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a b s t r a c t

The hub-and-spoke model of semantic cognition seeks to reconcile embodied views of a

fully distributed semantic network with patient evidence, primarily from semantic de-

mentia, who demonstrate modality-independent conceptual deficits associated with at-

rophy centred on the ventrolateral anterior temporal lobe. The proponents of this model

have recently suggested that the temporal cortex is a graded representational space where

concepts become less linked to a specific modality as they are processed farther away from

primary and secondary sensory cortices and towards the ventral anterior temporal lobe.

To explore whether there is evidence that the connectivity patterns of the temporal lobe

converge in its ventral anterior end the current study uses three dimensional Laplacian

eigenmapping, a technique that allows visualisation of similarity in a low dimensional

space. In this space similarity is encoded in terms of distances between data points.

We found that the ventral and anterior temporal lobe is in a unique position of being at the

centre ofmass of the datapointswithin the connective similarity space. This can be interpreted

as the area where the connectivity profiles of all other temporal cortex voxels converge.

This study is the first to explicitly investigate the pattern of connectivity and thus

provides the missing link in the evidence that the ventral anterior temporal lobe can be

considered a multi-modal graded hub.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Semantic memory is often described as ‘knowing what you

know’. It is usually contrasted with episodic memory which

can be thought of ‘knowing when you know’. For example,

knowing that you ate a delicious croissant for breakfast

yesterday is an example of episodic memory (when). In

contrast, knowing that a croissant is a delicious French pastry

rather than a venomous bog dwelling amphibian, is an

example of semantic memory (what). The temporal lobe has

been implicated in both of these cognitive processes, with

episodic and semantic memory associated with different

anatomical sub-regions. The medial temporal lobe and hip-

pocampus have famously been associated with episodic

memory (Scoville & Milner, 1957). There are two prominent

brain-based models of the semantic system. The first

‘distributed-only’ model posits that semantics emerges as a

feature of a widely distributed network of primary cortices

and their association areas (Martin, 2007). Within this model,

modality-specific information types (e.g., visual, auditory) are

stored within their respective primary cortical regions

(spokes), with interconnections between them producing a

full semantic description of a concept. The second, ‘hub-and-

spoke’ model extends this idea to propose the existence of a

central cortical hub which receives and integrates this

distributed modality-specific information from the spokes to

derive transmodal, generalizable concepts (Lambon Ralph,

2014; Lambon Ralph, Jefferies, Patterson, & Rogers, 2017;

Patterson, Nestor, & Rogers, 2007; Rogers et al., 2004).

Parts of the ventrolateral anterior temporal lobe have been

shown to be crucial for the processing of semantic informa-

tion (Lambon Ralph et al., 2017). Evidence for the importance

of the ATL in general initially arose from semantic dementia, a

neurodegenerative condition characterised by the progressive

loss of conceptual information, with the centre of neural

degeneration and hypometabolism occurring primarily

around the anterior temporal lobes (ATL) in both hemispheres

(Galton et al., 2001; Mion et al., 2010; Mummery et al., 2000;

Nestor, Fryer, & Hodges, 2006). The condition gave rise to a

body of research that implicated the ATLs as an area critical to

the processing of conceptual knowledge (Bozeat, Lambon

Ralph, Patterson, Garrard, & Hodges, 2000; Ding et al., 2016;

Hodges, Patterson, Oxbury, & Funnell, 1992). With the advent

of advanced neuroimaging and neurostimulation methods,

such as functional magnetic resonance imaging (fMRI),

transcranial magnetic stimulation (TMS) and sub-dural elec-

trode studies, a converging body of evidence has implicated

the bilateral ventral ATLs as the key regions involved inmulti-

modal conceptual integration (Abel et al., 2015; Binney,

Embleton, Jefferies, Parker, & Ralph, 2010; Chen, Lambon

Ralph, & Rogers, 2017; Noonan, Jefferies, Visser, & Lambon

Ralph, 2013; Pobric, Jefferies, & Ralph, 2007; Rice, Hoffman, &

Lambon Ralph, 2015; Rice, Lambon Ralph, & Hoffman, 2015;

Shimotake et al., 2015; Visser, Jefferies, & Lambon Ralph,

2010). Indeed, the original implementation of the hub-and-

spoke model considered the bilateral ATLs as the core region

where convergence and integration of modality-specific in-

formation took place (Rogers et al., 2004). However, recent

accounts of this model have suggested that semantic
specialisation is likely to be graded where, at one extreme, a

region will process modality-specific semantics (e.g., visual,

auditory etc.), with this information gradually converging

onto ATL regions that activate independent of input modality

(the fully multi-modal hub area) (Binney, Parker, & Lambon

Ralph, 2012; Lambon Ralph et al., 2017; Plaut, 2002; Rice,

Hoffman, et al., 2015).

While evidence has accumulated for the role of the ventral

ATLs in integrative multi-modal semantic processing, the

underlying network of white matter connections via which

this integration takes place has been less explored. It would

seem likely that such an integrative system would require a

neural architecture that connects primary and secondary

sensory regions to the tertiary ‘hub’, either directly, with

integration occurring only at the endpoint within the hub, or

more gradually, with a graded convergence of connectivity

and information. Evidence for this former system was found

in a probabilistic tractography study conducted by (Binney

et al., 2012). This study found that long range connectivity

from primary sensory areas showed a pattern of gradual

convergence within the ATLs, and that an area within the

ventral ATL region exhibited a high degree of intralobar con-

nectivity. The study, however, focused on the white matter

connectivity of specific regions of interest and a map doc-

umenting the gradations in connectivity across the temporal

cortex was not within the scope of that work. As such, the

question regarding the pattern and extent of convergent

connectivity within temporal lobe is still currently unclear.

Furthermore, it is unclear as to whether or how the connec-

tivity of the ATL is distinct, suggesting a specialised role, or in

fact similar to other regions of the lobe, such as the medial

temporal lobe and other parts of the lateral cortex.

A technique which has emerged in the neuroscience

literature, aimed at probing the underlying shifts in cortical

connectivity, is Laplacian eigenmapping or spectral embed-

ding (Belkin & Niyogi, 2002; Belkin & Niyogi, 2003). This tech-

nique has its roots in graph theory (Barnard, Pothen, & Simon,

1993; Barnard, Pothen, & Simon, 1995; Fiedler, 1973) and has

had a long history in the machine learning literature (Ng,

Jordan, & Weiss, 2002; Shi & Malik, 1997, 2000; Von Luxburg,

2007). In neuroscience, the technique has successfully been

used to cluster neural regions (Craddock, James, Holtzheimer,

Hu, & Mayberg, 2012; Eickhoff, Thirion, Varoquaux, & Bzdok,

2015; Johansen-Berg et al., 2004), as well as, more recently, to

extract the primary gradients of structural and functional

connectivity across several cortical regions, such as the

insula, the motor cortex and temporal lobe (Cerliani et al.,

2012; Haak, Marquand, & Beckmann, 2016, p. 1602; Jackson,

Bajada, Rice, Cloutman, & Lambon Ralph, 2017) and of the

cerebellum (Guell, Schmahmann, Gabrieli, & Ghosh, 2018).

The technique involves extracting a region of interest and

computing similarities between the connectivity profiles of

each voxel in the region. These similarities are then reduced

to a lower dimensional spacewhereby each point represents a

cortical voxel, and its closeness to other points in space rep-

resents its similarity in connectivity. Consequently, amap can

be generated which delineates the patterns of connective

similarity across regions, and the gradual and graded transi-

tions in connective patterns (Margulies et al., 2016).

https://doi.org/10.1016/j.cortex.2019.06.014
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In the current work, this data driven approach was used to

map the patterns of connective architecture across the tem-

poral lobe. An organisational structure was revealed which is

consistent with a pattern of convergence from primary sen-

sory areas to the ventral ATL. The maps obtained are strik-

ingly similar to the graded convergence of structure and

function toward the ventral ATL proposed by (Binney et al.,

2012) and (Rice, Hoffman, et al., 2015). The results provide

evidence that the ventral ATL is a graded hub in the centre of

the connectivity space.
2. Methods

2.1. Participants

Twenty-four healthy participants (11 females) were recruited,

they explicitly had no history of neurological or psychological

disorders. The mean age was 25.9 years with a range between

19 and 47 years. Handedness was measured on the Edinburgh

Handedness Inventory (Oldfield, 1971) and only right handed

participants were included in the study. All participants gave

their informed consent and the research was approved by the

local ethics committee (The University of Manchester). This

study uses the same population sample and pre-processing

steps as a previously published study (Bajada et al., 2017).

We opted to use local data as opposed to switching to the

publicly available, high quality Human Connectome Project

data in order to provide continuity and results that are com-

parable to our previous work. We present a short summary of

the pipeline below where we report all measures and

manipulations.

Sample size was determined by the total amount of par-

ticipants with DWI available in the local database. The

exclusion criteria (no history of neurological or psychological

disorders) were established prior to data collection. No data

was excluded from the available cohort.

2.2. Image acquisition and pre-processing

All images were acquired on a 3 T Philips Achieva scanner

(Philips Healthcare, Best, The Netherlands) using an 8 element

SENSE head coil. Pulsed gradient spin echo echo-planar

sequence diffusion-weighted images (DWI) were acquired

with TE¼ 59ms, TRz 11,884ms [cardiac gatedwas performed

either by using a peripheral pulse monitor on each partici-

pant's index finger (n ¼ 21), or by using electrocardiography

(n ¼ 3)], Gmax ¼ 62 mT/m, half scan factor ¼ .679, 112 � 112

image matrix reconstructed to 128 � 128 using zero padding,

reconstructed in-plane voxel resolution 1.875 � 1.875 mm2,

slice thickness 2.1 mm, 60 contiguous slices, 61 non-collinear

diffusion sensitization directions at b ¼ 1200 sec/mm2

(D ¼ 29.8 ms, d ¼ 13.1 ms), 1 at b ¼ 0 sec/mm2, SENSE accel-

eration factor ¼ 2.5. Correction for susceptibility-related

image distortions was performed using the approach out-

lined in (Embleton, Haroon, Morris, Ralph, & Parker, 2010),

which involved the acquisition of two volumes with inversed

phase encode directions (left-right) for each diffusion gradient

direction. A T2-weighted turbo spin echo scan (in-plane voxel

resolution of .94 � .94 mm2, slice thickness 2.1 mm) was
obtained for a qualitative indication of distortion correction

accuracy. Finally, a high resolution T1-weighted image was

acquired for each participant using a 3D Turbo Field Echo

inversion recovery scan (TR z 2000 ms, TE ¼ 3.9 ms,

TI ¼ 1150 ms, flip angle 8�, 256 � 205 image matrix recon-

structed to 256 � 256, reconstructed in-plane voxel resolution

.938 mm � .938 mm, slice thickness .9 mm, 160 slices, SENSE

factor ¼ 2.5).

The T1w image was co-registered to the diffusion images

for visualisation and mask generation. A white matter mask

(for tractography seed mask generation) and a cerebrospinal

fluid mask (for a termination mask) were also generated from

the co-registered T1w image using FSL's FAST algorithm.

2.3. Tractography

Tractography was performed using the probabilistic index of

connectivity (PICo) algorithm (Parker & Alexander, 2005;

Parker, Haroon, & Wheeler-Kingshott, 2003). The algorithm

samples voxel-wise diffusion probability distribution func-

tions (PDFs), generated via the constrained spherical decon-

volution (Tournier, Calamante, & Connelly, 2007) and model-

based residual bootstrapping method (Haroon, Morris,

Embleton, Alexander, & Parker, 2009; Haroon, Morris,

Embleton, & Parker, 2009; Jeurissen, Leemans, Jones,

Tournier, & Sijbers, 2011).

To generate the temporal lobe region of interest (ROI) for

tracking, a temporal mask was first defined in MNI space for

both hemispheres using the MNI structural atlas within the

FSL software package (Mazziotta et al., 2001). The mask was

then co-registered to each participant's native diffusion space.

To ensure that only voxels within the temporal lobe were

included, the masks were manually reviewed in native space,

and any voxels outside the temporal region removed. The final

temporal ROI for tracking consisted of only those seed voxels

at the interface between the grey matter and white matter. To

generate this, a white matter mask was used to delineate

those voxels at the greyewhite interface (GWI), which were

then extracted via an in-house MATLAB script (Bajada et al.,

2017; The MathWorks, 2012).

For each voxel within a participant's ROI, unconstrained

probabilistic tracking was performed by propagating 10,000

streamlines from the GWI to the rest of the brain. The pa-

rameters for the tracking included a step size of .5 mm and a

curvature threshold of 180� over a voxel. Streamlines were

terminated if they exceeded a path length of 500 mm or hit a

cerebrospinal fluid (CSF) termination mask. A count of

streamlines reaching every brain voxel was recorded, gener-

ating a connectivity profile for each temporal ROI seed voxel.

The connectivity profiles for each individual participant

were transformed to a common template space using SPM's
DARTEL (Ashburner, 2007). A GWI for the template space was

also extracted using the script mentioned above. Every in-

dividual's connectivity profile wasmapped onto a voxel on the

group GWI template that was the nearest neighbour of that

profiles seed voxel. This provided a correspondence of seed

voxels and connectivity profiles across participants. The par-

ticipants' connectivity profiles were then thresholded at .05%

of the maximum value to remove very low level noise, and

subsequently binarized (Devlin et al., 2006). The resulting

https://doi.org/10.1016/j.cortex.2019.06.014
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imageswere down-sampled to half their size per dimension in

order to reduce memory consumption, and the resulting

profiles were averaged across participants to generate a group

connectivity profile for each seed voxel.

2.4. Spectral embedding, laplacian eigenmapping and
their visualisation

The group connectivity profile for each seed voxel consisted of

a map of every cortical voxel within the whole brain con-

nected with that seed. To examine the similarity between the

connectivity profiles of the temporal seed voxels, the con-

nectivity profiles were first transformed into a 1 � m row

vector, where the columns (m) represented every point in the

brain. A pairwise similarity of every seed voxel's connectivity

profile was computed by calculating the cosine of the angle

between each connectivity profile vector.

This generated an n x n symmetric similarity matrix where

n ¼ number of seed voxels in the temporal lobe's group GWI

template. The similarity matrix was treated as a weighted

graph adjacency matrix (A). The Laplacian of the adjacency

matrix was computed by subtracting the adjacency matrix

from the degree matrix (D):

L¼D�A (1)

The eigenvectors associated with the three smallest

nonzero generalised eigenvalues of L and Dwere computed by

solving the generalised eigenvalue problem:

L � X ¼ D � X�L (2)

where L is the Laplacian, D is the degreematrix, X is thematrix

of generalised eigenvectors and L is a diagonal matrix of

generalised eigenvalues. This was done in accordance with

the (Shi &Malik, 2000) algorithm (see also (Von Luxburg, 2007)

for a tutorial explanation).

The smallest eigenvalue of the Laplacian is always zero. If

the zero eigenvalue has a multiplicity of greater than one, this

means that the graph has more than one connected compo-

nent. Clear clusters are denoted by small initial eigenvalues

(very close to zero) followed by a large gap in the spectrum of

eigenvalues between the initial eigenvalues and the rest of the

eigenvalues.

The eigenvectors associated with the three smallest non-

zero eigenvalues (the embedding eigenvectors) were plotted

in a three-dimensional similarity space. This warps each

temporal seed voxel into a three-dimensional space where

every voxel is positioned according to their connective simi-

larity to each other (see supplementary animation). Only three

dimensions were selected for the following reasons. The

largest gap within the eigenvalue spectrum is between the

first and the second, this implies that the greatest dissimi-

larity lies within the first eigenvector (eigenmap) due to this,

addingmore than three eigenvectors would only add nuanced

information to the visualisation. Estimation of dimension

number is a difficult and often heuristic procedure. While this

study opted for a heuristic approach, statistical approaches

are being developed and may become standard as these

techniques develop (Karolis, Corbetta, & Thiebaut de

Schotten, 2018).
In order to produce a graded mapping from the similarity

space to brain space, each voxel's coordinates in the similarity

space were rescaled between 0 and 1 and used as an assigned

to red, green and blue colour channels represented by the

matrix RGB:

RGB ¼ X� 1*Xmin

Xmax � Xmin
(3)

where the three columns of the matrix X contain the

embedding eigenvectors so that each row of X contains the

coordinates of (or corresponding to) each seed voxel in the

3-dimensional similarity space; Xmin and Xmax denote

respectively the minimum and maximum value in the

matrix X and matrix 1 is a matrix of ones of the same size

as X. The RGB colouring acts as a visualisation tool to aid

the mapping of each voxel from one space (similarity

space) to another (anatomic space) to allow a voxel to move

in space but retain knowledge of how a voxel maps from

one space to the other (see supplementary material for an

animation of the mapping between similarity and anatomic

spaces). The raw eigenvectors are susceptible to outlier

voxels and these heavily restrict the RGB space that can be

used. As such, the ‘raw’ eigenvectors were also modified by

employing the rank order of the three smallest non-zero

eigenvectors and represented in RGB as above to enhance

the visualisation of the gradients (transition between ‘raw’

and ‘ranked’ RGB can be visualised in the supplementary

material).

The distances between the data points in the ‘raw’ con-

nectivity space are proportional to the similarity between the

connectivity of the voxels. Hence, points that are close

together in the similarity space have similar connectivity

profiles. In order to highlight regions of the cortex that are

maximally similar to all other areas, the centre of mass of the

data in the similarity space was calculated. The Euclidean

distance between all coordinates in the similarity space and

the centre of mass was computed and the values that were

within the closest 10th percentile were retained and projected

back on both the connectivity space and on the cortex (see

Figs. 2 and 3A).

2.5. Data and code sharing

The ethics application for this study was such that did not

cater for the public archiving of MRI data. Hence, participants

did not provide sufficient informed consent for such public

archiving. However, researchers who would like to access the

raw data should contact the corresponding author who will

liase with the ethics committee that approved the study.

Where compatible with the General Data Protection Regula-

tion (GDPR) and in line with ethics decisions made by the

committee, as much data that is necessary to reproduce the

results will be released to the individual researcher.

Code used for this project, with some modifications for

readability and removal of any system links, has been

made available for review on the Open Science Framework

(OSF). Furthermore, pre-processed data along with accom-

panying code has been provided to replicate the results

found in this paper (https://osf.io/gsve9/). No part of the

https://osf.io/gsve9/
https://doi.org/10.1016/j.cortex.2019.06.014
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Fig. 1 e The bottom row shows similarity space plots of the temporal lobe seed voxels according to the similarity of their

connectivity profiles. The colouring is a ‘ranked’ RGB representation of a voxel's location in the connective similarity space.

The top row displays the results projected onto the temporal lobes, with a given voxel's RGB colour retained as it moves

between similarity and anatomic spaces Note that the colouring is ranked in order to improve visualisation; see

supplementary animation for the raw colours and a depiction of the mapping between spaces.
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study procedures or analyses was pre-registered in a time-

stamped, institutional registry prior to the research being

conducted.
Fig. 2 e Left and right hemispheric connectivity space highlighti

the centre of the connectivity space is the area of least differen
Parts of the methods (specifically the PICo tractography

code) are covered by patents held by Bioxydyn and therefore

source code has not been released and any commercial use is
ng regions around the centre of mass in red. This region in

ce, on average, to all other areas.

https://doi.org/10.1016/j.cortex.2019.06.014
https://doi.org/10.1016/j.cortex.2019.06.014


Fig. 3 e The graded convergence of information A) as proposed by the (Plaut, 2002) model; B) proposed convergence based on

white matter connections by (Binney et al., 2012). C) the results of the current Laplacian eigenmap showing the convergence

of connectivity in the ventral ATL. Panels A and B were originally published in the journal of cognitive neuroscience (Binney

et al., 2012); reproduced with permission.
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forbidden unless express permission is given by the company.

The code used to perform the CSD contains commercially

sensitive information belonging to Dr Hamied Haroon which

cannot be publicly released.
3. Results

The generalised eigendecomposition of the Laplacian of the

similarity matrix produced only one zero eigenvalue in both

hemispheres, hence the similarity ‘graphs’ were fully con-

nected. The second (the algebraic connectivity), third and

fourth eigenvalueswere .63, .77 and .88 respectively on the left

and .64, .80 and .88 respectively on the right. The largest

eigenvalue was 1 bilaterally. This suggests that the structural

connectivity of the temporal lobe does not separate into

clearly defined clusters but that there are graded differences

in connectivity. The connectivity showed qualitatively similar

patterns in both hemispheres.

The rows of the first three non-zero eigenvectors were

taken to be coordinates of points in a three dimensional

‘connective similarity’ space (ℝ3) and their equivalent feature

scaled values taken to be coordinate values on the RGB colour

space (as described above). Fig. 1 shows the results of the

analysis plotted on the brain and in the connective similarity

space. The voxels within the similarity space are plotted ac-

cording to how similar the temporal seed voxels' connectivity
profiles were to each other, with voxels demonstrating greater

similarity positioned closer together. One can consider the

temporal lobe being warped from a space where voxels are

plotted according to their ‘anatomic’ similarity to a space

where they are plotted according to their ‘connective’ simi-

larity and vice-versa. An animation depicting the morphing

between the anatomic space to the similarity space can be

found in the supplementary materials.

As can be seen from Fig. 1, the hippocampus (coloured

white to yellow) is themost distinctly connected regionwithin

the temporal lobe, while the lateral areas demonstrate a
graded transition of connectivity. Indeed, while the hippo-

campus forms the distant white ‘tail’ in the similarity space,

the lateral temporal lobe forms the quasi-triangular green, red

and purple ‘head’. While the more primary visual and audi-

tory cortices lie on the edges of the triangular head (red-pur-

ple), the anterior temporal lobemap to the centre of the space,

indicating that it has gradedly similar connectivity with all of

the primary temporal areas. Since the colours of the centre of

the space are hard to visually distinguish, voxels within the

10th percentile of Euclidian distance from the centre of mass

were identified (see red region in Fig. 2). This identified a

ventral anterior temporal region along the more lateral sur-

face. These correspond to the temporal seed voxels with the

least ‘distinct’ connectivity profiles, demonstrating a con-

nectivity profile similar to other temporal regions, and repre-

senting an area of ‘convergent’ similarity.
4. Discussion

The current study used a data driven approach to examine the

connective organisation of the temporal lobe, particularly in

relation to variations across the lateral surface involving the

ventral ATL. The first main finding is that there is a clear

distinction between the patterns of connectivity between

medial temporal regions (specifically the hippocampal re-

gion), and the lateral regions. While the medial temporal lobe

demonstrated a very distinctive connectivity profile compared

to the rest of the temporal cortex, the lateral temporal lobe

was associated with more graded similarity and transitions

between regions. This is not surprising given the functional

and cytoarchitectonic differences (allocortex vs. neocortex) of

the medial temporal lobe (Posimo, Titler, Choi, Unnithan, &

Leak, 2013). Indeed, Nestor et al. (2006) describe dissociations

between the impairments in semantic dementia (semantic

impairment without amnesia following ventrolateral centred

atrophy) versus early Alzheimer's disease (amnesia without

semantic impairment following ventromedial pathology).

https://doi.org/10.1016/j.cortex.2019.06.014
https://doi.org/10.1016/j.cortex.2019.06.014
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These findings align with the major connectivity distinction

found within this study. As such follow-up work using similar

methods using patient groups would be welcome.

The second key finding of the current study was that along

the graded lateral region, a zone of convergence of connec-

tivity could be delineated, specifically involving the ventral

ATL. The connectivity patterns within this zone of conver-

gence demonstrated similarity with both the primary and

secondary visual and auditory cortices, highlighting a region

where these different modalities of information may become

integrated. Finally, we note that there were little qualitative

interhemispheric differences in connectivity. This seemingly

contradicts previouswork that has observed interhemispheric

differences in strength of the temporal lobe's connectivity to

other structures (Papinutto et al., 2016). These facts do not

necessarily conflict due to the nature of the different ap-

proaches. First, the current work does not focus on connec-

tivity strength but on the similarity between the structural

connectivity patterns of temporal lobe voxels to the rest of the

brain; hence while connectivity strength may change, the

spatial pattern of the network may remain the same. Second,

while there aren't great differences between the two hemi-

spheres in our study there are some minor difference in the

connectivity space in both hemispheres

Rogers et al. (Rogers et al., 2004) and Patterson et al.

(Patterson et al., 2007) were the first to suggest that the ATL

acts as a multi-modal hub involved in integrating modality-

specific semantic information from their respective distrib-

uted cortical regions (or ‘spoke’ nodes). The hub-and-spoke

model enables modality-specific nodes within the network

to ‘communicate’with one another via the hub node. As such,

the hub acts as an integrator of the different features of an

object that are processed at the spokes and allows hub-and-

spokes to compute the variable and arbitrary mappings of

features into coherent generalizable concepts (cf. Lambon

Ralph, Sage, Jones, & Mayberry, 2010). This is in contrast

with a ‘distributed-only’ model of semantics where integra-

tion occurs as an emergent property across thewhole network

(Martin, 2007); or with a putative ‘hub-only’ idea of semantics

where, in a neo-phrenological fashion, the ATL is ‘the region’

for semantic cognition (Lambon Ralph, 2014). Indeed, there is

an ever increasing body of evidence supporting the concep-

tion that the ATL plays a crucial role in multi-modal seman-

tics, including neurological conditions such as semantic

dementia (Hodges et al., 1992), patients who have undergone

ATL resection for medically intractable epilepsy (Lambon

Ralph, Ehsan, Baker, & Rogers, 2012; Rice, Caswell, Moore,

Hoffman, & Lambon Ralph, 2018), sub-dural cortical elec-

trode investigations (Shimotake et al., 2015), fMRI in healthy

participants (Jackson, Hoffman, Pobric,& Lambon Ralph, 2016;

Jefferies, 2013) and transient ‘lesioning’ methods such as

transcranial magnetic stimulation (Lambon Ralph, Pobric, &

Jefferies, 2009; Pobric et al., 2007).

In response to the growing body of research on semantic

cognition, the hub-and-spoke model has become more

nuanced. The single hub has been adapted into a graded hub

along the ventral anterior temporal lobe (Binney et al., 2012;

Rice, Hoffman, et al., 2015; Visser et al., 2010). Within this

framework, as information travels from the primary cortices,

through association cortices and towards the ATL, the
concepts become less modality specific in a graded fashion

(see Fig. 3) (Binney et al., 2012; Lambon Ralph, 2014; Rice,

Hoffman, et al., 2015). The idea of a graded convergence of

representations was first proposed by (Plaut, 2002) in his

computational model of semantics (see Fig. 3A). This model

was developed to reconcile theories that proposed the exis-

tence of extreme ends of functional specialisation within the

semantic system (Lambon Ralph et al., 2017).

Previous studies examining the structural connectivity of

the temporal region have also suggested an underlying

convergence and gradation of multi-modal information

within the temporal lobe in support of the (Plaut, 2002) model,

although not formally investigated [(Binney et al., 2012)

Fig. 3B]. The current data driven examination of the connec-

tivity gradients within the temporal cortex provide further

support for this graded convergence model of semantics

(Fig. 3C).

The current results identified the ventral portion of the

ATL as the zone with the highest connective convergence

making it, together with evidence from patient data

(Hoffman, Evans, & Lambon Ralph, 2014), a prime candidate

brain region for themostmulti-modal computations. Indeed,

when one highlights the zone of convergence (red region in

Fig. 2) and compares it to previous work (Binder, Desai,

Graves, & Conant, 2009; Visser, Jefferies, Embleton, &

Lambon Ralph, 2012), the zone overlaps with the anterior

portion of the temporal semantic network. Furthermore, this

area has been shown to activate in response to more than

one modality (Fig. 3B), reflecting the finding of (Visser et al.,

2012) that both the middle temporal gyrus and the ventral

anterior temporal lobe are crucial for multi-modal seman-

tics. As such, the current evidence aligns with recent con-

ceptualisations of the hub-and-spokemodel which posit that

multi-modal integration does not occur in an all-or-none

fashion solely within the putative ‘hub’ region, but involves

the gradual convergence of modality-specific information

along the course of the semantic network to become

completely multi-modal (or indeed, amodal) within the

ventral ATL hub (Lambon Ralph et al., 2017).

The current study employed a data-driven approach to

examine the convergence of connectivity within the temporal

lobe, utilising white matter tractography and Laplacian

eigenmapping. These methods have several key strengths, as

well as important limitations which need to be taken into

consideration in interpreting the current results.

Tractography infers the structure and course of white

matter connectivity indirectly via the diffusion of water

within the brain. As such, it is subject to the generation of a

degree of ‘false-positive’ and ‘false-negative’ fibres. These

connective inaccuracies are principally a problem if one is

particularly interested in the precise delineation of cortico-

cortical connectivity. However, the current study was not

focused on the delineation of such connections, but rather on

the patterns of connective similarity and difference across

cortical voxels, which is more robust to small inaccuracies in

the connective data (Johansen-Berg et al., 2004). As such,while

false negative and positive streamlines may affect the abso-

lute precision of our similarity metrics, the overall impact of

these inaccuracies is reduced in comparison to traditional

white matter tractography mapping.

https://doi.org/10.1016/j.cortex.2019.06.014
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Eigenmapping, in the context used for this investigation, is a

technique that allows the spectral transformation of voxels in

a ‘connectivity’ space to be mapped onto anatomy. The three

primary advantages accorded by this approach are first, the

ability to visualise the closeness of voxels in the connective

similarity space. One can examine this space and visually

identify whether hard clustering of the data makes sense.

Indeed, the spectral transformation represents the initial data

transformation that is used prior to the clustering portion of

spectral clustering algorithms (Von Luxburg, 2007). In the case

of these data, one can clearly see that hard clustering the

connectivity spacemay create a false sense of ‘distinctness’ of

brain areas within the temporal lobe rather than the grada-

tions what are currently clear.

Secondly, the current approach does not cluster voxels into

distinct groups, instead focusing on the pattern of change in

voxels connectivity profiles. Indeed, avoiding clustering also

allows the investigation of the area that is maximally similar

to all other areas; a location that by its very nature would not

cluster well.

Finally, in contrast to spectral reordering, or an eigen-

mapping based only on the first non-zero eigenvector, our

approach uses the RGB space in order to increase the dimen-

sionality of the visualisation in order to gain added informa-

tion to those approaches that only use a single dimension

(Johansen-Berg et al., 2004; Margulies et al., 2016).

Insummary, previous researchhas indicated that theventral

ATL is an essential area in processing multi-modal semantic

information. It is thought to be a graded hub that integrates

modality specific information from its spokes (Patterson et al.,

2007; Rice, Hoffman, et al., 2015). It has also been shown that

the ventral ATL receives long range connections from distant

primary sensory regions and there is also a zone that has

particularly strong local connectivity (Binney et al., 2012). This

work has shown that the connectivity profiles within the tem-

poral cortex do indeed converge onto the ventral ATL and

consistent with the proposition that the ventral ATL is a zone of

convergence in the brain; a graded semantic hub.
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