
SOFTWARE ARCHITECTURE FOR AUTOMATIC LHC COLLIMATOR
ALIGNMENT USING MACHINE LEARNING

G. Azzopardi∗,1,2, G. Valentino1, B. Salvachua2, S. Redaelli2, A. Muscat1
1 University of Malta, Msida, Malta

2 CERN, Geneva, Switzerland

Abstract
The Large Hadron Collider at CERN relies on a collima-

tion system to absorb unavoidable beam losses before they
reach the superconducting magnets. The collimators are
positioned close to the beam in a transverse setting hierar-
chy achieved by aligning each collimator with a precision
of a few tens of micrometres. In previous years, collimator
alignments were performed semi-automatically, requiring
collimation experts to be present to oversee and control the
entire process. In 2018, expert control of the alignment
procedure was replaced by dedicated machine learning algo-
rithms, and this new software was used for collimator align-
ments throughout the year. This paper gives an overview of
the software re-design required to achieve fully automatic
collimator alignments, describing in detail the software ar-
chitecture and controls systems involved. Following this
successful deployment, this software will be used in the
future as the default alignment software for the LHC.

INTRODUCTION
The Large Hadron Collider (LHC) at CERN is the largest

particle accelerator in the world, built to accelerate and col-
lide two counter-rotating beams at an unprecendented center-
of-mass energy of 13 TeV [1, 2]. The LHC is susceptible to
beam losses from normal and abnormal conditions, which
can damage the state of superconductivity of its magnets. A
robust collimation system handles beam losses of halo par-
ticles by safely concentrating them into room temperature
collimation regions, with a 99.998% cleaning efficiency of
all halo particles [3].

The LHC collimation system consists of around 100 col-
limators, each with two parallel absorbing blocks, referred
to as jaws, inside a vacuum tank. The jaws are identified as
left or right, depending on their position with respect to the
incoming beam. The jaws must be positioned symmetrically
around the beam and their coordinate system is displayed
in Figure 1. Each jaw can be moved individually using two
stepping motors at the jaw corners, allowing collimators to
be positioned at different gaps and angles. The maximum
possible operational angle in either direction is 1900 μrad [5].
The jaw corners are known as left-up (LU) and right-up (RU)
when they are upstream of the beam and left-down (LD) and
right-down (RD) when they are downstream of the beam.

Collimators provide halo cleaning using a multi-stage
hierarchy, which is determined after aligning the collimators.
Each year of LHC operation begins with a commissioning

∗ gabriella.azzopardi@cern.ch

Figure 1: (a) The collimator coordinate system and (b) the
jaw tilt angular convention as viewed from above, from [4].

phase which involves aligning all collimators and ensuring
the correct operation to allow the LHC to achieve nominal
operation [6]. Such alignments are performed to determine
the beam orbit and beam size at each collimator location,
which are otherwise not known sufficiently precisely as the
actual beam orbit, collimator tank alignment and optics may
deviate from the design orbit. This information is required
to position the jaws within a certain number of standard
deviations (beam σ) from the beam center [7].

Over the years various software and hardware upgrades
were introduced to improve the alignment time and to sim-
plify the alignment procedure. For six years collimators were
aligned using a semi-automatic tool, however this reached
its minimum alignment time of 3 hours at injection in 2017.
This motivated the development of a fully-automatic tool,
which was used for the first time in 2018 and has proved to
be a beneficial advancement in view of the High Luminosity
LHC (HL-LHC) upgrade [8].

LHC COLLIMATOR ALIGNMENTS
Collimator alignments are performed with a step preci-

sion of 5 μm. Each collimator has a dedicated Beam Loss
Monitoring (BLM) device positioned outside the beam vac-
uum, immediately downstream, as shown in Figure 2. Such
devices are used to detect beam losses generated when halo
particles impact the collimator jaws. Recorded losses are
proportional to the amount of beam intercepted by the colli-
mator jaws and are measured in units of Gy/s. A collimator is
considered aligned when a jaw movement towards the beam
produces a clear loss spike in the BLM detector located
further downstream [10].

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

MOCPL04
0

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



Figure 2: The jaws of collimator i around the beam, with its
left jaw scraping the beam halo and the showers are detected
by the corresponding BLM detector downstream, from [9].

Collimators are aligned using a beam-based alignment
(BBA) which is a four-step procedure established in [11]:

1. Align the reference collimator (primary collimator) by
touching the beam halo as an initial step prior to the
alignment of the collimator in question, collimator i.

2. Collimator i is then aligned with respect to the reference
halo generated.

3. The reference collimator is then realigned to the beam.

4. Collimator i is retracted to its position in the hierarchy.

At each alignment step, the left and right jaws are aligned
separately, to be able to associate the spike in the BLM signal
to the particular jaw that was moving.

Semi-Automatic Alignment Procedure
The previous alignment implementation for the LHC col-

limators [12] uses a semi-automatic approach. This system
makes use of a BLM-based algorithm which requires the user
to make decisions as the alignment progresses. A typical
semi-automatic alignment involves the following steps:

1. The user selects the collimator i to be aligned.

2. The user sets four input parameters:

(a) ΔxL
i - Left jaw step size in μm, from a pre-defined

list between 5 μm and 200 μm.

(b) ΔxR
i - Right jaw step size in μm, from a pre-

defined list between 5 μm and 200 μm.

(c) SThres
i - Stop threshold in Gy/s, from a list of pre-

defined thresholds between 1× 10–7 and 2× 10–4.

(d) tsi - Time interval between each step in seconds.

3. The user selects which collimator jaw to move towards
the beam (left or right or both), and starts the alignment.

4. The jaw(s) of collimator i are automatically moved
towards the beam in steps of Δxi every tsi seconds.

5. The jaw movement automatically stops if the BLM
losses exceed the threshold, SThres

i , by obtaining the
BLM data Si associated with collimator i after each jaw
step.

6. Once the jaw(s) stop moving, the user is required to an-
alyze the associated BLM losses in order to determine
whether the collimator jaw(s) are aligned or not.

7. The user first aligns both jaws, then the left jaw fol-
lowed by the right jaw, until a clear alignment spike is
observed in each case, by repeating steps 2-6.

8. Once a collimator is aligned, the user must select to
save the position of collimator i so that the beam center
and beam size can be automatically calculated.

This system uses the BLM feedback only to automate
the movement of collimators towards the beam and requires
collimation experts to control the rest of the procedure, hence
the term semi-automated.

Fully-Automatic Alignment Procedure
The semi-automatic beam-based alignment was fully-

automated by closing the loop between automatically stop-
ping the collimator movement after its losses exceed the
threshold, and resuming the alignment based on the BLM
loss signal. This involved using the feedback from the BLMs
in real-time to replace the user steps from the previous sec-
tion, with dedicated algorithms.

Crosstalk Analysis for Parallel Selection (Step 1)

When a collimator reaches the beam envelope,
beam losses propagate mainly in the direction of the
beam, and are also observed by other nearby BLMs. This
phenomenon is known as crosstalk. During alignment
campaigns, collimators in the two beams are aligned in
parallel to speed up the alignment process. This is possible
using the semi-automatic approach by having the users
manually select the collimators to align based on the
crosstalk observed in their BLM signals. To fully-automate
the alignment, it is critical to automate the task of collimator
selection. This was done by analysing the crosstalk
generated by each collimator when aligned individually.
A data set of 650 samples was generated from sequential
alignments, such that each sample contains the BLM
signal of the aligned collimator and the signal of all other
collimators’ BLM detectors with losses larger than ten times
the background losses. The BLM signals classified as being
affected by crosstalk were identified by RMS-smoothing,
and this was used to generate a list of collimators affected
by crosstalk. This is an initial model for automatically
handling the parallel alignment of both beams, with a more
advanced analysis ongoing to quantify the level of crosstalk
experienced at any collimator [9].

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

Experiment Control
MOCPL04

1

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Machine Learning for Spike Detection (Step 6)

The correct alignment of any collimator relies on
being able to determine whether a collimator has touched
the beam or not, based on the spikes in the BLM signal. An
alignment spike, as shown in Figure 3a, indicates that the
moving jaw touched the beam and is aligned. On the other
hand, non-alignment spikes, as shown in Figure 3b, arise
due to other factors such as; beam instabilities or mechanical
vibrations of the opposite jaw, thus indicating that the jaw
has not yet touched the beam and must resume its alignment.
This process of spike recognition was cast as a classification
problem by training machine learning models to distinguish
between the two spike patterns in the BLM losses. A data
set was assembled from previous alignment campaigns,
from which fourteen manually engineered features were
extracted and six machine learning models were trained,
analyzed and thoroughly tested [13]. The suitability of
using machine learning in LHC operation was confirmed
during collimator alignments performed in 2018, whereby
the models achieved a precision of over 95%.

(a) Alignment spike in 100 Hz data.

(b) Non-Alignment spike in 100 Hz data.

Figure 3: Typical BLM signals as a function of time showing
examples of (a) an alignment spike and (b) non-alignment
spikes, after a collimator movement towards the beam [13].

Automatic Threshold Selection (Step 2c)

A threshold is required to prevent collimators from
moving too far into the beam, such that a collimator stops
moving when its BLM device records losses that exceed
this threshold. The ideal threshold must be: high enough
to ignore noise spikes and allow the jaw to touch the beam
without interrupting the movement, and low enough to
immediately stop the jaws and generate minimal losses when
the collimator actually touches the beam. Therefore the
algorithm for automatic threshold selection was designed
by applying an exponentially weighted moving root mean
square on the latest BLM signal to smooth the signal and
prioritise the most recent losses. The thresholds selected
by users in previous alignments, were extracted to form a
data set of 1778 samples, at injection and flat top. This data
set was used to validate the algorithm, and the difference

between the thresholds selected automatically and by the
user were negligible for over 90% of the cases [14].

Highlighting the differences from the semi-automatic
BBA, the fully-automatic BBA involves the following steps:

1. The user can now select a group of collimators to be
aligned.

2. The user must then set two input parameters:

• Δxi - Jaw step size in μm, from a pre-defined list
between 5 μm and 200 μm.

• tsi - Time interval between each step in seconds,
the minimum being 0.02 s.

3. The automatic procedure then selects; a collimator i,
the jaws to move towards the beam (left or right or both),
and a reasonable threshold, SThres

i . The alignment is
then started automatically.

4. The jaw(s) of collimator i are automatically moved
towards the beam in steps of Δxi every tsi seconds.

5. The jaw movement automatically stops if the BLM
losses exceed the threshold, SThres

i , by obtaining the
BLM data Si associated with collimator i after each jaw
step.

6. Once the jaw(s) stop moving, the automatic proce-
dure uses machine learning to classify the spike exceed-
ing the threshold, to determine whether the collimator
jaw(s) are aligned or not.

7. The automatic procedure first moves both jaws to-
wards the beam simultaneously, then separately aligns
each jaw twice, until a clear alignment spike is observed
in each case. Therefore steps 3-6 must be repeated until
these alignment spikes are observed, and must also be
repeated for all selected collimators.

8. Once a collimator is considered aligned, the automatic
procedure will save its position in a database, such that
the beam center and beam size can be calculated.

LHC COLLIMATION SOFTWARE
ARCHITECTURE

The alignment is performed remotely from the CERN
Control Center using a top-level application implemented
in Java, which allows users to move collimators whilst mon-
itoring their BLM signal. These signals are logged at a
frequency of 100 Hz, however they are shown to the user at
a frequency of 25 Hz due to a limitation of the TCP (Trans-
mission Control Protocol) communication protocol used.

The software architecture designed for the collimation
system is implemented via a 3-tier structure as shown in
Figure 4. The bottom level consists of actuators, sensors and
measurement devices, which allow for adjusting a number

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

MOCPL04
2

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



Figure 4: Software architecture diagram showing an ex-
ample of FESA acting as the middleware between the Java
application and hardware devices.

of parameters, including the collimators’ left and right jaw
positions and angles.

The hardware is abstracted and controlled in real-time
through the use of FESA (Front-End Software Architec-
ture) [15], the C/C++ framework used to develop LHC ring
front-end equipment software which sends motor step com-
mands [16]. FESA is a complete environment for equip-
ment specialists to design, develop, test and deploy real-time
control software for front-end computers (FECs). Its main
objective is to standardize, simplify and optimize writing
front-end software.

A hardware device is abstracted as a FESA device by ex-
posing a public interface made up of properties. A property
is made up of value-items which can be scalars, string, and
other simple types. A client can get, set and subscribe to a
property in order to read, write and be notified on change,
respectively. FESA provides Acquisition properties and Con-
figuration properties for getting and setting, respectively, and
Setting properties allowing both getting and setting.

FESA devices are grouped into a FESA class which de-
fines the: property interface, private data and real-time be-
havior, for all devices belonging to that class. The FESA
class handles hardware access through the use of Real-Time
Actions (RTActions) which are triggered by an interrupt to ex-
ecute in real-time and are subject to tight timing constraints.

The top level consists of Java Swing GUI applica-
tions which interact with the FESA middleware framework
through the Java API for Parameter Control (JAPC) [17].
JAPC is an API used to build Java applications that con-
trol accelerator devices by interacting with the get, set and
subscription device properties.

Semi-Automatic Software Architecture
The semi-automatic BBA is implemented in the FESA

class LHCCollAlign [18] which runs on its own Front-End
Computer (FEC) and is responsible for:

• Acting as a BLM concentrator by collecting the 100 Hz
data from the BLMs of all the collimators via UDP
(User Datagram Protocol), which is converted to 25 Hz
to decrease the amount of processing required. The
25 Hz data is used by Java to display the signal for the
user to view, and the 100 Hz data is logged for offline
access.

• Running the feedback loop during collimator align-
ments to stop any movement when the losses in the
BLM signal exceed the predefined threshold.

• Moving the collimators towards the beam until the
BLM losses exceed the threshold, using the Align Col-
limator property. This process is started from the Java
application by the user, who must provide the required
input parameters and select the jaw(s) to align.

The collimators are controlled using the LHCCollimator
FESA class. This class is responsible for triggering and
setting all collimator jaw movements, in particular func-
tions which move collimators during different phases of the
operational cycle, and for getting any data related to the
collimator positioning system [19]. An overview of the two
FESA classes and the Java application are shown in Figure 5.

Fully-Automatic Software Architecture
The fully-automatic BBA is implemented on top of the

semi-automatic BBA, thus allowing for both alignment tools
to be available together. It is implemented in the FESA class
CollAlignSupervisor on its own FEC, and is responsible for:

• Automatically aligning the collimators towards the
beam by calling the Align Collimator property in
the LHCCollAlign FESA class, as used by the semi-
automatic BBA. The difference being that the user does
not provide the input parameters as these are computed
automatically. The full-automation also selects the
jaw(s) to align and the entire procedure is performed
by calling the Automatic Alignment property.

• Automatically selecting the collimators to align in par-
allel based on the offline crosstalk analysis results, by
providing the FESA class with the list of collimators
affected by crosstalk. This is accessed by the algorithm
before selecting any collimator to align, to first check
which collimator (if any), is being aligned in the other
beam and which collimators it affects. This ensures no
collimators affected by crosstalk are aligned in parallel.

• Automatically selecting the threshold for aligning any
collimator based on the latest BLM signal. This is
implemented by accessing the latest 7.5 seconds of
raw 25 Hz BLM data from the LHCCollAlign FESA
class, and selecting the threshold accordingly. This
algorithm keeps track of the previous threshold selected
in the CollAlignSupervisor FESA class, to enhance the
threshold selection process.

• Applying the machine learning model on the recorded
BLM signal, to automatically detect alignment spikes
and determine if the collimator is aligned. Machine
learning model implementations are available in Python
therefore a separate thread on the same FEC as the
CollAlignSupervisor FESA class is dedicated to run the
Python script developed for alignment classifications.
This script is directly provided with the latest (4 seconds

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

Experiment Control
MOCPL04

3

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 5: Overview of semi-automatic BBA implemented in FESA and Java.

at injection and 6 seconds at flat top, based on beam
halo diffusion [20]) raw 25 Hz BLM data obtained
from the LHCCollAlign FESA class and returns the
classification result to the CollAlignSupervisor FESA
class to resume the alignment based on the result.

The fully-automatic BBA is controlled from the same
Java application, using three new buttons; Play, Pause and
Stop. The full implementation of how the new FESA class
interacts with the semi-automatic alignment and the Java
application, is shown in Figure 6.

FESA allows for executing multiple instances of the same
property in different threads. Therefore in order to allow
for the alignment of the collimators in beam 1 and beam 2
to be done in parallel, two threads were assigned to the
CollAlignSupervisor FESA class. This allows executing
two instances of the same Automatic Alignment property in
parallel. These two threads constantly communicate with
each other before starting the alignment of any collimator,
to ensure that the selected collimators to align in parallel are
in accordance with the crosstalk analysis.

Angular Alignment Software Architecture
The current collimation hierarchy requires a 1.5 σ re-

traction between primary and secondary collimators of the
betatron cleaning insertion, which corresponds to around
300 μm. In order to improve the LHC performance and
achieve a smaller beam size at the points of collision, tighter
collimator settings with smaller retractions are foreseen [21].
Until now, collimators have always been aligned with a zero
tilt angle with respect to the beam. Recent beam tests, how-
ever, indicated that in reality collimator tank misalignments
may introduce an angular tilt of up to a few hundred μm.
As a result this approach will not be adequate to operate
the system with retractions below 1.5 σ [22]. Therefore an
automatic procedure to align collimators with different jaw
tilts is required to be able to determine the best angle, i.e.
angular alignments.

Three novel angular alignment methods were introduced
to find the optimal angle of collimators [23]. These meth-
ods were initially implemented using the semi-automatic
alignment tool by selecting a high threshold and keeping it

fixed. This relied on the assumption that any losses which
exceeded such a high threshold were a result of the collima-
tor touching the beam. As expected there were a number
of cases where the jaws stopped before touching the beam,
due to the lack of spike recognition required to confirm if
the jaw is aligned. This resulted in a number of misalign-
ments, however enough results were collected to show that
the methods were able to converge to the same angle for
the collimators tested [24]. Since then, the semi-automatic
alignment was transformed into a fully-automatic alignment,
fully-automating the angular alignment.

The angular fully-automatic BBA is implemented in the
same CollAlignSupervisor FESA class, as the standard fully-
automatic BBA. This software was built on top of the semi-
automatic BBA and provides the same functionality as the
standard fully-automatic BBA, as depicted in Figure 7. The
main difference is that the angular fully-automatic BBA is
controlled from a separate application, however preserves
the same play, pause and stop functionality.

User Interfaces
Two dedicated GUI applications are used for the standard

fully-automatic BBA and the angular fully-automatic BBA.
Both GUIs subscribe to the same 25 Hz BLM data and 1 Hz
jaw position for display purposes.

The standard fully-automatic BBA GUI extends the pre-
vious semi-automatic BBA GUI [25], by introducing a new
section as shown by the screen shot in Figure 8. The user
can input the jaw step size, the time interval between each
step and select between the nominal or measured settings
when retracting the collimators to their final positions. The
alignment can be paused, stopped and resumed by the user
at any time.

The GUI lists the collimators to be aligned on the right,
grouped by their orientation, such that each group ends with
the primary/reference collimator of the plane. A collimator
must be selected from this list to control it and to show
its corresponding BLM signal and jaw position, with the
selected collimator marked by a blue border. The state of
each collimator is indicated by the various colour codes
listed in Table 1.

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

MOCPL04
4

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



Figure 6: Overview of fully-automatic BBA implemented in FESA and Java.

Figure 7: Overview of fully-automatic Angular BBA implemented in FESA and Java.

A standalone GUI was designed for the angular fully-
automatic BBA which serves solely as a display, as shown
in Figure 9. In this case, all commands must be provided
directly to FESA. This was designed as a temporary solution
to monitor the status of collimators aligned at different angles
when performing beam tests. A more user-friendly version

of this tool will eventually be incorporated with the rest of
the collimation controls.

In both cases two instances of the same application can be
opened at the same time, for easily monitoring the two beams.
This allows for aligning a maximum of two collimators in
parallel, one from each beam in the case of the standard
fully-automatic BBA.

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

Experiment Control
MOCPL04

5

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 8: A screen shot of the collimator controller window
providing standard fully-automatic alignments.

Color State
Gray Not yet moved
Green Collimator jaw(s) moving

Yellow Fully-automatic BBA paused by user
when this collimator was mid-action.

Red Fully-automatic BBA stopped by user
when this collimator was mid-action.

Turquoise Collimator aligned and jaws retracted
to operational settings.

Magenta Collimator jaw(s) waiting to align, due
to crosstalk from another collimator.

FULLY-AUTOMATIC BBA RESULTS
The standard fully-automatic alignment software was used

in LHC operation throughout 2018. During commissioning
it was used to automatically align the collimators in the two
beams sequentially, including the 79 collimators at injec-
tion and the 75 collimators at flat top. The alignment was
a success, the beam centres and beam sizes measured at
each collimator were consistent with those calculated during
injection commissioning in 2017, and the measured settings
were used for LHC operation in 2018.

A second version of the fully-automatic alignment was de-
veloped later in 2018, to incorporate the crosstalk analysis to
align the collimators in the two beams in parallel. This soft-
ware was tested with beam to align the same 79 collimators
at injection. The resulting settings matched those obtained
during commissioning in 2018, thus validating this new par-
allel software. This second version of the fully-automatic
software decreased the alignment time of 79 collimators by
71.4% compared to the semi-automatic alignment in 2017,
from 2.8 hours to 50 minutes [26].

Furthermore, the angular fully-automatic alignment soft-
ware is reliable and its results are reproducible, as it is now

Figure 9: A screen shot of the GUI designed to monitor the
angular fully-automatic alignments.

able to determine the most optimal angle with minimal mis-
alignments. Using this new tool a collimator can be automat-
ically aligned at 41 different angles using 3 different methods
in 25 minutes. This is 70% faster in comparison to semi-
automatically aligning 1 collimator by manually aligning
the 4 jaw corners individually. This was the only reliable ap-
proach available, which on average required 40 minutes [27].

SUMMARY
The LHC uses around 100 collimators to protect its sen-

sitive equipment. They are aligned each year at the start of
operation using feedback from BLM devices, to establish
the correct hierarchy. Before 2018 the alignment procedure
was semi-automated whereby the user must manually make
decisions based on the recorded signal. The three main user
tasks are; crosstalk analysis, spike detection and threshold
selection. In 2018 these tasks were replaced by dedicated
algorithms, to close the loop between BLM feedback and
decision making, to fully-automate the alignment.

The alignment software is developed in FESA, having the
semi-automatic and fully-automatic alignments executing
on separate FECs. The new fully-automatic alignment was
designed to work on top of the semi-automatic alignment,
whilst allowing both tools to be available for use. The stan-
dard fully-automatic BBA GUI extends the semi-automatic
GUI, whereas a separate interface was designed as a tempo-
rary solution to monitor the angular fully-automatic BBA.

The fully-automatic software significantly decreased the
time required for both standard and angular alignments, and
successfully does not require any human intervention. The
full automation is a major step in enhancing operational
efficiency and will be the default software in the future.

ACKNOWLEDGEMENTS
The authors would like to thank the collimation and op-

erations teams for assisting during beam studies, as well as
the support from the High Luminosity LHC project.

Table 1: Color Coding Used to Identify the Different Align-
ment States of an Individual Collimator

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

MOCPL04
6

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



REFERENCES
[1] L. Evans, “The Large Hadron Collider”, in New J. Phys.,

vol. 9, no. 9, art. no. 335 (22 pages), 2007. doi:10.1088/
1367-2630/9/9/335

[2] L. Evans and P. Bryant, “LHC machine”, in J. Instrum., vol.
3, no. 8, art. no. S08001 (158 pages), 2008.

[3] R. W. Assmann et al., “Requirements for the LHC collimation
system”, in Proc. 8th European Particle Accelerator Conf.
(EPAC’02), Paris, France, Jun. 2002, pp. 197–199.

[4] S. Redaelli et al., “Operational performance of the LHC colli-
mation”, in Proc. 46th ICFA Advanced Beam Dynamics Work-
shop on High-Intensity and High-Brightness Hadron Beams
(HB’10), Morschach, Switzerland, 2010, paper TUO2C05,
pp. 395–399.

[5] D. Missiaen, R. J. Steinhagen, and J. P. Quesnel, “The align-
ment of the LHC”, CERN, Geneva, Switzerland, Rep. CERN-
ATS-2009-117, 2009.

[6] M. Lamont, “The LHC from commissioning to operation”,
in Proc. 2nd Int. Particle Accelerator Conf. (IPAC’11), San
Sebastian, Spain, Sep. 2011, paper MOYAA01, pp. 11-15.

[7] A. Mereghetti et al., “Performance of the collimation sys-
tem during 2016-hardware perspective”, in Proc. 7th Evian
Workshop on LHC beam operation, Evian, France, 2017, pp.
225–228.

[8] G. Apollinari et al., “High-luminosity large hadron collider
(HL-LHC): Preliminary design report” , CERN, Geneva,
Switzerland, Rep. CERN-2015-005, 2015 and Fermi Na-
tional Accelerator Lab. (FNAL), Batavia, IL, USA Rep.
FERMILAB-DESIGN-2015-02, 2015.

[9] G. Azzopardi et al., “Data-driven Cross-talk Modelling of
Beam Losses in LHC Collimation”, Physical Review Accel-
erators and Beams, vol. 22, no. 8, p. 083002, 2019.

[10] E. B. Holzer, et al., “Beam loss monitoring system for the
LHC”, in IEEE Nuclear Science Symposium Conference
Record, 2005, vol. 2, pp. 1052–1056, 2005. doi:10.1109/
NSSMIC.2005.1596433

[11] R. W. Assmann et al., “Expected Performance and Beam-
based Optimization of the LHC Collimation System”, in Proc.
9th European Particle Accelerator Conf. (EPAC’04), Lucerne,
Switzerland, Jul. 2004, paper WEPLT006, pp. 1825–1827.

[12] G. Valentino et al., “Semiautomatic beam-based LHC
collimator alignment” , Physical Review Special Topics-
Accelerators and Beams, vol. 15, no. 5, p. 051002, 2012.

[13] G. Azzopardi et al., “Automatic Spike Detection in Beam
Loss Signals for LHC Collimator Alignment,” Nuclear In-
struments and Methods in Physics Research Section A, vol.
934, pp. 10-18, 2019.

[14] G. Azzopardi et al., “Beam Loss Threshold Selection for
Automatic LHC Collimator Alignment,” presented at 17th Int.
Conf. on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’19), New York, USA, Oct. 2019, paper
MOPHA010, this conference.

[15] A. Guerrero, J. J. Gras, J-L. Nougaret, M. Ludwig, M. Ar-
ruat, and S. Jackson, “CERN Front-End Software Architec-
ture for Accelerator Controls”, in Proc. 9th Int. Conf. on
Accelerator and Large Experimental Physics Control Systems

(ICALEPCS’03), Gyeongju, Korea, Oct. 2003, paper WE612,
pp. 342–344.

[16] A. Masi, R. Losito, and S. Redaelli, “Measured Performance
of the LHC Collimators Low Level Control System”, in
Proc. 12th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’09), Kobe, Japan, Oct.
2009, paper WED001, pp. 612–614.

[17] V. Baggiolini et al., “JAPC - the Java API for parameter con-
trol (designing for smooth evolution)”, presented at the 10th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’05), Geneva, Switzerland, Oct.
2005.

[18] G. Valentino et al., “Upgraded Control System for LHC Beam-
Based Collimator Alignment”, in Proc. 15th Int. Conf. on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’15), Melbourne, Australia, Oct. 2015, pp. 306–
309. doi:10.18429/JACoW-ICALEPCS2015-MOPGF099

[19] A. Masi, R. Losito, and S. Redaelli, “Measured Performance
of the LHC Collimators Low Level Control System”, in
Proc. 12th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’09), Kobe, Japan, Oct.
2009, paper WED001, pp. 612–614.

[20] G. Valentino et al., “Beam diffusion measurements using
collimator scans in the LHC”, Physical Review Special Topics-
Accelerators and Beams, vol. 16, no. 2, p. 021003, 2013.

[21] R. Bruce et al., “Calculations of safe collimator settings and
β* at the CERN Large Hadron Collider”, Physical Review
Special Topics-Accelerators and Beams, vol. 18, no. 6, p.
061001, 2015.

[22] A. Mereghetti et al., “β∗-Reach – IR7 Collimation Hierarchy
Limit and Impedance”, CERN, Geneva, Switzerland, Rep.
CERN-ACC-NOTE-2016-0007, 2016.

[23] G. Azzopardi, A. Mereghetti, S. Redaelli, B. Salvachua,
G. Valentino, and A. Muscat, “Automatic Angular Align-
ment of LHC Collimators”, in Proc. 16th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS’17), Barcelona, Spain, Oct. 2017, pp. 928–933.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA204

[24] G. Azzopardi et al., “Automatic angular alignment of LHC
Collimators”, CERN, Geneva, Switzerland, Rep. CERN-
ACC-NOTE-2017-0058, Sep. 2017.

[25] G. Valentino, R. W. Assmann, S. Redaelli, and N. J. Sam-
mut, “LHC Collimator Alignment Operational Tool”, in Proc.
14th Int. Conf. on Accelerator and Large Experimental Con-
trol Systems (ICALEPCS’13), San Francisco, CA, USA, Oct.
2013, paper TUPPC120, pp. 860–863.

[26] G. Azzopardi, A. Muscat, S. Redaelli, B. Salvachua,
and G. Valentino, “Operational Results of LHC Collima-
tor Alignment Using Machine Learning”, in Proc. 10th
Int. Particle Accelerator Conf. (IPAC’19), Melbourne,
Australia, May 2019, pp. 1208–1211. doi:10.18429/
JACoW-IPAC2019-TUZZPLM1

[27] G. Azzopardi et al., “Operational Results on the Fully-
Automatic LHC Collimator Alignment”, Physical Review
Special Topics-Accelerators and Beams, vol. 22, no. 9, p.
093001, 2019.

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

Experiment Control
MOCPL04

7

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


