Social and Scientific Implications of Pharmacogenetic Testing

A thesis submitted in partial fulfilment of the requirements for the award of Doctorate in Pharmacy

Althea Marie Xuereb

Department of Pharmacy

University of Malta

2019

University of Malta Library – Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author's rights in respect of this work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified by any successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information contained in accordance with the Copyright Act provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.

FACULTY/INSTITUTE/CENTRE/SCHOOL_____ DECLARATION OF AUTHENTICITY FOR DOCTORAL STUDENTS

Student's I.D. /Code _____

Student's Name & Surname _____

Course

Title of Dissertation/Thesis

(a) Authenticity of Thesis/Dissertation

I hereby declare that I am the legitimate author of this Thesis/Dissertation and that it is my original work.

No portion of this work has been submitted in support of an application for another degree or qualification of this or any other university or institution of higher education.

I hold the University of Malta harmless against any third party claims with regard to copyright violation, breach of confidentiality, defamation and any other third party right infringement.

(b) Research Code of Practice and Ethics Review Procedure

I declare that I have abided by the University's Research Ethics Review Procedures.

□ As a Ph.D. student, as per Regulation 49 of the Doctor of Philosophy Regulations, I accept that my thesis be made publicly available on the University of Malta Institutional Repository.

□ As a Doctor of Sacred Theology student, as per Regulation 17 of the Doctor of Sacred Theology Regulations, I accept that my thesis be made publicly available on the University of Malta Institutional Repository.

□ As a Doctor of Music student, as per Regulation 24 of the Doctor of Music Regulations, I accept that my dissertation be made publicly available on the University of Malta Institutional Repository.

□ As a Professional Doctorate student, as per Regulation 54 of the Professional Doctorate Regulations, I accept that my dissertation be made publicly available on the University of Malta Institutional Repository.

Signature of Student

Name of Student (in Caps)

Date

Acknowledgments

I would like to express my sincere gratitude to my supervisors Professor Anthony Serracino-Inglott and Dr Francesca Wirth for their constant guidance and support throughout the research.

Thanks go to Ms Luana Mifsud-Buhagiar, Director of Advanced Scientific Initiatives at the Malta Medicines Authority for her valuable advice and insight.

I would like to thank Professor Liberato Camilleri, Associate Professor at the Department of Statistics and Operations Research, Faculty of Science, University of Malta, for his assistance in the statistical analysis.

My appreciation is extended to Professor Lilian M Azzopardi, Head of Department, and all the academic and administrative staff at the Department of Pharmacy, University of Malta.

Special thanks go to my family and loved ones especially my parents Marco and Mariella, my brother Timothy, and other half Jacob, colleagues and friends for their support, patience and encouragement.

Abstract

Advances in pharmacogenetics (PGx) provide potential for expansion of the role of pharmacists and physicians to achieve precision medicine. The objectives of the research were to: i) assess the perception of pharmacists and physicians regarding PGx testing, ii) develop, disseminate and evaluate PGx information among pharmacists and physicians, and iii) compare PGx information in official product labelling between the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for oncology drugs.

The methodology involved: i) Development, psychometric evaluation and dissemination of a self-administered questionnaire to assess awareness, attitudes, education and PGx testing in practice. The questionnaire was disseminated to pharmacists in all areas of practice and physicians practicing in oncology, cardiology, neurology, psychiatry, general and family medicine after ethics approval. Dissemination was undertaken: a) online via social media groups (pharmacists n=835, physicians n=984) and the mailing list of the Malta College of Family Doctors (n=198), b) personally by the researcher in community pharmacies, private clinics and at Mater Dei Hospital (n=135), and c) during two local medical conferences (n=60).

ii) Development and validation of a tutorial *Pharmacogenetics: A tool for precision medicine* and evaluation form. The tutorial and evaluation form were disseminated online to pharmacists (n=835) and physicians (n=984) via social media groups and delivered as a live presentation during a workshop organised by the Malta Medicines Authority.

iii) Identification of oncology drugs with PGx implications from the Government Formulary List with a 'Testing required' label annotation in Pharmacogenomics Knowledgebase and comparison of PGx information in the FDA drug label and EMA Summary of Product Characteristics (SmPC) of the identified drugs. Descriptive statistics for the questionnaire and evaluation form were performed and mean rating scores (1-lowest to 5-highest) were calculated for Likert-type questions.

Results included: i) 292 complete responses - 179 pharmacists (64% female, 36% male) and 113 physicians (50% female, 50% male). Pharmacists (91%) and physicians (76%) were aware of the term 'PGx testing'. Physicians (3.62) agreed more than pharmacists (3.31) that PGx testing is applicable in their practice (p=0.006). Pharmacists (1.93) and physicians (1.65) perceived themselves to be insufficiently competent in PGx testing (p=0.005).

ii) The tutorial evaluation form was completed by 66 participants (57 online, 9 live presentation) - 33 pharmacists (25 female, 8 male) and 33 physicians (15 female, 18 male). Pharmacists agreed more than physicians that the material presented may help to improve the application of theory to practice (4.30/3.97, p=0.027) and enhance their skills in PGx (4.33/3.94, p=0.007). Pharmacists (4.45) are more likely to follow future tutorials on PGx than physicians (3.70) (p<0.001).

iii) Differences in the presence of PGx information between the FDA drug label and EMA SmPC were identified for anastrozole, erlotinib, lenalidomide, rasburicase, tamoxifen, trametinib, and tretinoin.

Pharmacists and physicians who participated in this study were aware of PGx, agreed that PGx is applicable in their practice and identified the need for further training. Participants recognised that PGx information presented in the tutorial has the potential to improve the clinical application of PGx. Differences in PGx information in official product labelling for oncology drugs point to the need for enhanced regulatory harmonisation.

Keywords: official product labelling; perception; pharmacists; pharmacogenetics; physicians; training

Table of	Contents
----------	----------

Abstractiv
List of Tablesix
List of Figuresxi
List of Appendicesxii
Glossaryxiii
List of Abbreviationsxvii
Chapter 1: Introduction1
1.1 Pharmacogenetic testing and its applications
1.2 Perception of pharmacists and physicians on pharmacogenetic testing
1.3 Education and training on pharmacogenetic testing
1.4. Regulatory perspective of pharmacogenetic testing
1.5 Rationale of the study12
1.6 Aim and Objectives
Chapter 2: Method14
2.1 Methodology overview
2.2 Evaluating the perception of pharmacists and physicians on pharmacogenetic testing 18
2.2.1 Development of perception questionnaire
2.2.2 Validation of perception questionnaire
2.2.3 Reliability testing of perception questionnaire
2.2.4 Determination of sample size
2.2.5 Ethics approval and dissemination of perception questionnaire

2.3 Development, dissemination and evaluation of pharmacogenetics tutorial
2.3.1 Development of pharmacogenetics tutorial and evaluation form
2.3.2 Validation of pharmacogenetics tutorial and evaluation form
2.3.3 Dissemination of pharmacogenetics tutorial and evaluation form
2.4 Statistical analysis of perception questionnaire and evaluation form
2.5 Comparison of pharmacogenetics information in official product labelling for oncology
drugs
2.6 Assessment of present status of pharmacogenetic testing locally for oncology drugs
2.7 Inclusion of pharmacogenetics in pharmacy educational programs in Europe and USA 28
Chapter 3: Results
3.1 Results of perception questionnaire
3.1.1 Participant demographics
3.1.2 Awareness of pharmacogenetic testing
3.1.2 Awareness of pharmacogenetic testing
3.1.3 Education and training on pharmacogenetic testing
3.1.3 Education and training on pharmacogenetic testing. 35 3.1.4 Attitudes towards pharmacogenetic testing. 38
3.1.3 Education and training on pharmacogenetic testing. 35 3.1.4 Attitudes towards pharmacogenetic testing. 38 3.1.5 Pharmacogenetic testing in practice 42
3.1.3 Education and training on pharmacogenetic testing.353.1.4 Attitudes towards pharmacogenetic testing.383.1.5 Pharmacogenetic testing in practice.423.2 Results of the evaluation of the pharmacogenetics tutorial
3.1.3 Education and training on pharmacogenetic testing.353.1.4 Attitudes towards pharmacogenetic testing.383.1.5 Pharmacogenetic testing in practice.423.2 Results of the evaluation of the pharmacogenetics tutorial .533.2.1 Participant demographics.53
3.1.3 Education and training on pharmacogenetic testing.353.1.4 Attitudes towards pharmacogenetic testing.383.1.5 Pharmacogenetic testing in practice423.2 Results of the evaluation of the pharmacogenetics tutorial533.2.1 Participant demographics533.2.2 Evaluation of pharmacogenetics tutorial55

Chapter 4: Discussion
4.1 The social and scientific implications of pharmacogenetic testing
4.2 Attitudes of pharmacists and physicians towards pharmacogenetic testing
4.3 Insufficient awareness of pharmacogenetic testing by pharmacists and physicians as a
challenge for implementation of pharmacogenetic testing
4.4 Education and training on pharmacogenetics
4.5 The way forward for further pharmacogenetics implementation in practice
4.6 Limitations of the study72
4.7 Recommendations for further study73
4.8 Conclusion
Dissemination of study findings75
References
Appendices

List of Tables

Table 2.1 Description of perception questionnaire after validation	20
Table 2.2 PharmGKB annotations for drugs used in oncology found on GFL	27
Table 3.1 Perception questionnaire - Participant demographics	31
Table 3.2 Perception questionnaire: Pharmacists' distribution by area of practice	32
Table 3.3 Perception questionnaire: Physicians' distribution by area of specialisation	32
Table 3.4 Awareness of PGx testing	34
Table 3.5 Education and training on PGx testing	35
Table 3.6 Attitudes towards use of PGx testing in practice	38
Table 3.7 Attitudes towards cost and service provision of PGx testing	39
Table 3.8 Attitudes towards ethical concerns of PGx testing results	39
Table 3.9 Attitudes towards pre- and post-marketing concerns of PGx testing	40
Table 3.10 Drugs for which PGx testing was ordered by physicians	42
Table 3.11 Confidence towards use of PGx testing in practice	43
Table 3.12 Clinical utility of PGx testing	43
Table 3.12 Clinical utility of PGx testingTable 3.13 Provision of PGx testing service	
	44
Table 3.13 Provision of PGx testing service	44 45
Table 3.13 Provision of PGx testing service Table 3.14 Storage, availability and interpretation of PGx test results	44 45 45
Table 3.13 Provision of PGx testing serviceTable 3.14 Storage, availability and interpretation of PGx test resultsTable 3.15 Patient counselling and PGx testing	44 45 45 46
Table 3.13 Provision of PGx testing service Table 3.14 Storage, availability and interpretation of PGx test results Table 3.15 Patient counselling and PGx testing Table 3.16 Regulatory aspects of PGx testing	44 45 45 46 47
Table 3.13 Provision of PGx testing serviceTable 3.14 Storage, availability and interpretation of PGx test resultsTable 3.15 Patient counselling and PGx testingTable 3.16 Regulatory aspects of PGx testingTable 3.17 Healthcare professional responsible for patient awareness of PGx testing	44 45 45 46 47 48
Table 3.13 Provision of PGx testing service Table 3.14 Storage, availability and interpretation of PGx test results Table 3.15 Patient counselling and PGx testing Table 3.16 Regulatory aspects of PGx testing Table 3.17 Healthcare professional responsible for patient awareness of PGx testing Table 3.18 Healthcare professional responsible to access PGx test result	44 45 45 46 47 48 49
Table 3.13 Provision of PGx testing serviceTable 3.14 Storage, availability and interpretation of PGx test resultsTable 3.15 Patient counselling and PGx testingTable 3.16 Regulatory aspects of PGx testingTable 3.17 Healthcare professional responsible for patient awareness of PGx testingTable 3.18 Healthcare professional responsible to access PGx test resultTable 3.19 Healthcare professional responsible to interpret PGx test result	44 45 45 46 47 48 49 50
Table 3.13 Provision of PGx testing serviceTable 3.14 Storage, availability and interpretation of PGx test resultsTable 3.15 Patient counselling and PGx testingTable 3.16 Regulatory aspects of PGx testingTable 3.17 Healthcare professional responsible for patient awareness of PGx testingTable 3.18 Healthcare professional responsible to access PGx test resultTable 3.19 Healthcare professional responsible to interpret PGx test resultTable 3.20 Healthcare professional responsible to discuss PGx test result with patient	44 45 45 46 47 48 49 50 51
Table 3.13 Provision of PGx testing serviceTable 3.14 Storage, availability and interpretation of PGx test resultsTable 3.15 Patient counselling and PGx testingTable 3.16 Regulatory aspects of PGx testingTable 3.17 Healthcare professional responsible for patient awareness of PGx testingTable 3.18 Healthcare professional responsible to access PGx test resultTable 3.19 Healthcare professional responsible to interpret PGx test resultTable 3.20 Healthcare professional responsible to discuss PGx test result with patientTable 3.21 Healthcare professional responsible to take action according to PGx test result	44 45 45 46 47 47 48 50 51 52

Table 3.25 Evaluation form- Physicians' distribution by area of specialisation	54
Table 3.26 Relevance of discussion topics in PGx tutorial	55
Table 3.27 Evaluation results of PGx tutorial	56
Table 3.28 Comparison of PGx information between FDA and EMA for oncology drugs	58

List of Figures

Figure 2.1 Methodology flowchart 1: Assessment of the perception of pharmacists and
physicians on PGx testing
Figure 2.2 Methodology flowchart 2: Development, dissemination and evaluation of PGx
information among pharmacists and physicians16
Figure 2.3 Methodology flowchart 3: Comparison of PGx information in official product
labelling for oncology drugs and clinical implementation locally
Figure 3.1 Method of gaining awareness of the term 'pharmacogenetic testing' by pharmacists
and physicians
Figure 3.2 Preferred method of acquiring information on PGx testing by pharmacists and
physicians
Figure 3.3 Preferred PGx topics by pharmacists and physicians
Figure 3.4 Rating of drug classes for which PGx testing is perceived as important by
pharmacists and physicians
Figure 3.5 Perceived need to order a PGx test by pharmacists and physicians

List of Appendices

Appendix 1: Studies which assessed the perception of pharmacists and physicians
towards PGx testing
Appendix 2: Validation tool and validation results of perception questionnaire 116
Appendix 3: Ethics approval126
Appendix 4: Final version of perception questionnaire
Appendix 5: Tutorial slides- Pharmacogenetics: A tool for precision medicine
Appendix 6: Evaluation form of pharmacogenetics tutorial
Appendix 7: List of oncology drugs for discussion with Consultant Oncologists 157
Appendix 8: List of academic institutions who participated in preliminary study
regarding inclusion of PGx in pharmacy education programs
Appendix 9: Dissemination of study findings162

Glossary

Actionable Pharmacogenetics

The official product label may contain information about changes in efficacy, dosage or toxicity due to the presence of gene, protein or chromosomal variants and may indicate a contraindication of the drug in a subset of patients.¹

Allele

Alternative form of a gene at a given locus on a chromosome inherited from each parent (Chang et al, 2015)

Centralised Procedure

Procedure whereby a single marketing authorisation application is submitted to allow a marketing authorisation holder to make a medicine available to patients and healthcare professionals throughout all European Union Member States and European Economic Area countries.²

Clinical Pharmacogenetic Implementation Consortium (CPIC)

An international consortium that develops and curates peer-reviewed, evidence-based, detailed gene-drug clinical practice guidelines in order to facilitate the use of pharmacogenetic tests by healthcare professionals.³

¹Pharmacogenomics Knowledgebase (PharmGKB). Drug label information and legend [Internet]. USA: Stanford University, Department of Health and Human Services; 2019 [cited 2019 Jun 17]. Available from: URL: https://www.pharmgkb.org/page/drugLabelLegend

²European Medicines Agency (EMA). The European regulatory system for medicines-A consistent approach to medicines regulation across the European Union. EMA/716925/2016 [Internet]. UK: EMA; 2017 [cited 2019 Jun 10]. Available from: URL: https://www.ema.europa.eu/en/documents/leaflet/european-regulatory-system-medicines-european-medicines-agency-consistent-approach-medicines_en.pdf

³Clinical Pharmacogenetics Implementation Consortium (CPIC). What is CPIC? [Internet]. U.S. Department of Health and Human Services, 2019 [cited 2019 Jun 17]. Available from: URL: https://cpicpgx.org/

Genetic Counsellor

Professional who provides genetic information to patients and facilitates any psychosocial changes according to genetic test results (Skirton et al, 2015).

Genetics Specialist Physician

Physician with advanced training in clinical genetics and genomics, which includes clinical diagnosis, knowledge about laboratory techniques, genetic data interpretation, application of genetic test results and genetic counselling.⁴

Genotype

A specific set of alleles inherited at a locus on a given gene (Chang et al, 2015)

Informative Pharmacogenetics

The official product label mentions gene or protein involvement in metabolism or pharmacodynamics of the drug, but no information is available to suggest that the variation in the genes/proteins leads to different response.¹

Maltese Government Formulary List

List of medicinal products, vitamins, food supplements and borderline substances enlisted without proprietary name and according to the International Non-proprietary Name available in Malta. Each product within the formulary is classified according to its indication.⁵

¹Pharmacogenomics Knowledgebase (PharmGKB). Drug label information and legend [Internet]. USA: Stanford University, Department of Health and Human Services; 2019 [cited 2019 Jun 17]. Available from: URL: https://www.pharmgkb.org/page/drugLabelLegend

⁴European Board of Medical Genetics (EBMG). Medical genetics and genomics [Internet]. Austria: EBMG; 2019 [cited 2019 Jun 14]. Available from: URL: https://www.ebmg.eu/406.0.html

⁵Directorate of Pharmaceutical Affairs (DPA). The Government Formulary List [Internet]. Malta: Ministry of Health: DPA; 2018 [cited 2019 Jun 12]. Available from: URL: https://deputyprimeminister.gov.mt/en/pharmaceutical/Pages/formulary/formulary.aspx

National Procedure

Medicines available in the European Union with a marketing authorisation which have not gained authorisation via the centralised procedure. Reasons for this could be that the marketing-authorisation was granted prior to European Medicines Agency creation or there is no scope to gain a marketing authorisation.²

Pharmacogenetics

The study of interindividual variability of genes and the effect on drug metabolism and drug response (Chang et al, 2015).

Pharmacogenetic Biomarker

A measurable DNA and/or RNA characteristic that is an indicator of normal biologic processes, pathogenic processes and/or response to therapeutic or other interventions (Burt and Dhillon, 2013).

Pharmacogenomics Knowledgebase (PharmGKB)

A web-based pharmacogenomics knowledge encompassing information about dosing guidelines, drug labels, potentially clinically-actionable gene-drug associations and genotype-phenotype relationships (Whirl-Carrillo et al, 2012).

Pharmacogenetic Testing

A type of genetic test ordered to predict the likelihood of a patient to experience an adverse drug reaction or to respond to a certain drug according to genetic predisposition (Mills et al, 2013b).

²European Medicines Agency (EMA). The European regulatory system for medicines-A consistent approach to medicines regulation across the European Union. EMA/716925/2016 [Internet]. UK: EMA; 2017 [cited 2019 Jun 10]. Available from: URL: https://www.ema.europa.eu/en/documents/leaflet/european-regulatory-system-medicines-european-medicines-agency-consistent-approach-medicines_en.pdf

Phenotype

How the genotype presents clinically in an individual (Chang et al, 2015).

Polymorphism

Presence of two or more variants of a particular DNA sequence, present at a frequency of greater than 1% of the population (Cavallari and Lam, 2017).

Precision Medicine

Medication therapeutic management designed to reach optimal therapeutic efficacy and safety for a patient by considering genetic, environmental and lifestyle factors to make decisions about a patient's therapeutic regimen (Klein et al, 2017).

Testing recommended

The official product label states or implies that gene, protein or chromosomal testing, including genetic testing, functional protein assays, or cytogenetic studies, is/are recommended or should be considered before using this drug and this recommendation may only be for a particular subset of patients.¹

Testing required

The official product label states or implies that gene, protein or chromosomal testing, including genetic testing, functional protein assays, or cytogenetic studies, should be conducted before using this drug and this requirement may only be applicable for a subset of patients.¹

¹Pharmacogenomics Knowledgebase (PharmGKB). Drug label information and legend [Internet]. USA: Stanford University, Department of Health and Human Services; 2019 [cited 2019 Jun 17]. Available from: URL: https://www.pharmgkb.org/page/drugLabelLegend

List of Abbreviations

ADR	Adverse drug reaction
CDSS	Clinical decision support system
CPE	Continuing professional education
CPIC	Clinical Pharmacogenetics Implementation Consortium
DNA	Deoxyribonucleic acid
EMA	European Medicines Agency
EU	European Union
FDA	US Food and Drug Administration
GFL	Government Formulary List
HCPs	Healthcare professionals
PGx	Pharmacogenetic/s
PharmGKB	Pharmacogenomics Knowledgebase
SmPC	Summary of Product Characteristics
UK	United Kingdom
USA	United States of America

Chapter 1

Introduction

1.1 Pharmacogenetic testing and its applications

'Pharmacogenetics', a term coined by Vogel in 1959, refers to the study of interindividual variability of genes and the effect on drug metabolism and drug response (Kalow, 2006; Saini et al, 2010; Ehret, 2012; Campion and Dowell, 2019). Pharmacogenetic (PGx) testing can be applied as a tool to achieve precision medicine through optimisation of drug selection and dosing according to an individual's genetic make-up (Empey, 2016; Johnson and Weitzel, 2016; Kapoor et al, 2016; Tuteja and Limdi, 2016; Klein et al, 2017, Faruque et al, 2019). PGx tests are designed to identify PGx biomarkers to help in informing genotype-guided treatment decisions (Sadee, 2011; Wang et al, 2014; Rodríguez-Antona and Taron, 2015, Lauschke et al, 2018).

PGx biomarkers are validated based on the analytical performance of the test used to identify the biomarker, the clinical implications of the test with regards to drug response and safety, the clinical utility by having evidence on how the test result impacts on therapeutic management decisions and health outcomes, as well as ethical, legal and social implications of testing for the biomarker (Amur et al, 2015; Tonk et al, 2017; Vivot et al, 2017).

Personalisation of therapy with PGx testing has the potential to enhance treatment efficacy, improve patient safety by minimising the risk of adverse drug reactions, and decrease healthcare costs (Moaddeb and Haga, 2013; Fagerness et al, 2014; Horgan et al, 2014; Hess et al, 2015; Dong and Wiltshire, 2017; Manson et al, 2017; Klein et al, 2017; Verbelen et al, 2017; Kennedy, 2018; Faruque et al, 2019). PGx-guided therapy may be applied for a range of drugs indicated in various therapeutic areas including cardiology, oncology, neurology, psychiatry and infectious disease (Swen et al, 2011;

Martin et al, 2012; Scott et al, 2013; Caudle et al, 2014; Crews et al, 2014; Ramsey et al, 2014; Gammal et al, 2015; Hess et al, 2015; Hicks et al, 2015; Johnson et al, 2016; Patel, 2016; Hicks et al, 2017; Goetz et al, 2018).

Clopidogrel (*CYP2C19*) and warfarin (*CYP2C9*, *VKORC1*) are examples of cardiovascular drugs with PGx implications where evidence is available regarding the impact of PGx testing on improving the efficacy or safety of treatment with these drugs (Yang et al, 2015; Jorgensen et al, 2019). With regards to oncology drugs, clinical implementation of PGx testing has demonstrated improved treatment efficacy or safety and is advancing at an accelerated pace (Ong et al, 2012; Gillis et al, 2014; Patel, 2016; Faruque et al, 2019; Tarantino et al, 2019). PGx testing is being used routinely in oncology for drugs including dabrafenib (*BRAF*), erlotinib and gefitinib (*EGFR*), trastuzumab (*HER2/neu*), cetuximab and panitumumab (*KRAS*) (Ong et al, 2012; Patel, 2016, Hertz et al, 2018).

In neurology, PGx testing has been shown to improve safety of therapy for carbamazepine (*HLA-A*) (Yip and Pirmohamed, 2017). Amitriptyline (*CYP2C19, CYP2D6*) and fluvoxamine (*CYP2C19, CYP2D6*) are examples of drugs used in psychiatry which have PGx implications, and evidence is available regarding PGx testing and its impact on enhancing treatment outcomes (Müller et al, 2013; Ryu et al, 2017). Evidence regarding increased safety is available for abacavir (*HLA-B*) which is an example of an antiretroviral with PGx implications where PGx testing can identify a patient's risk of severe hypersensitivity reactions (Small et al, 2017).

Despite the varied clinical applications of PGx testing and reports of its clinical utility (Fagerness et al, 2014; Nussbaum et al, 2015; Yang et al, 2015; Asadov et al, 2017; Daly, 2017), the implementation of PGx testing in practice is occurring at a slow pace

(Scott, 2011; Moaddeb and Haga, 2013; Bank et al, 2014; Horgan et al, 2014; Caudle et al, 2016; Van der Wouden et al, 2016; Chan et al, 2017; Dong and Wilthshire, 2017; Just et al, 2017; Klein et al, 2017; Kennedy, 2018).

Various challenges have been reported to be associated with the limited clinical implementation of PGx testing. These challenges include; unfamiliarity and lack of proactivity by healthcare professionals (HCPs) (Gurwitz et al, 2009; Haga et al, 2012 a,c; Jamie, 2013, Horgan et al, 2014), insufficient confidence by HCPs (Mc Cullough, 2010; Haga et al, 2012a; Jamie, 2013), lack of funding (Gurwitz et al, 2009; Scott, 2011; Moaddeb and Haga, 2013; Horgan et al, 2014; Ciarleglio et al, 2017; Klein et al, 2017), inadequate harmonisation in official product labelling between regulatory bodies (Gurwitz et al, 2009; Scott, 2011; Moaddeb and Haga, 2013; Horgan et al, 2013; Horgan et al, 2014; Klein et al, 2017), lack of patient awareness (Lam, 2013; Horgan et al, 2014), long turnaround time to obtain PGx test results (Johnson et al, 2012; Lam, 2013; Horgan et al, 2014; Kapoor et al, 2016; Klein et al, 2017), lack of prospective randomised controlled trials proving benefits of genotype-guided prescribing (Johnson et al, 2012; Lam, 2013; Patel, 2016; Klein et al, 2017) and limited availability of PGx cost-effectiveness studies (Gurwitz et al, 2009; Lam, 2013; Patel, 2016; Ciarleglio et al, 2017; Klein et al, 2017).

Ways to overcome such barriers to enhance clinical uptake of PGx include the provision of further training to HCPs, addition of more PGx modules in medicine and pharmacy curricula (Schnoll and Shields, 2011; Lam, 2013; Horgan et al, 2014; Taber and Dickinson, 2014; Ciarleglio et al, 2017 Klein et al, 2017), incorporation of PGx information in electronic medical records for application in automated clinical decision support systems (CDSS) (Schnoll and Shields, 2011; Lam, 2013; Horgan et al, 2014; Patel, 2016; Elliott et al, 2017; Klein et al, 2017; Lauschke et al, 2018; Liu et al, 2018),

development of further genotype-guided recommendations specifying clearly the therapeutic actions to be taken according to PGx test results (Horgan et al, 2014; Quinoñes et al, 2014; Klein et al, 2017), and devising frameworks indicating the responsibilities of HCPs to enhance PGx workflow (Horgan et al, 2014; Klein et al, 2017).

Barriers from a regulatory perspective should be overcome by the promotion of discussions between regulatory bodies with the aim to harmonise procedures regarding the inclusion of PGx information in official product labelling (Horgan et al, 2014; Klein et al, 2017). Pre-emptive PGx testing and advanced genotyping technologies should be developed by stakeholders to provide rapid PGx testing in order to achieve timely PGx test results (Klein et al, 2017; Van der Wouden, et al, 2019), and policies should be developed regarding effective sharing of data between institutions carrying out research about PGx testing (Horgan et al, 2014; Quinoñes et al, 2014; Klein et al, 2017).

A barrier being faced by pharmacists with the expansion of PGx in clinical practice includes unclear defined roles that the profession partakes (Jamie, 2013; Aleijalat et al, 2016; Haga et al, 2015; Kennedy et al, 2018). Since PGx is a complex discipline, specialised training and experience are required for pharmacists to be able to apply advanced PGx skills in clinical practice. (ASHP, 2015; Haga et al, 2015; Remsberg et al, 2017; Roederer et al, 2017; Kennedy et al, 2018; Dávila-Fajardo et al, 2019). The clinical implementation of PGx allows pharmacists to serve as protagonists in comprehensive medication review services, which include PGx information (Nickola et al, 2012; ASHP, 2015; Elewa et al, 2015; Haga et al, 2015; Romagnoli et al, 2016; Van der Wouden, 2019).

The roles of pharmacists in PGx may involve leading multidisciplinary efforts to educate patients and other HCPs about the principles and benefits of PGx, recommend, order, interpret and report PGx test results and use PGx information to aid decision-making towards optimal drug selection and dosing (Jamie, 2013; ASHP, 2015; Haga et al, 2015; Kisor et al, 2015; Weitzel et al, 2016; Haidar et al, 2017; Van der Wouden, 2019).

1.2 Perception of pharmacists and physicians on pharmacogenetic testing

Numerous studies which assessed the perception of pharmacists and physicians regarding PGx testing, including analysis of knowledge, attitudes and practice aspects, have been published over the past fifteen years. Most studies were carried out in the United States of America (USA) and evaluated the perception of pharmacists and physicians separately. Limited reports from Europe, Africa, Asia and Australasia, and few direct comparative studies between pharmacists and physicians have been published (Appendix 1).

Positive attitudes by pharmacists towards PGx testing regarding perceived benefits have been reported, including its application to aid drug therapy selection and dosing and improved drug expenditure (Madadi et al, 2011; Tuteja et al, 2013; Elewa et al, 2015; Aleijalat et al, 2016; Abdela et al, 2017; Bank et al, 2017). Physicians similarly perceived that implementation of PGx testing has the potential to decrease adverse drug reactions and optimise drug selection and dosing and is clinically useful (Rogausch et al, 2006; Woelderink et al, 2006; Hoop et al, 2010; Dunbar et al, 2012; Peppercorn et al, 2013; Dressler et al, 2014; Laerum et al, 2014; Thompson et al, 2015; Nishimura et al, 2016; Abdela et al, 2017; Wu et al, 2017; Owusu Obeng et al, 2018). Limited availability of prospective randomised controlled trials on the clinical utility of PGx testing has been reported to result in reluctance by pharmacists and physicians to integrate PGx in practice (Haga et al, 2012c; Peppercorn et al, 2013; St. Sauver et al, 2016; Chan et al, 2017; Albassam et al, 2018). Cost issues are reported to be another concern by pharmacists and physicians when ordering a PGx test (Rogausch et al, 2006; Woelderink et al, 2006; Dunbar et al, 2012; Powell et al, 2015; Shishko et al, 2015; Chan et al, 2006; Dunbar et al, 2012; Powell et al, 2015; Shishko et al, 2015; Chan et al, 2017; Wu et al, 2017). Physicians were most likely to recommend a PGx test prior to prescribing a drug with PGx implications if the test is covered by healthcare insurance (Rogausch et al, 2006). Apprehension regarding the misuse of PGx information and encroachment of an individual's privacy have also been reported (Rogausch et al, 2006; Hunt et al, 2013; Tuteja et al, 2013; Petersen et al, 2014; Muzoriana et al, 2017), which need to be addressed due to the potential ethical implications (Madadi et al, 2011; Muzoriana et al, 2017).

Physicians believe that they should be able to identify medications that require PGx testing (Elewa et al, 2015; Abdela et al, 2017; Just et al, 2017). In studies carried out in France, New Zealand and the USA, it was demonstrated that physicians believed that PGx test results should be communicated to patients by physicians (Moutel et al, 2005; Dunbar et al, 2012; Haga et al, 2012a; Selkirk et al, 2013). Pharmacists accept that they have an important role in PGx through counselling patients and providing PGx information if they are provided with the appropriate training (McCullough et al, 2011; Tuteja et al, 2013; Alexander et al, 2014; Aleijalat et al, 2016; Romagnoli et al, 2016; Muzoriana et al, 2017).

Insufficient training has been reported to be hindering confidence of HCPs in delivering PGx services (Fargher et al, 2007; Koomer et al, 2011; McCullough et al, 2011; Payne

et al, 2011; Benzeroual et al, 2012; Jamie, 2013; Selkirk et al, 2013; Alexander et al, 2014; Bannur et al, 2014; Taber and Dickinson, 2014; Kisor et al, 2015, Obara et al, 2015, Overby et al, 2015). Further training in PGx testing for pharmacists and physicians is important to improve interpretation and application of PGx test results in practice and to enhance communication of test results with patients (Moutel et al, 2005; Woelderink et al, 2006; McCullough et al, 2011; Payne et al, 2011; Haga et al, 2012a; De Denus et al, 2013; Selkirk et al, 2013; Tuteja et al, 2013; Elewa et al, 2015; Shishko et al, 2015, Abdela et al, 2017; Chan et al, 2017; Heale et al, 2017; Just et al, 2017; Vinothini et al, 2017; Arathy et al, 2019). Willingness for further training on PGx was reported by HCPs (Elewa et al, 2015, Aleijalat et al, 2016).

The benefits of PGx education for HCPs have been discussed in various publications (McCullough et al, 2011; McMahon et al, 2011; Roederer et al, 2012; Jamie, 2013; Peppercorn et al, 2013; Tuteja et al, 2013; Bannur et al, 2014; Dressler et al, 2014; Taber and Dickinson, 2014; AlEijalat et al, 2016; Luzum and Luzum, 2016; Abdela et al, 2017; Just et al, 2017; Heale et al, 2017, Vinothini et al, 2017, Kisor et al, 2019), especially if implemented as part of continuing professional education (CPE) activities (McMahon et al, 2011; Benzeroual et al, 2012; Bannur et al, 2014; Kisor et al, 2015; Kudzi et al, 2015).

1.3 Education and training on pharmacogenetic testing

Promoting the dissemination of up-to-date information on PGx testing among practicing HCPs in the precision medicine era encourages further clinical implementation (Gurwitz et al, 2005; Green et al, 2010; Lesko and Johnson, 2012; Formea et al, 2013; Kuo et al, 2013; Pisanu et al, 2014; Kisor et al, 2015; Haga et al, 2016; Weitzel et al, 2016; Haidar et al, 2017; Roederer et al, 2017; Formea et al, 2018). Training for HCPs may be undertaken by following postgraduate courses or CPE seminars via self-study or by attending live sessions (Green et al, 2010; Lesko and Johnson, 2012; Kuo et al, 2013; Haga et al, 2016; Weitzel et al, 2016; Lesko and Johnson, 2012; Kuo et al, 2013;

The incorporation of PGx content in education programmes for HCPs is increasing (Green et al, 2010; Di Francia et al, 2012; Nickola et al, 2012; Kisor et al, 2015; Eden et al, 2016; Weitzel et al, 2016; Frick et al, 2018). Comprehensive PGx training was included as a requirement in the professional Doctorate in Pharmacy curriculum by the Accreditation Council for Pharmacy Education in the USA in 2016, with the aim to increase PGx competence among pharmacy students (Weitzel et al, 2016; Remsberg et al, 2017; Formea et al, 2018; Kennedy et al, 2018).

Inconsistencies between pharmacy curricula in Europe and USA regarding PGx content are reported (Pisanu et al, 2014; Kisor et al, 2015; Weitzel et al, 2016; Remsberg et al, 2017; Kennedy et al, 2018). Challenges regarding the design of PGx modules include whether PGx should be taught as a stand-alone topic, integrated in other courses or as a combination of both, lack of faculty members with PGx expertise and clinical experience and inadequate time to cover comprehensive PGx discussions (Lesko and Johnson, 2012; Nickola et al, 2012; Weitzel et al, 2016; Kennedy et al, 2018). Recommended methods for teaching PGx include didactic training, patient-centred experiential training, using web-based peer-reviewed PGx resources and via journal clubs (Nickola et al, 2012; Lesko and Johnson, 2012; Lee et al, 2015; Rao et al, 2015; Eden et al, 2016; Frick et al, 2016; Weitzel et al, 2016; Haidar et al, 2017).

1.4. Regulatory perspective of pharmacogenetic testing

At present, 310 drugs with PGx implications are listed in Pharmacogenomics Knowledgebase (PharmGKB).⁶ Inclusion of PGx information in official product labelling by regulatory bodies is increasing however is reported to be insufficient and lack of harmonisation between regulatory bodies exists (Otsubo et al, 2012; Ehmann et al, 2015; Reis-Pardal et al, 2017; Dávila-Fajardo et al, 2019). The challenge of translating clinically-relevant PGx data into official product information is still being encountered by regulators (Amur et al, 2015; Reis-Pardal et al, 2017; Dávila-Fajardo et al, 2017; Dávila-Fajardo et al, 2017; Dávila-Fajardo et al, 2017; Dávila-Fajardo et al, 2019).

The US Food and Drug Administration (FDA)-approved drug labels and the European Medicines Agency (EMA) Summary of Product Characteristics (SmPC) contain information for HCPs on the safe and effective use of an authorised medicinal product (Reis-Pardal et al, 2017). Recommendations on how PGx information should be collected and documented in official product labelling are available for both regulatory bodies (Ehmann et al, 2015; Fang et al, 2016; Reis-Pardal et al, 2017; Drozda et al, 2018).

⁶Pharmacogenomics Knowledgebase (PharmGKB). Drug label annotation [Internet]. USA: Stanford University, Department of Health and Human Services; 2019 [cited 2019 Jun 12]. Available from: URL: https://www.pharmgkb.org/labels

According to the 'Guideline on Good Pharmacogenomic Practice', EMA SmPCs should include PGx data of the medicinal product during both pre-authorisation and post-marketing phases, hence the reason for continuous updating of the SmPC to reflect additional information and facilitate the use of the medicinal product by prescribers and patients.⁷ Updating drug labelling to include PGx information following approval on the market has proven to be an evident challenge since the process of revising PGx labelling relies on the quantity, quality and type of public data available. A proactive approach by the FDA has been implemented, where early collection of PGx data influencing drug efficacy and safety is encouraged during the drug development process (Drozda et al, 2018).

According to the 'Guidance for industry-clinical pharmacogenomics: Premarket evaluation in early-phase clinical studies and recommendations for labelling', the FDA drug label should include PGx information to inform prescribers about the clinical usefulness of testing for the relevant PGx biomarker. If a PGx test is available, the label should indicate whether testing is required, recommended or to be considered. PGx information in drug labels may be included under the sections; indications and usage, dosage and administration, contraindications, warnings and precautions, drug interactions, and as boxed warnings according to the level of evidence of the impact of the genetic variation on drug safety and efficacy. Detailed PGx data is usually available in the clinical pharmacology or clinical studies sections.⁸

⁷European Medicines Agency (EMA). Guideline on good pharmacogenomic practice [Internet]. UK: EMA; 2018 [cited 2019 Jun 12]. Available from: URL: https://www.ema.europa.eu/documents/scientific-guideline/guideline-good-pharmacogenomic-practice-first-version_en.pdf

⁸US Department of Health and Human Sciences. Guidance for Industry-Clinical Pharmacogenomics: Premarket evaluation in early-phase clinical studies and recommendations for labelling [Internet]. US: U.S. Food and Drug Administration; 2018 [cited 2019 Jun 12]. Available from: URL: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM337 169.pdf

1.5 Rationale of the study

Few studies describing and comparing the perception of both pharmacists and physicians on PGx testing have been published (Appendix 1). A local study by Abdilla (2016), which focused mainly on ethics and social policy issues of PGx testing, assessed the perception of pharmacists and physicians regarding PGx testing as a pilot study. Response from 51 pharmacists and 28 physicians was obtained and a recommendation from this study was that further research on this topic locally is required, incorporating a larger sample size. Moreover, the need for a more comprehensive exploration of the perception of pharmacists and physicians towards PGx testing was identified, particularly regarding awareness, competence and confidence, preferred methods for further training by HCPs, cost and service provision, pre- and post-marketing concerns, patient counselling, regulatory aspects, and roles of HCPs in PGx service provision.

It has been reported, both internationally and locally, that insufficient awareness and training of pharmacists and physicians is a barrier for clinical implementation of PGx (Gurwitz et al, 2009; Haga et al, 2012a,c; Jamie, 2013, Horgan et al, 2014, Abdilla et al, 2016). Limited research about initiatives attempting to increase awareness of pharmacists (Formea et al, 2013; Formea et al, 2018) and physicians (Lee et al, 2019) about PGx testing have been published to date.

Precision medicine is reported to be at an advanced stage for oncology drugs, with drugs accounting for over 80% of PGx tests (Wu et al, 2017). Comparison of PGx information in official product labelling for oncology drugs enables the exploration of harmonisation between regulatory bodies (Otsubo et al, 2012; Ehmann et al, 2015; Reis-Pardal et al, 2017).

1.6 Aim and Objectives

The aim of this study was to analyse the social and scientific implications of PGx testing.

The primary objectives were to:

- Evaluate the perception of pharmacists and physicians on PGx testing
- Develop, disseminate and evaluate PGx information to promote awareness among pharmacists and physicians.

The secondary objectives were to:

- Compare PGx information in official product labelling between the US FDA and the EMA for oncology drugs and to analyse the present status of PGx testing in local clinical practice for drugs used in oncology.
- Collate information about the inclusion of PGx in pharmacy educational programs in Europe and the USA.

Chapter 2

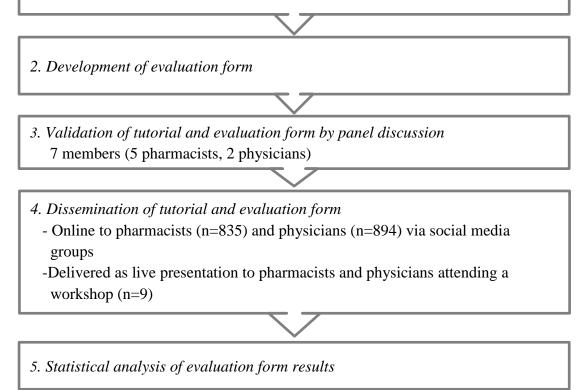
Method

2.1 Methodology overview

The research study was divided into three parts:

i) Quantitative assessment of the perception of pharmacists and physicians on

PGx testing using a questionnaire (Figure 2.1).


- Development of self-administered questionnaire
 5 sections: Participant demographics, awareness, education and training, attitudes, PGx testing in practice
- 2. Psychometric evaluation of questionnaire
 Validation: Panel of 9 members (5 pharmacists, 4 physicians);
 consensus reached after validation two rounds
 Reliability testing: 9 participants, test-retest method (Day 1, Day 14);
 questionnaire deemed reliable and accepted
- 3. Dissemination of questionnaire
- Online to pharmacists (n=835) and physicians (n=894) via social media groups
- Visiting community pharmacies and private clinics selected by convenience Sampling and Mater Dei Hospital (n=135)
- Mailing list of Malta College of Family Doctors (n=198)
- Two local medical conferences (n=60)

4. Statistical analysis of questionnaire results

Figure 2.1 Methodology flowchart 1: Assessment of the perception of pharmacists and physicians on PGx testing

 Development, dissemination and evaluation of PGx information among pharmacists and physicians (Figure 2.2).

1. Development and recording of tutorial entitled 'Pharmacogenetics: A tool for Precision medicine'

Figure 2.2 Methodology flowchart 2: Development, dissemination and evaluation

of PGx information among pharmacists and physicians

- iii) Comparison of PGx information in official product labelling of oncology drugs between the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and exploring the clinical implementation of PGx testing for oncology drugs locally (Figure 2.3).
 - 1. Identification of oncology drugs with PGx implications from the Maltese Government Formulary List
 - 2. Identification of drugs with 'Testing required' label annotation from Pharmacogenomics Knowledgebase
 - 3. Comparison of PGx information in:-FDA drug label-EMA SmPC
 - 4. Consultation with 7 oncologists at Sir Anthony Mamo Oncology Centre regarding use of PGx testing for the identified drugs

Figure 2.3 Methodology flowchart 3: Comparison of PGx information in official

product labelling for oncology drugs and clinical implementation locally

2.2 Evaluating the perception of pharmacists and physicians on pharmacogenetic testing

The awareness, attitudes and practice aspects of pharmacists and physicians towards PGx testing were evaluated using a self-administered perception questionnaire.

2.2.1 Development of perception questionnaire

An anonymous self-administered questionnaire was developed following extensive literature review, highlighting topics such as ancillary findings (Henrikson et al, 2008; Haga et al, 2012c), attitudes (Laerum et al, 2014), barriers (Schnoll and Shields, 2011; Abdilla, 2016), education and knowledge of PGx testing (Higgs et al 2008; McCullough et al, 2011; Haga et al, 2012a; Formea et al, 2013; Jamie, 2013; Just et al, 2017), ethical issues (Rogausch et al, 2006), PGx testing importance for different drug classes (Heuchel et al, 2017), PGx test communication with patients (Mills et al, 2013a), and use of PGx testing in practice (Payne et al, 2011; Peterson et al, 2016). The online version of the questionnaire was created using SurveyMonkey[®].⁹

2.2.2 Validation of perception questionnaire

A 9 member panel including 5 pharmacists (1 community pharmacist, 1 pharmacist in academia, 1 hospital pharmacist, 1 pharmacist practicing in industry, 1 pharmacist practicing in regulatory affairs) and 4 physicians (1 Consultant Cardiologist, 1 Resident Specialist in General Medicine -Endocrinology, 1 Basic Specialist Trainee in General Medicine -Neurology, 1 Specialist in Family Medicine) were recruited by convenience sampling for face and content validation of the questionnaire which was composed of

⁹SurveyMonkey Inc. [Internet]. USA; 2019 [cited 2019 Jun 12] Available from: URL: www.surveymonkey.com

two rounds. In round 1 of the validation exercise the panel was asked to rate each question for relevance, importance and comprehensibility and the layout of the questionnaire on a Likert-Scale of 1 to 5 (5 being the highest) using a validation tool. For questions rated 3 or less, the panel were asked to indicate reason/s and recommendation/s in the comments section. A mean rating score out of 5 was calculated for each question. The questions which; i) received recommendations for modification, or ii) obtained a mean rating score less than 4 were revised, optimised and submitted for a second validation by the same panel. New questions which were suggested by the validation panel were added and validated for relevance, importance and comprehensibility. Questions which were modified as suggested by the validation panel in round 1 were revalidated for comprehensibility. Consensus was reached after round 2 of validation since all questions obtained a mean rating score of 4 or higher, and the perception questionnaire was rendered valid (Validation tool and results in Appendix 2).

The perception questionnaire after validation consisted of 5 sections; with a total of 80 questions, including 71 ordinal scale questions, 8 nominal scale questions and 1 openended question (Table 2.1).

Section	Questions	Description (Type of Question)	
1: Demographics	1-5	Gender, age, profession, years of practice, academic level (all nominal)	
	6a, b	Awareness of term PGx testing (all nominal)	
2: Awareness	7-13	Awareness of: advantages and limitations, availability of PGx information resources, interpretation of test results, local performance of PGx testing (all ordinal)	
3: Education	14-17	Competence, training, undergraduate curricula, postgraduate specialisation (all ordinal)	
and training	18a-c	Mode of acquiring information on PGx, preference of learning methods, PGx topics (all nominal)	
4: Attitudes	19-39	Benefits of PGx, applicability, healthcare service utility and costs, drug therapy expenditure, cost-effectiveness studies, complexity of healthcare service, PGx test results, efficacy and safety of marketed and future medications, PGx research studies, importance of PGx testing in specified drug classes (all ordinal)	
	40a, b, 41	Ordering of PGx test (nominal), open-ended question for which drugs PGx was done in the past, frequency of perceived need to order a PGx test (nominal)	
5: PGx testing in Practice	42-80	Availability, access, recommending, ordering, interpreting and discussing a PGx test, action taken according to test result, location and performance of PGx testing, test result storage, patient counselling, HCP responsibilities, challenges (all ordinal)	

Table 2.1 Description of perception questionnaire after validation

2.2.3 Reliability testing of perception questionnaire

A group of 9 professionals including 5 pharmacists (1 community pharmacist, 1 pharmacist in academia, 1 hospital pharmacist, 1 pharmacist practicing in industry, 1 pharmacist practicing in regulatory affairs) and 4 physicians (1 Consultant Oncologist, 1 Higher Specialist Trainee in Cardiology, 1 Basic Specialist Trainee in Psychiatry, 1 Specialist in Family Medicine) recruited by convenience sampling were invited to participate in the reliability testing of the perception questionnaire. The test-retest method was adopted by inviting the 9 professionals to fill in the perception questionnaire on recruitment (Day 1) and on Day 14.

The questionnaire responses were analysed using IBM[®] SPSS statistics version 25 software. The kappa test was used to calculate test-retest reliability for variables having a nominal scale and the Kendall-tau test was used for variables having an ordinal scale. For both tests the null hypothesis specified that there is poor test-retest reliability of the perception questionnaire and is accepted if the p-value exceeds the 0.05 level of significance. The alternative hypothesis specified that there is satisfactory test-retest reliability of the perception questionnaire and is accepted if the p-value is less than the 0.05 criterion. The threshold of reliability of kappa and kendall-tau values was set at 0.7. The perception questionnaire was rendered reliable since all kappa and kendall-tau values obtained exceeded the 0.7 threshold and a p-value less than 0.05 was obtained.

2.2.4 Determination of sample size

According to the Pharmacy Council Malta Annual Report 2016, there were 944¹⁰ pharmacists registered with the Maltese Pharmacy Council. According to the Medical Council Malta Annual Report 2016, there were 1,993¹¹ physicians registered with the Maltese Medical Council, which include a total of 1,308¹² physician specialists; 519 were registered specialists in the areas of interest for the study (Section 2.2.5) and 685 physicians were registered with no specialisation. Using a 95% confidence interval and 6% margin of error, a minimum total sample size of 237 pharmacists and physicians was considered representative.

2.2.5 Ethics approval and dissemination of perception questionnaire

Following approval by the Faculty of Medicine and Surgery Research Ethics Committee (Appendix 3), the final version of the perception questionnaire (Appendix 4) was disseminated to pharmacists in different areas of practice (community, academia, hospital, industry, regulatory affairs) and to physicians in different specialities; Family Medicine, General Medicine, Cardiology, Neurology, Psychiatry, Oncology and Infectious Disease. These specialities were chosen according to the therapeutic areas

¹⁰Pharmacy Council Malta Annual Report 2016- obtained by personal correspondence from a Pharmacy Council member. [accessed 2018 Jan 19]

¹¹Medical Council of Malta. Medical Council Malta Annual Report 2016 [Internet]. Medical Council of Malta; 2016 [cited 2019 Jun 12]. Available from: URL: https://deputyprimeminister.gov.mt/en/regcounc/medicalcouncil/Documents/MC%20Annual%20Report %202016.pdf

¹²Medical Council of Malta. Medical and dental specialists register, 2016 [Internet]. Medical Council of Malta; 2016 [cited 2019 Jun 12]. Available from: URL: https://deputyprimeminister.gov.mt/en/regcounc/medicalcouncil/Documents/registers/mcsac.pdf

with the highest number of drugs reported to have PGx implications according to Pharmacogenomics Knowledgebase (PharmGKB).⁶

Dissemination of the perception questionnaire was undertaken: a) online via the social media groups to pharmacists- 'Maltese pharmacists and pharmacy students'(n=835) and physicians-'Tobba Maltin' (n=894)and the mailing list of the Malta College of Family Doctors (n=198), b) personally by the researcher in community pharmacies, private clinics and at Mater Dei Hospital (n=135), and c) during two local medical conferences namely; the 2018 Maltese Cardiac Society Conference (n=30) and the 10th Malta Medical School Conference (n=30). The questionnaires were disseminated between 22nd September and 22nd December 2018 (3 months).

2.3 Development, dissemination and evaluation of pharmacogenetics tutorial

A PGx tutorial was developed and disseminated to pharmacists and physicians with the aim to increase awareness about PGx testing in practice. The tutorial was evaluated using an evaluation form.

2.3.1 Development of pharmacogenetics tutorial and evaluation form

A tutorial *Pharmacogenetics: A tool for precision medicine* was developed using Microsoft[®] Powerpoint presentation reflecting results obtained from the perception questionnaire.

⁶Pharmacogenomics Knowledgebase (PharmGKB). Drug label annotation [Internet]. USA: Stanford University, Department of Health and Human Services; 2019 [cited 2019 Jun 12]. Available from: URL: https://www.pharmgkb.org/labels

The topics chosen for discussion in the tutorial included; i) nomenclature related to PGx, ii) benefits of PGx, iii) PGx information sources, iv) clinical application of PGx using three case-studies (oncology, cardiology, infectious disease), and v) future directions of PGx testing. The three clinical cases were selected for discussion were according to the following criteria; drugs available on the Maltese Government Formulary List (GFL), confirmed to have PGx implications from PharmGKB and had a Clinical Pharmacogenetics Implementation Consortium (CPIC) genotype-guided dosing guideline available.

An evaluation form was developed to be disseminated to pharmacists and physicians to evaluate the tutorial.

2.3.2 Validation of pharmacogenetics tutorial and evaluation form

The PGx tutorial and evaluation form were validated by 7 professionals; 5 pharmacists (3 pharmacists in academia, 1 hospital pharmacist, 1 pharmacist practicing in regulatory affairs with an interest in PGx) and 2 physicians (2 specialists in Family Medicine). The PGx tutorial and evaluation form were modified according to the suggested amendments by the panel. The final versions were communicated with the panel via electronic mail and approved by all members.

2.3.3 Dissemination of pharmacogenetics tutorial and evaluation form

The PGx tutorial approved by the validation panel (Appendix 5) was recorded as a voiceover on the Microsoft[®] Powerpoint slide show presentation and an online version of the evaluation form (Appendix 6) was prepared using SurveyMonkey[®]. The PGx tutorial and evaluation form were disseminated; i) online via the social media groups to

pharmacists- 'Maltese pharmacists and pharmacy students'(n=835) and physicians-'Tobba Maltin' (n=894) and, ii) delivered as a live presentation to pharmacists and physicians in a workshop on 'Quality in Adverse Drug Reaction Reporting' at the Malta Medicines Authority (n=9) on the 20th March 2019. The tutorial and evaluation form responses were disseminated online between 24th March and 7th April 2019 (2 weeks).

2.4 Statistical analysis of perception questionnaire and evaluation form

The Mann-Whitney test was used to compare mean rating scores between pharmacists and physicians provided to a statement measuring ordinal variables on a Likert-Scale. All mean rating scores for Likert-Scale type questions were calculated out of 5, except for question 39 of the perception questionnaire; this question consists of the rating of drug classes for which PGx testing is perceived as important by pharmacists and physicians and that had to be rated on a Likert-Scale from 1 to 8, and questions 68-72 of the perception questionnaire consisting of the rating of HCPs responsibility in PGx healthcare service provision had to be rated on a Likert-Scale of 1 to 6 (questions 68, 71, 72) and 7 (questions 69, 70). The null hypothesis specifies that the mean rating scores provided by pharmacists and physicians vary marginally and is accepted if the pvalue is greater than 0.05. If the p-value exceeds 0.05, this implies no significant difference between pharmacists and physicians. The alternative hypothesis specifies that the mean rating scores provided by pharmacists and physicians. The alternative hypothesis specifies that the mean rating scores provided by pharmacists and physicians. The alternative hypothesis specifies that the mean rating scores provided by pharmacists and physicians. The sternative hypothesis specifies that the mean rating scores provided by pharmacists and physicians vary significantly and is accepted if p-value is less than the 0.05 criterion. If the p-value is less than 0.05, there is a significant difference between pharmacists and physicians.

The Chi-square test was used to assess the association between two categorical/nominal variables, where one of these variables describes the occupation of the participant

(pharmacist or physician), and the other variable provides a statement relating to PGx testing. The null hypothesis specifies that there is no association between the two variables and is accepted if the p-value is greater than 0.05. If the p-value is greater than 0.05, there is no significant difference between pharmacists and physicians for the statement provided. The alternative hypothesis specifies that there is a significant association between the two variables and is accepted if the p-value is less than 0.05, there is less than the 0.05 criterion. If the p-value is less than 0.05, there is a significant difference between pharmacists and physicians.

2.5 Comparison of pharmacogenetics information in official product labelling for oncology drugs

PGx information in official product labelling (FDA drug label and EMA SmPC) and the clinical application of PGx information in practice for oncology drugs were analysed.

The November 2018 Maltese GFL⁵ was accessed and oncology drugs listed in the 'Malignant disease and Immunosuppression' section were identified and selected for analysis. The PharmGKB⁶ website was used to determine which of the drugs identified have PGx implications. The EMA and FDA label annotations assigned by PharmGKB were noted. Genotype-guided dosing guidelines were accessed using CPIC.¹³

⁵Directorate of Pharmaceutical Affairs (DPA). The Government Formulary List [Internet]. Malta: Ministry of Health: DPA; 2018 [cited 2019 Jun 12]. Available from: URL: https://deputyprimeminister.gov.mt/en/pharmaceutical/Pages/formulary/formulary.aspx

⁶Pharmacogenomics Knowledgebase (PharmGKB). Drug label annotation [Internet]. USA: Stanford University, Department of Health and Human Services; 2019 [cited 2019 Jun 12]. Available from: URL: https://www.pharmgkb.org/labels

¹³Clinical Pharmacogenetics Implementation Consortium (CPIC). Guidelines [Internet]. U.S. Department of Health and Human Services, 2019 [cited 2019 Jun 17]. Available from: URL: https://cpicpgx.org/guidelines/

The FDA drug label and EMA SmPC for drugs which had a 'Testing required' annotation reported in PharmGKB for one or both regulatory bodies were selected for comparison of PGx information (Table 2.2).

Table 2.2 PharmGKB annotations of oncology drugs found on Maltese GFL (N=14)

	PharmGKB annotation		
Drug	FDA	ЕМА	
Anastrozole	Testing required	No annotation	
Dabrafenib	Testing re	equired	
Erlotinib	Testing re	equired	
Everolimus	Testing re	equired	
Exemestane	Testing required	No annotation	
Imatinib	Testing required		
Lenalidomide	Testing required	Informative PGx	
Letrozole	Testing required	No annotation	
Rasburicase	Testing required	Actionable PGx	
Rituximab	Informative PGx	Testing required	
Tamoxifen	Testing required	No annotation	
Trametinib	Testing required		
Trastuzumab	Testing required		
Tretinoin	Testing required	No annotation	

The FDA drug label was retrieved from DailyMed.¹⁴ The EMA SmPC for drugs which have gained marketing authorisation by the centralised procedure was retrieved from the EMA website¹⁵ via the respective European Public Assessment Report. The EMA SmPC for drugs which have gained marketing authorisation via the national procedure was retrieved using the Malta Medicines Authority website.¹⁶ The EMA SmPC for

¹⁴National Library of Medicine (U.S.) DailyMed. [Internet]. U.S. National Library of Medicine, National Institutes of Health, Health and Human, Services; 2018 [cited 2019 Jun 12] Available from: URL: https://dailymed.nlm.nih.gov/dailymed/

¹⁵European Medicines Agency (EMA). European public assessment reports [Internet]. UK: EMA; 2018 [cited 2019 Jun 12]. Available from: URL: https://www.ema.europa.eu/en/medicines

¹⁶Malta Medicines Authority. Medicines database [Internet]. Medicines review committee; 2018 [cited 2019 Jun 12] Available from: URL: http://www.medicinesauthority.gov.mt/medicinesdatabase

drugs which were not retrievable from the EMA website or the Malta Medicines Authority website were retrieved from the Electronic Medicines Compendium (eMC).¹⁷ PGx information found in each section of the FDA drug label and EMA SmPC was compared.

2.6 Assessment of present status of pharmacogenetic testing locally for oncology drugs

A form consisting of the list of oncology drugs with PGx implications available on the GFL and their corresponding PGx biomarkers was completed (Appendix 7). A meeting was held with the Clinical Chairperson of the Department of Haematology and Oncology at Sir Anthony Mamo Oncology Centre to discuss the use of PGx testing for the identified drugs and form was completed. Approval was granted by the Clinical Chairperson to contact Oncology Consultants (n=6) via electronic mail to complete the form to gather information about the PGx tests being requested prior to prescribing in their practice.

2.7 Inclusion of PGx in pharmacy educational programs in Europe and USA

The inclusion of PGx in pharmacy educational programs and curricula in Europe and the USA was explored. The 82 members of the European Association of Faculties of Pharmacy¹⁸ and the 142 members of the American Association of Colleges of Pharmacy¹⁹ were contacted via electronic mail to provide information about inclusion of

¹⁷Electronic Medicines Compendium (eMC) [Internet]. UK: Datapharm Communications Ltd; 2019 [cited 2019 Jul 3]. Available from: URL: https://www.medicines.org.uk/emc/

¹⁸European Association of Faculties of Pharmacy (EAFP). Members and regions. [Internet]. EAFP Office, Department of Pharmacy, University of Malta; 2018 [cited 2018 Jul 20]. Available from: URL: https://eafponline.eu/regions-2/

¹⁹American Association of Colleges of Pharmacy (AACP). AACP Institutional Membership [Internet]. USA: AACP; 2018 [cited 2018 Jul 20]. Available from: URL: https://www.aacp.org/article/aacp-institutional-membership

PGx in the curriculum, availability of a PGx-specialised faculty member teaching the subject, number of teaching hours dedicated to PGx, overview of PGx topics discussed and method of teaching adopted (Appendix 8).

Chapter 3

Results

3.1 Results of perception questionnaire

In Section 3.1 results of the questionnaire assessing the perception of pharmacists and physicians on PGx testing are described.

3.1.1 Participant demographics

The questionnaire was completed by 292 participants; 75.3% (n=220) completed online and 24.7% (n=72) collected personally by the researcher. Participants were distributed as 61.3% (n=179) pharmacists and 38.7% (n=113) physicians. For pharmacists, 64.2% (n=115) were female, while for physicians an almost equal distribution between genders was observed (female 49.6%, n=56; male 50.4%, n=57). The highest number of participants for both pharmacists and physicians were in the 21-35 years age-group (pharmacists 63.1%, n=113; physicians 46.0%, n=52), and with more than 10 years of practice (pharmacists 38.0%, n=68; physicians 54.0%, n=61) (Table 3.1).

	Pharmacists (n=179)		Physician	ns (n=113)
Gender	Number	Percentage (%)	Number	Percentage (%)
Male	64	35.8	57	50.4
Female	115	64.2	56	49.6
Age (Years)	Number	Percentage (%)	Number	Percentage (%)
21-35	113	63.1	52	46.0
36-45	32	17.9	21	18.6
46-55	31	17.3	20	17.7
56-69	2	1.1	17	15.0
70+	1	0.6	3	2.7
Years of Practice	Number	Percentage (%)	Number	Percentage (%)
<2	24	13.4	0	0
2-5	48	26.8	37	32.7
6-10	39	21.8	15	13.3
>10	68	38.0	61	54.0

 Table 3.1 Perception questionnaire - Participant demographics (N=292)

Most pharmacists who completed the questionnaire practiced in the community pharmacy setting (43.6%, n=78) (Table 3.2).

 Table 3.2 Perception questionnaire: Pharmacists' distribution by area of practice

 (n=179)

Area of Practice	Number	Percentage (%)
Community	78	43.6
Hospital	42	23.5
Regulatory	27	15.0
Industry	26	14.5
Academia	6	3.4

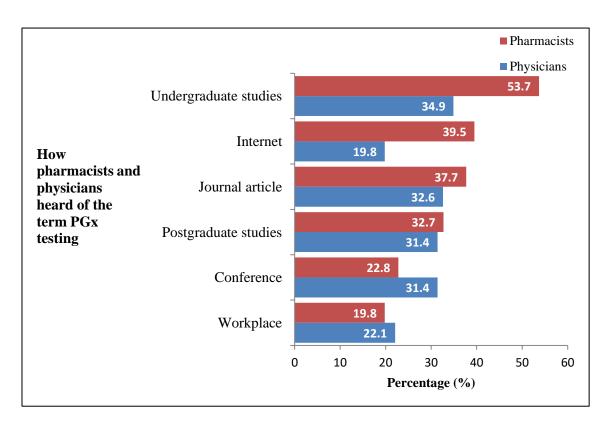

Most physicians who completed the questionnaire were practicing in Family Medicine (44.2%, n=50) (Table 3.3).

Table 3.3 Perception questionnaire: Physicians' distribution by area ofspecialisation (n=113)

Area of Specialisation	Number	Percentage (%)
Family Medicine	50	44.2
General Medicine	32	28.3
Cardiovascular	10	8.8
Psychiatry	8	7.1
Oncology	7	6.2
Neurology	6	5.4

3.1.2 Awareness of pharmacogenetic testing

The term *pharmacogenetic testing* was familiar to 84.9% (n=248) of participants prior to answering the questionnaire; pharmacists 90.5% (n=162); and physicians 76.1% (n=86), mostly from undergraduate studies; pharmacists 53.7%, (n=87); and physicians 34.9% (n=30) (Figure 3.1).

X²(5)=10.087, p=0.073

Figure 3.1 Method of gaining awareness of the term 'pharmacogenetic testing' by pharmacists (n=162) and physicians (n=86).

Pharmacists (3.67) were significantly more aware than physicians (3.19) of the potential advantages of PGx testing (p=0.001). General lack of awareness of PGx was observed by both pharmacists and physicians since mean rating scores less than 3 were observed for the other statements. Physicians were significantly less aware than pharmacists of

drugs for which PGx testing is required or recommended (pharmacists 2.51, physicians 2.16; p=0.010), availability of PGx information sources (pharmacists 2.38, physicians 1.88; p<0.001), and when to recommend a PGx test (pharmacists 2.14, physicians 1.76; p=0.002) (Table 3.4).

Statement	Mean rating score ± SD	Mean rating score \pm SD	
I am aware of:	Pharmacists (n=179)	Physicians (n=113)	p-value
Potential advantages of	3.67 ±1.03	3.19 ±1.20	0.001*
PGx testing			
Potential limitations of	2.81 ±1.03	2.60 ±1.19	0.091
PGx testing			
Drugs for which PGx	2.51 ±1.13	2.16 ±1.14	0.010*
testing is required or			
recommended			
Availability of information	2.38 ±1.15	1.88 ± 1.01	<0.001*
sources regarding drugs			
with PGx implications			
When to recommend a	2.14 ±1.12	1.76 ±1.01	0.002*
PGx test			
How to interpret PGx test	1.78 ±1.06	1.76 ±1.01	0.975
results			
Drugs for which PGx	1.51 ±0.91	1.55 ±1.00	0.825
testing is performed locally			

*statistically significant results p<0.05

3.1.3 Education and training on pharmacogenetic testing.

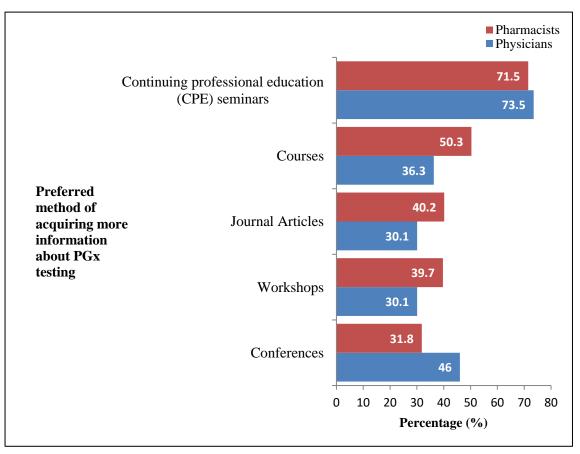
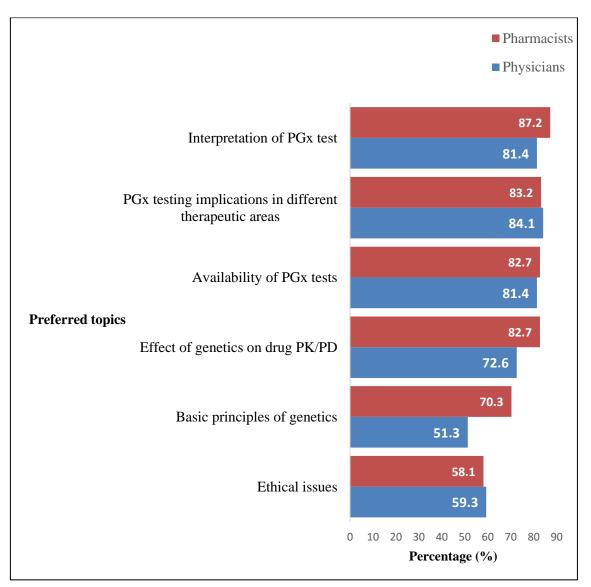

Insufficient competence in the area of PGx testing was observed by pharmacists (1.93) and physicians (1.65), since the mean rating scores were below 3, with significantly lower competence reported by physicians (p=0.005). Pharmacists significantly agreed more than physicians that PGx modules should be incorporated in undergraduate curricula and PGx training should be offered as a postgraduate specialisation (p<0.001). Pharmacists and physicians perceived the need for further training on PGx testing with high mean rating scores observed (p>0.05) (Table 3.5).

 Table 3.5 Education and training on PGx testing (N=292)

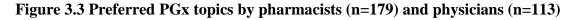
Statement	Mean rating score ± SD Pharmacists (n=179)	Mean rating score ± SD Physicians (n=113)	p-value
I believe I am competent in the area of PGx testing	1.93 ±0.89	1.65 ±0.83	0.005*
PGx modules should be incorporated in undergraduate curricula	4.13 ±0.94	3.75 ±0.79	<0.001*
PGx should be offered as a postgraduate specialisation	4.11 ±0.92	3.81 ±0.80	<0.001*
I require more education on PGx testing	4.43 ±0.942	4.37 ±0.847	0.194

*statistically significant results p<0.05

Pharmacists and physicians preferred continuing professional educational seminars (CPE) (pharmacists 31%, n=128; physicians 34%, n=83) for acquiring more information on PGx. The second preference for pharmacists was following courses (50.3%, n=90), while physicians preferred conferences (46%, n=52) (Figure 3.2).



X²(4)=9.755, p=0.045


Figure 3.2 Preferred method of acquiring information on PGx testing by pharmacists (n=179) and physicians (n=113)

Pharmacists (54.2%, n=97) and physicians (58.4%, n=66) preferred following the selected learning activities as a combination of attending in person and following online material.

'Interpretation of PGx test' was the topic of highest preference for pharmacists (87.2%, n=156) and physicians (81.4%, n=92). 'Ethical issues' was the topic of lowest preference by pharmacists (58.1%, n=104), while 'Basic principles of genetics' was the least preferred topic by physicians (51.3%, n=58) (Figure 3.3).

X²(5)=3.471, p=0.628

3.1.4 Attitudes towards pharmacogenetic testing

Pharmacists significantly agreed more than physicians that PGx testing has clinical benefits, can guide individualised drug therapy selection, is useful in treatment-resistant cases, and is useful in medication-intolerance cases (p<0.05). Physicians significantly agreed more than pharmacists that PGx testing is applicable for use in their practice (p=0.006) (Table 3.6).

Statement	Mean rating score ±SD	Mean rating score ±SD	p-value
PGx testing:	Pharmacists (n=179)	Physicians (n=113)	-
Has clinical benefits	4.35 ±0.68	4.12 ±0.55	0.001*
Guides individualised therapy selection	4.49 ±0.58	4.20 ±0.60	<0.001*
Useful in treatment- resistant cases	4.41 ±0.69	4.22 ±0.65	0.008*
Useful in medication- intolerance cases	4.30 ±0.70	4.09 ±0.70	0.011*
Is applicable for use in my practice	3.31 ±1.03	3.62 ±7.36	0.006*

Table 3.6 Attitudes towards use of PGx testing in practice (N=292)

*statistically significant results p<0.05

Pharmacists significantly agreed more than physicians that PGx testing decreases healthcare service utilisation (pharmacists 3.87, physicians 3.50; p<0.001) and leads to reduced healthcare costs (pharmacists 3.77, physicians 3.42; p=0.001). Pharmacists and physicians strongly agreed that cost-effectiveness studies are important with mean rating scores greater than 4 observed (p>0.05). Pharmacists and physicians agreed that out-of-pocket by the patient (p>0.05) (Table 3.7).

Statement <i>PGx testing</i> :	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Decreases healthcare service utilisation	3.87 ±0.81	3.50 ±0.66	<0.001*
Reduces healthcare costs	3.77 ±0.84	3.42 ±0.75	0.001*
Cost-effectiveness studies are important	4.39 ±0.67	4.26 ±0.74	0.157
Government-funded service	3.92 ±0.83	3.82 ±0.75	0.255
Paid out-of-pocket by the patient	2.32 ±0.88	2.30 ±0.89	0.783
Guides drug therapy expenditure	3.97 ±0.73	3.82 ±0.63	0.077
Increases complexity of healthcare service provision	3.51 ±0.99	3.46 ±0.89	0.467

Table 3.7 Attitudes towards cost and service provision of PGx testing (N=292)

*statistically significant results p<0.05

More pharmacists than physicians agreed that PGx test results should be shared with family members and that potential violation of privacy may arise due to misuse of PGx test results (p<0.05) (Table 3.8).

Statement PGx testing results:	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Should be shared with family members	3.20 ±1.01	2.91 ±0.95	0.010*
Misuse may lead to violation of privacy	4.13 ±0.88	3.96 ±0.76	0.020*
May be misused/misinterpreted if made available to third parties	3.97 ±0.88	3.85 ±0.72	0.093

*statistically significant results p<0.05

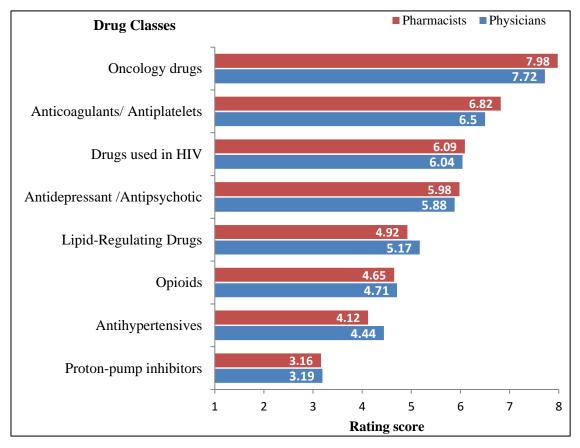

Pharmacists significantly agreed more than physicians that PGx testing improves efficacy and safety of medications on the market and of medications granted a marketing authorisation in the future, can be applied in drug development for medications used in difficult-to-treat situations. Pharmacists would be interested in PGx research studies and would recommend their patients to participate in studies if opportunities arise more than physicians (p<0.05) (Table 3.9).

Table 3.9 Attitudes towards pre- and post-marketing concerns of PGx testing (N=292)

Statement <i>PGx testing</i> :	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Improves efficacy of medications on the market	4.10 ± 0.74	3.81 ± 0.63	<0.001*
Improves safety of medications on the market	4.24 ± 0.67	3.93 ± 0.59	<0.001*
Improves the efficacy and safety of medications granted a marketing authorisation in the future	4.15 ± 0.75	3.78 ± 0.59	<0.001*
Can be applied in drug development for medications used in difficult-to-treat situations	4.26 ± 0.74	3.93 ± 0.64	<0.001*
Research studies would interest you and you would recommend patients to participate in such studies if the opportunity arises	3.96 ± 0.80	3.68 ± 0.74	0.004*

*statistically significant results p<0.05

Pharmacists and physicians agreed on the drug classes for which PGx testing is perceived as important (p>0.05). The top three drug classes included oncology drugs (pharmacists 7.98, physicians 7.72), antiplatelets/anticoagulants (pharmacists 6.82, physicians 6.5) and drugs used in HIV (pharmacists 6.09, physicians 6.04) (Figure. 3.4).

All comparisons between pharmacists and physicians were not statistically significant (p>0.05)

Figure 3.4 Rating of drug classes for which PGx testing is perceived as important by pharmacists (n=179) and physicians (n=113)

3.1.5 Pharmacogenetic testing in practice

Eleven physicians had previously ordered a PGx test. Examples of drugs for which a PGx test was ordered included abacavir, azathioprine and clopidogrel (Table 3.10).

Table 3.10 Drugs for which PGx testing was ordered by physicians

Examples of drugs for which PGx testing was ordered	Number of physicians
Azathioprine	4
Dabrafenib, dasatinib, erlotinib, ibrutinib, imatinib	3
Abacavir, clopidogrel	2
Co-trimoxazole, maraviroc	1

Most pharmacists (42.5%, n=76) never perceived the need to order a PGx test in their practice. Most physicians (38.9%, n=44) perceived the need to order a PGx test at least once monthly (Figure 3.5).

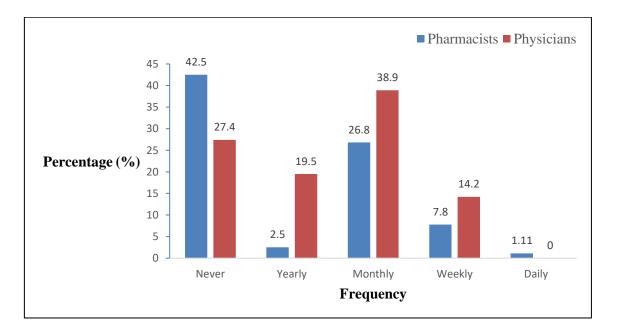


Figure 3.5 Perceived need to order a PGx test by pharmacists (n=179) and physicians (n=113)

Pharmacists (2.42) and physicians (2.10) reported limited confidence in recommending PGx testing (p=0.015). Limited confidence was reported by pharmacists and physicians in ordering PGx tests and in interpreting and discussing PGx test results (p>0.05) (Table 3.11).

 Table 3.11 Confidence towards use of PGx testing in practice (N=292)

Statement Personal degree of confidence to:	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Recommend PGx testing	2.42 ±1.15	2.10 ± 1.09	0.015*
Order PGx testing	2.41 ±1.18	2.25 ±1.07	0.305
Interpret PGx test results	1.98 ±1.03	2.02 ±1.04	0.751
Discuss PGx test results with patient	2.21 ±1.13	2.25 ±1.11	0.708

*statistically significant results p<0.05

Both pharmacists (4.16) and physicians (4.02) agreed, with significantly higher agreement by pharmacists, that they would take action if a PGx test result indicated the need for a change in treatment plan (p=0.042) (Table 3.12).

Table 3.12 Clinical utility of PGx testing (N=292)

Statement I would:	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Take action if a PGx test result indicated need for a change in treatment plan	4.16 ±0.84	4.02 ±0.77	0.042*
Order a PGx test to predict likelihood of an adverse effect to a drug	3.66 ±0.94	3.65 ±0.77	0.888
Order a PGx test to predict likelihood of drug efficacy	3.85 ±0.91	3.83 ±0.73	0.521
Order a PGx test to predict severity of a potential adverse effect	3.75 ±0.93	3.76 ±0.75	0.839

*statistically significant results p<0.05

Pharmacists significantly agreed more than physicians that PGx testing should be performed pre-emptively (pharmacists 3.38, physicians 3.04; p=0.002), implemented routinely with medication therapy management services (pharmacists 3.49, physicians 2.88; p<0.001), and provided as a point-of-care test in community pharmacies (pharmacists 3.18, physicians 2.82; p=0.002) (Table 3.13).

Statement	Mean rating score ±SD	Mean rating score ±SD	p-value
PGx testing should be:	Pharmacists (n=179)	Physicians (n=113)	P · mor
Performed pre-emptively	3.38 ±0.89	3.04 ±0.84	0.002*
Implemented routinely with			
medication therapy	3.49 ±0.97	2.88 ± 0.88	<0.001*
management services			
Provided as a point-of-care	3.18 ±1.05	2.82 ± 0.90	0.002*
test in community pharmacies			
Performed in hospital only	2.88 ±0.96	2.97 ±1.00	0.399
Carried out in a laboratory	3.35 ±0.93	3.35 ±0.95	0.859
solely dedicated to PGx			

*statistically significant results p<0.05

Pharmacists significantly agreed more than physicians that PGx test results should be available for access by all HCPs taking care of the patient (p=0.003). Physicians (3.18) significantly agreed more than pharmacists (2.49) that PGx test results should be available for access by prescribers only (p<0.001).

Pharmacists and physicians strongly agreed with mean rating scores greater than 4 that PGx test results should be stored electronically and made available in health records for clinical evaluation by the HCP (p>0.05) (Table 3.14).

Statement PGx test results should be:	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Available for access by all HCP taking care of the patient	4.04 ±0.92	3.81 ±0.79	0.003*
Available for access by prescribers only	2.49 ±0.98	3.18 ±0.93	<0.001*
Stored electronically	4.16 ±0.67	4.06 ±0.62	0.213
Available in health records for clinical evaluation by HCP	4.23 ±0.73	4.17 ±0.50	0.095
Interpreted automatically by an electronic system which incorporates algorithms for treatment decisions	3.76 ±1.02	3.63 ±0.83	0.089

 Table 3.14 Storage, availability and interpretation of PGx test results (N=292)

*statistically significant results p<0.05

Pharmacists and physicians agreed that pre- and post-test counselling should be provided, and patients should be informed about incidental/ ancillary findings from a PGx test result (p>0.05) (Table 3.15).

 Table 3.15 Patient counselling and PGx testing (N=292)

Statement	Mean rating score ±SD	Mean rating score ±SD	p-value
	Pharmacists (n=179)	Physicians (n=113)	p varue
Pre-test counselling with patient should			
be provided prior to PGx testing to aid	4.32 ±0.63	4.27 ±0.68	0.592
in informed decision-making			
Post-test counselling with patient			
should be provided to aid in	4.43 ±0.62	4.33 ±0.62	0.116
understanding of test results			
Patients should be informed about			
incidental/ancillary findings from a	4.21 ±0.71	4.27 ±0.70	0.520
PGx test result			

Pharmacists significantly agreed more than physicians that a framework should be implemented to ensure consistency of a PGx service to avoid liability issues, genetic stratification should be applied in PGx research studies to help design of drugs which target specific groups of patients, PGx testing should be included as a risk minimisation measure in the safety section of the dossier, and the SmPC should include PGx testing information when applicable (p<0.05) (Table 3.16).

Statement:	Mean rating score ±SD	Mean rating score ±SD	p-value
Statement.	Pharmacists (n=179)	Physicians (n=113)	p-value
Implementation of a framework			
to ensure consistency of	4.28 ±0.66	4.12 ±0.64	0.028*
procedure when ordering a PGx	4.28 ±0.00	4.12 ±0.04	0.020
test to avoid liability issues			
Genetic stratification should be			
applied in PGx research studies			
to help design drugs which target	4.21 ±0.68	4.04 ±0.58	0.010*
specific groups of patients. e.g			
non-responders			
PGx testing should be included as			
a risk minimisation measure in	4.01 ±0.76	3.87 ±0.61	0.046*
the safety section of the dossier			
SmPC should include PGx testing	4.30 ±0.63	4.04 ±0.61	0.001*
when applicable	4.30 ±0.03	1.01 ±0.01	0.001
Organisational infrastructures			
should be developed to describe			
the responsibilities of each HCP	4.13 ±0.65	4.01 ±0.59	0.073
involved in effective provision of			
PGx testing services			

Table 3.16 Regulatory aspects of PGx testing $(N=292)$	3.16 Regulatory aspects of PGx testin	g(N=292)
--	---------------------------------------	----------

*statistically significant results p<0.05

The 'Consultant' was ranked highest as the HCP who should be responsible to make a patient aware of PGx testing by pharmacists (5.73) and physicians (6.04) (p=0.021). Pharmacists (5.40) then considered the 'Genetic Specialist Physician' as the next responsible HCP while physicians (5.47) considered the 'Physician' as next responsible (Table 3.17).

Table 3.17 Healthcare professional responsible for patient awareness of PGx testing (N=292)

Statement Responsibility for making patient aware of PGx testing	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Pharmacist	4.61 ±1.46	4.11 ±1.26	0.003*
Physician**	5.00 ±1.29	5.47 ±1.29	0.003*
Consultant	5.73 ±1.15	6.04 ±1.00	0.021*
Genetic specialist physician	5.40 ±1.42	5.29 ±1.23	0.472
Genetic counsellor	4.03 ±1.44	3.92 ±1.24	0.948
Nurse	2.23 ±0.63	2.17 ±0.64	0.162

*statistically significant results p<0.05

Pharmacists (5.77) ranked the 'Genetic Specialist Physician' as the HCP who should be responsible to access a patient's PGx test result, followed by the 'Consultant' (5.63). Physicians (6.02) ranked the 'Consultant' as the HCP most responsible to access a patient's PGx test result followed by the 'Physician' (5.62) (Table 3.18).

Statement Responsibility for accessing a PGx test result	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Pharmacist	4.07 ± 1.49	3.71 ±1.37	0.036*
Physician**	4.88 ±1.33	5.62 ±1.37	<0.001*
Consultant	5.63 ±1.13	6.02 ±1.00	0.002*
Genetic specialist physician	5.77 ±1.37	5.28 ±1.30	0.001*
Genetic counsellor	3.97 ±1.53	3.68 ±1.20	0.296
Biomedical Laboratory Scientist	2.16 ±1.26	2.24 ±1.05	0.116
Nurse	1.53±0.92	1.45 ±0.99	0.225

Table 3.18 Healthcare professional responsible to access PGx test result (N=292)

*statistically significant results p<0.05

The 'Genetic Specialist Physician' was ranked highest as the HCP responsible to interpret a patient's PGx test result by pharmacists (6.20) and physicians (5.98). The 'Consultant' was considered the next responsible HCP with a significantly higher ranking by physicians (5.59) compared to pharmacists (5.17) (p=0.002) (Table 3.19).

Table 3.19 Healthcare professional responsible to interpret PGx test result (N=292)	

Statement Responsibility to interpret a PGx test result	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Pharmacist	3.72 ±1.51	3.56 ±1.35	0.518
Physician**	4.35 ±1.19	5.00 ±1.36	<0.001*
Consultant	5.17 ±1.15	5.59 ±1.04	0.002*
Genetic specialist physician	6.2 ±1.15	5.98 ±1.30	0.128
Genetic counsellor	4.37 ±1.63	3.73 ±1.60	0.001*
Biomedical Laboratory Scientist	2.95 ±1.83	2.89 ±1.40	0.291
Nurse	1.23 ±0.63	1.24 ±0.75	0.588

*statistically significant results p<0.05

Pharmacists (5.74) considered the 'Genetic Specialist Physician' as the HCP who should be responsible to discuss a PGx test result with patients, while physicians (5.79) ranked the 'Consultant' as most responsible. The 'Consultant' was considered as next responsible by pharmacists (5.40) while physicians (5.71) considered the 'Genetic Specialist Physician' as next responsible. (Table 3.20)

Table 3.20 Healthcare professional	responsible	to discuss	PGx test	result w	vith
patient (N=292)					

Statement Responsibility to discuss a PGx test result	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Pharmacist	4.28 ± 1.42	3.61 ±1.03	<0.001*
Physician**	4.76 ±1.16	5.32 ±1.34	0.001*
Consultant	5.40 ±1.17	5.79 ±1.04	0.005*
Genetic specialist physician	5.74 ±1.29	5.61 ±1.17 0.1	
Genetic counsellor	4.68 ±1.66	4.55 ±1.40	0.767
Nurse	2.13 ±0.56	2.13 ±0.58	0.721

*statistically significant results p<0.05

The 'Consultant' was ranked highest as the HCP who should be responsible to take action according to PGx test result by pharmacists (6.04) and physicians (6.36), with significantly higher ranking by physicians (p=0.024). Pharmacists (5.58) then considered the 'Genetic Specialist Physician' as next responsible while physicians (5.84) preferred the 'Physician' as the next responsible HCP to take action according to PGx test result (Table 3.21).

 Table 3.21 Healthcare professional responsible to take action according to PGx

 test result (N=292)

Statement Responsibility to take action according to PGx test result	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Pharmacist	4.50 ± 1.29	4.22 ± 1.01	0.152
Physician**	5.19 ±1.00	5.84 ±0.96	<0.001*
Consultant	6.04 ±1.08	6.36 ±0.78	0.024*
Genetic specialist physician	5.58 ±1.29	5.16 ±1.12 0.00	
Genetic counsellor	3.41 ±1.22	3.25 ±0.76	0.951
Nurse	2.27 ±0.64	2.17 ±0.61	0.057

*statistically significant results p<0.05

Physicians (3.87) significantly agreed more than pharmacists (3.61) that turnaround time of test result impacts their decision to order a PGx test (p=0.023). Pharmacists and physicians agreed that the greater challenges for implementation of PGx testing are lack of HCP (pharmacists 4.33, physicians 4.27) and public awareness of PGx testing (pharmacists 4.46, physicians 4.35), and cost issues (pharmacists 4.32, physicians 4.31) (p>0.05) (Table 3.22).

Statement:	Mean rating score ±SD Pharmacists (n=179)	Mean rating score ±SD Physicians (n=113)	p-value
Turnaround time of test result impacts your decision to order a PGx test	3.61 ±0.94	3.87 ±0.81	0.023*
Lack of HCP awareness	4.33 ±0.73	4.27 ±0.67	0.331
Lack of public awareness	4.46 ±0.80	4.35 ±0.71	0.052
Cost issues	4.32 ±0.70	4.31 ±0.66	0.783
Ethical concerns	3.72 ±0.95	3.78 ±0.86	0.696
Evidence-based value of test result impacts your decision to order a PGx test	3.66 ±0.82	3.81 ±0.74	0.09
PGx testing will increase your workload in practice	3.33 ±1.04	3.47 ±1.00	0.319
PGx testing will increase waiting time for prescriber to take action on a patient's medication needs	3.74 ±0.96	3.71 ±0.95	0.704

 Table 3.22 Challenges for implementation of PGx testing (N=292)

*statistically significant results p<0.05

3.2 Results of the evaluation of the pharmacogenetics tutorial

In Section 3.2, results of the evaluation of the developed PGx tutorial disseminated to pharmacists and physicians are described.

3.2.1 Participant demographics

The evaluation form was completed by 66 participants; 57 completed online and 9 completed after the live presentation. Participants distribution was 33 pharmacists and 33 physicians. For pharmacists, 25 were female, while for physicians an almost equal distribution between genders was observed (female n=15; male n=18). The mean age for pharmacists and for physicians was 31 and 33 years respectively; the mean years of practice 7 years for pharmacists and 10 years for physicians (Table 3.23).

	Pharmacists (n=33)	Physicians (n=33)
Gender	Number	Number
Male	8	18
Female	25	15
Age (Years)	Mean ±SD	Mean ±SD
inge (i cuis)	31 ±7.56	33 ±10.44
Years of	Mean ±SD	Mean ±SD
Practice	7 ±7.02	10 ±9.89

Table 3.23 Evaluation form - Participant demographics (N=66)

Most pharmacists who completed the evaluation form practiced in community pharmacy (n=14) (Table 3.24).

Area of Practice	Number
Community	14
Hospital	6
Regulatory	9
Research	2
Medical Representation	1
Industry	1
Academia	0

Table 3.24 Evaluation form - Pharmacists' distribution by area of practice (n=33)

Most physicians who completed the questionnaire practiced in Family Medicine (n=8)

(Table 3.25).

Table 3.25 Evaluation fo	rm- Physicians	' distribution by	area of	specialisation
(n=33)				

Area of Practice	Number
Family Medicine	8
Foundation program (House Officers)	8
General Medicine	3
Emergency Medicine	2
Paediatrics	2
Surgery	2
Anaesthesia	1
Cardiology	1
ENT	1
Obstetrics and Gynaecology	1
Public Health	1
Radiology	1

3.2.2 Evaluation of pharmacogenetics tutorial

With regards to the relevance of the discussed topics in the tutorial, pharmacists and physicians perceived all the topics to be relevant and pharmacists rated all the topics with a significantly higher mean rating score than physicians (p<0.05) (Table 3.26)

Statement Relevance of discussion topics	Mean rating score ±SD Pharmacists (n=33)	Mean rating score ±SD Physicians (n=33)	p-value	
Nomenclature related to PGx	4.12 ±0.93	3.45 ±0.87	0.003*	
Benefits of PGx	4.45 ±0.56	3.88 ±0.74	0.001*	
PGx information resources	4.36 ±0.74 3.91 ±0.68		0.009*	
PGx clinical case 1- Oncology	4.48 ±0.62	3.97 ±0.68	0.002*	
PGx clinical case 2- Cardiology	4.48 ±0.67	3.91 ±0.84	0.002*	
PGx clinical case 3- Infectious disease	4.30 ±0.77	3.94 ±0.66	0.034*	

Table 3.26 Relevance of discussion topics in PGx tutorial (N=66)

*statistically significant results p<0.05

Pharmacists significantly agreed more than physicians that the PGx tutorial may help to improve application of theory to practice (pharmacists 4.30, physicians 3.97; p=0.027) and skills in PGx (pharmacists 4.33, physicians 3.94; p=0.007). Pharmacists and physicians agreed that they are likely to follow future tutorials on PGx testing, with significantly higher agreement by pharmacists (4.45) compared to physicians (3.70) (p<0.001) (Table 3.27).

Statement:	Mean rating score ±SD Pharmacists (n=33)	Mean rating score ±SD Physicians (n=33)	p-value	
Inspired me on the subject	4.09 ±0.76	3.88 ±0.49	0.188	
Reflects developments in PGx	4.24 ±0.71	4.15 ±0.36	0.343	
Helped me to understand fundamental principles of PGx	4.48 ±0.57	3.88 ±0.55	<0.001*	
Sequence was appropriate	4.73 ±0.45 4.03 ±0.47		<0.001*	
Information in tutorial was clearly presented	4.58 ±0.50	3.85 ±0.57	<0.001*	
Information in tutorial was comprehensive	4.52 ±0.51	4.06 ±0.50	0.001*	
Information in tutorial was easy to understand	4.30 ±0.77	3.61 ±0.56	<0.001*	
May help to improve application of theory to practice	4.30 ±0.73	3.97 ±0.53	0.027*	
May help to improve my skills in PGx	4.33 ±0.78	3.94 ±0.43	0.007*	
Helped to identify my strengths and weaknesses regarding PGx	4.15 ±0.83	3.79 ±0.55	0.025*	
Content discussed is helpful for use in practice	4.12 ±0.86	3.70 ±0.53	0.007*	
Relevant to my practice	3.55 ±0.91	3.52 ±0.62	0.838	
Met my expectations	4.39 ±0.70	3.88 ±0.49	<0.001*	
Likelihood of following future tutorials on PGx	4.45 ±0.62	3.70 ±0.59	<0.001*	

Table 3.27 Evaluation results of PGx tutorial (N=66)

*statistically significant results p<0.05

3.3 Pharmacogenetics information in official product labelling for oncology drugs

Twenty-two out of the 80 drugs listed in the GFL indicated in oncology were identified to have PGx implications. Fourteen of the 22 drugs have a 'Testing required' annotation reported in PharmGKB. Comparison between the FDA drug label and EMA SmPC for the 14 drugs showed agreement for 7 drugs (dabrafenib, everolimus, exemestane, imatinib, letrozole, rituximab, trastuzumab) and differences between the regulatory bodies for another 7 drugs (anastrazole, erlotinib, lenalidomide, rasburicase, tamoxifen, trametinib, tretinoin) (Table 3.28).

Clinical Pharmacogenetics Implementation Consortium dosing guidelines are available for 7 of the 22 identified drugs, namely capecitabine, cisplatin, fluorouracil, irinotecan, mercaptopurine, rasburicase and tamoxifen.

Drug	Month/Year of Update		Presence of PGx information in headings/sub-headings									
	FDA drug	EMA	FDA drug label			EMA SmPC						
	label	SmPC	BW	Ι	D	С	W	BW	Ι	D	С	W
Anastrozole	12/18	1/16	-	+	-	-	-	-	+	+	-	-
Dabrafenib	11/18	3/18	-	+	+	-	+	-	+	+	-	+
Erlotinib	10/16	3/18	-	+	+	-	-	-	+	+	-	+
Everolimus	5/14	4/18	-	+	-	-	-	-	+	-	-	-
Exemestane	7/16	5/18	-	+	-	-	-	-	+	-	-	-
Imatinib	11/17	10/17	-	+	+	-	-	-	+	+	-	-
Lenalidomide	7/18	5/18	+	+	-	-	-	-	+	-	-	-
Letrozole	11/17	10/17	-	+	-	-	-	-	+	-	-	-
Rasburicase	9/17	1/18	+	-	-	+	-	-	-	-	+	-
Rituximab	6/18	8/18	-	+	-	-	-	-	+	-	-	-
Tamoxifen	12/18	1/18	-	+	-	-	-	-	+	-	-	+
Trametinib	5/18	4/18	-	+	+	-	-	-	+	+	-	+
Trastuzumab	7/18	4/18	-	+	+	-	+	-	+	+	-	+
Tretinoin	1/18	5/17	-	+	-	-	+	-	+	-	-	-

 Table 3.28 Comparison of PGx information between FDA and EMA for oncology drugs (N=14)

PGx: Pharmacogenetics

BW: Boxed warning

I: Indications and usage/ Therapeutic indications

D: Dosage and administration/ Posology and method of administration

C: Contraindications

W: Warnings and precautions/ Special warnings and precautions for use

+: presence of PGx information

-: no PGx information

3.4 Implementation of pharmacogenetic testing locally for oncology drugs

The 7 Consultant Oncologists reported that PGx testing is being requested prior to prescribing for 14 drugs with a 'Testing required' annotation reported in PharmGKB (anastrozole, dabrafenib, erlotinib, everolimus, exemestane, imatinib, lenalidomide, letrozole, rasburicase, rituximab, tamoxifen, trametinib, trastuzumab, tretinoin) and for 2 drugs with an 'Actionable PGx' annotation reported in PharmGKB (busulfan and irinotecan).

3.5 PGx in pharmacy educational programs in Europe and USA

Information about PGx education programs and curricula was collated from 58 academic institutions (39 USA, 19 Europe). PGx is taught in 53 institutions, a higher number in the USA (36) than in Europe (17). Forty-two institutions had a faculty member specialised in PGx teaching the subject. The average time dedicated to PGx teaching per course is 24 hours (range 2-87 hours) in the USA and 23 hours (range 2-50 hours) in Europe. The most popular method of teaching PGx is via delivery of lectures by 48 institutions (32 USA, 16 Europe). Other teaching methods include laboratory practice (4 USA, 7 Europe), seminars (3 USA, 5 Europe), case studies (9 USA, 5 Europe) workshops (2 USA, 2 Europe), group work (5 USA, 1 Europe), debates (5 USA,1 Europe), site visits (1 Europe), journal clubs (1 Europe) and conferences (1 USA).

Topics in the curricula include basic principles of PGx (25 USA, 7 Europe), PGx testing implications in different therapeutic areas (36 USA, 12 Europe), PGx testing implications in practice (22 USA, 7 Europe), use of PGx testing guidelines (10 USA,

4 Europe), interpretation of PGx testing (8 USA, 2 Europe), and ethical, legal and social issues (11 USA, 5 Europe). Thirty-one respondents (27 USA, 4 Europe) stated that PGx should be given more importance in the curriculum whilst 20 respondents (12 USA, 8 Europe) believed that PGx is covered sufficiently in their curriculum.

Chapter 4

Discussion

4.1 The social and scientific implications of pharmacogenetic testing

Pharmacogenetics (PGx) is an advancing field in the precision medicine era and its implementation has the potential to improve patient safety and enhance efficacy of drug therapy (Klein et al, 2017). The social implications of PGx testing investigated in this study were the perception of pharmacists and physicians towards accessibility of PGx testing, the impact on the complexity of healthcare service provision, cost concerns, ethical issues, misuse or misinterpretation of PGx data by third parties, regulatory concerns and responsibilities of HCPs relating to PGx services. The scientific implications of PGx testing were explored through assessing awareness and training of pharmacists and physicians and their perception regarding benefits and challenges, inclusion of PGx information in official product labelling, and present status of PGx implementation in clinical practice.

The perception of pharmacists and physicians regarding PGx testing was analysed with respect to awareness, attitudes and practice aspects using a questionnaire developed and psychometrically evaluated in this study. Findings from this research contributed to the existing literature from other countries on the perception of PGx testing among pharmacists and physicians in Malta. Results from the questionnaire revealed the need for more information and training on PGx testing among pharmacists and a tutorial on PGx testing to promote awareness on the topic was developed, validated and evaluated.

The perception questionnaire identified oncology drugs as the drugs perceived by pharmacists and physicians to be most important for PGx testing. Moreover, in PharmGKB the highest number of drugs with PGx implications are oncology drugs

62

and most of these drugs have a testing required drug label annotation. Oncology drugs were selected for the comparison of PGx information in US FDA drug labels and EMA SmPCs as a means to explore harmonisation between regulatory bodies for these drugs since inadequate harmonisation between regulatory bodies is a reported challenge for the clinical uptake of PGx testing (Klein et al, 2017). The present status of the use of PGx testing for oncology drugs locally was explored in this study.

4.2 Attitudes of pharmacists and physicians towards pharmacogenetic testing

Pharmacists and physicians in this study demonstrated positive attitudes towards use of PGx testing in practice agreeing that is has potential clinical benefits in improving the efficacy and safety of drugs therapy, guiding individualised therapy, and in treatment resistant and medication intolerance cases. The perception of pharmacists was more positive compared to physicians (p<0.05). Studies carried out in the USA, Malaysia, Ethiopia and Kuwait have also reported similar positive attitudes by pharmacists and physicians towards PGx testing (Roederer et al, 2012; Tuteja et al, 2013; Bannur et al, 2014; Abdela et al, 2017; Albassam et al, 2018).

With regards to cost and PGx service provision pharmacists and physicians agreed that the clinical implementation of PGx testing has the potential to reduce healthcare costs and guide drug therapy expenditure. Pharmacists and physicians in this study agreed that PGx testing should not be paid-out-of-pocket by the patient and should be offered as a government-funded service. Similar findings have been reported in other studies (Koomer et al, 2011; McCullough et al,2011; Elewa et al, 2015; Albassam et al, 2018). Studies carried out in the USA and other European countries reported lack of reimbursement or health insurance coverage of the PGx test requested as reasons

for not using PGx testing routinely by pharmacists and physicians (Bank et al, 2017; Just et al, 2017; Wu et al, 2017).

When pharmacists and physicians were probed about their attitudes regarding PGx testing ethical concerns, apprehension was demonstrated regarding sharing of PGx test results with family members and misuse and misinterpretation of PGx test results if made available to third parties, such as health insurance agencies and employers. Such ethical concerns were reflected by pharmacists and physicians in other studies carried out in the Netherlands and the USA (Koomer et al, 2011; Bank et al, 2017)

4.3 Insufficient awareness of pharmacogenetic testing by pharmacists and physicians as a challenge for implementation of pharmacogenetic testing

Pharmacists and physicians in this study highlighted inadequate awareness of HCPs as a major barrier to PGx clinical implementation and concern regarding insufficient HCP awareness in PGx testing was also reported as a challenge in other studies carried out in Belgium, Germany, the Netherlands, Spain, the UK, and the USA (Gurwitz et al, 2009; Haga et al, 2012 a,c; Jamie, 2013, Horgan et al, 2014).

Lack of awareness of drugs with PGx implications by pharmacists and physicians was reported in this study, with significantly less awareness reported by physicians (p<0.05). This lack of awareness was observed in similar studies undertaken in other countries (Abdela et al, 2017; Just et al, 2017; Albassam et al, 2018).

Pharmacists and physicians in this study highly agreed that PGx information should be included in SmPCs. Studies have reported that pharmacists and physicians perceived the inclusion of PGx information in official product labelling as helpful in clinical practice (Stanek et al, 2013; Romagnoli et al, 2016; Arathy et al, 2019). Pharmacists and physicians in this study were insufficiently aware of available information resources related to drugs with PGx implications, with physicians significantly less aware of PGx sources of information than pharmacists (p<0.05). Lack of awareness by pharmacists and physicians regarding PGx information resources was also reported in previous studies which were carried out in the USA and Kuwait (McCullough et al, 2011; Albassam et al, 2018; Owusu Obeng et al, 2018). Lack of awareness by pharmacists and physicians regarding the PGx tests currently requested locally was observed in this study, with lack of awareness similarly observed by Albassam et al (2018).

Studies which have reported lack of awareness by pharmacists and physicians towards PGx testing have suggested that there is the need for further training in order to address this challenge (Elewa et al, 2015; Obara et al, 2015; Aleijalat et al, 2016; Bank et al, 2017).

4.4 Education and training on pharmacogenetics

Klein et al (2017) identified lack of awareness by pharmacists and physicians on PGx testing as an educational barrier. Dong and Wilthshire, (2017) recommended that the lack of awareness among pharmacists and physicians should be addressed by PGx training to further improve the clinical implementation of PGx. Roederer et al (2017) suggested devising a standardised competency-based approach for PGx training of pharmacists in order to develop competences directed towards the application of PGx in clinical practice.

In this study, pharmacists significantly agreed more than physicians that PGx modules should be incorporated in undergraduate curricula and offered as a postgraduate specialisation (p<0.05). The incorporation of PGx training in pharmacy and medicine curricula is considered beneficial for further clinical implementation of PGx testing (Vitek et al, 2017).

Pharmacists and physicians in this study agreed that more education and training in PGx is required. Interest in further training and education in PGx is also reported in other studies (Roederer et al, 2012; Kuo et al, 2013; Alexander et al, 2014; Bannur et al, 2014; Elewa et al, 2015; Kudzi et al, 2015; Abdela et al, 2017; Bank et al, 2017; Chan et al, 2017, McCauley et al, 2017).

Pharmacists and physicians in this study preferred CPE seminars to acquire further information about PGx testing and would prefer following the seminars as a combination of attending in person and online. Preference of CPE seminars by pharmacists and physicians has similarly been reported in other studies (Roederer et al, 2012; Bannur et al, 2014), while accredited learning courses and workshops were preferred most in another study (Just et al, 2017),

The tutorial *Pharmacogenetics: A tool for precision medicine* was developed reflecting findings from the perception questionnaire, namely that pharmacists and physicians perceived the need for more information and training on PGx to increase confidence and competence and focused on the preferred topics including the application and interpretation of PGx tests. Previous studies reported similar perceptions (De Denus et al, 2013; Taber and Dickinson, 2014; Arathy et al, 2019),

hence the tutorial focused on discussion of the practical implications of PGx using clinical case studies. The case studies were selected for discussion according to the therapeutic areas which pharmacists and physicians perceived as most important for PGx testing in the perception questionnaire, namely oncology, cardiology and drugs used in HIV.

The PGx tutorial developed was well-received by pharmacists and physicians since they agreed that the PGx tutorial met their expectations and they were likely to follow future tutorials on the topic, with significantly higher agreement by pharmacists compared to physicians (p<0.05) Other studies reported the increased interest of pharmacists compared to physicians regarding following PGx testing tutorials (Bannur et al, 2014, Elewa et al, 2015).

The present study demonstrated agreement by pharmacists and physicians that the developed tutorial was relevant to their practice and may aid to improve skills and understanding of fundamental principles related to PGx, with significantly higher agreement by pharmacists compared to physicians for the latter. In a study by Formea et al (2018), it was agreed by pharmacists that PGx modules developed for the purpose of the study increased their confidence towards provision of therapeutic guidance about drugs with PGx implications. These results demonstrate that increased PGx training has the potential to improve awareness and support pharmacists, and also physicians in clinical decision-making incorporating PGx information (Horgan et al, 2014; Klein et al, 2017).

4.5 The way forward for further pharmacogenetics implementation in practice

The present study indicates that the clinical implementation of PGx locally is promising since positive attitudes by pharmacists and physicians were demonstrated. PGx testing was reported by physicians to be more applicable for use in their practice compared to pharmacists (p<0.05). Conversely in other studies, it was reported that pharmacists perceived PGx testing as more applicable in their practice compared to physicians (Abdela et al, 2017; Albassam et al, 2018). Kudzi et al (2015) demonstrated that there was high agreement towards relevance of PGx testing in practice by both pharmacists and physicians.

However, to enhance implementation of PGx in practice, various challenges need to be addressed and overcome. Some of these challenges, including insufficient competence, cost issues and long turnaround time for tests results, were identified by pharmacists and physicians in the perception questionnaire.

Insufficient competence in the area of PGx testing and lack of confidence by pharmacists and physicians with regards to recommending and ordering a PGx test, interpreting a PGx test result, and discussing a PGx test result was observed in this study. The lack of confidence and insufficient competence by pharmacists and physicians regarding PGx service provision was also reported in other studies carried out in the USA, Singapore, Kuwait (Koomer et al, 2011; McCullough et al, 2011; Chan et al, 2017; Albassam et al, 2018). Insufficient competence and confidence by pharmacists and physicians was reported as a potential barrier for the clinical implementation of PGx testing, possibly reflecting low adoption rate in practice (Klein et al, 2017; Vitek et al 2017).

A low adoption rate of PGx testing locally was observed in this study, since in the questionnaire only 11 physicians stated that they had ever ordered a PGx test. These physicians were practicing in Oncology (5), General Medicine (4) and Cardiology (2). Low adoption rates of routine PGx testing by physicians has also been reported in studies carried out in other countries (Stanek et al, 2013; Bannur et al, 2014; Taber and Dickinson, 2014; Bank et al, 2017; Just et al, 2017; Albassam et al, 2018; Arathy et al, 2019). Oncology is the therapeutic area where PGx testing is being practiced most locally as evidenced by the discussions with the Consultant Oncologists in the present study.

In PharmGKB the majority of oncology drugs have a 'Testing required' or Testing recommended' drug label annotation. These annotations reflect PGx information from official product labelling by the regulatory bodies. Differences in PGx information between FDA drug labels and EMA SmPCs for drugs used in malignancy were identified in this study. Inadequate harmonisation between regulatory bodies is a challenge for the clinical implementation of PGx and these findings point to the need for further discussion between regulatory bodies for continued regulatory harmonisation of the presence and quality of PGx information in official product labelling (Tan-Koi et al, 2018).

In this study, pharmacists more than physicians significantly agreed that PGx testing should be performed pre-emptively and should be implemented routinely in medication therapy management services to optimise clinical decision making (p<0.05). A pilot study where pre-emptive PGx testing, showed that pharmacists and physicians were able to document PGx test results and apply PGx information in practice to optimise clinical decision making (Van der Wouden et al, 2019).

69

Pharmacists and physicians participating in the study identified cost issues as a potential challenge for implementation of PGx testing, as was reported in numerous other studies (Rogausch et al, 2006; Woelderink et al, 2006; Dunbar et al, 2012; Powell et al, 2015; Shishko et al, 2015; Chan et al, 2017; Wu et al, 2017). Lack of PGx cost-effectiveness studies are also reported as a barrier in PGx implementation (Klein et al, 2017). In this study, pharmacists and physicians perceived cost-effectiveness studies relating to PGx testing as important, and this finding was also demonstrated in other studies (Dunbar et al, 2012; Chan et al, 2017).

With respect to ordering a PGx test, physicians in this study showed concern regarding the long turnaround time of obtaining a PGx test result which was also observed in other studies (Wu et al, 2017; Dong and Wiltshire 2017). Ways to overcome the barrier of lengthy turnaround time of PGx testing include the development of pre-emptive PGx testing programs including screening of a panel of gene variants which are kept in a patient's health record and are accessible to prescribers and through the use of and further development of rapid, point of care assays (Dunnenberger et al, 2015; Wirth et al, 2016; Klein et al, 2017).

The development of a guided-framework for pharmacists and physicians to overcome the lack of clear guidelines in PGx healthcare service provision has been suggested in various studies (McMahon et al, 2011; Haga et al, 2012b; Haga et al, 2012c; Tuteja et al, 2013; Peterson et al, 2016; St. Sauver, 2016; Van der Wouden et al, 2017; Wu et al, 2017). In this study, pharmacists and physicians agreed that a guided-framework should be devised to ensure consistency of procedures when ordering a PGx test to avoid liability issues, with significantly higher agreement by pharmacists compared to physicians (p<0.05). This guided-framework would reflect whether the PGx service provision would be provided from community or a hospital-based entity.

HCP responsibilities in PGx testing service as perceived by pharmacists and physicians has been reported to be unclear (Fargher et al, 2007). Results from the perception questionnaire showed that pharmacists and physicians perceived the Consultant Physician, and the Genetic Specialist Physician among the higher ranked HCPs who should be responsible in different roles within PGx testing service provision. Such responsibilities include making a patient aware of PGx testing, accessing and interpreting PGx test results, discussing PGx test results with patients and taking action according to a PGx test result. Elewa et al (2015) reported that pharmacists significantly perceived themselves to be more appropriately responsible than physicians to apply PGx testing in drug therapy selection and dosing and should make the patients aware of relevant PGx testing according to drugs being prescribed.

Pharmacists and physicians in this study agreed that PGx test results should be available in health records for clinical evaluation by HCPs and were receptive towards electronic storage of PGx test results and automated interpretations of PGx test results using an electronic system. This finding has also been reported in various studies (Schnoll and Shields, 2011; Lam, 2013; Horgan et al, 2014; Elewa et al, 2015; Patel, 2016; Elliott et al, 2017; Klein et al, 2017; Lauschke et al, 2018; Liu et al, 2018). For successful implementation of PGx testing in the healthcare service, access to PGx test results by both the community and hospital HCPs should be granted. Automated systems will potentially facilitate PGx test result interpretation and actioning and would help to diminish HCPs concerns that PGx might increase complexity of healthcare delivery (Laerum et al, 2014; Overby et al, 2015; Nishimura et al, 2016).

71

4.6 Limitations of the study

Dissemination of the perception questionnaire, PGx tutorial and evaluation form mainly carried out through the respective social media groups. The response rate in this study was relatively low (14%), however low response rates (10-34%) have also been reported in other studies assessing perception of HCPs towards PGx testing out in other countries (Bannur et al, 2014; Petersen et al, 2014; Elewa et al, 2015; Nishimura et al, 2016; Bank et al, 2017; McCauley et al, 2017). This low response rate could be attributed to the reluctance of the HCPs to complete a questionnaire about an innovative and advancing topic without appropriate training and awareness of PGx.

The recorded PGx tutorial was not made available to all pharmacists and physicians since only the respective social media groups were used for dissemination.

Pharmacists and physicians in this study were asked to rate their own awareness and competence in PGx testing rather than carrying out a knowledge assessment test. This may have led to over or underestimation of the participants' awareness and competencies related to PGx resulting in self-reported bias. Use of Likert-scale questions in the questionnaire is another limitation as intervals between points on the scale do not present equal changes in attitude for all individuals.

Selection of individuals for the validation and reliability testing exercises by convenience sampling is another possible limitation.

4.7 Recommendations for further study

The data collected from the perception questionnaire could be developed as a discussion paper to be reviewed and discussed by stakeholders in a focus group and presented in the form of a white paper to devise a national multidisciplinary framework and guidelines for PGx clinical implementation. Data collected from the perception questionnaire should be supported by a review of the present status regarding PGx implementation in practice from international healthcare institutions.

An extensive review of the present status of PGx training in international curricula is recommended and followed-up by a study assessing the local perception of academic staff, students and HCPs regarding the preferred methods of teaching PGx and on the preferred topics to be integrated in undergraduate and postgraduate curricula.

The positive feedback obtained from the PGx tutorial, which was a pilot study, could serve as a stimulus for further study by disseminating PGx information and obtaining feedback from a larger sample size of pharmacists and physicians and using different methods. The impact of the suggested study can be measured by pre- and postevaluation of the educational intervention implemented to assess improvement in knowledge and skills acquired by the participants and the impact of the intervention. Offering some form of certification or accreditation for attendance to such educational sessions is an initiative which may increase uptake.

Further study on methods to provide continued regular updates of PGx information to HCPs is recommended, including regarding the optimal interface preferred by HCPs, for example through developing an easily accessible and user-friendly application using digital devices.

73

The comparison of PGx information in FDA drug labels and EMA SmPCs and the present status of PGx testing in practice is recommended for other therapeutic areas and drug classes following differences observed between regulatory bodies for oncology drugs.

4.8 Conclusion

Findings from the perception questionnaire demonstrated that pharmacists and physicians in this study were aware of the term PGx testing, showed positive attitudes towards PGx testing and perceived PGx testing to be applicable to their practice. Insufficient competence was reported as a significant challenge and the need for further training on the topic was identified by the participants.

A PGx tutorial, reflecting findings from the perception questionnaire and including practical clinical case studies, was developed as an initiative to disseminate information on PGx to pharmacists and physicians locally as a contribution towards increasing awareness and to promote the clinical implementation of PGx. The tutorial was well-received since pharmacists and physicians agreed that the tutorial has potential to improve application of PGx theory to practice and enhance skills in PGx.

Differences in PGx information in official product labelling for oncology drugs points to the need for continued harmonisation in PGx information between the FDA and EMA for this class of drugs to improve PGx implementation.

Dissemination of study findings

Xuereb AM, Wirth F, Mifsud Buhagiar L, Serracino-Inglott A. Pharmacogenetic testing for drugs used in malignancy. Malta Medical Journal 2018;30(Suppl):129. (Discussed Poster Presentation, 10th Malta Medical School Conference, 29 November – 1 December 2018, Malta).

Xuereb AM, Wirth F, Serracino-Inglott A. Perception of hospital pharmacists towards pharmacogenetic testing. EJHP. 2019;26(Suppl1):A290. (Poster Presentation, 24th Congress of the European Association of Hospital Pharmacy, 27-29 March 2019, Barcelona, Spain).

Xuereb AM, Mifsud-Buhagiar L, Wirth F, Serracino-Inglott A. Awareness and attitudes of pharmacist and physicians towards pharmacogenetic testing. (Poster Presentation, 79th FIP World Congress of Pharmacy and Pharmaceutical Sciences 2019, 22-26 September 2019, Abu Dhabi, United Arab Emirates).

Xuereb AM, Mifsud-Buhagiar L, Wirth F, Serracino-Inglott A. An online approach to enhance awareness on pharmacogenetics among pharmacists and physicians. (Poster Presentation, ESCP International Symposium, 23-25 October 2019, Ljubljana, Slovenia).

References

Abdela OA, Bhagavathula AS, Gebreyohannes EA, Tegegn HG. Ethiopian health care professionals' knowledge, attitudes and interests toward pharmacogenomics. Pharmacogenomics Pers Med. 2017; 10:279-85.

Abdilla A. Pharmacogenetics: Ethics and Public Policy [Masters dissertation]. Department of Moral Theology, University of Malta; 2016.

Albassam A, Alshammari S, Ouda G, Koshy S, Awad A. Knowledge, perceptions and confidence of physicians and pharmacists towards pharmacogenetics practice in Kuwait. PLoS One. 2018;5:13(9):1-16.

AlEjielat R, Ejielat Z, Andrawes S, Mhaidat NM. An evaluation of the knowledge, opinions, expectations and concerns toward pharmacogenomics among Jordanian pharmacists. Per Med. 2016;13(2):143-54.

Alexander KM, Divine HS, Hanna CR, Gokun Y, Freeman PR. Implementation of personalized medicine services in community pharmacies: Perceptions of independent community pharmacists. J Am Pharm Assoc. 2014;54:510-17.

American Society of Health-System Pharmacists (ASHP). ASHP statement pharmacist's role in clinical pharmacogenomics. J Health Syst Pharm. 2015;75:579-81.

Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. Biomarker qualification: Toward multiple stakeholder framework for biomarker development, regulatory acceptance, and utilisation. Clin Pharmacol Ther. 2015;98(1):34-46.

76

Arathy R, Chacko J, Pillai S. A knowledge, attitude and practices study of pharmacogenomics and its educational needs among doctors in tertiary care hospital. Natl J Physiol Pharm Pharmacol. 2019;9(2):99-102.

Asadov C, Aliyeva G, Mustafayeva K. Thiopurine S-methyltransferase as a pharmacogenetic biomarker: Significance of testing and review of major methods.

Bank PC, Swen JJ, Guchelaar HK. Pharmacogenetic biomarkers for predicting drug response. Expert Rev Mol Diagn. 2014;14(6):723-35.

Bank PCD, Swen JJ, Guchelaar HK. A nationwide survey of pharmacists' perception of pharmacogenetics in the context of a clinical decision support system containing pharmacogenetics dosing recommendations. Pharmacogenomics. 2017;18(3):215-25.

Bannur Z, Bahaman S, Salleh MZ, The LK. Pharmacogenomics based practice in Malaysia: The attitude, knowledge and adoption by healthcare professionals. IMJM. 2014;13(1):41-50.

Benzeroual KE, Shah B, Shinde S. Pharmacogenomics: assessing educational exposure, confidence in knowledge and training elements of pharmacists. Per Med. 2012;9(4):387-93.

Burt T, Dhillon S. Pharmacogenomics in early-phase clinical development. Pharmacogenomics. 2013;14(9):1085-97.

Campion DP, Dowell FJ. Translating pharmacogenetics and pharmacogenomics to the clinic: Progress in human and veterinary medicine. Front Vet Sci. 2019; 11(6):22.

77

Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MTM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for *CYP2C9* and *HLA-B* genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96(5):542-8.

Caudle KE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Relling MV, Klein TE. Evidence and resources to implement pharmacogenetic knowledge for precision medicine. Am J Health Syst Pharm. 2016; 73(23):1977-85.

Cavallari LH, Lam FYW. Pharmacogenetics. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey ML. Pharmacotherapy: A pathophysiologic approach, 10e. New York: McGraw Hill; 2017.

Chan CYW, Chua BY, Subramanlam M, Suen ELK, Lee J. Clinicians' perceptions of pharmacogenomics use in psychiatry. Pharmacogenomics. 2017;18(6):531-8.

Chang K, Weitzel K, Schmidt S. Pharmacogenetics: Using genetic information to guide drug therapy. Am Fam Physician. 2015;92(7):588-94.

Ciarleglio AE. The Daniel K. Inouye College of Pharmacy Scripts: Precision medicine through the use of pharmacogenomics: Current status and barriers to implementation. Hawaii J Med Public Health. 2017;76(9):265-9.

Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4);376-82. Dávila-Fajardo CL, Diaz-Villamarin X, Antúnez-Rodriguez A, Fernández-Gomez AE, García-Navas P, Martínez-González LJ et al. Pharmacogenetics in the treatment of cardiovascular disease and its current progress regarding implementation in the clinical routine. Genes. 2019;10(261):1-25.

Daly AK. Pharmacogenetics: a general review on progress to date. Br. Med. Bull. 2017;124:65-79.

De Denus S, Letarte N, Hurlimann T, Lambert JP, Lavoie A, Robb L et al. An evaluation of pharmacists' expectations towards pharmacogenomics. Pharmacogenomics. 2013;14(2):165-75.

Di Francia R, Valente D, Catapano O, Rupolo M, Tirelli U, Berretta M. Knowledge and skills needs for health professions about pharmacogenomics testing field. Eur Rev Med Pharmacol Sci. 2012;16:781-8.

Dong OM, Wiltshire T. Advancing precision medicine in healthcare: addressing implementation challenges to increase pharmacogenetic testing in the clinical setting. Physiol Genomics. 2017;49:346-54.

Dressler LG, Deal AM, Patel J, Markey J, Van Riper M, McLeod H. Cancer pharmacogenomics, adoption by oncologists and patient benefit. Per Med. 2014;11(2):143-53.

Drozda K, Pacanowski MA, Grimstein C, Zineh I. Pharmacogenetic labelling of FDA-approved drugs- A regulatory perspective. JACC Basic Transl Sci. 2018;3(4):545-9.

Dunbar L, Butler R, Wheeler A, Pulford J, Miles W, Sheridan J. Clinician experiences of employing the AmpliChip® CYP450 test in routine psychiatric practice. J Psychopharmacol. 2012;26(3):390-7.

Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, et al. Annu Rev Pharmacol Toxicaol. 2015; 55:89-106.

Dzau VJ, Balatbat CA. Health and societal implications of medical and technological advances. Sci Trans Med. 2018;10:1-3.

Eden C, Johnson KW, Gottesman O, Bottinger EP, Abul-Husn NS. Medical student preparedness for an era of personalised medicine: findings from one US medical school. Per Med. 2016;13(2):129-41.

Ehmann F, Caneva L, Prasad K, Paulmichi M. Maliepaard M, Llerena A et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J. 2015;15:201-10.

Ehret M. The basics of pharmacogenomics: Review the basics of genomics and available test. Ment Health Clin. 2012;1(9):207-9.

Elewa H, Alkhiyami D, Alsahan D, Abdel-Aziz A. A survey on the awareness and attitude of pharmacists and doctors towards the application of pharmacogenomics and its challenges in Qatar. J Eval Clin Pract. 2015;21(4):703-9.

Elliott LS, Henderson JC, Neradilek MB, Moyer NA, Ashcraft KC, Thirumaran RK. Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: A prospective pilot randomized controlled trial. PloS One. 2017;12(2):1-16.

Empey PE. Pharmacogenomics to achieve precision medicine. Am J Health Syst Pharm. 2016;73(23):1906-7.

Fagerness J, Fonseca E, Hess GP, Scott R, Gardner KR, Koffler M, et al. Pharmacogenetic-guided psychiatric intervention associated with increased adherence and cost savings. Am J Manag Care. 2014;20(6):146-56.

Fargher EA, Eddy C, Newman W, Qasim F, Tricher K, Elliott RA et al. Patients' and healthcare professionals' views on pharmacogenetic testing and its future delivery in the NHS. Pharmacogenomics. 2007;8(11):1511-19.

Farurque F, Noh H, Hussain A, Neuberger E, Onukwugha E. Economic value of pharmacogenetic testing for cancer drugs with clinically relevant drug-gene associations: A systematic literature review. J Manag Care Spec Pharm. 2019;25(2):260-71.

Formea CM, Nicholson WT, McCullough KB, Berg KD, Berg ML, Cunningham JL et al. Development and Evaluation of a pharmacogenomics educational program for pharmacists. Am J Pharm Educ. 2013;77(1):10.

Formea CM, Nicolson WT, Vitek CR, Wix WK, McCullough KB, Cunninghan JL et al. Implementation of a pharmacogenomics education program for pharmacists. Am J Health Syst Pharm. 2018;75(23):1939-46. Frick A, Benton CS, Scolaro KL, McLaughlin JE, Bradley CL, Suzuki OT et al. Transitioning pharmacogenomics into the clinical setting: Training future pharmacists. Front Pharmacol. 2016;7(241):1-11.

Frick A, Benton C, Suzuki O, Dong O, Howard R, El-Sabae H et al. Implementing clinical pharmacogenomics in the classroom: Student pharmacist impressions of an educational intervention including personal genotyping. Pharmacy. 2018;6:115:1-15.

Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for *UGT1A1* and atazanavir prescribing. Clin Pharmacol Ther. 2016;99(4):363-9.

Gillis NK, Patel JN, Innocenti F. Clinical implementation of germline cancer pharmacogenetic variants during the next-generation sequencing era. Clin Pharmacol Ther. 2014;95(3):269-80.

Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for *CYP2D6* and tamoxifen therapy. Clin Pharmacol Ther. 2018;103(5):770-77.

Green JS, O'Brien TJ, Chiappinelli VA, Harralson AF. Pharmacogenomics instruction in US and Canadian medical schools: Implications for personalized medicine. Pharmacogenomics. 2010;11(9):1331-40.

Gurwitz D, Lunshof IE, Dedoussis G, Flordellis CS, Fuhr U, Kircheiner J et al. Pharmacogenomics education: International Society of Pharmacogenomics recommendations for medical, pharmaceutical and health schools deans of education. Pharmacogenomics J. 2005;5:221-5. Gurwitz D, Zika E, Hopkins MM, Gaisser S, Ibaretta D. Pharmacogenetics in Europe: Barriers and opportunities. Public Health Genomics. 2009;12:134-141.

Haga SB, Burke W, Ginsburg G, Mills R, Agans R. Primary care physicians' knowledge of and experience with pharmacogenetic testing. Clin Genet. 2012a;82(4):388-94.

Haga SB, O'Daniel JM, Tindall GM, Mills R, Lipkus IM, Agans RA. Survey of genetic counsellor and clinical geneticists' use and attitudes towards pharmacogenetic testing. Clin Genet. 2012b;82(2):115-120.

Haga SB, Tindall G, O'Daniel JM. Professional perspective about pharmacogenetic testing and managing ancillary findings. Genet Test Mol Biomarkers. 2012c;16(1):21-4.

Haga SB, Allen LaPointe NM, Moaddeb J. Challenges to integrating pharmacogenetic testing into medication therapy management. J Manag Care Spec Pharm. 2015;21(4):346-52.

Haga SB, Moaddeb J. Proposal for a pharmacogenetics certificate program for pharmacists. Pharmacogenomics. 2016;17(6):535-9.

Haidar CE, Hoffman JM, Gammal RS, Relling MV, Crews KR. Development of a postgraduate year 2 pharmacy residency in clinical pharmacogenetics. Am J Health Syst Pharm. 2017;74(6):409-15.

Heale BS, Khalifa A, Stone BL, Nelson S, Del Fiol G. Physicians' pharmacogenomics information needs and seeking behaviour: a study with case vignettes. BMC Med Inform Decis Mak. 2017;17(113):1-10.

Henrikson NB, Burke W, Veenstra DL. Ancillary risk information and pharmacogenetic tests: social and policy implications. Pharmacogenomics J. 2008;8:85-9.

Heuchel D, Wirth F, Azzopardi LM. Public perception of pharmacogenetic testing. Germany: LAP Lambert Academic Publishing; 2017.

Hertz DL, Glatz A, Pasternak AL, Longiro RJ, Vats P, Wu YM, et al. Integration of germline pharmacogenetics into a tumour sequencing program. JCO Precis Oncol. 2018;2:1-15.

Hess GP, Fonseca E, Scott R, Fagerness J. Pharmacogenomic and pharmacogeneticguided therapy as a tool in precision medicine: Current state and factors impacting acceptance by stakeholders. Genet Res (Camb). 2015;97(13):1-12.

Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for *CYP2D6* and *CYP2C19* genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127-34.

Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K, et al. Clinical Pharmacogenetics Consortium Guideline (CPIC) for *CYP2D6* and *CYP2C19* genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102(1):37-44.

Higgs JE, Andrews J, Gurwitz D, Payne K, Newman W. Pharmacogenetics education in British medical schools. Genomic Med. 2008;2:101-5.

Hoop JG, Lapid ML, Paulson RM, Roberts LW. Clinical and ethical considerations in pharmacogenetic testing: views of physicians in 3 'early adopting' departments of psychiatry. J Clin Psychiatry. 2010;71(6):745-53.

Horgan D, Jansen M, Leyens L, Lal JA, Sudbrak R, Hackenitz E et al. An index of barriers for implementation of personalised medicine and pharmacogenomics in Europe. Public Health Genomics. 2014;17:287-98.

Hunt LM, Kreiner MJ. Pharmacogenetics in primary care: The promise of personalised medicine and the reality of racial profiling. Cult Med Psychiatry. 2013;37:226-35.

Jamie K. Pharmacogenetics and pharmacy education in the UK: Mind the generation Gap. Pharmacy Education. 2013;13(1):114-7.

Jorgensen AL, Prince C, Fitzergald G, Hanson A, Downing J, Reynolds J, et al. Implementation of warfarin with point-of-care genetic testing in three UK clinics: a matched cohort study. 2019;17(76):1-11.

Just KS, Steffens M, Swen JJ, Patrinos GP, Guchelaar HJ, Stingl JC. Medical education in pharmacogenomics-results from a survey on pharmacogenetic knowledge in healthcare professionals within European pharmacogenomics clinical implementation project Ubiquitous Pharmacogenomics (U-PGx). Eur J Clin Pharmacol. 2017;73:1247-52.

85

Johnson JA, Burkley BM, Langaee TY, Clare-Salzier MJ, Klein TE, Altman RB. Implementing personalised medicine: Development of a cost-effective customised pharmacogenetics genotyping array. Clin Pharmacol Ther. 2012;92(4):437-9. Johnson JA, Weitzel. Advancing pharmacogenomics as a component of precision medicine: How, where and who? Clin Pharmacol Ther. 2016;99(2):154-6.

Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-guided warfarin dosing 2017 update. Clin Pharmacol Ther. 2017;102(3):397-404.

Kalow W. Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalised medicine. Pharmacogenonomics J. 2006;6:162-5.

Kapoor R, Tan-Koi WC, Teo YY. Role of pharmacogenetics in public health and clinical healthcare: A SWOT analysis. Eur J Hum Genet. 2016;24(12):1651-7.

Kennedy MJ. Personalized medicines-are pharmacists ready for the challenge? Integr Pharm Res Pract. 2018;7:113-23.

Kisor DF, Bright D, Chen J, Smith TR. Academic and professional pharmacy education: a pharmacogenomics certificate training program. Per Med. 2015;12(6):563-73.

Kisor DF, Farrell CL. Expanding pharmacist and student pharmacist access to genetics/genomics/pharmacogenomics competency education. J Med Educ Curric Dev. 2019;6:1-10.

Klein ME, Parvez MM, Shin JG. Clinical implementation of pharmacogenomics for personalised precision medicine: Barriers and solutions. J Pharm Sci. 2017;106(9):2268-79.

Koomer A, Lourdes MM, Ceballos-Coronel, Dutta AP, Sansgiry S, Tran H. A pilot study highlighting differences in pharmacists' perceptions regarding use of pharmacogenetic information in their profession (in Louisville Metro area) based on practice settings. AJPRHC. 2011;3(2):50-61.

Kudzi W, Addy BS, Dzudzor B. Knowledge of pharmacogenetics among healthcare professionals and faculty members of health training institutions in Ghana. Ghana Med J. 2015;49(1):50-56.

Kuo GM, Lee KC, Ma JD. Implementation and outcomes of a live continuing education program on pharmacogenomics. Pharmacogenomics. 2013;14(8):885-95.

Laerum H, Bremer S, Bergan S, Grünfeld T. A taste of individualized medicine: physicians' reactions to automated genetic interpretations. J Am Med Inform Assoc. 2014;21:143-6.

Lam YW. Scientific challenges and implementation barriers to translation of pharmacogenomics in clinical practice. ISRN Pharmacol. 2013;2013:1-17.

Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy- recent progress and future developments. AAPS J. 2018;20(4):1-16.

Lee KC, Hudmon KS, Ma JD, Kuo KM. Evaluation of a shared pharmacogenomics curriculum for pharmacy students. Pharmacogenomics. 2015;16(4):315-22.

Lee KH, Min BJ, Kim JH. Personal genome testing on physicians improves attitudes on pharmacogenomic approaches. PloS One. 2019;14(3):1-18. Lesko LJ, Johnson JA. Academia at the crossroads: education and training in pharmacogenomics. Pers. Med. 2012;9(5):497-506.

Liu J, Friedman C, Finkelstein J. Pharmacogenomic approaches for automated medication risk assessment in people with polypharmacy. AMIA Jt Summits Trans Sci Proc. 2018:142-151.

Luzum JA, Luzum MJ. Physicians' attitudes toward pharmacogenetic testing before and after pharmacogenetic education. Per Med. 2016;13(2):119-27.

Madadi P, Enato EFO, Babatunde EO. Perceptions of health care professionals towards pharmacogenomics in Nigeria: Preliminary results. West Afr J Pharm. 2011;22(1):97-101.

Manson LEN, Van der Wouden CH, Swen JJ, Guchelaar HJ. The Ubiquitous Pharmacogenomics consortium: making effective treatment optimization accessible to every European citizen. Pharmacogenomics. 2017;18(11):1041-5.

Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL. Clinical Pharmacogenetics Implementation Consortium Guidelines for *HLA-B* genotype and abacavir dosing. Clin Pharmacol Ther. 2012;91(4):734-8.

McCullough KB, Formea CM, Berg KD, Burzynski JA, Cunningham JL, Ou NN et al. Assessment of the pharmacogenomics educational needs of pharmacists. Am J Pharm Educ. 2011;75(3):51.

McMahon T, Tucci J. The perceptions of pharmacists in Victoria, Australia on pharmacogenetics and its implications. Pharm Pract (Granada). 2011;9(3):141-7.

McCauley MP, Marcus RK, Strong KA, Vistock AM, Shimoyama ME, Derse AR. Genetics and Genomics in Clinical Practice: The views of Wisconsin physicians. WMJ. 2017;116(2):69-74.

McCullough KB, Formea CM, Berg KD, Burzynski JA, Cunningham JL, Ou NN et al. Assessment of the pharmacogenomics educational needs of pharmacists. Am J Pharm Educ. 2011;75(3):51.

Mills R, Haga SB. The clinical delivery of pharmacogenetic testing services: A proposed partnership between genetic counsellors and pharmacists. Pharmacogenomics. 2013a;14(8):957-68.

Mills R, Voora D, Peyser B, Haga SB. Delivering pharmacogenetic testing in a primary care setting. Pharmagenomics Pers Med. 2013b;6:105-12.

Moaddeb J, Haga SB. Pharmacogenetic testing: Current evidence of clinical utility. Ther Adv Drug Saf. 2013;4(4):155-69.

Moutel G, Duchange N, Raffi F, Sharara Li, Théodorou I, Nöel V et al. Communication of pharmacogenetic research results to HIV- infected treated patients: Standpoints of professionals and patients. Eur J Hum Genet. 2005;13:1055-62. Müller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: Update and report from a pharmacogenetic service clinic. Int Rev Psychiatry. 2013;25(5):554-71.

Muzoriana N, Gavi S, Nembaware V, Dhoro M, Matimba A. Knowledge, attitude and perceptions of Pharmacists and pharmacy students towards pharmacogenomics in Zimbabwe. Pharmacy (Basel). 2017;5(3):36.

Nickola TJ, Green JS, Harralson AF, O'Brien TJ. The current and future state of pharmacogenomics medical education in the USA. Pharmacogenomics. 2012;13(12):1419-25.

Nishimura AA, Shirts BH, Salama J, Smith JW, Devine B, Tarczy-Hornoch P. Physician perspectives of CYP 2C19 and clopidogrel drug-gene interaction active clinical decision support alerts. Int J Med Inform. 2016;86:117-25.

Nussbaum LA, Hogea LM, Andreescu NI, Grädinaru RC, Puiu M, Todica A. The prognostic and clinical significance of neuroimagistic and neurobiological vulnerability markers in correlation with the molecules pharmacogenetic testing in psychoses and ultra high-risk categories. Rom J Morphol Embryol. 2016;57(3):959-67.

Obara T, Abe S, Satoh M, Ubeda SRG, Yosimachi S, Goto T. Awareness regarding clinical application of pharmacogenetics among Japanese pharmacists. Pharmacogenomics Per Med. 2015;8:35-41.

Ong FS, Das K, Wang J, Vakil H, Kuo JZ, Blackwell WLB, et al. Personalised medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert Rev Mol Diagn. 2012;12:593-602.

Otsubo Y, Asahina Y, Noguchi A, Sato Y, Ando Y, Uyama Y. Similarities and differences between US and Japan pharmacogenomic biomarker information in drug labels. Drug Metab Pharmacokinet. 2012;27(1):142-9.

Overby LC, Devine EB, Abernethy N, McCune JS, Tarczy-Hornoch P. Making pharmacogenomics-based prescribing alerts more effective: A scenario-based pilot study with physicians. J Biomed Inform. 2015;55:249-59.

Owusu Obeng A, Fei K, Levy KD, Elsy AR, Pollin TI, Ramirez AH et al. Physicianreported benefits and barriers to clinical implementation of genomic medicine: A multi-site IGNITE-network survey. J Pers Med. 2018;8(3):1-13.

Patel JN. Cancer pharmacogenomics, challenges in implementation, and patientfocused perspectives. Pharmacogenomics Pers Med. 2016;9:65-77.

Payne K, Fargher EA, Roberts SA, Tricker K, Eliott RA, Ratcliffe J et al. Valuing pharmacogenetic testing services: A comparison of patients' and health care professionals' preferences. Value Health. 2011;14:121-34.

Peppercorn J, Hamilton E, Marcom PK, Beskow L, Lyman GH. Pharmacogenetic testing in the face of unclear clinical efficacy. Cancer. 2013; 119(20):3703-9.

Perwitasari DA, Novitasari SL, Septianoro BP, Kurniasih TS. Knowledge, awareness, and attitude of pharmacists toward pharmacogenetic practice: Perspective of

community and hospital in Yogyakarta, Indonesia. J Community Med Health Educ. 2017;7(6):1-10.

Petersen KE, Prows CA, Martin LJ, Maglo KN. Personalized medicine, availability and group disparity: an inquiry into how physicians perceive and rate the elements and barriers of personalized medicine. Public Health Genomics. 2014;17:209-20.

Peterson JF, Field JR, Shi Y, Schildcrout JS, Denny JC et al. Attitudes of clinicians follow large-scale pharmacogenomics implementation. Pharmacogenomics J. 2016;16(4):393-8.

Pisanu C, Tsermpini EE, Macroidi E, Katsila T, Patrinos GP, Squassina A. Assessment of the pharmacogenomics educational environment in Southeast Europe. Public Health Genomics. 2014;17(5-6):272-9.

Powell G, Holmes EAM, Plumpton CO, Ring A, Baker GA, Jacoby A et al. Pharmacogenetic testing prior to carbamazepine treatment of epilepsy: Patients' and physicians' preferences for testing and service delivery. Br J Clin Pharmacol. 2015;80(5):1149-59.

Quinoñes LA, Lavanderos MA, Garcia-Martin E, Agundez JA, Caceres DD, Roco AM, et al. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America. Curr Drug Metab. 2014;15(2):202-8.

Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D Wilke RA, et al. The Clinical Pharmacogenetics Implementation Consortium guideline for *SLCO1B1* and simvastatin-induced myopathy:2014 update. Clin Pharmacol Ther. 2014;96(4):423-8.

Rao US, Mayhew SL, Rao PS. Strategies for implementation of an effective pharmacogenomics program in pharmacy education. Pharmacogenomics. 2015;16(8):905-11.

Remsberg CM, Bray BS, Wright SK, Ashmore J, Kabasenche W, Wang S et al. Design, Implementation and assessment approached within a pharmacogenomics course. Am J Pharm Educ. 2017;81(1):1-13.

Rodríguez-Antona C, Taron M. Pharmacogenomics biomarkers for personalised cancer treatment. J Intern Med. 2015;277(2):201-17.

Roederer MW, Van Riper M, Valgus J, Knafl G, McLeod H. Knowledge, attitudes and education of pharmacists regarding pharmacogenetic testing. Per Med. 2012;9(1):19-27.

Roederer MW, Kuo GM, Kisor D, Frye R, Hoffman JM, Jenkins J et al. Pharmacogenomics competencies in pharmacy practice: A blueprint for change. J Am Pharm Assoc. 2017;57(1):120-5.

Rogausch A, Prause D, Schallenberg A, Brockmöller J, Himmel W. Patients' and physicians' perspectives on pharmacogenetic testing. Pharmacogenomics. 2006;7(1):49-59.

Romagnoli KM, Boyce RD, Empey PE, Adams S, Hochheiser H. Bringing clinical pharmacogenomics information to pharmacists: a qualitative study of information needs and resource requirements. Int J Med Inform. 2016;86:54-61.

Ryu S, Park S, Kim YR, Na HS, Lim HS, Choi HY, et al. A study on *CYP2C19* and *CYP2D6* polymorphic effects on pharmacokinetics and pharmacodynamics of amitriptyline in Health Koreans. Clin Transl Sci. 2017;10:93-101.

Sadee W. Pharmacogenomic biomarkers: validation needed for both the molecular genetic mechanism and clinical effect. Pharmacogenomics. 2011;12(5):675-80.

Saini R, Saini R, Sugandha RS. Pharmacogenetics: The future medicine. J Adv Pharm Technol Res. 2010;1(4):423-4.

Saldivar JS, Taylor D, Sugarman EA, Cullors A, Garces JA, Oades K et al. Initial assessment of the benefits of implementation of pharmacogenetics into the medical management of patients in a long-term care facility. Pharmacogenomics Pers Med. 2016;9:1-6.

Scott SA. Personalising medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.

Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for *CYP2C19* genotype and clopidogrel therapy:2013 Update. Clin Pharmacol Ther. 2013;94(3):317-23.

Schnoll RA, Shields AE. Physician barriers to incorporating pharmacogenetic treatment strategies for nicotine dependence into clinical practice. Clin Pharmacol Ther. 2011;89(3):345-7.

Selkirk CG, Weissman SM, Anderson A, Hulick PJ. Physicians' preparedness for integration of genomic and pharmacogenetic testing into practice within a major healthcare system. Genet Test Mol Biomarkers. 2013;17(3):1-7.

Shishko I, Almeida K, Silvia RJ, Tataronis GR. Psychiatric pharmacists' perception on the use of pharmacogenomics testing in the mental health population. Pharmacogenomics. 2015;16(9):949-58.

Skirton H, Cordier C, Ingvoldstad C, Taris N, Benjamin C. The role of the genetic counsellor: a systematic review of research evidence. Eur J Hum Genet. 2015;23(4):452-8.

Small CB, Margolis DA, Shaefer MS, Ross LL. HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infect Dis. 2017;17:256.

St. Sauver JL, Belinski SJ, Olson JE, Bell EJ, Mc Gree ME, Jacobson DJ et al. Integrating pharmacogenomics into clinical practice: promise vs reality. Am J Med. 2016;129(10):1093-99.

Stanek EJ, Sanders CL, Frueh FW. Physician awareness and utilization of food and drug administration (FDA)- approved labelling for pharmacogenomics testing information. J. Pers. Med. 2013;3:111-23.

Taber K, Dickinson B. Pharmacogenomic knowledge gaps and educational resource needs among physicians in selected specialities. Pharmacogenomics Pers Med. 2014;7:145-62.

Tan-Koi WC, Leow PC, Teo YY. Applications of pharmacogenomics in regulatory science: A product life cycle review. Pharmacogenomics J. 2018;18(3):359-66.

Tarantino P, Trapani D, Morganti S, Ferraro E, Viale G, D'Amico P, et al. Opportunities and challenges of implementing pharmacogenomics in cancer drug development. Cancer Drug Resist. 2019;2:43-52.

Thompson C, Hamilton SP, Hippman C. Psychiatrist attitudes towards pharmacogenetic testing, direct-to-consumer genetic testing, and integrating genetic counselling into psychiatric patient care. Psychiatry Res. 2015;226:68-72.

Tonk ECM, Gurwitz D, Maitland-van der Zee, Janssens ACJW. Assessment of pharmacogenetic test: presenting measures of clinical validity and potential population impact in association studies. Pharmacogenomics J. 2017;17:386-92.

Tuteja S, Haynes K, Zayac C, Sprague JE, Bernhardt B, Pyeritz R. Community pharmacists' attitudes towards clinical utility and ethical implications of pharmacogenetics testing. Per Med. 2013;10(8): 1-14.

Tuteja S, Limdi N. Pharmacogenetics in cardiovascular medicine. Curr Genet Med Rep. 2016;4(3): 119-29.

Van Der Wouden CH, Cambon-Thomson A, Cecchin E, Cheung KC, Dávila- Fajardo CL, Deneer VH et al. Implementing pharmacogenomics in Europe: Design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2016;101(3):341-58.

Van der Wouden CH, Bank PCD, Özokcu K, Swen JJ, Guchelarr HJ. Pharmacistsinitiated pre-emptive pharmacogenetic panel testing with clinical decision support in primary care: Record of PGx results and real-world impact. Genes (Basel). 2019;10(6):1-16.

Verbelen M, Weale ME, Lewis CM. Cost effectiveness of pharmacogenetics-guided treatment: Are we there yet? Pharmacogenomics J. 2017;17:395-402.

Vinothini V, Geetha K, Sarojini V, Parameswari R. A questionnaire-based assessment of postgraduate's and clinician's view on pharmacogenomics in a tertiary care centre. IJSR. 2017;6(6):935-9.

Vitek CRR, Abul-Husn NS, Connolly JJ, Hartzier AL, Kitchner T, Peterson JF et al. Healthcare provider education to support integration of pharmacogenomics in practice: the eMERGE Network experience. Pharmacogenomics. 2017;18(10):1013-25.

Vivot A, Boutron I, Beraud-Chaulet G, Zeitoun JD, Ravaud P, Porcher R. Evidence for treatment-by-biomarker interaction for FDA-approved oncology drugs with required pharmacogenomic biomarker testing. Sci Rep. 2017;7(1):1-9.

Wang B, Canestaro WJ, Choudhry NK. Clinical evidence supporting pharmacogenomic biomarker testing provided in US Food and Drug Administration drug labels. JAMA Intern Med. 2014;174(12):1938-44.

Weitzel KW, Aquilante CL, Johnson S, Kisor DF, Empey PE. Educational strategies to provide pharmacogenomics-based care. Am J Health Syst Pharm. 2016;73(23):1986-98.

Wirth F, Zahra G, Xuereb RG, Barbara C, Fenech A, Azzopardi LM. Comparison of a rapid point-of-care and two laboratory-based *CYP2C19*2* genotyping assays for personalisation of antiplatelet therapy. Int J Clin Pharm. 2016;38:414-20.

Woelderink A, Ibaretta D, Hopkins MM, Rodrigues-Cerezo E. The current clinical practice of pharmacogenetic testing in Europe: TPMT and HER2 as case studies. Pharmacogenomics J. 2006;6:3-7.

Wu AC, Mazor KM, Ceccarelli R, Loomer S, Lu CY. Access to guidelinerecommended pharmacogenomics tests for cancer treatments: experience of providers and patients. J. Pers. Med. 2017;7(17):1-12.

Yang Y, Lewis JP, Hulot JS, Scott SA. The pharmacogenetic control of antiplatelet response: Candidate genes and CYP2C19. Expert Opin Drug Metab Toxicol. 2015;11(10):1599-1617.

Yip VLM, Pirmohamed M. The *HLA-A*31:01* allele: influence on carbamazepine treatment. Pharmacogenomics Pers Med. 2017;10:29-38.

Appendices

Appendix 1: Studies which assessed the perception of pharmacists and physicians towards PGx testing

This appendix includes a compilation of 57 studies (2005-2019) which assessed perception of pharmacists and/or physicians on PGx testing. Most studies were carried out in the USA (n=29), followed by Europe (n=11), Asia (n=9), Africa (n=4), Australasia (n=2), and Canada (n=1), and one study included countries from multiple regions.

Table A1.1 Studies which assessed perception of PHARMACISTS towards PGx testing (n=18)

Reference (Country)	Number of pharmacists [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Koomer et al, 2011 (USA)	32 pharmacists [67%]	Online questionnaire	Perception of use of PGx information based on their practice setting. Education and training needs in PGx.	Confidence was low for hospital and non-hospital pharmacists. Hospital pharmacists were more informed about PGx compared to non-hospital pharmacists. Pharmacists indicated a low confidence rating which warrants need for more informative education and training in this field.
Madadi et al, 2011 (Nigeria)	5 pharmacists	Face-to-face interview using questionnaire	Knowledge and experience with PGx. Expectations about how a PGx testing service should be used. Capacity building for PGx service delivery.	Pharmacists aware of benefits of PGx. Cited hurdles to overcome before this field can become a routine part of patient care in their communities which included possible encroachment into individual's privacy need to be addressed because of its potential ethical implications

Reference (Country)	Number of pharmacists [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
McCullough et al, 2011 (USA)	303 pharmacists [64%]	Online questionnaire	Perception of knowledge and confidence of inpatient and outpatient pharmacists	Pharmacists perceived the importance of PGx knowledge to the profession, but lack of knowledge and self- confidence to act on the PGx test results was reported.
McMahon et al, 2011 (Australia)	291 pharmacists [36%]	Mail questionnaire	Perception of the pharmacists' understanding of PGx, their capacity of patient counselling, their belief of impact on the profession and preference of education about PGx	Further research across the pharmacy profession on the issue of preparedness for the implementation of PGx into the healthcare system and everyday practice is needed. Participants suggested that PGx education should be delivered during tertiary studies, as seminars and workshops forming part of their CPE.
Benzeroual et al, 2012 (USA)	102 pharmacists [32%]	Mail questionnaire	Assessment of knowledge and confidence in PGx concepts	Development of an educational program CPE or certificate is needed for the improvement of pharmacists' education and training, confidence in PGx testing.

Reference (Country)	Number of pharmacists [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
De Denus et al, 2013 (Canada)	284 pharmacists	Online questionnaire	Perception of PGx (opinions, expectations, concerns)	Pharmacists were hopeful towards PGx testing, willing to integrate the tests in clinical practice and required further education to ensure optimal patient care
Jamie, 2013 (UK)	39 pharmacists	Face- to-face and telephone interviews	Educational challenges around implementing PGx into pharmacy education	A knowledge gap was identified between newly graduated pharmacists who were literate in genetics and more experienced pharmacists who have decreased genetics training in professional development. The difference in knowledge between generations could have an impact on the quality and consistency of patient advice. Pharmacists have a major role in the PGx testing service delivery in the future.
Tuteja et al, 2013 (USA)	580 pharmacists [10.3%]	Online questionnaire	Attitudes towards PGx testing including clinical utility, ethical, social, legal, practical implications.	Positive attitudes towards PGx was shown by the pharmacists, 87% perceived that it would decrease ADR and optimize drug dosing. 57% of participants perceived that it was their role for patient counselling regarding PGx information. 65% believed that PGx test results may be misused to have effect on health insurance coverage hence pharmacist education about legal protections is needed.

Reference (Country)	Number of pharmacists [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Alexander et al, 2014 (USA)	101 pharmacists [24.3%]	Questionnaire (fax-based or online- depending on availability of email)	Perception of pharmacists implementing personalised medicine services, perceived readiness to provide service and barrier to implementation	Interest in incorporating personalised medicine services into the community pharmacy practice but require further education. Initiatives should focus on development of comprehensive education programs to further train pharmacists for provision of personalised medicine services.
Kisor et al, 2015 (USA)	20 pharmacists	Pre- and post- program questionnaire	Evaluation of PGx certificate training program relative to competencies in basic genetic concepts, genetics and disease, PGx and ethical/legal and social implications	Increased self-understanding of defined PGx competencies was achieved following self-study and a live, interactive component in the certificate training program. Electronic- based platforms may serve to increase pharmacists PGx education hence increase the uptake of PGx in clinical practice.
Obara et al, 2015 (Japan)	268 pharmacists [72%]	Mail questionnaire	Awareness of PGx in general	16.8% were aware of the clinical application of PGx tests in Japan. <1% of pharmacists indicated ability to query regarding prescriptions based on patients' PGx information. 61.2% of participants indicated that PGx tests were preferred to predict efficacy or ADR of a drug. Action is needed to improve pharmacists' awareness of PGx and ensure pharmacists' ability to provide appropriate PGx service provision
Shishko et al, 2015 (Abu Dhabi, Canada, Indonesia, Singapore, USA)	91 pharmacists (psychiatric pharmacists) [0.09%]	Online questionnaire	Evaluation of psychiatric pharmacists' use, knowledge, perception of effectiveness of PGx testing	The use of PGx is underappreciated due to lack of availability and understanding of PGx testing among psychiatric pharmacists. Greatest limiting factors for using PGx testing includes that lack of education about its use practice and concerns were raised about potential cost of testing considering the lack of allocated funding to PGx

Reference (Country)	Number of pharmacists [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Aleijalat et al, 2016 (Jordan)	128 pharmacists	Face-to-face questionnaire	Assessment of knowledge, opinions, expectations and concerns toward PGx among pharmacists	Positive attitudes of pharmacists toward PGx, but general knowledge was relatively low. Updated educational system is needed
Romagnoli et al, 2016 (USA)	14 pharmacists	Interview and observations of pharmacists in their working environment	The PGx information needs and resource requirements of pharmacists.	Pharmacists anticipate an emerging role for PGx application in their practice. The participants reflected about the challenge of finding PGx information quickly in FDA product labels and value information on the drug label to be trustworthy. It was observed that information is needed about clinically relevant guidelines, genotype-specific dosing.
Bank et al, 2017 (Netherlands)	667 pharmacists [18.8%]	Online questionnaire	Perception of PGx with a focus on the effects of awareness of the Dutch PGx Working Group (DPWG) guidelines	99.7% of pharmacists believed in the concept of PGx. 14.7% of participants only had ordered a PGx test in the previous 6 months. Only 14.1% of participants felt adequately informed and 88.8% would like to receive further training on PGx. It was observed that being aware of the DPWG had no significant effect on knowledge or adoption of PGx
Muzoriana et al, 2017 (Zimbabwe)	86 Pharmacists	Questionnaire disseminated at continuing education meeting and online questionnaire.	Knowledge, attitude, perceptions about PGx	Positive attitudes towards PGx was reported and would support PGx application to improve treatments. Concerns about privacy and discrimination by respondents when data is misused by those who have a lack of understanding of the subject. Respondents agreed that they would play a leading role in PGx testing if provided with appropriate training.

Reference (Country)	Number of pharmacists [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Perwitasari et al, 2017 (Indonesia)	118 pharmacists (84 hospital pharmacists and 24 community pharmacists)	Face-to-face Interview using a questionnaire	Knowledge, awareness, attitudes of pharmacists practicing in hospital and community settings	Knowledge and awareness of pharmacists towards PGx are good. Attitude towards PGx testing between community and hospital pharmacists were significantly different. Score for knowledge, awareness and attitude in community setting are higher than the score of those in hospital settings

Table A1.2: Studie	es which assessed	perception of Pl	HYSICIANS towards	PGx testing
(n=29)				

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Moutel et al, 2005 (France)	11 physicians	Face-to-face interviews	Perception in relation to PGx testing for HIV- treated patients	Test results need to be communicated to patients by physicians with knowledge of how to interpret the results and how to explain the significance of the results on clinical care. More training for physicians to deliver genetic results to patients is required.
Rogausch et al, 2006 (Germany)	106 physicians (general practitioners) [28%]	Telephone Interviews using a questionnaire	Perception of PGx testing in asthma	PGx testing facilitates choice of drug in asthma patients. PGx test would be recommended by GPs prior to prescription of drug if cost of testing is covered by health insurance. Patients might be disadvantaged if PGx information is used by employers or insurance agencies. GPs in agreement to recommend patients to participate in PGx research studies.
Woelderink et al, 2006 (Germany, UK, Netherlands, Ireland)	111 physicians [27%]	Online questionnaire	Practice of PGx testing in TPMT and HER2	Respondents reported that communication with laboratory and the capacity of the testing laboratory are not always sufficient leading to problems in testing when sending samples. Cost of test are perceived to be high. The participants perceived the clinical utility of the tests as high, particularly for HER2. Lack of specialised education of the physicians could be interfering with the clinical use of PGx.

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Hoop et al, 2010 (USA)	75 physicians (psychiatrists) [37%]	Online questionnaire	Attitudes and practice of psychiatrists where PGx testing is clinically available	Endorsement of the clinical utility of PGx testing but lack of consensus was shown on safeguards other than the patients' and risks
Dunbar et al, 2012 (New Zealand)	33 physicians	Face-to-face interview or telephone interview using questionnaire	Clinician experiences of employing the AmpliChip® CYP450 test in psychiatric practice	PGx testing supported drug dosing decisions. PGx testing and PGx test results were perceived as potentially useful in developing relationships with patients. Reported limitations include potential over-reliance at the expense of clinical expertise, cost, challenges inherent in introduction of a new clinical procedure into routine practice. Psychiatric physicians were willing to employ PGx testing as a clinical decision aid if its implementation is justified economically.
Haga et al, 2012a (USA)	597 physicians (Primary care physicians) [15%]	Mail questionnaire	Knowledge, attitudes, familiarity toward PGx testing in order to identify barriers	PCPs envisioned a major role for themselves in PGx testing service provision. The lack of adequate knowledge and experience is recognised by the PCPs.
Haga et al, 2012b (USA)	222 physicians (clinical geneticists) [30%]	Online questionnaire, Mail questionnaire, Fax questionnaire	Attitudes, preparedness, perception of role of clinical geneticists in PGx testing	Almost all respondents had some education on PGx, 58% indicated that they felt well informed about PGx testing. 46% felt they would play 'some' role in PGx service provision. The role of clinical geneticists is unclear; however, their experience may aid in preparation of PGx testing and informing service delivery strategies into clinical practice

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Haga et al, 2012c (USA)	12 physicians (4 family medicine, 5 internal medicine, 3 medical geneticists)	Focus group	Perception of PGx testing and management of ancillary findings	Interest in use of PGx testing was reported however concerns were raised about the lack of evidence of clinical utility and the physicians' ability to interpret and communicate information about risk of ancillary disease. The appropriate use of PGx testing would be facilitated by availability of educational resources, access to genetic specialists and clear guidelines about the use of PGx testing.
Hunt et al, 2013 (USA)	58 physicians (primary care physicians)	Face-to-face Interview	Practice of PGx concepts in primary care	Innovation in PGx has not led to personalised treatment but rather the use of essentialized/racial ethnic identity as a proxy for genetic heritage was encouraged. Concern was raised on how PGx innovations will affect diverse populations.
Peppercorn et al, 2013 (USA)	201 physicians (oncologists) [44%]	Mail questionnaire	Knowledge, attitudes, practice of PGx testing of CYP2D6 of tamoxifen in breast cancer	A minority of oncologists reported the routine use of CYP2D6 and were willing to change treatment based on PGx test results. The clinicians and public need to be educated about the uncertainty of benefits from commercially available genetic tests in clinical practice when there is still emerging evidence from ongoing trials.
Selkirk et al, 2013 (USA)	260 physicians [13%]	Online questionnaire	Preparedness for incorporation of PGx testing into practice by determining knowledge, experience, comfort level, barriers, practice expectations and educational needs	Physicians were underprepared for the clinical application of PGx since they perceive insufficient knowledge and confidence. Physicians expected their role in PGx to develop. The importance of enhancing policies and initiatives to increase physician knowledge and comfort level in PGx was reported.

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Stanek et al, 2013 (USA)	10,303 [3%] physicians	Fax-based questionnaire	Proportion of US-based physicians who obtain PGx testing information from drug labelling Knowledge, attitudes, practice of PGx	39% of respondents obtained PGx information from drug labelling especially if respondents have postgraduate instruction, make use of other information sources, regulatory approval/ recommendation of PGx testing, reliance on labelling for information and perception that patients have benefited from testing. Physicians used PGx testing information from drug labelling, highlighting importance of labelling information that is conducive to practice application
Dressler et al, 2014 (USA)	94 physicians (oncologists)	Mail Questionnaire	Physician experience and factors influencing adoption of cancer PGx testing	98% of participants perceived good promise in using PGx in their practice, 33% were comfortable with their knowledge, 37% were comfortable to interpret test results. Interest in additional PGx education is reported. Accurate and updated cancer PGx information needs to be disseminated.
Laerum et al, 2014 (Norway)	9 physicians	Online questionnaire, Non-structured interview	Attitudes towards prototype of automated interpretation of PGx test for immunosuppre ssive treatment during kidney transplantation	Participants were positive about PGx testing and incorporation to their clinical practice. With respect to the interpretive algorithm prototype for PGx test results it was preferred by the participants to see the results and recommendations first, then the explanations and references.
Petersen et al, 2014 (USA)	104 physicians [9.7%]	Online Questionnaire	Key elements/tools and potential barriers to personalised medicine in connections with their perceptions of the availability of the latter across subpopulations	Differing views of physicians about PGx availability and implementation. Complex relationships between race/ethnicity and personalised medicine were established leading to serious implications affecting its clinical success.

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Taber and Dickinson, 2014 (USA)	300 physicians (PCPs, cardiologists, psychiatrists)	Online Questionnaire	Knowledge deficit and educational resource needs of PGx	Physicians demonstrate PGx knowledge gaps, and uncertainty about application of PGx testing in clinical practice is reported. Clinically oriented PGx related information resources which are easily accessible are preferred by physicians, and may best support appropriate clinical implementation of PGx
Overby et al, 2015 (USA)	22 physicians	Pre- experiment questionnaire, Experimental questionnaire instruments, post-experiment questionnaire	Communicati on effectiveness and clinical impact of using a prototype clinical decision support system (CDSS) embedded in an electronic health record to deliver PGx information to physicians	83% of physicians saw relative advantage to using PGx CDSS at the initiation of the study compared to 94% at conclusion of study. Semi- active alerts were used 74-88% of the time. No association was noted between previous experience with, awareness of and belief in relative advantage of using PGx CDSS and improved uptake. The prototype needs to be improved such that the PGx CDSS content is more useful and shown in a way that physicians' confidence in prescribing decisions is improved.
Powell et al, 2015 (UK)	83 physicians (neurologists)	Online questionnaire	Preferences of clinicians to inform carbamazepi ne PGx services.	Less expensive PGx tests were given preference, but decreased turnaround time did not have significant influence on the probability of requesting a PGx test.
Thompson et al, 2015 (USA)	113 physicians (psychiatrists)	Online and paper questionnaire	Attitudes of psychiatrists, on the benefit of PGx data, direct to consumer genetic testing and genetic counselling	 94.6% of participants indicated the usefulness of genetic data to make pharmaceutical decisions and 86% perceived that that PGx testing would be used as a standard. 55.8% respondents would refer patient to direct to consumer genetic testing. 72.6% perceive the inclusion of genetic counsellors in psychiatric patient care to be beneficial.

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Peterson et al, 2016 (USA)	80 Physicians (cardiologists, endocrinologists) [52%]	Online questionnaire	Attitudes towards large- scale PGx implementatio n program	99% agreed that PGx variants influence patients' response to drug therapy. 92% favoured immediate active notification if a significant interaction was present. Clinicians perceptions were divided on which HCP is responsible for acting on a result when a prescription change was indicated and whether patients should be directly notified of a significant result.
Nishimura et al, 2016 (USA)	52 Physicians [11%]	Online simulation and questionnaire	Attitudes towards usefulness of clinical decision support alerts for PGx drug gene interactions	PGx alerts would be accepted by participants, if built using minimalistic design and placed at the end of the prescribing process. Careful selection of educational resources present in the alert and written concisely due to limited time during prescribing.
St. Sauver et al, 2016 (USA)	90 physicians [57%]	Online questionnaire	Perception on the implementatio n and use of PGx testing in clinical practice	Physicians reported lack of confidence with PGx data being integrated into primary care. Clinician satisfaction may be improved by refining electronic PGx Clinical Decision Support alerts to ensure usefulness and friendliness of using system
Heale et al, 2017 (USA)	6 physicians	Pre-study questionnaire, observation, post-study questionnaire, post-study interview	Information needs and information- seeking behaviour, in order to guide the design of PGx information resources	Dispersion of content to support information needs makes it uneasy to come across. Information needs included: description of test interpretations which are clinically relevant, molecular description for the clinical effect of drug variation, information on the logistics of carrying out a PGx test (cost, availability, turn-around time, insurance coverage, accessibility of expert support

Reference (Country)	Number of physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
McCauley et al, 2017 (USA)	155 physicians [1%]	Online questionnaire, follow-up telephone interview	Knowledge, experience, attitudes and perceptions of PGx testing.	PGx testing is becoming part of personalised medical care however educational gaps and understanding is present. Further studies should be done to examine ways on how this could be improved especially with primary care providers.
Vinothini et al, 2017 (India)	Physicians	Questionnaire	Knowledge, attitude and practice of PGx among clinicians	Wide gap between knowledge and practice which highlighted the perceived need to include PGx in the medical curriculum
Wu et al, 2017 (USA)	10 Physicians (Oncologists)	Telephone interview with predesigned questions	Experiences and views of PGx test access and strategies used for test access in oncology.	Accessibility of test is made challenging by the process of ordering PGx test which is time consuming. Affordability was perceived as a barrier to some patients who noted that the cost of PGx tests and medications is high. Acceptability of test was high as providers since they are viewed positively
Owusu Obeng et al, 2018 (USA)	285 physicians	Administered in person or online questionnaire	Perceptions towards clinical utility of data and their preparedness to integrate it in practice	Physicians perceived themselves to be unprepared to use PGx information in their practice and development of effective PGx clinical tools and training strategies should be considered
Arathy et al, 2019 (India)	100 physicians	Self- administered questionnaire	Knowledge of PGx, test ordering, current and ideal PGx source	Use of PGx testing in practice is low. There is need for improved electronic resource material to increase clinical application.

Table A1.3: Studies which assessed perception of PHARMACISTS and PHYSICIANS towards PGx testing (n=10)

Reference (Country)	Number of pharmacists/ physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Fargher et al, 2007 (UK)	17 pharmacists and physicians	Focus group	Attitudes towards PGx testing services and their future development	Observations of lack of knowledge and reluctance for delivery of PGx services. The need for improved education and training of pharmacists and physicians in PGx is highlighted.
Payne et al, 2011 (UK)	125 physicians (84 hospital doctors, 31 general practitioners), 10 pharmacists	Mail questionnaire	Preferences of key attributes of a PGx testing service in use of Azathioprine	Concern that general practitioners have insufficient knowledge and confidence to explain PGx test results to patients and give advice on modification of azathioprine dose. Participants were willing to wait 2.2 days for a PGx test result for a 1% improvement in test predictive accuracy.
Bannur et al, 2014 (Malaysia)	324 pharmacists 179 physicians [33.5%]	Online questionnaire	Attitude, knowledge, adoption of PGx in practice.	Low clinical application of PGx in practice was reported but high future adoption is envisaged. HCPs reported benefits of using PGx in the clinical scenario. Poor to fair knowledge on PGx was observed. There is increased interest in education and CPE programs are preferred.
Elewa et al, 2015 (Qatar)	202 pharmacists and physicians (108 pharmacists, 94 physicians) [20%]	Online-based questionnaire	Awareness and attitudes of pharmacists compared with doctors towards PGx and its implications	Despite low awareness of PGx, positive attitudes were observed by both pharmacists and physicians towards the clinical implications of PGx. Motivation to learn about PGx and willingness to take initiatives in its clinical application and patient education was observed more by pharmacists.
Kudzi et al, 2015 (Ghana)	29 pharmacists,42 physicians	Face-to-face interview using questionnaire	Assessment of PGx knowledge	60% of HCPs rated their knowledge of PGx as good. The need for CPE on PGx and development of competency standards for all HCPs in Ghana was observed.

Reference (Country)	Number of pharmacists/ physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Abdilla, 2016 (Malta)	28 physicians, 51 pharmacists	Online questionnaire	Familiarity, views, knowledge and attitudes toward PGx testing	66% of respondents were aware of PGx. Only 10% of respondents knew about patients who have undergone a PGx test of which only 4% of respondents being directly involved in the management of such treatment.
Abdela et al, 2017 (Ethiopia)	72 physicians, 70 pharmacists	Face-to-face interview using questionnaire	Knowledge, attitudes, interests towards PGx	Participants showed limited knowledge and had positive attitude towards PGx. The needed for educational programs focusing on PGx testing and its clinical application
Chan et al, 2017 (Singapore)	167 Physicians [48%], 27 pharmacists [69%] (both physicians and pharmacists practicing in psychiatry)	Online questionnaire	Perception of PGx use in psychiatry.	81% of participants believed that PGx testing would be useful for identifying optimal drug therapy, while 71% believed that it would be useful for medication intolerance. 46.4% of respondents felt competent to order PGx tests, concern about cost was raised by 94.3% of respondents, concern was raised by 84.5% of respondents about the unavailability of clear guidelines, 98.5% of respondents were keen on training about the applicability of PGx, 44.5% of respondents preferred further education in the format of a lecture.
Just et al, 2017 (Austria, Great Britain, Greece, Italy, Netherlands, Slovenia, Spain)	53 Physicians, 11 pharmacists	Online Questionnaire	Current educational background in the context of the European PGx implementation project	General positive attitudes and interest towards PGx testing. Grade of own experience and knowledge about application and interpretation of PGx caused uncertainty. Education and training programmes may be helpful for implementation of PGx at a homogenous level within Europe.

Reference (Country)	Number of pharmacists/ physicians [% response rate]	Method of data collection	Outcome/s Measured	Key Findings
Albassam et	238	Self-	Knowledge,	Low mean knowledge score
al, 2018	pharmacists,	administered	perceptions and	and low confidence in
(Kuwait)	379 physicians	questionnaire	confidence,	clinical application of PGx
	[98.1%]		preferred	was observed. Positive
			learning format	perception was reported
			for their future	more common in pharmacists
			education and	than physicians. Barriers to
			identify the	implementation included lack
			barriers to its	of education and training in
			application in	PGx, lack of PGx clinical
			practice settings	guidelines.

Appendix 2: Validation tool and validation results of perception questionnaire

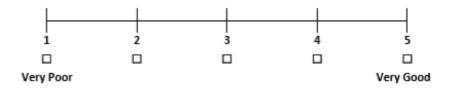
Questionnaire Validation

Introduction and Instructions

You are invited to participate in the validation of a questionnaire titled 'Social and Scientific Implications of Pharmacogenetic Testing' developed as part of a research project being undertaken by Doctorate in Pharmacy student Althea Marie Xuereb.

You are requested to:

Complete the following validation tool to rate the relevance, importance and comprehensibility of each question and the layout of the questionnaire, on a Likert scale of 1 to 5. Your feedback will be considered to revise the questionnaire.


QUESTION NUMBER	RELEVANCE	IMPORTANCE	COMPREHENSIBILITY
	Rate each question from 1 to 5, 5 corresponds to 'very relevant'	Rate each question from 1 to 5, 5 corresponds to 'very important'	Rate each question from 1 to 5, 5 corresponds to 'very comprehensible'
Part A			
1			
2			
3			
4			
5			
6a			
6b			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16a			
16b			
17			
18			
19			

	RELEVANCE Rate each question from 1 to 5, 5 corresponds to 'very relevant'	IMPORTANCE Rate each question from 1 to 5, 5 corresponds to 'very important'	COMPREHENSIBILITY Rate each question from 1 to 5,
20			Rate each question from 1 to 5,
20			
L – – – –		5 corresponds to very important	5 corresponds to 'very
L			comprehensible'
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38a			
38b			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			

QUESTION NUMBER	RELEVANCE	IMPORTANCE	COMPREHENSIBILITY
	Rate each question from 1 to 5, 5 corresponds to 'very relevant'	Rate each question from 1 to 5, 5 corresponds to 'very important'	Rate each question from 1 to 5, 5 corresponds to 'very
			comprehensible'
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			

For questions rated as <u>3 or less</u>, kindly indicate reason/s and recommendation/s in the comments section on page 4 of this validation tool.

Rate the LAYOUT of the questionnaire:

Ouestion No.	Comments/recommendations
Question no.	
<u> </u>	

Comments and recommendations (particularly for questions rated as 3 or less):

Thank you

Γ	Me	an rating score (out	t of 5)
Question Number	Relevance	Importance	Comprehensibility
1	4.00	3.89	4.89
2	4.56	4.44	4.89
3	4.78	4.67	4.78
4	4.67	4.56	4.89
5	3.78	3.67	4.78
ба	4.33	4.67	5.00
6b	4.56	4.67	4.89
7	4.67	4.56	4.67
8	4.67	4.56	4.67
9	4.78	4.67	4.67
10	4.67	4.56	4.67
11	4.78	4.44	4.78
12	4.67	4.44	4.89
13	4.78	4.78	4.89
14	4.89	4.67	4.89
15	5.00	4.67	4.89
16a	4.67	4.56	4.78
16b	4.67	4.44	4.67
17	4.67	4.67	4.89
18	4.67	4.67	4.78
19	4.78	4.78	4.89
20	4.67	4.67	4.78
21	4.67	4.67	4.78
22	4.56	4.56	4.78
23	4.67	4.67	4.67
24	4.78	4.67	4.56
25	4.56	4.67	4.67
26	4.44	4.56	4.56
28	4.67	4.78	4.78
29	4.56	4.44	4.56
30	4.00	4.22	4.33
31	4.56	4.67	4.78
32	4.67	4.78	4.78
33	4.67	4.78	4.78
34	4.67	4.78	4.78
35	4.67	4.78	4.78
36	4.67	4.78	4.78
37	4.67	4.78	4.78
38a	4.78	4.56	4.89
38b	4.71	4.71	4.86
39	4.22	4.22	4.56

 Table A2.1 Validation of perception questionnaire results -Round 1

Г	Mean rating score (out of 5)		
Question Number	Relevance	Importance	Comprehensibility
40	4.67	4.67	4.89
41	4.67	4.67	4.89
42	4.67	4.67	4.67
43	4.67	4.67	4.78
44	4.67	4.78	4.67
45	4.78	4.78	4.78
46	4.78	4.78	4.67
47	4.78	4.78	4.78
48	4.44	4.56	4.44
49	4.78	4.78	4.56
50	4.56	4.56	4.78
51	4.67	4.44	4.78
52	4.67	4.67	4.78
53	4.67	4.56	4.78
54	4.78	4.78	4.78
55	4.56	4.44	4.78
56	4.67	4.67	4.78
57	4.44	4.67	4.78
58	4.67	4.67	4.78
59	4.67	4.67	4.78
60	4.78	4.78	4.67
61	4.67	4.56	4.78
62	4.78	4.67	4.78
63	4.56	4.56	4.22
64	4.44	4.67	4.56
65	4.44	4.67	4.44
66	4.44	4.67	4.56
67	4.56	4.78	4.67
68	4.44	4.67	4.44
69	5.00	4.89	4.89
70	5.00	4.78	4.89
71	5.00	4.78	4.89
72	5.00	4.78	4.89
73	4.89	4.78	4.56
74	4.89	4.78	4.89
75	5.00	4.89	4.89
76	5.00	4.89	4.78

Layout of questionnaire mean rating score =4.56

Table A2.2 Suggested modifications by validation panel in round 1 of

Question Number	Original question/statement	Action taken
5	'Location of practice' (district area of practice) was deemed irrelevant for purpose of this study	The question was removed from the questionnaire as was suggested by the panel; question was replaced with a new question (refer to 'new questions' below)
ба	'Have you heard of the term <i>pharmacogenetic testing</i> prior to working on this questionnaire?'	Modified wording to: 'Have you heard of the term <i>pharmacogenetic testing</i> prior to answering this questionnaire?'
9	'I am aware of medications with pharmacogenetic implications'	Modified wording to: 'I am aware of drugs for which pharmacogenetic testing is required or recommended'
11	'I know when to recommend pharmacogenetic testing to patients '	Modified wording to: 'I am aware of when to recommend a pharmacogenetic test when indicated'
12	'I know how to interpret pharmacogenetic test results'	Modified wording to: 'I am aware of how to interpret pharmacogenetic test results'
15	'I require (<i>more</i>) education on pharmacogenetic testing'	Modified to: 'I require <i>more</i> education on pharmacogenetic testing'
18b	'Preference for following the selected learning activities in question 18a:'	'How would you prefer to follow the selected learning activities in question 18a:'

Question Number	Original question/statement	Action taken
31	'Pharmacogenetic testing results	Modified wording to: 'Pharmacogenetic
	should be accessible and shared	testing results should be shared with family
	with family members'	members'
39	Drug class description: 'Nucleoside	Modified wording to: 'Drugs used in HIV'
	reverse transcriptase inhibitors'	
	'Genetic stratification should be	Modified wording to: 'Genetic stratification
	applied in pharmacogenetic	should be applied in pharmacogenetic
66	research studies to help design	research studies to help design drugs which
00	therapeutic agents targeting	target specific group of patients e.g. non-
	specific groups of patients e.g. non-	responders to treatment'
	responders to treatment'	
	'Please answer the following	Modified wording to: 'Please answer the
	questions by marking the	following questions by marking the
	respective healthcare professionals	respective healthcare professionals in order of
	in order of importance; 1 (most	who should be responsible; 1 (least
	important) up to 7 (least	responsible) up to 7 (most responsible)
	important), the same number	
	may be repeated if of equal	
	importance.'	
	Healthcare professional label:	Modified wording to:
69-73	i) 'Physician'	i)'Physician*'-'*-including: Basic
	ii) 'Clinical Geneticist'	Specialist Trainee, Higher Specialist
	iii) 'Other'	Trainee, Resident Specialist, Specialist in
		Family Medicine – added * to heading
		which lead to a description below the table
		to be more specific of what is meant by
		ʻphysician'
		ii) 'Genetics Specialist Physician'
		iii) 'Nurse'-heading was changed to be
		more specific and preferred over 'other'

Table A2.3 New questions suggested by the validation panel in round 1 of validation.

Question Number	New questions included for round 2 of validation	
	'Highest academic level'	
5	□ Undergraduate	
	$\Box \text{Postgraduate} \ (\Box \text{ Master} \Box \text{ Doctorate})$	
	'I am aware of drugs for which pharmacogenetic testing is performed locally' –	
13	to be rated on a Likert-scale of 1 (not at all aware) to 5 (extremely aware)	
14	'I believe I am competent in the area of pharmacogenetic testing'- to be rated on	
14	a Likert-scale of 1 (strongly disagree) to 5 (strongly agree)	
	'Which topic/s would you like to follow during the selected learning activities	
18c	in 18a? (You may select more than one option)	
	□ Basic principles of genetics	
	□ Effects of genetics on drug pharmacokinetics/pharmacodynamics	
	□ Pharmacogenetic testing implications in different therapeutic areas	
	□ Availability of pharmacogenetic tests	
	□ Interpretation of a pharmacogenetic test	
	□ Ethical issues	
	□ Other (please specify)	
67	'Pharmacogenetic testing should be included as a risk minimisation measure in	
	the safety section of the dossier i.e. in post-authorisation safety/efficacy studies	
68	The Summary of Product Characteristics should include pharmacogenetic	
	testing when applicable	

Table A2.4 Validation of perception questionnaire results -Round 2

	Mean rating score (out of 5)		
Question Number	Relevance	Importance	Comprehensibility
5	4.56	4.56	4.44
13	4.78	4.78	4.78
14	4.78	4.89	4.67
18c	4.89	4.78	4.78
67	4.78	4.67	4.56
68	4.67	4.78	4.67

New questions:

Modified questions:

	Comprehensibility	
Question Number	mean score	
	(out of 5)	
ба	4.89	
7	4.89	
8	4.78	
9	4.89	
10	4.67	
11	4.33	
12	4.78	
15	4.89	
18b	4.89	
31	4.56	
39	4.67	
66	4.67	
69	4.67	
70	4.78	
71	4.78	
72	4.78	
73	4.78	

Appendix 3: Ethics approval

Faculty of Medicine & Surgery

University of Malta Msida MSD 2080, Malta

Tel: +356 2340 1879/1891/1167 umms@um.edu.mt

www.um.edu.mt/ms

Ref No: FRECMDS_1718_066

Monday 27th July 2018

Ms. Althea Marie Xuereb 96, Kavatina Triq I-Imriekeb M'Scala MSK3534

Dear Ms. Xuereb

Please refer to your application submitted to the Research Ethics Committee in connection with your research entitled:

Social and scientific implications of Pharmacogenetic testing

The Faculty Research Ethics Committee granted ethical approval for the above mentioned protocol.

Yours sincerely,

sello

Dr. Mario Vassallo Chairman Research Ethics Committee

Appendix 4: Final version of perception questionnaire

Social and Scientific Implications of Pharmacogenetic Testing Althea Marie Xuereb Pharm D Student Department of Pharmacy, University of Malta

Introduction and Instructions

Dear Participant,

You are invited to participate in a research project entitled 'Social and Scientific Implications of Pharmacogenetic Testing'. This research is being conducted by Althea Marie Xuereb as part of the Doctorate in Pharmacy at the Department of Pharmacy, University of Malta, under the supervision of Professor Anthony Serracino-Inglott and Dr Francesca Wirth.

The questionnaire developed aims to assess awareness, education aspects, attitudes and practice of pharmacogenetic testing among physicians and pharmacists in Malta.

ALL pharmacists are eligible to participate.

Physicians eligible to participate include those practicing in: FAMILY MEDICINE, GENERAL MEDICINE, ONCOLOGY, CARDIOVASCULAR, NEUROLOGY, PSYCHIATRY and INFECTIOUS DISEASE.

You are invited to complete the attached anonymous, self-administered questionnaire. Questionnaire responses will only be accessed by research team members. The questionnaire should be completed without resorting to reference material.Participation is voluntary and the estimated time of completion is 25 minutes.

Should you have any queries kindly contact the researcher Althea Marie Xuereb: Email: althea.m.xuereb.11@um.edu.mt Contact number: 79920801

Thank you very much for your participation

'Pharmacogenetics' is the study of how genetic variation can influence a patient's response to a drug with respect to therapeutic and adverse effects.

'Pharmacogenetic testing' refers to a type of laboratory investigation of a patient's genetic make-up to predict risk of experiencing an adverse effect to a drug and/or likelihood to respond to a given drug, hence informing individualised drug selection and dosing.

For each question please select one option unless you are instructed that you may select more than one option.

SECTION 1: PARTICIPANT DEMOGRAPHICS

1	1.	Gender	🗆 Male	🗆 Female	🗆 Other				
1	2.	Age (years)	□ 21-35	□ 36-45	□ 46-55	5 0	56-69	□ 70+	
	3.	Profession							
(Pharmacist							
		Area of Practi	ce 🗆 Commun	ity		□ Acad	lemia		
			□Hospital			🗆 Indu	stry		
			🗆 Regulato	ry		🗆 Othe	er (Please :	specify	 _)
0		Basic Speciali	st Trainee						
		Area of Specia	alisation (Pleas	e specify			_)		
C	ו	Higher Specia	list Trainee/ R	esident Specia	list				
		Area of Specia	alisation (Pleas	e specify			_)		
C		Consultant							
		Area of Specia	alisation (Pleas	e specify			_)		
[Specialist in F	amily Medicin	e					
	4.	Years of pract	tice □<2	□ 2-5	[6-10	$\Box > 1$	LO	

5. Highest academic level

Undergraduate	
(Please specify	_)
Postgraduate	
Master (Please specify	_)
Doctorate (Please specify	_)

SECTION 2: AWARENESS OF PHARMACOGENETIC TESTING

b) If <u>Yes</u> , where did you hear it from?	
(You may select more than one option)	
Undergraduate studies	Journal Article
Postgraduate studies	Workplace
Conference	Internet
Other (please specify:	

On a Likert scale of 1 (not at all aware) to 5 (extremely aware), rate each of the following statements by marking with an 'X' in the appropriate box.

No.	Statement	1 not at all aware	2 slightly aware	3 somewhat aware	4 moderately aware	5 extremely aware
Awar	eness					
Iam	aware of					
7.	potential advantages of					
	pharmacogenetic testing					
8.	potential limitations of					
	pharmacogenetic testing					
9.	drugs for which pharmacogenetic					
	testing is required or recommended					
10.	availability of information sources					
	regarding drugs with pharmacogenetic					
	implications					
11.	when to recommend a pharmacogenetic					
	test when indicated					
12.	how to interpret pharmacogenetic test					
	results					
13.	drugs for which pharmacogenetic					
	testing is performed locally					

_)

SECTION 3: EDUCATION AND TRAINING ON PHARMACOGENETIC TESTING

On a Likert scale of 1 (strongly disagree) to 5 (strongly agree), rate each of the following statements by marking with an 'X' in the appropriate box.

		1	2	3	4	5
No.	Statement	strongly	disagree	neutral	agree	strongly
		disagree				agree
Educa	ation and Training					
14.	I believe I am competent in the area of					
	pharmacogenetic testing					
15.	I require more education on pharmacogenetic					
	testing					
16.	Pharmacogenetics modules should be					
	incorporated in undergraduate curricula					
17.	Pharmacogenetics should be offered as a					
	postgraduate specialisation					

Courses

Workshops

a) Which mode of acquiring information on pharmacogenetic testing do you prefer? (You may select more than one option)

Continuing professional education seminars

Conferences

	Journal	articles
-	2000110	ar creres

Other (please specify: _____)

b) How would you prefer to follow the selected learning activities in question 18a?

- Attending in person
- Following online material
- A combination of both

c) Which topic/s would you like to follow during the selected learning activities in 18a? (You may select more than one option)

- Basic principles of genetics
- Effect of genetics on drug pharmacokinetics/pharmacodynamics
- Pharmacogenetic testing implications in different therapeutic areas
- Availability of pharmacogenetic tests
- Interpretation of a pharmacogenetic test
- Ethical issues
- Other (please specify: ______)

Other comments/recommendations:

SECTION 4: ATTITUDES TOWARDS PHARMACOGENETIC TESTING

On a Likert scale of 1 (strongly disagree) to 5 (strongly agree), rate each of the following statements by marking with an 'X' in the appropriate box.

No.	Statement	1 strongly disagree	2 disagree	3 neutral	4 agree	5 strongly agree
Use i	n practice					
Phari	macogenetic testing					
19.	has clinical benefits					
20.	can guide individualised therapy selection					
21.	can be used in treatment-resistant cases					
22.	can be used in medication intolerance cases					
23.	is applicable for use in my practice					
Costs	and Service Provision					
Phari	macogenetic testing					
24.	decreases healthcare service utilisation					
	e.g. readmissions and duration of inpatient stay					
25.	leads to reduced healthcare costs					
26.	guides drug therapy expenditure					
27.	should be a government-funded service					
28.	should be paid out-of-pocket by the patient					
29.	cost-effectiveness studies are important					
30.	increases complexity of healthcare service					
	provision					
	al Concerns					
	macogenetic testing results:					
31.	should be shared with family members					
32.	may be misused or misinterpreted if made					
	available to third parties					
	e.g. health insurance/employers/family members					
33.	misuse may lead to violation of privacy					

		1	2	3	4	5
No.	Statement	strongly	disagree	neutral	agree	strongly
		disagree				agree
Pre a	nd Post- Marketing Concerns					
Phari	macogenetic testing:					
34.	improves efficacy of medications on the market					
35.	improves safety of medications on the market					
36.	improves the efficacy and safety of future					
	medications granted a marketing authorisation					
37.	can be applied in drug development for					
	medications used in difficult-to-treat situations					
	e.g. orphan medicines, treatment resistance					
38.	research studies would interest you and you would					
	recommend patients to participate in such studies					
	if the opportunity arises					

Other comments/recommendations :

39. Rate the following drug classes for which you think pharmacogenetic testing is important

(Please rate as <u>1 (least important)</u> to <u>8 (most important)</u>. You may also specify other drug classes in the Others section.

Drug Classes	Order of Importance (1-8)
Anticoagulants/ Antiplatelets (e.g. warfarin, clopidogrel)	
Lipid -regulating drugs (e.g. simvastatin)	
Antidepressants/ Antipsychotics (e.g. paroxetine, aripiprazole)	
Opioids (e.g. codeine)	
Antihypertensives (e.g. perindopril)	
Proton-pump inhibitors (e.g. omeprazole)	
Oncology drugs (e.g. capecitabine, imatinib, trastuzumab)	
Drug used in HIV (e.g. abacavir)	
Others (please specify)	

SECTION 5: PHARMACOGENETIC TESTING IN PRACTICE

40. a) Have you ever ordered a pharmacogenetic test?

Yes (continue to question 40b)
No (continue to question 41)

b) If YES, for which drug/s? (Please specify: _____

41. How often do you perceive the need to order a pharmacogenetic test in your practice?

Never

Never

Vealy

Vealy

Vealy

Vealy

On a Likert scale of 1 (not confident at all) to 5 (very confident), rate each of the following statements, which capture your current or future practice of pharmacogenetic testing by marking with an 'X' in the appropriate box

No.	Statement	1 not confident at all	2 not confident	3 neutral	4 confident	5 very confident			
Perso	Personal degree of confidence to								
42.	recommend pharmacogenetic testing when indicated								
43.	order a pharmacogenetic test when indicated								
44.	interpret pharmacogenetic test results								
45.	discuss pharmacogenetic test result with patient								

On a Likert scale of 1 (strongly disagree) to 5 (strongly agree), rate each of the following statements, which capture your current or future practice of pharmacogenetic testing by marking with an 'X' in the appropriate box

	State-ward	1	2	3	4	5
No.	Statement	strongly disagree	disagree	neutral	agree	strongly agree
Clinic	al Utility					
46.	I would order a pharmacogenetic test to predict likelihood of an adverse effect to a drug					
47.	I would order a pharmacogenetic test to predict likelihood of drug efficacy					
48.	I would order a pharmacogenetic test to predict severity of a potential adverse effect					
49.	I would take action if a pharmacogenetic test result indicated need for a change in treatment plan					
Phar	macogenetic testing					
50.	should be performed pre-emptively					
51.	should be implemented routinely with medication therapy management services					
52.	should be performed in hospital only					
53.	should be carried out in a laboratory solely dedicated to pharmacogenetics					
54.	should be provided as a point-of-care test in community pharmacies					
	· · ·					7

_)

	61-1	1	2	3	4	5
No.	Statement	strongly disagree	disagree	neutral	agree	strongly agree
Phar	macogenetic test results					
55.	should be stored electronically					
56.	should be available in health records for clinical					
	evaluation by healthcare professionals					
57.	should be available for access by all healthcare					
	professionals taking care of the patient					
58.	should be available for access by prescribers only					
59.	should be interpreted automatically by an					
	electronic system which incorporates algorithms					
	for treatment decisions					
Patie	nt Counselling					
60.	Pre-test counselling with the patient should be					
	provided prior to pharmacogenetic testing to aid in					
	informed decision-making and patient					
	understanding of procedure					
61.	Post-test counselling with the patient should be					
	provided to aid in understanding test results					
62.	Patients should be informed about					
	incidental/ancillary findings from a					
	pharmacogenetic test result					
Regu	latory aspects					
63.	Organisational infrastructures should be					
	developed to describe the responsibilities of each					
	healthcare professional involved in effective					
	provision of pharmacogenetic testing services					
64.	A framework should be in place to ensure					
	consistency of procedure when ordering a					
	pharmacogenetic test to avoid liability issues					
65.	Genetic stratification should be applied in					
	pharmacogenetic research studies to help design					
	drugs which target specific groups of patients e.g.					
	non-responders to treatment					
66.	Pharmacogenetic testing should be included as a					
	risk minimisation measure in the safety section of					
	the dossier i.e. in post-authorisation					
	safety/efficacy studies					
67.	The Summary of Product Characteristics should					
	include pharmacogenetic testing when applicable					

Please answer the following questions by marking the respective healthcare professionals in order of who should be responsible; <u>1 (least responsible)</u> to <u>7</u> (most responsible).

Nurse															
Genetic Biomedical	Laboratory	Scientist											F		
Genetic	Counsellor														
Genetics	Specialist	Physician													
Pharmacist Physician* Consultant															
Physician*															
Pharmacist															
Question			Who should be responsible for making a patient	aware of pharmacogenetic testing for drug/s with	pharmacogenetic implications that the patient is	taking or being considered?	Who should be responsible to access a patient's	pharmacogenetic test result?	Who should be responsible to interpret a patient's	pharmacogenetic test result?	Who should be responsible to discuss a	pharmacogenetic test result with a patient?	Who should be responsible to take action according	to the pharmacogenetic test result?	E.g. change of drug, dose adjustment
No.			68.				69.		70.		71.		72.		

*including Basic specialist trainee, Higher specialist trainee, Resident specialist, Specialist in Family Medicine

On a Likert scale of 1 (strongly disagree) to 5 (strongly agree), rate each of the following statements by marking with an 'X' in the appropriate box.

No.	Statement	1 strongly	2 disagree	3 neutral	4 agree	5 strongly
		disagree				agree
	Challenges for implementation of pharmacogen	etic testing				
73.	Lack of healthcare professional awareness					
74.	Lack of public awareness					
75.	Cost issues					
76.	Ethical concerns					
77.	Turnaround time of test result impacts your					
	decision to order a pharmacogenetic test					
78.	Evidence-based value of test result impacts					
	your decision to order a pharmacogenetic test					
79.	Pharmacogenetic testing will increase your					
	workload in practice					
80.	Pharmacogenetic testing will increase waiting					
	time for prescriber to take action on a patient's					
	medication needs					

Other comments/ recommendations :

Thank you for your participation!

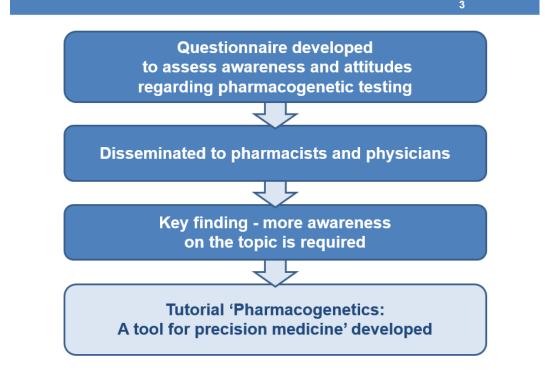
Appendix 5: Tutorial slides- Pharmacogenetics: A tool for precision medicine

PHARMACOGENETICS:

A TOOL FOR PRECISION MEDICINE

Althea Marie Xuereb

Doctorate in Pharmacy Candidate 2019


February 2019

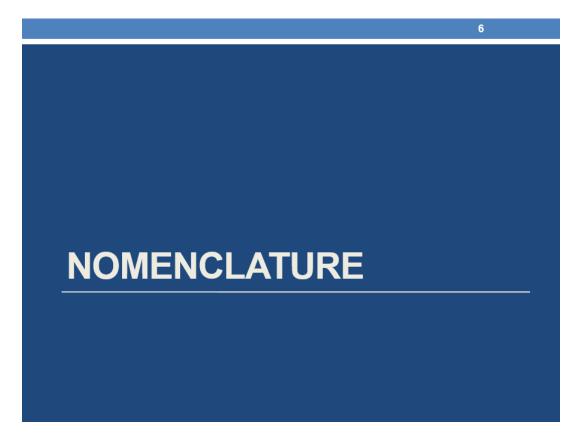
2

Disclaimer:

This tutorial is not meant to be used for clinical purposes or clinical judgement, it should only serve as an academic exercise. The material stated is my own personal interpretation and responsibility and the Department of Pharmacy and any reference to any third party are not in any way responsible for any data presented.

Any queries should be addressed solely to the researcher, who has taken full responsibility of the material as part of her studies.

4


Overview

General information about Pharmacogenetics (PGx)

Application of PGx in practice using case studies

What is pharmacogenetics?

Study of the interindividual variability of genes and its effect on drug metabolism and response

Allele

Alternative form of a gene at a given locus on a chromosome inherited from each parent

E.g. CYP2C19 gene

- *1 wild-type, normal function allele
- *2 loss-of-function allele
- *17 gain-of-function allele

Pharmacogenetic Polymorphisms

Presence of 2 or more variant alleles for a particular gene

Type of genetic polymorphisms	Examples of drugs affected
Drug metabolising enzyme	amitriptyline, clopidogrel, azathioprine
Drug transporter gene	simvastatin
Drug target gene	warfarin

Pharmacogenetic Biomarker

Measurable DNA/RNA characteristic indicating a biologic process and/or response to therapeutic interventions

Examples of PGx biomarkers	Examples of drugs
CYP2D6	tamoxifen, codeine, TCAs, SSRIs
HER-2	trastuzumab
VKORC1	warfarin
HLA-B*5701	abacavir

0

Genotype

Specific set of alleles inherited at a locus on a given gene

e.g. CYP2C19 gene					
Genotype	Examples of alleles making up the genotype	Prevalence (%)			
Homozygous wild-type	*1/*1	35-50			
Heterozygous	*1/*2	18-45			
Homozygous variant	*2/*2	2-15			

11

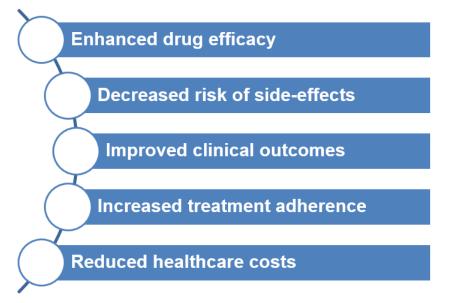
Phenotype

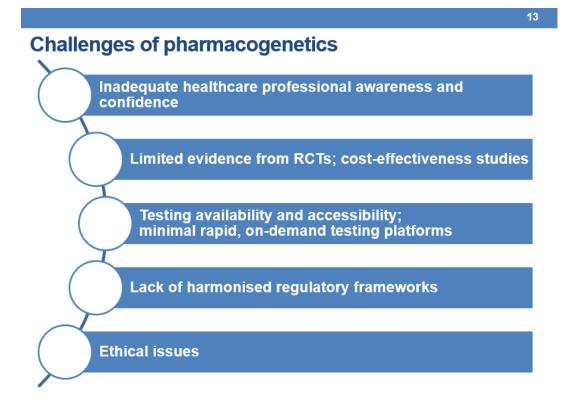
Clinical presentation of an individual with a particular genotype

e.g. CYP450 metaboliser status

 Phenotype - Metaboliser status

 Poor Metaboliser (PM)


 Intermediate Metaboliser (IM)


 Normal Metaboliser (NM)

 Rapid Metaboliser (RM)

 Ultra-rapid Metaboliser (UM)

https://www.pharmgkb.org/ PharmGK8 × + - 0 × ← → C 🕯 pharmgkb.org Q 🛧 🔕 O S Bar (?) Help GKB Publications News Downloads Contact Search PharmGKB. Q Search for a molecule, gene, variant, or combination PharmGKB data are under a Creative Commons license. More details are in our <u>Data Usage Policy</u>. Please cite <u>PharmGKB if you use our information or images</u>. Annotated Curated Drug Label Clinical Guideline Pathways Annotations Drugs Annotations CC 651' 12 136 102 509 HECORDED WITH WHAT IS PHARMACOGENOMICS. SCREENCAST () MATIC PHARMACOGENOMICS? KNOWLEDGE.

15

Pharmacogenomics Knowledgebase https://www.pharmgkb.org/

Pharmacogenomics Knowledgebase

Drug label annotations	Examples of drugs
Testing required	abacavir
Testing recommended	azathioprine
Actionable PGx	clopidogrel
Informative PGx	simvastatin

Clinical Pharmacogenetics Implementation Consortium https://cpicpgx.org/

CPIC ← → C	× +	-	٥ •	×
CPI		ct		Ì
	Clinical Pharmacogenetics Implementation Consortium			
SCREENCAST	at is CPIC?		\$,
		17		

Other resources:

Resource	Reference
Dutch Pharmacogenetics Working Group (DPWG)	Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H et al. Pharmacogenetics: from bench to byte- an update of guidelines. Clin Pharmacol Ther. 2011; 89(5):662-73
US Food and Drug Administration (FDA) drug label	DAILYMED https://dailymed.nlm.nih.gov/dailymed/
Summary of Product Characteristics (SmPC)	<i>European Medicines Agency</i> https://www.ema.europa.eu/en/medicines <i>Malta Medicines Authority</i> <i>http://medicinesauthority.gov.mt/maltame</i> <i>dicineslist</i>

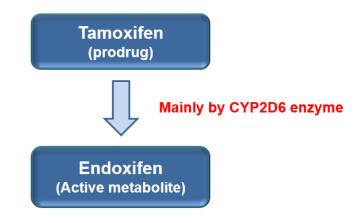
CLINICAL APPLICATIONS OF PHARMACOGENETICS

18

- 1) Oncology
- 2) Cardiology
- 3) Infectious Disease

Clinical Case 1- Oncology

- 55-year old female
- Post-menopausal
- Diagnosed with oestrogen receptor positive breast cancer
- Breast surgery and irradiation performed
- CYP2D6 status unknown
- Tamoxifen 20mg daily prescribed


Pharmacogenetic information - Tamoxifen

Pharmacogenetic Biomarker	CYP2D6	
		Year of update
FDA drug label (Testing required)	Indications and Usage Precautions Adverse Reactions Clinical Studies	2017
SmPC	Special warnings and precautions for use Pharmacodynamic properties Pharmacokinetic properties	2018
Genotype- guided dosing recommendations	CPIC	2018

21

Tamoxifen Pharmacokinetics

Metabolism

Pharmacogenetic biomarker - CYP2D6

Function	Examples of alleles
Normal	*1, *2
Decreased	*9, *10, *17, *41
No function	*3,*4, *5, *6

23

CYP2D6 Phenotype, Implications and Relevance

Phenotype	Implications	Clinical Relevance	
Ultra-rapid metaboliser (UM)	<i>Therapeutic</i> endoxifen	No ↑ risk of recurrence and complication development	
Normal metaboliser (NM)	concentration		
Intermediate metaboliser (IM)	<i>Lower</i> endoxifen concentration	↑ risk of recurrence and	
Poor metaboliser (PM)	compared to NM	complication development	

Tamoxifen Therapeutic Recommendations

Phenotype	Therapeutic Recommendation	Classification of recommendation
UM, NM	20mg tamoxifen daily	Strong
ім	Postmenopausal - alternative hormonal therapy e.g. aromatase inhibitors (Als)	Moderate
РМ	Premenopausal - Als and ovarian function suppression 40mg tamoxifen daily considered if Als contraindicated	Strong

25

Clinical Case 2- Cardiology

- 60-year old male
- STEMI
- Dual antiplatelet therapy for 12 months post-PCI
 - Aspirin 75mg OD
 - Clopidogrel 75mg OD
- CYP2C19 metaboliser status unknown
- No history of stroke or transient ischaemic attack
- No hepatic impairment

Pharmacogenetic information-Clopidogrel

Pharmacogenetic Biomarker	CYP2C19	
		Year of update
FDA drug label (Actionable PGx)	Boxed Warning Warnings and Precautions Clinical Pharmacology	2018
SmPC (Actionable PGx)	Special warnings and precautions for use Pharmacodynamic properties Pharmacokinetic properties	2018
Genotype-guided dosing recommendations	CPIC DPWG	2013 2011

27

Clopidogrel Pharmacokinetics

Prodrug

Clopidogrel metabolised to 2-oxo-clopidogrel [intermediate metabolite]

Mainly by CYP2C19 enzyme

2-oxo-clopidogrel metabolised to thiol derivative of clopidogrel [active metabolite]

Pharmacogenetic Biomarker- CYP2C19

Functional Groups	Examples of Alleles
Normal function	*1
Gain-of-function	*17
Loss-of-function	*2, *3, *4, *5, *6, *7, *8

29

CYP2C19 phenotype, implications and recommendations

	Implic	ations	Therapeutic
Phenotype	Platelet aggregation	Risk of adverse CV events	recommendations (Classification of recommendation)
UM	Decreased	No increased	Guideline recommended dosage
NM	No increased risk	risk	and administration (Strong)
IM, PM	Increased	Increased	Alternative antiplatelet if no contraindications e.g. prasugrel (IM - Moderate, PM - Strong)

Clinical Case 3 - Infectious disease

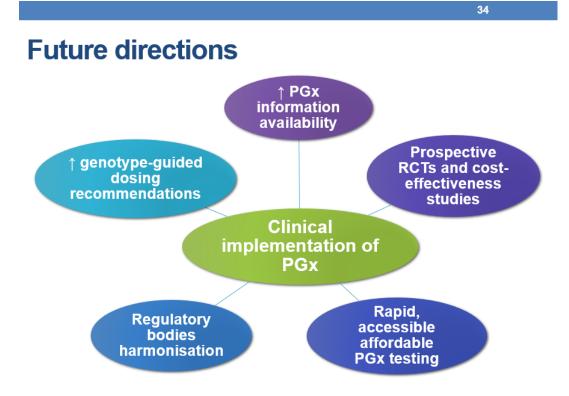
- 29-year old male
- Newly diagnosed with HIV
- HLA-B*5701 status unknown
- Prescribed abacavir 600mg and lamivudine 300mg OD, efavirenz 600mg OD

31

Pharmacogenetic information - Abacavir

Pharmacogenetic Biomarker	HLA-B*5701	
		Year of update
FDA drug label (Testing required)	Boxed Warning Dosage and Administration Contraindications Warning and Precautions	2018
SmPC (Testing required)	Therapeutic Indications Special Warnings and Precautions for Use Pharmacodynamic properties	2018
Genotype-guided dosing recommendations	CPIC DPWG	2012 2011

HLA-B Phenotype and Implications


Phenotype	Implications
Non-carrier (absence of *5701 allele)	Very low risk of developing hypersensitivity reaction
Carrier (presence of at least 1 *5701 allele)	Very high risk of developing hypersensitivity reaction

33

Therapeutic Recommendations

Phenotype	Therapeutic Recommendation	Classification of recommendation
Non-Carrier HLA-B*5701	Use of abacavir according to standard dosing guidelines	Strong
Carrier HLA-B*5701	Abacavir NOT recommended	Strong

Alternative drug to abacavir is recommended in *HLA-B*5701* positive patients

Appendix 6: Evaluation form of pharmacogenetics tutorial

Evaluation of tutorial - Pharmacogenetics: A tool for Precision Medicine Althea Marie Xuereb, Pharm D Student

Introduction and Instructions

Dear Participant,

The tutorial entitled 'Pharmacogenetics: A Tool for Precision Medicine' is being conducted as part of my Doctorate in Pharmacy research at the Department of Pharmacy, University of Malta, under the supervision of Professor Anthony Serracino-Inglott and Dr Francesca Wirth. Kindly complete the evaluation questionnaire after following the tutorial. Responses will only be accessed by research team members.

ALL pharmacists and physicians are eligible to participate.

Thank you very much for your participation

Section 1: Demographics

1	. Gender	🗆 Male	Female	Other	
2	. Age (years)				
3	Profession				
	Pharmacist				
	Area of Practice	Community		🗌 Academia	
		Hospital		🗆 Industry	
		Regulatory		Other (Ple	ase specify)
	Physician				
	Area of Specialis	sation (Please specify _)
4	Years of Practic	e			

5. Highest Academic level

Section 2: Evaluation of Tutorial

6. On a Likert scale of 1 to 5, (1 corresponds to 'least relevant'; 5 corresponds to 'very relevant') rate each of the following discussion topics by marking with an 'X' in the appropriate box.

Discussion Topic		RELEVANCE TO PRACTICE				
			2	3	4	5
Α	Nomenclature related to pharmacogenetics					
B Benefits and challenges of pharmacogenetics						
С	C Pharmacogenetics-related information resources					
D	Pharmacogenetics related clinical case study- Case 1- Oncology					
Ε	Pharmacogenetics related clinical case study- Case 2- Cardiology					
F	Pharmacogenetics related clinical case study- Case 3- Infectious disease					

No.	Statement	1 strongly	2 disagree	3 neutral	4 agree	5 strongly
		disagree				agree
7.	Tutorial is relevant to my practice					
8.	Tutorial reflects the latest developments in					
	pharmacogenetics					
8.	Tutorial helped me to understand fundamental principles					
	of pharmacogenetics					
9.	Tutorial sequence was appropriate					
10.	Information in tutorial was clearly presented					
11.	Information in tutorial was comprehensive					
12.	Information in tutorial was easy to understand					
13.	Tutorial will help to improve application of theory to					
	practice					
14.	Tutorial will help to improve my skills in					
	pharmacogenetics					
15.	Tutorial helped to identify my strengths and weaknesses					
	regarding the topic					
16.	Content discussed is helpful for use in practice					
17.	Tutorial inspired me to read more about the subject					
18.	Tutorial met my expectations					

On a Likert-scale of 1 (strongly disagree) to 5 (strongly agree), rate each of the following statements by marking with an 'X' in the appropriate box.

19. On a Likert Scale of 1 to 5, (1 corresponds to 'not likely at all'; 5 corresponds to 'very likely') rate the likelihood of following future tutorials on the topic.

L				
1	2	3	4	5
Not likely at all				Very likely

20. Any additional feedback or suggestions related to the educational seminar may be included below.

Thank you

Appendix 7: List of oncology drugs for discussion with Consultant Oncologists

Status of pharmacogenetic testing in oncology drugs

List of drugs with pharmacogenetic (PGx) implications and their respective drug label annotations¹ found on the Maltese Government Formulary List².

Kindly indicate with an 'x' for each respective drug whether the indicated PGx biomarker is being requested prior to prescribing.

Active ingredient	EMA	FDA	PGx Biomarker	Request of PGx test prior to prescri	
				Yes	No
anastrazole	-	1	Hormone receptor +ve		
	-		Philadelphia		
busulfan		3	Chromosome (Ph1)		
			Dihydropyrimidine		
			dehydrogenase (DPD)		
capecitabine	3	3	activity		
			Thiopurine S-		
			methyltransferase		
cisplatin	-	4	(TPMT) activity		
dabrafenib	1	1	BRAF V600 mutation		
			CYP 3A4, 2C9, 2C19,		
enzalutamide	-	4	2C8		
erlotinib	1	1	EGFR mutations		
			Hormone receptor +ve,		
everolimus	1	1	HER2/neu		
exemestane	-	1	Oestrogen receptor +ve		
fluorouracil	-	3	DPD activity		
			BCR-ABL, PH+, Kit (CD		
imatinib	1	1	117), PDGFR		
irinotecan	-	3	UGT1A1*28 variant		
lenalidomide	4	1	Deletion 5q abnormality		
letrozole	-	1	Hormone receptor +ve		
mercaptopurine	3	2	TPMT activity		
rasburicase	3	4	G6PD deficiency		
rituximab	4	4	CD20		
sunitinib	4	-	CYP3A4		
			CYP2D6, hormone		
tamoxifen	-	1	receptor +ve		
trametenib	1	1	BRAFV600		
trastuzumab	1	1	HER2 +ve		
tretinoin	-	1	t(15;17) gene		

- 1- Testing required-The label states or implies that some sort of gene, protein or chromosomal testing, including genetic testing, functional protein assays, cytogenetic studies, etc., should be conducted before using this drug. This requirement may only be for a particular subset of patients. PharmGKB considers labels that state the variant is an indication for the drug, as implying a test requirement. If the label states a test "should be" performed, this is also interpreted as a requirement.
- 2- Testing recommended-The label states or implies that some sort of gene, protein or chromosomal testing, including genetic testing, functional protein assays, cytogenetic studies, etc., is recommended before using this drug. This recommendation may only be for a particular subset of

patients. PharmGKB considers labels that say testing "should be considered" to be recommending testing.

- 3- Actionable PGx-The label does not discuss genetic or other testing for gene/protein/chromosomal variants, but does contain information about changes in efficacy, dosage or toxicity due to such variants. The label may mention contraindication of the drug in a particular subset of patients but does not require or recommend gene, protein or chromosomal testing.
- 4- Informative PGx-The label mentions a gene or protein is involved in the metabolism or pharmacodynamics of the drug, but there is no information to suggest that variation in these genes/proteins leads to different response.

References:

- 1- Pharmacogenomics Knowledgebase- PharmGKB [Internet]. Stanford University: Department of Health and Human Services: c2001 [cited 2018 Jul. 15]. Available from: URL: https://www.pharmgkb.org/labels
- 2- Government of Malta [Internet] The Government Formulary list. [Updated May 2018; cited 8 Jul. 2018] Available from: URL: https://deputyprimeminister.gov.mt/en/pharmaceutical/Pages/formulary/formulary.aspx

Appendix 8: List of academic institutions who participated in preliminary study regarding inclusion of PGx in pharmacy education programs

The data collated from the academic institutions regarding inclusion of PGx in pharmacy curricula was collected between July and September 2018.

Europe
Antwerp Universiteit, Antwerpen Departement Farmaceutische Wetenschappen, Belgium
Brussels, Vrije Universiteit Brussel, Faculteit Geneeskunde en Farmacie, Belgium
Plovdiv Medical University of Plovdiv, Faculty of Pharmacy, Bulgaria
Sofia Medical University of Sofia, Faculty of Pharmacy, Bulgaria
Varna Medical University, Varna Faculty of Pharmacy, Bulgaria
Nicosia, Near-Eastern University, Faculty of Pharmacy, Cyprus
Nicosia, University of Nicosia, Department of Life and Health Sciences, Cyprus
Brno University of Veterinary and Pharmaceutical Sciences, Faculty of Pharmacy, Czech
Republic
Kuopio University of Eastern Finland, School of Pharmacy, Finland
Reykjavik, University of Iceland, Faculty of Pharmaceutical Sciences, Iceland
Groningen Rijksuniversiteit Groningen, Groningen Research Institute of Pharmacy, GRIP,
Netherlands
Utrecht Universiteit, Utrecht Department of Pharmaceutical Sciences, Netherlands
Oslo, University of Oslo, School of Pharmacy, Norway
Tromsø, Arctic University of Norway, Department of Pharmacy, Norway
Alcalá de Henares, Universidad de Alcalá, Facultad de Farmacia, Spain
Universidad de Salamanca, Facultad de Farmacia, Spain
Ankara, Ankara University, Faculty of Pharmacy, Turkey
Kharkov National University of Pharmacy, Ukraine
University of Nottingham, School of Pharmacy, United Kingdom

USA

Chapman University, School of Pharmacy, California

Keck Graduate Institute, School of Pharmacy, California

University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences,

California

West Coast University, School of Pharmacy, California

University of Saint Joseph, School of Pharmacy, Connecticut

Nova Southeastern University, College of Pharmacy, Florida

University of Florida, College of Pharmacy, Florida

Mercer University, College of Pharmacy, Georgia

University of Illinois at Chicago, College of Pharmacy, Illinois

Manchester University, College of Pharmacy, Indiana

Drake University, College of Pharmacy and Health Sciences, Iowa

University of Kentucky, College of Pharmacy, Kentucky

The University of Louisiana at Monroe, School of Pharmacy, Louisiana

MCPHS University, School of Pharmacy (Worcester/Manchester), Massachusetts

Ferris State University, College of Pharmacy, Michigan

University of Michigan, College of Pharmacy, Michigan

Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences,

Michigan

University of Minnesota, College of Pharmacy, Minnesota

University of Missouri-Kansas City, School of Pharmacy, Missouri

The University of Montana, Skaggs School of Pharmacy, Montana

Creighton University School of Pharmacy and Health Professions, Nebraska

University of Nebraska, Medical Center College of Pharmacy, Nebraska

The University of New Mexico, College of Pharmacy, New Mexico

Albany College of Pharmacy and Health Sciences, New York

Binghamton University, the State University of New York School of Pharmacy and

Pharmaceutical Sciences, New York

St John Fisher College-Wegmans School of Pharmacy, \boldsymbol{New} York

High Point University, Fred Wilson School of Pharmacy, North Carolina

North Dakota University, College of Health, North Dakota

Cedarville University school of Pharmacy, Ohio

Northeast Ohio Medical University, College of Pharmacy, Ohio

USA (continued)

The Ohio State University College of Pharmacy, Ohio

Temple University, School of Pharmacy, Pennsylvania

Presbyterian College, School of Pharmacy, South Carolina

University of South Carolina, College of Pharmacy, South Carolina

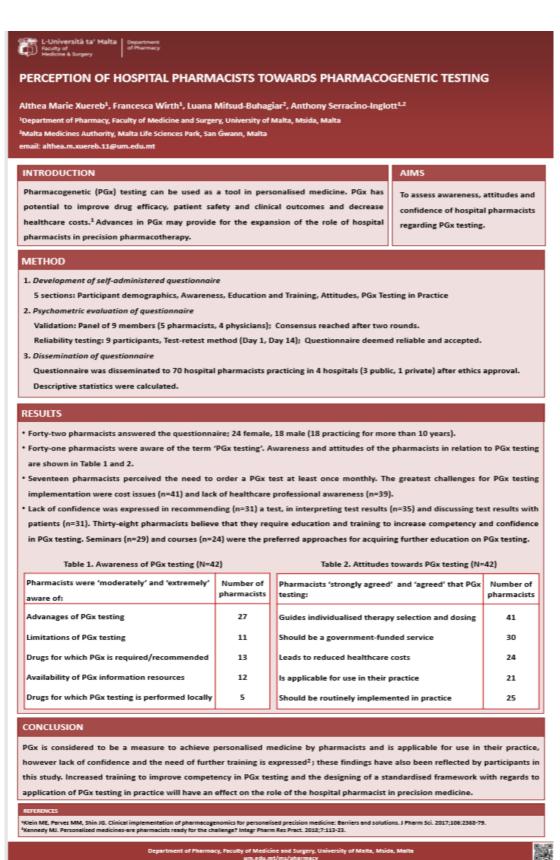
The University of Texas at El Paso, School of Pharmacy, Texas

University of North Texas, Health Science Center, College of Pharmacy, Texas

Marshall University, School of Pharmacy, West Virginia

Virginia Commonwealth University, School of Pharmacy, Virginia

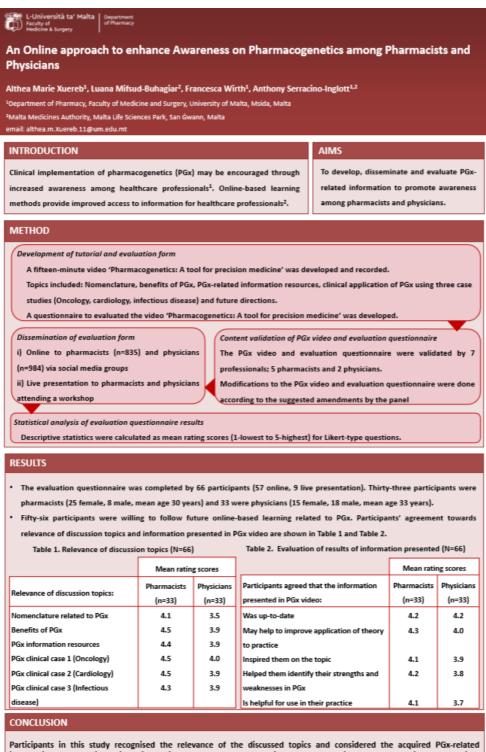
Medical College of Wisconsin, School of Pharmacy, Wisconsin


Appendix 9: Dissemination of study findings

Discussed poster presentation, 10th Malta Medical School Conference

Malta Medicines Authority, Malta Life Sciences Park, San Gwann, Malta mail: aithea.m.xuereb.11@um.edu.mt	sida, Malta					
ITRODUCTION	AIM	AIM				
he inclusion of pharmacogenetics information in fficial drug labelling is increasing. Inadequate armonisation between regulatory bodies is reported. ¹	To compare pharmacogenetics information in official drug labelling of oncology drugs between major regulatory bodies.					
NETHOD						
US Food and Dr	Pharma parmacogenetics inform ug Administration (FDA		on from harmGKB) ³			
Consultation with 7 onco regarding use of phi IESULTS 80 drugs indicated for use in malignancy on the GFL	armacogenetic testing f	for the identified drugs etween FDA drug label and EMA Sm	PC for drugs used in			
(November, 2018); 22 have pharmacogenetic implications • 14/22 drugs with 'Testing required' label annotation on	Agreement between FDA drug label and EMA SmPC (n=6) EMA SmPC (n=3)		FDA drug label only (n=5)			
PharmGKB (November, 2018) Comparison between FDA drug label and EMA SmPC for the 14 drugs with 'Testing required' label annotation showed agreement between regulatory bodies for 6 drugs and differences between regulatory	Dabrafenib () () () () Erlotinib () () () Everolimus () Imatinib () () () Trametinib () () ()	Lenalidomide FDA - Testing required EMA- Informative Rasburicase FDA -Testing required EMA- Actionable Rituximab FDA-Informative	Anastrazole Exemestane Letrozole Tretinoin Tamoxifen 1			
bodies for 3 drugs. Comparison was not possible for 5 drugs since only the FDA drug label is available (Table 1) Oncologists stated that pharmacogenetic testing is being requested before prescribing for the 14 drugs	Trasutuzumab 🕡 🝺	EMA- Testing Required 🕕	rning 💿 Dosage			

Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta um.edu.mt/ms/oharmacv


Poster Presentation, 24th Congress of the European Association of Hospital Pharmacy

Poster Presentation: 79th FIP World Congress of Pharmacy and Pharmaceutical Sciences, Abu Dhabi, United Arab Emirates

L-Università ta' Malta Department Faculty of Medicine & Surgery									
Awareness and Attitudes of Pharmacists and Physicians towards Pharmacogenetic Testing									
Althea Marie Xuereb ¹ , Luana Mifsud-Buhagiar ² , Francesca Wirth ¹ , Anthony Serracino-Inglott ^{1,2} ¹ Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta ² Malta Medicines Authority, Malta Life Sciences Park, San Ġwann, Malta email: althea.m.Xuereb.11@um.edu.mt									
INTRODUCTION				AIMS					
Increased awareness of pharmacogenetic (PGx) testing by healthcare professionals paves the way towards its clinical implementation ¹ .			To assess awareness and attitudes of pharmacists and physicians regarding PGx testing.						
METHOD									
Development of self-administered questionnaire 5 sections: Participant demographics, Awareness, Education and Training, Attitudes, PGx Testing in Practice Psychometric evaluation of questionnaire Validation: Panel of 9 members (5 pharmacists, 4 physicians); Consensus reached after two rounds. Reliability testing: 9 participants, Test-retest method (Day 1, Day 14)									
Dissemination of questionnaire following ethics approval i) Online to pharmacists (n=835) and physicians (n=984) via social media groups, ii) online via mailing list of the Malta College of Family Doctors (n=198), iii) visiting community pharmacies and private clinics selected by convenience sampling and an acute general hospital (n=135), and iv) attending two local medical conferences (n=60).									
Statistical analysis of questionnaire results Descriptive statistics were calculated as mean rating scores (1-lowest to 5-highest) for Likert-type questions.									
RESULTS									
 The questionnaire was completed by 292 participants, 179 pharmacists (64% female, 36% male, 38% practicing >10 years) and 113 physicians (50% female, 50% male, 54% practicing >10 years). Participants (91% pharmacists, 76% physicians) were aware of the term 'PGx testing' prior to answering the questionnaire. Awareness and attitudes of pharmacists and physicians in relation to PGx testing are shown in Table 1 and 2. 									
Table 1. Awareness of PGx testi	ng (N=292)		lable	2. Attitudes towards PGx te	sting (N=292)	,			
	Mean rati	ng scores			Mean rati	II			
I am aware of:	Pharmacists (n=179)	Physicians (n=113)	PGx testing:		Pharmacists (n=179)	Physicians (n=113)			
Advantages of PGx testing	3.7	3.2	Guides individ	dualised therapy selection	4.5	4.2			
Limitations of PGx testing	2.8	2.6	Should be a g	overnment-funded service	3.9	3.8			
Drugs with PGx testing required	2.5	2.2	Leads to redu	ced healthcare costs	3.8	3.4			
PGx information resources	2.4	1.9	Is applicable f	or use in their practice	3.3	3.6			
Drugs for which PGx testing is	1.5	1.6	Should be rou	tinely implemented in	3.5	2.9			
performed locally practice • Fourty-two percent of pharmacists and 27% of physicians never perceived the need to order a PGx test in their practice. Thirty-nine percent of physicians and 27% of pharmacists perceive the need to order a PGx test in their practice on a monthly basis. • Competence in PGx testing was perceived to be insufficient (1.93 pharmacists, physicians 1.65) and participants agreed that further training is required (4.43 pharmacists, 4.43 physicians).									
CONCLUSION									
Pharmacists and physicians in this study showed positive attitudes towards PGx testing. Pharmacists and physicians agreed that further PGx training is required to increase competence and improve awareness to facilitate the clinical implementation of PGx.									
REFERENCES									
1. Klein ME, Parvez MM, Snin JG. Clinical implementation of pharmacogenomics for personalised precision medicine: Barriers and solutions. J Pharm Sci. 2017;106[9]:2268-79.									
Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Maita um.edu.mt/ms/pharmacy									

Poster Presentation: ESCP International Symposium, Ljubljana, Slovenia

information to be applicable in their practice. Both healthcare professionals were receptive towards following future onlinebased learning on PGx.

REFERENCE

Klein ME, Parvez MM, Shin JG. Clinical implementation of pharmacogenomics for personalised precision medicine: Barriers and solutions. J Pharm Sci. 2017;106(9):2268-79.
 Weitzet KW, Aquilante CL, Johnson S, Kisor DF, Empey PE. Educational strategies to provide pharmacogenomics-based care. Am J Health Syst Pharm. 2016;73(23):1386-98.

Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Malta