TECHNICAL PAPERS

A NEW HYBRID HEURISTIC ALGORITHM FOR SOLVING
FLOWSHOP SCHEDULING PROBLEM

Mircea ANCAU! and Liberato CAMILLERI®

ABSTRACT: This paper presents a new heuristic hybrid algorithm for solving flow shop scheduling
problem. The algorithm is based on a general optimization method which works in two stages. In the first
stage it performs a global search of the optimal solution by 2 Monte Carlo based approach, while in the
second stage of the local search, the previous solution is improved. To exhibit the effectiveness of the
proposed method, several computational tests are carried out complemented by statistical analysis.
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1 INTRODUCTION

According to group techmology concept, pieces
in industry may be classified depending on different
criteria (geometry, functional role, size etc.) in
families of pieces. A main feature of pieces, which
belong to the same family, is the fact that it follows
the same operating sequence on every machine, Due
to geometry variation, different pieces from the
same family may have different processing times on
the same maching, but the operating sequence on all
machines is the same. Consider a set of N, pieces
(or jobs) to be processed on M different machines.
The main ohjective is to find the sequence in which
the jobs must be processed so that the total
completion time (the time between the beginning of
the execution of the first job on the first machine
and the completion of the execution of the last job
on the last machine) or makespan, denoted Capy, to
be minimum. The processing times of jobs on all
machines, denoted tj € Ra (i = 1,2, ..., Ny, | = 1,2,
... M), are nonnegative integer values that are
known in advance. For this problem, the following
assumptions should be made:

- all jobs are independemt and available for
processing when the process is initialized;

- every job has to be processed at most once on
machine 1,2,....M, in this order;

- all machines are permanently available;

- every job is processed at most on one machine
at a tims;
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- every machine processes only one job at a
time;

= once started an operation cannot be interrupted,

- the set-up times of the operations are included
in the processing times and do not depend on
the sequence;

- if the machine which follow in the operation
sequence is not available (being busy with
another job) next jobs will be allocated in a
“waiting list.

Many heuristic algorithms have been proposed
to solve the flow shop scheduling problems.

They can be classified in two main groups:
constructive heuristics and improvement heuristics,
The first group builds a feasible schedule using 2
specific technique, while the second group wies to
improve the previously generated schedule. The
classic algorithm of Johnson (Johnson, 1954) offers
the optimal solution for the case of N, jobs on two
machines. These scheduling problems can be solved
in polynomial time, For more than two machines, M
z 3, these problems become NP-Complete. The
CDS  heuristic algorithm of Campbell et al
(Campbell et al,1970) divides all M machines into
two groups which are considered as two virtual
machines. Therefore, the problem is solved by
applying Johnson's algorithm. Subsequently, the
best solution is chosen among (M-I} processing
sequences. The HFC heuristic of Koulamas
(Kuolamas, 1988) uses the algorithm developed by
Johnson in the first phase and then attempts at
improving the feasible solution.

Many other heuristic methods assign a weight
to each job, sorting the list of jobs using that weight
as a sort key (Palmer, 1965}, (Gupta,1971), (Hundal
& Rajgopal, 1988).

The RA (Rapid Access) algorithm made by
Dannenbring (Dannenbring,1977), is a combination
between previous methods based on Johnson and
Palmer algorithms.
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According to Taillard (Taillard,1990), the NEH
heuristic algorithm of Wawaz et al, (Nawaz et
al,1983) is recognized as one of the efficient
heuristic method in this field. NEH is neither based
on Johnson's algorithm nor on techniques that
assign weights. Initially, the algorithm calculates
the total completion time for each job taken solely,
on all machines. The jobs are then sorted in
descending order depending on the size of these
durations. For two jobs, there are two possible
variants to be placed in the manufacturing sequence,

The permutation that yields the minimum

completion time is selected. Similarly, for three
jobs there are three possible variants to be placed in
the manufacturing sequence. As in the preceding
step, the variant with minimum completion time is
selected. This iterative process is continued until all
Jobs are placed in the manufacturing sequence. In
this way, the manufacturing sequence is generated,
by placing each job J, (2 < k < M) in the most
favourable position in the sequence Ty, Jz, ..oy Jea
already formed. Consequently, there are basically
n-(n—=1)/2-1 evaluation sequences to get the
final result. Many other heuristic methods, based on
MEH, propose different starting sequences
{Framinan et al,2003). SPIRIT algorithm of Widmer
and Hertz, (Widmer & Hertz, 1989) is a constructive
heuristic of the insertion type. The first two jobs I,
Ji from the entire list of jobs are chosen such that
the total completion time is minimum. The
following jobs are inserted in the manufacturing
sequence randomly based on the minimum
increasing of the total completion time.

Unlike constructive heuristic algorithms, the
improvement heuristic algorithms start from a
specified manufacturing sequence and bty to
improve it by applying different procedures.

A practical method to improve a manufacturing
sequence 15 to exchange the places of two neighbour
jobs and to replicate this step until an improved
manufacturing sequence is obtained.

Considering the  time  berween - the
manufacturing start of a job on the M, machine and
it's manufacturing finish on My machine as a
criterion, the heuristic algorithm of Ho si Chang
(Ho & Chang,1991) exchanges job positions in the
manufacturing sequence, in order to decrease these
intermediary times.

To solve the flow shop scheduling problems,
other hewristic methods apply principles used to
solve some other combinatorial optimization
problems. The most popular and widely used
heuristic methods are either based on Simulated
Annealing (Osman & Potts,1989), (Widmer &

Hertz, 1389}, (Taillard, 1990), {Ogbu & Smith, 1990),
{Ishibuchi,1995), Tabu Search (Moccellin,1995),
(Nowicki & Smutnicki, 1996} , or genetic algorithms
(Murata et al 1996, (Reeves & Yamada, 1998),
{Ponnambalam,2001) etc. Several comprehensive
studies including those of Ruiz and Morato (Ruiz &
Morato,2005) and Garrido et al, (Garrido et al,2000)
discuss and compare the performances of these
methods.

2 THE GENERAL PRINCIPLE OF THE
NUMERIC ALGORITHM

Flow shop scheduling is one of the classic
combinatorial optimization problems, which may
have one or more of both local or global optimum
points. The huge number of the possible variants
(n!) makes the exhaustive exploration almost
impossible. To aveid the trap of local optimum
points, a reasonable choice would be a Monte Carlo
search based technique, followed by a local search
in the neighbourhood of the solution previously
found (Goertzel,1993). To find the true optimum by
means of a Monte Carlo technique, it is necessary to
generate a large number of random points in the
space of feasible problem solutions. If the number
of random peints is large enough, then the best
solution found will be certainly a reasonable guess.
It is important to note that by random points imply
that manufacmiring sequences are randomly
generated. Therefore, in the case of global search
procedure we will generate a random jobs
permutation. Based on this random generated
permutation, we will-take the first two jobs as
partial manufacturing sequence. Starting from this
partial sequence and using the random generated
permutation, ¢ach job will be inserted in the partial
sequence in the proper position, based on the
minimum Cpe criterion. The phase of ordered
manufacturing sequence is finalized when all the
Jobs from the list are inserted in the manufacturing
sequence. The construction heuristic segment of the
algorithm differ from NEH because it does not use a
previously ordered jobs, according to the total
manufacturing time of each job on all machines. In
addition, it differs from the SPIRIT algorithm, as it
does not select the first two jobs according to some
criterion accomplishment.

However, this method starts from a random
permutation of N, integers. The manufacluring
sequence is created based on a method of insertion
type, in which every new job is inserted in the
partial manufacturing sequence according to the
minimum completion time principle. The job
insertion order is carried out by the initial zenerated
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random  permutation. Since the phase of
manufacturing sequence construction is repeated
several times, we will follow the principles of a
global search, based on Monte Carlo method.

while { stopping condition not satisfied)
{

I The random constructive heuristic (global

search procedure)
Generate a rendom permutation
(plil,i=1,2,...,N)

Append jobs in the order given by the random

permutation,based on the condition of minimum

Conax;

Calculate total completion time (Chel;

if {actual value of Chy, < previous value of Copd
Minimum C,_ ... = Actual C,...:

I Permuration heuristic {local search procedure)
Improve the actual order by permutations;
Calculate total completion time {C )
if (actual value of C,,, < previous value of C,,.)
Minimum Cpp = Actual Copg
}

Figure 1. The main steps performed by the heuristic
algorithm

After reading the initial data corresponding to
the manufacturing times of N, jobs on M machines,
the algorithm works in two phases (see figure 1).
The first phase constructs manufacturing sequence,
by initially generating a random permutation. In the
second phase, the constucted manufacturing
sequence is improved by means of a permutation
scheme. These two phases are repeated iteratively
until some of stopping criterion is achieved. This
may be the iteration number or running time.

2.1 The Construction Heuristic Algorithm

To develop the jobs manufacturing sequence,
the first step consists in generating a random
permutation of N, positive integers. The rand()
function of an ANSI C compiler returns a value of
type int {a two byte guantity on many machines),
which must be at most 32767. This may be a
wortying limitation, especially when conducting a
Monte Carlo approach. In generating a random
instance, the portable random numbers generator
ranl{ } of Park and Miller (Press,1997) was used,
since this has a period larger than 10®, The random
permutation (see figure 2) is used for the job
insertion order. Consider the random permutation
(Jers dizs <oy Jap). We will take the first two jobs (J,,
I2), according to the insertion order. The rtotal
completion time for the partial manufacturing
sequence is calculated in two cases, to decide which
of the arranzements (1., J.a), (Js, I} is the best.

Suppose this is (I, J2). The subsequent task is to
insert job J5 in the manufacturing sequence using
the random permutation. In other words, we need to
test which of the variants (T, Jez, Ja), (Jers Tz, Jead oF
{Ji3: Jnns Ji2) is the best. Jobs J, .. Jo, are inserted in
the manufacturing sequence in a similar way.

If the random permutations generalor
fori=0to N
i =i;
fori=0toN

{
/f call the random number generator ran/();
Aszign to q a random integer number,
between i to (MN-i);
exchange rfi] with rig];
}

Figure 2. The random permutation algorithm

To construct the manufacturing sequence, an
auxiliary variable labelled njob is used (see figure
3). Initially, njob takes the wvalue 2 and is
incremented each time a new job is inserted in the
partial manufacturing sequence, The values of the
manufacturing times are stored in a table labelled
t_imifM][Np]. The jobs partial sequence is stored in
a vector labelled PartiallndexNpJ, whereas the
optimum manufacturing sequence is stored in
OptimPartialindex(Np].

The construction heuristic phase also call two
routines: calcuwlateMatrizXy ), which returns the
values of the waiting times on each machine and
findPartialSequencel ), which builds the partial
optimum manufacturing sequence as well as the
total completion time for the partial manufacturing
sequence considersd. The construction . of the
manufacturing sequence is completed when the
condition njob = M, s fulfilled.

njob =2;

for j=1 to M
for i=1 to njob
0] = e_ini[] (<[]

Haccording to random permulation

A ehose first twe fobs

for i=! to njob

Partiallndex[i] = r[i];
for j=1 to M

for i=1 to njob

(i) = 0.0;

calenlateMatrieX (%, U, njob);
tPartial = 0.0;
for j=1 to njob

tPartial = tPartial + x[M][j] + ([MI[];
if { tPartial < tPartialMin ) .
{
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tPartialMin = tPartial;
for i=1 to njob
OptimPartiailndex[i] =
Partiallndex[i];
}

A reverse the order of the first two fobs
exchange Partiallndex[1] with Partiallndex[2]
for j=1 to M
exchange t[j][1] with t[j][2];"
calculateMatrixX (%, t, njob);
tPartial = {.0;
for j=1 to njob
tPartial = tPartial + x[M][] + tMIGT;
iff tPartial < tPartialin )
{
tPartialhlin = tPartial;
for i=1 to mjob _
OptimPartialindex[i] =
PartialIndex[i]: .

)
while( njob <=MNp)
{

Partiallndexnjob] = r[njob];
for j=1 to M

tfi][njob] = t_ini[j){r{njob]];
tPartialMin = findPartialSequence (t_ini,
Partiallndex, njob);
if ( tPartialMin < timpTotal && njob==Np
}
1

timpTotal = tPartialMin;

for i=] to Np

index_optim[i] =

Partiallndex[i];
) :
njob++;

Fizure 3. The random constructive henristie

1.2 The Permutation Heuristic Algorithm

The manufacturing sequence generated during
the construction heuristic phase is improved in the
second phase by means of a permutation heuristic.
The total completion time is computed for each set
of jobs permutations. This completion time is
updated when a manufacturing sequence yields a
better result compared to the preceding sequences.
The pseudo code. of the permutation phase is
presented in figure 4. At each permutation there is
an exchange between two columns in the matrix
t[M][N;] of jobs manufacturing times. Initially job
Iy is moved sequentially one place at a time, first
following job I, then following job Ju and so on.
By inserting job J;, in the last position and job Jz in
the first position of the manufacturing sequence, we
proceed by moving job Js in the same way as the

job Ju. This procedure is repeated for the remaining
jobs,

forg=1to Np
for k=1 to Np-1
fori=ktoNp
forj=1to M
exchange t{j][i] with t[j][i+1)
exchange index of job[i] with index of job[i+1]
calenlateX(x,t);
caleulare Actual Cmax
if (Actual Cmax < Mindmum Crma)
Minimum Cmax = Actual Cmax;
fore=10to Np
optimIndex[¢] = index[e];
return Minimum Cmax;

Figure 4. The jobs permutation module

The first step of this permutation phase is
completed when the job I is inserted in the last
position of the manufacturing sequence. There will
be n = M, such steps which reduce the number of
permutations from n! to n’.

3 NUMERICAL RESULTS

The efficiency of the algorithm was tested on
four groups of benchmark problems from OR
Library (see hitp:/mscmga.ms.ic.ac.uk/info html}
corresponding to Taillard’s, Carlier's Heller’s and
Reeves. Tables [ and 2 shows the computational
results of these test instances.

Table 1. Taillard’s benchmark problems

Nr. Problem Upper Ga
crt instance Result h:lfm;l ["!e"izﬁ'I
Taillard's instances

l J20ms(1) 1283 1278 0.39
2 J20m5(2) 1359 1359 0.00
3 I120m5(3) 1100 1081 1.75
4 I20mS {4y 1323 | 1293 232
3 J20m3(5) 1250 1236 1.13
] JH0mS{6) 1210 1195 1.25
7 J20mS(7) 1256 1239 1.37
4 J20mS(8) 1237 1206 2.57
9 J120m3(9) 1256 1230 2.11
10 J20mS5(10) 1127 1108 1.71
11 | RdmlD 1636 1582 341
12 J20m10(2) 1732 1659 440
13 J20m10{3) 1563 1494 4.47
14 J20m10{4) 1440 1378 4.49
15 J20m10(3) 1491 1419 5.07
16 J50m5(1) 2755 2724 1.13
17 150mS{2) 2005 2834 2.50
15 150m5{3) 2676 2621 2.09
19 150m5{4) 2843 2731 3.34
20 I50m5(5) 2887 2363 084
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21 J50m10(1) 3328 3025 10.02 Reeves instances

22 J50mI10(2) 3213 2892 11.1¢ 11 ReC01-20x3 1275 1247 0.3%
23 J50m10(3) 3214 2864 12,22 12 ReC02-20xs 1257 123; 0.30
24 I50m10i(4) 3365 3064 9.82 13 ReCl3-20x5 1117 11 0.72
25 J50m10(5) 3323 2986 11.28 14 ReC04-20x3 1122 1108 117
26 J100m3(1) 3372 3493 1.43 15 ReC05-20x5 1247 1242 .41
27 J100m5(2) 5380 3268 2.12 16 ReCO06-20x3 1247 1242 0.41
28 J100m5(3) 3328 3173 285 17 ReCO7-20x10 1599 1566 2.11
29 J100m3{4) 3140 014 251 13 ReCO8-20x10 1605 1566 2.49
30 J100m5{5) 3380 3250 247 12 ReC09-20x10 1598 1537 3.97
31 1200mI0{]) 11556 108568 £.33 20 ReC10-20x10 1566 1537 1.89
3z J200m 13 2) 11410 10494 8.72 21 ReC11-20x10 1513 1431 3.73
33 J200m10{3) 11669 10922 6.83 22 ReCl12-20x10 1494 1431 4.40
34 J200m 14} 11447 10889 5.12 23 ReC13-20x13 2017 1930 4.51
35 T200m10(5) 11467 10524 8.96 24 ReC15-20x15 2021 1950 3.64
23 ReC17-20x15 2014 1902 5.99

Both the number of machines used and the 26 ReC19-30x10 2247 2093 7.34
number of jobs processed affects the number of 27 | ReC21-30x10 | 2176 2017 7.88
iterations required to get a good result. It was noted 28 | ReC23-30%10 | 2162 | 2011 | 7.51
that the number of iterations increased more 29 | ReC25-30x15 | 2732 | 2513 8.71
conspicuously by increasing the number of 30_| ReC27-30x15 | 2602 373 3.63
machines rather than increasing the number of jobs. 31| ReC29-A0cl5 ] 2533 2287 1163
In other words, the machine number has a greater g;,% ﬁﬁ;éﬁ:g i;;: 3&;:3 ]}?'Iz
influence than the job number on the number of = 31 L
. . . 34 | ReC35-50x10 | 3430 3277 5.28
iterations. The algorithm needs to execute a 35 | ReC37-75x20 | 5731 4890 1770
noticeable larger ‘number of iterations, when'tht 36 | ReC39-75x20 | 5825 5043 1551
machine number is increased, in order to retzin a 37T | ReC41-75x20 | 5782 | 4910 | 17.76

similar gap between the result and the upper bound.

For Carlier's test instances, the algorithm
reached the upper bound in all cases within 1000
iteration. This was mainly due to the smaller size of
the problem. The average CPU time was 8.8 sec, on
an Intell(R) Pentium at 3.01 GHz

For the Heller's test instances we had only the
results of Agarwal et al (Agarwal et al, 2006) which
were taken as upper bound. For Reeves's test
instances the results are relative similar to those
corresponding to Taillard’s from Table 1.

Table 2. Makespans and gaps

Nr. Problem Upper | Gap
crt instance Result hf fn& [%0]
Carlicr’s instancas
I Carl-11x5 7038 7038 Q.00
2 Car]-13x4 7166 7168 0.00
3 Car3-12x3 7312 7312 .00
4 Card-14x4 8003 003 0.00
5 Cars-10x6 7720 7720 0.00
[ Carg-3x% 8505 %3505 0.00
7 Car7-Tx7 55910 6590 0.00
3 Carg-3x8 8366 4366 0.00
Heller's instances

| 9 | Heller-20xI0 | 145 136 | 6.62
10 Heller-100x10 550 316 6,59

A different approach when making inferences
about the total completion time is to use probability
theory. Probability theory cannot establish
explicitly the minimum makespan; however, given
the distribution of the total completion time we can
calculate the probability that this makespan is less
than some specified duration. If the makespan has a
Normal distribution with known parameters then the
required probability is the area under this Normal
curve beyond the specified duration. In the
subsequent section, we explain the theoretical
aspects of the Normal distribution and illustrate
methods for checking the normality assumption
using the results of Taillard’s test instance
j20m35(1). We also describe a procedure that
transforms skewed distributions so that the
normality assumption becomes more plausible.

The Normal distribution plays a very important
role in statistical inference and is perhaps the most
important distribution in statistical applications. The

© probability density function ffi) for a MNormal

random variable ¢ is given by:

I t = p)’

fi= =ex -4 "? J; ()
"J'[Zm‘:r L 2o

The parameters p and o are the mean and

standard deviation of the Normal distribution. To

determine probabilities relating to random variables
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having a normal distribution, we make use of the

following transformation:

7=k, @

o

Since the relationship between the values of r and z

is linear, z must take on a value between
=27# and z, =t2;"u, when ¢ takes on a

o o

value between 1, and ¢,.
Pt <t<et))=

ﬁrm{-{%}*}m
'E ﬂp[q_z ] @)

To illustrate the procedure, we the use the
generated completion times of Taillard’s test
instance j20m5(1) to establish the probability that

Hence,

Pt <t<ty)=

=P(z, {zqzz},

the makespan C o is less than some specified
duration, Preliminary investigation of the
completion time distribution shows that it does not
have an exact Nonnal distribution. The coefficient
of skewness (0.208) indicates that the distribution is
skewed to the right and the coefficient of kurtosis
(-.185) specifies that the distribution is flatter than
the Normal distribution (Francis et al,1993),

Table 3. Statistical measures for the skewed
distribution of actual completion times

Actual completion
time
Coefficient of Skewness 208
Coefficient of Kuriosis - 185

Moreover, the Q-Q plot displaying the
quantiles of the time completion distribution against
the quantiles of the Normal distribution shows that
the points near the left tail of the completion time
distribution do not cluster around the straight line.

This implies that the smaller completion times
are the observations that are most violating the
normality assumption and these happen to be the
data points that we are interested most.

One of the procedures that is normally
employed to reduce departure from normality and
make the time completion distribution less skewed
is the Box-Cox transformation.

T T ¥ L
1Ha 1430 =) e e

Aotusl Comgletion Emes

Figure 5. The distribution of the actual
completion time, for the j20mS(1) instance,
displayed on a normal curve

Maomnal S-0 Plot of Complation Tims

Elplnhd'!hmd'l‘yl . .
g 8§ ¢ &

i

2z e 1400 = 500 IE ™ Iy
Dbdsrved Vahes

Figure &. The normal Q-Q plot for the actual
completion times

This transformation is defined as:

tt=1)/ 4 A#0
t(A)= ( ] for

logt for A=0
where A4 is the transformation parameter and r is
the completion time variable. Given the data ¢, for
i=1..,n we assume that thers exist some A for
which £;(4) has a Normal distribution with mean
the density

(5)

4 and variancec”. For
function can be wrilten as:

A o)

1 10t - (6)
V2mo? 207

A=z,
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For the given observations ¢, the log-
likelihood function is given by:
H:R, 2 cr]=—-;—llug(2:m‘2 ]+ nlog| 1|+
N

. ol
+{4 I}Zf:lngr, Z o

The maximum likelihood estimate A of the
transformation parameter is obtained by setting
&l/dA to 0. This is the value of A that minimizes
the deviance (-2 log-likelihood).

Daviames
g
3

AN AW 4 EM AR 4% 4B 4B EH 4B 4w
Transformation Parameter
Figure 7. The deviance as a function
transformation parameter

The deviance is minimized when A =-0.88.
Using this value of A, we can estimate the
parameters u and o using maximum likelihood

by setting both 8!/du and 8l/0c to 0.
ol 1
_z_izb‘* - ,.t.r)=El' and

R R .

o T

,&=;z‘_:rf‘1 and &° =;Z’[rfj -,u}l

The coefficients of skewness (-0.002) and
kurtosis (-0.019) are both close to 0 indicating that
the transformed completion times have a MNormal
distribution.

Moreover, the data points near the tails of the
transfortned completion time distribution do cluster
around the straight line.

Table 4. Parameter estimates

Parameter. Estimate
j -0.88
il 0.001592
&* 3.072x107°
Fom
Ty
000 B‘
B e
E &
£
4w |
]
1 xor |
| ‘ I |
M!L'H !.I"h: RT3l HI?!IIJ néll.
Tematsemid Complellon Smes

Fizure & The distribution of the transformed
completion times, for j20m3(1) instance, displayed
on a normal curve

Mermal Q-0 Flot ef transformed Complation Teme

Ly

EtpaﬂMﬂHnrmal 'ufgha-
g §B &
*. - =

&
g
@

Bibin £

[:fea T T T T T T T
a3 [Ir 3t oS D0 [i] i kg [ L] amais
Obsarvad Valus

Figure 9. The normal Q- plot for the

transformed completion times
Using these results it is possible to estimate the
probability that the shortest processing time is less
than a specified value e .
A A
ot —
. *“]; (9)
o

P <ay=p(r :‘n:'f‘i)=P[z >
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The inequality sign is reversed because A hasa
negative value. For example, the probability that the
shortest processing time is less than 1300 is:

13007°* -0.001592 | _
(10)

J3.072.107
=P(z>4.5843)=2.279-107%;

The probability that the completion time is less
than 1300 is equal to 0.000021785, This indicates
that the event is very unlikely to occur. The
probability that the shortest processing time is less
than 1278 is:

P(:f:13t}ﬂ}'=P[s:~

1,43
P a:12?31=P[z 1278 -ﬂ.ﬂ01592]= .

V3072107
= P(z>4.5843)=2.279 10

It is evident from these examples that as the
specified duration appreaches the minimum
completion time the probability of finding a
solution with a make span less than the specified
value approaches zero.

4 CONCLUSIONS

This paper presents a new heuristic hybrid
algorithm for solving the flowshop scheduling
problem. The algorithm is based on a general
optimization method of iterative type, which works
in two stages. In the first stage, of a constructive
heuristic type, a feasible schedule is generated,
based on a Monte Carlo approach. In the second
stage, the initial sclution is improved by a local
search procedure, based on adjacent jobs
permutation.

The numerical tests show that the proposed
algorithm works very well especially for problems
of small and medium size. Conceming the
performances of the algorithm, it seems that the
number of machines used has a greater influence in
both directions of CPU time and solution quality
compared to the number of jobs processed.

The statistical analysis emphasise the
limitations of the method. Further researches will
take into consideration different strategies for the
local search, in order to improve the solution and
reduce the CPU time, especially for large sized
problems.

5 APPENDIX: THE CALCULATION
OF WAITING TIMES

Let tn, be the manufacturing time of job I, on
machine m, wheren=1,2, ..., Ny,andm=1,2, ..,
M. In figure 10, Xpm = 0 denotes the waiting time

that has to elapse before the execution of job I, on
machine m.
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Figure 10. Gantt representation of the case: 4 jobs on
5 machines

By assuming that the execution of jobs on the
first machine takes place without breaks, then by
convention we will consider the waiting times on
first machine to be null. So
Xy =Xy ==Xy =05 (12)

Mext, we determine the waiting time that
elapses before the execution of each job, on any of
the (M-1) remaining machines. For the first job in
the list, the waiting time for machine M is equal to
the sum of the manufacturing times corresponding
to the previous machines:

A=l
a1 =Z'rjl; (13)
J=1

Hence the required manufacturing time for the
first job is:
T =X+l 5 (14)

For the next jobs Jo (n= 2,3, ..., Np) in the
manufacturing  sequence, the waiting times
corresponding to machine m {1 = m < M) can be
determined using these equations:

m=] 1

1
X, =max{ P —Z{xm, +1,, },D}; (15)
J=1

=l i=l

X =max{ ii‘” + mz_lfﬂ —i{xﬁ +f.m}‘ﬂ}; (16)

=t J=l [
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n=| w=1 m=I
xmzmax{ZI"-EZ:h —Z{xﬂﬂm,),ﬂ}; (1N
i=l J=l =

Equation {13) corresponds to the waiting times
that elapse before the job J;, in the manufacturing
sequence, is executed on each machine m (m =2, 3,
...y M). Similarly, the equations (16) and (17)
correspond to the waiting times that clapse before
the jobs J; and I, respectively, in the manufacturing
sequence, is executed on each machine m. It is
noteworthy that in equations (15) to (17) there
exists a relation of precedence which does not
allow, for example, to calculate the waiting time x5
{which precede the manufacturing of J; on the
second machine) before the waiting time %32 (which
precede job J; on the same machine).

The total completion time for all N, jobs on M
machines is equal to the sum of manufacturing
times corresponding to the jobs on the last machine
added to the sum of the waiting times on the same
machine. From equation (13), the waiting time that
precedes the beginning of the execution of the first
job on last machine is equal to the sum of
manufacturing times of the job I, on the first (M-1)
machines. The  waiting time that precedes the
execution of job J; on the last machine, can be
obtained by setting the condition m =M in equation
(15).

I A =] 1
Xppa =max{ Sttty (o, +rM},D}; (18)

il J=i imi

By summing x and xpe we get:

2 1 M=l i
me=mﬂx{2nr +Zfﬂ-sz =I.w1}; (19)
i=i =1 4=l =l

Setting m = M in eguation {16), we obtain the
value of the waiting time that precede the execution
of the third job on machine M:

T M =i z
Lurs =max{ ZI“ + Zr_rs _Z [x.-.-rr' g ]: ﬂ}; (20)
i=l J=t i=1

By adding equations (19 and (20} we can
obtain the sum of the waiting times that elapse
before the execution of the third job on the last
machine, so:

3 2 M=l z 2
lem =m“{zfu +E*‘13 _nynzl:xm}; (213

fa] J=1 =

Similarly, we can determine the sum of waiting
times that elapse before the execution of all N, jobs
on machine M, by equation 22.

N M Ny
ixm =m f.!" +Erﬂ-':ﬂ_' IM,EJ:M. =
] ful =1 = I=l
(22}

A=l Mp=2 M-l
=max ﬁr“ + rﬂp—’f:m, i.r"+z; o1 —’frﬂ,-,,,

fel J=i 1=l f=i =l =l

2 M= 2 i M1 1 M=
---:Zf:i +er2 _ZIM:: iy + Z‘}z _Z'Mv Zr_n };-
=] -l el

i=l =l =l

Equation {22) is a general formulation of the
sum of waiting times on the last machine, which can
be easily proved by complete induction.

We denote the sum of waiting times on the last
machine corresponding to  the manufacturing
sequence S, by X5} (1 = =Ny).

{E(ﬁf —fm);fn,}; (23)

iml =

X (8)=  max
lﬁc}:ng

The benefit of equation (23) lies in the fact that
the waiting times are expressed solely in terms of

" the manufacturing times. X (S) is minimized only

when the manufacturing sequence S is optimal.

Consider two  different  manufacturing
sequences 5; and 5;, of the N jobs:
Sy =TT s s en i i (24)
Sz={J|!‘"r:""*“'rhl""r.'r"""“r?-:p); {25)

In the manufacturing sequence 5;, unlike the
initial sequence 5;, only the execution of jobs Jy and
Jywy are exchanged. The order in which the
remaining jobs are executed is unchanged.

Let L,(S) be defined by:

-1

L, {3}:{2&” ~ty }+ﬂ§f;u}: (26)

=] J=l
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Consequently, equation (23) can be expressed
in a compressed form as:

X8 = max {L(S)}
| NP

For the sequences 5, and S of job executions,

27

the values L, will be the same, gucept for those .

corresponding to @ = k and @ = k+1 respectively.
We can deduce that:

X, (5,)=x,(8,) (28)
if and only if

SI WL S )=
max{L, (S,),L,.,(S,)} 09)

=max {L($;). Ly, (520}

If condition (29) is not satisfied implies that
one of the manufacturing sequences 5y, S; is better
than the other.
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