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Abstract

There has been an increasing interest in examorgagnisational principles of the cerebral
cortex (and subcortical regions) using different IMg&tures such as structural or functional
connectivity. Despite the widespread interestpuhiictory tutorials on the underlying
technique targeted for the novice neuroimager aesg in the literature.

Articles that investigate various “neural gradiérifsr example based on region studied
“cortical gradients,” “cerebellar gradients,” “hippampal gradients” etc ... or feature of
interest “functional gradients,” “cytoarchitectugghdients,” “myeloarchitectural gradients”
etc...)have increased in popularity. Thus, we believe ithatopportune to discuss what is
generally meant by “gradient analysis”. We introglba@sics concepts in graph theory, such
as graphs themselves, the degree matrix, and jheesdy matrix. We discuss how one can
think about gradients of feature similarity (thegarity between timeseries in fMRI, or
streamline in tractography) using graph theorywaedextend this to explore such gradients
across the whole MRI scale; from the voxel levah® whole brain level. We proceed to
introduce a measure for quantifying the level afikrity in regions of interest. We propose
the term “the Vogt-Bailey index” for such quantédion to pay homage to our history as a
brain mapping community.

We run through the techniques on sample datasdtgling a brain MRI as an example of
the application of the techniques on real datavemgrovide several appendices that expand
upon details. To maximise intuition, the appendm&stain a didactic example describing
how one could use these techniques to solve aplatiy pernicious problem that one may
encounter at a wedding. Accompanying the articketisol, available in both MATLAB and
Python, that enables readers to perform the asadgsicribed in this article on their own
data.

We refer readers to the graphical abstract as arview of the analysis pipeline presented in
this work.



Graphical Abstract
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The two basic algorithms to compute the VB Inded tre principal gradient. The algorithm on the tdpicts
a searchlight algorithm that identifies local basdd he algorithm on the right (yellow route) depithe
creation of a gradient map and single VB Indextfigr whole brain or (inclusion of orange route) riplet
clusters.

1. Introduction

Every discrete point in the brain (modelled as xeVor vertex in the context of MR
imaging) has several co-existing features suchasytological architecture, the functional
signature, the receptor density etc... Parcellai@mne method of describing neural features
and their similarities. The technique groups afgh® brain that have similar features
together. One of the most recognisable names iremateuroscience is that of Korbinian
Brodmann and his cytoarchitectonic parcellationthefcortex from the early Z@entury.
Despite his modern fame, Brodmann was not the ardsint proponent of parcellation. That
honour arguably goes to Oskar and Cecile Vogt, wlie the true parents of modern
parcellation, and Brodmann’s mentors.

Brodmann’s regions attempted to define areas @l logtoarchitectural homogeneity in the
cortex. Unfortunately, the convenience of usinghsaieas in neuroimaging studies comes at
a high price. First, Brodmann areas were definstblugically and do not necessarily
correspond to gross anatomical landmarks thatiaitgles on MRI (Zilles and Amunts, 2010).
Second, Brodmann’s maps certainly are not the fimal on what constitutes a
cytoarchitectural brain parcel. His contemporafi@s Economo and Koskinas, 1925) as
well as current researchers (Amunts et al., 200&j&. et al., 2014; Caspers et al., 2013,
2006; Rottschy et al., 2007; Scheperjans et ab8p8are still investigating and refining
cytoarchitectonic parcellation. Third, cytoarchitee is not the only feature with which one
can parcellate the cortex. Myeloarchitecture, h@tance, has been used since the times of
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Brodmann (Geyer and Turner, 2013; Nieuwenhuys.eP@l5; Vogt and Vogt, 1911) and
recently a vast array of neuroimaging featuresble®s used (Glasser et al., 2016). Fourth,
the boundaries (or borders) between areas chasstdyy any particular feature may
sometimes be sharp while other times they can loedal (Bailey and von Bonin, 1951,
Brodmann, 1909; Glasser et al., 2016). Finallyfedént “distinct” areas may also share some
relationship with other areas and thus show a aoem pattern across the whole cortex; for
example functional areas involved in resting stevorks (Damoiseaux et al., 2006).

In the 1950s, Percival Bailey and Gerhardt von Bgmbposed another, competing
conceptualisation of cortical organisation. Vogd &ailey can beprima facie thought of as
expounding opposing points of views. While the \&pghampioned cortical parcellation,
Bailey and von Bonin (1951) argue that the isoco(te neocortex — the six layered cortex)
is much more similar throughout its extent thas different. They go so far as to state that:

“The drawing of sharp areal boundaries, on the Isasi many structural peculiarities
of varying distinctiveness and significance, isfinmedamental defect of most maps
and has been carried to absurd lengths by the ¥dgbol.” (p. 189)

They elaborate by stating:

“Anybody can see, to give an example, the diffexdretween Brodmann's areas 17
and 18. But the differences between his 18 andd @aite tenuous and very difficult
to recognize. To draw a map on which these threasare given three different
markings - such as dots, cross-hatchings, and bréikes - is to create an entirely
misleading impression. Useful as such maps aréhdescription of corticocortical
connections, they do not translate accurately aytioéectonic data.” (p. viii)

An interest in similar issues of parcellations wargradual transitions between areas has
reappeared in the modern neuroscience literatndeed, Brodmann himself asserted that
some regions demonstrated transitionary zones (Baod, 1909). While the feature of
interest has moved on from cytoarchitecture to fMRE series analysis or diffusion MRI
tractography (more generally within a context afiwerk analysis, connectomes and
connectivity based parcellations), some themekegarly debates have lived on. For
example: when, and to what extent, is clusterimgcibrtex into distinct parcels appropriate?
And, as has been explored by (Mesulam, 2008, 1988t are the interareal relationships
between cortical territories?

In 2004, a novel approach, based on spectral ghegary, appeared in the literature to
investigate changes in cortical connectivity paisesicross the brain using diffusion MRI
tractography (Johansen-Berg et al., 2004). Sinagoroaches have become a popular tool for
parcellating the cerebral cortex using both ditfasand functional MRI (Cloutman et al.,
2012; Craddock et al., 2012; Devlin et al., 2008kEoff et al., 2015; O’'Donnell et al., 2013,
2006). Recently, similar techniques have also heseql to explore interareal connectivity
pattern changes (such as structural connectivitptih tractography or functional
connectivity) as one traverses the cerebral cog@Galled feature similarity gradients
(Bajada et al., 2017; Cerliani et al., 2012; Hab#éllge 2018; Jackson et al., 2017; Margulies et



al., 2016). Indeed, Margulies et al. (2016) hawanshthat, under certain constraints that
likely depend on the construction of the similantgtrix, the primary rs-fMRI feature
gradient reflects the interareal relationshipsioatl by Mesulam (2008) and elaborated by
Buckner et al. (2013) where this gradient has mtydsélective and modality general cortices
on either end. While this concept may not be fuliglerstood by a novice reader, we hope
that by the end of this article (and particularftgareading the supplementary text) the
interpretation of such as statement will be obvious

These techniques are appealing to the neuroimagimgnunity since they have the potential
to provide a flexible, unified framework for undensding similarities of neural structure or
function across the brain (c.f. Paquola et al. 2@D19; Vazquez-Rodriguez et al., 2019 for
examples of how flexible these concepts can be asexbs multiple modalities). In this
article we further extend this framework by intrathg a way to measure how sharply
defined each area is, showing the full spectrumaskibilities between the ideas of the
Vogts, and those of Bailey and von Bonin; The VBgiley index.

We use the historical context to highlight the imipoce of having a way of thinking about
cortical organisation through “feature gradient®.g. fMRI, tractography, cytoarchtectonic
etc... that bridges the gap between old debatesifi®pdlg, we will apply the tools described
here to help settle a discussion started in thelimiof the 28 century. We have also made
available a pair of tools written in MATLAB and Pgin implementing the algorithms
outlined in this work, thus making it possible tbe interested reader to calculate the VB
index using their own data (https://doi.org/10.528ho0d0.3609459
https://github.com/VBIndex/) (Da Costa Campos and Bajada, 2020). It is alssipke to

install the recommended production version of tfénsare using Python’de factopackage
managerpip, with “pip install vb_toolbo% Once this is done, the softwark_toolwill be
available for use. For usage details, we refehédfall documentation of the software’s
GitHub repository (https://github.com/VBIndex/py_ \bolbox).

We note that various groups have released their‘gvadient analysis” pipelines and
toolboxes including the early “gradient pipeling/ llargulies et al. (2016), connectotopic
mapping focused on regional modes of connectihgnges and their statistical tests by
Haak et al. (2018), LittleBrain focusing on Cerddretjradient by Guell et al. (2019), and
BrainSpace a recent all-purpose gradient toolboXdyde Wael et al. (2019). All these
workflows and toolboxes have minor differencesenain choices that are described below.
Some also include the ability to perform statidtteating on Gradient maps. The software
presented in this article creates similar, butmemtessarily identical, ‘gradient maps’ as the
other software packages available, in additios the only package to-date, that allows
calculation of the VB index (as described in sethal).

In the rest of this article we describe and exptheedetails of the steps needed to extract
feature similarity gradients and the VB Index frdata. We discuss methods of measuring
similarity between brain regions, why it is usefukhink of these resultant similarity
measurements as a mathematical graph, and howtherfyprocess the graph to obtain the
desired gradient maps. In this article we restnotdiscussion to a technique based heavily



upon Laplacian Eigenmaps (c.f. Belkin and Niyo@02, 2002). In general, the problem of
finding meaningful structures and geometric desioms of such data is usually stated as
some sort of nonlinear dimensionality reductiorth&ugh several forms of dimensionality
reductions for constructing cortical gradientsgobcortical, cerebellar etc.) have been used
in the literature (Coifman and Lafon, 2006; Haaklet2018; Johansen-Berg et al., 2004;
Margulies et al., 2016), they similar in spiritttee Laplacian Eigen-mapping reviewed here.
We refer the interested reader to the relevamtlitee and hope that the tutorial presented
here will serve as a useful introduction to undardtthe principles behind those related
approaches.

2. What is a Graph?

Most algorithms for feature gradient analyses emémgm the mathematical discipline of
spectral graph theory. This is an approach to stgdyroperties of graphs by computing the
eigenvalues and eigenvectors of matrices that sursenide graph. While it would be

lengthy to go into a detailed explanation of eigdnes and eigenvectors in this text, we hope
that their use in the context described will becaearer in later sections.

A graph is a mathematical structure that definkgiomships between various objects. For
example, the structure in Figure 1 is a graphdeéihes the relationship between four
objects. Each object is called a node.

The nodes could be thought of as voxels (or suNackces) in the cortex or as cortical
regions of interest.

Figure 1: A representation of a graph with 4 nodesEvery node can be considered to be a voxel or a ieg of interest.

The edges between the nodes represent their relatips; these can either be structural connections @ measure of
similarity (affinity) between the nodes.

The lines that link the nodes are called edges.ebges can be binary or have a weight
associated with them (creating a weighted graplthiwneuroimaging, the edges are almost
always undirected meaning that if node a connect®tle b, the opposite is also true.

Some basic concepts are needed in order to proteedadjacency matrix is a square matrix
(i.e., the same number of rows and columns) whezeyaow and every column represent a
single node, and the elements in the matrix reptdbe relationships between the row node
and the column node. For the unweighted graphgareil, the adjacency matrix is



0111
1010
1100 [
1000

The rows and columns are ordered from 1 to 4 dughentries of 1s in columns 2, 3 and 4 of
row 1 means that node(row 1) is connected to nodescandd (columns 2, 3 and 4).

The degree matrix is a diagonal matrix where thiaemnalong the diagonal represent the
degree of each node, that is, the number of nddgsate connected (adjacent) to that node.
For example, noda has a degree of 3 because it is adjacent to tloeées b, candd). The
degree matrix D can be computed as the row/columa sum of the adjacency matrix. For
the graph in Figure 1, the degree matrix is

3000
0200
0020
0001

D =

The Laplacian is defined as the degree matrix mihesdjacency matrix
L=D-—A.

While the exact meaning of the Laplacian may bgadilt to intuit for many readers, we
hope that the use of it in Section 4 will give tkaders some intuition. At this point it is
useful to note that in many applications, includimgieuroimagingne can define a weighted
graph, where each edge connecting the nodes affesedt weights. A high weight, for
instance, could mean that two nodes are strongipected, while a low weight would
indicate the nodes are not as strongly connectad.can now define a weighted version of
the adjacency matrix, which can be used to deseriveighted graph. In the general case,
the weighted adjacency matrix can be defined as

Wi1 Wi 0 Wig

W W cee W
W = :21 22 2n

Wni Wn2 " wy,

We will see later that this matrix can be assodiabethe concept of a similarity or affinity
matrix. In the example above, the weighted adjagematrix can be written replacing the 1s
in the adjacency matrix with the corresponding wesgWeighted versions of the Degree and
Laplacian matrices can be defined in the same wdefore. Henceforward, unless
otherwise specified, we will refer to the Laplacidegree and adjacency matrix as their
generalised weighted versions.

2.1 Graphs in Neuroimaging

For neuroimaging purposes, a graph can be onewdistinct types. The most conceptually
straightforward way of creating a graph of the ibigito consider its structural connections.
For example, the nodes in the graph of Figure Irepresent brain areas (e.g. cerebellum,

7



brainstem, etc...) and the edges can representatis that connect those brain areas. In
other words, these graphs can be obtained thraagtography and assuming that each voxel
(or region of interest) is a node and that eveagttis an edge connecting two nodes. These
graphs we refer to alirect graphssince the edges are the direct connections betesssn
node. One can think of these as friendship netwatiere an edge between two individuals
is determined on whether they are friends or not.

Another approach to constructing a graph is to agmp measure of similarity between a
feature of interest of one region and the sameaifeadf another. For structural data, the
whole output of a tractography algorithm (the togcam of a single voxel) can be considered
to be a feature of a voxel and is compared pairtsEtain a similarity matrix between
voxels (Bajada et al., 2017; Cerliani et al., 20D&ylin et al., 2006; Johansen-Berg et al.,
2004). For functional data, one can use the fMReEtseries. In this case, the nodes are still
voxels, but the edges are weights of how simila woxel’'s feature is to another’s. If we
consider that two people are nodes in a networik guge weight would be determined by
how similar two individuals are, based on indivibigatures (e.g. dress sense, job, etc...).
We call this deature similarity graphFor simplicity, this is the type of graph that wal be
discussing in the rest of this article. It is imgaoit to note that much work in the fMRI
literature performs the similarity computation wotthe features themselves (e.g. the time-
series), but on a “functional connectivity” matfoxf. Margulies et al., 2016). In terms of the
“people network” proposed above, if we assumetti@atfunctional connectivity” gives us
information about the “level of friendship” betwesvo individuals, then the similarity
matrix of this last approach indicates the simijabetween each individual's friendship
network.

3. The Similarity, Affinity or Adjacency Matrix

The adjacency matrix is a simple mathematical segr&tion of a graph that describes the
structure of the connectivity in the graph, thaiwkether nodes are connected or not. A more
detailed description is provided by using a weidhddjacency matrix. The question is then
how to define the weights, which in turn dependsvbiat kind of graph we want to describe.

In neuroimaging the weights can be defined in tesfresimilarity metricdescribing to what
extent a feature of one voxel, or vertex (e.g.MRIftime series or a set of streamlines) is
similar to every other voxel in the region of irgst. This is done across all voxels (or
vertices). We will refer to such a weighted adjagematrix as thaimilarity or affinity
matrix.

Choosing a similarity metric is extremely importamtce it will affect any clustering that

may be done on the data. By far the most poputaitagity measure between two voxels is
the Pearson’s correlation coefficient, which canrberpreted as a centred and normalised
dot product (Cerliani et al., 2012; Craddock et2012; Devlin et al., 2006; Johansen-Berg et
al., 2004; Klein et al., 2007; Zhang et al., 205&E next section for a discussion of the dot
product and other similarity measures. In ordarrtderstand the utility of correlation as a
similarity metric, a short description of its presors is given below (cf O’Connor, 2012 for



an intuitive review). We will then introduce a sglignodification that we employ in our
adjoining code.

One caveat of the algorithms used for these amnaiggbat the adjacency matrix must be
non-negative. This is not automatically true forstgimilarity measures, including those
introduced in section 4.1. Hence, some techniqu&t lmeiused to ensure that the
corresponding similarity matrix only contains noegative weights (Haak et al., 2018;
Johansen-Berg et al., 2004; Von Luxburg, 2007).example, Johansen-Berg et al. (2004)
proposed to add a scalar constant to the similaréirix to ensure that all values are positive,
others have only kept positive values at some lmdgMargulies et al., 2016).

Once a similarity matrix has been created, it canded to represent the graph that all
computations are carried out on. A final considerategarding the similarity matrix is
whether the full set of similarities should be usedf the similarity matrix should be
thresholded in some way (Von Luxburg, 2007). Famegle, all weights below some
arbitrary values could be set to zero; the remainder of the weigatsbe retained or
binarised (this will be the same as using a simgjacency matrix). Another approach to
limiting the neighbourhood is to restrict the weggto the k-nearest neighbours. Advantages
of both these data reduction approaches are teptrémove noisy weights and they sparsify
the matrix, leading to faster and cheaper computatiFor example, in fMRI voxels may
have a very low correlation (weight) not becausarof intrinsic functional connectivity, but
because of noise.

3.1. Similarity measures

The most basic way to measure the similarity of tatasets (thought of as vectors) is the dot
product of the two vectors (consider an fMRI tineeias or a three-dimensional image of a
tract density map (or tractogram) that is flattemed one long vector).

Geometrically, the dot product of two vectors is girojection of one vector onto the other.
There are many equivalent ways to calculate theamtuct. For this paper, the one offers

the most insight is
dot(x,y) = \/Z x? \/Z y? cos(x, ).
i

i

In this form, the dot product has two componerits:dosine of the angle between the two
datasets (treated as vectors) and their magnitlithes means that magnitude and angular
similarity (as measured by the cosine of an araile)confounded. In order to solve this
problem, one can normalise the dot product by tigdby the magnitude of each dataset and
that leaves us with the cosine function.

One problem with the cosine similarity is thatsitsensitive to relative shifts in the data
between samples (such as can occur in fMRI timesedue to absolute signal differences
that are of no interest). The most common way éater a shift invariant similarity is to mean



centre the data and then compute the cosine sityjlathich is the sample Pearson’s
correlation coefficient:

corr(x,y) = cos((x —X),(y — %)),

wherex andy are constant vectors the sizexaendy, where each element is the mean of
andy, respectively. Being shift invariant is an appeglproperty of the correlation

coefficient and is especially useful to comparaaldes that have different means. Examples
of works in the literature that use the cosine ity can be found in the following articles
(Bajada et al., 2017; Hong et al., 2019; Jacksah. £2020, 2017; Margulies et al., 2016).

One should remember that the cosine is a sinushidation. As a result, a cosine similarity,
or a correlation, value of 0.5 does not have tlad m¢erpretation that the angle between the
two datasets is 45 degrees. An easy solution sagtio calculate the angle between the two
data sets by using the inverse cosine functiondtbeosine), normalise by 90 degrees (or
n/2):

cos 1 (cos((x —X),(y —¥)))
90 '

normAngle =

The above formula will measure a normalised “angdistance” between two datasets bound
between 0 and 2. We can thus define the quanstiglebws

AngSim = 1 — normAngle.

This measure returns a value that has an almastigdeinterpretation to the correlation
coefficient (or cosine similarity) but has the npreperty that a value of +0.5 implies that the
two datasets are half way between orthogonal aldeaw while a value of -0.5 implies that
the two datasets are half way between orthogorthhati-colinear. Examples of works in the
literature that use a normalised angle includeiyiene et al., 2020; Vos de Wael et al., 2018)

4. The Spectral Transformation and the Graph Laplacian

Once a similarity (also affinity or adjacency) nimais computed, we have all the information
that describes the relationships between individodes. Our next step is to embed our data
into a low dimensional space (for the moment a dingensional line) where the nodes
distances from each other and the centre of theesgdlect the internodal affinity.

While we refer readers to the supplementary mat@k@pendix C) for an informal
discussion of the problem, the process can be flatedias the solution of an optimisation
problem where a suitable cost functidfw) is minimised (described by Leskovec et al.,
2014)

x = argmin{U(x)}.
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Shortly,x is the vector that minimises the cost functitfx). Such cost function can be
written as a weighted sum of squared internodel{@an) distances across all connected
nodes,

U(.X) = z Wij(xi—xj)z.
(Lj)EE

One can think of the weight&;; as a measure of the relationship between two néoles
example, cortical vertices. Using graph theory leage, one can think of the above situation
as defining a weighted graph where the value df @acle represents the location of each
individual and the weight of the edge connecting twdes represent their relationship.

The minimisation of the above cost function meduas long distances between pairs of
vertices with a high relationship value (i.e., higkight) is penalised. As a result, a pair of
vertices with a high weight will be placed closestixh other, while a pair of vertices with a
low weight will be placed far apart. The aim idital a positioning where the sum of costs
associated with all pairs of vertices is at its imium.

The above problem, however, is not well-posedtFirbas a trivial solution which is to
place all vertices at the same locati@ng a constant vector), which produces zero cost.
While this satisfies the minimisation of our casttion, it is not useful since it tells us
nothing about the relationships between verticeso8d, ifx is a solution then any shifting
or re-scaling ok by a constant value (i.e.,y = X + c ory = cX, respectively) will also be a
solution because the resulting cost function isurrant to shifting or re-scaling. Therefore, in
order to circumvent trivial and non-unique solu@ome constraints are required. The
simplest constraint is that the cost function ninesminimised subject to (s.t.) the magnitude
of the position vectox being equal to 1. Mathematically this is written as

X = argmin{U(x)} s.t. xTx=1.
X

Note that this constraint does not solve the proldé a constant solution completely since a
constant vector, can still produce a zero costasnl satisfy the constraint. We will see later
that since this solution is known in advance, care €asily account for it after optimisation.

In general, the constrained minimisation problem loa solved using the method of
Lagrange multipliers (cf Hagen and Kahng, 1992).ilé/ha detailed explanation of
Lagrangian multipliers is beyond the scope of taxt, the modification makes the
computation easier to solve while maintaining @¢swuracy. The idea of this method is simple:
We incorporate the constraints into the cost fumctiself. Thus, we rewrite the problem as

X = argmin{U(x) + 1(1 — xTx)}.
X
Now, any putative solution that does not confornthi constraint imposed will be penalised.
This penalty is dictated by the weightoften called the Lagrange multiplier. We procezd

solve the problem in the following way. First, rérthe optimisation problem as follows
(see Appendix A for details):
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% = argmin{U(x)} = argmin{x"Lx + A(1 — x"x)}.
X X
The minimisation can now proceed in the usual wataking the first derivative of the

modified cost functiori/ (x) and equating to zero (extremum condition)

U (x)
ox

=2Lx —2Ax =0,

and hence
Lx = Ax.

The last expression definestandard eigenvalue problefar the Laplacian that can be
solved using standard numerical libraries (e.@ ,MATLAB functioneig). The pair(A, X) is
called an eigenpair, with called the eigenvalue, afidhe eigenvector. Eigenvalues and
eigenvectors are useful in a broad range of agpits, with the interpretation of these pairs
depending on the context in which they are used.

In this paper, we will focus on the eigenvectorshef Laplacian, as they contain the
information which we will use to create our gradgerHowever, the eigenvalues also encode
important information. Given that the Laplacian mais positive semi-definite, the smallest
eigenvalue is zero and its associated eigenves@ronstant, thus, we will focus upon the
second smallest eigenvalue, which is termed thebadgc connectivity of a graph (Fiedler
1973).

Fiedler (1973) showed that the magnitude of thelaigic connectivity reflects how well
connected the overall graph is, i.e., the largeralgebraic connectivity is, the more difficult

it is to cut a graph into independent componeift$e algebraic connectivity is zero it means
that the graph is not connected; i.e. there aleast two graph partitions. In other words, if a
graph has at least two hard clusters (i.e. it & dampletely disconnected subgraphs), the
algebraic connectivity will be zero. The more carted a graph gets, the higher the algebraic
connectivity becomes. This intuition will be revesd in section 5.3.

The fact that the first eigenvalue is zero diredilstates that its associated eigenvector does
not carry any useful information regarding the tie&aposition of the nodes. Hence, the
optimal solution is encoded in the eigenvector eissed with the second smallest
eigenvalue. This is called the Fiedler vector attermathematician who first described this
solution in the context of graph partitioning (Hed1973).

At this stage, it is worth noting that the desdiilselution to the problem is biased in the
sense that nodes with high degree will dominatartimémisation since the corresponding
row (or column) of the Laplacian matrix is dominahlis means that nodes with a high
number of neighbours (i.e., high degree) will témtbe grouped together irrespective of their
similarity. This bias can be compensated for bygisi modified constraint” Dx = 1 so that
our optimisation problem is transformed to
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x = argmin{x"Lx + 2(1 — x"Dx)}.
X

The new constraint means that nodes are penalisedlfey are assigned a higher cost)
according to their degree (Johansen-Berg et &04R®y following the same mathematical
derivation, as above, the associated eigenvaludeois then

Lx = ADx.

This is known as thgeneralised eigenvalue probldor matriced. andD, which can also be
solved numerically using standard toolboxes. Comnaoolboxes that are able to solve the
standard eigenvalue problem can also be used\e sw generalised problem. This is the
case, for instance, for MATLAB’s and Scipyegy function.

Often, the Laplacian matrix is used in normalisachT (i.e., normalised with respect to the
nodes degree), so that its diagonal elements lamaal However, it can be demonstrated that
normalising the Laplacian is equivalent to chandhegconstraint of the minimisation
problem in some way and therefore one must be ofdaow a given normalisation affects
the solution. Several versions of the normalisepld@an have been used in the literature. In
Appendix B we describe the symmetric normalisedaepn and the random walk
normalised Laplacian.

5. Reordering, Eigenmaps, and The Vogt-Bailey Index

If we think of brain voxels, or cortical surfacertrees, as nodes with associated features
(such as an fMRI time series, or a tractogram etand)the relationships between these
features as edges on a graph, we previously desctiitat the second smallest eigenvector
describes the location (coordinate) of each nodmadimension, a line, which is dictated by
each nodes relationship (affinity) to each-othesing the location as a heatmap value
becomes a way to visualise those relationshipsiemtain (the so-called macroscale
gradients). Further, the components of eigenvectenste the coordinates of the node in a
space containing as many dimensions as theregaawactors (it is not restricted to a single
dimension). Hence the eigenvector with the secomallest eigenvalue would give
coordinates of the nodes on a line, the secondharttieigenvectors would give the
coordinates on a plane and so on. For this, margtcated visualisations are needed. One
may also present the higher dimensional gradientspgendently, but one must always
remember that the second gradient is influencetth®yirst and the third by the previous two
etc.

Further, the algebraic connectivity indicates tharpness of the best split (or cluster) in the
region of interest. If a searchlight VB index arsadyis performed on local neighbourhoods
(see section 5.3), we can investigate mesoscogadaiants (or transitions between areal
borders).

5.1. Spectral Reordering
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The simplest approach to mapping the embeddeddocanto the brain is by assigning each
voxel or vertex a heatmap value that correspondsetio rank order in the embedding. This
approach allows for investigating the general patté changes in features across the brain,
but, being rank ordered, does not provide any ldegidout the actual feature distance
between vertices (c.f. Bajada et al., 2017 forxan®le; c.f. Johansen-Berg et al., 2004 for
the original spectral reordering paper in the ditere where it was used for parcellation).

5.2. Eigenmaps

Laplacian eigenmaps (Belkin and Niyogi, 2003, 2082) closely related to spectral
reordering. Use of eigenmaps has been introducttoeuroscience literature (Cerliani et
al., 2012; Haak et al., 2018). In one dimensioa,approach uses the coordinate points given
by the primary eigenvector of the Laplacian asitibensity of the voxel of interest.

This approach can be particularly advantageoug $ine can explore the relationships
between voxels in more than one dimension. Indesatdinates of the similarity or eigen-
space can be mapped into a colour palette anc#udtaint colour map value can be mapped
onto the brain space by assigning that value te@onesponding voxel (c.f. Bajada et al.,
2019). This means that one can only map as mangrdiilons as the dimensions of the colour
palette (in our case the 3-dimensional RGB col@lette).

Reordering and eigenmaps give us maps of optimbedding of voxels in a low
dimensional space. Effectively, voxels (or ROIs)hwa similar value, have a greater affinity
to one another. This establishes the large-scglnational gradients of the cortex. It also
gives some indication as to whether there are diagontinuities across that gradient but a
focus on the eigenvectors alone fails to quankigyeéxtent of discontinuity in cortical intra-
areal relationships. The eigenvalues provide aisolu

5.3. The algebraic connectivity and the Vogt-Baileindex

The algebraic connectivity of a graph is an indicatf how “well connected” that graph is. It
is the second smallest eigenvalue of the Laplatiatnix (see section 4).

Once normalised to be bounded between zero an¢bgrdividing by the mean of all
eigenvalues save for the first, which is the maximualue a graph with an affinity matrix
one ones would have), the algebraic connectivitylmused as an indicator that a particular
neural region has at least one sharp delineatiaomprises only graded differences. This
allows for a quantification of the historical issaleout the degree of interareal transitions
present in the cortex. While the Vogts primarilg@ed for clearly demarcated brain areas,
Brodmann, in his 1909 monograph clearly statedsbate areal cytoarchitectonic boundaries
were graded. In the extreme, Bailey and von Bobh9%1) argued for an effectively graded
cortex (with some minor exceptions). We thus prepbe term “Vogt-Bailey Index” to
describe the normalised algebraic connectivityhefdgraph Laplacian when used to describe
the extent of feature similarity in a neuroscieatdontext.
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Such an approach can be done across the entiex ¢orgive a single value for the
“gradedness” of the whole cortex, across predefaiesters (such as the resting state
networks) or to give a value per region of intetbat quantifies how similar features in the
region are. We note, however, that this value ateltg us little since the value will be
affected by smoothing (which exist in MRI signals)can, however, be used as a relative
measure where one can compare regions acrossnieghsain or between different subjects
(see section 5.3. for notes on statistical anglysis

Finally, one can use a vertex-wise searchlighttoutate the Vogt-Bailey (VB) Index across
the entire cortex. Using this approach, a neightheadl of adjoining cortical voxels, or
vertices (as is assumed in the adjoining codedlsutated and the (normalised) algebraic
connectivity of its affinity graph is calculatedhd calculated VB index gives a value of how
similar a feature (fMRI, tractography, or others}he centre of the searchlight is to its
nearest neighbours. The final result is effectivaelyortical edge detection algorithm (see
Figure 2 and 3 for intuitive examples) where bouredabetween parcels should emerge
naturally and their relative sharpness should Ipasgnt. Of course, smoothing effects and
voxel / vertex size will limit the resolution thahe can expect. Indeed, such notions in MRI
analysis are not new. The idea of a measure cbmaghomogeneity (ReHo) has been
present since the early days of fMRI (Jiang and, 2046; Zang et al., 2004). Further, the
approach has similarities to the observer indepanaethod for microstructural
parcellations (Schleicher et al., 1999). Our appihcamply fits these ideas of regional
homogeneities and boundaries into a flexible andergeneral framework that does not
restrict either the metric for similarity that isad (such as the method for microstructural
parcellation) or the feature of interest (suchralsath ReHo and the observationally
independent approach for microstructural parceligti

In summary, the VB Index is the proposed term iermormalised algebraic connectivity of
the graph Laplacian when used to describe the egfdaature similarity in a neuroscientific
context. The adjoining software can produce thtgpes” of VB Indices: 1) the full brain
analysis which also computes a whole brain gradiergle VB Index for the whole brain; 2)
clustered analysis that computes a gradient andhd8x per region of interest, and 3) the
searchlight VB Index which computes a VB Index pertex based on the neighbourhood
data of directly adjacent vertices. The size ofdluster (going from the nearest connected 5
or 6 neighbours to the full brain) is relevanthie interpretation of the VB Index. As Fielder
(1973) showed in the original paper, the valuelgélaraic connectivity provides a measure
of how difficult it is to split the graph (higherlue indicating more “connectedness”, i.e.
more difficult to split). If it is zero, then it dicates that there is at least one complete split i
the graph. Hence as the cluster gets larger teemmrie of a chance that the graph will be
easier to split into two, that is what the VB Indarasures. In the case of the searchlight,
since we are only looking at 5 or 6 connected reghs, the interpretation is more
straightforward: is there an edge near that vertex?

6. Notes on Statistical Analysis
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This article focused on creating a conceptual wtdading of the large-scale gradients and
the quantification of boundary edges using MRI data

With respect to the statistical treatment of lasgale feature gradients, a literature is
emerging that discusses various statistical appesato use on gradient maps. The reader is
encouraged to explore the articles in this sedorcurrent approaches on gradient statistics
(Haak et al., 2018; Hong et al., 2019; Langs e8I15; Tian and Zalesky, 2018; Xu et al.,
2019).

Regarding the statistical analysis of the VB Indeps, future work is needed to disentangle
the effects of MR noise and inherent smoothness figal gradations in feature similarity. A
research avenue for noise removal includes therggoe of null models with similar noise
and baseline smoothness as the underlying MRI(ddtaGordon et al., 2016; Tian and
Zalesky, 2018).

The VB toolbox is a freely available, open soumm®ject under the terms of a GPL licence,
we hope that with interest growing in the field@&fadient analysis that the toolbox will grow
to also incorporate various statistical approadbemaking inferences on both gradient maps
and the VB Index.

7. Experiments

7.1 Photography example: Searchlight VB Index

Before applying the VB Index to the rather abstrasion of function MRI, we have

provided a MATLAB script within the respective viens of the toolbox that implements the
VB Index on a colour photograph
(https://github.com/VBIndex/matlab_vb_toolbox/treaster/vb_index_intuitive _example).
Every pixel within the 2D photo can be thought sfaavertex within a brain surface. The
functional data is represented by the hue, saturaind their brightness value of the pixel.
Performing the VB Index searchlight operation om pinotograph, as described in Section
5.3. results in a quantification of boundariesha& image (See Figure 2). Readers are invited
to explore this script with other images made fresfailable or try it out using their own
photographs.
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Figure 2: The VB Index applied to a photograph (topeft) using all three normalisations of tha Laplaén
matrix. The colormap ranges from black (0) where tlere are sharp transitions to white (1) where therés
homogenous structure in the image.

7.2. A Neuroimaging Example: Simulated MRI data exaple

Following the validation of the technique on col@iotographs, the performance of the
technigue was evaluated on synthetic MRI data wterground truth is known. To this end
a cortical surface from the HCP dataset was arbitrsplit into 6 contiguous parcels. The
vertices within the same parcel were assigned iclritme-series, which differed across
different parcels. The analysis was carried outgisersion 1.1.0 of the pythat_tool.

Figure 3 show the results of applying the propasethod to the simulated data. As
expected, the full brain gradient shows a pieceewanstant pattern, reflecting the similarity
structures between parcels (unknown) as describedea Figure 3a). Consistent with this
result, the vertex-wise VB Index shows a patterengtthe edges between parcels are
highlighted (Figure 3b).
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a) Full brain gradient b) Searchlight eigenvalues

-1.328e-4 -1.256e-4/2.687e-5 5.973e-5

FIGURE 3: a) The gradient map on synthetic data shwing the expected pattern with values within
parcels being extremely similar but different acros parcels. b) The VB Index on a cortical surface
highlighting the arbirary parcels. All results showthe default generalised eigenvalue problem solutio

7.3 A Neuroimaging Example: Human Connectome Projeaata
example

The adjoining toolbox was run on twenty-four (2dglividuals (12 F) from the human
connectome project database. The calculations garaed out on two separate rs-fMRI runs
per participant across both hemispheres. The datasepre-processed by the HCP using the
minimal processing pipeline (Glasser et al., 20T8E data collection was approved by the
Washington University Institutional Review Boar&B) and further approval for processing
the data was obtained by the University of Maltarsversity Research Ethics Committee.

The data were processed according to the procedutksed in the above text using version
1.1.0 of the pythowb_tool all calculations used the generalised eigenvatablem for
computations.

First, the whole brain affinity matrix was computed all 24 subjects (per run) and an
eigendecomposition of its Laplacian was computdus Tesulted in Figure 4 (left) which
shows an exemplar of the primary large scale iatead (feature) gradient of the whole
cortex in both hemispheres of a single subjectureidp shows all 24 subjects on the lateral
surface of the left hemisphere for a single rs-fNiii.
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FIGURE 4: An exemplar of the principal similarity gradient across the whole cortex based on rs-fMRI as
a feature (left). An exemplar of the principal gradent computed on a pre-clustered cortex (using thelCP
Multimodal Parcellation, right).
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-

FIGURE 5: The principle similarity gradient across 24 individuals on a single run. The image of the sae
participants on a second fMRI run can be found in he supplementary material.
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We note that the principle gradients differ somewiam previously published work (c.f.
Margulies et al., 2016). This may be due to mudtigifferences in parameter choices that
were made (and discussed briefly in section 2rl$hbrt, the principle gradient is highly
dependent upon the properties of the affinity mmathe most pertinent difference between
our affinity matrix and that of Margulies et alO@5) was the latter’s retention of only the top
10% of functional connections and subsequent repetation of a cosine similarity while
our approach (c.f. Jackson et al., 2020, 2017 &hgatly modified example) accepts all
positive correlations that were then transformed tmrmalised angular distance.
Thresholding plays an important role in the intetption of the results. A high threshold
(such as retaining only the top 10% of connectiovib)only consider the similarity of “well-
connected” vertices giving no weight to moderataig poorly connected ones. Our
approach, which only eliminates negative weigl#kes$ these connections into account but
would also be more sensitive to “spurious” conrewi

Second, the toolbox was used to calculate the pyignadients and their associated VB
Index for the data parcellated using the Multimdd@IP parcellation (Glasser et al., 2016).
An exemplar of these results can be found in Fi@ueght), where the principle gradient is
computed in each parcel. Associated with thesesfmere the VB Indices per parcel (see
Figure 7 right and a further discussion below).

Finally, the vertex-wise searchlight VB Index wasnputed on all participants. This
approach highlights, in a data-driven fashion,fdeure edges and boundaries across the
cortex. Figure 6 shows the searchlight VB Indexssrall 24 participants while Figure 7
(left) shows the mean vertex-wise VB Index. One @igo see similar patterns between the
group vertex-wise VB Index (Figure 4 left) and tireup VB Index computed on clusters
(Figure 7 right).

The full set of results can be found on the HCP BAldatabase
(https://balsa.wustl.edu/study/show/kND1N).
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FIGURE 6: The VB Index computed across 24 individuks on a single run. The image of the same
participants on a second fMRI run can be found in e supplementary material.

Group VBIndex (Searchlight) Group VBIndex (Clustered)

FIGURE 7: An average (on a single run) of 24 indidual's searchlight, local neighbourhood, whole brai
VB-index identifying regions of relatively sharperborders across the cortex.
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8. Conclusion

The idea of gradations in neural features has peesent since at least the beginning of the
twentieth century and has gained traction in th@@ienaging community throughout the
early twenty-first. This paper has outlined thegrahconcepts and mathematical intuition
behind the spectral transformation and has intredube related techniques of spectral
reordering, Laplacian eigenmaps and clusteringardaccompaniment to this paper,
MATLAB and Python tools that performs the differepiectral transformations discussed in
Section 4 are available. Depending on the sizeefiata, the technique can take up a
considerable amount of RAM and computation timaydacer, at standard mesh sampling our
attached code can run a full brain gradient anslfgging HCP 32K surfaces) on a standard
desktop or notebook with 32Gb of RAM.

While the described framework can be used to reabont relationships between neural
features, there are plenty of unanswered questidresfirst important issue regards the
choice of similarity measurement. Although all thetrics discussed above have been used
to some extent, a systematic comparison alongguitiance regarding which metric to use
in different circumstances is needed.

In summary, it is hoped that this article and ageanying tools will be used as a guide to
researchers interested in performing anatomicastigations using neural features and their
interareal relationships in the brain.
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