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ABSTRACT 

 
Latent class models have been used extensively in market 

segmentation to divide a total market into market groups of 

consumers who have relatively similar product needs and 

preferences. The advantage of these models over traditional 

clustering techniques lies in simultaneous estimation and 

segmentation, which is carried out using the EM algorithm. 

The identification of consumer segments allows target-

marketing strategies to be developed.   

The data comprises the rating responses of 262 respondents to 

24 laptop profiles described by four item attributes including 

the brand, price, random access memory (RAM) and the 

screen size. Using the facilities of R Studio, two latent class 

models were fitted by varying the number of clusters from 2 

to 3.   

The parameter estimates obtained from these two latent class 

models were used to simulate a number of data sets for each 

cluster solution to be able to conduct a Monte-Carlo study, 

which investigates factors that have an effect on segment 

membership and parameter recovery and affect computational 

effort.   

 

 
1. INTRODUCTION  

 
Latent class models (LCM) differ from standard regression 

models because they accommodate discrete latent variables. In 

layman terms, LCM assume that the heterogeneous 

observations in a sample arise from a number of homogenous 

subgroups (segments) mixed in unknown proportions. The 

main inferential goals of LCM are to identify the number of 

segments and simultaneously estimate the regression model 

parameters for each segment; and classify the individuals in 

their most likely segment. The characteristics of each segment 

can be deduced based on the demographic information of the 

members within each segment. In the past decade, LCM has 

increased in popularity, particularly in market segmentation, 

which is mainly due to technological advancements, rendering 

complex LCM computationally feasible, even on large data 

sets.  

2. THEORETICAL FRAMEWORK  

 
Latent class models assume that the population consists of S 

segments having unknown proportions 
1 2, ,..., S   . These 

proportions must satisfy the following two constraints: 
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The conditional probability density function of the responses  

iY , given that 
iY  comes from segment  is given by: 
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where, the conditional density function  is assumed to be a 

mixture of segment-specific densities, ( , )i sik sik s
f y   . These 

component mixtures are assumed to be independent within the 

latent classes, such that: 
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If  
iY  has conditional multivariate normal distribution then 

( , ) ( , )i si s i i s si s i s
f y f y θ X β Σ  can be expressed as: 

 

 

         
1

12 2
1

(2 ) exp '
2

K

s i i s s i i sy y
 

 
   
 

Σ X β Σ X β    (4) 

 

The unconditional probability density function of 
iY , given 

the vector of unknown parameters  ' ', ',Ω π β Σ , is:  
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The likelihood function, formulated by equation (6), is used to 

estimate the parameter vector Ω . The estimate Ω̂ , is obtained 

by using the maximum likelihood (ML) technique, in 

particular, through the use of the EM algorithm. Using Bayes’ 

theorem, the posterior probability  ,is i y Ω  can be computed 

using the parameter estimates  Ω̂ .  
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The procedure updates the parameter estimates iteratively, and 

when it ultimately converges, the posterior probabilities given 

by (7) will be used to assign each respondent to that segment 

with the largest posterior probability. 
 
 

3. THE EM ALGORITHM  

 

Dempster et al., (1977) are credited with presenting the EM 

algorithm in its current form, where parameters of a mixture 

distribution are estimated by using the concept of incomplete 

data. The central idea behind the EM algorithm is to augment 

the data by including unobserved, referred to as missing, data, 

which comprises of unknown 0-1 indicators indicating whether 

a respondent belongs or not to a particular segment. Hence, 

instead of maximizing the likelihood via standard optimization 

methods, the expected complete-data log-likelihood function is 

maximized using the EM algorithm. 

Let 
isz  be the unknown 0-1 indicator variables representing 

the unobserved data, which are assumed to be independent 

and identically multinomially distributed. 
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 where,  1,...,i i isz zz  and  ' '

1,..., sz z z .  Since 
isz  is 

considered as missing data, the complete-data likelihood 

function,  , ,c iL Ω y z   is given by: 
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The complete log-likelihood function   is: 
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In the E-step, the expectation of the complete log-likelihood 

function, given by (10) is calculated with respect to the 

conditional distribution of the missing data, given both the 

observed data and the initial estimates of Ω . Since the 

complete-data log-likelihood function is linear in 
isz , the 

expectation   log ( , )c iE L 
 Ω y z  is obtained by replacing the 

isz  by their conditional expectation, given the observed data. 
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where  ,is iE z y Ω  is given by:   
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These posterior probabilities are updated iteratively by 

replacing the estimates of ˆ
sβ  and ˆ

sΣ obtained from the 

previous iteration. 

 

 

4.   APPLICATION 

 

Two latent class models were fitted to identify factors that 

influence the customer choices when buying laptops and 

identify the product attributes that most influence the 

consumers in buying the product.  In this application, the four 

selected laptop attributes included the brand (HP, Asus); the 

price (€500, €600, €700); RAM (4GB, 8GB) and the screen 

size (12 inch, 15 inch). This survey was designed and devised 

on Survey Monkey (an online survey questionnaire) where a 

number of laptop profiles having distinct attributes were 

generated and these profiles had to be assessed on a 7-point 

Likert scale where 1 corresponds to ‘Not worthy’ and 7 

corresponds to ‘Very worthy’. A rating scale was selected since 

it expresses the intensity of a preference better than a ranking 

scale. A full-profile method and full factorial design were 

chosen for the data collection method yielding a total of 24 

distinct profiles. 69.8% of 262 participants who completed the 

online questionnaire were females, 74.4% were university 

students and 73.7% were less than 30 years.  All participants 

owned a laptop. The first latent class model assume a 2-segment 

solution and the second assume a 3-segment solution.  The 

parameter estimates of the two latent class models will be used 

in a simulation study, described in section 5, to investigate 

factors that affect the performance of the EM algorithm. 

 

For the 2-segment solution, 175 (66.8%) respondents were 

allocated to segment 1 and the remaining 87 (33.2%) were 

allocated to segment 2. Respondents in both segments rated 

HP laptops more than Asus; rated cheaper laptops more than 

expensive ones; rated 4GB RAM laptops less than 8GB RAM; 

and rated 12 inch screen laptop less than 15 inch screen.  

However, participants in segment 2 are discriminating more 

between the brands, prices, screen sizes and random access 

memories compared to participants in segment 1. Table 1 

displays the parameter estimates and standard errors for the 2-

segment solution.   

 

 

Parameter 

Segment1 Segment2 

Est. S.E. Est. S.E. 

Intercept 5.18 0.05 3.66 0.08 

Brand (HP) 0.07 0.04 0.39 0.06 

Brand (Asus)        0        0 

Price (€500) 0.37 0.05 0.56 0.08 

Price (€600) 0.31 0.05 0.20 0.07 

Price (€700)        0        0 

RAM (4GB) -0.72 0.04 -0.82 0.06 

RAM (8GB)        0        0 

Size (12inch) -0.58 0.04 -1.29 0.06 

Size (15inch)        0        0 

Table 1: Parameter estimates for the 2-segment solution 

 
For the 3-segment solution, 117 (44.7%) respondents were 

allocated to segment 1, 24 (9.2%) respondents were allocated 



to segment 2 and the remaining 121 (46.1%) were allocated to 

segment 3. Respondents in both segments rated HP laptops 

more than Asus; rated cheaper laptops more than expensive 

ones; rated 4GB RAM laptops less than 8GB RAM; and rated 

12 inch screen laptop less than 15 inch screen.  However, 

participants in segment 1 are discriminating more between the 

prices and screen sizes; participants in segment 2 are discerning 

more between the brands; and participants in segment 3 are 

discriminating more between the random access memories. 

Table 2 displays the parameter estimates and standard errors 

for the 3-segment solution. 

 

 

Parameter 

Segment1 Segment2 Segment3 

Est. S.E. Est. S.E. Est. S.E. 

Intercept 4.47 0.03 2.37 0.07 5.32 0.03 

Brand (HP) 0.19 0.03 0.46 0.06 0.11 0.03 

Brand (Asus)    0     0    0 

Price (€500) 0.51 0.03 0.08 0.07 0.43 0.03 

Price (€600) 0.28 0.03 -0.04 0.07 0.32 0.03 

Price (€700)    0     0    0 

RAM (4GB) -0.53 0.03 -0.63 0.06 -0.91 0.03 

RAM (8GB)    0     0    0 

Size (12inch) -1.27 0.03 -0.60 0.06 -0.43 0.03 

Size (15inch)    0     0    0 

Table 2: Parameter estimates for the 3-segment solution 

 

Number of 

segments S 

Deviance 

(-2 log L) 

Number of 

parameters P 

 

BIC 

2 10868 12 21858 

3 10545 18 21273 

Table 3: BIC value for the 2- segment and 3-segment solutions 

 
Table 3 displays the deviances, number of parameters and 

BIC values of the two-segment and three-segment solutions.  

Figures 1 to 4 provide graphical displays of the mean rating 

scores grouped by segment and laptop attributes. Respondents 

in segments 1 and 2 are price sensitive but not brand sensitive, 

while respondents in segment 3 are brand sensitive but not price 

sensitive. Respondents in all three segments prefer 8GB RAM 

and 15 inch screen laptops more than 4GB RAM and 12 inch 

screen laptops. 

 

 
Figure 1: Mean rating scores grouped by segment and brand 

 
Figure 2: Mean rating scores grouped by segment and RAM 

 

 
Figure 3: Mean rating scores grouped by segment and size 

 

 
Figure 4: Mean rating scores grouped by segment and price 
 

 

5. MONTE CARLO SIMULATION 

 

A further task was to examine the performance of latent 

class models by modifying a number of factors. Three of 

the factors that are highlighted in literature as having potential 

effect on model performance include: 
 

 Number of simulated respondents  

 Number of segments 

 Size of perturbation parameter 2

i  of the error terms. 



The above three factors reflect a variation in conditions in many 

applications which are expected to affect the performance of the 

model fit. The design used in the study was 3 x 2
3
 full factorial 

design, which yielded 24 observations. The following four 

measures are normally used to assess computational effort, 

parameter recovery, predictive power, goodness of fit and 

segment membership recovery. The root-mean-squared error 

between the true and estimated parameters is a measure of 

parameter recovery. ˆ  and p p   are the true and estimated 

parameters, where P is the number of parameters. 
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The root-mean-squared error between the true and estimated 

segment membership probabilities is a measure of segment 

proportion recovery. ˆ and s s   are the true and estimated 

segment membership probabilities, where S is the number of 

segments. 
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The root-mean-squared-error between the true and predicted 

responses is a measure of the predictive power.  and ik ik
y y  

are the true and estimated responses, where N and K are the 

number of hypothetical subjects and the number of profiles 

assessed by each subject. 
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In order to assess the factors that affect the performance of 

latent class models, synthetic data sets were generated, where 

the simulation was devised to mimic the laptop application.  

To allocate hypothetical subjects to segments the proportion 

s  of members in each segment was specified, satisfying 

the constraint these proportions sum to 1. This was carried 

out by first generating N uniformly distributed pseudo-random 

real values in the range [0,1] and then by computing the 

cumulative probabilities 
1

s

s jj
q 


 .  Every subject whose 

corresponding value was in the range 
1( , )s sq q

 was allocated 

to segment s.  This gives a random segment allocation to each 

hypothetical subject. To simulate the subjects’ rating responses, 

the linear predictors and the corresponding parameters kβ  

were specified for the S segments.  Moreover, the design and 

the linear predictor were set the same as in the application. 

Given the segment allocation of each member, synthetic 

data values were generated for each subject.  These values 

were then perturbed by adding an error term having a 

normal distribution. Six specified cut-points 
r  were used to 

convert these values to rates ranging from 1 to 7.  Values in the 

range 1( , )r r   were converted to rate r.  This gives a random 

rating category allocation to each profile by each hypothetical 

subject.   

The number of simulated respondents was varied at three 

levels (100, 300 and 500).  It is expected that a greater number 

of simulated subjects improve the precision of the estimated 

segment-level parameters.  The number of segments was also 

varied at two levels (2 and 3 segments) because these represent 

the range of segments commonly found in segmentation 

applications. It is expected that a greater number of segments 

deteriorate the precision of the estimated segment-level 

coefficients as a greater number of model parameters have to 

be estimated. The error terms were assumed to be normally 

distributed and the parameter 2

i  was set to 0.1, 0.5 and 1.  It 

is expected that a larger perturbation value reduces the precision 

of the estimated segment-level parameters since there will be 

less cohesion in each segment and lower segment separation.  

 

Number of 

subjects 

Perturbation 

value 

Number of 

segments 
 ˆRMS β  

100 0.1 2 0.2402 

300 0.2396 

500 0.2376 

100 0.5 0.2716 

300 0.2545 

500 0.2606 

100 1.0 0.3270 

300 0.3138 

500 0.3327 

100 0.1 3 0.2427 

300 0.2401 

500 0.2341 

100 0.5 0.3940 

300 0.3674 

500 0.3276 

100 1.0 0.4049 

300 0.3679 

500 0.3490 

Table 4: Parameter recovery using simulated data 

 

Number of 

subjects 

Perturbation 

value 

Number of 

segments 
 ˆRMS π  

100 0.1 2 0.0475 

300 0.0260 

500 0.0249 

100 0.5 0.0485 

300 0.0260 

500 0.0246 

100 1.0 0.0721 

300 0.0607 

500 0.0547 

100 0.1 3 0.0638 

300 0.0288 

500 0.0257 

100 0.5 0.0638 

300 0.0295 

500 0.0276 

100 1.0 0.0780 

300 0.0689 

500 0.0557 

Table 5: Segment proportion recovery using simulated data 



Ten data sets were generated for each factor level combination 

according to the number of subjects, number of segments and 

the perturbation value.  Each simulated data set was re-fitted 

using a latent class model.   

 

Number of 

subjects 

Perturbation 

value 

Number of 

segments  RMS y  

100 0.1 2 1.3920 

300 1.3945 

500 1.3952 

100 0.5 1.4364 

300 1.4420 

500 1.5088 

100 1.0 1.4833 

300 1.4195 

500 1.5260 

100 0.1 3 1.5620 

300 1.7948 

500 1.4629 

100 0.5 1.5634 

300 1.5828 

500 1.4799 

100 1.0 1.5633 

300 1.5931 

500 1.5061 

Table 6: Assessing predictive power using simulated data 
 

The ˆ( )RMS β ˆ( )RMS π  and ˆ( )RMS y values shown in tables 4, 

5 and 6 were computed after permuting the parameters and 

predicted responses to match estimated and true segments 

optimally.  All the three measures were averaged over these 

ten data sets.    

  

Number of 

subjects 

Perturbation 

value 

Number of 

segments 

Segment 

membership 

recovery 

100 0.1 2 100% 

300 100% 

500 100% 

100 0.5 100% 

300 99.86% 

500 99.46% 

100 1.0 98.80% 

300 97.92% 

500 96.42% 

100 0.1 3 100% 

300 100% 

500 99.94% 

100 0.5 99.92% 

300 97.67% 

500 97.96% 

100 1.0 93.80% 

300 97.20% 

500 91.36% 

Table7: Segment membership recovery using simulated data 

The percentage number of subjects that are correctly classified 

into their true segments is a measure of segment membership 

recovery. Table 7 displays the percentage number of subjects, 

averaged over the ten data sets, which are correctly classified 

into their true segments. It should be noted that after assigning 

each hypothetical subject to a segment with highest posterior 

probability these segments were permuted to maximize match 

with the true segments. 

 

 

6   CONCLUSIONS 

 
In general, the percentage of correctly classified hypothetical 

subjects in their true segment improves with a decrease in the 

number of segments and a reduction in the perturbation value; 

however, it is unaffected by changes in sample size. Parameter 

recovery improves with a decrease in the perturbation value, a 

decrease in the number of segments, and an increase in the 

sample size. Predictive power improves with a decrease in the 

perturbation value, however it is unaffected by changes in the 

number of segments or sample size. Segment proportion 

recovery improves with an increase in sample size, a decrease 

in the number of segments and a decrease in the perturbation 

value. The results corroborate with the findings of Camilleri 

and Portelli (2007); Wedel and DeSarbo (1995); and Vriens, 

Wedel and Wilms (1996).  
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