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Abstract: The motion ofrigid bodies infields offorce depends on their mass, mass-centre 
location and moments of inertia. These fundamental quantities, here referred to as 
mechanical parameters. are determined for the general uniform polygonal lamina. The 
precise description o.fpolygons through border vectors is followed by the determination of 
the mechanical parameters ofelemental triangular laminae. Introducing a generalfunction 
o.f area, m-area, effectively integrates the separate parameters so that the study's central 
theorem, extending the results oftriangular lamillae, involves only m-area. As the worked 
example illustrates, the theorem permits easy eFaluation of numerical results and lends 
itself wellfor computerization purposes. 
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1. Defining and Describing the General Polygonal Lamina 
The shape of the general polygonal lamina 

D 
considered here is that of a plane figure with 3 or 
more straight sides which form the edges of its 
outer boundary together with a number ofstraight 
sides which form the edges of its hole or holes if 
any. The mass per unit area of the lamina is taken 
to be I so that mass and area are numerically equal. 

When only 2 straight sides or edges of the 
lamina meet at a point we may refer to the point 
as a double vertex. In more complex shapes more A 

than two sides may meet at a point. Each of these 
points will be refelTed to as a multiple vertex. 

vertices while E. the intersection of theCloser examination reveals that a multiple veltex 
outer boundary and hole EFG. is a 

is a point where 2 or more double vertices meet /IIultiple vertex. 
and occurs, say, when a hole meets the outer 
boundary of the polygon. It also arises at a vertex where two or more holes meet 
which may also be a point on the outer boundary of the polygon. 

s 

Fig. J. A, S, C, D, F, G are double 

c 
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Clearly an adequate description of the shape of the polygon has to go beyond 
giving the position of its vertices as a number ofpolygons may be drawn from a given 
set of coplanar points. If, however, besides giving the position of the vertices, say A, 
B, ... ... , G, a description of the sides of the figure is given in terms of its vertices the 
description should define the shape of the lamina completely. Thus for the polygon 
in the adjoining diagram, (Fig. 1.) the edges 

AB, BC, CD, DE, EF, FG, GE 

define the polygon completely once the position of the vertices is known. 
When the pairs of endpoints of each side are given, where possible in order, they 

must necessarily consist of a number of loops of the form 

AJA2 , A~3' . . .. , Aj.,A j .. 

A"+J A"+2' A"+2A"+3' ... , Aj-iA) .. 

A II1 +JAm+2 , A III +3 Am+4 , ••• • , AII.,AII 

where one of the loops corresponds to the contour of the outer boundary of the polygon 
and each of the remaining loops refer to the inner boundaries of the polygon or the 
edges of the holes. Of course it is not immediately obvious, especially in cases where 
there are multiple vertices, which one of the loops refers to the outer boundary of the 
polygon and which to the holes. The method used here to describe the shape of a 
given polygon should make things a little simpler to interpret. 

Border Vectors and Border Vector Sets 
A border vector of the general polygon is a 
vector along an external or internal edge of the 
polygon, from one end point ofa straight edge to 
its other end, whose sense is always anti
clockwise relative to an internal point of the 
polygon close to the vector. 

Thus if A and B are the end points of a 
straight edge of the polygon and 0 is any point 
inside the polygon close to the edge AB such that Fig. 2. The direction of the Border 

the sense of OAB is anti-clockwise (see Fig. 2) Vector AB is such that the sense of 
DAB, where D is an internal point ofthen vector AB is the algebraic representation of 
the lamina, is anti-clockwise. 

the corresponding border vector. 
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The border vector set ofthe general polygonal lamina is the set ofthe border vectors 
which correspond to each outer and inner side or edge ofthe polygon. The following 
properties concerning border vectors and border vector sets follow almost 

immediately from the definitions. 

Properties concerning Border Vectors and Border Vector Sets 

1. 	If Q is a double vertex where the edges PQ and QR meet, then if PQ is 
the border vector for edge PQ the border vector for edge QR must be QR 

(1.1) 

2. 	If Q is a multiple vertex then 
(a) the number of edges having Q as one of the terminal points must be even. 
(b) adjoining border vectors, partitioning the small region around Q, 	must 

have Q alternating as an initial point and an end point. 0.2) 

3. 	The border vector set of the general polygonal lamina with h straight-edged 
holes consists of h+ 1 subsets with each subset consisting of a number of 

border vectors which may be expressed in order algebraically with the terminal 
point of one border vector being the initial point of the next and the terminal 
point of the last border vector being the initial point of the first. (1.3) 

Property 1 is a direct consequence of the definition 
of a border vector. For any internal point 0 on the P 
lamina close to Q, the fact that the sense of OPQ 
is anti-clockwise (see Fig. 3(a» implies that the 

sense of OQR must also be anti-clockwise. 
Alternatively, if QP is the border vector for edge r (a)PQ then for the same reason as before the border 

vector for edge QR must be RQ. (see Fig. 3(b» 
In the case of Property 2 consider the small o . 

region enclosing multiple vertex Q (see Fig. 4.). 

This region neighbouring Q is partitioned into a 
number of sections equal in number to the edges R 

(b)meeting at Q. Now, obviously, no 2 adjoining 

sections can both be part of the polygon as 
Fig. 3 (a). If the Border Vector for PQ

otherwise the dividing line of the 2 adjoining is PQ then the Border Vector for QR 
sections will not be an edge of the polygon. mllst be QR. 
Likewise no 2 adjoining sections may both be 

(b) 	 If the Border Vector for PQ is QP
regions outside the polygon or part of the holes. then the Border Vector for QR mllst 
This implies property 2(a). beRQ. 
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Also if PQ and QR are any 2 adjoining 
edges and 0 is a point close to Q in the section 
with the edges PQ and QR then if 0 is an internal 
point of the polygon the respective border vectors 
will be PQ and QR. On the other hand if 0 
happens to be outside the polygon the respective 
border vectors will be RQ and QP. This leads 
to property 2(b). Combining properties I and 2 

in turn leads to property 3. 

Geometrically one of the (h+ 1) subsets of 
border vectors forms a directed loop which traces 
in order the outline of the outer boundary of the 
lamina and each of the remaining h subsets forms 
a directed loop which traces, in order, the outline 
of one of the polygon holes. 

Border vector sets may be expressed 
algebraically with the different subsets of vectors 
within curly brackets and separated from each 
other by semi-colons. The first subset consists of 
a number of border vectors in order, separated by 
commas, and describing the outer boundary of 
the polygon. Similarly for the subsequent subsets 
which describe each of the polygon holes. 

The geometrical description, by border 
vectors, of the polygonal lamina P (Fig. 5(a) is 
shown in the adjoining figure (Fig. 5(b)). The 
border vectors give an indication of the inside and 
outside regions of the polygon. 

To describe P algebraically let the points 
with coordinates (2,1), (8,1), (6,2), (6,4), (5,6), 
(5,2) and (5,4) be A, B, C, D, E, F and G 
respectively. Then the polygonal lamina P may 
be described by the border vector set: 

{AB, BC, CD, DE, EA; CF, FG, GC} 

p R 
.... 

Fig. 4. The number of edges meeting 
at Q must be even and adjacent border 
vectors must have Q alternating between 
an initial point and an end point 

)' 

A 
(5,6) 

(6,4) 

(6 ,2) I (5,2)~8,1)
(2,1 x 

0' ·········.. ·······························....·········...................> I 


Fig.5(a). Polygonal Lamina P which 
has a triangular hole with vertices at 
the points (5,4) (5,2) and (6,2). 

E 

D 

c 
A 

Fig. 5(b). The polygonal lamina P 
described by border vectors . 

8 
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2. 	 Mechanical Parameters - Definitions, Relations and Values for the 
General Uniform Triangular Lamina 

The motion of the general uniform polygonal lamina under the action of any given force 
system will depend on its mass, position of its centre of gravity (or the value of its related 
first moment), and its relevant moments of inertia. These basic attributes of any rigid 
body, determining not only the physical nature but also its dynamics under the action of a 
force system, are here collectively refened to as mechanical parameters. Before finding 
the values of these parameters in the case of the simplest polygonal lamina, the triangle, 
and then later extrapolating the result to the general case, we will first consider the 
definitions and some basic results involving mechanical parameters. 

Mass 

Mass may intuitively be described as quantity of matter. More to the point, mass 
may be said to be a measure ofa body sresistance to acceleration or simply a measure 
of the bodys inertia. For our purposes, since the laminae we consider always have 
unit mass per unit area, the quantities of mass and area will always have the same 
numerical values. 

Centre of Mass and First Moment 

By definition of centre of mass we have: 

The position vector, Ro[particlesJ, of the centre of mass of a number of particles 
referred to an origin 0 with the general particle having mass m and position 
vector r is given by: 

dcf=(L m ) Ro [particles] L (mr) (2.1) 
pal'licles 	 particlej 

The summation on the right hand side of the last equation will be referred to as the 
vector first moment of the particles with respect to 0 as origin. That is, using symbols, 

The vector first moment of a number of particles with respect to origin 0 is : 

dcf =F0 Ipal1icles] L (mr) 	 (2.2) 
ponicle.\ 
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Composite Body Results for Centre of Mass 

(a) The position vector of the centre of mass, R[12] ,of a composite body with 
mass M [121 consisting of two parts having masses M[I] and M12] and centres 
of mass at positions R[l] and R[2] respectively, is, on using the definition, 
gi ven by: 

M[12] R[12] = L (mr) = L (mr) + L(mr) 
12 	 2 

leading to: 

M[12] R[12] = M[l] R[l] + M[2] R[2] (2.3) 

(b) The 	position vector of the centre of mass, Rr l...n1 , of a composite body of 
mass M[l...n] consisting of n parts having masses Mr 1] , .. . , M[n] and centres 
of mass at positions R[ll, . . R[n] respectively, is given, in virtue of a simple 
extension of (2.3) by: 

i=n 

M[l...n] R[l...nl = L (Mli] RUn 	 (2.4) 
;=1 

Moment of Inertia 

By definition, 

the moment ofinertia, ILlbody], ofa rigid body, about an axis L, made up of particles 
with the general particle having mass m and distant r from L is given by: 

IL[body] def= L (m r2) 	 (2.5) 
"ody 

The above definition leads immediately to the following result. 

Composite Body Result for Moment of Inertia 
The moment of inertia of a composite body, 1[1 ...nJ , consisting of n parts, about 
any axis is the sum of the moments of inertia Ill], .. . , I[n] of each part about the 
same axis since: 

I[l...nJ = L (m?) = L (m?) + ... + L (m r) 
l. ..n 	 n 

1[1 ...n] = 1[1] + . . .. + l[nJ 	 (2.6) 



113 The Determination afthe Mechanical Parameters 

Two very useful theorems follow. 

Perpendicular Axes Theorem 

If the moment of inertia of a lamina about any 

two perpendicular axes in the plane of the 

lamina and passing through point 0 on the 


lam ina are lox [laminal and lOY [lamina] 

....~ '/Xrespectively, then loz [lamina], the moment of ..... 


inertia of the lamina about an axis passing 
 Fig. 6(a) X and Yaxes are in the plane 
through 0 and perpendicular to the lamina, of the lamina. 

(Fig. 6 (a» is given by: 

laz [laminal = lox [lamina] + lOY [lamina] (2.7) 
Z y 

l' ., ""..,,":7 p 
i"...~ 

O !""'·::::::.._.~Proof ::c .._._.......__.._.~ 


By definition (see Fig. 6 (b)) 	 Fig.6(b). P, the general point is distant 
r = (x2 + y2)1/2 from the origin O. 

Ioz [lamina] L mr2 L m (l + x2) 

L my2 + L mx2 

lox [lamina] + 10>' [lamina] 

o 
Parallel Axes Theorem 

Lo"··"..·..·....·- ·""~""··"""·"""if" 

The moment ofinertia ofa body, of mass M, about 

an axis La passing through a point 0 , la, is the 

same as that of the moment of inertia, Ie' of the 

same body about a parallel axis through the 

centre of mass, G, of the body plus the product 

of M and the square of the distance, G, between 

the two parallel axes (see Fig. 7). That is: 


I = I + M a 2 (2.8) I Fig . 7. In this side view of the body Lc;a G 
is any axis passing through G, the centre 
of mass. Lo is the parallel axis through 
point O.Proof 

Consider a general particle P, of the body distant 

r from the axis Lo' through 0, and distant x from 

y 

0 ' ~:~~::==l> 

a 



114 

the axis Lc through the mass-centre G. Let its mass 
be m (see Fig.8 and Fig.9). 
Then P is one ofthe vertices of the triangle whose 
plane is perpendicular to that of the parallel axes 
and has its other 2 vertices one on the axis through 
o and the other vertex on the parallel axis Lc' 
This triangle is shown in the adjoining diagram 
(Fig. 9) with the angle 8 as indicated. 

Applying the Cosine Formula to this triangle 
gIves: 

? x 2 + a2 2axcos 8 

Taking G as ongItl and y-axis in the 
direction at right angles to the parallel axes and 
in their plane with its sense towards 0, we have: 

Yp = x cos 8 	 and 

y-component of Rc[body] Yc fbody] 

= ( L. InYp)/M 
body 

which is zero since the origin is taken at G itself. 

From the definition (2.5), 

I 
0 

= L. m r2 = L m (x 2 + a2 - 2ax cos 8) 
body bod.1' 

= L. In X 2 + L. m a 2 - 2a L. In X cos 8 
bod" body body 

Ic + M a2 - 2a M Yc [body] 

and the result follows since YG [body] =0 

Victor CILlA-VINCENTI 

,_, Lo 
.~. 

'0,'0 

Fig. 8. Frontal view of the same 
body showing the general particle P. 

Lo 

' ..( 
'0 A 

, 	 0 

o 
o 

o1/,' 
o 

o 
o 

o a 
p <..-.........-..~ 


, I i yp 

';\~[ I l 

LG 

Fig. 9. Frontal view 

showing pertinent 

distances. 
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B (Xl .y]) 

Lemma 1 

Let 0, A, B be the vertices of any uniform triangular lamina of unit mass per 
unit area in the x-y plane such that the sense of OAB is anti-clockwise (see 

Fig.lO) . Take 0 as origin and i , j, k to be the unit vectors in the x, y, Z directions 
respectively. Let the coordinates of A and B be (XI' y) and (x2' Y2) respectively. 
Then the mass of lamina OAB is: 

M[OAB] = {(X'Y2-X2Y, )12} (2.9) 

Proof 

From the definition of the vector product of any 1'>' 
2 vectors OA and OB we have: 

OA x OB = «(OA)(OB)(sin e) n 

where e is the angle between OA and OB and n 
is the unit vector perpendicular to both OA and 
OB such that OA, OB and n form a right
handed system. (This implies that for persons 

standing with their head in the direction of nand 

facing the direction OB, the direction OA would o 
:c 

be to their right). 
Fig. 10. A and B are any 2 points in the 

Now since the sense of OAB is anti
x- y plane such 
anticlockwise. 

that OAB is 

clockwise, the unit vector n must be k as the 3 
mutually perpendicular axes Ox, Oy, Oz, by 
definition, likewise, form a right-handed system z 
(see Fig. 11). Hence: l' 

OA x OB = «(OA)(OB)(sin e) k it • ... •..../1 Y 
.... 

= (2(area of OAB) k (2.10) 
I ..........··~A 


But it can be shown that the definition of ~.................->X

the vector product also implies that the operation o 
itself is distributive. Hence writing the vectors 

Fig. 11 . OA, OB and n form a right
OA and OB in component fonn in terms of the handed system and so must OA, OB 
unit vectors i and j, we have: andk. 
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OA X OB 	= (xji+y,j) X (x2 i+y2 j) 

= «Xj i) X (x2i)) + «Yjj) X (x))) 

+ «Xl i) X (Y~)) + «Yjj) X (y2 j)) 
= (O)+(y j x2 (-k))+(x j y2k)+(O) 

= (X j y2-x2y)k (2.11) 

The required result then follows from equations (2.10) and (2.11) and the 
equivalence of mass and area. 

Lemma 2 

Let 0, A, B be the vertices of any uniform triangular lamina of unit mass per 
unit area in the X-Y plane such that the sense of OAB is anti-clockwise. Take 0 
as origin and i, j, k to be the unit vectors in the x, y, z directions respecti vely. 

Let the coordinates of A and B be (x" Y) and (x2' Y2) respectively. Then 
the vector first moment of lamina OAB referred to origin 0 is: 

FO[OAB] = {(XjY2-x2y)«xj+x)i+(Yj+Y2)j)/6} (2.12) 

A y
Proof ! 

i 
Assume the lamina OAB to be made up of 1 
elemental thin rods parallel to the side AB. The i 
centre of mass of each of these thin rods must be 
on some point of the median joining 0 to C 
(see Fig.12) where C is the midpoint of AB. 

Symmetry of the vertices implies that the 
centre of mass must also lie on the other 
medians . This, in turn , implies that medians 
must concur at some point and that this point 
is the centre of mass of the lamina. But, from 
geometry, the point of intersection of the 

xmedians of a triangle trisects each median so o 
that if G is this point then: 

Fig.12. The centre of mass of each thin 
rod must lie on the median OC. 

OG 	= (2/3)OC = (2/3){(x,+x2)i+(yj +y)j }/2 

= «X, + X2) i + (Yj + y2)j )/3 

it 
I 

! j 
~ 
I 
! 

I 
! 

A 
(x"yJ

1/,/ I 

~---.--------~...--~ 
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Now, from the definitions of first moment and centre of mass, (equations (2 .2) 

and (2.1» we have : 

FolOAB] = L m r = MlOAB] RolOAB] 

OAB 

= {(x,y2 -x2 y)12) OG 

= {(X,y2 -x2 y) «x, +x2)i+(y, +y2)j)/6} 

Lemma 3 

Let 0, A, B be the vertices of any uniform triangular lamina of unit mass per unit 
area in the x-Y plane such that the sense of OAB is anti-clockwise. Take 0 as origin 

and the coordinates ofA andBto be (x" Y) and (x2, Y2) respectively. Then the moments 
of inertia of triangular lamina OAB about the x, y, z axes are respectively 

(a) IoxlOAB] = {(x,YZ -x2 y,) (Y/ + Y,Y2 + y/)I I2) (2.13) 

(b) IOylOAB] = {(XjY2-x2y,)(x/+x,xz+x/)/I2) (2.14) 

(c) IozlOAB] = {(X'Y2-X2Y)(X/+x,x2+x/ + y/ +y,y2+y/)1 I2) (2.15) 

Proof of (a) 

Three cases arise which will be considered separately. 

Case (1) AB is parallel to the x-axis. 

Case (2) Not both of the points A and B are above the 

x-axis or both below the x- axis. 

Case (3) A and B are either both above or both below 

the x-axis, AB is not parallel to the x-axis. o x 

Case (1) (see Fig. 13) 

In this case we have Y, =Y2• Assume the lamina OAB 

to be made up of thin rods parallel to the side AB. Let 

A 
~----------------77 

the y-value of the general elemental thin rod be Y and 
B

its thickness be 8y. Then we have: A 

length of elemental thin rod = (AB)(y)/(y) 
Fig. 13. Lamina OAB with AB 
parallel to the x-axis. 
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as y and y, are either both positive or both negative. So 

mass (or area) ofelemental thin rod (AB)(y) (8y)l(y) 

Hence the moment of inertia of the thin rod about the x-axis is : 

lox [thin rod] L (my2) = y2 L m 

thin rod thin rod 

= (AB)(y3) (8y)I()) 

By the Composite Body Result (2.6), the moment of inertia of lamina OAB about the 
x-axis is: 

IoxlOAB] = lim L [(AB)(l) I (y) ] 8 Y 

OAB 

.v, 

= (ABly) f y3 dy = (AB)(y/) 1 4 

o 

and since M[OAB] = (AB) (y) 12 we have: 

Iox[OAB] = M[OAB] (Y/ 12 ) 	 (2.16) 

which in virtue of equation (2.9) and the equality of y , and Y2 is compatible with 
equation (2.13). 

Case (2) 

In this case either AB cuts or it touches the x-axis. Let C be the point where AB cuts 
or touches the x-axis. This means that C may only be a point between A and B with 
both A and B included. 

~~ B A 
AX 

Going back to case(l), if G is the centre of mass 
of lamina OAB, by the Parallel Axes Theorem 

axis 
(2.8) we have that the moments of inertia of GX 

lamina OAB about an axis through G parallel to 
the x-axis and about an axis through A also parallel 
to the x-axis are (see Fig. 14) given by: axis 

OX o 

Iex[OAB] = M[OAB] {(y/12) - (2y/3) 2} 	 Fig. 14. The Parallel Axis Theorem 
relates the moments of inertia aboLit= M[OABI (y/118) and 
the 3 parallel axes . 

........................y... 
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IAx[OAB] = M[OAB] {(Y / /18) + (YI/3)2} 

= MIOAB] (Y/ 16) (2.17) 

Now suppose y , > Y2 where Y2 ~ 0 (Fig. 15) 

Then by the Composite Body Result (2.6) 

lox[OAB] = Iox[OAC] + IoxlOCB] 

Applying equation (2.17) to both terms on the 
right hand side of the above equation we get: 

Iox[OAB] =M[OAC] (y/l6) + M[OCB ] (y/16) 

As M[OAC] 1M[OAB] = (Y,) 1 (Y , - Y2) and 
M[OCB]IM[OAB] = (-y2 )I(YI - Y2) we have 

Iox[OAB] 	 =M[OAB] «y) 1 (Y1 - Y2))( y / 16) 

+ M[OAB] «-Y) 1 (Y 1 - Y2)( Y2 2/6) 

which in virtue of Lemma 1 (2.9) leads to the 
required result (2.l3). 

Consider now Y1 < Y2 where Y, ~ 0 

Following the same argument as before the 
equation corresponding to the last one above 
would read: 

IOX[OAB] =M[OAB] « -y)I(Y2 - y))(y/l6) 

+ M[OAB] «y2)I(Y2 - y,)(y/16) 

which again leads to the required result (2.l3). 

A 

"-----~-.~ "~ 
B 

(a) 	 y, > 0, Y1 < 0 

A 

--~-,

B,C 0 

(b) y, > O. Y2 = 0 

A,C x
7-"--.""""V 

(c) y, = O. Y2 < 0 

Fig. IS . Case 2 with Y, > Y, and 
.\',::; o. 
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Case (3) 

A 

Let C be the point where the line AB produced 

cuts the x-axis. Consider 


modulus (y ) > modulus (y) (see Fig.16) 


By Result (2.6) and equation (2.17) 


I ox[OAB] 	= I ox[OAC] - IoxfOBC] 

= M[OAC) (y / /6) - MrOBC) (y/ /6) 

Now geometry and the equivalence of mass and 
area give: 

M[OAC) - M[OBC) = M[OAB] 

and M[OAC] / M[OBCJ = (Y, /Y2) 

implying M[OAC] = M[OAB] (Y, /(Y] - Y) 

and M[OBC] = M[OAB] (Y2 /(Y, - Y2) 

so ihat: 

I ox[OAB] = M[OAB) (Y, /(Y , - Y2)) (Y/ /6) 

- M[OAB] (Y2/(Y! - Y) (Y/ /6) 

which by equation (2.9) leads to the required (2.13). 

Consider now modulus (y) < modulus (Y2) 

J./~::~__ 
Fig. 16 (a). 	A and B both 
have x-axis modulus (,v I ) > 
modulus (v2). 

,,~ )·~-----....·..-·..r;-..·--·
I 
I 
B 

A 

Fig. 16 (b). A and B both below x-axis 
modulus (v) > modulus (y) 

B 

~" , 
......................~..... .. .. ........ .
........... C 


o x 

Fig. 17 (a) . A and B both above x

axis modulus (y) < modulus (y). 
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In this case (Fig.l7 (a) and (b)) 

M[OCB)- M[OCA) = M[OAB] c 
, 

o x 
........ .... " ........ .. ..................................."" i ") 


, ,and M[OCB] / M[OCA) = (Y2 /Y j ) 

gIve M[OCB] = M[OAB) (Y2 /(Y2 - Y)) 

Fig. 17 (b). A and B both below x
and M[OCA] = M[OAB] (yJ(Y2- Y)) axis modulus (y) < modulus (y) . 

Hence as before we have: 

Iox[OAB] = lox[OCBl - Iox[OCA] 

= M[OAB] (Y2 /(Y2 - Y)) (Y/ /6) 

- M[OAB) (Yj /(Y2 - Y j )) (Y / /6) 

which again leads to (2.13). 

Proof of (b) 

The proof of equation (2.14) follows directly from the above result and the symmetry 
of the x and v axes. 

Proof of (c) 

This follows directly from the above results (2.13) and (2.14) on applying the 
Perpendicular Axes Theorem (2.7). 

3. Unifying the Mechanical Parameters 

m-area 

We define a function of the area of the general polygonal lamina, which may both be 
scalar or vector, called mechanical area or simply m-area, by its following basic 
property. 
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Composite Body Property of m-area 

For laminar regions of area [1] and [2] and the composite area [12J consisting of 
a simple addition of regions [1] and [2], 

m-area [I] + m-area [2] = m-area [12] scalar/vector (3.1) 

The mechanical parameters of mass, first moment (both scalar and vector) and 
moment of inertia about any axis when referred to uniform polygonal laminae, 
are all functions of the laminar area besides obeying the additive property of the 
Composite Body Result. 

In fact, mass, M, is simply the value of the area since the density of the lamina is 
assumed to be unit. Thus if 8 a is a small portion of area of the lamina, 

M[l] + M[2] = L8a + L8a = L8a = M[12] 

2 12 

Similar equations hold for the x-component of the first moment referred to origin 0, 
FoX , and the moment of inertia of the polygonal lamina, lOY' about the y-axis. 

FoX[l] + FoXf2] = Lx8a + Lx8a = L x8a = FoX[12] 

2 12 

lox[l] + Iox[2] = Lx28a + Lx28a = Lx28a Iox[12] 

2 12 

On the other hand, when m-area is referred to the vector first moment, it is of course 
a vector function, 

Thus: Forl] + F o[2] = Lr8a + Lr8a = Lr8a = Fo[l2] 

2 12 

However the value of the closely related mechanical parameter centre of mass, R, is 
not an m-area since 

Ro[l] + Rof2] :t:- Rufl2] 
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For convenience 

the m-area of the elemental uniform triangular lamina OAB with vertices 
0, A. B at the origin and the points (xl' y j ), (x2' Y) respectively such that the 
sense of OAB is anti-clockwise will be designated as follows: 

m-area [OAB] de1= AAB deJ= (X"Y,)A(X2,y) scalar/vector (3.2) 

Summarizing the results of Section 2 which referred to the mechanical area values of 
lamina OAB, we have: 

m-area 10ABI = AI\B = (XI' y,)l\( X2' Y) 


mechanical parameter 


o (origin), A(xl, y l ), B(x2,Y2 Jaretheverticesofa 
uniform triangular lamina of unit mass per unit area 

with the sense OAB being anti-clockwise 

mass MIOAB1 = {(XIY2-X2YIJI2) 

vector first moment FolOABJ = {(.\I Y2- X2YI) «XI + x)i+(YI +y)j)/6)1 

about x-axis IoxlOABj = {(XI )'2 - x2YI ) (Y/ + YI Y2 + Y/) / 12) 


moment 
 about y-axis IOylOAB] = {(XI Y2-X2YI)(X / + XI X] + x/)/ 121 


of inertia 
 about z-axis 10)OAB1 = {(XI YZ- X2YJ ) (x/+ XI X2 + x/ + Y/ + YI )'2 + Y/ ) /121 
-

centre of mass R o[OABj = (F oIOAB]) / (MIOABI ) = {(X I + xz>i + (VI + v? )j) / 3) 

scalar/vector (3.3) 

It follows from the above equations (3.2) and (3.3) that: 

the m-area of the uniform triangular lamina OAB with vertices 0, A. B at 
the origin and the points (x" y), (x2 ' Y2) respectively, such that the sense of OAB 
is clockwise, is: 

m-area [OBA] BAA (X2' y)A( xl' Y,) -((Xl' y)A( X2' Y2)) = -(AAB) 
scalar/vector (3.4) 

It is now time to extrapolate these results to the general polygonal lamina. 
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4. The m-area of the General Uniform Polygonal Lamina 

THEOREM 
Let the set of vectors {A[A' I' A2A'2' .... ,AIIA'II} be the border vector set 
of the general uniform polygonal lamina. Then the mechanical area of the 

polygonal lamina, m-area [polygon], is given by: 

r:::=11 

m-area [polygon] L A "A' 
r 

(4.1)
r 

r= l 

Proof 

Partitioning the polygon 

From the otigin 0 draw lines to pass through each 
vertex of the polygon (Fig.18). We call these lines 
radial lines. Let the number of radial lines be 

m. Choose LJ to be the radial line through any 
vertex of the polygon. Then: 

Lj, L], •. • •. ,LII/ 

are chosen to turn in anti-clockwise sense. Also 

L IIl +t is chosen to be Lt. 
(Since each of the 211 end-points Aj, A'], 

Ah A'2' ... ,A,,, A'", of the n border vectors of 
the polygon coincides with at least one other 
end-point at a vertex - with exactly 1 other in 

the case of a double vertex , more than 1 in the 
case of a multiple vertex - then the number, v, 
of vertices is less or equal to 11 . Also a radial 

line may pass through more than one vertex so 

that m S II .s n). 

The m radial lines partition the entire area of the x-y plane into m regions 

bounded by adjacent radial lines. We call these regions sectors. The area of the 
polygon within the sector bounded by radial lines Ls and Ls+ t we describe by 

[sector(s. s+ I)]' 
Both the area of the polygon as well as each of the sides or edges of the polygon 

will also be partitioned by a number of these sectors. If the origin 0 is an internal 
point of the polygon or a point inside one of its holes, portions of the polygon area 

o 

Fig. 18. Polygon described by its 
border vectors and partitioned in 
sectors by radial lines. 
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\ i ./ .•..... 

..~..................~:<::::::.:::::.-.-.. 

L. 

An 
(Ar or A'r ) 

will be found in each sector. On the other hand, if 0 is outside the polygon there may 
be just one sector containing no area. In either case by the Composite Body Property 
of m-area (3.1) we have: 

5=m 

m-area [polygon] L. m-area [sector,s.s+, ,] (4.2) 
s= ] 

Partitioning the border edges Lf 

Let the point where the general radial line L~ 
meets the general polygon edge A,A', internally 
or externally be A"" If Are and A,i,f > e, happen 
to be the internal points where the radial line L, 
and Lj meet the endpoints of the side A,A'" then 
clearly the other intemal points where the other 

, 
Iradial lines cut A,A', are: o , 
I 

Fig. 19. Radial lines L,. ..... , Lr 
A,(e+')' A,(e+2), ... , A,U-/) ( Fig.19) partitioning side A,A', in border 

segments. 

The portions of the polygon edge: 

A,eA,(e+I), A'(e+Iy4,(e+2) , .. ... . .. . , A,r/_/)A ,! 

we call border segments and the portions of the border vectors corresponding to 
these border segments we call border vector segments. 

Now the direction of the border vector segment coo-esponding to A,eA,(e+/) must 
be the same as that of the border vector AI' A',,, Hence the border vector segment of 
A,eA,(e+' ) is (A,eA,(e+l)/ A,A~.) ArA'r and the mechanical area of triangle OA,eA ,(e+1) 
is (A,eA,(e+/)/ A,A) (A/'A'r). Hence by the Composite Body Property (3.1) we have 
m-area [OAA'] = ArAA 'r ,. r 

s=/- I

L. (AnA,(S+I)/A,A~.) (ArAA 'r) 
s=e 

We will now make use of the following definition of inclusion to wri te an 
alternative form of the last summation above. 
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Definition of inclusion ( )*

/i) A,A'(s+1i if both An and A,(s+!) are on A,A ~. 

de!= ~(A ,.,A'(H')* 

~(ii) 0 otherwise 	 (4.3) 

Thus we may write: 

I={-I 	 s=m 

'"lli-area [OA ,A ~l 	 L (A ,,A,(N/A,A) (A/'A'C> = £....i 
s=e 1= 1 

Finding the mechanical area of the general sector 

Consider the area of the polygon in the general sector 
flanked by the radial lines Ls and Ls+! where LS+l is 
anti-clockwise relative to Ls ( Fig.20). This region 
is crossed by portions of the sides of the polygon, 
border segments, of the form A,A ,(s+') where 
n ~ r 2'. 1 and m ~ s 2'. 1. 

Let us, temporarily, call the border segment 
furthest away from the origin B,B'" the next one 
B2B'2and so on with the points Bf, B2, .••.•. being on 

line Ls and the points B'], B'2' ... ... on line Ls+,' 

Naturally, since any of the points B; or B~ may be a 
vertex of the polygon two or more adjacent B or B' 
points may coincide. Now we may consider 
mechanical area within a sector in the simplest cases. 

(a) no border segments 
If there are no border segments within the radial 
lines then obviously the m-area of the polygon in the 
sector is zero. 

(b) one border segment 

If there is only one border segment (see Fig. 21) then 
this must be part of the outer edge fmthest away from 
a so that the intemal points of the lamina in the sector 
must lie within the triangle OB,B',. From the 

)"I(ArA'«(A n A r( .I+/)· · r» (rA "A'r ) 

(4.4) 

L S+I 

Ls 
/~ 

>------~i!B, 
/' 

...:/ 

f 
'/~1' BJ • B~ 

// 


Fig . 20. The radial lines in the 
general segment crossed by border 
segments with B2, B.l, B4 coincident. 

Ls 
Ls>, 

"'\,/8' 


\.... ,f 

\. ...........,.... 

"\/ 
o 

Fig. 21. The general sector crossed 
by one border vector segment. 
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definition of border vector it follows that the 

corresponding border vector segment is BtB't. Thus 
from definition (3.2): 

m-area [OB,B' ,l B/'B't 

(c) two border segments 
In this case if B/B'/ and B2B'2 are the only border 
segments of the lamina in the general sector, the 
internal points indicated by the dot '0' in the 

adjoining Fig. 22 must lie within the quadrilateral 
B/B'/B'2B2 which reduces to a triangle in the case 

of a pair of coincident B points. Thus it follows 
that BtB'1 and B'2B2 must be the border vector 
segments in this case. Hence in virtue of the 
Composite Body Property (3.1), and equations 
(3.2) and (3.4) we have: 

In-area [sector(s. S+J)] 

= m-area [OB ,B',] - m-area [OB2B',] 

= BI"B'I Bz"B'2 
BI"B'I + B'z"B2 

(d) in general 

Lemma 4 

Ls-/ Ls 

\ i\~/B
, 

I\ i: : 

\ I 
B}\ j0 

a,~/

\ /8, 


\ / 
\./ 
o 

Fig. 22. The general sector with two 
border vector segments with the 
internal points in the region indicated 
by '0'. 

In the general polygonal lamina partitioned in sectors, and with the general sector 

flanked by radial lines Ls and Ls+/ (with Ls+ , being anti-clockwise relative to Ls) 

and having b border segments of the form B,B'" B2B'20 ..... . BbB ~) given in the 

order of their distance from 0 with BJB' / being the furthest (where points B" B20 
.. . ... are on Ls and points B'/, B'lo . . .... on L.\·+1) 

(i) the corresponding border vector segments are respectively: 

BIB'" B'2B2, B3B'3, .. ... , BbB'b if b is odd 

and BIB' r. B'2B2 , B3B'3,' " . . , B'b Bb if b is even 


(ii) m-area [general sector] =B,"B', + B'2" B2 + B]"B'] + . .... . • + BIJ"B'" (or B'h"Bb) 

(4.5) 
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Proof 

In general the furthest border vector segment from 
o must be anti-clockwise oriented relative to 0 
as there are no internal points of the polygon 
beyond the furthest border segment. This, in turn, 
implies that the next border vector segment is 
clockwise oriented relative to 0 as the internal 
points of the lamina must lie between the two 
border vector segments. The argument repeats 
itself indefinitely with the orientation of any 
border vector segment always being different from 
its previous. This proves part (i) of the Lemma. 

We have already established the result (ii) 
in the case when b = 1 and b =2 in cases (b) and 
(c) above. Assuming that the result (ii) holds for 
b = k we consider separately the two cases when 
k is odd and when it is even. 

(Case I) k is odd 

In this case, since k is odd, the last border vector 
segment cOlTesponding to border segment BkB'k 
must be BkB'krather than B'kBk (see Fig. 24). So 
we have: 

m-area [general sector] 

B/'B'. + B'211B2 + B311B'3 + . .. .... + BkllB'k 

Consider now the case when b = k + 1. The 
addition of the last border segment means that 
the portion of area previously pertaining to 
triangle OBkB'k has now become reduced to that 
of the quadrilateral (which reduces to a triangle 
in the case of coincident adjacent B or B' points) 
BkB'kB'k+1 Bk+1 (Fig. 25). Hence the total sector 
m-area has been reduced by an amount equal to 
the m-area oftriangle OB 'k+IBk+1• So for b =k + 1 
using (3.1), (3 .2) and (3.4) 

Ls 
Ls./ / 

~ -In/ 
\ ~/

I1} ./ 8}

'r---.J 
B'~~O i BJ 

\ I 
\ ! 

B,\ 0/ 84 .B, 

\ /
\/ 
o 

Fig . 23. The general sector of the 
lamina with the regions of its intell1al 
points indicated by the dots '0'. 

Ls., 

8,\.'~ L 
\ s

HL "i.t~ 

\ ~Bl 
\ ---.'H,\ ' '"0 / B, 
~~~~ . / 

H. 
\
\"-yB.

i 

\ 0 /

\/v 
o 

Fig . 24. The general sector with b =k 
k is ODD. 

LS- 1 

, 

/
Ls,

' , 
, 

' I , , 
\ , 

B.~ 
\ 0/8. 114./ ~ .. / 
\~. 
\ / Bh , 

V 
o 

Fig. 25. AddingBk+IB'k+1 reduces sector 
area by area OB"I BI+1' 
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new sector m-area 

previous sector m-area - m-area of triangle OB'k+IBk+1 
= BII\B'I + B'21\B2 + B31\B'3 + ..... + Bkl\B'k - Bk+1I\B'k+1 

BII\B'I + B'21\B2+ B31\B'3 + .. . .. + Bkl\B'k + B'k+lI\Bk+1 

and since with b =k + 1 the additional border vector introduced is B'k+II\Bk+1 (as k +1 
is even) the result (ii) is true also for b =k + 1 if it is true for b =k. 

(Case 2) k is even 

In this case since k is even the last border vector 
segment corresponding to border segment BkB'k 
must be B'kBk rather than BkB'k (see Fig. 26). 
So we have: 

m-area [general sector] 

= BII\B't + B'21\B2 + B31\B'3 + . ... . .. + B'kBk 

Considering now the case b = k + I the addition 
of the border vector segment Bk+IB'k+1 means that 
the sector m-area has increased by an amount 
equal to the m-area of triangle OBk+JB'k+1 that 
is Bk+1I\B'k+1 (see Fig. 27). Hence by (3.1), (3.2) 
and (3.4). 

new sector m-area 

= previous sector m-area + m-area of triangle 

OBk+JB 'k+ J 
BII\B'I + B'21\B2+ B31\B'3 + ... .. + Bk+11\Bk+ 
Bk+II\B'k+1 

and since with b = k + 1 the additional border 
vector introduced is Bk+1I\B'k+1 (as k +1 is odd) 
the result (ii) is true also for b = k + 1 if it is true 
for b = k. 

Hence since the result is valid for b = 1 and b = 
2, it is valid for all non-negative integers. 

LS-I 

\ 

B' \ Ls 
I~ .I 

B'1 \:------;;---;{
\ ~/\ .i 

B' \. -----jB-
I \........ 0 // I 


\ .'~' 
B'k/~ k-I 

- \ 0 / 
~'BB' \ ! k 

j \ /

\/' 
o 

Fig. 26. The general sector with 
b = k. 


k is EVEN 


LS_I Ls 
,, I 

, I 

, I , I 

, , 
, I 

B 'k_1 -~--;_~/B;':I 
\ l 

B'·~B. 
B' ~.'Bk- I 
.-~\~/.. 

Fig. 27. Adding Bl+,B\+, increases 
sector area by an amount equal to the 
area of triangle Obk+ IB'k+l . 
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Summing it up 

The collection of the border segments in the sector flanked by radial lines Ls and Ls+, 
that is: 

B,B I
" B2B'2, . ..... B"B~} 

is in fact the same as the set of all border segments of the form: 

ArAr(I+ 1i (l ~ r ~ m) 

where An and A,.(s+') are both internal points of ArA', (and that includes also the 
end-points). 

Moreover the direction of each of the border vector segments of the border 
segments BIB'], B2B'b . ... . BhB~} must obviously be the same as the border vector 
segment of the corresponding border segment of the form ArsAr(Hi)' Hence using the 
definition of inclusion (4.3). 

BjAB')+B'2AB2+Bj"'B'3+ . . .. . + B'bABb(orB3AB'b) 

r~lI 

=L (A"A"(H/))* /(A,A ~)) (ArAA'r) (4.6) 
,.= 1 

Recalling results (4.2), (4.5), (4.6) and (4.4) we conclude 

m-area [polygon] 

s=m 

=L m-area [sector(S.S+1 1J 
.\'= 1 

s=m r=n

L L (Ar,Ar(Hf))* /(A,.A,.)) (ArAA'r) 

.\'=1 r=1 


1'=11 S=11I 

L L (ArsAr(HI))'~ /(ArA,)) (ArAA'r) 

r=1 s=1 


1'=11 

=L (A/'A'r) 
r=1 
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y 

5. Finding the Numerical Values rWe will now determine the values of the relevant ! 
mechanical parameters of a concrete polygonal i 

lamina. As an example we take the lamina P 

already considered at the beginning of this study (2,11 

o --.--.-..---.-----7 :r
(see Fig. 28). 

Fig. 28 . Polygonal Lamina P with 
Referred to an origin 0 , lamina P has vertices at: original origin. 

A(2, 1),8(8,1), C(6,2), D(6,4), £(5,6), F(5 ,2) and G(5,4) 

and border vector set given by: 

{AB,BC,CD,DE,EA;C~FG,GC} 

Shifting the origin to vertex A by moving all three axes parallel to themselves 
to concur at A the position of the vertices will be now given by: 

A(O,O), B(6,0), C(4,l), D(4,3), £(3,5), F(3 , 1) and G(3,3) 

y 

A 
while the border vector set remains the same 

E (3,S) 

(see Fig. 29). 

Applying the theorem (4.1) the 
mechanical area of the polygonal lamina P will 
be given by: 

1'=111 

Fig. 29. Polygonal lamina P with 
m-area [polygon P] = L (A/\A'r) shifted origin. 

r=1 

= A "B + B"C + C "D + D"E + E"A + C"F + F"G + G"C 

= B"C + C"D + D"E + C"F + F"G + G"C 

slllce A "B and E "A are both zero as A is the origin. Hence we can arrive at the 
following numerical values. 

v"r=-=::...:..... (8,1) 

I 
1 

C(4,1) 

B (6,0) :r 
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Determining the values of the mechanical parameters of uniform polygonal lamina P N 

mechanical m-area lOABI m-area [I'](6,0)"(4, 1) (4,1 )~(4,3) (4,3)~(3,5) (4,1)"(3,1) (3 , 1)"(3,3) (3,3)"(4,1)
parameter LA~A'A~B = (x" Y,)"(x2 ,Y,) , , 

MIOAB[
mass (3) (4) (11/2) (112) (3) (- 9/2) 23/2 


(x,)', - .\,y,)I2) 


vector F.,[OAIJ[ 
(3)( 1 Oi+j)/3 (4)(8i+4j)/3 (l1/2)(7i+8j)/3 (I/2)(7i+2j)/3 (3)(6i+4j)/3 ( -9/2)(7i+4j)/3 (18Ii+116j)/6


first moment {(x,)', -- x, y,)«x, + x,)i + (Y, + y,Jj)/6)) 


about l AX [OAB[ 
(3)(1 )/6 (4)(13)/6 (1 112)(3)/6 (112)(3)/6 (3)(13)/6 (-9/2)(13)16 613/12

x-axis (x,)', -X, Y,) (Y,'+Y,Y,+I',' )/12) 

moment 


of inertia about I",[OAB[ 
(3)(76)/6 (4)(48)/6 (1 112)(37)/6 (112)(37)/6 (3)(27)16 (-9/2)(37)/6 37114 

y-axis {(x,)', -x, y,)(x ,'+x,x2+.r/)1I2) 

RA[p[ = F,,[!'[IM[p! = (181 i + 116il 169 


centre of mass 


Ro[!' 1 = RA[I'[ +OA = (319i+185il/69 


loxlP! = lux [1'[ + M[p[ ([ 85/69)' = IAx[p[ - M [1'[ 116/69)' + M[p [ (185/69)2 = (613112) + (23/2)( 185' - 116' )/69' ) = 405/4 

<(s. 
moment [m [1'[ = lu,[p! + M[p[ (319/69)' = IA,[p[ M[p] 181/69)' + M[p[(319/69)' = (371112) + (23/2)(319' - 181')/69+2) = 3113112 0'...,
of inertia n 

p 
1\I[p[ = ["x[p[ + J, y[P[ = 863/6, 107[P[ = lox[p[ + IUyIP] = 1082/3 ;; 

<
Z

NOTE: In the expressions above, such as F,I OAB). OAB in the square brackets refers to the general triangular lamina as defined previously while the subscript A of F refers to n 
the specific vertex of the polygonal lamina P. 

-~ >-l 
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