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a b s t r a c t

We call a sum a1+a2+· · ·+ak a partition of n of length k if a1, a2, . . . , ak and n are positive
integers such that a1 ≤ a2 ≤ · · · ≤ ak and n = a1 + a2 + · · · + ak. For i = 1, 2, . . . , k, we
call ai the ith part of the sum a1 + a2 + · · · + ak. Let Pn,k be the set of all partitions of n of
length k. We say that two partitions a1+a2+· · ·+ak and b1+b2+· · ·+bk strongly intersect
if ai = bi for some i. We call a subset A of Pn,k strongly intersecting if every two partitions
in A strongly intersect. Let Pn,k(1) be the set of all partitions in Pn,k whose first part is 1. We
prove that if 2 ≤ k ≤ n, then Pn,k(1) is a largest strongly intersecting subset of Pn,k, and
uniquely so if and only if k ≥ 4 or k = 3 ≤ n ∉ {6, 7, 8} or k = 2 ≤ n ≤ 3.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote positive integers or functions or elements of a set,
capital letters such as X to denote sets, and calligraphic letters such as F to denote families (that is, sets whose elements are
sets themselves). We call a set A an r-element set if its size |A| is r (that is, if it contains exactly r elements). For any integer
n ≥ 1, the set {1, . . . , n} of the first n positive integers is denoted by [n].

In the literature, a sum a1 +a2 +· · ·+ak is said to be a partition of n of length k if a1, a2, . . . , ak and n are positive integers
such that n = a1 + a2 +· · ·+ ak. If a1 + a2 +· · ·+ ak is a partition, then a1, a2, . . . , ak are said to be its parts. Two partitions
that differ only in the order of their parts are considered to be the same. Thus, we can refine the definition of a partition as
follows. We call a tuple (a1, . . . , ak) a partition of n of length k if a1, . . . , ak and n are positive integers such that n =

k
i=1 ai

and a1 ≤ · · · ≤ ak. We will be using the latter definition throughout the rest of the paper.
For any n, let Pn be the set of all partitions of n, and for any k, let Pn,k be the set of all partitions of n of length k. Thus, Pn,k

is non-empty if and only if 1 ≤ k ≤ n. Moreover, Pn =
n

i=1 Pn,i. For any set A of integer partitions, let A(1) denote the set
of all partitions in Awhich have 1 as their first entry. Thus

Pn,k(1) = {(a1, . . . , ak) ∈ Pn,k: a1 = 1} and Pn(1) =

n
i=1

Pn,i(1).

Note that |Pn(1)| = |Pn−1| and |Pn,k(1)| = |Pn−1,k−1|. To the best of the author’s knowledge, no closed-form expression is
known for |Pn| and |Pn,k|; for more about these values, we refer the reader to [4].

We say that (a1, . . . , ar) strongly intersects (b1, . . . , bs) if ai = bi for some i ≤ min{r, s}. If A is a set of integer partitions
such that every two partitions in A strongly intersect (that is, for every a, b ∈ A, a strongly intersects b), then we say that A
is strongly intersecting.

It is natural to ask how large a strongly intersecting subset of Pn,k or Pn can be. We provide the answer to this question
and also determine the extremal structures. The classical Erdős–Ko–Rado (EKR) Theorem [28] inspired many problems and
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results of this kind in extremal set theory; see [12,14,24,30,31]. Pn,k is a subset of the set [n]k of all k-tuples with entries in
[n]; the problem for strongly intersecting subsets of [n]k attractedmuch attention (see, for example, [2,5,11,32,33,37,46,52])
and is completely solved [2,33]. A weaker definition of intersection for integer partitions simply requires that they have at
least one common part; more precisely, we say that (a1, . . . , ar) intersects (b1, . . . , bs) if ai = bj for some i ∈ [r] and j ∈ [s].
The problem based on this definition is treated in [9] and turns out to be significantly more difficult; it is solved for n suffi-
ciently large depending on k.

The following is our first result.

Theorem 1.1. If 2 ≤ k ≤ n and A is a strongly intersecting subset of Pn,k, then

|A| ≤ |Pn−1,k−1|,

and equality holds if A = Pn,k(1).

Proof. Let f : A → Pn,k(1) be the function that maps (a1, . . . , ak) ∈ A to the partition (a′

1, . . . , a
′

k) with a′

k = ak +

(k − 1)(a1 − 1) and a′

i = ai − (a1 − 1) for each i ∈ [k − 1] (note that, since a′

1 = 1 and a1 ≤ a2 ≤ · · · ≤ ak, we indeed have
(a′

1, . . . , a
′

k) ∈ Pn,k(1)).
Suppose that (a1, . . . , ak) and (b1, . . . , bk) are partitions in A that aremapped by f to the same partition (c1, . . . , ck). Thus

ak + (k− 1)(a1 − 1) = ck = bk + (k− 1)(b1 − 1) and ai − (a1 − 1) = ci = bi − (b1 − 1) for each i ∈ [k− 1]. Therefore, bk =

ak + (k − 1)(a1 − b1) and bi = ai − (a1 − b1) for each i ∈ [k − 1]. Since A is strongly intersecting, we have aj = bj for some
j ∈ [k], and hence a1 − b1 = 0. Thus bi = ai for each i ∈ [k], and hence (a1, . . . , ak) = (b1, . . . , bk).

Therefore, f is an injective function, and hence the size of the domain A of f is at most the size of the co-domain Pn,k(1)
of f . �

In the next section, we also determine precisely when Pn,k(1) is the only strongly intersecting subset of Pn,k that attains
the bound above. It turns out that this holds for k ≥ 4, and also for k = 3 unless 6 ≤ n ≤ 8.

Theorem 1.2. For 2 ≤ k ≤ n, Pn,k(1) is the unique strongly intersecting subset of Pn,k of maximum size if and only if k ≥ 4 or
k = 3 ≤ n ∉ {6, 7, 8} or k = 2 ≤ n ≤ 3.

From Theorem 1.1 we obtain the following.

Theorem 1.3. For n ≥ 1, Pn(1) is a strongly intersecting subset of Pn of maximum size, and uniquely so unless n = 2.

Proof. The result is trivial for n = 1. If n = 2, then Pn(1) = {(1, 1)} and {(2)} are the only two strongly intersecting subsets
of Pn. Now consider n ≥ 3. Let A be a strongly intersecting subset of Pn. For each k ∈ [n], let Ak = A ∩ Pn,k. Thus A1, . . . , An
are strongly intersecting, and |A| =

n
k=1 |Ak|. Let a ∈ Pn,1. Thus a = (n). No partition in Pn\{a} strongly intersects a. Thus,

if a ∈ A, then A = {a}, and hence |A| = 1 < |Pn(1)|. Now suppose a ∉ A. Thus A1 = ∅ (as Pn,1 = {a}). By Theorem 1.1, |Ak| ≤

|Pn,k(1)| for each k ∈ [n]. Thuswehave |A| =
n

k=2 |Ak| ≤
n

k=2 |Pn,k(1)| = |Pn(1)|. Pn,n has only onepartition e, namely e =

(1, . . . , 1). If e ∈ A, then each partition in A strongly intersects e, and hence A ⊆ Pn(1). If e ∉ A, then An = ∅, and hence |A| =n−1
k=2 |Ak| ≤

n−1
k=2 |Pn,k(1)| <

n
k=2 |Pn,k(1)| = |Pn(1)|. �

As indicated above, Theorem 1.1 is an analogue of the EKR Theorem [28]. A family A of sets is said to be intersecting if
every two sets in A intersect (that is, if A ∩ B ≠ ∅ for every A, B ∈ A). For any set X , let 2X denote the power set of X (that
is, the family of all subsets of X), and let


X
r


denote the family of all r-element subsets of X . The EKR Theorem says that

if r ≤ n/2 and A is an intersecting subfamily of


[n]
r


, then |A| ≤


n−1
r−1


, and equality holds if A = {A ∈


[n]
r


: 1 ∈ A}.

Theorem 1.3 is analogous to another well-known result in [28], which says that if A is an intersecting subfamily of 2[n], then
|A| ≤ 2n−1, and equality holds if A = {A ∈ 2[n]: 1 ∈ A}.

Theorems 1.1–1.3 can also be phrased in terms of intersecting subfamilies of a family. For any integer partition a =

(a1, . . . , ak), let Sa be the set {(1, a1), . . . , (k, ak)}. Let Pn = {Sa: a ∈ Pn} and Pn,k = {Sa: a ∈ Pn,k}. There is a one-to-one
correspondence between Pn and Pn, and similarly for Pn,k and Pn,k. Clearly, two integer partitions a and b strongly intersect
if and only if Sa and Sb intersect. Thus, Theorems 1.1 and 1.2 say that for 2 ≤ k ≤ n, {A ∈ Pn,k: (1, 1) ∈ A} is a largest
intersecting subfamily of Pn,k, and uniquely so if and only if k ≥ 4 or k = 3 ≤ n ∉ {6, 7, 8} or k = 2 ≤ n ≤ 3. Theorem 1.3
says that {A ∈ Pn: (1, 1) ∈ A} is a largest intersecting subfamily of Pn, and uniquely so unless n = 2.

EKR-type results have been obtained for families that have a symmetric structure (see [16, Section 3.2], [58]) and have
sizes that are known precisely (such as the family of r-element subsets of a set [1,22,28,29,45,59], families of permuta-
tions/injections [13,19,20,23,25,35,47,49–51,57], families of integer sequences/functions/labeled sets/signed sets [2,5–8,10,
11,13,24,26,27,32,33,37,46,52,53], and families of vector spaces [24,34,36,41]) or have a structure that enables the use of
the compression technique [30,39,43] and induction (as are power sets [3,28,44], certain hereditary families [15,21,54,55],
families of separated sets [56], families of independent r-element sets of certain graphs [17,18,38–40,42,60], and families
of set partitions [48]). One of the main motivating factors behind this paper is that although the families Pn and Pn,k do not
have any of these structures and we do not even know their sizes precisely, we have a complete characterisation of their
largest intersecting subfamilies (note that by Theorem 1.2 it only takes a straightforward exhaustive check to determine the
extremal subfamilies for the cases in which Pn,k(1) is not the unique largest intersecting subfamily of Pn,k.).
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We proceed by giving the proof of Theorem 1.2. Then, in Section 3, we suggest a conjecture as a natural generalisation of
Theorem 1.1.

2. Proof of Theorem 1.2

This section is entirely dedicated to the proof of Theorem 1.2, which is obtained by extending the proof of Theorem 1.1.

Proof of Theorem 1.2. Consider first k = 2. Pn,2(1) consists of the partition (1, n−1) only. If 2 ≤ n ≤ 3, then Pn,2 = Pn,2(1).
If n ≥ 4, then (2, n−2) is a partition in Pn,2, and hence {(2, n−2)} is a strongly intersecting subset of Pn,2 of size |Pn,2(1)| = 1.

Next, consider k = 3 and n ∈ {6, 7, 8}. We have that {(1, 2, 3), (2, 2, 2)} is a strongly intersecting subset of P6,3 that is as
large as P6,3(1) = {(1, 1, 4), (1, 2, 3)}, {(1, 2, 4), (1, 3, 3), (2, 2, 3)} is a strongly intersecting subset of P7,3 that is as large
as P7,3(1) = {(1, 1, 5), (1, 2, 4), (1, 3, 3)}, and {(1, 2, 5), (1, 3, 4), (2, 2, 4)} is a strongly intersecting subset of P8,3 that is
as large as P8,3(1) = {(1, 1, 6), (1, 2, 5), (1, 3, 4)}.

Now consider the case where n and k are not as above. Thus we have

k ≥ 4 or k = 3 ≤ n ∉ {6, 7, 8}. (1)

Let A be a strongly intersecting subset of Pn,k. Define f as in the proof of Theorem 1.1. As proved in Theorem 1.1, f is injective.
Let e be the partition (e1, . . . , ek) in Pn,k(1) with e1 = · · · = ek−1 = 1 and ek = n − (k − 1).

If (a1, . . . , ak) is a partition in Pn,k that strongly intersects e, then, since a1 ≤ · · · ≤ ak and ak = n − (a1 + · · · + ak−1),
we have a1 = · · · = aj = 1 for some j ∈ [k − 1], and hence (a1, . . . , ak) is in Pn,k(1). Thus, if e is in A, then A ⊆ Pn,k(1).

Now suppose that e is not in A. We will show that |A| < |Pn,k(1)|, which completes the proof.
If no partition in A is mapped to e by f , then f is not surjective, and hence the size of the domain A of f is smaller than

the size of the co-domain Pn,k(1) of f .
Suppose that A does contain a partition a = (a1, . . . , ak) that is mapped to e by f . Thus a1 = · · · = ak−1 = j for some

j ≥ 1, and ak = n − (k − 1)j ≥ a1. Since e ∉ A, we have a ≠ e, and hence j ≠ 1. Thus

j ≥ 2. (2)

Since j = a1 ≤ ak = n − (k − 1)j, we have

n ≥ kj. (3)

Let b be the partition (b1, . . . , bk) in Pn,k(1) with

b1 = · · · = bk−2 = 1, bk−1 =


n − (k − 2)

2


, bk =


n − (k − 2)

2


.

By (2), bi ≠ ai for each i ∈ [k − 2]. We also need to compare bk−1 and bk with ak−1 and ak, respectively. We treat the case
where n − k is odd separately from the case where n − k is even.

Case 1: n − k is odd. Thus bk−1 =
n
2 −

k
2 +

1
2 and bk =

n
2 −

k
2 +

3
2 .

Suppose n ≤ kj + 1. By (3), kj ≤ n ≤ kj + 1. If k = 3, then, by (1) and (2), j ≥ 3. We have

bk−1 − ak−1 =
n
2

−
k
2

+
1
2

− j ≥
kj
2

−
k
2

+
1
2

− j =
1
2
(k − 2)(j − 1) −

1
2
,

and hence, given that either k ≥ 4 and j ≥ 2 or k = 3 and j ≥ 3, we obtain

bk−1 − ak−1 > 0.

Also,

bk − ak =
n
2

−
k
2

+
3
2

− n + (k − 1)j = kj − j −
k
2

−
n
2

+
3
2

≥ kj − j −
k
2

−
kj + 1

2
+

3
2

=
1
2
(k − 2)(j − 1) > 0.

Thus bi ≠ ai for each i ∈ [k], that is, b does not strongly intersect a. Hence b ∉ A. Suppose that A contains a partition
d = (d1, . . . , dk) that is mapped to b by f . By definition of f , bk = dk + (k − 1)(d1 − 1) and bi = di − (d1 − 1) for each
i ∈ [k − 1]. Since d ∈ A and b ∉ A, we have d ≠ b, and hence d1 ≠ 1. Thus d1 ≥ 2, and hence dk−1 ≥ bk−1 + 1 and bk > dk.
Thus, since bk = bk−1 + 1, we have dk−1 > dk, which contradicts d ∈ Pn,k. Therefore, no partition in A is mapped to b by f .
Thus f is not surjective, and hence |A| < |Pn,k(1)|.

Now suppose n ≥ kj + 2. We have

bk−1 − ak−1 =
n
2

−
k
2

+
1
2

− j ≥
kj + 2

2
−

k
2

+
1
2

− j =
1
2
(k − 2)(j − 1) +

1
2

> 0,

and hence bk−1 ≠ ak−1. If we also have bk ≠ ak, then |A| < |Pn,k(1)| follows as in the case n ≤ kj + 1.
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Suppose bk = ak. Thus n
2 −

k
2 +

3
2 = n − (k − 1)j, which yields n = 2kj − 2j − k + 3. Let ck = bk + 1, ck−1 = bk−1 − 1,

and ci = bi = 1 for each i ∈ [k − 2]. Thus ck = ak + 1, ci = 1 < j = ai for each i ∈ [k − 2], and

ck−1 − ak−1 =
n
2

−
k
2

+
1
2

− 1 − j =
1
2

(2kj − 2j − k + 3) −
k
2

−
1
2

− j = (k − 2)(j − 1) − 1.

Suppose k = 3 and j = 2; since n = 2kj − 2j − k + 3, we obtain n = 8, which contradicts (1). Thus, by (2), j ≥ 3 if k = 3.
Thus ck−1 − ak−1 ≥ 1, and hence ck−1 > ak−1. Let c = (c1, . . . , ck). Since c1 ≤ · · · ≤ ck and

k
i=1 ci = n, c ∈ Pn,k. We have

shown that ci ≠ ai for each i ∈ [k], meaning that c does not strongly intersect a. Hence c ∉ A. Now c is an element of the
co-domain Pn,k(1) of f .

Suppose that A contains a partition d = (d1, . . . , dk) that is mapped to c by f . Let h = d1 − 1. By definition of
f , dk = ck−(k−1)h and di = ci+h for each i ∈ [k−1]. Since d ∈ A and c ∉ A, we have d ≠ c, and hence h ≠ 0. Thus h ≥ 1.
Since dk−1 ≤ dk, we have ck−1 + h ≤ ck − (k− 1)h, which yields kh ≤ ck − ck−1 = (bk + 1)− (bk−1 − 1) = 3. It follows that
k = 3 and h = 1. Recall that from k = 3 we obtain j ≥ 3. Thus we have d1 = 2 < j = a1, d2 = dk−1 = ck−1 +h > ak−1 = a2
(since ck−1 > ak−1), and d3 = dk = ck − (k − 1)h = ck − 2 = (bk + 1) − 2 = ak − 1 = a3 − 1. Thus di ≠ ai for each i ∈ [k],
meaning that d does not strongly intersect a; but this is a contradiction since A is strongly intersecting.

Therefore, no element of the domain A of f is mapped to c. Thus f is not surjective, and hence |A| < |Pn,k(1)|.
Case 2: n − k is even. Thus bk−1 = bk =

n
2 −

k
2 + 1. By an argument similar to that for Case 1, |A| < |Pn,k(1)|. �

3. A conjecture

The definitions of a strongly intersecting set of integer partitions and of an intersecting family of sets generalise as follows.
We say that (a1, . . . , ar) and (b1, . . . , bs) strongly t-intersect if for some t-element subset T of [min{r, s}], ai = bi for each
i ∈ T . A set A of integer partitions is said to be strongly t-intersecting if every two partitions in A strongly t-intersect. A family
A is said to be t-intersecting if |A ∩ B| ≥ t for every A, B ∈ A. Thus, an intersecting family is a 1-intersecting family.

In addition to the EKR Theorem (see Section 1), it was also proved in [28] that if n is sufficiently larger than r , then the
size of any t-intersecting subfamily of


[n]
r


is at most

 n−t
r−t


, and hence {A ∈


[n]
r


: [t] ⊂ A} is a largest t-intersecting

subfamily of


[n]
r


. The complete solution for any n, r and t is given in [1]; it turns out that {A ∈


[n]
r


: [t] ⊂ A} is a largest

t-intersecting subfamily of


[n]
r


if and only if n ≥ (r − t + 1)(t + 1) (see also [29,59]).

We now suggest a conjecture for strongly t-intersecting subsets of Pn,k. For any set A of integer partitions, let A(t) denote
the set of all partitions in Awhose first t entries are 1. Thus, for 1 ≤ t ≤ k ≤ n,

Pn,k(t) = {(a1, . . . , ak) ∈ Pn,k: a1 = · · · = at = 1} and Pn(t) =

n
i=t

Pn,i(t).

Note that |Pn(t)| = |Pn−t | and |Pn,k(t)| = |Pn−t,k−t |.

Conjecture 3.1. For t + 1 ≤ k ≤ n, Pn,k(t) is a strongly t-intersecting subset of Pn,k of maximum size.

Theorem 1.1 verifies this for t = 1. If this conjecture is true, then, by an argument similar to that for Theorem 1.3, we get
that for n ≥ t, Pn(t) is a strongly t-intersecting subset of Pn of maximum size.

Proposition 3.2. Conjecture 3.1 is true for n ≤ 2k − t + 1.

Proof. By Theorem 1.1, wemay assume that t ≥ 2. Suppose n ≤ 2k− t+1. For any c = (c1, . . . , ck) ∈ Pn,k, let Lc = {i ∈ [k]:
ci = 1}, and let lc = |Lc|.

Let c = (c1, . . . , ck) ∈ Pn,k. We have 2k − t + 1 ≥ n =


i∈Lc ci +


j∈[k]\Lc cj ≥


i∈Lc 1 +


j∈[k]\Lc 2 = lc + 2(k − lc) =

2k− lc. Thus lc ≥ t−1, and equality holds only if n = 2k− t+1 and cj = 2 for each j ∈ [k]\Lc. Since c1 ≤ · · · ≤ ck, Lc = [lc].
Let A be a strongly t-intersecting subset of Pn,k. If la ≥ t for each a ∈ A, then A ⊆ Pn,k(t). Suppose that la = t − 1 for

some a = (a1, . . . , ak) ∈ A. Thus, by the above, we have n = 2k − t + 1, ai = 1 for each i ∈ [t − 1], aj = 2 for each
j ∈ [k]\[t − 1], and Pn,k = Pn,k(t) ∪ {a}. Let b be the partition (b1, . . . , bk) in Pn,k(t) with bk = n − k + 1 = k − t + 2 and
bi = 1 for each i ∈ [k − 1]. Since a and b do not strongly t-intersect, b ∉ A. Thus |A| ≤ |Pn,k| − 1 = |Pn,k(t)|. �

Acknowledgements

The author is indebted to the anonymous referees for checking the paper carefully and providing remarks that led to an
improvement in the presentation.

References

[1] R. Ahlswede, L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997) 125–136.
[2] R. Ahlswede, L.H. Khachatrian, The diametric theorem in Hamming spaces—optimal anticodes, Adv. Appl. Math. 20 (1998) 429–449.
[3] R. Ahlswede, L.H. Khachatrian, Katona’s intersection theorem: four proofs, Combinatorica 25 (2004) 105–110.

http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref1
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref2
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref3


84 P. Borg / Discrete Mathematics 336 (2014) 80–84

[4] G.E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
[5] C. Berge, Nombres de coloration de l’hypergraphe h-parti complet, in: Hypergraph Seminar (Columbus, Ohio 1972), in: Lecture Notes in Math.,

vol. 411, Springer, Berlin, 1974, pp. 13–20.
[6] C. Bey, The Erdős–Ko–Rado bound for the function lattice, Discrete Appl. Math. 95 (1999) 115–125.
[7] C. Bey, An intersection theorem for weighted sets, Discrete Math. 235 (2001) 145–150.
[8] B. Bollobás, I. Leader, An Erdős–Ko–Rado theorem for signed sets, Comput. Math. Appl. 34 (1997) 9–13.
[9] P. Borg, Intersecting integer partitions, arXiv:1304.6563 [math.CO].

[10] P. Borg, Intersecting systems of signed sets, Electron. J. Combin. 14 (2007) R41.
[11] P. Borg, Intersecting and cross-intersecting families of labeled sets, Electron. J. Combin. 15 (2008) N9.
[12] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. Lond. Math. Soc. 79 (2009) 167–185.
[13] P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009) 3310–3317.
[14] P. Borg, Intersecting families of sets and permutations: a survey, in: A.R. Baswell (Ed.), Advances in Mathematics Research, Vol. 16, Nova Science

Publishers, Inc., 2011, pp. 283–299.
[15] P. Borg, On Chvátal’s conjecture and a conjecture on families of signed sets, European J. Combin. 32 (2011) 140–145.
[16] P. Borg, The maximum sum and the maximum product of sizes of cross-intersecting families, European J. Combin. 35 (2014) 117–130.
[17] P. Borg, F. Holroyd, The Erdős–Ko–Rado properties of set systems defined by double partitions, Discrete Math. 309 (2009) 4754–4761.
[18] P. Borg, F. Holroyd, The Erdős–Ko–Rado properties of various graphs containing singletons, Discrete Math. 309 (2009) 2877–2885.
[19] F. Brunk, S. Huczynska, Some Erdős–Ko–Rado theorems for injections, European J. Combin. 31 (2010) 839–860.
[20] P.J. Cameron, C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003) 881–890.
[21] V. Chvátal, Intersecting families of edges in hypergraphs having the hereditary property, in: C. Berge, D.K. Ray-Chaudhuri (Eds.), Hypergraph Seminar,

in: Lecture Notes in Mathematics, vol. 411, Springer, Berlin, 1974, pp. 61–66.
[22] D.E. Daykin, Erdős–Ko–Rado from Kruskal–Katona, J. Combin. Theory Ser. A 17 (1974) 254–255.
[23] M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977) 352–360.
[24] M. Deza, P. Frankl, The Erdős–Ko–Rado theorem—22 years later, SIAM J. Algebr. Discrete Methods 4 (1983) 419–431.
[25] D. Ellis, E. Friedgut, H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011) 649–682.
[26] K. Engel, An Erdős–Ko–Rado theorem for the subcubes of a cube, Combinatorica 4 (1984) 133–140.
[27] P.L. Erdős, U. Faigle, W. Kern, A group-theoretic setting for some intersecting Sperner families, Combin. Probab. Comput. 1 (1992) 323–334.
[28] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313–320.
[29] P. Frankl, The Erdős–Ko–Rado theorem is true for n = ckt , in: Proc. Fifth Hung. Comb. Coll., North-Holland, Amsterdam, 1978, pp. 365–375.
[30] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London, New York,

1987, pp. 81–110.
[31] P. Frankl, Extremal set systems, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, 1995,

pp. 1293–1329.
[32] P. Frankl, Z. Füredi, The Erdős–Ko–Rado theorem for integer sequences, SIAM J. Algebr. Discrete Methods 1 (1980) 376–381.
[33] P. Frankl, N. Tokushige, The Erdős–Ko–Rado theorem for integer sequences, Combinatorica 19 (1999) 55–63.
[34] P. Frankl, R.M. Wilson, The Erdős–Ko–Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986) 228–236.
[35] C. Godsil, K. Meagher, A new proof of the Erdős–Ko–Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009) 404–414.
[36] C. Greene, D.J. Kleitman, Proof techniques in the theory of finite sets, in: MAA Studies inMath., vol. 17, Math. Assoc. of America,Washington, DC, 1978,

pp. 12–79.
[37] H.-D.O.F. Gronau, More on the Erdős–Ko–Rado theorem for integer sequences, J. Combin. Theory Ser. A 35 (1983) 279–288.
[38] A.J.W. Hilton, C.L. Spencer, A graph-theoretical generalisation of Berge’s analogue of the Erdős–Ko–Rado theorem, in: Trends in Graph Theory,

Birkhäuser Verlag, Basel, Switzerland, 2006, pp. 225–242.
[39] F. Holroyd, C. Spencer, J. Talbot, Compression and Erdős–Ko–Rado graphs, Discrete Math. 293 (2005) 155–164.
[40] F. Holroyd, J. Talbot, Graphs with the Erdős–Ko–Rado property, Discrete Math. 293 (2005) 165–176.
[41] W.N. Hsieh, Intersection theorems for systems of finite vector spaces, Discrete Math. 12 (1975) 1–16.
[42] G. Hurlbert, V. Kamat, Erdős–Ko–Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011) 829–841.
[43] G. Kalai, Algebraic shifting, in: Computational Commutative Algebra and Combinatorics (Osaka, 1999), in: Adv. Stud. Pure Math., vol. 33, Math. Soc.

Japan, Tokyo, 2002, pp. 121–163.
[44] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329–337.
[45] G.O.H. Katona, A simple proof of the Erdős–Chao Ko–Rado theorem, J. Combin. Theory Ser. B 13 (1972) 183–184.
[46] D.J. Kleitman, On a combinatorial conjecture of Erdős, J. Combin. Theory Ser. A 1 (1966) 209–214.
[47] C.Y. Ku, I. Leader, An Erdős–Ko–Rado theorem for partial permutations, Discrete Math. 306 (2006) 74–86.
[48] C.Y. Ku, D. Renshaw, Erdős–Ko–Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008) 1008–1020.
[49] B. Larose, C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004) 657–673.
[50] Y.-S. Li, A Katona-type proof for intersecting families of permutations, Int. J. Contemp. Math. Sci. 3 (2008) 1261–1268.
[51] Y.-S. Li, J. Wang, Erdős–Ko–Rado-type theorems for colored sets, Electron. J. Combin. 14 (2007) R1.
[52] M.L. Livingston, An ordered version of the Erdős–Ko–Rado theorem, J. Combin. Theory Ser. A 26 (1979) 162–165.
[53] J.-C. Meyer, Quelques problèmes concernant les cliques des hypergraphes k-complets et q-parti h-complets, in: Hypergraph Seminar (Columbus, Ohio

1972), in: Lecture Notes in Math., vol. 411, Springer, Berlin, 1974, pp. 127–139.
[54] J. Schönheim, Hereditary systems and Chvátal’s conjecture, in: Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen,

1975), in: Congressus Numerantium, vol. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 537–539.
[55] H.S. Snevily, A new result on Chvátal’s conjecture, J. Combin. Theory Ser. A 61 (1992) 137–141.
[56] J. Talbot, Intersecting families of separated sets, J. Lond. Math. Soc. 68 (1) (2003) 37–51.
[57] J. Wang, S.J. Zhang, An Erdős–Ko–Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008) 1112–1115.
[58] J. Wang, H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011) 455–462.
[59] R.M. Wilson, The exact bound in the Erdős–Ko–Rado theorem, Combinatorica 4 (1984) 247–257.
[60] R. Woodroofe, Erdős–Ko–Rado theorems for simplicial complexes, J. Combin. Theory Ser. A 118 (2011) 1218–1227.

http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref4
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref5
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref6
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref7
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref8
http://arxiv.org/1304.6563
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref10
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref11
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref12
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref13
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref14
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref15
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref16
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref17
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref18
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref19
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref20
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref21
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref22
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref23
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref24
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref25
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref26
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref27
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref28
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref29
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref30
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref31
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref32
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref33
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref34
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref35
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref36
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref37
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref38
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref39
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref40
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref41
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref42
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref43
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref44
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref45
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref46
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref47
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref48
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref49
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref50
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref51
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref52
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref53
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref54
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref55
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref56
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref57
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref58
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref59
http://refhub.elsevier.com/S0012-365X(14)00299-4/sbref60

	Strongly intersecting integer partitions
	Introduction
	Proof of Theorem 1.2
	A conjecture
	Acknowledgements
	References


