the methods utilized to construct the parser are described in detail. The feature

function is analysed and hence the architecture and actual parsing processes involved are

outlined.

3.3 The Parser 57

This work is based on the research by Kiperwasser and Goldberg [31] which was also

used by Dozat et al. [18], placing first in CoNLL 2017 shared task of dependency parsing.

Kiperwasser and Goldberg define two parsers one graph-based and the other a transition-

based. The parser of this work is specifically based on the graph-based parser and the

reference code5 by Kiperwasser. The contributions which make this parser different is

the utilisation of a Quasi-Recurrent Neural Network instead of bi-LSTM and bootstrapped

multi-source treebanks.

Kiperwasser and Goldberg state that one of the most critical phases in the design

process of the parser is the choice of the feature function. The feature function is a major

challenge and is composed of mainly two tasks; which components to consider and which

combinations of such components should be included in the function. Typically, state-of-the-

art parsers depend on models rather than fully hand-crafted feature functions to focus on core

features and the models perform the necessary combinations. In the many works reviewed

by Kiperwasser and Goldberg, the feature function was highly complex. For example, the

work of Chen and Manning [11] uses 18 different elements as feature function. Hand-crafted

feature functions are highly prone to errors and time consuming to create. The feature

functions describe the context of a word in an input sentence and the context of that whole

input sentence. Such feature functions are based on on templates which when initialised

would result in features of the form of:

• word on top of stack is X

• leftmost child if Y

• distance between head and modifier is Z

Typically, a published feature set which demonstrates its efficiency is adopted by other

authors and modified to increase performance. An example of such feature set suggested

by Kiperwasser and Goldberg is proposed by McDonald et al. [36] for graph-based parsing

which consists of 18 templates whilst the actual implementation of the feature function

consisted approximately of 100 templates [31].

5https://github.com/elikip/bist-parser (Accessed: 2018-10-31)

3.3 The Parser 58

Kiperwasser and Goldberg propose a simple approach to this problem which is based on

bi-LSTMs. As stated before, bi-LSTMs are highly capable of encoding sequences together

with their respective contexts. Each word of an input sentence is encoded by its respective

bi-LSTM. A small set of these encodings, are concatenated and hence used as a feature

function to be passed through a non-linear scoring function.

For an input sentence s composed of n-words with a sequence of w1, ...,wn and corre-

sponding POS tags t1, ..., tn, two embedding vectors e(wi) and e(ti) for each word and POS

tag are constructed. Each of the vectors e(wi) and e(ti) are concatenated to form xi. For

all n-words in sentence s, x1...n is the sequence of concatenated vectors. These embeddings

are trained with the model and the context is introduced at a later stage. The context is

the bi-LSTM vector of the whole x1...n with respect to the word. The feature function is a

bi-LSTM encoding of the head word and the modifier word of which the resulting vectors

are then scored using a Multi-Layer Perceptron (MLP). Compared to other functions, this

proposal by [31] is much more simpler.

The graph-based parser follows the model as proposed by McDonald et al. [36]. For

an input sentence s with corresponding sequence of vectors x1...n, the highest scoring parse

tree y is searched from a space Y (s) of dependency trees. In cite McDonald et al. [36], the

parser is arc-factored which breaks down a dependency tree to the sum of the score of its

head-modifier arc. Using the break-down of scores, the highest scoring tree can be fetched

using Eisner’s MST algorithm as proposed by Eisner [22]. Labelled parsing uses this same

procedure but after the arc is predicted, the label is predicted. The resulting vectors from the

label prediction are fed into a different MLP.

Figure 3.3 illustrates the neural model architecture for the graph-parser during the calcu-

lation of the score for the sentence "the brown fox jumped.". Each dependency relation is

scored using a MLP which is fed the bi-LSTM encoding. The colours of the dependencies

match to the colours of the MLP inputs.

These methods were implemented using the reference code for both the bi-LSTM and

QRNN architectures. This will give the possibility to generate results for the two architectures

3.4 The Bootstrapped Multi-source Treebank 59

Figure 3.3 Graph-based parser architecture as proposed by Kiperwasser and Goldberg [31]

and compare them for effectiveness and efficiency. The methods and architecture of QRNN

were described during the previous section.

3.4 The Bootstrapped Multi-source Treebank

In this section the methodology employed to build the bootstrapped multi-source treebank

for the Maltese language is described in detail.

As detailed in Section 2.7, the Maltese annotated treebank, MUDTv1, was privately

provided by Čéplö for this work. MUDTv1 currently is composed of just one text file whilst

the CoNLL evaluation requires three files. Hence, the first required step was to split MUDTv1

as follows:

1. the training dataset which will contain the annotated sentences to be used for the

training of the parser’s model. This dataset should contain 60% of all sentences in

MUDTv1. The filename should be ‘mt-ud-train.conllu’.

2. the development dataset which will contain 20% of the annotated sentences of MUDTv1.

These sentences should not be present in the training set. This dataset should be used

for performing evaluation of the model. The filename should be ‘mt-ud-dev.conllu’.

3.4 The Bootstrapped Multi-source Treebank 60

3. the test dataset which will contain the annotated sentences to perform the prediction

based on the model. This file should contain the remaining 20% of MUDTv1. Hence,

also for the test dataset, no sentences should be contained in the training dataset. The

filename should be ‘mt-ud-test.conllu’.

MUDTv1 contains approximately 2000 sentences, with the split training dataset now

containing 1200 sentences and the rest split between the development and training datasets.

To perform the split another tool in C# had to be developed. Using a ready-made tools

and text editors would risk splitting an annotated sentence and the split would have to be

performed sequentially without having any randomization of the annotated sentences. The

newly developed tool loads MUDTv1, or any CoNLL format text file and segments each

annotated sentence into a list. The list is then shuffled and split into 60%, 20% and the rest

20%, representing the training, development and testing datasets respectively. The shuffling

is required to make sure that the sentence originating from a specific source would not be

concentrated in one of the datasets. Each list was finally streamed to disk to create the three

required files. From this process, the standard Maltese treebank was acquired.

As discussed in Section 2.3, Shi et al. [54] used parallel dataset and projected unlexicalised

data to improve performance of low-resourced languages. To execute the same process by Shi

et al. would require much more computational resources, time and additional datasets. Eisner

[22] states that dependency parsing is primarily a search problem. The aim is to correctly

predict the tree of a sentence from the unseen testing dataset using the pre-trained model.

The model itself is composed of a variety of trees which were fed into the neural network

during the training phase. When a sentence is not parsed correctly, the only non-technical

reason is because that tree was not present in the model. From this conclusion it can be stated

that increasing the variety of trees in the model should result in better prediction.

Since the whole Maltese treebank was used, the other varied annotated trees must be

sourced from other languages. Using the work of Tiedemann and van der Plas [58], the

languages which performed best for parsing Maltese can be derived. These languages are

listed in Table 2.1 with their respective achieved metrics.

3.5 CoNLL 2017 Evaluation standard 61

To generate the multi-source treebank, the tool developed to split MUDTv1 was enhanced.

The updated tool is capable of receiving a list of CoNLL formatted files. Each file is iterated

and parsed into an individual list which is hence shuffled. This is the same procedure as

it was performed to split MUTV1. From each list, 1200 sentences are chosen and finally

all sentences are merged with the Maltese training dataset. The value of 1200 sentences

was chosen to match the Maltese training set and keep the treebank balanced amongst all

languages. The final result is a training dataset of Maltese, English, Spanish and Italian

languages, each with 1200 sentences. The development and test datasets were not modified.

This whole process can be easily performed on other low-resourced languages. The

difficult part is to determine those languages which have syntactic overlap with the target

language. This process could be performed for the Maltese language because of the previous

work by Tiedemann and van der Plas [58].

3.5 CoNLL 2017 Evaluation standard

The evaluation of the parser will be performed according the CoNLL standards. To perform

the evaluation, the CoNLL 2017 evaluation script6 was used. This ensures that this work

follows a defined standard by an institution and the results can be compared with those

achieved during CoNLL 2017.

For an evaluation to take place, the parser must output a valid CoNLL-U format file

which is then compared to the gold standard. The gold standard for the Maltese for this work

is the test dataset (mt-ud-test.conllu). During the training phase, at the end of each epoch an

evaluation is performed using the development dataset (mt-ud-dev.conllu). The evaluation is

important because the progress of the model can be monitored. The metrics should steadily

increase over each epoch. For the prediction phase, the parser’s output is compared to the

test dataset (mt-ud-test.conllu). During the shared task, the test datasets for all languages

will be released only when the models are completed. The whole process is controlled by a

6http://universaldependencies.org/conll17/eval.zip (Accessed: 2018-10-31)

3.5 CoNLL 2017 Evaluation standard 62

system called TIRA7 which ensures that all participants have a level playing field and none

of the participant gain access to the gold standards before the test phase.

A valid output CoNLL-U file must:

1. contain no cycles - a cycle is a cyclic graph where a node (word) is reachable from

itself.

2. have one root per sentence - every sentence must have one single root. If just one

sentence has multiple roots, the file will be considered as invalid.

3. have the correct number of columns - the output must follow the file format as detailed

in Section 2.6

4. not have the wrong indexing of the nodes - wrong indexing occurs when the order of

the words of the sentence is modified.

If during evaluation, one of these rules is not adhered to, the file will be considered

invalid, the processing halts and metrics are set to zero.

The first process to be performed by the script is to align the output from the parser to

the gold standard. The alignment is performed in a series of steps. A multi-word token is

a word which is composed by two or more than word tokens and hence it occupies more

than one word line. If there are no multi-words in the parser’s output, the token sequences

should share the same underlying text without considering spaces. The token sequences are

the offset boundaries of each token. This process is illustrated in Table 3.2.

Table 3.2 Sample sentence from UD Maltese treebank with offset boundaries.

Qaltlu li mhux vera li x- xmajjar

0-5 7-8 10-13 15-18 20-21 23-24 26-32

kollha gh̄andhom memorji koroh .

34-39 41-48 50-56 58-62 63

7http://www.tira.io/tasks/conll/#universal-dependency-learning (Accessed: 2018-10-31)

3.6 Conclusion 63

If multi-words are present, the multi-words from the parser’s output must be aligned to

the individual words of the gold standard. In this case, the alignment is performed using the

Longest Common Subsequence (LCS) algorithm. In LCS, the longest subsequence common

to all sequences must be found. This is different from the longest common substring problem.

Subsequences are not required to occupy consecutive positions with the original sequences

like the substrings.

After the alignment is complete and successful, the parser’s output and the gold standards

are attached and hence the script can compute the metrics. The three metrics used are:

1. Labelled Attachment Score is the standard evaluation metric for dependency parsing.

LAS represents the percentage of words that are assigned both the correct head and

dependency label. To calculate LAS, only the Universal Dependency Labels are con-

sidered, which should be located in column 4 as per CoNLL-U format and illustrated

in Table 2.4. Language specific dependency labels are ignored.

2. Unlabelled Attachment Score is the percentage of words that are assigned only the

correct head.

3. Weighted Labelled Attachment Score is similar to LAS but the dependency labels are

assigned a weight. The weights file is included with the CoNLLU 2017 evaluation

script. This metric should always be lower than LAS.

3.6 Conclusion

This chapter provided an in-depth analysis of the processes and algorithms which were

employed in developing the parser, associated datasets and tools. Following the development

and implementation of the parser, the next step is to perform a number of experiments to

gather results and evaluate the performance of the parser, which will be described in the

following chapter.

Chapter 4

Evaluation and Results

In this chapter we describe in detail the full evaluation process conducted with the aim to

benchmark the parser. All of the experiments devised are listed and documented to sustain the

necessity of each set of experiments. In total, there are twenty five experiments categorized

into five distinctive sets, with each set targeting a specific component of the parser. The results

are presented after each set of experiments conducted. The experiments were constructed

in a way that there is a natural progression of parser’s design decisions by varying just one

component.

4.1 Evaluation Procedure

The experiments were firstly constructed, ordered and split into five sets. The first set of

experiments concern the neural network Optimizer which is one of the basic components

of the neural network. The second set of experiments determine if there are any benefits

of using an external word embedding. The third, establish the contribution of bootstrapped

multi-source treebanks in the evaluation metrics, whilst the fourth set of experiments are

based on a different neural network architecture with the aim to achieve a ground truth for

the preferred architecture. The last set of experiments is aimed to provide metrics to compare

with parsers which participated in CoNLL 2017.

4.1 Evaluation Procedure 65

The hardware used for the evaluation process was provided by the University of Malta

and is detailed in Table 4.1. A virtual environment was provided on the server configured as

in Table 4.2. The experiments were performed consecutively accord to their identification

number. For each epoch performed, the model and validation results were stored. At the end

of the training phase for each experiment, the prediction process was performed to produce

the metrics as detailed in Section 3.3.

Table 4.1 GPU Server

CPU 2 x Intel Xeon E5-2640 with 8 cores (16 cores with hyperthreading)

RAM 64 GB DDR3 1600MHz

2 GB RAMdisk

GPU 2 x NVIDIA Tesla K20m

Storage 1 TB Harddisk

OS Ubuntu 14.04.5 LTS

Table 4.2 Software and frameworks

Python environment Python 3.5

GPU support nvidia CUDA 8.0

nvidia drivers for CUDA 8.0

libcupti-dev

Deeplearning framework PyTorch 0.3.1 with CUDA 8.0 support

Word embedding implementation fasttext

GloVe

It is important to note that the Optimizers provided by PyTorch require a number of

hyperparameters. These parameters and their relative default values are different for each

Optimizer and are specifically configured for the specific Optimizer. Some of these hyperpa-

rameter values were tweaked by performing a small number of experiments to try to minimise

the loss without overfitting the neural network. These experiments were not documented

because we believe that the task of locating the best hyperparameters is too time consuming

and would be out of scope for this work. For this reason, it was hence decided that for all

4.2 Evaluation metrics 66

experiments, the default hyperparameter values provided for the Optimizers by PyTorch were

used.

4.2 Evaluation metrics

The metrics used to evaluate the performance of this work are defined by CoNLL. These

metrics are calculated by the CoNLL 2017 evaluation script as detailed in Section3.5. The use

of CoNLL standard metrics enables comparison to the published CoNLL 2017 submissions.

The metrics used for evaluation are:

1. LABELLED ATTACHMENT SCORE (LAS) which is the de-facto standard evaluation

metric for dependency parsing. LAS is calculated as the percentage of words that are

assigned both the correct head and dependency label.

2. UNLABELLED ATTACHMENT SCORE (UAS) is determined as the percentage of words

that are assigned only the correct head.

3. WEIGHTED LABELLED ATTACHMENT SCORE (WEIGHTED LAS) is calculated like

LAS but each of the dependency labels are assigned a weight. The weights file is

included with the CoNLLU 2017 evaluation script. This metric should always score

lower than LAS.

4.3 Experiments

Table 4.3 details all the experiments conducted during this work. The fields outlining the

experiments are described as follows:

• ID is a consecutive integer value given to each experiment to be used as identification.

• TREEBANK is the annotated treebank used for the experiment.

• NEURAL ARCHITECTURE is the neural network architecture of the parser for the

specific experiment. Valid values are QRNN and bi-LSTM.

4.3 Experiments 67

• EXTERNAL EMBEDDING is the algorithm of the external word embedding used. When

no word embedding was used, this field was populated with ‘none’.

• OPTIMIZER is the neural network optimizer used for the specific experiment.

The experiments consist of a training phase of thirty epochs with the aim to acquire a

model. At the end of each epoch, a model is created and evaluated using the evaluation

treebank. From this evaluation, the three metrics; UAS, LAS and Weighted LAS are

determined. Therefore, for each epoch in each experiment, a model is created together

with the evaluation metrics. The prediction is always performed on the last model of the

experiment against the test treebank. At the end of the experiments, 750 models and 750

evaluation metric sets were acquired resulting in 25 prediction metric sets.

4.3 Experiments 68

Table 4.3 Experiments

ID Treebank Neural External Optimizer

Architecture Embedding

1 Maltese QRNN fasttext AdaDelta

2 Maltese QRNN fasttext AdaGrad

3 Maltese QRNN fasttext Adam

4 Maltese QRNN fasttext SparseAdam

5 Maltese QRNN fasttext Adamax

6 Maltese QRNN fasttext ASGD

7 Maltese QRNN fasttext SGD

8 Maltese QRNN fasttext Rprop

9 Maltese QRNN fasttext Adam

10 Maltese QRNN GloVe Adam

11 Maltese QRNN None Adam

12 Maltese & Romance QRNN None Adam

13 Maltese, Romance & Arabic QRNN None Adam

14 Maltese, Romance & Hebrew QRNN None Adam

15 Maltese & Romance QRNN fasttext Adam

16 Maltese, Romance & Arabic QRNN fasttext Adam

17 Maltese, Romance & Hebrew QRNN fasttext Adam

18 Maltese bi-LSTM fasttext Adam

19 Maltese bi-LSTM None Adam

20 Maltese & Romance bi-LSTM fasttext Adam

21 Maltese & Romance bi-LSTM None Adam

22 English QRNN fasttext Adam

23 Spanish QRNN fasttext Adam

24 Uyghur QRNN fasttext Adam

25 Kazakh QRNN fasttext Adam

4.4 Neural Network Optimization algorithms evaluation 69

4.4 Neural Network Optimization algorithms evaluation

The experiments detailed in Table 4.4 are intended to determine the best neural network

optimizer for the implemented parser. All components of the parser were kept constant

except for the optimizer. The best optimizer should give a loss which is closest to zero and

the highest evaluation metrics. Tables 4.6 and 4.7 detail the loss of each optimizer during

each epoch. The loss of each epoch is hence outlined in Figures 4.6 and 4.7. Table 4.5

illustrates the predicted metrics for each experiment using the specific optimizer.

Table 4.4 Neural Network Optimization algorithms experiments

ID Treebank Neural External Optimizer

Architecture Embedding

1 Maltese QRNN None AdaDelta

2 Maltese QRNN None AdaGrad

3 Maltese QRNN None Adam

4 Maltese QRNN None SparseAdam

5 Maltese QRNN None Adamax

6 Maltese QRNN None ASGD

7 Maltese QRNN None SGD

8 Maltese QRNN None Rprop

Table 4.5 Prediction metrics using different optimizers

ID Optimizer Prediction Metrics

UAS LAS Weighted LAS

1 AdaDelta 78.09 73.03 67.05

2 AdaGrad 73.77 63.01 51.92

3 Adam 79.02 73.90 68.08

4 SparseAdam 74.39 69.46 63.49

5 Adamax 79.14 74.16 68.49
6 ASGD 77.98 73.05 67.15

7 SGD 12.49 01.84 01.85

8 Rprop 77.92 72.68 67.10

4.4 Neural Network Optimization algorithms evaluation 70

Table 4.6 Loss of Optimization algorithms during training

Epoch 1. AdaDelta 2. AdaGrad 3. Adam 4. SparseAdam

1 22.14 22.12 19.41 22.14

2 22.13 21.50 10.54 22.14

3 20.32 18.62 7.78 22.14

4 16.34 15.73 6.08 22.14

5 13.63 13.24 4.73 22.14

6 11.68 11.51 3.72 22.14

7 10.41 10.28 2.93 22.14

8 9.33 8.93 2.27 22.14

9 8.46 7.90 1.88 22.13

10 7.77 6.94 1.58 22.11

11 7.07 6.20 1.39 22.11

12 6.53 5.55 1.24 21.88

13 5.95 4.91 0.93 21.66

14 5.51 4.39 0.86 21.26

15 5.07 4.00 0.85 18.31

16 4.71 3.69 0.68 14.82

17 4.31 3.39 0.67 12.20

18 3.95 3.07 0.64 10.46

19 3.60 2.78 0.61 9.01

20 3.32 2.60 0.57 7.91

21 2.98 2.45 0.55 6.85

22 2.76 2.29 0.55 6.00

23 2.52 2.13 0.43 5.29

24 2.33 2.01 0.46 4.72

25 2.12 1.89 0.48 4.14

26 1.97 1.85 0.46 3.56

27 1.79 1.62 0.39 3.04

28 1.61 1.51 0.39 2.67

29 1.51 1.35 0.36 2.35

30 1.33 1.20 0.40 2.12

4.4 Neural Network Optimization algorithms evaluation 71

Table 4.7 Loss of Optimization algorithms during training

Epoch 5. Adamax 6. ASGD 7. SGD 8. RMSProp

1 22.13 22.14 22.11 22.14

2 17.62 22.14 22.14 22.14

3 12.00 22.14 22.13 22.14

4 9.56 22.14 22.13 22.14

5 8.03 22.14 22.14 21.95

6 6.80 21.43 22.13 16.27

7 5.85 15.27 22.13 11.87

8 5.02 11.47 22.13 9.83

9 4.19 9.33 22.14 8.28

10 3.58 7.94 22.14 7.04

11 3.05 6.91 22.14 6.36

12 2.57 5.92 22.13 5.69

13 2.12 5.20 22.14 5.12

14 1.70 4.43 22.14 4.40

15 1.51 4.10 22.14 3.93

16 1.36 3.68 22.13 3.45

17 1.11 3.10 22.14 3.09

18 1.04 2.90 22.14 2.91

19 0.81 2.69 22.13 2.57

20 0.81 2.35 22.14 2.21

21 0.72 2.05 22.14 2.24

22 0.66 2.08 22.14 1.97

23 0.53 1.97 22.14 1.82

24 0.61 1.95 22.14 1.67

25 0.52 1.70 22.14 1.66

26 0.46 1.54 22.14 1.58

27 0.46 1.56 22.14 1.53

28 0.40 1.46 22.14 1.53

29 0.38 1.39 22.14 1.37

30 0.35 1.35 22.14 1.29

4.5 External Word Embeddings evaluation 72

4.5 External Word Embeddings evaluation

As documented in Section 2.4.2, there are three main word embedding algorithms; word2vec,

fasttext and GloVe. This section reports the experiments using fasttext, GloVe and no external

embeddings. Word2vec was not included because of time considerations and most probably

this algorithm would not outperform the others because it is the legacy algorithm on which

fasttext and GloVe were built upon. The aim of these experiments is to find which word

embedding algorithm gives the highest contribution to the evaluation metrics.

Table 4.9 illustrates the metrics which resulted from the three experiments. Figures 4.1, 4.2

and 4.3 show the progression of these experiments at each epoch for the prediction metrics.

Table 4.8 External Word Embeddings experiments

ID Treebank Neural External Optimizer

Architecture Embedding

9 Maltese QRNN fasttext Adam

10 Maltese QRNN GloVe Adam

11 Maltese QRNN None Adam

Table 4.9 Prediction metrics with different external Word Embeddings

ID External Word Embeddings Prediction Metrics

UAS LAS Weighted LAS

9 fasttext 80.68 76.27 71.02
10 GloVe 80.41 75.73 70.45

11 None 80.65 74.92 68.74

4.5 External Word Embeddings evaluation 73

Figure 4.1 Evaluation using fasttext external word embeddings ID: 9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

Epochs

M
et

ri
c

S
co

re

UAS
LAS
W.LAS

4.5 External Word Embeddings evaluation 74

Figure 4.2 Evaluation using GloVe external word embeddings ID: 10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

Epochs

M
et

ri
c

S
co

re

UAS
LAS
W.LAS

4.5 External Word Embeddings evaluation 75

Figure 4.3 Evaluation using no external word embeddings ID: 11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

Epochs

M
et

ri
c

S
co

re

UAS
LAS
W.LAS

4.6 Bootstrapped Multi-source Treebank evaluation 76

4.6 Bootstrapped Multi-source Treebank evaluation

This section details the experiments performed using the different bootstrapped multi-sourced

treebanks. The aim of this phase of experiments is to determine whether bootstrapped multi-

sourced treebanks perform better than the single source treebank. Furthermore, some of

the experiments in this set were performed without an external word embedding in order to

extended the previous set and determine the actual contribution of the word embedding on

the evaluation metrics.

Table 4.10 lists these experiments whilst Table 4.11 shows their respective results.

Table 4.12 shows the average runtime performance per epoch of each experiment. Fig-

ures 4.4, 4.5 and 4.6 show the progression of these experiments at each epoch for each

evaluation metric.

Table 4.10 Bootstrapped Multi-source Treebanks experiments

ID Treebank Neural External Optimizer

Architecture Embedding

12 Maltese & Romance QRNN None Adam

13 Maltese, Romance & Arabic QRNN None Adam

14 Maltese, Romance & Hebrew QRNN None Adam

15 Maltese & Romance QRNN fasttext Adam

16 Maltese, Romance & Arabic QRNN fasttext Adam

17 Maltese, Romance & Hebrew QRNN fasttext Adam

Table 4.11 Evaluation metrics using Bootstrapped Multi-source Treebanks

ID Treebank External Evaluation Metrics

Embedding

UAS LAS Weighted LAS

12 Maltese & Romance None 88.49 85.07 81.85

13 Maltese, Romance & Arabic None 87.97 84.40 81.07

14 Maltese, Romance & Hebrew None 87.94 84.21 80.70

15 Maltese & Romance fasttext 89.77 86.33 83.17
16 Maltese, Romance & Arabic fasttext 88.86 85.45 81.81

17 Maltese, Romance & Hebrew fasttext 88.61 85.21 82.10

4.6 Bootstrapped Multi-source Treebank evaluation 77

Figure 4.4 UAS during training of models for experiments ID: 12 to 17

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Epochs

U
A

S
S

co
re

12. Maltese & Romance
13. Maltese, Romance & Arabic
14. Maltese, Romance & Hebrew
15. Maltese & Romance w. fasttext
16. Maltese, Romance & Arabic w. fasttext
17. Maltese, Romance & Hebrew w. fasttext

4.6 Bootstrapped Multi-source Treebank evaluation 78

Figure 4.5 LAS during training of models for experiments ID: 12 to 17

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Epochs

L
A

S
S

co
re

12. Maltese & Romance
13. Maltese, Romance & Arabic
14. Maltese, Romance & Hebrew
15. Maltese & Romance w. fasttext
16. Maltese, Romance & Arabic w. fasttext
17. Maltese, Romance & Hebrew w. fasttext

4.6 Bootstrapped Multi-source Treebank evaluation 79

Figure 4.6 Weighted LAS during training of models for experiments ID: 12 to 17

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

74

76

78

80

82

84

86

88

90

92

94

96

98

100

Epochs

W
ei

g
h
te

d
L

A
S

S
co

re

12. Maltese & Romance
13. Maltese, Romance & Arabic
14. Maltese, Romance & Hebrew
15. Maltese & Romance w. fasttext
16. Maltese, Romance & Arabic w. fasttext
17. Maltese, Romance & Hebrew w. fasttext

4.7 Neural Network Architecture evaluation 80

Table 4.12 Performance using Bootstrapped Multi-source Treebank

ID Treebank Neural Elapsed time per Epoch

Architecture in minutes

12 Maltese & Romance QRNN 35

13 Maltese, Romance & Arabic QRNN 37

14 Maltese, Romance & Hebrew QRNN 39

15 Maltese & Romance QRNN 40

16 Maltese, Romance & Arabic QRNN 38

17 Maltese, Romance & Hebrew QRNN 40

4.7 Neural Network Architecture evaluation

This section details the experiments performed using bi-LSTM as neural network architecture

of the parser. This set of experiments was required in order to compare the performance of

QRNN with bi-LSTM. Table 4.13 lists these experiments which are the same as the previous

set but using bi-LSTM as neural network. Table 4.14 shows the results obtained from these

experiments whilst Table 4.15 shows the average runtime performance per epoch of each

experiment.

Table 4.13 Neural Network Architecture experiments

ID Treebank Neural Architecture External Embedding Optimizer

18 Maltese bi-LSTM fasttext Adam

19 Maltese bi-LSTM None Adam

20 Maltese & Romance bi-LSTM fasttext Adam

21 Maltese & Romance bi-LSTM None Adam

4.7 Neural Network Architecture evaluation 81

Figure 4.7 Training of model for experiment ID: 20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

76

78

80

82

84

86

88

90

92

94

96

98

100

Epochs

M
et

ri
c

S
co

re

UAS
LAS
W.LAS

4.8 Alternate Languages evaluation 82

Table 4.14 Evaluation metrics using different Neural Architecture

ID Treebank Neural Architecture Evaluation Metrics

UAS LAS Weighted LAS

18 Maltese bi-LSTM 81.05 76.72 71.41

19 Maltese bi-LSTM 80.98 75.28 68.96

20 Maltese & Romance bi-LSTM 89.89 86.51 83.38
21 Maltese & Romance bi-LSTM 88.70 85.31 82.12

Table 4.15 Runtime performance using bi-LSTM Neural Architecture

ID Treebank Neural Architecture Elapsed time per Epoch

in minutes

18 Maltese bi-LSTM 120

19 Maltese bi-LSTM 120

20 Maltese & Romance bi-LSTM 122

21 Maltese & Romance bi-LSTM 121

4.8 Alternate Languages evaluation

This set of experiments gauges the performance of this parser with other parsing systems

which participated in CoNLL 2017. Since the Maltese treebank was not used in the shared

task, two well-resourced languages; English and Spanish and two low resourced languages;

Uyghur and Kazakh, were used for the experiments.

Table 4.16 Alternate Languages experiments

ID Treebank Neural Architecture External Embedding Optimizer

22 English QRNN fasttext Adam

23 Spanish QRNN fasttext Adam

24 Uyghur QRNN fasttext Adam

25 Kazakh QRNN fasttext Adam

4.9 Summary of Experiments and Results 83

Table 4.17 Evaluation metrics for Alternate Languages

ID Alternate Languages Evaluation Metrics

UAS LAS Weighted LAS

22 English 87.12 84.58 81.63

23 Spanish 91.99 89.23 84.28

24 Uyghur 73.10 56.13 47.25

25 Kazakh 53.95 34.52 27.22

4.9 Summary of Experiments and Results

This section details the overall experiments and results obtained in this work for easier

reference and lookup. Table 4.18 summarises all the experiments categorised in the different

sections together with the respective results. The best performing result in each category is

highlighted. Shortened descriptions of the treebanks are used in order have a better visual

presentation of the table. Detailed descriptions of the treebanks are provided in Table 4.19.

The first set of experiments determined which neural network optimizer performed best

for this task. SparseAdam achieved the best results, however, Adam was used for all other

experiments because convergence to zero error was achieved at a much earlier stage and the

difference in the results when compared to SparseAdam is negligible. The second set of

experiments showed that fasttext offers the best word embeddings algorithm for our parser.

The aim of the third set of experiments was to determine if multi-sourced treebanks offer

better performance over the single-sourced Maltese treebank. The Maltese and Romance

languages multi-sourced treebank achieved the best metrics amongst all experiments. The

forth set of experiments was performed using a bi-LSTM neural architecture in order to

contrast the results achieved by the novel QRNN architecture. The bi-LSTM architecture

achieved the better results when compared to the same experiment using QRNN, albeit with

a slight difference of 0.12% in performance. The last set of experiments was to determine

the performance of our parser when compared to the published CoNLL 2017 submissions.

4.9 Summary of Experiments and Results 84

Table 4.18 Experiments and Results

ID Treebank Neural External Optimizer Prediction

Arch. Embedding Metrics

UAS LAS W. LAS

1 Maltese QRNN fasttext AdaDelta 78.09 73.03 67.05

2 Maltese QRNN fasttext AdaGrad 73.77 63.01 51.92

3 Maltese QRNN fasttext Adam 79.02 73.90 68.08

4 Maltese QRNN fasttext SparseAdam 74.39 69.46 63.49

5 Maltese QRNN fasttext Adamax 79.14 74.16 68.49
6 Maltese QRNN fasttext ASGD 77.98 73.05 67.15

7 Maltese QRNN fasttext SGD 12.49 01.84 01.85

8 Maltese QRNN fasttext Rprop 77.92 72.68 67.10

9 Maltese QRNN fasttext Adam 80.68 76.27 71.02
10 Maltese QRNN GloVe Adam 80.41 75.73 70.45

11 Maltese QRNN None Adam 80.65 74.92 68.74

12 Maltese, R QRNN None Adam 88.49 85.07 81.85

13 Maltese, R, A QRNN None Adam 87.97 84.40 81.07

14 Maltese, R, H QRNN None Adam 87.94 84.21 80.70

15 Maltese, R QRNN fasttext Adam 89.77 86.33 83.17
16 Maltese, R, A QRNN fasttext Adam 88.86 85.45 81.81

17 Maltese, R, H QRNN fasttext Adam 88.61 85.21 82.10

18 Maltese bi-LSTM fasttext Adam 81.05 76.72 71.41

19 Maltese bi-LSTM None Adam 80.98 75.28 68.96

20 Maltese, R bi-LSTM fasttext Adam 89.89 86.51 83.38
21 Maltese, R bi-LSTM None Adam 88.70 85.31 82.12

22 English QRNN fasttext Adam 87.12 84.58 81.63

23 Spanish QRNN fasttext Adam 91.99 89.23 84.28

24 Uyghur QRNN fasttext Adam 73.10 56.13 47.25

25 Kazakh QRNN fasttext Adam 53.95 34.52 27.22

Table 4.19 Treebank reference

Reference Treebank

Maltese, R Maltese & Romance

Maltese, R, A Maltese, Romance & Arabic

Maltese, R, H Maltese, Romance & Hebrew

4.10 Conclusion 85

4.10 Conclusion

In this chapter we presented the evaluation procedure which was utilised to evaluate the

parser. We reviewed and described all the experiments which were conducted and the results

of each experiment were duly reported. In the next chapter the results will be compared and

contrasted and a discussion will take placed with the aim to critically appraise this work.

Chapter 5

Discussion

Following the experiments and acquired results, in this chapter we compare and contrast

these results and critically discuss their relevance and contribution of this work. We will

determine if the aims and objectives of this dissertation were achieved and highlight any

limitations of the implemented parser.

5.1 Neural Network Optimization algorithms

All of the optimizers used for this work form part of the PyTorch framework. The hyper-

parameters of all optimization algorithms were kept with their default configured values as

supplied by PyTorch. As discussed in Section 2.4.1, the aim of a neural network optimization

algorithm is to minimise the error function effectively and efficiently.

As demonstrated in Figure 5.1, all of the algorithms converge except for SGD. At epoch

thirty, the most effective optimizer is Adamax with a loss of 0.40% and the least effective

is SparseAdam with 2.12%. The difference between Adamax and Adam, the second most

effective optimizer, is of 0.05%. Since, the difference is very low, the efficiency of the

optimizer had to be considered.

5.1 Neural Network Optimization algorithms 87

Figure 5.1 Optimizer performance through training phase for thirty epochs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

8

10

12

14

16

18

20

22

24

Epochs

L
o
ss

AdaDelta
AdaGrad
Adam
SparseAdam
Adamax
ASGD
SGD
Rprop

5.2 External Word Embeddings 88

A threshold of 1.00% was considered where the graphs will start converging to a nearly

straight line approaching zero. The Adam optimizer hits this threshold at epoch 13 whilst

Adamax at epoch 19. This is a considerable difference when the computing and runtime

resources are taken into account. It can be determined that Adam is the most efficient and

ideal optimizer for this work. The fact that Adam converges more efficiently will be discussed

in future work as detailed in Section 6.2.

Figure 5.2 compares the predicted metrics from the use of different optimizers. These

results do not exclude the possibility that the other optimizers perform well with other

treebanks. Adam also performed well during the last batch of experiments where the English,

Spanish, Uyghur and Kazakh treebanks were used. Due to the limited time and resources,

experiments for the other optimizers were not performed using these treebanks.

We can conclude that Adam performed particularly well for the implemented parser using

a number of different treebanks. We cannot exclude that other optimizers outperform Adam

when using treebanks other than the Maltese treebank.

5.2 External Word Embeddings

The word embeddings algorithms used for this work are fasttext and GloVe. The implemen-

tations used for both algorithms are from their respective authors in order to make sure that

the implementations follow their published research. In both cases, embeddings were created

in 100 dimensions based on the same MLRS source text.

Figure 5.3 gives a clear overview of the predicted metrics from the use of the two

external word embeddings and without any use. In LAS, the most important metric, fasttext

outperforms GloVe by only 0.54%. In UAS, the two algorithms are even closer with fasttext

surpassing GloVe by only 0.27%. If these values are considered in isolation, the performance

of the algorithms is approximately the same. The results do not give any practical situation

when to use a specific word embedding over the other. Such minimal differences can be

beneficial during academic research or a shared task like CoNLL’s Multilingual Parsing from

5.2 External Word Embeddings 89

Figure 5.2 Prediction metrics using different optimizers

AdaDelta AdaGrad Adam SparseAdam Adamax ASGD SGD Rprop

0

10

20

30

40

50

60

70

80

M
et

ri
c

sc
o
re

UAS LAS W.LAS

Raw Text to Universal Dependencies, where such small variances can affect the placing of a

participant.

The most interesting outcome of these tests is the performance of the parser when

no external embeddings were used. In UAS, without using external word embeddings,

better scores are achieved rather than using GloVe. Furthermore, when using fasttext word

embeddings, it will only result in 0.03% better performance. From these results, it can

be stated that for the UAS metric, when using a GloVe embedding, performance actually

5.2 External Word Embeddings 90

degrades. This phenomenon was observed by Kiperwasser and Goldberg [31], but no reason

was given for this occurrence. The authors state, "Interestingly, when adding external word

embeddings the accuracy of the graph-based parser degrades. We are not sure why this

happens, and leave the exploration of effective semi-supervised parsing with the graph-based

model for future work" [31]. This was the only instance when the authors refer to this issue.

It also important to note that Dozat and Manning [17] do not discuss this observation and

we do not know if it was encountered or not. Dozat and Manning [17] based their work on

the graph-parser of Kiperwasser and Goldberg [31]. This phenomenon cannot be further

analysed in this work because it requires more expertise and specific research as proposed

by Kiperwasser and Goldberg.

5.2 External Word Embeddings 91

Figure 5.3 Prediction metrics using different external word embeddings

fasttext GloVe None

68

70

72

74

76

78

80

80.68
80.41 80.65

76.27
75.73

74.92

71.02
70.45

68.74

M
et

ri
c

sc
o
re

UAS LAS W.LAS

As a result of the generated word embeddings, the MLRS source dataset was plotted on

three dimensional scatter-plot using Tensorboard, the interactive dashboard of Tensorflow [1].

This result can be observed in Figure 5.4 in a cloud with dense and less dense points indicating

the proximity of the Maltese words to each other.

5.3 Bootstrapped Multi-source Treebank 92

Figure 5.4 Word embeddings plotted on three dimensional scatter-plot

5.3 Bootstrapped Multi-source Treebank

Using bootstrapped multi-source treebanks, better performance was obtained in all experi-

ments over the single-source, Maltese language treebank. One of the main resources of this

study is the work of Tiedemann and van der Plas [58] which revealed the languages which

have the greatest influence on the Maltese language for the dependency parsing task. Private

communication with Čéplö suggests that Arabic and Hebrew should also favourably impact

the metrics.

Figure 5.5 demonstrates that all the prediction metrics attained from the bootstrapped

multi-source treebanks outperform the single-source Maltese treebank. The most important

metrics of this work are those of experiment with ID 15 where the Maltese and Romance

treebank was used together with fasttext external word embeddings. Comparing these metrics

with experiment ID 9, the multi-source treebanks results increase performance of 9.09% for

LAS, 10.06% for UAS and 12.15% from Weighted LAS. This comparison is demonstrated

in Figure 5.2.

These results were also compared to those obtained by Tiedemann and van der Plas [58]

during two different experiments in order to compare the best predicted metrics. This parser

5.3 Bootstrapped Multi-source Treebank 93

significantly surpasses the results obtained by Tiedemann and van der Plas as demonstrated

in Table 5.3.

Another significant result is that the use of Arabic or Hebrew did not improve performance

but actually lowered the metrics, albeit by a small percentage. This is very interesting

since according to Čéplö the metrics should have actually improve over using the Maltese

and Romance treebank. In the work by Tiedemann and van der Plas [58], this fact was

also observed. In their last batch of experiments, the experiment which made use of all

European languages performed less than that which made use only of the Romance languages.

Tiedemann and van der Plas state that "This suggests that adding lexical information without

contextual disambiguation provides only little help but coverage issues may also be good

reason for the failure of this approach" [58]. Čéplö and van der Plas were provided with

these results for feedback. As a reason Čéplö suggested that typology is to blame for

degraded results. The Arabic of Arabic UD treebank is Modern Standard, so basically

the same grammar as that of Sibawayh from circa 750 AD and thus it is a completely

different language typologically. Hebrew may share a few similarities with Maltese, but it

has been argued that in its syntax, it’s more Slavic and Germanic than Semitic. Sibawayh is a

famous grammarian of the Arabic language and is credited with writing the first grammar of

the language. Tiedemann and van der Plas [58] confirmed that during their work they did

encounter problems with Arabic and they had to leave the language out of further experiments.

At the time of their work, van der Plas also contacted other linguists who confirmed that

the word order of the Arabic UD treebank is very different for modern standard Arabic and

Maltese.

It also important to keep in context how the model performed during training. As already

stated, for every experiment, the model attained during the last epoch was used for prediction.

Referring to Figure 4.5, the best performing model at the end of the last epoch is actually

achieved during experiment ID 16, when the parser is used with the Maltese, Romance and

Arabic treebank. Interestingly, this model did not outperform the model achieved when using

Maltese and Romance treebank for the prediction metrics. We are nearly certain that there

is a correlation with the previous finding. The most plausible reason is that the addition of

5.3 Bootstrapped Multi-source Treebank 94

the Arabic treebank to the Maltese and Romance multi-source treebank did not affect the

performance of the parser since the evaluation and predicted metrics of the two experiments

are very close.

We can determine that multi-source treebanks performed exceptionally better when

comparing to the work of Tiedemann and van der Plas [58]. Considering only the most

important metric, LAS, an increase of 10.06% is a significant improvement over the single-

source Maltese only treebank. There are a number of questions which this set of experiments

pose in relation with the use of Arabic and the performance of certain models. Analysing the

possibilities which can offer valid answers is out of scope of this project.

Table 5.1 Experiments reference for Figure 5.5

ID Treebank Neural External

Architecture Embedding

9 Maltese QRNN fasttext

12 Maltese & Romance QRNN None

13 Maltese, Romance & Arabic QRNN None

14 Maltese, Romance & Hebrew QRNN None

15 Maltese & Romance QRNN fasttext
16 Maltese, Romance & Arabic QRNN fasttext

17 Maltese, Romance & Hebrew QRNN fasttext

Table 5.2 Comparing results from single-source and multi-source treebanks

ID Treebank Neural External Prediction Metrics

Architecture Embedding

UAS LAS Weighted LAS

9 Maltese QRNN fasttext 80.68 76.27 71.02

15 Maltese & Romance QRNN fasttext 89.77 86.33 83.17

15 Performance +09.09 +10.06 +12.15

5.3 Bootstrapped Multi-source Treebank 95

Table 5.3 Comparing results from multi-source treebanks to Tiedemann and van der Plas [58]

ID Author Prediction Metrics

UAS LAS Weighted LAS

15 Zammit 89.77 86.33 83.17

Tiedemann and van der Plas 71.80 63.03

15 Performance +17.97 +23.30

Figure 5.5 Prediction metrics using single-source and multi-source treebanks

9 12 13 14 15 16 17

70

72

74

76

78

80

82

84

86

88

90

80.68

88.49
87.97 87.94

89.77
88.86 88.61

76.27

85.07
84.4 84.21

86.33
85.45 85.21

71.02

81.85
81.07 80.7

83.17

81.81 82.1

M
et

ri
c

sc
o
re

UAS LAS W.LAS

5.4 Neural Network Architecture 96

5.4 Neural Network Architecture

One of the most important aspects of the work is the use of QRNN as the neural network

architecture of the parser. QRNN is a novel architecture which was not ever used for the task

of dependency parsing. On the other hand, bi-LSTM is the traditional neural architecture for

all tasks involving NLP and is the natural choice for dependency parsing. Several published

works confirm that bi-LSTM performs consistently and reliably.

Table 5.4 compares the two best performing experiments for QRNN and bi-LSTM. In

all metrics, bi-LSTM performed better with a margin of 0.18% for LAS. Although in these

experiments, bi-LSTM is superior by a very small degree, it is important to note that bi-

LSTM is bi-directional and hence more context is given to the input sentence. Currently,

the only available implementation for QRNN available1 is unidirectional. It is not possible

to predict the increase of performance of the parser with the use of a bi-directional QRNN.

However, given that currently the margin difference is minimal, a bi-directional QRNN

should outperform bi-LSTM.

According to Bradbury et al. [9], one of the most important contributions of QRNN is

the runtime performance. Comparing the runtime performance results as demonstrated in

Figure 5.5, QRNN executes three times faster than bi-LSTM.

We can determine that QRNN is a viable alternative to bi-LSTM. The runtime perfor-

mance of QRNN greatly outperforms bi-LSTM. As regarding to prediction metrics, QRNN

is at par to bi-LSTM and the release of a bi-directional QRNN as promised by Bradbury et al.

should outperform bi-LSTM.

1https://github.com/salesforce/pytorch-qrnn (Accessed: 2018-10-31)

5.5 Alternate Languages 97

Table 5.4 Prediction metrics using QRNN and bi-LSTM neural architectures

ID Treebank Neural External Prediction Metrics

Architecture Embedding

UAS LAS Weighted LAS

20 Maltese & Romance bi-LSTM fasttext 89.89 86.51 83.38

15 Maltese & Romance QRNN fasttext 89.77 86.33 83.17

Performance +00.12 +00.18 +00.21

Table 5.5 Runtime performance of QRNN and bi-LSTM neural architectures

ID Treebank Neural External Elapsed time per Epoch

Architecture Embedding in minutes

20 Maltese & Romance bi-LSTM fasttext 122

15 Maltese & Romance QRNN fasttext 40

5.5 Alternate Languages

The objective of this set of experiments is to compare the predicted metrics from this parser to

metrics from the proceedings of CoNLL 2017 [67] and two participants; Dozat et al. [18] and

Shi et al. [54]. Two well-resourced languages; English and Spanish and two low-resourced

Uyghur and Kazakh were used for the experiments. This exercise should gauge how well

the parser performs when compared to other parsers. Dozat et al. [18] placed first overall

and achieved the best scores for the well-resourced languages. Shi et al. [54] placed second

overall and achieved the best scores for the low-resourced languages. In the proceedings, the

Weighted LAS was not reported and hence during comparison this metric was omitted.

Tables 5.6 to 5.9 compares the predicted metrics for the four languages. For the English

language, this parser surpasses Dozat et al. [18] by approximately 2.35% on each metric. The

results for the Spanish language are similarly positive with approximately 2.25% additional

performance.

The performance of the parser on the two low-resourced treebanks is superior. For the

Uyghur language, this work registered approximately 12.50% performance improvement

5.5 Alternate Languages 98

across all three metrics when compared to Shi et al. [54]. For the Kazakh, the improvement

was nearly of 9.00% for each metric when comparing again to Shi et al. [54]. Kazakh is the

language with the smallest UD treebank [67]. These observations are illustrated in Figure 5.6.

These comparatives establish that the parser performs substantially well when compared

to other parsers which participated in CoNLL 2017. We attribute this performance to the

use of PyTorch as the deep learning framework with its Autograd and Dynamic Networks

features and the choice of Adam as the neural network optimizer. From our knowledge,

PyTorch was not used by any of the top participants whose choice was Tensorflow [1] or

Dynet2. It is important note that there were a number of participants who were affected by an

issue in Dynet which caused to produce suboptimal metrics when the training and prediction

machines are different [67]. However, neither Dozat et al. [18] or Shi et al. [54] report this

issue. This set of experiments demonstrate that the choices we performed through this work

we the most appropriate and offered the best performance.

Table 5.6 Predicted metrics for English Language

ID Author Prediction Metrics

UAS LAS Weighted LAS

18 Zammit 87.12 84.58 81.63

Dozat et al. 84.74 82.23 78.99

Performance +02.38 +02.35 +02.64

Table 5.7 Predicted metrics for Spanish Language

ID Author Prediction Metrics

UAS LAS Weighted LAS

19 Zammit 91.99 89.23 84.28

Dozat et al. 90.01 87.29 82.08

Performance +01.98 +01.94 +02.20

2https://github.com/clab/dynet (Accessed: 2018-10-31)

5.6 Contributions 99

Table 5.8 Predicted metrics for Uyghur Language

ID Author Prediction Metrics

UAS LAS Weighted LAS

20 Zammit 73.10 56.13 47.25

Shi et al. 60.57 43.51

Performance +12.53 +12.62

Table 5.9 Predicted metrics for Kazakh Language

ID Author Prediction Metrics

UAS LAS Weighted LAS

21 Zammit 53.95 34.52 27.22

Shi et al. 44.25 25.29

Performance +09.70 +09.23

5.6 Contributions

This work investigates the computational parsing of the Maltese language using novel

machine learning techniques and the latest Deep Learning technologies. The current state-of-

the-art methodologies and architectures were researched and reviewed and proposed a novel

approach to dependency parsing with the aim to contribute to the Maltese computational

resources and NLP.

This work proposed, designed and implemented the first dependency parser for the

Maltese language. To our knowledge, there are no dependency parsers for Maltese and

this is one of the main contributions of this work to Maltese, which is computationally

low-resourced.

Furthermore, the Maltese language has also attained a corpus of embedded words based

on MLRS, which can be used for further research. The word embeddings were mapped

and visualised on a three-dimensional scatter-plot using Tensorboard. Further analysis and

research can also be performed directly from Tensorboard on the Maltese word embeddings.

5.6 Contributions 100

Figure 5.6 Prediction for LAS metric using alternate languages

English Spanish Uyghur Kazakh

20

30

40

50

60

70

80

90

84.58

89.23

56.13

34.52

82.23

87.29

43.51

25.29

M
et

ri
c

sc
o
re

Zammit Dozat et al. Shi et al.

This work also explored the possibility of using bootstrapped multi-source treebank

to enhance the performance of the parser. The solution proposed by Shi et al. [54] is a

long complicated process which requires several iterations of pre-processing to achieve the

necessary datasets. Our approach of merging different UD treebanks is simple to accomplish

and uses already available datasets. This technique increased performance by 10% on the

LAS metric compared to the single-source treebank.

5.7 Limitations 101

As confirmed by the results detailed in Table 4.17, the implemented dependency parser

is capable to perform on any language based on a trained model. Our parsing algorithm is

executed using a Quasi-Recurrent Neural Network, a novel deep neural network architecture.

To our knowledge, this is the first time and the only published work that QRNN is used for

the task of dependency parsing. The comprehensive results in Tables 5.4 and 5.5 confirm

that QRNN is a viable alternative to the traditional bi-LSTM, offering superior runtime

performance and at par predictive metrics.

The composition of these techniques and technologies gave our parser a performance

which surpassed other parsers which participated in CoNLL 2017 as demonstrated in Ta-

bles 5.6 to 5.9. Comparing the results for the Maltese language to that of Tiedemann and

van der Plas [58], our parser surpassed their best LAS metric by approximately 23%.

Currently, this work can be applied and used for upcoming CoNLL shared tasks. Fur-

thermore, this work proved that there exist alternatives to the standard neural network

architectures. In our case, we proved that QRNN is a possibility. The parser can also be used

as a template to explore the possibility of using more simplified data sources, especially for

low-resourced languages, which offer a higher metrics performance. The results from the

use of bootstrapped multi-source treebanks confirmed the validity of such process.

5.7 Limitations

From a technical perspective, one of the main limitations of this work is that currently there

is no bidirectional implementation of QRNN. A bidirectional QRNN would receive more

context from the input sentence, and therefore, theoretically, should achieve better results. Of

course, it would be essential to run experiments with similar settings to measure and compare

the actual performance. According to Bradbury et al. [9] there four modifications required to

the QRNN implementation to achieve the bidirectional feature; one related to the CUDA3

kernel, one to PyTorch and two related to the QRNN implementation. The modification of

the CUDA kernel is the most difficult task out of the four modifications4.

3https://docs.nvidia.com/cuda (Accessed: 2018-10-31)
4https://github.com/salesforce/pytorch-qrnn (Accessed: 2018-10-31)

5.8 Conclusion 102

Another limitation directly related to the parser is the training phase to construct the

model. In the current form, the parser receives a parameter on how many epochs must be

performed for the training phase. For each epoch, a model and an evaluation are performed.

This process has two main disadvantages; the first is that we cannot know which model,

during all epochs, was evaluated with the best metrics if we do not check manually the results

of evaluations performed. The second disadvantage is closely related to the first; the training

phase will continue until all epochs terminate. Currently, we cannot deduct if the best model

was achieved and hence concluded the training phase successfully.

For all of the experiments, we performed thirty epochs and used the model created during

the last epoch. As it can be observed in Figure 4.5 this choice was not always the best option.

Furthermore, several epochs were performed when there was no need, wasting time and

resources.

The final limitation of this work is the discovery of the languages which should compose

the bootstrapped multi-source treebank. For the Maltese multi-source treebank, the work

of Tiedemann and van der Plas [58] was used by observing which languages achieved the

best metrics. If this process is to be used on another language other than Maltese, there

should be a similar study beforehand.

5.8 Conclusion

In this chapter we compared, contrasted and discussed the results acquired from the experi-

ments. The findings and limitations were determined with the relevant reasons given. The

contributions of this work to the computational resources of the Maltese language and NLP

were emphasised, based the critical discussion of the experiments’ results. In the next chapter

we summarily review the contributions, conclude our work and propose future improvements.

Chapter 6

Conclusion

6.1 Achieved Aims and Objectives

In conclusion, it can be stated that all of the aims and objectives set for this dissertation

were met within the scope of this project. The literature was reviewed with an emphasis on

CoNLL 2017 and Deep Learning technologies in order to comprehend the latest techniques.

The aim was to construct an intelligible set of experiments to decide which technologies and

process should compose the parser. The results from the experiments were evaluated and

critically discussed. Furthermore, these results were compared to published work and hence

the conclusions were stated.

One of the major objectives is to increase the computational resources for the Mal-

tese language. The MLRS was rebuilt as text source from which word embeddings were

generated using fasttext. These word embeddings were hence mapped and plotted on a

three-dimensional scatter plot using Tensorboard. Tensorboard will enable further analysis

of the Maltese vocabulary and additional research can be performed on the word embedding

corpus. From the knowledge gained during the background work and literature review, a

dependency parser was built. According to our knowledge, this is the first parser for the

Maltese language.

Another objective is to contribute to NLP and we achieved this by demonstrating that

QRNN is a viable alternative to the standard bi-LSTM. The parsing architecture is based

6.2 Future work 104

on QRNN and we attained constant at par prediction metrics when compared to bi-LSTM

and three times better runtime performance. We also proved that bootstrapped multi-source

treebanks enhance metrics performance over single-source treebanks.

Comparing results for the English language to Dozat et al. [18], the first placed participant

of the shared task at CoNLL 2017, our parser accomplished superior metrics with an UAS

of 87% and a LAS of 84%. For the Maltese language, our parser outperformed the work

of Tiedemann and van der Plas [58] by approximately 23% for an UAS of 90% and a LAS

of 86%.

6.2 Future work

There are various opportunities for future work to overcome the limitations and extend this

work. This section describes some of these opportunities which vary in degree of difficulty.

A bidirectional QRNN will surely offer better performance and should surpass the

metrics results of the bi-LSTM architecture. This parser can switch between the various

neural networks’ architectures available from PyTorch such as bi-LSTM and third parties

which are compatible with the framework. Bradbury et al. [9] adhered to the PyTorch

standards when implementing QRNN. We believe that the upcoming release of QRNN, with

the bidirectional feature, should remain compatible and hence it should be considerably

easy to implement in our parser. This will also give the opportunity to perform comparative

experiments between unidirectional and bidirectional QRNN, thus giving clear indications of

the effectiveness of the bidirectional feature.

One of the discussed limitations is the fact that the training phase concludes when all

epochs finish. The current implementation does not have any indication in which epoch

the optimal model has been achieved. One potential solution is to keep a history of the

evaluation metrics through all epochs and a pointer to the epoch which resulted with the

best evaluation metrics. The history earlier than the highest scoring epoch can be discarded.

A threshold is required to determine how many consecutive epochs have to result in lower

evaluation metrics in order to stop the training process. For example; if epoch ten has the

6.3 Final remarks 105

best evaluation metrics and hence the best model, models from epochs one to nine can be

discarded. Assuming that the threshold is set to three, if epochs eleven to thirteen result

in lower evaluation metrics, the testing phase can be successfully concluded. The model

from epoch ten will be used for prediction. This solution should overcome the some of the

limitations discussed in the previous chapter. Although such solution does require some

work, the implementation should not be arduous.

One of the main contributions of this work is the use of bootstrapped multi-source

treebanks. We could use the correct language UD treebanks because Tiedemann and van der

Plas performed a study from which we could acquire those languages which performed best

for Maltese dependency parsing [58]. There are a considerable number of other low-resourced

languages such as Uyghur and Kazakh for which the same process can be applied. The

most difficult task is discovering those languages which should be used for the multi-source

treebank. This work can be extended to enable the parser to detect which UD trees of the

target language are close in terms of LAS to other UD trees in other languages. This technique

is known as Projection and was used by Tiedemann and van der Plas [58]. Implementing such

solution would require time and effort which are beyond our possibilities and this technique

does not guarantee that the system would attain the desired results as Tiedemann and van der

Plas [58] experienced in their work.

6.3 Final remarks

Dependency parsing is a thriving research area within NLP, with a yearly shared task

dedicated to its research and development. It is a challenging task and many academics are

consistently working in this area both for research and industrial purposes. Its broad spectrum

offers a wide range of innovation and novelty in processes and system architectures.

Maltese is the only Semitic language written in Latin script, which is also influenced by

Romance languages and is still a computationally low-resourced language but it is positively

experiencing a surge in interest.

6.3 Final remarks 106

This work contributes to the Maltese language by provisioning a dependency parser and

a corpus of embedded Maltese words. The contribution to dependency parsing is the use

of Quasi-Recurrent Neural Networks as the basis of the parsing architecture and the use

of bootstrapped multi-source treebanks. This work achieved state-of-the-art results for the

Maltese language with Unlabelled Attachment Score (UAS) of 90% and Labelled Attachment

Score (LAS) of 86% whilst for the English language an UAS of 87% and a LAS of 84%.

The importance of a dependency parser for any language can only be highlighted as

more technological advanced in Human-Computer/Machine communication is achieved.

For instance, in speech recognition, it is possible to communicate using a highly-resourced

language such as English. However, it cannot be considered as a blanket solution that

will work for everyone. It could be that people are not fluent enough to speak such a

main language or it could also be that the accent spoken is not understood by the system.

The continuous development of computational processing tools for Maltese is essential to

ensure that computer systems have the possibilities and facilities to communicate in different

languages seamlessly.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.

[2] Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and
Collins, M. (2016). Globally normalized transition-based neural networks. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 2442–2452. Association for Computational Linguistics.

[3] Balduzzi, D. and Ghifary, M. (2016). Strongly-typed Recurrent Neural Networks. In
Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pages 1292–1300. JMLR.org.

[4] Björkelund, A., Falenska, A., Yu, X., and Kuhn, J. (2017). IMS at the CoNLL 2017 UD
Shared Task: CRFs and Perceptrons Meet Neural Networks. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages
40–51, Vancouver, Canada. Association for Computational Linguistics.

[5] Bohnet, B. (2010). Very high accuracy and fast dependency parsing is not a contradiction.
In Proceedings of the 23rd international conference on computational linguistics, pages
89–97. Association for Computational Linguistics.

[6] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics,
5:135–146.

[7] Borg, C. (2015). Morphology in the Maltese language: A computational perspective.
PhD thesis, University of Malta.

[8] Borg, C. and Gatt, A. (2014). Crowd-sourcing Evaluation of Automatically Acquired,
Morphologically Related Word Groupings. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14).

[9] Bradbury, J., Merity, S., Xiong, C., and Socher, R. (2017). Quasi-Recurrent Neural
Networks. In International Conference on Learning Representations (ICLR 2017).

Bibliography 108

[10] Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural Language
Learning, pages 149–164. Association for Computational Linguistics.

[11] Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 740–750.

[12] Chu, Y.-J. (1965). On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400.

[13] Collins, M. (2003). Head-driven statistical models for natural language parsing. Com-
putational linguistics, 29(4):589–637.

[14] Das, D. and Petrov, S. (2011). Unsupervised part-of-speech tagging with bilingual
graph-based projections. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1, pages 600–609.
Association for Computational Linguistics.

[15] de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and
Manning, C. D. (2014). Universal Stanford dependencies: A cross-linguistic typology. In
Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), Reykjavik, Iceland.

[16] De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed
dependency parses from phrase structure parses. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’06), volume 6, pages 449–454.
Genoa Italy.

[17] Dozat, T. and Manning, C. D. (2017). Deep biaffine attention for neural dependency
parsing. In International Conference on Learning Representations (ICLR 2017).

[18] Dozat, T., Qi, P., and Manning, C. D. (2017). Stanford’s Graph-based Neural Depen-
dency Parser at the CoNLL 2017 Shared Task. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies, Vancouver, Canada,
August 3-4, 2017, pages 20–30.

[19] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–
2159.

[20] Earley, J. (1970). An Efficient Context-Free Parsing Algorithm. Commun. ACM,
13:94–102.

[21] Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau
of Standards B, 71(4):233–240.

[22] Eisner, J. M. (1996). Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th conference on Computational linguistics-Volume
1, pages 340–345. Association for Computational Linguistics.

[23] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Bibliography 109

[24] Gal, Y. and Ghahramani, Z. (2016). A theoretically grounded application of dropout in
recurrent neural networks. In Advances in neural information processing systems, pages
1019–1027.

[25] Gatt, A. and Céplö, S. (2013). Digital corpora and other electronic resources for Maltese.
In Proceedings of Corpus Linguistics 2013, Lancaster, UK.

[26] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12:2451–2471.

[27] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural Comput.,
9(9):1735–1780.

[28] Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., and Kolak, O. (2005). Bootstrapping
parsers via syntactic projection across parallel texts. Natural language engineering,
11(3):311–325.

[29] Jurafsky, D. (2000). Speech and language processing: An introduction to natural
language processing. Computational linguistics, and speech recognition.

[30] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR).

[31] Kiperwasser, E. and Goldberg, Y. (2016). Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations. Transactions of the Association for
Computational Linguistics, 4:313–327.

[32] Kong, L., Alberti, C., Andor, D., Bogatyy, I., and Weiss, D. (2017). DRAGNN:
A Transition-based Framework for Dynamically Connected Neural Networks. CoRR,
abs/1703.04474.

[33] LeCun, Y. and Bengio, Y. (1995). Convolutional Networks for Images, Speech, and
Time-Series. In Arbib, M. A., editor, The Handbook of Brain Theory and Neural Networks,
pages 255–257. MIT Press.

[34] Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large
annotated corpus of English: The Penn Treebank. Computational linguistics, 19(2):313–
330.

[35] Maruyama, H. (1990). Structural disambiguation with constraint propagation. In
Proceedings of the 28th annual meeting on Association for Computational Linguistics,
pages 31–38. Association for Computational Linguistics.

[36] McDonald, R., Crammer, K., and Pereira, F. (2005). Online large-margin training
of dependency parsers. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 91–98. Association for Computational Linguistics.

[37] McDonald, R. and Nivre, J. (2007). Characterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL).

Bibliography 110

[38] Menzel, W. and Schröder, I. (1998). Decision Procedures for Dependency Parsing
Using Graded Constraints. In Proceedings of ACL’90, pages 78–87.

[39] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of Word
Representations in Vector Space. International Conference on Learning Representations
(ICLR) Workshop.

[40] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

[41] Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceed-
ings of the 8th International Workshop on Parsing Technologies (IWPT.

[42] Nivre, J. (2006). Inductive Dependency Parsing. In Text, speech and language technol-
ogy. Springer.

[43] Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., Mc-
Donald, R. T., Petrov, S., Pyysalo, S., Silveira, N., et al. (2016). Universal Dependencies
v1: A Multilingual Treebank Collection. In LREC.

[44] Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D.
(2007a). The conll 2007 shared task on dependency parsing. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL).

[45] Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi,
E. (2007b). MaltParser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering, 13:95–135.

[46] Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel Recurrent Neural
Networks. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1747–1756, New York, New York, USA. PMLR.

[47] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543.

[48] Čéplö, S. (2018). Constituent order in Maltese: A quantitative analysis. PhD thesis,
Charles University.

[49] Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of Stochastic Approximation by
Averaging. SIAM J. Control Optim., 30(4):838–855.

[50] Rosner, M. and Joachimsen, J. (2012). Il-Lingwa Maltija Fl-Era Diġitali – The
Maltese Language in the Digital Age. META-NET White Paper Series. Georg Rehm and
Hans Uszkoreit (Series Editors). Springer. Available online at http://www.meta-net.eu/
whitepapers.

Bibliography 111

[51] Sagae, K. and Lavie, A. (2006). Parser Combination by Reparsing. In Proceedings
of the Human Language Technology Conference of the NAACL, Companion Volume:
Short Papers, NAACL-Short ’06, pages 129–132, Stroudsburg, PA, USA. Association for
Computational Linguistics.

[52] Schröder, I., Pop, H. F., Menzel, W., and Foth, K. A. (2001). Learning Grammar
Weights Using Genetic Algorithms. In Recent advances in Natural Language Processing,
RANLP-2001, pages 235–239.

[53] Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681.

[54] Shi, T., Wu, F. G., Chen, X., and Cheng, Y. (2017). Combining Global Models
for Parsing Universal Dependencies. In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 31–39, Vancouver,
Canada. Association for Computational Linguistics.

[55] Straka, M., Hajic, J., and Straková, J. (2016). UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and
Parsing. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. European Language Resources Association
(ELRA).

[56] Tesniére, L. (2015). Elements of Structural Syntax (English Translation of Tesniere
1966). John Benjamins Publishing Company.

[57] Tiedemann, J., Agić, Ž., and Nivre, J. (2014). Treebank translation for cross-lingual
parser induction. In Eighteenth Conference on Computational Natural Language Learning
(CoNLL 2014).

[58] Tiedemann, J. and van der Plas, L. (2016). Bootstrapping a dependency parser for
Maltese - a real-world test case. In From Semantics to Dialectometry : Festschrift in honor
of John Nerbonne, pages 355–365, Milton Keynes, England. College Publications.

[59] Waegel, D. (2013). A Survey of Bootstrapping Techniques in Natural Language
Processing. Department of Computer Science, University of Delaware, Literature Survey
Reports.

[60] Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for neural
network transition-based parsing. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 323–333. Association for
Computational Linguistics.

[61] Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support
vector machines. In Proceedings of IWPT, volume 3, pages 195–206. Nancy, France.

[62] Younger, D. H. (1967). Recognition and Parsing of Context-Free Languages in Time
nˆ3. Information and Control, 10:189–208.

[63] Zaremba, W., Sutskever, I., and Vinyals, O. (2015). Recurrent Neural Network regular-
ization. In International Conference on Learning Representations (ICLR 2015).

Bibliography 112

[64] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. CoRR,
abs/1212.5701.

[65] Zeman, D. (2008). Reusable Tagset Conversion Using Tagset Drivers. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC’08),
volume 2008, pages 28–30.

[66] Zeman, D., Marecek, D., Popel, M., Ramasamy, L., Stepánek, J., Zabokrtskỳ, Z., and
Hajic, J. (2012). HamleDT: To parse or not to parse? In LREC, pages 2735–2741.

[67] Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J., Ginter, F., Luotolahti, J., Pyysalo,
S., Petrov, S., Potthast, M., Tyers, F., Badmaeva, E., Gokirmak, M., Nedoluzhko, A.,
Cinkova, S., Hajic jr., J., Hlavacova, J., Kettnerová, V., Uresova, Z., Kanerva, J., Ojala,
S., Missilä, A., Manning, C. D., Schuster, S., Reddy, S., Taji, D., Habash, N., Leung, H.,
de Marneffe, M.-C., Sanguinetti, M., Simi, M., Kanayama, H., dePaiva, V., Droganova,
K., Martínez Alonso, H., Çöltekin, c., Sulubacak, U., Uszkoreit, H., Macketanz, V.,
Burchardt, A., Harris, K., Marheinecke, K., Rehm, G., Kayadelen, T., Attia, M., Elkahky,
A., Yu, Z., Pitler, E., Lertpradit, S., Mandl, M., Kirchner, J., Alcalde, H. F., Strnadová,
J., Banerjee, E., Manurung, R., Stella, A., Shimada, A., Kwak, S., Mendonca, G., Lando,
T., Nitisaroj, R., and Li, J. (2017). CoNLL 2017 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 1–19, Vancouver,
Canada. Association for Computational Linguistics.

[68] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for
text classification. In Advances in neural information processing systems, pages 649–657.

Appendix A

Universal Dependencies specifications

Universal Features

The list of Universal features with the corresponding descriptions from the Universal Depen-

dencies online documentation1.

Abbr abbreviation

AbsErgDatNumber number agreement with absolutive/ergative/dative argument

AbsErgDatPerson person agreement with absolutive/ergative/dative argument

AbsErgDatPolite politeness agreement with absolutive/ergative/dative argument

AdpType adposition type

AdvType adverb type

Animacy animacy

Aspect aspect

Case case

Clusivity clusivity

ConjType conjunction type

Definite definiteness or state

Degree degree of comparison

Echo is this an echo word or a reduplicative?

1http://universaldependencies.org/u/feat/index.html Last accessed: 2018-10-31

114

ErgDatGender gender agreement with ergative/dative argument

Evident evidentiality

Foreign is this a foreign word?

Gender gender

Hyph hyphenated compound or part of it

Mood mood

NameType type of named entity

NounType noun type

NumForm numeral form

NumType numeral type

NumValue numeric value

Number number

PartType particle type

Person person

Polarity polarity

Polite politeness

Poss possessive

PossGender possessor’s gender

PossNumber possessor’s number

PossPerson possessor’s person

PossedNumber possessed object’s number

Prefix Word functions as a prefix in a compund construction

PrepCase case form sensitive to prepositions

PronType pronominal type

PunctSide which side of paired punctuation is this?

PunctType punctuation type

Reflex reflexive

Style style or sublanguage to which this word form belongs

Subcat subcategorization

115

Tense tense

Typo is this a misspelled word?

VerbForm form of verb or deverbative

VerbType verb type

Voice voice

116

Universal Dependency Relations

The list of Universal Dependency Relations with the corresponding descriptions from the

Universal Dependencies online documentation2.

acl clausal modifier of noun (adjectival clause)

advcl adverbial clause modifier

advmod adverbial modifier

amod adjectival modifier

appos appositional modifier

aux auxiliary

case case marking

cc coordinating conjunction

ccomp clausal complement

clf classifier

compound compound

conj conjunct

cop copula

csubj clausal subject

dep unspecified dependency

det determiner

discourse discourse element

dislocated dislocated elements

expl expletive

fixed fixed multiword expression

flat flat multiword expression

goeswith goes with

iobj indirect object

list list

2http://universaldependencies.org/u/dep/index.html Last accessed: 2018-10-31

117

mark marker

nmod nominal modifier

nsubj nominal subject

nummod numeric modifier

obj object

obl oblique nominal

orphan orphan

parataxis parataxis

punct punctuation

reparandum overridden disfluency

root root

vocative vocative

xcomp open clausal complement

