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Abstract

Ever since it was discovered that the Universe is expanding at an accelerated rate,
cosmologists have been searching for an explanation in the form of dark energy: a
mechanism or physical component capable of producing this effect. The study pre-
sented here focuses on dynamical dark energy models, in which the observed accelera-
tion arises as a result of either a cosmic component whose pressure is negative, or as a
modification to the General Relativistic description of the geometry of the space-time
manifold. The word ‘dynamical’ sets these models apart from the ΛCDM cosmology,
in which the density of dark energy remains constant as the Universe expands.

Many works in the literature are based on the premise of a spatially flat Universe, and
indeed this is what observational data appears to point to in a ΛCDM framework.
The question naturally arises, however, whether the assumption of flatness continues
to hold in the case of dynamical dark energy models, especially since spatial curvature
is often correlated with dark energy parameters, and so any wrong assumptions about
it could greatly distort our understanding of dark energy. The aim of this thesis is
precisely to look for an answer to that question.

For the first part of the study, dark energy is modelled as a scalar field that can
either be minimally or non-minimally coupled to the Ricci scalar, and a number of
exact solutions to the cosmological field equations are presented. Each corresponds
to a particular geometry – flat, open or closed. In the next part, analytical methods
are combined with numerical techniques to analyse several models from the literature,
chosen for their ability to represent the complete cosmic history. The aim is to investi-
gate how spatial curvature influences the main features of the evolution. Initially, the
Universe is assumed to consist of a Van der Waals fluid, but this alone cannot provide
an explanation for the acceleration at late times, despite the fact that it accounts for
the inflationary and matter-dominated epochs. Hence, dark energy is introduced as
Quintessence, a Chaplygin gas or dynamical vacuum energy. It turns out that the
transition from the inflationary epoch to the matter-dominated one would occur first
for the open universe, and last for the closed one. The onset of late-time accelera-
tion would also take place in this order. Furthermore, positive curvature is found to
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enhance inflationary acceleration and the deceleration that follows. Among the fluid
characteristics considered are the customary proportionality between energy density
and pressure, and bulk viscosity.

The effects of spatial curvature on cosmic evolution are then investigated in the context
of the generalised running vacuum model (GRVM) and its sub-cases. In the GRVM,
the cosmological constant is replaced by a function of the Hubble parameter and its
time derivative: Λ(H) = A + BH2 + CḢ (A, B and C being constants). Two-
parameter models are obtained by setting B or C equal to zero. The main goal is to
find out if the models best describe observations when one assumes spatial flatness,
or if the presence of curvature improves the fit. This is accomplished via a Markov
Chain Monte Carlo (MCMC) analysis. The data set used comprises measurements of
observables related to Type-Ia supernovae, cosmic clocks, baryon acoustic oscillations,
the cosmic microwave background and redshift-space distortions (RSDs). Since it
is well known that the data itself (rather than just the particular model) plays an
important part in determining whether curvature is ruled out, the chapter draws
comparisons between the constraints obtained in various scenarios, such as when RSD
measurements are excluded (in contrast to when the full data set is employed). The
lack of consensus within the scientific community about the value of the Hubble
constant (H0) is also taken into account. Two different values ofH0 from the literature
are introduced and their effects on the results are investigated.

In the last part, the focus is shifted to an alternative theory of gravity – namely,
f(R) gravity, constructed by generalising the Ricci scalar in the Einstein-Hilbert ac-
tion to a function thereof. Four f(R) models are considered, all of which appear
to be compatible with Solar-System and cosmological constraints: the Hu-Sawicki,
Starobinsky, Exponential and Tsujikawa models. The idea is to see whether these
models are able to accommodate non-zero spatial curvature (while still being consis-
tent with cosmological observations). Since they all reduce to ΛCDM at high redshifts,
any differences from ΛCDM are most likely to emerge at the level of perturbations.
Therefore, the perturbation equations (in the sub-Hubble, quasi-static regime) are
derived and incorporated into the analysis, which is again carried out using MCMC
sampling techniques. Given that matter density perturbations are scale-dependent
in f(R) gravity, the results obtained for different values of k† (the comoving wave
number) are compared.
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Conventions

• The metric signature is (−,+,+,+);

• The unit system employed has c = 1 (c being the speed of light in vacuum);

• An overdot denotes differentiation with respect to cosmic time t;

• A prime denotes differentiation with respect to the argument;

• Plots are produced with 8πG/3 set to unity (G is the Newtonian constant of
gravitation). G is assigned standard units anywhere else;

• The Riemann curvature tensor takes the form

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ ;

• The Ricci tensor is derived from the Riemann tensor by summing over its first
and third indices: Rµν = Rλµλν .
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3.18 Total pressure vs time (VdW fluid & Λ ∝ ã−1/2) . . . . . . . . . . . . 87
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CHAPTER 1

Introducing Dark Energy

1.1 Evidence for Dark Energy

A few decades ago, the present-day Universe was thought to be mainly composed of
matter. This would then have explained the supposedly decelerating cosmic expan-
sion. In 1998, however, the High-z Supernova Search Team reported that luminosity
distance measurements to a sample of Type Ia Supernovae (SNeIa) favoured an ac-
celerating universe [1,2]. The next year, the Supernova Cosmology Project published
a study [3] which made use of the magnitude-redshift data for a number of SNeIa
to constrain cosmological parameters. The team also found evidence of cosmic ac-
celeration. For their leading role in ‘the discovery of the accelerating expansion of
the Universe through observations of distant supernovae’, Saul Perlmutter, Brian P.
Schmidt and Adam G. Riess were awarded the 2011 Nobel Prize in Physics [4].

Supernovae classified as Type Ia have optical spectra with two distinctive features:
the absence of hydrogen lines, and the occurrence of a singly ionised silicon Si II
absorption line at 615 nm [6]. They are thought to be thermonuclear explosions of
white dwarf stars, with ignition taking place either when one of these stars has accreted
enough mass from a nearby companion to exceed the Chandrasekhar limit, or when
two white dwarfs collide [7]. SNeIa make it possible to probe the expansion history of
the Universe by looking at how their (luminosity) distance1 from us is related to their
redshift. Whenever this relation departs from a pure Hubble law,2 the difference (to
lowest order in z) is proportional to the deceleration parameter, and can thus yield
important information about the rate at which the Universe is expanding [2]. SNeIa
are ideal in this regard because they act as standard candles – in the sense that their

1Refer to subsection 1.3.4.
2Hubble’s law states that the observed recession velocity v of a galaxy is directly proportional

to its distance d from us: v = H0d, where H0 is the Hubble constant [8]. This law only holds for
redshifts z � 1 [9].

1
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Figure 1.1: Observed magnitude versus redshift for distant and (in the inset) nearby Type Ia
Supernovae. For clarity, measurements at the same redshift are combined. At redshifts beyond
z = 0.1, the cosmological predictions (indicated by the curves) begin to diverge, depending on the
assumed cosmic densities of matter and vacuum energy. The red curves represent models with zero
vacuum energy and matter densities ranging from the critical density ρc (refer to subsection 1.3.4)
down to zero (an empty cosmos). The model that best fits the data is represented by the blue line;
it has a matter density of about ρc/3 plus a vacuum energy density that’s twice as large, and hence
corresponds to an accelerating universe.

Figure and caption from Ref. [5]. Copyright © 2003 American Institute of Physics.
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homogeneity as a group means their intrinsic luminosity (or absolute magnitude) can
be calibrated [7], and hence astronomers may readily find how distant they are by
measuring their observed luminosity (called the apparent magnitude) [10].

The discovery that the Universe is currently accelerating ushered in the concept of
dark energy. This is a form of energy which (unlike matter and radiation) is not
gravitationally attractive, but instead gives rise to a repulsive effect. Furthermore,
dark energy is thought to be homogeneously distributed, with a density of only about
10−27 kg m−3 [11], so the prospect of detecting it directly is very low. The fact that it
only interacts gravitationally, and not via any of the other fundamental forces, makes
it even more elusive.

Additional evidence for dark energy comes directly from the cosmic microwave back-
ground (CMB). Fluctuations in the temperature of the CMB usually follow a Gaus-
sian distribution. Recently, however, astronomers analysing data from the Atacama
Cosmology Telescope in Chile discovered CMB fluctuations which deviate from this
distribution. The phenomenon was attributed to gravitational lensing by large-scale
structure (LSS). It was proposed that the degree of non-Gaussianity could shed light
on whether dark energy really exists, because in its absence the lensing signal would
be enhanced (mainly due to three reasons: firstly, CMB photons would spend a longer
time at lower redshifts, where there is more LSS; secondly, the growth rate of LSS is
higher in a universe with positive curvature and no dark energy, and thirdly, when
no dark energy is present, projection effects tend to pick out fluctuations with longer
wavelengths, which are larger for most lensing scales). Consequently, lensing data is
able to break the geometric degeneracy of models that, despite having different expan-
sion rates and spatial curvature, give rise to similar temperature power spectra and
so cannot be distinguished using only primordial CMB measurements. The amount
of lensing detected was found to favour cosmologies with dark energy over those that
had none [12,13].

The existence of dark energy is further evidenced by the Integrated Sachs-Wolfe (ISW)
effect [15]. This is an effect experienced by CMB photons due to the temporal variation
of the cosmic gravitational potential, and translates into a secondary anisotropy of
the CMB [16]. Let us suppose that a CMB photon travelling across the Universe
passes through a region where there is a galactic super-cluster. As it falls into the
gravitational potential ‘well’ created by the strong gravity of the super-cluster, the
photon’s energy increases, and it is blue-shifted. If the gravitational potential is static,
this energy gain is compensated for by the loss that occurs when the photon has to
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Gnomonic projections of the WISE-2MASS projected density map (left) and the Planck SMICA 
CMB map (right). 

István Szapudi et al. MNRAS 2015;450:288-294

© 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical 
Society

Figure 1.2: Comparison of the projected WISE-2MASS galaxy density field (left) with the Planck
SMICA CMB map (right) reveals that one of the most significant cold spots of the CMB is aligned
with a prominent large-scale under-density [14].

‘climb out’ of the well. However, the expansion of the Universe – driven by dark
energy – causes the super-cluster to become less dense during the time it takes for the
photon to travel through it. Consequently, the well becomes shallower, meaning that
the energy the photon loses during exit is a little less than the amount gained on the
way in. The light we receive from the corresponding region of the sky is thus slightly
warmer than it would have been in the absence of the super-cluster [17].

As a result of successive additions and subtractions of energy (due to the presence
of over- and under-dense regions), the path a photon travels from the last scattering
surface to Earth may be characterised by a net rise or fall in temperature. This
explains why hot spots in the CMB – regions with a higher-than-average temperature
– correlate well with peaks in matter density. On the other hand, areas where the
temperature is lower than average, called cold spots, are correlated with under-dense
regions [17]. A typical example is depicted in Fig. 1.2.



1.2. DIFFERENT DARK ENERGY MODELS 5

1.2 Different Dark Energy Models

1.2.1 ΛCDM

Given the above-mentioned evidence, dark energy has to be somehow incorporated
into a successful cosmological model, either as an actual component of the cosmic fluid
or as a mechanism which arises from the geometry of the space-time manifold. One
of the first dark energy models to be proposed was ΛCDM, constructed by adding
a cosmological constant Λ – also known as vacuum energy – to Einstein’s theory of
General Relativity (GR).

As the name implies, the cosmological constant has an associated energy density
ρΛ with fixed value: ρΛ = −pΛ = Λ/8πG [18], where pΛ denotes the corresponding
pressure. While the matter and radiation components are diluted by cosmic expansion,
therefore, dark energy is not, and it eventually starts to dominate. This would then
explain why we seem to be living in a dark-energy dominated epoch: theWMAP nine-
year results suggest that in a flat ΛCDM universe, baryonic and dark matter only
make up 28.65% of the cosmic fluid, with dark energy accounting for 71.35% [19].
Also assuming a flat ΛCDM cosmology, the Planck collaboration report a cosmic
composition of 68.47% dark energy and 31.53% matter [20].

The addition of a cosmological constant was, in fact, initially considered by Einstein
himself, albeit for a different purpose. At the time, observations of the Universe
were mainly limited to the stars in our galaxy, and the available evidence suggested
that the Universe was in a state of static equilibrium. In 1917, therefore, Einstein
published a paper entitled ‘Cosmological Considerations in the General Theory of
Relativity’, in which he proposed the addition of a new term to the field equations
of GR as a means of counteracting the attractive force of gravity. Five years later,
however, Friedmann derived a solution to Einstein’s equations that appeared to imply
an expanding universe. When Edwin Hubble verified this prediction observationally,
Einstein dismissed the cosmological constant completely (refer to [21] and works cited
therein). Indeed, he is reputed to have called it his ‘biggest blunder’. Little did he
know that it would be re-introduced many years later.

Despite providing a reasonably good fit to observational data,3 ΛCDM is not without
its shortcomings, especially on scales larger than the Solar System. Prominent among

3See, for instance, Refs. [19, 22] and [23].
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these is the smallness problem, which refers to the fact that the theoretical value
for Λ deduced in the framework of Quantum Field Theory is larger than the one
derived from observations by a factor of ∼10120. This stems from the fact that zero-
point energy calculations based on the assumption of a Planck-scale cutoff yield a
vacuum energy density for bosonic fields [24] of ∼10111 J m−3. On the other hand,
the upper bound consistent with observations is of ∼10−9 J m−3 [25]. Interestingly,
Klauber mentions that if fermions are also taken into consideration when computing
the theoretical estimate, the total vacuum energy density would be negative and of
the same order as the observed value [24].

Another difficulty with ΛCDM is encountered when one considers that the matter
energy density, notwithstanding the fact that it is a function of redshift, appears to
be comparable to the density of dark energy at present. It is rather implausible that
this should have happened purely by coincidence. However, ΛCDM offers no better
explanation, a limitation which we term the coincidence problem. There is also the
tension between the local value of the Hubble constant [26] and the result obtained
by the Planck collaboration [20] in the context of a ΛCDM cosmology. A fourth
example is the challenge posed by the ‘small-scale crisis’ (see Ref. [27] and works cited
therein), which refers to the discrepancies between sub-galactic-scale observations
and the predictions resulting from N -body simulations of structure formation in the
standard model.

The above-mentioned shortcomings have led the scientific community to propose and
study alternative models of dark energy. Most are constructed by modifying either
side of Einstein’s field equations [8]:

Rµν −
1
2Rgµν = 8πGTµν −Λgµν . (1.1)

Here, Rµν , gµν and Tµν are the Ricci, metric and energy-momentum tensors, respec-
tively, while R denotes the Ricci scalar. We shall also take a look at a few models
which are based on a completely different approach.

The next three sections summarise the main features of a number of models from each
category. The list is extensive, but by no means exhaustive. The reader is directed
to [28] for references and more information.

Before proceeding, however, let us make a small detour to introduce the equation of
state (EoS) parameter. This is often denoted by w, and is defined as the ratio of p
to ρ, where ρ is the energy density of the relevant cosmic fluid component and p the
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associated pressure. For the cosmological constant, we thus get that wΛ = pΛ/ρΛ =

−1. The EoS parameter of dark energy need not be constant, though, and in many
models alternative to ΛCDM it is not. In such cases, it is more appropriate to refer
to an ‘effective’ equation of state.

1.2.2 Modified matter models

In Modified Matter models, the energy-momentum tensor is altered to include a com-
ponent whose negative pressure drives the late-time cosmic acceleration [29]. One
class of such models is based upon the replacement of the cosmological constant with
a dynamical Λ which, as the name implies, is allowed to vary throughout the cosmic
history, although the EoS parameter is kept fixed at −1. The decay of vacuum energy
to its present small value consequently provides a natural solution to the smallness
problem. These dynamical-Λ cosmologies are further explored in Chapter 4.

When the modified model incorporates a rolling scalar field, the resultant cosmol-
ogy can be thought of as a generalisation of ΛCDM: if the field rolls slowly, its
potential energy behaves like the cosmological constant [28]. Prominent examples are
Quintessence and Phantom (or Ghost) models. The main characteristics of each are
briefly outlined below. A number of other Modified Matter models are also included.

Quintessence

The word quintessence means ‘fifth element’. In fact, Quintessence models [30,31] are
founded on the postulate of a fifth cosmic component – the other four being baryons,
dark matter, radiation and spatial curvature. The new addition is a time-varying
scalar field φ [29] which has a canonical kinetic energy term4 and is minimally coupled
to gravity. It provides the negative pressure required to explain the accelerating
expansion of the Universe [28].

Quintessence models may be classified as either freezing or thawing. In the former case,
wφ decreases with time and approaches the phantom divide (wφ = −1), whereas in
thawing scenarios the scalar field gradually ‘thaws out’ of its frozen state and causes wφ
to increase away from −1. Freezing models may additionally be subdivided into two

4This refers to a term of the form −1/2 gµν∇µφ∇νφ. The presence of a minus sign is made
necessary by the choice of metric signature – given a scalar field that depends only on time, its
kinetic energy density then works out to be positive [and equal to 1/2 (dφ/dt)2, where t is cosmic
time] [32].
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classes. In tracking freezing models, the evolution converges to a common solution for
a wide range of initial conditions – a feature which could solve the coincidence problem.
Scaling freezing models earn their name from the fact that the equation of state for
φ scales as the one for matter during the early matter-dominated epoch [33,34].

It should be emphasised, however, that the name ‘quintessence’ is often regarded
simply as an indication of a phenomenological approach [35]. One need only mention
that models based on non-minimally coupled scalar fields or bulk-viscous fluids, or
even on networks of non-intercommuting topological defects, are among the many
that may classify as ‘Quintessence’ [36].5

Phantom models

Phantom scalar fields [37] have negative kinetic energy. Consequently, they tend to
roll up the potential ‘hill’ (and not down, like conventional fields do), so that their
energy density ρφ grows in the process. Given that ρφ goes as a−3(1+wφ), where a
is the cosmological scale factor, an increase implies that the EoS parameter wφ must
be less than −1 [38]. The fact that phantom energy violates the dominant-energy
condition is perhaps unpalatable but not necessarily problematic [39].

If wφ is constant, ρφ keeps on growing and causes the cosmic expansion rate to diverge
in finite proper time, ultimately leading to a point at which the Universe is ripped
apart and physical laws break down (the Big Rip singularity) [39]. A disadvantage of
ghost models is the vacuum instability that results from interactions (gravitational or
otherwise) of the phantom quanta with other fields [28].

Recently, K. J. Ludwick suggested that phantom models need not have negative ki-
netic energy on all relevant length scales at all times. He also concluded that the
kinetic energy of Quintessence may not always be positive [40].

We now turn to dark energy models based on fields with modified kinetic terms.

K-essence

K-essence models are constructed by replacing the conventional kinetic term in the
action with the pressure of the field, which is a function of both the field itself and
also of the said canonical kinetic term. At the same time, it is made sure that

5Such models are sometimes referred to as extended Quintessence.
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Lorentz symmetry is preserved [28]. As the name implies – K-essence is short for
Kinetically-Driven Quintessence – in this class of models the particular behaviour of
the scalar field derives from the presence of non-canonical kinetic terms [41], rather
than on precise functional forms for the field potential (as is usually the case with
Quintessence). While it is not generally possible to rewrite K-essence models in terms
of Quintessence parameters, Malquarti et al. report that an equivalence can be made
in certain dynamical regimes [42].

K-essence may lead to a unified cosmological framework in which a single scalar field
accounts for both the inflation of the early Universe and the late-time accelerated
expansion [43]. Indeed, the proposal that cosmic dynamics are kinetically-driven first
appeared in the context of inflation [44].

Kinetic Gravity Braiding

The action for Kinetic Gravity Braiding is constructed by adding a term of the form
√
−g f(φ,X)�φ to the Lagrangian density of K-essence, where � is the covariant

d’Alembertian and f is a generic function of the scalar field φ and the associated
canonical kinetic energy X. Due to the presence of the f �φ interaction term, the
energy-momentum tensor of the scalar field does not take the perfect-fluid form; φ is
therefore termed an imperfect scalar. Furthermore, this same term encodes a coupling
between φ and the metric tensor gµν , giving rise to a mixing of the associated kinetic
terms and thus earning the theory its name. The key feature of models with kinetic
braiding is the dependence of the Einstein equations and the equation of motion for
φ on the second derivatives of both the scalar field and metric – and this despite
the fact that one starts off with a scalar field whose coupling to gravity is seemingly
minimal [45]. The literature contains several examples of different forms that f(φ,X)

may take [46,47].

As a consequence of kinetic braiding, φ couples to other kinds of matter in a rather
peculiar manner. In the absence of an additional, direct interaction between matter
and the scalar field, this coupling has a one-way nature, in the sense that the matter
distribution itself does not become coupled to the scalar and can thus only be affected
gravitationally by it [45]. On the other hand, the sensitivity of φ to the presence of
matter opens up the possibility that the former takes on the role of dark energy, so
that under certain conditions the resulting cosmology approaches a de Sitter space
asymptotically at late times. The scalar field may additionally cross the phantom
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divide wφ = −1 without generating ghosts or gradient instabilities [45].

Ghost Condensation

The Ghost Condensation model is another generalisation of K-essence. It originated
as a solution to the problem posed by the quantum instability of phantom dark energy
[28].

Like the cosmological constant, a ghost condensate is endowed with the equation of
state pφ = −ρφ (where pφ stands for the pressure and ρφ the energy density of the
condensate). It enables the Universe to admit a de Sitter phase, and is also similar
to Λ in that it does not get diluted as the Universe expands. Contrary to vacuum
energy, however, the ghost condensate is modelled as an actual physical fluid with a
physical scalar excitation. The underlying concept stems from a theory based on a
real scalar field φ whose Lagrangian has the ‘wrong-sign’ kinetic term characteristic
of ghost fields. Additionally, φ is shift-symmetric and has a constant velocity [48].

The ability of the ghost condensate to give rise to a de Sitter phase suggests that
it might be driving the current acceleration, and that it could have been responsible
for the early inflationary epoch of the Universe. It has also been suggested that
the ghost condensate may be able to produce the effects usually attributed to dark
matter [48]. Furthermore, a recent study reports that the Galileon ghost condensate
model (of which the model described here is a sub-case) is observationally favoured
over ΛCDM [49].

We shall now take a look at a modified matter model which is not based on scalar
field theory.

Chaplygin gas model

Most models of dark energy have a fluid description. Some, however, originate from
the direct modification of hydrodynamical equations. Prominent among these is the
Chaplygin gas (CG) model, so-called because it incorporates dark energy as a Chap-
lygin gas. The equations governing this fluid were originally used in aerodynamics to
model the flow of air around the wings of an aircraft [28]. The Chaplygin gas EoS
reads:

pCG = − A

ρCG
, (1.2)
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where pCG and ρCG are the pressure and energy density of the fluid in a comoving
reference frame, respectively, and A stands for a positive constant [50]. Generalised
versions of Eq. (1.2) have also been explored in the literature. One of these, which gives
rise to the generalised Chaplygin gas (GCG) model [28], includes a second constant
(denoted by α) and takes the form [51]:

pGCG = − A

ραGCG
. (1.3)

Interestingly, despite the fact that the representation of dark energy as a Chaplygin
gas did not originate as a scalar field theory, the resulting dynamics may alternatively
be ascribed to the presence of a scalar with a simple potential during the matter- or
dark energy-dominated epochs [28].

The CG and GCG models have been thoroughly investigated using observational
data from numerous sources, such as SNeIa, baryon acoustic oscillations (BAOs),
and the CMB. Most studies have shown that the CG model is not compatible with
observations [28]. In particular, the combination of X-ray, SNeIa and Fanaroff-Riley
type IIb radio galaxy data, when used to test the GCG model, yielded the constraint

α = −0.09+0.54
−0.33 (1.4)

at a 95% confidence level. This study thus rules out the CG model, which corresponds
to α = 1 [52].

An attractive feature of GCG is its ability to incorporate dark energy and dark matter
as a single component. In fact, GCG is sometimes called the Unified Dark Matter
model6 (UDM). However, when α is positive, the dark matter power spectrum in
the UDM scenario is characterised by oscillations which turn out to be incompatible
with observations. On the other hand, negative values of α make the perturbations
grow exponentially, but these are also ruled out. Studies have shown that most of the
parameter space of α is excluded by observational constraints. The values still allowed
are those extremely close to zero – which essentially means that only the ΛCDM limit
can satisfy the said constraints [53].

6The reader is referred to [28] and works cited therein.
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1.2.3 Modified gravity models

Modified Gravity models are constructed from altered versions of the action that forms
the basis of General Relativity. The GR action reads [8]:

S =
∫ [√

−g
16πG(R− 2Λ)

]
d4x . (1.5)

Changes to Eq. (1.5) are made with a view to providing an alternative description of
the geometry of space-time – one that gives rise to the effects usually attributed to
dark energy. We will thus be concerned with the left-hand side of Eq. (1.1).

A number of Modified Gravity models are reviewed in more detail below.

f(R) and f(T ) gravity

As the name suggests, the idea behind f(R) gravity models is the generalisation of
the Ricci scalar R in the gravitational action of GR [Eq. (1.5)] to a function f(R).
The action is then varied either with respect to the metric itself (an approach known
as the metric formalism), or by treating the metric and connection7 as independent
variables and varying the action with respect to both. In the latter case, one gets the
Palatini formalism of f(R) gravity, in which the matter part of the action must be

7The connection is a mathematical construct that defines the notion of parallel transport along a
curve on a manifold [54]. Parallel transport can be loosely understood as the curved-space general-
isation of the concept of ‘keeping a vector constant’ while moving it along a path [8]. There is an
important difference, however, between what happens in a flat space and a curved one: in the latter
case, the result of parallel transport depends on the path taken.
An affine connection is essentially a set of linear transformations which enable us to compare tangent
vectors lying at different points on a manifold [55]. To make the basic principles more intuitive, we
may picture a pseudo-Riemannian manifold embedded in a pseudo-Euclidean space of higher dimen-
sion. Then, starting with the vector v belonging to the tangent space of a point P, we shift it to a
neighbouring point Q, keeping it parallel to itself in the process. This amounts to transporting the
vector within the Euclidean embedding space while keeping its length and direction fixed. At Q, v
will not in general be tangential to the surface. That is why we need to equip the manifold with an
affine connection. It enables us to shift v from P to Q in such a way that the end result is a vector
lying in the tangent space of Q [18].
In mathematical terms, a vector v is said to be parallel transported along the path xµ(ζ) if the
condition [8]

dxµ

dζ ∇µv
σ = 0

holds at every point along the path. The quantity ∇µvσ stands for the covariant derivative of v and
is given by:

∇µvσ = ∂µv
σ + Γσµρv

ρ .
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assumed independent of the connection. If the assumption in question is relaxed, the
resulting version is called metric-affine f(R) gravity [56].

The recent discovery that the Universe is accelerating motivated a surge of interest in
this class of models [56]. Indeed, like other Modified Gravity theories, f(R) gravity
opens up the possibility that the effects attributed to dark energy may be arising
naturally from the geometry of the space-time manifold, and is an endeavour to make
dark energy redundant. We shall be reviewing metric f(R) in greater detail in Chapter
5. The metric-affine formalism is as yet relatively unpopular, and the Palatini class
of theories has ‘suffered multiple deaths’ [57]; its problematic features include a non-
dynamical scalar field, an ill-posed Cauchy problem, and curvature singularities arising
from discontinuities in the matter distribution [57].

In GR, the geometric quantity that can be said to ‘describe gravity’ is the Riemann
curvature tensor. This tensor embodies a description of the geometry that matter
induces in the space-time manifold, and which in turn determines the trajectories
of test particles – a role commonly attributed to ‘gravity’. The Riemann curvature
tensor is constructed from the torsionless Levi-Civita (or Christoffel) connection. In
1928, however, Einstein tried using the Weitzenböck connection instead. This has no
associated curvature but is characterised by non-zero torsion. Consequently, in the
resulting model (called Teleparallelism) the prominent role that the Riemann curva-
ture tensor plays in GR is assigned to the torsion tensor. Nonetheless, Teleparallelism
shares many features with standard GR [58].

The basis of the Lagrangian density for the Teleparallel Equivalent of GR (TEGR) is
the torsion scalar T [58, 59]:

L =

√
−g

16πGT , (1.6)

which is itself defined as the product S µν
ρ T ρµν . The torsion tensor T ρµν is constructed

The connection is specified by the set of coefficients Γσµρ. It is possible to construct many connections
on a given manifold, but one is of particular significance: the (torsion-free) metric compatible con-
nection, so-called because the associated covariant derivative operator gives zero when it acts upon
the metric [8]. The coefficients that define this connection are known as the Christoffel symbols and
may be computed from the metric as follows:

Γσµν =
1
2g

σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) .

Although we have focused exclusively on vectors, the concept of parallel transport can be extended
to any tensor of arbitrary rank.
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from the Weitzenböck connection, wΓλνµ:

T λµν = wΓλµν − wΓλνµ , (1.7)

whereas S µν
ρ takes the form:

S µν
ρ =

1
2(K

µν
ρ + δµρT θνθ − δνρT

θµ
θ) . (1.8)

Here, Kµνρ represents the contortion tensor:

Kµνρ = −
1
2(T

µν
ρ −T νµρ −T µν

ρ ) , (1.9)

and δµν is the familiar Kronecker delta [58,59].

Just as f(R) theory generalises the Ricci scalar in the GR action to functions thereof,8

so f(T ) Lagrangian densities are non-linear functions of the above-mentioned
TEGR scalar T . One advantage of f(T ) models is the fact that the field equations,
being second-order, avoid the pitfalls associated with the higher-order equations of
the f(R) metric formalism [58].

In f(T ) gravity, the non-zero torsion of the connection is responsible for the observed
cosmic acceleration [59]. The theory can also accommodate the radiation- and matter-
dominated epochs, and there is the possibility for inflation to be
achieved without an inflaton field. The reader is directed to [60] for references and a
comprehensive review.

MOND and TeVeS theories

The Modified Newtonian Dynamics (MOND) theory was proposed as a means of
erasing the need for dark matter. It involves the modification of Newtonian dynamics
on very large scales [28]. MOND can provide an explanation for several observational
aspects of galaxies and galaxy clusters without invoking any ‘hidden’ mass [61].

8It should be noted, however, that in the Palatini and metric-affine approaches, R derives from
the non-metric connection [56].
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The basic assumption of MOND is concisely summarised by the equation

F = mg f(|a|/ς)a ;

f(y � 1) ≈ 1 ; f(y � 1) ≈ y , (1.10)

where mg is the gravitational mass of an object that moves in a static force field F
with acceleration a. The constant ς was determined to be approximately 2× 10−10

m s−2. When |a| � ς, the function f tends to unity, and Newtonian gravity is
recovered [61]. The assumptions underlying MOND can be interpreted in two ways:
either as a modification of Newton’s second law (F = mga) or as an alternative
description of the gravitational field [62].

Bekenstein and Milgrom have shown that the basic principles of MOND may be
incorporated into a theory with a Lagrangian formalism. The main feature of the
Lagrangian density they propose is the fact that it contains a function of (∇Φ)2 (Φ
being the potential responsible for the acceleration of test bodies) [62]. This property
is reflected in the name given to the resulting theory: AQUAL, which is short for A
QUadratic Lagrangian [28].

The relativistic version of AQUAL is based on the Lagrangian density:

L =

√
−g

16πG

[
R− 2

U2f
(
U2gµν∇µψ∇νψ

)]
. (1.11)

Here, U is a constant introduced for dimensional consistency, ψ represents a real
scalar field,9 and gµν is conformal to the physical metric (which is given by gµνe2ψ).
Unfortunately, relativistic AQUAL has been empirically falsified, mainly because of
two major shortcomings: the violation of causality by ψ-waves and the failure to
properly account for light deflection, which in GR requires the presence of dark matter
[63].

TeVeS is arguably the most complicated in the MOND family of models. Indeed,
the name is an acronym for Tensor-Vector-Scalar, because the theory incorporates
three dynamical fields: the Einstein metric tensor gµν , a timelike four-vector field vµ

and a scalar field φ, together with a non-dynamical scalar field ξ. Unlike some of
the other MOND-like models, TeVeS makes it possible to avoid causality violations
and to comply with the constraints imposed by gravitational lensing experiments.

9To a good approximation, relativistic AQUAL reduces to MOND when the acceleration is weak,
and (subject to certain conditions) the field ψ takes the role of Φ [63].
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Nonetheless, it has its share of problems. For instance, the effects that in GR are
attributed to dark energy do not emerge as a natural consequence of the theoretical
framework [28].

Gauss-Bonnet gravity and Lovelock gravity

For Gauss-Bonnet (GB) gravity [64], the Einstein-Hilbert action of Eq. (1.5) is mod-
ified to include a ghost-free correction proportional to RµνρσRµνρσ − 4RµνRµν +R2.
This expression is called the GB term G [28].

GB theory was proposed with the aim of deriving a ghost-free gravitational action
from the low-energy limits of string theory [28, 64]. When G is coupled to a scalar
field φ whose potential takes the form V (φ) = V0 exp (−λφ), and the GB coupling –
in other words, the factor which scales G in the action – is proportional to exp (%φ)

(% > λ; % and λ are both contants), the matter-dominated era may be followed by
a late-time de Sitter epoch. Yet despite being well-motivated by low-energy effective
string theory, GB gravity is observationally disfavoured as a dark energy candidate
model. Additionally, in order to prevent Solar System constraints from being violated,
the energy contribution of the GB correction must be strongly suppressed. This
suppression may in turn render the GB term insufficient to account for the late-time
accelerated cosmic expansion. However, it is possible to get the required acceleration
by replacing G with a function f(G). A number of models that result from this
approach are able to satisfy local gravity constraints, but have been found lacking
in other ways. In particular, density perturbations in perfect fluids are subject to
negative instabilities during both the radiation- and matter- dominated epochs (refer
to [65] and works cited therein).

A more general version of GB theory is known as Lovelock gravity [66]. In a D−
dimensional space-time, the action for pure Lovelock gravity takes the form10 [67]:

S(q) =
∫ √−g

16πG c(q)η
L
(q) d

Dx , (1.12)

where q is an integer, c(q) denotes a parameter with dimensions of (length)2(q−1) and
ηL(q) represents the Lovelock invariant:

ηL(q) =
1
2q δ

µ1ν1...µqνq
σ1λ1...σqλq

R σ1λ1
µ1ν1 . . . R σqλq

µqνq ; ηL(0) = 1 . (1.13)

10A general Lovelock action would contain a sum of Lovelock invariants [67].
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In the above, R σλ
µν is the Riemann tensor, while the indices µ, ν, σ and λ can take

values in the range [0,D − 1] and serve to label the D spacetime coordinates. The
generalized Kronecker delta is defined in terms of the Levi-Civita symbol11 [67]:

δµ1...µn
ν1...νn ≡ εµ1...µnεν1...νn = n!δµ1

[ν1
. . . δµn

νn]
. (1.14)

Although Lovelock gravity cannot directly yield a cosmology dominated by dark en-
ergy, dimensional reduction techniques have made it possible for third-order Lovelock
dark energy models to be proposed [28]. In Ref. [68], for instance, the authors con-
sider the third-order Lovelock equations in a higher-order Kaluza-Klein space-time
devoid of matter and without a cosmological constant. They show that dark energy
and matter can be created out of the curvature of the Kaluza-Klein space-time.

Hořava-Lifshitz Gravity

Hořava-Lifshitz Gravity [69] tackles the problem of non-renormalisability, a major
stumbling block encountered when attempting to quantise GR.12 Hořava suggested
that by giving up Lorentz invariance at high energies, it is possible to at least have
power-counting renormalisability [28]. A theory is said to be renormalisable by power
counting when the processes leading to divergences are finite in number and exclusive
to Feynman graphs with only a few external lines [70].

The metric that arises within the Hořava-Lifshitz framework reads:

ds2 = −N2dt2 + µij
(
dxi +N idt

) (
dxj +N jdt

)
, (1.15)

Here, N and N i represent the lapse and shift functions, respectively, and µij is the
spatial metric [71]. An important and distinctive property of the theory is its UV
fixed point, which is characterised by an anisotropic, Lifshitz scaling of the form
xi → bxi, t → bεt (b is the scaling factor and ε the dynamical critical exponent [71].
The latter must equal three for the theory to be power-counting renormalisable in a
spacetime with 3 + 1 dimensions [69].)

Hořava-Lifshitz cosmology is constructed by combining the modified gravitational
11The Levi-Civita symbol, denoted by ερ1ρ2...ρn , evaluates to +1 if ρ1ρ2 . . . ρn is an even permuta-

tion of 0, 1, 2 . . . n− 1. It is equal to −1 if the permutation is odd, and 0 otherwise [8].
12The appearance of loops in Feynman diagrams often implies unbounded transition amplitudes.

In very simple terms, renormalisability refers to the process of redefining certain quantities in a way
that makes the transition amplitudes finite [24].
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background with a scalar field φ. The resulting model describes a universe with a
cosmological constant and a so-called dark radiation term, as well as a dark matter
distribution that φ is expressly introduced to account for [71]. In Ref. [71], the addition
of a second scalar field gives rise to an effective dark energy component with a varying
EoS parameter that may even cross the phantom divide.

Conformal Weyl Gravity

The action for Conformal Weyl Gravity (CWG) is constructed from the conformal
Weyl tensor Cλµνκ [72]:

S = −β
∫ √
−g CλµνκCλµνκ d4x ≡ −β

∫ √
−g

(
RλµνκR

λµνκ − 2RµνRµν +
R2

3

)
d4x;

(1.16)

Cλµνκ = Rλµνκ −
1
2 (gλνRµκ − gλκRµν − gµνRλκ + gµκRλν) +

R

6 (gλνgµκ − gλκgµν) .

(1.17)

In the above, β is a dimensionless coupling constant.

Eq. (1.16) may be simplified [72] by making use of the fact that the Lanczos Lagrangian
density [73], which reads

LL =
√
−g

(
RλµνκR

λµνκ − 4RµνRµν +R2
)

, (1.18)

is a total divergence and hence does not contribute to the equations of motion; the
conformal action consequently becomes [72]:

S = −2β
∫ √
−g

(
RµνR

µν − R2

3

)
d4x . (1.19)

Among the features that CWG shares with standard GR are general coordinate
invariance and an equivalence principle structure. In addition, CWG is endowed
with local conformal invariance, meaning that metric transformations of the type
gµν(xλ) → e2f(xλ)gµν(xλ) [where f(xλ) is an arbitrary local phase] leave the action
invariant [74].

The strong point of CWG is that it provides an explanation for galactic rotation curves
without any need for dark matter [74]. It can also serve as a dark energy model [72],
but has its share of controversy, not least because conformal invariance constrains the
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total energy-momentum tensor T tot
µν to have vanishing trace. Since cosmological fluids

(with the exception of radiation) are in general described by an energy-momentum
tensor with non-zero trace, this must mean that T tot

µν receives contributions from an
additional source. According to Mannheim, the source in question is none other than
the Higgs field [75]. However, some see this scenario as highly unlikely. For instance,
Yoon underlines the difficulty of proposing a mechanism that would distribute the
Higgs field in the way necessary to render T tot

µν traceless [76].

A further setback of CWG concerns the parameter γ. This parameter arises as an
integration constant in the line element exterior to a static, spherically symmetric
source13 [77]:

ds2 = −B(r)dt2 + dr2

B(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
; (1.20)

B(r) = 1− ν(2− 3νγ)
r

− 3νγ + γr− ϑr2 . (1.21)

Eq. (1.21) essentially represents a modification of the Newtonian gravitational poten-
tial, and is the reason why the features of galactic rotation curves may be explained
without the need for dark matter. A good fit to the data is obtained if γ is approxi-
mately 10−28 cm−1 [77]. Herein lies the problem: the given estimate is several orders
of magnitude smaller than the value inferred from lensing data [78] or from consider-
ations of quantum interference effects [79]. A recent study even argues that γ must
be set to zero [80]. On the other hand, constraints from the perihelion precession of
planetary orbits are compatible with those from galactic rotation curves [81]. There
is also the fact that the sign of γ is itself a subject of debate14 [83–85].

1.2.4 Other models of dark energy

Several other noteworthy dark energy models are introduced below.

Holographic dark energy

The Holographic Principle originated from black hole thermodynamics [28]. After
Bekenstein proposed that a black hole has an entropy proportional to its horizon

13The quantities ν and ϑ are also integration constants.
14A number of works have attempted to explain why different studies disagree on the role that γ

plays in strong lensing. Refer, for instance, to [80,82] and [83].
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area [86], and the Bekenstein-Hawking area-entropy relation was established [86–88],
’t Hooft [89] and Susskind [90] realised the possibility of interpreting black hole en-
tropy as a dimensional reduction [28]. In his book The Black Hole War: My Battle
with Stephen Hawking to Make the World Safe for Quantum Mechanics [91], Leonard
Susskind tells how he and Gerard ’t Hooft ‘waged war’ against Hawking’s claim that
the information trapped inside a black hole (due to in-falling matter) gets obliterated
when the black hole evaporates. In an effort to save the principle of information con-
servation – ‘one of the most trusted principles of physics’ [91] – they suggested that
the surface of the black hole encodes information about the matter that has fallen
inside. This information then leaks out when the black hole emits Hawking radiation.

The Holographic Principle takes this concept one step further. According to it, every-
thing inside a region of space can be described by information that is restricted to the
boundary [91]. The holographic entropy bounds resulting from this approach paved
the way [92] for a relation to be established between the infrared and UV cutoffs of
a system [93], here denoted by `i and `uv, respectively. The said relation guarantees
that, assuming the system has size `i, the quantum zero-point energy ρzp = `4uv can-
not exceed the energy pertaining to a black hole of the same size (Ref. [93] as cited
by Ref. [94]). This places bounds on ρzp [94]. When the holographic principle is
applied to the dynamics of the Universe, the cutoff length `i must be of cosmologi-
cal proportions, and interestingly, different infrared cutoffs give rise to different dark
energy models [95]. For instance, Cohen et al. reported that choosing a value for `i
comparable to the current horizon size (the Hubble radius H−1 [95]) results in a dark
energy density – equivalent to ρzp – which is approximately equal to the observed
effective cosmological constant [93]. It later turned out, however, that this choice of `i
means that wΛ is equal to zero (rather than −1) [92]. Li suggested that the infrared
cutoff could be identified with the size of the event horizon15 instead [96].

Sub- and Super- Hubble inhomogeneities

One of the most fundamental assumptions underlying modern cosmology is the cosmo-
logical principle, according to which the observable Universe is both homogeneous and
isotropic. This principle lies at the very core of the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric and all its implications for cosmology, including the Friedmann
equations. Although deviations from the cosmological principle have been investigated

15The event horizon is defined in subsection 1.3.4.
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in the literature – for instance, a Bianchi-type universe is homogeneous but not nec-
essarily isotropic [97] – the FLRW description of the Universe is arguably the most
popular today.

The cosmological principle is, in fact, supported by CMB and LSS observations. How-
ever, on sub-Hubble scales the Universe is not homogeneous at all, but contains struc-
tures such as galaxy clusters. Neither can it be ascertained that homogeneity and
isotropy hold on scales larger than the observable Universe (super-Hubble scales) [28].

Since gravity is non-linear, it is possible that any anisotropies and/or inhomogeneities
back-react on the evolution of the observable Universe [28], giving rise to accelerated
expansion at late times ( [28,98] and references therein).

Quantum Cosmology

It is as yet not possible to speak about quantum cosmology as one would of a well-
established dark-energy model, because at present we do not have a theory of quantum
gravity to provide the necessary framework. However, we can at least formulate a
qualitative picture of such a cosmology [99]. One way in which this may be done is by
assigning the Universe a wave function whose behaviour is described by the Wheeler-
De Witt wave equation [100–102]. Under certain conditions, the cosmological constant
term behaves effectively as a mass-squared term in the said equation. Consequently,
just as second quantisation makes it possible for a particle to decay into another of
a different mass (provided that interactions between the two kinds of particles are
allowed), so the addition of interactions to the quantised Lagrangian density implies
that a universe with a large cosmological constant may decay into one having a smaller
Λ [103, 104]. Given two universes with a different cosmological constant but coupled
wave equations, it is also possible to construct a ‘mass matrix’ analogous to the one
used in neutrino physics. The seesaw mechanism can then be applied to cosmology.
In the case of neutrinos, this mechanism aims to provide an explanation for their
small, non-zero mass by introducing a seesaw-like relation between the eigenvalues of
the mass matrix: when one eigenvalue increases, the other decreases [28].

In a similar way, the ‘mass matrix’ associated with the above-mentioned universes
might hold the key to the solution for the smallness of the cosmological constant.
The eigenvalues of the matrix would be determined by the two different values for the
cosmological constant (one in each universe). If the vacuum energy of one universe
is at the Planck scale, and that of the other is at the supersymmetry breaking scale,
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the seesaw mechanism could result in the smaller eigenvalue being suppressed by the
amount necessary for it to match the current observed value of Λ [104].

Another explanation of dark energy may arise from the mechanism of efficient reso-
nance tunnelling, a well-established concept in quantum mechanics. It occurs when a
wave function has to tunnel through multiple potential barriers. Although the process
of tunnelling usually causes the wave function to decay exponentially, the presence of
a second barrier alters the scenario considerably if the energy of the wave function
matches that of a bound state in the intermediate region. Should this happen, the
requirements of continuity may only be met at all the boundaries under a particular
condition: the tunnelling amplitude must be exponentially enhanced by one of the
barriers (while still being exponentially suppressed by the other) [28]. In certain sit-
uations, the probability of tunnelling through both barriers may actually become of
order one, and efficient resonance tunnelling occurs [105].

It has been proposed that the Universe itself could have experienced resonant tun-
nelling. More specifically, it is possible – in the context of string theory – that the
Universe might have tunnelled from an early era characterised by a large value for the
cosmological constant to the current epoch, with its small value of Λ [105].

1.3 The FLRW Cosmology

The Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology is based on three fun-
damental assumptions: the cosmological principle, Weyl’s postulate, and the notion
of a maximally symmetric three-space [18].

The cosmological principle states that all positions in space are equivalent at any given
time. Additionally, the Universe as viewed from a general point looks the same in all
directions. The former property is referred to as homogeneity, while the latter is called
isotropy [18]. Although the idea that the Universe is roughly the same everywhere
might seem counter-intuitive, especially when one considers inhomogeneities such as
galaxies and galaxy clusters, the cosmological principle is only valid on scales large
enough for density variations to be averaged over [8].

Weyl’s postulate builds on the concept of space-time as a series of three-dimensional
space-like hypersurfaces. In layman’s terms, we ‘slice’ space-time into non-
intersecting space-like surfaces and label each with a parameter t. Consequently,
all events happening at a given time t̄ must be confined to the surface bearing the
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‘label’ t = t̄. We then introduce the notion of fundamental observers, so called be-
cause they are assumed to be motionless relative to the cosmological fluid (this ‘fluid’
is the description we give to the ‘smeared-out’ motion of galaxy clusters and other
matter). Weyl put forward the hypothesis that the time-like world lines of the funda-
mental observers link all of space-time. More specifically, they form a bundle which
is assumed to diverge from a point in the past – or converge to one in the future – in
such a way that there is a unique world line passing through every point, but no two
intersect (except possibly at a singular point) [18].

The next postulate we consider is that of a maximally symmetric three-space. Before
proceeding, it should be emphasised that each of the hypersurfaces mentioned above
is a three-dimensional space – the idea of a ‘surface’ results from the fact that it is
more intuitive to suppress a spatial dimension and imagine the Universe as a stack
of two-dimensional ‘sheets’. Now that the concept of space-time foliation has been
established, we apply the cosmological principle by assuming that the three-spaces
are homogeneous and isotropic. This in turn implies the highest degree of symmetry
and renders themmaximally symmetric. As a result, their Riemann and metric tensors
are related thus:

Rijkl = K (gikgjl − gilgjk) . (1.22)

The coordinate-independent curvature K is a constant that takes the same value for
all hypersurfaces. It is more commonly expressed in normalised form as the ratio
K/|K|, henceforth denoted by k [8, 18].

The above three propositions form the building blocks of the FLRW cosmology. When
combined, they yield the line element [8]:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2 + r2(dθ2 + sin2 θ dϕ2)

]
, (1.23)

where r has dimensions of distance and a(t) = R/R0, R being the scale factor and
R0 its-present day value [so that if we let t0 denote the current time, we get that
a(t0) = 1]. The role of the scale factor is to account for the expansion or contraction
of the Universe by scaling the spatial part of the metric accordingly. As for the
parameter κ, this is defined as the ratio of k to R2

0. It thus follows that κ has
dimensions of (length)−2 [8].

The spatial coordinates used in Eq. (1.23) are said to be comoving. In fact, these
coordinates seem to move with the fundamental observers (who in actuality represent
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individual galaxies), so that as long as peculiar velocities are negligible on cosmolog-
ical scales, the world line of a galaxy has fixed values of (r, θ,ϕ). What about the
parameter t? Space-time may be foliated in such a way that the world lines of the fun-
damental observers intersect the space-like hypersurfaces orthogonally. Consequently,
t can be identified with the proper time of these observers, and is hence called the
synchronous time coordinate [18].

1.3.1 Spatial curvature and geometry

Let us consider the metric given by Eq. (1.23) and extract the spatial part [8]:

dσ2 =
dr2

1− κr2 + r2dΨ2 . (1.24)

Here, dΨ2 = dθ2 + sin2 θ dϕ2. If we redefine the radial coordinate as follows [8]:

dχ =
dr√

1− κr2 , (1.25)

and then integrate Eq. (1.25), we get that r = F(χ), with

F(χ) =


χ if κ = 0 ;

sin (
√
κχ)/

√
κ if κ > 0 ;

sinh (
√
|κ|χ)/

√
|κ| if κ < 0 .

(1.26)

Consequently, the spatial line element may be written as [8]

dσ2 = dχ2 +F2dΨ2 . (1.27)

Zero spatial curvature

When κ = 0, Eq. (1.27) becomes [8]

dσ2 = dχ2 + χ2dΨ2 = dx2 + dy2 + dz2 , (1.28)

where the last equality follows from the coordinate transformation x = χ sin θ cosϕ,
y = χ sin θ sinϕ, z = χ cos θ [18]. Eq. (1.28) is none other than the metric for three-
dimensional Euclidean space.
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Positive spatial curvature

Positive values of κ are associated with the line element

dσ2 = dχ2 +
1
κ

sin2
(√

κχ
)
dΨ2 =

1
κ

[
dχ̃2 + sin2 (χ̃) dΨ2

]
. (1.29)

The last equality is obtained by setting
√
κχ equal to χ̃, and puts the metric in a form

that describes a three-sphere embedded in four-dimensional Euclidean space. We can
hence deduce that a 3-space with positive curvature has finite volume [18]. Indeed, a
universe having κ > 0 is often said to be closed.

Negative spatial curvature

In this case, Eq. (1.27) reads

dσ2 = dχ2 +
1
|κ|

sinh2
(√
|κ|χ

)
dΨ2 =

1
|κ|

[
dχ̃2 + sinh2 (χ̃) dΨ2

]
, (1.30)

where χ̃ =
√
|κ|χ. The properties of the resulting geometry emerge more clearly if we

embed the metric (as expressed in terms of χ̃) in four-dimensional Minkowski space.
Here, the 3-dimensional hypersurface may be identified with a hyperboloid, which
leads us to conclude that a 3-space with negative curvature has infinite volume [18].
It additionally explains why a universe having κ < 0 is commonly referred to as being
open [8].

1.3.2 Spatial curvature in the literature

One of the main aims of this study is to shed light on the role that spatial curvature
plays in the expansion history of the Universe. The possibility that the Universe is
not spatially flat has been largely overlooked in the literature, mainly due to two
reasons: the consistency of a flat geometry with the concept of inflation, which would
conceptually have ‘smoothed out’ any curvature, and the support that observations
seem to lend to a flat ΛCDM cosmology [19,20,106,107]. With regards to the latter,
the question naturally arises whether the assumption of flatness may be justifiably
extended to dynamical dark energy models, since many of the studies that use cosmic
data to constrain spatial curvature do so in the framework of a ΛCDM cosmology.
One might be tempted to answer in the affirmative, especially in the light of a number



1.3. THE FLRW COSMOLOGY 26

of studies which have obtained constraints in several modified matter scenarios, and
whose results are indicative of a flat geometry [108–111]. Other studies, however,
have shown that alternative dark energy models may accommodate a non-flat universe
when tested with cosmological data [112–114]. It should be remembered that the dark
energy EoS parameter is likely to become degenerate with spatial curvature when one
attempts to constrain both simultaneously [115]. Indeed, if the density of dark energy
is allowed to vary freely with time, constraints on the geometry of the Universe may
become looser [116]. This degeneracy implies that making a wrong assumption about
one of the parameters can severely distort results related to the other. For instance,
data analysis of models with curvature and dynamical dark energy may produce results
suggestive of flat ΛCDM should the dynamics of dark energy be overlooked. On the
other hand, the assumption of flatness can result in cosmological observations being
seemingly at odds with ΛCDM if the Universe is actually curved [115,117]. There is
the additional possibility that a closed universe consisting of dust and quintessence
behaves as a flat, accelerating ΛCDM universe at late times [118].

Relativistic effects like cosmic magnification may also play a part. It has been sug-
gested that unless these effects are accounted for in galaxy number counts, measure-
ments of Ω0

k based on data from galaxy surveys can be significantly biased [119]. An-
other point of interest is the fact that recent SNeIa data appears to be in tension with
the flat ΛCDM hypothesis [120], and may actually favour a non-flat universe [121,122].

Standard inflation predicts that any spatial curvature should be negligibly small. This
follows from the exponential decrease of Ω0

k during inflation and the much smaller
growth rate since then [22]. It may be argued, however, that one should look for the
potential presence of curvature as a means of testing the inflationary paradigm, rather
than setting Ω0

k to zero [112]. Moreover, Bolejko suggests that the spatial geometry
of the Universe could have evolved from spatial flatness at early times to a slightly
hyperbolic one today. The author reaches this conclusion by running a Simsilun
simulation16(a relativistic simulation of the large-scale structure of the Universe) [123],
and finds that the emergence of spatial curvature might actually be the key to solving
the Hubble constant problem. He reports that when the system enters the non-linear
regime, Ω0

k begins to depart from zero, while the average expansion rate deviates
from ΛCDM and ultimately yields a value of 72.5± 2.1 km s−1 Mpc−1 for the Hubble
constant. This despite the fact that the initial conditions are consistent with the
Planck constraints [124].

16A ray-tracing algorithm is first incorporated into the simulation.
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1.3.3 The Friedmann equations for ΛCDM

Let us return to Einstein’s equation for GR, first introduced in subsection 4.6.5. It is
reproduced below for ease of reference [8]:

Rµν −
1
2Rgµν = 8πGTµν −Λgµν . (1.31)

The left-hand side relates to the geometry of the space-time manifold and may be
evaluated once gµν is known. Indeed, we have that [8]

R = gµνRµν ; (1.32)

Rµν = Rλµλν ; (1.33)

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ ; (1.34)

Γσµν =
1
2g

σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) , (1.35)

where R is the Ricci scalar, Rµν and Rρσµν denote the Ricci and Riemann tensors,
respectively, and Γσµν represents the Christoffel symbols.

The right-hand side of Eq. (1.31) accounts for any sources of energy and/or mo-
mentum. In cosmology, the matter and radiation content of the Universe is usually
modelled as a cosmic fluid. In other words, just as fluid mechanics deals with the bulk
properties of liquids and gases – rather than with the behaviour of the constituent
particles – so the approach in cosmology is to ‘smear out’ the individual galaxies and
galaxy clusters, treating them as a whole and focusing instead on the attributes of the
generalised distribution. To this end, it is common practice to adopt a perfect fluid
description. Such a fluid is defined by the absence of heat conduction and viscosity in
the instantaneous rest frame (IRF) [18]. Its energy-momentum tensor is completely
characterised by the energy density ρ and isotropic pressure p:

Tµν = (ρ+ p) uµuν + pgµν , (1.36)

with both quantities as measured in the IRF. The vector uµ is the four-velocity of the
fluid (uµuµ = −1) [8].

We are now in a position to find out what specific form the Einstein field equations
take. In an FLRW universe filled with a perfect fluid, the µν = 00 component of
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Eq. (1.31) yields17 [8, 18]:

ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 , (1.37)

which, when combined with the equation for µν = ij, allows us to conclude that:

(
ȧ

a

)2
=

8πG
3 ρ+

Λ
3 −

κ

a2 . (1.38)

The isotropic nature of the FLRW space-time implies that one may only obtain a
single distinct equation from the µν = ij components [8, 18].

The above two relations, (1.37) and (1.38), are collectively known as the Friedmann
equations.18

1.3.4 Terminology

The Hubble parameter

The Hubble parameter H characterises the rate of expansion [8]. It is defined as the
quantity

H =
ȧ

a
, (1.39)

(or equivalently, as Ṙ/R), and the value it takes at present is known as the Hubble
constant (H0). This value is currently a subject of some controversy. The reason
is that in the context of a ΛCDM cosmology, measurements of CMB observables
constrain H0 to be approximately 67 km s−1 Mpc−1 [20], which is in tension at 4.4σ
with the model-independent value inferred directly from Cepheid data (H0 = 74.03±
1.42 km s−1Mpc−1) [125].

The density parameters

The various components of the cosmic fluid all have an associated density ρ and
pressure p that are generally functions of redshift. The way these quantities scale with
z may be determined by invoking the principle of energy and momentum conservation.

17An overdot denotes differentiation with respect to t.
18When referring to them individually, we shall call (1.38) the first Friedmann equation and (1.37)

the second Friedmann equation.
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Provided the components do not interact, each of them must satisfy the condition [18]:

∇µ (Tµν)i = 0 . (1.40)

The action of the covariant derivative ∇σ on an arbitrary tensor is as follows [8]:

∇σJµ1µ2...µn
ν1ν2...νm = ∂σJ

µ1µ2...µn
ν1ν2...νm

+ Γµ1
σρJ

ρµ2...µn
ν1ν2...νm + Γµ2

σρJ
µ1ρ...µn

ν1ν2...νm + · · ·+ ΓµnσρJ
µ1µ2...ρ

ν1ν2...νm

− Γρσν1J
µ1µ2...µn

ρν2...νm − Γρσν2J
µ1µ2...µn

ν1ρ...νm − · · · − ΓρσνmJ
µ1µ2...µn

ν1ν2...ρ . (1.41)

Eq. (1.40) may thus be expanded by making use of Eqs. (1.23), (1.35), (1.36) and
(1.41). The result (for a generic component of the cosmic fluid) reads:

ρ̇i(t) = −3H(ρi + pi) . (1.42)

Next, we establish the relationship between ρi and pi by choosing an appropriate equa-
tion of state. For the perfect fluids relevant to cosmology, this equation is particularly
simple [8]:

pi = wiρi . (1.43)

Inserting the above relation into Eq. (1.42) allows us to solve for ρi:

ρ̇i = −3 ȧ
a
ρi(1 +wi) ;

=⇒ dρ
da = −3

a
ρi(1 +wi) ;

∴ ρi(a) = ρ0
i a
−3(1+wi) . (1.44)

Here, ρ0
i denotes the current density, while the equation-of-state parameter wi is a

constant whose value depends on the fluid being considered. It is equal to zero in the
case of matter, 1/3 for radiation and −1 for the cosmological constant. Thus we get
that

ρm = ρ0
ma
−3 ; ρr = ρ0

ra
−4 ; ρΛ = ρ0

Λ . (1.45)

In the above, the subscripts m, r and Λ respectively stand for matter (baryons and
cold dark matter), radiation (photons and massless neutrinos) and a cosmological
constant, while a superscript 0 indicates present-day values. The multi-component
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cosmic fluid may itself be treated as a perfect fluid with energy-momentum tensor [18]

Tµν = (ρ+ p) uµuν + pgµν , (1.46)

where
Tµν =

∑
i

(Tµν)i ; ρ =
∑
i

ρi ; p =
∑
i

pi . (1.47)

It is common practice to write the energy densities in terms of dimensionless quantities
called density parameters. The density parameter Ωi associated with ρi is defined as
the ratio of ρi to the critical density ρcrit [18]:

Ωi =
ρi
ρcrit

=
ρi

3H2/(8πG) =
8πG
3H2 ρi = Ω0

i

(
H0
H

)2
a−3(1+wi) , (1.48)

ρcrit being the energy density of the cosmic fluid in a perfectly flat Universe. When we
divide Eq. (1.38) by H2 and express the energy densities as functions of the respective
Ωis [while making use of the relation ρΛ = Λ/(8πG)], the first Friedmann equation
takes the form:

1 = Ωm + Ωr + ΩΛ −
κ

H2a2 . (1.49)

It is customary to introduce a parameter Ωk analogous to Ωi [18]:

Ωk = −
κ

H2a2 , (1.50)

so that Eq. (1.49) becomes:

Ωm + Ωr + ΩΛ + Ωk = 1 . (1.51)

By comparing model predictions to cosmological observations, the present-day values
for the density parameters (in the framework of a ΛCDM cosmology) are estimated
at 0.3 for the matter component and 0.7 for vacuum energy [20]. Ω0

r is found to be
negligibly small19 (≈ 9× 10−5).

The cosmological redshift

As light from galaxies travels through space-time, the expansion of the Universe causes
its wavelength to ‘stretch’ and thus shifts it closer to the red end of the spectrum. In

19This can be calculated from the current value of the matter density parameter (Ω0
m ≈ 0.3) and

the redshift at which the matter and radiation densities were equal, zeq = 3349 [20].
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other words, the light is red-shifted.

Let us consider a photon emitted at point O and received at R. The cosmological
redshift z is defined in terms of the change in frequency it undergoes along the way [8]:

z =
ωO − ωR
ωR

. (1.52)

Here, ω is the frequency of the photon at the point indicated by the subscript. We
may write z as a function of the photon energy E by recalling that E ∝ ω:

z =
EO −ER
ER

. (1.53)

E itself is determined from the momentum four-vector (pµ) of the photon, and its
value also depends on the four-velocity (uν) of the observer [8]:

E = −pµuµ . (1.54)

We shall parameterise the null geodesic along which the photon travels in such a way
that pµ = dxµ/dκ (κ represents an affine parameter). If we furthermore pick an
observer who co-moves with the cosmic flow – that is, one whose four-velocity uµ is
(1, 0, 0, 0) – it may be deduced that [8]:

E = −g00
dx0

dκ u0 =
dx0

dκ =
dt
dκ , (1.55)

since g00 = −1 for the FLRW metric [Eq. (1.23)].

The simplest definition of a geodesic is that it is a curve along which the tangent
vector is parallel-transported. In other words, the directional covariant derivative
of the tangent vector must be zero at every point on a geodesic. The condition for
parallel transport is thus:

dxµ
dκ ∇µ

(
dxµ
dκ

)
= 0 , (1.56)

which can be expanded to give

d2xµ

dκ2 + Γµρσ
dxρ
dκ

dxσ
dκ = 0 , (1.57)

where Γµρσ are the Christoffel symbols [8]. Without loss of generality, we may consider
paths having xµ(κ) = {t(κ), r(κ), 0, 0}. In an FLRW cosmology, then, the µ = 0
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component of the geodesic equation [Eq. (1.57)] would read:

d2t

dκ2 +
aȧ

1− κr2

(
dr
dκ

)2
= 0 , (1.58)

and Eq. (1.23) would be reduced to

0 = −dt2 + a2(t)
dr2

1− κr2 , (1.59)

since photon geodesics have a null line element [8]. The above equation may be
expressed as dr/dκ = a−1√1− κr2 dt/dκ. Inserting this into Eq. (1.58) yields the
following relation:

d2t

dκ2 +
ȧ

a

(
dt
dκ

)2
= 0 , (1.60)

which admits the solution dt/dκ ∝ a−1. Hence, going back to Eq. (1.55), we are able
to deduce that E ∝ a−1. Eq. (1.53) consequently becomes [8]

z =
a−1
O − a

−1
R

a−1
R

=
aR
aO
− 1 , (1.61)

so that if the photon is detected at present (when aR = 1), the redshift of the source
is

z = a−1 − 1 , (1.62)

where a = aO, although the subscript is now redundant.

In conclusion, light undergoes a frequency shift as it travels through space-time, and
this feature – a direct result of cosmic expansion – provides us with the value of the
scale factor at the time the photon was emitted. It additionally serves as a measure of
distance: the greater the redshift, the further away the source is from the detector [8].
The frequency shift itself is determined from the emission or absorption spectrum of
the former.

Distance measures

Proper distance

The proper distance to an object is the radial separation between it and the origin of
our coordinate system, as measured instantaneously i.e. when both origin and object
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are contained within the same spatial hypersurface [8]. Before proceeding, let us make
use of Eq. (1.27) and write Eq. (1.23) in a slightly different form:

ds2 = −dt2 + a(t)2
(
dχ2 +F2

[
dθ2 + sin2 θ dφ2

])
. (1.63)

The proper distance to an object positioned at χ is therefore:

dP = a(t)
∫ χ

0
dχ̄ = a(t)χ , (1.64)

where χ is a comoving coordinate and so (provided the origin and observed object
have no peculiar velocity) does not change with time.

Despite being a physical distance, dP is not a quantity we can measure in practice.
Anything we observe must be situated in our past light cone and not within our spa-
tial hypersurface [8].

Comoving distance

This is simply the proper distance with the expansion of the Universe ‘factored out’:

dC =
∫ χ

0
dχ̄ = χ . (1.65)

Since the scale factor a is normalised with respect to its present-day value, the proper
and comoving distances are currently equivalent.

Angular diameter distance

In Euclidean space, an object of proper diameter D located at a distance d subtends
an angle (or angular diameter) ∆θ that is given by the ratio of D to d. To calculate
the angular diameter distance dA, the starting point is therefore the relation:

dA =
D
∆θ

. (1.66)

An expression for D may be obtained from the FLRW metric [18]. To this end, we
consider two rays of light that are emitted at t = te from a source having proper
length (or diameter) D and positioned at a fixed value of χ (say χe). The rays travel
along radial null geodesics and reach our observer at time tobs, where they intersect
at an angle ∆θ. We shall simplify the derivation by orienting the spatial axes in such
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a way that φ does not change along the photon paths [18].

tobs

(tobs,0,0,0)

Figure 1.3: (Top) Geometry associated with the definition of angular diameter distance (one
spatial dimension is suppressed), and (bottom) specification of coordinates. The observer is indicated
with an O and the source (or emitter) with an E.

Figure and caption from Ref. [18].

As depicted in Fig. 1.3, the source has end-points with spatial coordinates (χe, θ +
∆θ,φ) and (χe, θ,φ), and the observer sees it the way it was at t = te. This information
[in conjunction with Eq. (1.63)] allows us to deduce that:

D = a(te)F(χe)∆θ . (1.67)

Inserting the above into Eq. (1.66) yields [18]:

dA =
a(te)F(χe)∆θ

∆θ
= a(te)F(χe) , (1.68)

and once a(te) has been converted into the corresponding redshift via Eq. (1.62), the



1.3. THE FLRW COSMOLOGY 35

expression for the angular diameter distance reads:

dA =
F(χe)
1 + ze

, (1.69)

with the function F defined as in Eq. (1.26). The comoving coordinate χe may be
calculated from Eq. (1.63) by using the fact that ds = dθ = dφ along a photon path.
Provided the origin is fixed at the position of the observer (i.e. the photon is assumed
to be incoming), and the redshifts of the emitter and observer are denoted by ze and
zobs, respectively, we can write [18]:

χe =
∫ χe

0
dχ = −

∫ te

tobs

dt
a(t)

=
∫ tobs

te

dt
a(t)

=
∫ ze

zobs

dz
H(z)

. (1.70)

Luminosity distance

As before, it is best to start from an operational definition [18]. In Euclidean space,
the flux F from a source of absolute luminosity L decreases in inverse proportion to
the area over which the light spreads. In other words, we have that F = L/(4πd2) [8],
and hence [18]

dL =

√
L

4πF . (1.71)

What does Eq. (1.71) translate into for an FLRW geometry? Let us suppose that a
source with χ-coordinate χe (relative to an observer at the origin) emits a signal at
t = te. At any given time t > te, the photons would be spread evenly over a sphere
centred at the point of emission. The area of the sphere may be determined from the
metric [Eq. (1.63)] by considering that:

• dt = 0, because the sphere exists within the same hypersurface;

• dχ = 0. To clarify why this is so, we may shift the origin to the position of
the emitter. Then, by symmetry, the emitter would assign the coordinate χe to
the observer. Detection occurs when the photons reach χe (i.e. the location of
the observer). But since all points on the sphere of light are equidistant from
the emitter, it follows that all have χ-coordinate χe, and so dχ = 0 along the
surface of the sphere.

Consequently, at the time of observation (tobs) the surface has line element:

ds2 = a2(tobs)F2(χe)
(
dθ2 + sin2 θ dφ2

)
. (1.72)
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The above may be compared with the metric of a 2-sphere having radius r (and area
4πr2):

ds2 = r2
(
dθ2 + sin2 θ dφ2

)
, (1.73)

from which it can readily be deduced that the surface area A of the sphere of light is
4πa2(tobs)F2(χe). However, the flux is not diluted simply because the light spreads
out. Two additional effects come into play as a result of cosmic expansion [8]: firstly,
the photons are redshifted by a factor (1 + z) on their way from the source,20 and
secondly, two photons emitted a time δt apart reach the detector with a temporal
separation of (1 + z)δt. Therefore, the flux observed at t = tobs is [8]:

F (tobs) =
L(te)

4πd2
L
=
L(te)

A
× 1

(1 + z)2 =
L(te)

4πa2(tobs)F2(χe)

1
(1 + z)2 , (1.74)

and the luminosity distance is given by:

dL = a(tobs)F(χe)(1 + z) . (1.75)

At this stage, it is convenient to introduce a function F̄ that is a slightly modified
version of F [the latter is defined in Eq. (1.26)]:

F̄(x) =


x if κ = 0 ;

sin x if κ > 0 ;

sinh x if κ < 0 .

(1.76)

Then Eq. (1.75) becomes:

dL = a(tobs)
1 + z√
|κ|
F̄
(√
|κ|χe

)
, (1.77)

and inserting Eq. (1.70) into the above yields:

dL = a(tobs)
1 + z

H0
√
|Ω0

k|
F̄
(√
|Ω0

k|
∫ ze

zobs

dz
H(z)/H0

)
, (1.78)

where we have also made use of the relation κ = −Ω0
kH

2
0 from Eq. (1.50). When

κ = 0, Eq. (1.78) simplifies to

20As outlined in subsection 1.3.4, 1 + z is defined as the ratio of the frequency at emission to the
frequency at reception. We refer to z as the redshift of the source.
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dL = a(tobs)
1 + z

H0

∫ ze

zobs

dz
H(z)/H0

. (1.79)

The horizons

The speed of light sets a limit on how far into the past we are able to look. To
investigate the extent of the region from which an arbitrary comoving observer may
receive light signals (at some given time t), we must first familiarise ourselves with
the various horizons defined in cosmology.

The particle horizon

The particle horizon provides a measure of the distance that light could have travelled
since the beginning of the Universe [126]. The concept can be simplified by considering
the following scenario: a comoving observer E with χ coordinate χe emits a photon at
t = te, which travels through spacetime and reaches an observer O situated at χ = 0.
The arrival time of the photon shall be denoted by tobs. Since information cannot be
transmitted at a speed faster than that of light, the only signals emitted at te that O
can detect at time tobs are those originating from radial coordinates χ ≤ χe [18].

We have already seen that χe can be expressed as the integral

χe =
∫ tobs

te

dt
a(t)

. (1.80)

It follows that if χe → ∞ as te → 0, O is able to receive signals from any comoving
particle21 – no matter how far away it is – provided that they are emitted at a
sufficiently early time. On the other hand, should the integral converge in this limit,
it would mean that the χ-coordinate of the emitter has a finite, time-dependent upper
bound χP(t), and the region beyond is inaccessible to O. Simply put, the integral in
Eq. (1.80) (with te → 0) determines where an emitter should be situated if a light
pulse it sends out at the very beginning of time (t = 0) just reaches the observer at
t = tobs. Signals from objects that are further away would still be ‘in transit’. The fact
that χP is a function which increases with t implies that as time passes, previously
hidden parts of the Universe gradually come into view [18].

In conclusion, if the integral of Eq. (1.80) converges as te → 0, our vision of the
Universe at time t is restricted by a particle horizon located at χP, where χP is given

21In this context, particles represent typical galaxies.
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by:
χP(t) =

∫ t

0

dt̄
a(t̄)

. (1.81)

For instance, the proper distance to the particle horizon in a flat ΛCDM cosmology is
3t during the matter-dominated epoch, and 2t for a radiation-dominated Universe [18].

The presence of a particle horizon leads to an apparent contradiction known as the
horizon problem. If the homogeneity of the Universe is due to the physical transport of
energy and momentum from place to place, then at a given time t one would expect
to find inhomogeneities on scales larger than 2a(t)χP(t), this being the maximum
possible proper distance between any two particles that could have received the same
signal by time t [127]. How, then, does one explain the nearly uniform temperature of
the cosmic microwave background? The photons of the CMB were emitted from the
surface of last scattering, and the particle horizon at the time would subtend an angle
of around 1° in the sky today [128]. So how do regions so far apart that – according to
standard cosmological models – they could never have been in causal contact display
the same physical characteristics?

The horizon problem was one of the factors that motivated the introduction of infla-
tion. This refers to a period of very rapid expansion that is thought to have taken
place in the early Universe, and which caused the comoving Hubble distance (defined
as the quantity H−1/a) to shrink. Consequently, the observable Universe is at present
much smaller than the region that was causally connected before inflation [121].

The event horizon

The event horizon is closely related to the particle horizon. We have seen that the
latter grows with time, which raises the question: what happens as t → ∞? This is
where the event horizon comes in.

Let us return to Eq. (1.80) and take the limit tobs → tmax [18]:

χe =
∫ tmax

te

dt
a(t)

. (1.82)

Here, χe is the χ−coordinate of the source, te the time of emission, and tmax is either
infinity or the time of the big crunch, depending on the model. Whether or not the
model admits an event horizon is determined by the behaviour of the integral. If it
diverges, the answer is no, because the χ-coordinate of the emitter is not subject to an
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upper bound [18]. However, a finite value for χe (say χE) indicates that a light pulse
sent out at t = te from a source at χE will reach the observer (positioned at χ = 0)
just as t → tmax. Signals emitted at t = te from particles with radial coordinate
χ > χE would never be detected; there would simply not be enough time for them to
travel all the way to the observer. Therefore, a convergent integral indicates that our
view of the Universe is forever limited by an event horizon located at χE. The value
of χE depends on te and is given by:

χE =
∫ tmax

te

dt
a(t)

. (1.83)

Symmetry considerations imply that a signal emitted from χ = 0 at t = te would be
unable to ever go beyond χ = χE [18].

The Hubble distance

The Hubble distance (or radius) is defined as the reciprocal of the Hubble parameter:

dH(t) =
1

H(t)
, (1.84)

and serves as a measure of the size of the observable Universe. Since it approximates
the distance that light can traverse while the Universe expands appreciably, it is
commonly called ‘the horizon’ [126]. On scales much smaller than dH(t), Newtonian
theory is often adequate to describe gravitational phenomena [18], and provided the
time intervals considered are sufficiently shorter than the Hubble time,22 the expansion
of the Universe can usually be treated as negligible on such scales [126].

22The Hubble time is the quantity H−1 (the Hubble distance is cH−1, but becomes H−1 with our
choice of units). It provides a rough estimate of the age of the Universe [126].
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CHAPTER 2

Cosmology based on Scalar-Tensor Theory

2.1 Introduction

Without doubt, the simplest fields that can be invoked to explain physical phenomena
are the scalar ones. A prominent example of the relevance and importance of scalar
fields is their use in inflationary cosmic scenarios. Their significance, however, began
to be realised long before Guth [129] proposed the concept of inflation in the 1980s.
Indeed, the conformally flat scalar theory of gravity put forward by Nordström [130]
is even older than General Relativity (GR). Another example is provided by the
Newtonian constant of gravitation (G). It was Dirac [131], when working on his Large
Number Hypothesis, who first explored the idea of making G time-dependent. He
saw this as a means of establishing a relation between cosmological and fundamental
physical constants. The following decade, Jordan [132] took Dirac’s idea further and
promoted G to the role of a gravitational scalar field [36].

The prototype of Scalar-Tensor Theory (STT) was published by Brans and Dicke
[133] in 1961. Their theory makes use of the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric tensor, but they added a scalar field that can be identified with
the inverse of the gravitational coupling G. In Brans-Dicke theory, G is a variable
whose value is determined by all the matter in the Universe. Mach’s principle is thus
explicitly incorporated – the distribution of matter on cosmological scales affects local
gravitational experiments [36]23.

The success of GR in accounting for Solar System observations means that any alter-
native model must have a GR limit on small scales. Significant deviations may only
show up in cosmological scenarios. The fact that scalar fields in STT evolve over a
cosmological time scale, therefore, makes Scalar-Tensor gravity especially relevant for

23Also refer to works cited therein.
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cosmology [36].

The importance of scalar fields in modern unified theories has led to renewed interest
in STT. After all, it is a scalar field (called the Higgs field) which allows the W and
Z bosons and the fundamental fermions to acquire mass [134]. Quantum excitations
of the Higgs field give rise to scalar bosons known as Higgs particles [135, 136]. The
experimental verification of the bosons’ existence by the ATLAS [137] and CMS [134]
collaborations in 2012 was a pivotal moment for particle physics.

In cosmology, the relevance of STT becomes evident when one considers, for in-
stance, that bosonic string theory has a low-energy limit similar to the Brans-Dicke
model [138], and that STT bears a resemblance to supergravity and string theory.
At the classical level, the extra spatial dimensions of Kaluza-Klein theory may be
compactified to arrive at the Brans-Dicke theory [36]24.

This is not to say that Scalar-Tensor gravity is without its caveats. There was actually
a time when its popularity began to decline, especially as Solar System experiments
became more and more accurate and the resulting constraints more stringent. Conflict
between observation and theory centred around the value of the parameter ω that
features in Brans-Dicke theory. This parameter is expected to be of order unity,
but the constraints imposed by Solar System observations were pointing to much
larger values [139, 140]. Although the discrepancy did not disqualify the theory, the
implied fine-tuning did not go down well with physicists. However, the dynamic
nature of ω in generalised Brans-Dicke theory and STT means that it can vary from
a parameter of order unity in the early Universe to attain the required larger value
later on [36,141,142].

At present, the principles of STT provide the basis for some of the most prominent
dark energy models. It may well be that the observed acceleration of the Universe
is due to a long-range gravitational scalar field [36]. Part of the work leading to this
thesis involved looking for solutions to the field equations of Scalar-Tensor gravity.
We shall therefore proceed by going over the basic properties of STT, and then we
shall analyse a number of solutions in which the scalar field produces the effects of
dark energy at late times.

24Also refer to works cited therein.
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2.1.1 Scalar fields in the literature

The detection of gravitational waves from a binary neutron star merger became a
reality on August 17, 2017, when the LIGO-VIRGO collaboration picked up signals
from the event later designated GW170817 [143]. The signature of a short gamma
ray burst (GRB170817A) reached observatories a few seconds later [144].

This episode has had great implications for scalar-tensor theory. The extremely small
probability that GW170817 and GRB170817A happened in such close proximity (both
temporal and spatial) purely by chance led to the conclusion that they were both the
result of the same event. The recorded electromagnetic and gravitational wave signals
could thus be used to constrain the difference between their respective speeds, and
the tight bound obtained implied a variation of less than 10−13 % [144]. A significant
number of scalar-tensor theories, however, predict a gravitational wave speed that
differs from the speed of light, and consequently many of these are no longer deemed
viable dark energy models [145]. The list includes Horndeski theories such as the
Fab Four [146] and the quartic/quintic Galileon scenarios [147,148], as well as several
beyond Horndeski models [149–151]. Quintessence and K-essence, Brans-Dicke theory,
f(R) gravity and Kinetic Gravity Braiding are among the models that remain valid
[145].

As may be deduced from the last two sentences, ‘Scalar Tensor Theory’ has become
a kind of umbrella term for all the models in which cosmic dynamics are controlled
by one or more scalar fields. Some of these models – f(R) gravity, for instance – are
not explicitly scalar-tensor theories, but may be recast as such [56,152].

The GW170817 event appears to favour simple dark energy models. One of the sim-
plest constructs in the context of STT is Quintessence – a family of models based on
a canonical scalar field φ that is minimally coupled to gravity.25 These models are
usually classified as either freezing or thawing. The former accommodate very small
departures from ΛCDM when tested with observational data, but thawing models
appear to allow for more significant deviation [33]26. The possibility that the same
scalar field drives both inflation and the current accelerated expansion has also been
considered in the literature [153–156], many times in the framework of braneworld
cosmology. The resulting models are called Quintessential Inflationary Scenarios.27

25Minimal and non-minimal coupling are defined in the beginning of section 2.2.
26See also [34] and references therein.
27The word quintessence is usually taken to be synonymous with ‘dark energy’, while the scalar

field responsible for inflation is referred to as an inflaton.
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In standard models of Quintessence, however, the scalar field is only allowed to gain
prominence at late times. This is motivated by the fact that a non-negligible (al-
beit sub-dominant) amount of Quintessence present during the period of structure
formation would have left a detectable imprint on the cosmic microwave background
(CMB). On the contrary, models in which the scalar field couples directly to matter
can support the growth of density perturbations even when the scalar dominates.
Such a coupling arises naturally if the STT equations are expressed in the Einstein
frame.28 The problem in this case is that the associated ‘fifth force’ may be diffi-
cult to reconcile with cosmological observations [36]29, although it does not preclude
the existence of viable models. For instance, Tsujikawa et al. [157] consider models
whose Einstein-frame version is characterised by a constant coupling Q between non-
relativistic matter and the scalar field. Quintessence corresponds to the case Q = 0,
but in general the scalar field is not minimally coupled, nor its kinetic term canon-
ical. The authors conclude that these models may admit a matter-dominated era
followed by a period of cosmic acceleration. Provided certain conditions are met, they
are furthermore able to satisfy both cosmological and local gravity constraints [157].
Another study [158] has shown that a canonical scalar field conformally coupled30 to
dark matter – and evolving in a background identical to the one in ΛCDM – can alle-
viate the fσ8,0 tension that is currently one of the major shortcomings of the standard
model. This tension refers to the difference that emerges between the amount of clus-
tering inferred from CMB data and that determined from redshift space distortions
when estimates are made in a ΛCDM framework [158].

A phase of cosmic history during which scalar fields are thought to have been especially
important is the primordial period of acceleration known as inflation. STT models
meant to describe the early Universe may in fact not only incorporate a graceful exit
from inflation [159,160], but the dynamics of the scalar field can also serve to suppress
the nucleation of true vacuum bubbles until inflation reaches the final stages [141].
Inflationary scenarios modelled on the basis of STT are often termed hyper-extended
[36]. This chapter, however, focuses on scalar fields whose properties resemble those
of dark energy at late times.

In the context of Einstein gravity, a minimally-coupled scalar field cannot have an
equation of state (EoS) with characteristic parameter wd < −1. Quintessence is a
case in point. Yet the situation changes when the coupling is non-minimal – in this

28More details about the Einstein frame may be found in Chapter 5, subsection 5.2.3.
29Also refer to works cited therein.
30Conformal coupling is defined in the beginning of section 2.2.
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case, an EoS parameter (wd) that crosses the phantom divide does not preclude the
existence of attractor solutions [36]31, although the range of values it can take is
currently a matter of dispute. Observational constraints on the present value often
restrict it to the range [−1,−1/3]. Nonetheless, values less than −1 can also be
compatible with observations [31,161].

The advantages of non-minimal coupling go beyond the possibility of having wd < −1.
For instance, the inclusion of a (non-zero) coupling constant ξ in the coupled Einstein-
Klein-Gordon equations is necessary to renormalise the theory, and may be shown to
arise from first-loop corrections [36]31. It has additionally been proposed that non-
minimal coupling may alleviate problems associated with primordial nucleosynthesis
[162].

2.2 Field Equations32

Let us first recall the famous Einstein-Hilbert action on which GR is based:

S =
1

16πG

∫
R
√
−g d4x . (2.1)

The addition of a cosmological constant is effected by replacing R with R− 2Λ.

Eq. (2.1) emerges naturally if one considers the following: under the condition that
metric derivatives higher than second order are excluded, R turns out to be the only
independent scalar which can be constructed from the metric. This led Hilbert to
realise that the simplest action based on gµν was the one given by Eq. (2.1) [8].

In contrast, the gravitational part of the STT action we adopt throughout this chapter
reads:

S =
∫ [(

1
16πG −

ξ

2φ
2
)
R− 1

2∇
ηφ∇ηφ− V (φ)

]
√
−g d4x . (2.2)

Here, V (φ) denotes the potential associated with the scalar field φ, and ξ is a dimen-
sionless constant responsible for the explicit coupling between φ and the Ricci scalar.
Setting ξ = 0 corresponds to what is known as minimal coupling. On the other
hand, if ξ is non-zero we say we have non-minimal coupling. The choice ξ = 1/6 is
especially popular. This is the case of conformal coupling, so called because putting
the potential V either equal to zero or proportional to φ4 renders the Klein-Gordon

31Also refer to works cited therein.
32Sec. 2.2 is based on parts of Ref. [36]. Any other sources are referenced explicitly.
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equation (and hence the physics of φ) conformally invariant when ξ = 1/6.33 An-
other important feature of models with conformal coupling is their adherence to the
Einstein equivalence principle. Indeed, all other values of ξ lead to violations of this
principle [163]. We note that the strong coupling scenario (|ξ| >> 1) is also given
attention in the literature.

The next step consists in varying the action (2.2) with respect to the metric. The
resulting field equation is:

(1− 8πGξφ2)Gµν = 8πG
{
∇µφ∇νφ−

1
2gµν∇

ηφ∇ηφ− V gµν + ξ
[
gµν �(φ2)−

∇µ∇ν(φ2)
] }

, (2.3)

while variation with respect to φ yields:

�φ− dV
dφ − ξRφ = 0 . (2.4)

The latter can be thought of as the curved-space generalisation of the Klein-Gordon
equation.

The energy-momentum tensor of a non-minimally coupled scalar field can be defined in
various ways. Consequently, so can the energy density, pressure, and effective equation
of state associated with φ. The differences arise from the way in which Eq. (2.3) is
cast and reflect the fact that as yet, no general formulation for the energy density
of the gravitational field has been established. There are three options available to
us. If we follow the work of Callan, Coleman and Jackiw [164], for instance, the term
8πGξφ2Gµν on the left-hand side of (2.3) is absorbed into the expression for Tφµν :

Gµν = 8πG
(
Tφ, CCJ
µν + Tm

µν

)
. (2.5)

In the above, Tm
µν is the energy-momentum tensor for any matter distribution addi-

tional to the scalar field. Tφ, CCJ
µν denotes the energy-momentum tensor of φ and is

given by:

Tφ, CCJ
µν = ∇µφ∇νφ−

1
2gµν∇

ηφ∇ηφ− V gµν + ξ
[
gµν �(φ2)−∇µ∇ν(φ2)

]
+ ξφ2Gµν .

(2.6)

33A theory is said to be conformally invariant if the form of its action is not altered by conformal
transformations [such as the one of Eq. (2.27)].
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Alternatively, one may take the effective coupling approach and divide Eq. (2.3) by
(1− 8πGξφ2), getting that

Gµν =
8πG

1− 8πGξφ2

(
Tφ, EC
µν + Tm

µν

)
= κeff(φ)

(
Tφ, EC
µν + Tm

µν

)
, (2.7)

with Tφ, EC
µν = Tφ, CCJ

µν − ξφ2Gµν . The parameter κeff(φ) plays the role of an effective
gravitational coupling for both Tφ, EC

µν and Tm
µν and earns the procedure its name.

The so-called mixed approach on which this chapter is based entails rewriting Eq. (2.3)
as:

Gµν = 8πG
(
Tφ, MIX
µν +

Tm
µν

1− 8πGξφ2

)
. (2.8)

Now the energy-momentum tensor for the scalar field takes the form

Tφ, MIX
µν =

1
1− 8πGξφ2

[
∇µφ∇νφ−

1
2gµν∇

ηφ∇ηφ− V gµν + ξ (gµν�−∇µ∇ν) φ2
]

.
(2.9)

One caveat of adopting this viewpoint is the potential loss of solutions for ξ > 0.
Scalar fields which satisfy Eq. (2.3) but which attain one of the values ±(8πGξ)−1/2

are missed when looking for solutions to Eq. (2.8). The mixed approach is nonetheless
advantageous in other ways. A case in point is the fact that in the FLRW framework,
it yields simpler expressions for the energy density and pressure of the scalar field.
We shall henceforth take Tφµν to stand for Tφ, MIX

µν .

The total energy-momentum tensor, T tot
µν = Tφµν +Tm

µν/(1− 8πGξφ2), is conserved in
the mixed approach (as is Tm

µν). In other words, we have that ∇µT tot
µν = 0. However,

Tφµν is not conserved separately unless Tm
µν = 0. Indeed, one gets the relation

∇νTφµν = − 16πGξφ
(1− 8πGξφ2)2 (∇νφ) Tm

µν . (2.10)

The total energy density is given by the sum of the individual densities, ρφ and ρm,
with the latter rescaled by the factor 1/(1− 8πGξφ2):

ρtot = ρφ +
ρm

1− 8πGξφ2 . (2.11)



2.2. FIELD EQUATIONS 48

2.2.1 The field equations in an FLRW cosmology

The homogeneous nature of the FLRW universe precludes any spatial variation of the
scalar field, restricting it to be solely a function of time. As is common practice, we
shall be assuming that φ has the characteristics of a perfect fluid. This means that
we shall cast the effective energy momentum tensor of Eq. (2.9) in the form:

Tφµν = (pφ + ρφ)uµuν + pφgµν , (2.12)

where ρφ is the energy density of the scalar field and pφ its pressure, while its four-
velocity uµ satisfies gµνuµuν = uνu

ν = −1. An expression for ρφ may be obtained by
considering that an observer comoving with the fluid (and thus also having velocity
uµ) measures its energy density to be Tφµνuµuν , since Tφµνuµuν = (pφ+ ρφ)uµuνu

µuν +

pφgµνu
µuν = (pφ+ ρφ)(−1)(−1) + pφ(−1) = pφ+ ρφ− pφ = ρφ. If Tφµν is written as

specified in Eq. (2.9), therefore, it follows that

ρφ =
1

1− 8πGξφ2

[
∇µφ∇νφ−

1
2gµν∇

ηφ∇ηφ− V gµν + ξ (gµν�−∇µ∇ν) φ2
]
uµuν ;

=
1

1− 8πGξφ2

[
φ̇2 − 1

2(−1)∇ηφ∇ηφ− V (−1)− ξ�φ2 − ξ
(
∇µ∇νφ2

)
uµuν

]
.

In the second line, the first term in square brackets is a result of the fact that
fundamental observers have uµ = (1, 0, 0, 0), and consequently (∇µφ∇νφ)uµuν =

(∂0φ)2u0u0 = φ̇2 (a dot denotes differentiation with respect to cosmic time t). The
term next to it simplifies due to φ being a function of time only: ∇ηφ∇ηφ =

gησ∇σφ∇ηφ = −(∂0φ)2. At this stage, then, we have that

ρφ =
1

1− 8πGξφ2

[
φ̇2

2 + V − ξgµν∇µ(2φ∇νφ)− ξ∇0
(
2φφ̇

)]
;

=
1

1− 8πGξφ2

[
φ̇2

2 + V − 2ξφ�φ− 2ξgµν∇µφ∇νφ− 2ξφφ̈− 2ξφ̇2
]

, (2.13)

with�φ = gµν∇µ∇νφ = gµν(∂µ∂νφ−Γσµν∂σφ) = −φ̈− gµνΓ0
µν∂0φ = −φ̈− (g11Γ0

11 +

g22Γ0
22 + g33Γ0

33)φ̇. The FLRW metric tensor is diagonal, and so g11, g22 and g33 are
simply the reciprocals of the respective components from Eq. (1.23). Combining these
with the connection coefficients Γ0

11 = aȧ/(1−κr2), Γ0
22 = aȧr2 and Γ0

33 = aȧr2 sin2 θ

[18] allows us to conclude that�φ = −φ̈−3Hφ̇. Meanwhile, the quantity gµν∇µφ∇νφ
that appears in (2.13) reduces to −φ̇2, as explained above. These considerations mean
that Eq. (2.13) becomes
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ρφ =
1

1− 8πGξφ2

[
φ̇2

2 + V + 2ξφ(φ̈+ 3Hφ̇)− 2ξφφ̈
]

;

=
1

1− 8πGξφ2

[
φ̇2

2 + V + 6ξφφ̇H
]

. (2.14)

An expression for the pressure of the scalar field may be obtained in similar fashion.
We go back to Eq. (2.12) and find the trace of Tφµν :

Tφ = Tφµνg
µν = (pφ + ρφ)uµuνg

µν + pφgµνg
µν

= (pφ + ρφ)(−1) + 4pφ = 3pφ − ρφ . (2.15)

The term 4pφ in the last row arises from the relation gµσgσν = δνµ.

The quantity pφ is therefore given by:

pφ =
1
3
(
Tφ + ρφ

)
=

1
3T

φ
µν (g

µν + uµuν) , (2.16)

and expanding this by following the principles outlined when deriving ρφ yields

pφ =
1

1− 8πGξφ2

[(1
2 − 2ξ

)
φ̇2 − V − 2ξφφ̈− 4ξHφφ̇

]
. (2.17)

The reader is again reminded that measurements of energy density and pressure are
observer-dependent. Both Eqs. (2.14) and (2.17) reflect the point of view of a funda-
mental observer, i.e. one who comoves with the cosmic fluid.

The scalar field is assumed to coexist with a matter distribution that also behaves as
a perfect fluid. Thus its energy-momentum tensor reads:

Tm
µν = (pm + ρm)uµuν + pmgµν , (2.18)

ρm and pm being the corresponding energy density and pressure, respectively. Since
Tm
µν is conserved separately of Tφµν , the general relativistic conservation equation still

holds:
ρ̇m + 3H(ρm + pm) = 0 . (2.19)

Let us furthermore assume that ordinary matter has the customary barotropic EoS,
pm ∝ ρm. Then the solution to Eq. (2.19) is a simple power law:

ρm = ρ0
ma
−3(1+wm) , (2.20)
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where the EoS parameter wm is a constant and ρ0
m denotes the present-day value of

ρm. The above relation can in turn be used in conjunction with Eqs. (2.11) and (2.14)
to substitute for ρtot in the first Friedmann equation:34

H2 =
8πG

3 ρtot −
κ

a2 , (2.21)

which consequently takes the form:

H2 +
κ

a2 −
8πG

3 (1− 8πGξφ2)

(
φ̇2

2 + V + 6ξHφφ̇+ ρ0
ma
−3(1+wm)

)
= 0 . (2.22)

This corresponds to the time-time component of Eq. (2.8). As for the spatial compo-
nents, isotropy implies that all non-trivial equations obtained by setting µν = ij in
Eq. (2.8) should be equivalent. In fact, one finds that both sides of Eq. (2.8) sum up
to zero for i 6= j, while the three cases with i = j all lead to the same conclusion:

ä

a
=

8πG
3(1− 8πGξφ2)

[
φ̇2(3ξ − 1) + V + 3ξφ

(
φ̈+Hφ̇

)
− 1

2ρ
0
ma
−3(1+wm)(3wm + 1)

]
.

(2.23)
Eq. (2.23) may be written more compactly as

ä

a
= −4πG

3 (ρtot + 3ptot) , (2.24)

where ρtot is given by Eqs. (2.11), (2.14) and (2.20), and ptot is similarly defined:

ptot = pφ +
pm

1− 8πGξφ2 . (2.25)

The pressure of the scalar field is as specified in Eq. (2.17), while pm = wmρm.

The FLRW version of Eq. (2.4) reads:

φ̈− 8πGξφ
1− 8πGξφ2

[
φ̇2 − 4V − 18ξHφφ̇− 6ξ(φ̇2 + φφ̈)− ρ0

ma
−3(1+wm)(1− 3wm)

]
+

dV
dφ + 3Hφ̇ = 0 . (2.26)

34Refer to Chapter 1, Eq. (1.38).
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2.2.2 The Einstein and Jordan frames

In the absence of ordinary matter, the field equations on which STT is based can
be greatly simplified by means of conformal transformation techniques. These make
it possible to map the Jordan frame – in which the governing equations are usually
expressed – into the Einstein frame, where the non-minimal coupling present between
φ and R in the Jordan frame disappears, allowing us to write the equations in terms
of a minimally-coupled scalar φ̃. It should be emphasised that although it is standard
practice to use rigid units in the Einstein frame, this is not what Dicke intended when
he introduced the concept of conformal transformations for Brans-Dicke theory [165].
According to his interpretation, the units of time, mass and length should scale with
appropriate powers of the Brans-Dicke scalar. However, the version with fixed units
for the Einstein frame is by far the more popular, and it is therefore the one we shall
be referring to (unless otherwise stated).

There is some disagreement in the literature on what exactly constitutes a conformal
transformation [166]. In our case, such a transformation shall be defined as a point-
dependent rescaling of the metric tensor gµν :

gµν(x) −→ g̃µν(x) = Ω2(x) gµν(x) , (2.27)

where the conformal factor Ω(x) is given by:

Ω =
√

1− 8πGξφ2 , (2.28)

and the coordinates are held fixed. It should be noted, though, that some works refer
to Eq. (2.27) as a Weyl transformation instead, and describe a conformal transfor-
mation as a change of coordinates [from x to x̃, with xµ = fµ(x̃ν)] that acts on the
metric similarly to a Weyl transformation [167]:

gµν(x) −→ g̃µν(x̃) =
∂fρ

∂x̃µ
∂fσ

∂x̃ν
gρσ(f(x̃)) = Ω2(x̃) gµν(x̃) . (2.29)

The relation between the transformed field
(
φ̃
)
and its Jordan-frame analogue takes

the form

dφ̃ =

√
1− 8πGξ(1− 6ξ)φ2

1− 8πGξφ2 dφ . (2.30)

Consequently, any non-minimally coupled scalar field which solves the field equations
in the Jordan frame, but at some point attains either of the values ±(8πGξ)−1/2,
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does not turn up as a solution in the Einstein frame. This may constitute a serious
limitation in certain cases.

As already mentioned, the conformal transformation renders the scalar field minimally
coupled, and so the Einstein-frame version of the field equations is usually much
simpler to solve (provided other forms of matter are absent). Any solutions one finds
may then be rewritten in terms of the Jordan-frame metric and scalar field. There
is, however, a caveat: solutions which are physically significant in one frame do not
necessarily remain so in the other.

For the rest of this chapter, the cosmic fluid shall be assumed to consist of a scalar
field and ordinary matter. In the Einstein frame, the direct coupling of the two means
that the system is no simpler than its Jordan frame analogue. There is also the fact
that the equation ∇µTm

µν = 0 is only conformally invariant (i.e. it only holds in the
Einstein frame) if Tm

µν has vanishing trace. Otherwise, energy and momentum are
exchanged between the conformally-transformed scalar field and matter component.
Furthermore, since the general relativistic geodesic equation is a direct consequence
of energy-momentum conservation, massive particles which fall freely in the Jordan
frame experience a ‘fifth force’ proportional to35 ∇̃µφ̃ in the Einstein frame. This
fifth force violates the universality of free fall – and hence the equivalence principle.
Interestingly, on adopting running units of mass, time and length for the Einstein
frame, one finds that the mass m̃ of a massive particle becomes a varying quantity
(within the said frame), and that ∇̃µφ̃ is essentially equivalent to ∇̃µm̃. Herein lies
the crux of the matter: the two frames are physically equivalent, but only if one uses
running units in the Einstein frame, as Dicke intended [165]. With his interpretation,
the presence of matter no longer spoils conformal invariance [168].

This does not mean that the Einstein frame with fixed units has no merits. On the
contrary, the energies it admits are always physically acceptable, which cannot be said
for the Jordan frame. Then again, the latter emerges more naturally from physical
considerations. The long and short of it is that neither frame can be seen as superior.
In certain situations, the Jordan-frame version of the theory is acceptable while the
Einstein-frame formulation (with fixed units) is not, and vice-versa.

35∇̃µ denotes the covariant derivative operator constructed from g̃µν , the Einstein frame metric.
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2.3 Dark Energy as a Scalar Field

The main goal of this chapter is to present solutions to the equations set out in Sec.
2.2 that could correctly model the late-time expansion history of the Universe. Any
solutions must therefore meet the following criteria:

• ä > 0, implying an accelerated cosmic expansion (the models are thus valid at
z . 0.3);

• a > 0 and ȧ > 0 – the scale factor should be positive, and must also increase
with time;

• ρm ≥ 0 at all times, in line with the stipulations of the weak energy condition
(which is discussed in detail in the next subsection). The requirement that
ρm+ pm ≥ 0 is then satisfied automatically, since we set pm = wm ρm, wm being
a non-negative constant.

• ρφ ≥ 0 and ρφ + pφ ≥ 0, as necessitated by the weak energy condition;

• pφ < 0, allowing the scalar field to drive the cosmic acceleration that charac-
terises the current epoch;

• ρtot < −3ptot . This follows from Eq. (2.24) and the first two points mentioned
above. The quantities ρtot and ptot are as specified by Eqs. (2.11) and (2.25),
respectively.

2.3.1 The Weak Energy Condition

A few comments about the Weak Energy Condition (WEC) are warranted before we
move on to the said solutions. Let us start by noting that given any energy-momentum
tensor T describing what is thought to be physically reasonable matter (though not
a null fluid36), it is possible, at a general point P , to find a frame S in which T takes
the form:

T = ρ e0 ⊗ e0 + p1 e1 ⊗ e1 + p2 e2 ⊗ e2 + p3 e3 ⊗ e3 , (2.31)

36A null fluid is a field of directed massless radiation – an incoherent superpositioning of waves
that have random phases and polarisations but the same direction of motion. Its energy-momentum
tensor is Tµν = Φ kµkν , where kµ is a null vector (kµkµ = 0) and Φ is often interpreted as the
radiation density of the distribution. It is important to stress, however, that Φ is not uniquely
defined. Examples of null fluids include massless neutrinos and null electro-magnetic fields [169,170].
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where (e0, e1, e2, e3) is an orthonormal basis with one time-like (e0) and three space-
like vectors, and ⊗ denotes the tensor product. The eigenvalue ρ may be identified
with the rest energy density of the fluid, while the eigenvalues p1, p2 and p3 are called
the principal pressures [171].

In any other frame S ′ [assumed to have basis vectors (Π0, Π1, Π2, Π3)], the compo-
nents of T can be expressed as:

Tµν = ρ eµ0e
ν
0 + p1 e

µ
1e
ν
1 + p2 e

µ
2e
ν
2 + p3 e

µ
3e
ν
3 , (2.32)

with eσα representing the component σ of the vector eα (since eα = eσα Πσ).

Let us consider an observer in S with four-velocity:

u = γ(e0 + y1e1 + y2e2 + y3e3) . (2.33)

Here, γ = 1/
√

1− v2 and v denotes the magnitude of the three-velocity ~v, so that
v2 = y2

1 + y2
2 + y2

3. The parameters y1, y2 and y3 are equivalent to the rate at which
the respective spatial coordinates vary with cosmic time. Since u is time-like, we have
that

y2
1 + y2

2 + y2
3 < 1 . (2.34)

In S ′, the components of u read:

uµ = γ(eµ0 + y1e
µ
1 + y2e

µ
2 + y3e

µ
3 ) . (2.35)

The weak energy condition stipulates that a general observer always measures the en-
ergy density of any ‘physically reasonable, classical matter’ [171] to be non-negative.
Now, according to an observer with four-velocity uµ, the fluid described by the energy-
momentum tensor Tαβ has energy density equal to Tαβuαuβ. Consequently, if all possi-
ble observers are to be taken into account, the condition
Tαβu

αuβ ≥ 0 must be satisfied for all time-like vectors u. Let us put Tαβ = gαµgβνT
µν

and write Tµν and uα as in Eqs. (2.32) and (2.35), respectively. Then it is straight-
forward to show that the orthonormality of the vectors e0, e1, e2 and e3 translates
the requirement for Tαβuαuβ to be non-negative into:

γ2(ρ+ p1y
2
1 + p2y

2
2 + p3y

2
3) ≥ 0 . (2.36)

If S ′ happens to be the rest-frame of the observer, y1, y2, and y3 evaluate to zero,
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and (2.36) reduces to a constraint on ρ: ρ ≥ 0. Setting y2 = y3 = 0 implies that
ρ+ p1y

2
1 ≥ 0, which when coupled with (2.34) yields the inequality37 ρ+ p1 ≥ 0. One

can easily see that this may be generalised to ρ+ pi ≥ 0 for i = {1, 2, 3}. To show
that the conditions ρ ≥ 0 and pi ≥ −ρ are not only necessary, but also sufficient
for Tαβuαuβ ≥ 0 to hold, it is enough to consider what happens when the relation
pi ≥ −ρ is combined with (2.36): we get that

ρ+ p1y
2
1 + p2y

2
2 + p3y

2
3 ≥ ρ− ρ(y2

1 + y2
2 + y2

3) ≥ 0 , (2.37)

where the last inequality follows from (2.34). Hence, if ρ ≥ 0 and ρ+ pi ≥ 0, the
WEC is satisfied.

Now that the physical significance of the WEC has been established, we may move
to the STT solutions mentioned previously. They were obtained by first inserting a
candidate function for a and/or φ into Eqs. (2.22) and (2.26),38 then by looking for
ways in which the equations could be satisfied (and trying to solve for a or φ if only
one of them had been specified). This mainly involved deriving constraints for the
model parameters. It was ensured that only solutions which met the conditions listed
at the start of section 2.3 were retained for further analysis.

The work was carried out using Wolfram Mathematica® 11.3, and the code is
provided in Appendix C.

2.3.2 Models in a flat universe

In this case, the spatial curvature parameter (κ) was set to zero. The letters A, B,
C, D and n denote constants.

37If pi 6= 0, the inequality in question becomes ρ+ pi > 0.
38In the process, the scalar potential V was replaced with the corresponding expression from

Eq. (2.23).
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Solution 1

The first solution we consider has the following characteristics:

a(t) = A exp (Bt) ; (2.38)

φ(t) = C exp
(

2Bξ
4ξ − 1t

)
, ξ 6= 1/4 ; (2.39)

ρ0
m = 0 .

Let us first redefine the time coordinate as t̄ = H0t. Then the Hubble parameter is
automatically rescaled to H̄ = H/H0, and at the present time (t = t0) one gets that
t̄ = t̄0 = H0t0 and H̄ = H0/H0 = 1. The latter may in turn be combined with the
fact that a(t̄0) = 1 to deduce that da/dt̄ [= a′(t̄)] is currently equal to unity.

Equipped with the boundary conditions a(t̄0) = a′(t̄0) = 1, we may solve for A
and B using Eq. (2.38) and its first derivative with respect to t̄. It is found that
A = exp (−t̄0) and B = H0. Consequently, Eq. (2.38) can be rewritten as:

a(t̄) = exp (t̄− t̄0) . (2.40)

How does the resulting evolution compare with the (late-time) predictions of flat
ΛCDM? One recalls that the dynamics in an FLRW cosmology are governed by the
two Friedmann equations,39 and in the presence of a cosmological constant the second
one reads:

2a′′(t̄) + Ω0
ma
−2 + 2Ω0

ra
−3 − 2Ω0

Λa = 0 , (2.41)

where Ω0
m and Ω0

Λ shall be fixed at 0.3153 and 0.6847 [20], respectively. As for Ω0
r ,

this may be determined from the relation Ω0
r = Ω0

m/ (1 + zeq) (zeq being the redshift
at matter-radiation equality). Putting zeq = 3402 [20] yields a value of approximately
9× 10−5. For practical purposes, therefore, the radiation component is negligible at
low redshifts.

Fig. 2.1 depicts the variation of cosmic acceleration with time in the model under
investigation and in flat ΛCDM. It was obtained by setting the age of the Universe, t̄0,
equal to 0.95 – which is equivalent to around 13.8 Gyr [20]. The boundary conditions
used to solve Eq. (2.41) numerically were thus fixed at a(0.95) = a′(t̄ = 0.95) = 1. It
should be noted that Fig. 2.1 shows the acceleration as calculated with respect to the

39Refer to Chapter 1, Eqs. (1.37) and (1.38).
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rescaled time [we denote this acceleration by a′′(t̄)] – the axis label simply expresses
it in terms of ä(t), its cosmic time counterpart. In other words, a′′(t̄) = ä(t)H−2

0 .
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Figure 2.1: The variation of acceleration with time during the dark energy-dominated epoch, in a
spatially flat universe devoid of matter and with a scalar field φ ∝ exp (Dt).

Our analysis of the solution outlined by Eqs. (2.38) and (2.39) ends here. This
solution satisfies the WEC and is characterised by an accelerating cosmic expansion,
but the absence of matter is a significant shortcoming. We shall therefore move on to
more promising scenarios.

Solution 2

Here, the EoS parameter of the matter distribution (wm) and the coupling constant
ξ equate to zero and 1/B2, respectively. The scale factor and scalar field vary with
time as follows:

a(t) = A t6/5 ; (2.42)

φ(t) =
1√
8πG

(
B +Ct−4/5

)
, B2 < 23/4 , (2.43)

while the present-day value of the matter density is given by:

ρ0
m =

A3C2(23− 4B2)

50πGB2 . (2.44)

Redefining t as t̄ = H0t and applying the constraints

a(t̄0) = a′(t̄0) = 1 (2.45)



2.3. DARK ENERGY AS A SCALAR FIELD 58

makes it possible to deduce that t̄0 = 6/5 and A = (5H0/6)6/5. Accordingly,
Eq. (2.42) takes the form:

a(t̄) = (5/6 t̄ )6/5 . (2.46)

The resulting acceleration is compared with the flat ΛCDM prediction in Fig. 2.2.
We shall only use the value 6/5 for t̄0 in relation to the STT solution, so Eq. (2.41)
was again solved numerically subject to the conditions a(0.95) = a′(t̄ = 0.95) = 1.
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Figure 2.2: The variation of acceleration with time during the dark energy-dominated epoch, in a
spatially flat universe consisting of dust and a scalar field φ ∝ B +Ct−0.8.

Let us next consider the implications of having t̄0 = H0t0 = 6/5. The first thing
we note is that H0 would have to be approximately 85 km s−1 Mpc−1 if one assumes
a cosmic age of 13.8 Gyr [20], but this value for the Hubble constant is way too
large in comparison to what is reported in the literature (see, for instance, Refs.
[19,20,26]). If H0 is instead set to the model-independent measurement of Riess et al.(
H0 = 73.48± 1.66 km s−1 Mpc−1

)
, one finds that t0 amounts to about 16 Gyr, and

using the upper bound for H0 in place of the mean lowers the age of the Universe to
15.6 Gyr. The good news is that this value is not ruled out by constraints obtained
from stellar dating. Nevertheless, it should be admitted that they do not accommodate
it comfortably either [172].

Fig. 2.3 shows how the late-time evolution of ρφ [Eq. (2.14)] compares with that of ρm.
Having wm = 0 is indicative of a dust distribution, so ρm equates to ρ0

ma
−3, where ρ0

m
is the present-day density given by Eq. (2.44). The constant B was set to unity and
C to40 H−4/5

0 . Additionally, for the sake of avoiding having to deal with very small
40The value of C was chosen with the aim of eliminating H0 from the equation for ρφ(t̄). Note

that Fig. 2.3 shows the rescaled energy densities, ρφ(t̄) and ρm(t̄), which are respectively equivalent
to ρφ(t)H−2

0 and ρm(t)H−2
0 .
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numbers, the unit system was adjusted by putting 8πG/3 = 1 when constructing
figures.

0.5 1.0 1.5 2.0

0

10

20

30

40

H0t

ρ
H
0-
2

ρϕ H0
-2

ρm H0
-2

Figure 2.3: The dynamics of ρφ and ρm during the current epoch of acceleration, in a spatially flat
universe consisting of dust and a scalar field φ ∝ B +Ct−0.8.

As clearly shown in Fig. 2.3, the scalar field currently dominates over the matter
component. This is the kind of behaviour we are looking for. It implies that we are
living in an epoch during which the negative pressure associated with φ overcomes the
attraction of dark and baryonic matter, causing the cosmic expansion to accelerate.

Solution 3

The final solution valid in a flat universe is given by

a(t) = Atλ , λ =
2(1 + n)

3(1 +wm)
; (2.47)

φ(t) =
1√
8πG

(
Btn +Ct−n

)
. (2.48)

Inserting the above (except the relation for λ) into Eq. (2.22) gives a polynomial in
t with exponents that are functions of λ, n and wm; the coefficients of the different
powers of t can be isolated by using the code provided in C.2. It turns out that
no physically viable solution exists unless we equate two or more exponents. This
explains the origin of the constraint on λ: λ = 2(1 + n)/3(1 +wm). Eq. (2.22) is re-
evaluated for our particular choice of λ and the coefficients of different powers of t are
again extracted. The aim is to try to obtain expressions for the model parameters that
reduce all the coefficients to zero, so that the left-hand side of Eq. (2.22) matches the
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right-hand side. It is found that terms in t2(1+n), t2 and t2(1+2n) all go to zero if one
assumes a flat universe, but the coefficient of t4n+4(1+n)/3(1+wm) is A3(1+wm)B2{4ξ+
2nξ(7 + 3wm)− n2[−3 + 8ξ + 3wm(4ξ − 1)]}, which equates to zero if

ξ =
3n2(1 +wm)

2[−2− n(7 + 3wm) + 2n2(2 + 3wm)]
. (2.49)

B and ρ0
m may be inferred from the coefficients of t2n+4(1+n)/3(1+wm) and

t4(1+n)/3(1+wm), respectively:

B = − 2(1 + n)[−2− n(7 + 3wm) + 2n2(2 + 3wm)]

3Cn2(1 +wm)[−4− 3n(3 +wm) + 2n2(2 + 3wm)]
; (2.50)

ρ0
m =

C2A3(1+wm)n3(5 + 2n+ 3wm)

4πG(1 +wm)(−2− 7n+ 4n2 − 3nwm + 6n2wm)
. (2.51)

Meanwhile, the constant n must satisfy:

n >
1
2(1 + 3wm) ; n >

7 + 3wm + 3
√

9 + 10wm +w2
m

4(2 + 3wm)
. (2.52)

The first inequality follows from the requirement that ä > 0 during the current epoch,
and the second ensures that the matter distribution has positive energy density.

The constraints specified in Eq. (2.45) imply that Eq. (2.47) may alternatively be
expressed as:

a(t̄) =

[
3(1 +wm)

2(1 + n)
t̄

]λ
, (2.53)

with t̄ again equal to H0t. The above relation was obtained by applying the condition
a(t̄0) = 1 to determine A/Hλ

0 as a function of t̄0, then using the fact that a′(t̄0) = 1
to write t̄0 in terms of n and wm. As a further consequence of Eq. (2.45), one finds
that

n =
3(1 +wm)t̄0 − 2

2 , (2.54)

which, when combined with Eq. (2.52), allows us to deduce two lower bounds for t̄0:

t̄0 > 1 ; t̄0 >
1

2(2 + 3wm)

(
5 +

√
9 +wm
1 +wm

)
. (2.55)

The first seems to be at odds with the Planck value for the age of the Universe
(13.8 Gyr) [20], since this implies that t̄0 ≈ 0.95. It should be kept in mind, however,
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Figure 2.4: The variation of acceleration with time during the dark energy-dominated epoch, in
a spatially flat universe consisting of a matter distribution (with ρm ∝ a−4.8) and a scalar field
φ ∝ Bt1.64 +Ct−1.64.
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Figure 2.5: The dynamics of ρφ and ρm during the current epoch of acceleration, in a spatially flat
universe consisting of a matter distribution (with ρm ∝ a−4.8) and a scalar field φ ∝ Bt1.64 +Ct−1.64.

that the conversion from t to t̄ depends on H0,41 and the value of the Hubble constant
is still a subject of controversy [26]. We should nonetheless ensure that the lower
bound does not rise above unity. This may be achieved by specifying the constraint

1
2(2 + 3wm)

(
5 +

√
9 +wm
1 +wm

)
≤ 1 , (2.56)

41The estimate for t̄0 presented here was obtained using the Planck mean(
H0 = 67.36 km s−1 Mpc−1) [20].
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which in turn means that wm ≥ 1/
√

3.

The evolution of a′′(t̄) is compared with that of its flat ΛCDM counterpart in Fig. 2.4.
The parameters wm and t̄0 were assigned the values 0.6 and 1.1, respectively, while
Eq. (2.41) was again solved subject to the constraints a(0.95) = a′(t̄ = 0.95) = 1.
One may choose a value for the constant C in such a way that the end of the matter-
dominated epoch occurs close to the transition redshift predicted by ΛCDM. Setting
C equal to 0.4H−n0 achieves this without excessive fine-tuning, and furthermore elimi-
nates H0 from the equations for the rescaled energy density and pressure of the scalar
field.

Fig. 2.5 allows us to verify that the scalar field dominates the cosmic energy budget
at late times. As a consequence of this imbalance, the negative pressure due to φ
(Fig. 2.6) overcomes the attraction of matter and causes the cosmic expansion to
accelerate, leading to the scenario depicted in Fig. 2.4.
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Figure 2.6: The dynamics of pφ during the current epoch of acceleration, in a spatially flat universe
consisting of a matter distribution (with ρm ∝ a−4.8) and a scalar field φ ∝ Bt1.64 +Ct−1.64.

2.3.3 Models in an open universe

Here we solve Eqs. (2.22), (2.23) and (2.26) in the context of a hyperbolic geometry.
The spatial curvature, κ, is therefore equated to −1/R2

0 (equivalent to putting k =

−1). The letters A, B, C, n and q represent constants.
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Solution 4

This solution is characterised by the following expressions for a and φ:

a(t) = Atn ; (2.57)

φ(t) =
1√
8πG

(
Btq +Ct−q

)
. (2.58)

The constants n, q, A and B can be written in terms of wm, C and R0:

n =
2

1− 3wm
; q =

1 + 3wm
1− 3wm

; (2.59)

A =
1− 3wm
R0

√√√√ ζ [6 (1−wm − 6w2
m) + η]

C2(−1 +wm)(1 + 3wm)3(−13 + 30wm + 63w2
m)

; (2.60)

B =
3ζ
(
−7 + 24wm + 27w2

m + η
)

C(1 + 3wm)2(−13 + 30wm + 63w2
m)

, (2.61)

where η =
√

3
√
−1 +wm[−20 + 3wm(10 + 60wm + 81w2

m)] and ζ = −1 + 4wm +

9w2
m. The coupling constant ξ is given by

ξ =
1 + 6wm + 9w2

m
6ζ , (2.62)

while ρ0
m takes the form

ρ0
m =

C2(1 + 3wm)2

24πGR2
0(1 +wm)ζ

 ζ(1− 3wm)2
[
6
(
1−wm − 6w2

m
)
+ η

]
C2R2

0(1 + 3wm)3 (13− 43wm − 33w2
m + 63w3

m)


q/n

(2.63)
and the requirement that A is real restricts wm to the range [0.258, 0.275).

Substituting t̄/H0 for t and making use of Eq. (2.45) allows us to conclude that

a(t̄) =

[
t̄

2(1− 3wm)

]2/(1−3wm)

, (2.64)

whereas t̄0 is found to equal 2/(1− 3wm). The range of values for wm specified above
consequently constrains t̄0 to vary between 8.8 and 11.4, a far cry from the values
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found in the literature [1, 3, 19,20,173–175]. Solution 4 is thus effectively ruled out.

Solution 5

Here we have that

a(t) = At(5+
√

13)/6 ; (2.65)

φ(t) =
1√
8πG

(
B +Ct(1−

√
13)/3

)
. (2.66)

B is related to A, C and R0 as follows:

B =
−15 + 3

√
13 +

√
342− 90

√
13− 8(−128 + 35

√
13)C2A4R4

0
4(−4 +

√
13)CA2R2

0
, (2.67)

while ξ = 1/B2 and wm must take the value 1/3(−7 + 2
√

13) ≈ 0.07. The density of
matter at the present time depends on A, B and C:

ρ0
m =

C3A−4+2
√

13
[
14− 11

√
13 + 2(−5 + 2

√
13)B2

]
72πG(5−

√
13)B3 . (2.68)

When t is redefined as t̄ = H0t and the constraints specified in Eq. (2.45) are applied,
Eq. (2.65) becomes:

a(t̄) =

(
6t̄

5 +
√

13

)(5+
√

13)/6
, (2.69)

and t̄0 evaluates to (5 +
√

13)/6 ≈ 1.43. This allows us to deduce that H0 must
amount to approximately 102 km s−1 Mpc−1 if the age of the Universe is to be around
13.8 Gyr [20]. The fact that our estimate for H0 is so at odds with the range of values
found in the literature [19,20,26] means that Solution 5 cannot be considered a viable
dark energy candidate model.

2.3.4 Models in a closed universe

When κ = 1/R2
0, the system of equations given by (2.22), (2.23) and (2.26) also

admits a number of solutions. The two relevant ones found in this study are detailed
below. A, B and C are again used to denote constants.
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Solution 6

The first solution valid in a closed universe has an exponentially-increasing scale factor
and a minimally-coupled scalar field:

a(t) = A exp (Bt) ; (2.70)

φ(t) = Ce3Bt
{
e−3Bt

[
2A
R2

0
eBt − 1

3BC(2πGA3)1/2

]}3/2
, ξ = 0 , (2.71)

while the matter distribution is dust-like (wm = 0) and its density currently attains
the value

ρ0
m =

2
3BC(8πGA)3/2 . (2.72)

As already done when analysing Solution 1, the constants A and B may be determined
by applying the conditions a(t̄0) = a′(t̄0) = 1. One finds that A = exp (−t̄0) and
B = H0. With t̄/H0 in place of t, Eq. (2.70) then takes the form:

a(t̄) = exp (t̄− t̄0) , (2.73)

so that the variation of acceleration with time would be as shown in Fig. 2.1 (provided
the age of the Universe, t̄0, is again equated to 0.95).
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Figure 2.7: The dynamics of ρφ and ρm during the current epoch of acceleration, in a closed
universe consisting of dust and the minimally-coupled scalar field φ = C

(
D1 −D2 e−Bt

)3/2 (D1 and
D2 represent constants).

The next aim is to compare ρm and ρφ. To this end, the parameter R0 is expressed as
H−1

0 /|Ω0
k|1/2 , with Ω0

k = −0.0106 [20], and C is set to 4H−3
0 /
√

8πG. The resulting
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evolution is portrayed in Fig. 2.7. Here, too, we note that the scalar field dominates
the energy budget of the Universe during the time of interest. Additionally, the curve
of ρφH−2

0 gradually levels out, implying that at late times the scalar field effectively
mimics a cosmological constant.

Solution 7

The scale factor and scalar field are now given by:

a(t) = At2 +B , (2.74)

A =
C

6R0
and B =

1
CR0

(2.75)

or A =
C

2
√

3R0
and B =

√
3

2CR0
; (2.76)

φ(t) =
C√
8πG

t . (2.77)

The coupling constant ξ takes the value −1/6 and ρ0
m is equal to zero. The latter

implies an unrealistic picture of the cosmos – we know that the Universe is not devoid
of matter – and so this solution will not be analysed in detail. Let us nonetheless make
the usual transformation from t to t̄. Applying the constraints specified in Eq. (2.45)
allows us to write Eq. (2.74) as:

a(t̄) =
t̄ 2

2t̄0
+

1
2(2− t̄0) , (2.78)

since A and B turn out to equal H2
0 /(2t̄0) and (2− t̄0)/2, respectively. These may

in turn be used to determine C. With A and B defined as in Eq. (2.75), we have that

C = H0

√
6

t̄0(2− t̄0)
, (2.79)

whilst in the case of Eq. (2.76), the expression for C becomes:

C = H0

√
3

t̄0(2− t̄0)
. (2.80)
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2.4 In Brief. . .

In this chapter, dark energy takes the form of a scalar field that may be either mini-
mally or non-minimally coupled to the Ricci scalar, and is considered in combination
with a simple matter component having pm ∝ ρm. It is shown that such a scenario
may indeed give rise to a period of late-time accelerated expansion.

All in all, the chapter serves to illustrate the challenge of finding exact analytical
solutions that are in accord with cosmological observations. This is especially true
when spatial curvature is introduced and the equations become more complicated,
and underlines the important role played by numerical techniques. Nonetheless, a
number of analytical solutions to the STT field equations (as expressed in an FLRW
framework) were found and have been presented in section 2.3. Some hold in a
cosmology with flat spatial sections, while others are valid when the Universe is either
closed or open. Despite the appeal of their analytical nature, however, they have a
number of shortcomings: several of them impose somewhat unconventional constraints
on the equation-of-state parameter of dark matter, while others do not admit a matter
component at all. Additionally, tensions with the observationally-established range of
values for parameters like the Hubble constant or the age of the Universe have also
been noted. One of the most promising solutions features an exponentially-increasing
scale factor, a matter distribution with wm = 0 and a minimally-coupled scalar field
that mimics a cosmological constant at late times.
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CHAPTER 3

The Effects of Spatial Curvature on Cosmic
Evolution

3.1 Introduction

As already discussed in Chapter 1, subsection 1.3.2, the importance of spatial cur-
vature is greatly underrated. Indeed, the majority of works put forward continue to
be based on the assumption that the Universe is flat. In this chapter, therefore, we
shall investigate the consequences of introducing curvature into different cosmological
models alternative to ΛCDM. The models in question provide a complete description
of the cosmic expansion history: they start with an inflationary phase that evolves
into an epoch of deceleration, which is in turn followed by the present period of ac-
celeration. In particular, the Universe shall first be modelled as a dissipative mixture
comprising a Van der Waals (VdW) fluid and a dark energy component, with the
latter taking the form of either Quintessence or a Chaplygin gas. These models have
been investigated in Ref. [176], but we shall extend the analysis by including spatial
curvature and studying its effects on the evolution of the Universe. The versatility
of the VdW fluid lies in the fact that its pressure can be either positive or negative,
depending on its density. Consequently, it can slow down the cosmic expansion at
certain times and speed it up at others.

In the last part of the chapter we shall consider two models in which the cosmological
constant is replaced by a dynamic Λ. In this case, the matter component will be
modelled in one of two ways: as a VdW fluid, or as a distribution with the customary
direct proportionality between energy density and pressure. Spatial curvature will
again be introduced and its role probed.

All numerical analysis presented in this chapter was carried out using Wolfram
Mathematica® 12.0.
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3.2 Matter as a Van der Waals Fluid

Let us first assume that the Universe consists solely of a matter distribution with the
VdW equation of state (EoS). The aim is to build on Kremer’s model [176], repeating
his analysis but taking the possibility of non-zero spatial curvature into account. The
starting point is the first Friedmann equation:

H2 =
8πG

3 ρm −
κ̃

ã2 , (3.1)

where ρm represents the energy density of matter and ã is defined as the ratio R/R∗,
R being the scale factor and R∗ the value it takes when H = 1. The time at which
this happens shall be denoted by t∗ [i.e. H(t∗) = H∗ = 1]. Next, we shift the time
scale by putting t̃ = t− t∗, so that at t̃ = 0, R = R∗ and ã = R∗/R∗ = 1, while
dã/dt̃ = H∗ × ã(t̃ = 0) = 1. The spatial curvature κ̃ can be expressed in terms of
the normalised spatial curvature k as k/R2

∗ [8].

We proceed by differentiating Eq. (3.1) with respect to42 t̃, then use the energy con-
servation equation:

ρ̇m = −3H(ρm + pm) (3.2)

to substitute for ρ̇m. After replacing H with ˙̃a/ã and discarding the solution H = 0,
we get that

κ̃− 4πGã2(ρm + pm) + ˙̃a2 − ã ¨̃a = 0 . (3.3)

The relation between the pressure pm of the matter content and its energy density
takes the form of the VdW EoS [177]:

pm =

 8wmρm
3ρcm − ρm

− 3
(
ρm
ρcm

)2 pcm . (3.4)

In classical thermodynamics, wm is a dimensionless quantity equivalent to the ratio
of T to T c, where T is the temperature of the fluid and T c its value at the critical
point. This point is best described in the context of a pressure versus temperature
plot. Here, it coincides with the high-temperature end of the gas-liquid coexistence
curve; as one moves along the curve, the two phases grow more and more similar,
finally becoming indistinguishable at the critical point [178].

42An overdot denotes differentiation with respect to t, but t̃ = t− t∗, so d/dt is equivalent to
d/dt̃.



3.2. MATTER AS A VAN DER WAALS FLUID 71

So what meaning does wm have for us? In a cosmological setting, wm is often identified
with the constant of proportionality in the conventional barotropic relation pm ∝ ρm,
because this is essentially the form that Eq. (3.4) takes for small values of ρm/ρcm (ρcm
and pcm denote the critical energy density and pressure, respectively) [179]. Another
common practice is to reduce the number of free parameters by setting ρcm = pcm = 1.
The VdW EoS can then be rewritten concisely as [179]:

pm =
8wmρm
3− ρm

− 3ρ2
m . (3.5)

If pm is replaced with the above expression and one uses Eq. (3.1) to substitute for
ρm, Eq. (3.3) becomes:

κ̃+ ˙̃a2 − 27(κ̃+ ˙̃a2)2

8πGã2 − 64πGwmã2(κ̃+ ˙̃a2)

κ̃− 8πGã2 + ˙̃a2 + 2ã ¨̃a = 0 . (3.6)

This reduces to Eq. (5) of Ref. [176] when κ̃ = 0, although Eq. (3.6) would have to
be written as a first-order differential equation in H to make a comparison.

Eq. (3.6) can be solved numerically by choosing appropriate parameter values and
initial conditions. In line with Kremer’s work, we have already established that ã(t̃ =
0) = ˙̃a(t̃ = 0) = 1. Now we set wm to 0.52, while κ̃ is assigned the values 0, 0.01 and
−0.01. The resulting plots are shown in Figs. 3.1–3.4.

0 1 2 3

-0.5

0

0.5

1.0

H*t


ã¨
H

*-
2

κ

H*

-2 0 -0.01 0.01

Figure 3.1: The variation of acceleration with time for a universe composed of a VdW fluid.
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Figure 3.2: The variation of the Hubble parameter with time for a universe composed of a VdW
fluid. It may be noted that in the flat case, H is constant at early times. This is suggestive of
exponential inflation.
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Figure 3.3: The variation of pressure with time for a universe composed of a VdW fluid.

The most widely-accepted view nowadays with regards to the different stages of cosmic
evolution is that the Universe initially underwent a period of accelerated expansion
known as inflation [129, 180, 181], and that a graceful exit then led to a radiation-
dominated epoch (and a later matter-dominated one) during which deceleration oc-
curred [182, 183]. This was followed by another phase of acceleration [1, 3, 184, 185]
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Figure 3.4: The variation of energy density with time for a universe composed of a VdW fluid.

– which extends to the present time and is thought to be one of the most notable
sources of evidence for dark energy. As pointed out by Kremer, modelling the Uni-
verse as a VdW fluid can correctly describe the transition from the inflationary epoch
to the subsequent deceleration, but fails to yield the proposed late-time acceleration
(Fig. 3.1).

The evolution of the Universe is determined by the pressure of the cosmic fluid. In
fact, Fig. 3.3 shows that when this fluid is described by the VdW EoS [Eq. (3.5)], pm
would initially be negative (resulting in inflation – Fig. 3.1). It would then start to
increase and become positive (causing the acceleration to decrease and deceleration to
set in), finally going asymptotically to zero (with deceleration following suit) rather
than becoming negative again (which would cause the Universe to accelerate).

Another point of interest is the way the presence of curvature affects the evolution.
From Fig. 3.1, it can be seen that positive curvature delays the onset of deceleration
with respect to the flat case, while negative curvature causes it to occur earlier. The
maximum acceleration and deceleration also change with κ̃: they are largest for the
closed universe, and least for the open one. Furthermore, small variations in the
parameters or the initial conditions only alter the magnitude of these effects, and not
the behaviour of the evolution. The closed universe would still be characterised by
the largest acceleration and deceleration, and the transition from one to the other
would still occur later than it does for the flat and open geometries.
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3.2.1 Dark energy as Quintessence or a Chaplygin gas

To alleviate the problem posed by the absence of late-time acceleration, Kremer [176]
proposes adding a dark energy component to the VdW matter distribution. Thus
Eq. (3.1) becomes

H2 =
8πG

3 (ρm + ρd)−
κ̃

ã2 , (3.7)

where ρd is the dark energy density and we shall denote the corresponding pressure
by pd. Matter and dark energy are assumed to be non-interacting [176], so energy
conservation may be expressed as two decoupled equations:

ρ̇d = −3H(ρd + pd) ; (3.8)

ρ̇m = −3H(ρm + pm +$) , (3.9)

The term −3H$ on the right-hand side of Eq. (3.9) represents the rate at which
energy (density) is transferred irreversibly from the gravitational field to the VdW
matter distribution, but may be equivalently described as the rate of change in ρm

due to the bulk viscosity of the fluid. In other words, the decay of the gravitational
field43 can be accounted for by considering a bulk-viscous cosmic fluid. Before going
on, let us note that the possibility of expressing energy conservation as two distinct
equations [with the term in $ relegated to Eq. (3.9)] reflects the minimal nature of
the coupling between dark energy and the gravitational field [176].

The quantity $ introduced in Eq. (3.9) is termed the non-equilibrium pressure. In
second-order non-equilibrium thermodynamics, the relaxation of $ to its equilibrium
value ($0 = 0) is described by the equation [189]:

$̇ = −$−$0
T

, (3.10)

T being the relaxation or characteristic time [176]. Once we move to a cosmological
setting and include the effects of an expanding universe, the above relation takes on
an extra term:

T $̇+$ = −3ηH . (3.11)

Here, η is the coefficient of bulk viscosity.44 We shall proceed as in Ref. [176] and
43This decay happens due to particle production. More information may be found in Refs. [186,187]

and [188].
44A derivation of Eq. (3.11) can be found in Ref. [186], where the authors make use of the seminal

work of Israel and Stewart [190].
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assume η to be directly proportional to the energy density [191] of the mixture (η =

αρtot, where ρtot = ρm + ρd and α is a constant). If T is equated to η/ρtot [192], it
follows that T = α, and Eq. (3.11) becomes α$̇ +$ = −3(αρtot)H. Eq. (3.7) can
then be utilised to eliminate ρtot. One gets that:

$̇+
1
α
$ = − 9H

8πG

(
H2 +

κ̃

ã2

)
. (3.12)

The presence of κ̃ suggests that the evolution of the non-equilibrium pressure is de-
pendent on the geometry. In fact, this is the main reason why $ is introduced: it
enhances the impact of spatial curvature. However, the main conclusions we reach
would not be altered in its absence. The only effect to be expected – apart from the
fact that differences due to κ̃ would be smaller – are changes to which of the three
universes accelerates the most during the dark-energy dominated era. That said, the
analysis presented in this chapter indicates that κ̃ does not play a significant role in
the current epoch, so these slight variations are of no concern.

The pressure pm and energy density ρm of the matter component are again related
by the VdW EoS [Eq. (3.5)]. As for dark energy, we shall take Kremer’s example
and consider either Quintessence or a Chaplygin gas. A similar model consisting of
Quintessence and a viscous VdW fluid in a Lyra manifold45 is studied in Ref. [197].
There are some important differences, though: the authors also include a constant or
dynamical Λ and restrict their analysis to a flat geometry, and furthermore assume
dark energy and dark matter to be interacting, which is not the case in our work.

Quintessence

The EoS for Quintessence reads [176]

pd = wdρd ; wd < −1/3 , (3.13)

45In 1918, Weyl [193] proposed a modification of Riemannian manifolds in order to fully geometrise
gravitation and electromagnetism [194]. Another modification was put forward by Lyra [195] more
than three decades later. Lyra’s version serves as the framework for a unified field theory similar to
Weyl’s, but has the advantage that parallel transport leaves the length of a vector unaltered (this
is not what happens in Weyl’s theory). An important characteristic of Lyra’s geometry is a gauge
function (introduced into the structureless manifold) that gives rise to a gauge vector field φµ(xν)
[194]. In cosmologies based on Lyra manifolds with constant φµ [ = (β, 0, 0, 0)], the combination of
φµ – which provides the necessary pressure – and a pressureless ‘vacuum fluid’ having ρm = −3β2/2
can be seen as analogous to a cosmological constant [196].
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where wd is a constant. When inserted into Eq. (3.8), Eq. (3.13) allows us to solve
for ρd. It is found that

ρd = ρ0
d ã
−3(1+wd) , (3.14)

ρ0
d being the dark energy density at t̃ = 0. The next step entails taking the time

derivative of Eq. (3.7), then substituting for ρ̇d and ρ̇m using the continuity equations,
(3.8) and (3.9). These contain pressure terms, but pm and pd may easily be written
as functions of the respective energy densities by means of Eqs. (3.5) and (3.13).
Finally, the VdW energy density, ρm, is replaced with the corresponding expression
from Eq. (3.7), while the right-hand side of Eq. (3.14) serves to eliminate ρd. The
resulting equation is given by:

8πG
[

8wmã2f(t̃, κ̃)
3ã2 − f(t̃, κ̃) −

3
ã2f(t̃, κ̃)

2 +
wdρ

0
d

ã1+3wd
+ ã2$

]
+ κ̃ + ˙̃a2 + 2ã ¨̃a = 0 ;

f(t̃, κ̃) = − ρ0
d

ã1+3wd
+

3
8πG

(
κ̃+ ˙̃a2

)
. (3.15)

Together with Eq. (3.12), Eq. (3.15) governs the evolution of a universe composed of
a VdW matter distribution and Quintessence. It may be shown to reduce to Kremer’s
Eq. (13) [176] when κ̃ = 0.

We thus have a system of two differential equations that can be solved numerically by
again making use of the initial conditions ã(0) = ˙̃a(0) = 1. This time, however, we
also need an initial condition for Eq. (3.12), so we set $(t̃ = 0) = 0. The parameters
are assigned values as follows: α = 0.4, wm = 0.6, wd = −0.9, ρ0

d = 0.03× 3/(8πG)
and |κ̃| = 0.01 (or zero), and the resulting plots are shown in Figs. 3.5–3.8. It
immediately becomes evident that the negative pressure of dark energy is able to
produce the late-time acceleration missing in the pure VdW model. Otherwise, the
implications of a non-zero κ̃ for the epochs of inflation and deceleration are as before
(albeit being more pronounced): with respect to a flat universe, positive κ̃ delays the
onset of deceleration and increases the maximum acceleration and deceleration, while
negative κ̃ does the contrary (Fig. 3.5). A similar pattern is observed in the onset
of late-time acceleration. Once again, the closed universe is the last to undergo the
transition.

As stated previously, changes in the acceleration/deceleration of the Universe are
caused by variations in the pressure of the cosmic fluid. In fact, we note that the
temporal shifts between the curves of total pressure against time (Fig. 3.7) complement
those between the curves of acceleration versus time (Fig. 3.5). Provided that the
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Figure 3.5: The variation of acceleration with time for a universe composed of a VdW matter
distribution and Quintessence.
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Figure 3.6: The variation of the Hubble parameter with time for a universe composed of a VdW
matter distribution and Quintessence.

pressure of the VdW fluid evolves smoothly, small changes in the initial conditions
or the parameters only alter the magnitude of the above-mentioned effects. Another
point worthy of mention is the fact that the deviation from the flat universe is stronger
for positive κ̃.

The results presented here are in line with the conclusions reached in Ref. [187].
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Figure 3.7: The variation of total pressure with time for a universe composed of a VdW matter
distribution and Quintessence. The peaks of the curves are shown at greater resolution (inset).
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Figure 3.8: The variation of total energy density with time for a universe composed of a VdW
matter distribution and Quintessence.

Kremer and Teixeira da Silva model the cosmic fluid as a scalar field mixed with a
matter distribution, and likewise find that the inflationary acceleration and subsequent
deceleration are most pronounced for κ̃ > 0, while the transition to the present
epoch of acceleration occurs first for the open universe. They suggest that the larger
acceleration the closed universe undergoes during inflation is due to a greater |$|
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since, being negative, the non-equilibrium pressure $ is partly responsible for the
said acceleration, as may be inferred from the second Friedmann equation:

¨̃a = −4πG
3 ã(ρtot + 3peq + 3$) . (3.16)
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Figure 3.9: The two main factors contributing to the difference in the maximum inflationary
acceleration of the flat, open and closed universes: the variation with κ̃ of the non-equilibrium
pressure $ and the VdW pressure pm. The evolution of −ρm is also shown. The Universe is
modelled as a bulk-viscous mixture of Quintessence and a VdW fluid and the value of κ̃ is denoted
by the label on each curve. Quintessence is negligible at this stage.

Here, ρtot = ρm + ρd and peq = pm + pd. It transpires that their conclusion is valid
in our case, as may easily be deduced from Fig. 3.9. There is, however, an important
difference: the VdW fluid also exerts a repulsive pressure (pm) at early times, and the
fact that this is strongest in the closed universe [which is, in turn, a result of the fact
that ρm is largest for κ̃ > 0 at t̃ = 0, as suggested by Eq. (3.7)] helps to boost its
acceleration. Indeed, it is precisely the difference in pm that initially causes the closed
universe to have the greatest acceleration. The effects due to $ set in later (Fig. 3.9).
After a while, the pressure pm becomes attractive, and at first it is smallest for κ̃ > 0
(Fig. 3.10). This is yet another factor which helps to enhance ¨̃a.

There is a strong link between the variation of $ and ã with κ̃. As Eq. (3.12) suggests,
|$̇| is largest for positive κ̃ at the start of the evolution. Hence $ grows more rapidly
in the closed universe, which (partly because of this) expands at the fastest rate.
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Figure 3.10: Curves showing how the energy density and pressure of matter vary with time. The
Universe is modelled as a bulk-viscous mixture of Quintessence and a VdW fluid. The labels denote
the respective values of κ̃.

Accordingly, the rapid expansion causes the gravitational field to decay more quickly
than it does in the flat and open cases,46 resulting in a higher rate of energy transfer to
the VdW fluid and thus causing it to be diluted more slowly. The consequent decrease
in |ρ̇m| may be deduced from Eq. 3.9 and emerges clearly in Fig. 3.10. Moreover, it
explains why the total energy density in the closed universe soon becomes larger
than that in the other scenarios, remaining this way well into the deceleration epoch
(Fig. 3.8). In turn, a greater ρtot (and H) speeds up the growth of $ (Eq. 3.12),
although not indefinitely – the non-equilibrium pressure acts to slow down its own
build-up, as is evident from the same equation.

Until ρm has decayed by a sufficient amount, the right-hand side of Eq. (3.5) is domi-
nated by the term −3ρ2

m. Initially, therefore, the matter component exerts a negative
pressure whose magnitude is largest where the fluid is most dense (hence in the closed
universe). The variation of ρm and pm with time is depicted in Fig. 3.10.

The larger magnitude that $ has in the closed universe explains the delay in the
transition from the first accelerated epoch to the subsequent deceleration. Eq. (3.16)
implies that this transition occurs when 3|$| is equal to the sum ρm + 3pm – in other
words, when the repulsive non-equilibrium pressure (dark energy is negligible at this

46The rate of decay is given by 3H$ [see Eq. (3.9)].
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point) is counterbalanced by the attractive force of matter. The smaller |$| in the
open universe thus leads to an earlier onset of deceleration. This is illustrated in
Fig. 3.11.
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Figure 3.11: Curves depicting the evolution of the non-equilibrium pressure $ and of the sum
ρtot + 3peq. The Universe is modelled as a bulk-viscous mixture of Quintessence and a VdW fluid,
and labels denote the spatial curvature κ̃. The intersection between curves with the same κ̃ indicates
the onset of deceleration for the respective universes.

As suggested above, Eq. (3.9) allows one to conclude that a negative non-
equilibrium pressure reduces the magnitude of ρ̇m. Kremer and Teixeira da Silva
point out that, since |$| is greatest in the closed universe, this is also where the most
matter is produced, hence leading to a larger deceleration [187]. Things are somewhat
different in the case under consideration, however: although the non-equilibrium pres-
sure decreases the rate at which matter is diluted during the first epoch of acceleration
– an effect that is most pronounced in the closed universe – it is never large enough
to yield an overall increase in ρm. Indeed, Fig. 3.12 makes it clear that the closed
universe undergoes the greatest deceleration mainly due to the larger value of its scale
factor. This is because a scales the sum ρtot + 3peq + 3$ in Eq. (3.16).

Ref. [187] invokes the greater production of matter for κ̃ > 0 and the faster decay
of the scalar field to explain why the onset of late-time acceleration is delayed when
the geometry is closed. Here, the said delay is attributed to the fact that matter
gets diluted more slowly in the closed universe,47 which causes the evolution of pm

47This stops being the case at t̃ ≈ 9.
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Figure 3.12: Curves showing the temporal variation of ¨̃a/ã and ¨̃a for a universe composed of
Quintessence and a VdW fluid. Labels denote the respective values of κ̃.

to lag behind that in the open and flat scenarios. One recalls that whether the
Universe accelerates or decelerates is due to the interplay of pressures. Once the first
term on the right-hand side of Eq. (3.5) dominates over the second one, the pressure
pm becomes positive, increases to a maximum and then starts to decay, until the
repulsive pressure of dark energy takes over and the Universe enters a second phase
of acceleration. Since pm begins to decay at a later time when κ̃ > 0, the transition
to the final epoch of acceleration occurs last in the closed universe.

Chaplygin gas

Next, we model dark energy as a Chaplygin gas, whose pressure pd is related to the
energy density ρd by means of the EoS [176]:

pd = − A
ρd

; A > 0, (3.17)

where A is a constant. Inserting this relation into Eq. (3.8) and solving for ρd as a
function of ã yields:

ρd =

√
Aã6 +C

ã3 ; C > 0. (3.18)
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In the above, C represents a constant of integration. If we write C/A as ψ and evaluate
ρd at t̃ = 0, we get that ρ0

d =
√
A(1 + ψ), and so Eq. (3.18) may be expressed in the

form:
ρd =

ρ0
d
ã3

√
ã6 + ψ

1 + ψ
. (3.19)

We repeat the procedure adopted in the case of Quintessence and take the time
derivative of Eq. (3.7), then substitute for ρ̇d and ρ̇m from equations (3.8) and (3.9),
respectively. The pressure of matter is determined by the VdW EoS [Eq. (3.5)], and
that of dark energy by Eq. (3.17), with A written as

(
ρ0
d
)2

/(1 + ψ). The matter
energy density ρm is subsequently replaced with the corresponding expression from
Eq. (3.7), while ρd takes the form specified in (3.19). The final equation reads:

8πG
[

8wmã2h(t̃, κ̃)
3ã2 − h(t̃, κ̃) −

3h(t̃, κ̃)2

ã2 + ã2$− ρ0
dã

5

F(t̃)(1 + ψ)

]
+ κ̃ + ˙̃a2 + 2ã ¨̃a = 0 ,

F(t̃) =
√
ã6 + ψ

1 + ψ
; h(t̃, κ̃) = −ρ0

d
F(t̃)
ã

+
3

8πG( ˙̃a2 + κ̃) , (3.20)

and reduces to Eq. (16) in Ref. [176] when κ̃ is set to zero and the necessary modi-
fications in notation are made. Together with (3.12), Eq. (3.20) is solved by setting
ã(0) = ˙̃a(0) = 1, $(0) = 0, α = 0.4, wm = 0.6, ψ = 3, ρ0

d = 0.03× 3/(8πG) and
|κ̃| = 0.01 or 0.
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Figure 3.13: The variation of acceleration with time for a universe composed of a VdW matter
distribution and a Chaplygin gas.
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Figure 3.14: The variation of total pressure with time for a universe composed of a VdW matter
distribution and a Chaplygin gas. The peaks of the curves are shown at greater resolution (inset).
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Figure 3.15: The variation of total energy density with time for a universe composed of a VdW
matter distribution and a Chaplygin gas.

The evolution of a universe with a VdW fluid as the matter component and a Chap-
lygin gas as dark energy is illustrated in Figs. 3.13, 3.14 and 3.15. It can be seen that
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the effects of curvature are similar to those noted when dark energy was modelled as
Quintessence. Once again, small variations in the parameters or the initial conditions
only change the magnitude of these effects.

3.2.2 Dark energy as a dynamical Λ

In this section, we again consider equilibrium pressures only, and model dark energy
as a time-dependent cosmological term Λ(t̃) with EoS parameter wΛ = pΛ/ρΛ = −1
[pΛ and ρΛ being, respectively, the pressure and energy density48 associated with
Λ(t̃)]. Thus, Eq. (3.1) now reads:

H2 =
8πG

3 ρm −
κ̃

ã2 +
Λ(t̃)

3 , (3.21)

while energy conservation can be expressed as:

ρ̇m = −3H(ρm + pm)−
Λ̇(t̃)

8πG . (3.22)

In this case, the matter and dark energy components cannot be conserved separately,
because Einstein’s field equations take the form49

Gµν = Rµν − 1/2Rgµν = 8πGTm
µν −Λ(t̃)gµν , (3.23)

and hence the Bianchi identity, ∇µGµν = 0, implies that 8πG∇µTm
µν − gµν∇µΛ(t̃) =

0. Since a time-varying gravitational coupling is beyond the scope of this study,
matter can only be conserved independently if ∇µΛ(t̃) = 0 – in other words, only
if Λ(t̃) goes back to being a cosmological constant, which is not what we want here.
Consequently, the models considered in the rest of the chapter are characterised by
an exchange of energy between matter and dark energy.

We proceed by taking the time derivative of Eq. (3.21) and using Eq. (3.22) to sub-
stitute for ρ̇m + Λ̇(t̃)/8πG. The resulting equation reads:

8πGã2(pm + ρm)− 2(κ̃+ ˙̃a2) + 2ã ¨̃a = 0 . (3.24)

The next step consists in choosing a proper model for the matter distribution and an
expression for Λ(t̃).

48ρΛ = Λ(t̃)/8πG.
49Tm

µν is the matter part of the energy–momentum tensor.
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Λ proportional to ã−q

In the first model with a dynamical Λ, we retain the VdW EoS [Eq. (3.5)] for the
matter part of the mixture, and represent the time-dependent vacuum term by [198]:

Λ(t̃) =
ΛI
ãq

, (3.25)

where the parameter q lies in the range [0, 2] and ΛI is the value of Λ(t̃) at t̃ = 0.
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Figure 3.16: The variation of acceleration with time for a universe composed of a VdW matter
distribution and a dynamical Λ ∝ ã−1/2.

The fundamental equation is obtained from (3.24) by making use of Eq. (3.5) to write
pm in terms of ρm, then replacing the latter with the corresponding expression from
Eq. (3.21). When Λ(t̃) is substituted by the right-hand side of Eq. (3.25), we get:

κ̃+ ˙̃a2 − ΛI
ãq−2 −

3
8πG

[
s(t̃, κ̃)
ã

]2
− 64πGwmã2s(t̃, κ̃)

24πGã2 + s(t̃, κ̃) + 2ã ¨̃a = 0 ;

s(t̃, κ̃) = ΛI
ãq−2 − 3(κ̃+ ˙̃a2) . (3.26)

The parameters wm, q, ΛI and |κ̃| are assigned the values 0.5, 0.5, 0.2 and 0.04 (or 0),
respectively. With the initial conditions set once more to ã(0) = ˙̃a(0) = 1, Eq. (3.26)
yields the cosmic history shown in Figs. 3.16–3.19. It can be seen that the effects
of curvature tally with what was observed for the previous models. As before, slight
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Figure 3.17: The variation of the Hubble parameter with time for a universe composed of a VdW
matter distribution and a dynamical Λ ∝ ã−1/2.
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Figure 3.18: The variation of total pressure with time for a universe composed of a VdW matter
distribution and a dynamical Λ ∝ ã−1/2.

variations in the initial conditions or the parameters only modify the magnitude of
the said effects, although this is subject to the condition that the evolution of pm
remains smooth.

We are now in a position to carry out an analysis similar to the one for the VdW–
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Quintessence model. The questions that most merit attention are two, namely: why
is it that deceleration and inflationary acceleration are largest for the closed uni-
verse? And why does positive curvature delay the onset of deceleration and late-time
acceleration?
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Figure 3.19: The variation of total energy density with time for a universe composed of a VdW
matter distribution and a dynamical Λ ∝ ã−1/2.
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Figure 3.20: The temporal variation of the energy density and pressure of matter, in a universe
comprising a VdW fluid and a dynamical Λ ∝ ã−1/2. The labels denote the respective values of κ̃.
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Figure 3.21: The evolution of 4πGρm − Λ(t̃) and −4πG (3pm) for a universe composed of a
VdW fluid and a dynamical Λ ∝ ã−1/2. When these two quantities are equal, ¨̃a evaluates to zero
[Eq. (3.27)]. Hence, the point of intersection between curves with the same value of κ̃ (as indicated
by the label on each curve) denotes the onset of deceleration for the corresponding universe.

Initially, the second term on the right-hand side of Eq. (3.5) dominates the dynamics of
the VdW matter distribution, causing it to exert negative pressure. Eq. (3.21) implies
that at t̃ = 0, ρm is greatest in the closed universe, for which κ̃ > 0. Consequently,
this is also where the pressure of the VdW fluid is strongest (Fig. 3.20), and hence
where the resulting repulsive effect is most significant. In fact, it is the closed universe
that experiences the greatest acceleration during inflation.

Eq. (3.22) allows us to deduce that the larger matter density associated with positive
curvature at t̃ = 0 also means a smaller |ρ̇m|. Together, these two factors (larger ρm,
smaller |ρ̇m|) imply that the first term in Eq. (3.5) takes longer to dominate over the
second, and hence more time passes before pm becomes positive. This explains why the
transition to the epoch of deceleration happens last for the closed universe (Fig. 3.21).
As for the difference in the maximum deceleration each universe undergoes, Fig. 3.22
demonstrates that the main cause is the variation of the scale factor with κ̃. Finally,
the delay in the onset of late-time acceleration when κ̃ > 0 may be attributed to the
fact that the evolution of pm lags behind that in the open and flat scenarios. The
result is that the decay of pm begins at a later time in the closed universe. As may
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Figure 3.22: The temporal variation of ¨̃a/ã and ¨̃a for a universe comprising a VdW fluid and a
dynamical Λ ∝ ã−1/2. Curves are labelled with the respective values of κ̃.

be concluded from the equation:

¨̃a = − ã3 [4πG (ρm + 3pm)−Λ(t̃)] , (3.27)

acceleration sets in when Λ(t̃) equates to 4πG (ρm + 3pm). The longer pm takes to
start decaying, the longer it is before this equality is realised.

3.3 Modelling Matter with EoS pm = wmρm

Let us again use t to represent ordinary cosmic time. In this section, we also revert
to the usual definitions of a and κ, so that the former is now equal to the ratio of
the scale factor R to its present-day value, R0, and the spatial curvature κ = k/R2

0
(with k = 0 or ±1). The matter distribution is described by the EoS:

pm = wmρm . (3.28)

As before, pm and ρm stand for the pressure and energy density, respectively. The
parameter wm ∈ [0, 1] acts as a constant of proportionality and characterises the fluid,
taking the value 1/3 for radiation, 1 for a stiff fluid, and zero in the case of dust.
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We combine matter with a dark energy component that evolves according to the
equation [199]:

Λ(t) = Λ∞ + 3
(
H

HI

)n ( κ
a2 +H2

)
. (3.29)

Here, Λ∞ is the value of Λ(t) as a → ∞, HI stands for the Hubble parameter
associated with the primordial de Sitter stages,50 and n ≥ 1 is an integer. At very
early times, H ∼ HI and the vacuum dynamics are driven by the second term on the
right-hand side of Eq. (3.29). When H � HI, however, this term becomes negligible,
rendering Λ(t) approximately equal to Λ∞. Consequently, the resulting cosmology
converges to ΛCDM at late times [199].

The governing equation may be obtained by inserting (3.28) into Eq. (3.24) and using
Eq. (3.21) to eliminate ρm. The final result reads:

(κ+ ȧ2)

{
3(1 +wm)

[
1−

(
ȧ

HIa

)n ]
− 2

}
−Λ∞(1 +wm)a

2 + 2aä = 0 , (3.30)

where Λ(t) has been expressed according to Eq. (3.29). With a few modifications,
Eq. (3.30) is seen to be equivalent to Eq. (22) in Ref. [199].51 The authors of [199]
point out that Λ(t) attains its final value (Λ∞) at the start of the adiabatic radiation
phase, and so Λ∞ shall be identified with Λ0, the cosmological constant.

We consider the inflationary epoch first and redefine the time coordinate as t̂ =

HIt − 1. With this definition, the Hubble parameter is automatically rescaled to
Ĥ = H/HI, so that when H = HI, Ĥ = 1 and, assuming the relation t ∼ 1/H,
one gets that t̂ ≈ 0. The reference time t̂ = 0 is thus specified as the point at which
the Hubble parameter Ĥ is (approximately) equal to unity, in line with the procedure
adopted in the previous section. Additionally, the rescaled time coordinate implies
that Eq. (3.30) can be rewritten in the form:

[
κ̂+ a′(t̂)2

] {
3(1 +wm)

[
1−

(
a′(t̂)

a

)n]
− 2

}
− 3(1 +wm)Ĥ

2
0 Ω0

Λa
2 + 2aa′′(t̂) = 0,

(3.31)
where κ̂ = κ/H2

I , a′(t̂) = ȧ/HI, a′′(t̂) = ä/H2
I and Ĥ0 = H0/HI (H0 being the

50HI can be treated as an arbitrary parameter and its value inferred from CMB constraints [199].
Here we assume that deflation begins at around the time of grand unification, which means that
HI ∼ 1035 s [200].

51Care should be taken when comparing the two equations. In (3.30), a represents the normalised
scale factor (rather than the non-normalised version, as in Ref. [199]), while κ stands for the ratio
k/R2

0. The authors of Ref. [199] use κ to represent the normalised curvature parameter (which is
denoted by k here).
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current value of H). The relation Λ0 = 3H2
0 Ω0

Λ has been used to express Λ0 in terms
of the corresponding density parameter.

Eq. (3.31) is solved subject to the initial conditions a(0) = 1.03 Ĥ0 and a′(t̂ = 0) =
Ĥ0. The slight difference between the values of a(0) and a′(t̂ = 0) – while being
small enough to ensure that Ĥ(0) is still sufficiently close to unity – improves the
performance of the numerical simulator, because it ensures that the first term enclosed
in curly brackets in Eq. (3.31) does not drop out of the equation at t̂ = 0.

The matter distribution for our model shall be assumed to consist of dust. In cosmol-
ogy, dust is understood to be a pressureless perfect fluid [18] – in other words, a fluid
made up of non-relativistic, non-interacting particles [8]. The cold dark matter that is
thought to dominate the matter sector falls into this category, and so we shall model
the matter component in the same fashion. This is achieved by assigning wm a null
value. Next, we set |κ̂| to 0.08 Ĥ2

0 (or 0) and fix n at 2, the latter being in accordance
with the proposal that n should be even in flat space, as indicated by the covariance
of the effective action of Quantum Field Theory in curved spacetimes [201,202]. The
parameter Ĥ0 is estimated at52 10−53. Finally, we put Ω0

Λ equal to 0.692, the value
reported by the Planck collaboration in Ref. [22]. Although the Planck constraints
are obtained in the context of a ΛCDM cosmology, this poses no serious issue, since
our model converges to ΛCDM at late times.

Figs. 3.23 and 3.24 show the evolution of a′′(t̂) and Ĥ during the inflationary epoch
and the first stages of cosmic deceleration. At early times, the behaviour of Λ(t̂) is
determined by the second term on the right-hand side of Eq. (3.29) – and in turn, Λ(t̂)

controls the cosmic evolution, as evidenced by Fig. 3.25. Since the term in question is
a function of κ̂, the dynamics of the early Universe depend significantly on the spatial
geometry. It can be seen that the effects of curvature match those observed for all
the other models. But how does the cosmic history compare to ΛCDM?

According to the flat ΛCDM cosmology, the expansion of the Universe is governed by
the equation:

2aa′′(t̂) + a′(t̂)2 + Ĥ2
0 (Ω

0
ra
−2 − 3Ω0

Λa
2) = 0 , (3.32)

where Ω0
r is the present-day value of the radiation density parameter, equivalent to53

52To a good approximation, this would mean that the beginning of the deflationary epoch coincides
with grand unification. More information is available in Ref. [200]. One should note, however, that
due to updated constraints onH0 [22], the above value for Ĥ0 differs slightly from the one in [200], but
is nonetheless compatible with typical estimates for the Hubble parameter at the end of inflation [203].

53This can be calculated from the current value of the matter density parameter (Ω0
m = 0.308 [22])

and the redshift at which matter and radiation were equally dense, zeq = 3365 [22].
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9.15× 10−5. Its smallness implies that we may safely leave out the term in Ω0
r at

late times. The initial conditions and parameter values used are as for the dynamical
vacuum case.
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Figure 3.23: The evolution of the acceleration at early times. The Universe is assumed to consist
of dust and a dynamical Λ that is given by Eq. (3.29). The acceleration of a flat universe containing
dust and a cosmological constant is represented by the red dot-dashed curve. In this case, there is
no mechanism that can give rise to an inflationary epoch.
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Figure 3.24: The evolution of the Hubble parameter at early times. The Universe is assumed to
consist of dust and a dynamical Λ that is given by Eq. (3.29). The Hubble parameter for a flat
universe containing dust and a cosmological constant is represented by the red dot-dashed curve.
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Figure 3.25: The evolution of ρm and ρΛ at early times. The Universe is assumed to consist of
dust and a dynamical Λ that is given by Eq. (3.29). Only the case of spatial flatness is considered.
The blue dotted curve depicts the evolution of ρm in the presence of a cosmological constant, whose
associated energy density is represented by the red dot-dashed curve.

In the ΛCDM cosmology, the Universe is modelled as a mixture of dust, radiation,
and a dark energy component that takes the form of a cosmological constant Λ. The
dust distribution consists of both baryonic and dark matter and its density varies as
a−3. Meanwhile, radiation density is proportional to a−4, meaning that radiation gets
diluted faster as the Universe expands. On the other hand, the density of dark energy
is not affected by cosmic dynamics and remains constant throughout the entire evo-
lution. Cosmological observations put the present-day values of the matter and dark
energy density parameters

(
Ω0

m and Ω0
Λ

)
at around 0.3 and 0.7 [20], respectively,

which implies that the current epoch is dominated by dark energy. In contrast, as
we have just seen, Ω0

r is negligibly small. However, radiation would have been very
significant at early times, and indeed it is thought that the matter-dominated epoch
was preceded by a period of time during which radiation was the dominant component
of the cosmic fluid. Nonetheless, our model is compared with a ΛCDM cosmology
consisting solely of dust and the cosmological constant. We are thus better able to
investigate the effects of a dynamical Λ, this being the only difference between the
two models. Strictly speaking, therefore, our results are compared with the ones pre-
dicted by a constant-Λ model rather than by ΛCDM – a distinction that is especially
pronounced at early times.

Fig. 3.23 shows that the maximum deceleration attained during the matter-
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dominated epoch is smaller for the constant-Λ model. We may attribute this to the
fact that when Λ is allowed to evolve according to Eq. (3.29), the vacuum transfers
energy to the matter component as it decays [refer to Eq. (3.22) and Fig. 3.25], caus-
ing the energy density of the latter to grow. Consequently, the deceleration resulting
from the attractive pressure of matter is larger than in the constant-Λ scenario, where
such a mechanism is absent.54

As pointed out in Ref. [199] and shown in Fig. 3.24, only a flat universe would initially
have a constant Hubble parameter. The effect of positive curvature would be to
decrease the initial Ĥ below that in the flat case, while for negative κ̂ the plot of
H/HI (= Ĥ) against t̂ should be truncated at H/HI = 1 to prevent the weak energy
condition from being violated. We note that these characteristics are consistent with
the properties of the primordial de Sitter solutions as outlined in Ref. [199].

It is now time to turn our attention to the evolution of the Universe at late times. For
this purpose, the time parameter is redefined as t̄ = H0t− 1, so that if one assumes
the relation t ∼ 1/H, the current time corresponds to t̄ = 0. The Hubble parameter
is automatically rescaled to H̄ = H/H0 and becomes equal to unity at present. Using
this notation, Eq. (3.30) can be rewritten as:

[
κ̄+ a′(t̄)2

]3(1 +wm)

1−
(
a′(t̄)

a
Ĥ0

)n − 2
− 3(1 +wm)Ω0

Λa
2 + 2aa′′(t̄) = 0,

(3.33)
while Eq. (3.32) takes the form:

2aa′′(t̄) + a′(t̄)2 + Ω0
ra
−2 − 3Ω0

Λa
2 = 0 , (3.34)

where κ̄ = κ/H2
0 , a′(t̄) = ȧ/H0 and a′′(t̄) = ä/H2

0 . The initial conditions are set
to a(0) = a′(t̄ = 0) = 1. The first is required by the definition of the normalised
scale factor, and the second follows from the fact that H̄(0) = 1. The parameters κ̄,
n and wm are assigned the same values as for the early evolution. Since κ̄ = Ĥ−2

0 κ̂,
however, |κ̄| is equal to 0.08 (or 0 if the Universe is flat).

The resulting curves of acceleration vs time are depicted in Fig. 3.26. As expected,
the open universe would be the first to exit the matter-dominated epoch, and the
evolution according to the constant-Λ cosmology (which is essentially equivalent to

54It could be argued that the dot-dashed curve in Fig. 3.23 is directed downwards for decreasing
t, so at face value a constant Λ appears to allow for a greater deceleration than its dynamical
counterpart. However, it is important to remember that this behaviour is due to the failure of the
constant-Λ model to account for the inflationary epoch.
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Figure 3.26: The variation of acceleration with time during the current period of cosmic accel-
eration and the latter part of the preceding matter-dominated epoch. The Universe is modelled as
a composition of dust and a dynamical Λ that evolves according to Eq. (3.29). At this stage, the
dynamics of the flat universe are indistinguishable from those predicted by flat ΛCDM.
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Figure 3.27: The variation of ρm with time during the transition from the matter-dominated epoch
to the current period of cosmic acceleration. The dashed black curve indicates how ρm would evolve
in a flat ΛCDM cosmology, while the straight horizontal line corresponds to the energy density
associated with the cosmological constant.
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flat ΛCDM at this stage) becomes indistinguishable from that of the flat, dynamical-
Λ scenario at late times. Additionally, the presence of curvature no longer affects
the evolution significantly after the transition to the current epoch of acceleration
(Fig. 3.27).

3.4 In Brief. . .

This chapter investigates whether the presence of spatial curvature could influence
the evolution of the Universe – and if so, in what way. We have seen that for a closed
universe, the transition to the epoch of decelerated expansion would be delayed with
respect to the flat case. So would the start of the current dark energy-dominated era;
additionally, inflationary acceleration and the subsequent deceleration would both be
larger. The opposite was noted for an open universe. The fact that these features
are common to the different scenarios we consider has an important implication: it
suggests that the effects of curvature are independent of the way we model matter
and dark energy.

This work shows that it is possible to reproduce the main characteristics of the ex-
pansion history using only a few simple fluids. In the first model, the matter/energy
content of the Universe is represented by a VdW fluid. It is found that the current
period of acceleration requires the presence of a dark energy component, and thus in
the remaining four models dark energy is introduced as Quintessence, a Chaplygin
gas or a dynamical cosmological ‘constant’; the desired late-time acceleration is in-
deed obtained. The VdW EoS is retained in the first four models but changed to the
customary pm = wmρm for the last one. Another unique feature of the last model is a
time-dependent vacuum energy (density) that functions as an inflaton at early times,
and mimics a cosmological constant during the present epoch [199].

In conclusion, a non-zero Ω0
k would have left definite signatures on the past dynamics

of the Universe. Although these might in reality be too small to be probed by current
cosmological experiments, the study presented here highlights the possibility that
spatial curvature could have played a role in the early universe, and not – as is often
asserted – just at late times. It turns out, in fact, that the evolution is only mildly
dependent on curvature at low redshifts.
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CHAPTER 4

Endowing Λ with a Dynamic Nature: Constraints
in a Spatially Curved Universe

4.1 Introduction

Despite the many dark energy models that have been proposed, the available evidence
is not sufficient for ΛCDM to be discarded in favour of one of the alternatives [204,205].
And for good reason: theoretically, its framework is appealingly simple, and when it
comes to observations, ΛCDM is compatible with local gravity constraints [206, 207]
and has successfully predicted the baryon acoustic oscillation (BAO) imprint on galaxy
clustering [208]. It also provides a good description of the cosmology at redshifts
probed by cosmic microwave background (CMB) data [19, 20, 22]. This list is by no
means complete, but it serves to illustrate why ΛCDM is considered the standard
model of cosmology. On the other hand, it has a number of shortcomings that cannot
be overlooked, prominent among which are the cosmic coincidence and smallness
problems [209].

A sound alternative model of dark energy, therefore, is expected to emulate the suc-
cesses of ΛCDM while overcoming its drawbacks (or some of them, at least). Conse-
quently, such models should mimic ΛCDM at the high redshifts where it is well-tested
by CMB data, and give a comparable expansion history at low redshifts, albeit without
invoking a true cosmological constant [210]. Furthermore, on Solar-System scales their
behaviour must be in accordance with experimentally-supported General Relativistic
predictions [140]. One way of achieving this is by means of screening mechanisms,
which depend on the density contrast between the local environment and the cosmic
fluid to suppress small-scale deviations from the standard model (see, for instance,
Ref. [211] and works cited therein).

In view of the above, and keeping in mind that the successes of ΛCDM have not been

99
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eclipsed, the simplest – and perhaps most natural – extension of the standard model
is a scenario characterised by a mildly-evolving cosmological ‘constant’. We shall
therefore consider three dynamical-Λ models: the Running Vacuum Model (RVM),
in which Λ varies with the Hubble parameter H according to the relation Λ(H) =

A + BH2 (A and B being constants), a generalisation of the RVM (GRVM) with
Λ(H) = A+BH2 +C(dH/dt), where t is cosmic time and C another constant, and
a second sub-case of the GRVM: Λ(H) = A+C(dH/dt). We shall refer to the last
as the ‘Generalised Running Vacuum Sub-case’, or GRVS. The GRVM and RVM were
introduced in Refs. [212] and [213], respectively, and have been analysed in works such
as Refs. [212, 214–217] and [218], while the GRVS was investigated in Ref. [219] as a
model with a variable dark energy equation-of-state parameter.

These models are especially appealing due to the fact that they are motivated by
Quantum Field Theory (QFT) considerations [220–223]. Additionally, the RVM can
properly account for cosmic dynamics at both the linear perturbation and background
levels [218] – and in certain cases has been shown to outperform ΛCDM [215,224–226].
Likewise, the GRVM is compatible with observations [212, 214, 219], and it, too, has
been reported to receive greater support from cosmological data than ΛCDM [226].
A prominent advantage of both the RVM and GRVM is their ability to ease the σ8

tension that emerges in the standard model [215,224,226].

Although they feature in numerous studies, the GRVM, RVM and GRVS [with Λ(H)

taking the exact forms specified above] have not been analysed in the context of a
spatially curved space-time (but extended versions have, as discussed in section 4.4).
Indeed, a great number of works in the literature are based on the premise of spatial
flatness. This practice is rather concerning, because although it is true that observa-
tional data appears to favour a flat geometry, the evidence comes mainly from studies
which assume a flat ΛCDM cosmology [19, 20,106,107]. Our primary aim, therefore,
will be to investigate whether the GRVM, RVM and GRVS can accommodate spatial
curvature while remaining compatible with the data available.

4.2 Dynamical-Λ Models

The literature contains many examples of models in which dynamical dark energy
takes the form of a varying Λ. In most cases, Λ is allowed to have a large value at early
times, and this then decays to the much smaller one observed at present. Therefore,
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such models go some way in addressing the smallness problem [201, 227, 228], which
refers to the fact that in ΛCDM, the observed value of ρΛ (where ρΛ is the vacuum
energy density) happens to be around a factor of 10120 smaller than the theoretical
estimate [209].

Endowing Λ with a dynamic nature may be achieved in two ways. One can either
model Λ as an explicit function of time, or else take an implicit approach and express
it in terms of appropriate cosmic parameters. In the former case, the most popular
choice is undoubtedly the inverse power relation given by55 Λ(t) ∝ t−n. The inverse
power-law model features in works such as Refs. [229–233] – the list is by no means
exhaustive – and has additionally been investigated in differing scenarios, including a
Bianchi Type-I cosmology with variable gravitational coupling [234] and the Brans-
Dicke theory [235,236]. Albeit less popular, exponential decay has also been proposed
[228,237].

In the category of implicit time dependence, one finds studies in which Λ is a function
of the scale factor a, with expressions such as Λ(a) = Aan + Bam [238–241] and
Λ(a) = A + Ba−n,A 6= 0 [242]. Models having Λ(a) ∝ a−n are very popular
– the reader is referred to Refs. [243–247] – and under certain conditions may be
seen as equivalent to standard cosmology with matter, radiation and an additional
component: an exotic fluid characterised by an equation of state parameter w =

n/3− 1 [248]. The case n = 2 is of particular interest. It may not only have its
foundations in quantum cosmology [249], but has also been shown – in the framework
of a closed geometry – to result from the assumption that the matter/radiation density
of the Universe is equal to the critical density at all times, not just at present [250].
This assumption would ensure that the current epoch is not special in any way.

Another notable study is Ref. [251]. Here, the authors present a model in which the
vacuum couples with radiation (during the radiation-dominated epoch), and has an
associated energy density that scales as a−4(1−x), where x depends on the balance
between the energy densities of radiation and dark energy. Meanwhile, the innovative
approach detailed in Ref. [252] is based on the ansatz that the energy density of
cold dark matter (CDM) varies as a−3+y, rather than the customary a−3. The small
positive constant y results from the interaction with dark energy and quantifies the
decrease in the rate at which CDM gets diluted. It is interesting to note that provided
Ω0

m ≥ 0.2 and n ≥ 1.6, spatially flat cosmologies having Λ(a) ∝ a−n show consistency
with lensing data [248].

55The parameters n, m, A and B shall henceforth represent constants.
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A third popular class of expressions for Λ is based on the Hubble parameter H and
functions thereof. Prominent among these is again the power law: Λ(H) ∝ Hn

[241, 243, 253–256]. Other interesting possibilities include combinations of H or Hn

with either am [240, 244] or dH/dt, or even the total energy density [253]. A case
in point is the entropic acceleration model [257]. This model is characterised by
an entropic force which acts at the apparent horizon of the Universe,56 and which
behaves essentially like a dark energy component whose density varies as A(dH/dt)+
BH2 (B 6= 0) in flat space. According to the authors of Ref. [258], however, the
entropic model is problematic in that the sign of its deceleration parameter never
changes. Additionally, the possibility that it describes the late-time behaviour of a
more complete model is ruled out by its failure to reconcile recent cosmic growth
data with an accelerated expansion [258]. An alternative entropic model in which
Λ(H) = AH +BH2 also has this shortcoming, while putting Λ(H) ∝ H results in
a scenario that is disqualified by CMB data [258]. It has in fact been proposed that
when Λ(H) is a simple function of terms from the set {H, dH/dt,H2}, the addition
of a constant to the said function is crucial to get a valid model [258].

4.3 Analytical Solutions with a Dynamical Λ

4.3.1 The equations in an FLRW cosmology

Let us go back to Eq. (3.24). It is reproduced below for ease of reference:

8πGa2(pm + ρm)− 2(κ+ ȧ2) + 2aä = 0 . (4.1)

In this chapter, a and κ take their usual definitions (a = R/R0,κ = k/R2
0), and an

overdot denotes differentiation with respect to t.

The energy density (ρm) of the matter distribution may be expressed in terms of a
and ȧ via the first Friedmann equation [Chapter 1, Eq. (1.38)]. Using the customary
barotropic equation of state, pm = wmρm, to write the pressure pm as a function of
ρm (and hence of a and ȧ), we get that

2äa− (1 +wm)a
2Λ(t) + (1 + 3wm)(κ+ ȧ2) = 0 . (4.2)

56The apparent horizon is determined by the quantity
(
H2 + k/a2)−1/2, where k is the spatial

curvature parameter and a the scale factor, both in normalised form [257]. In the absence of spatial
curvature, the apparent and Hubble horizons are equivalent.
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Any solutions to the above equation should meet the following conditions:

• ä > 0, implying an accelerated cosmic expansion (since the focus is on late
times);

• a > 0 and ȧ > 0 – the scale factor is positive and increases with time;

• H > 0 and decreases with time;

• ρm ≥ 0 at all times, in line with the stipulations of the weak energy condition
(the requirement that ρm + pm ≥ 0 is then satisfied automatically);

• Λ(t) > 0 and decreases with time.57 The latter is a necessary prerequisite if the
smallness problem of the cosmological constant is to be alleviated.

The analytical models constructed on the basis of these criteria are presented below.
The work was carried out using Wolfram Mathematica® 12.0.

4.3.2 The models

Model 1

Let us start from a candidate function for Λ(t) that depends on the Hubble parameter
and has three constants (D, E and m):

Λ(H) = D+EHm = D+E
(
ȧ

a

)m
. (4.3)

Upon inserting it into Eq. (4.2), we get that:

2äa− (1 +wm)a
2(D+Eȧma−m) + (1 + 3wm)(κ+ ȧ2) = 0 , (4.4)

but this cannot be solved analytically. However, there is always the possibility that a
less generalised version can. Indeed, it is found that setting

m = 2 and E =
2 + 3wm
1 +wm

(4.5)

57The notation Λ(t) is meant to stress the dynamical nature of Λ. It should not be taken to
indicate an explicit dependence on t.
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reduces Eq. (4.4) to

2äa−D(1 +wm)a
2 − ȧ2 + κ(1 + 3wm) = 0 , (4.6)

which admits two solutions. We shall pick the one whose dependence on κ is not
exponentially suppressed:

a(t) =
e−
√
ε(t+c2)

4H2
0 ε

[
H4

0
(
−1 + c1e

√
ε(t+c2)

)2
− 4De2

√
ε(t+c2)

(
1 + 4wm + 3w2

m
)
κ
]

.

(4.7)
Here, the parameter ε stands for the quantity D(1 + wm) and each ci (i = {1, 2}) is
a constant of integration.

An easy way in which to construct graphical representations of the evolution is by
taking the approach outlined in subsection 2.3.2. This is based on the introduction of
a dimensionless time coordinate t̄ that is defined as a scaled version of t : t̄ = H0t.
We again set t̄0 to 0.95, and fix the value of D by requiring that Λ(H) is currently
equal to the cosmological constant (D = 0.1H2

0 ). Additionally, given that this is a
late-time solution, the matter component is best modelled as dust, with wm = 0. The

0.5 1.0 1.5 2.0

-0.5

0

0.5

1.0

1.5

2.0

2.5

H0t

a aΛ ä H0-2 äΛ H0-2

Figure 4.1: The variation of the scale factor and acceleration with time. The Universe is assumed
to have flat spatial sections, a dust-like matter distribution, and a dynamical Λ given by D+EH2,
where D and E are constants. The evolution in a flat ΛCDM cosmology with Ω0

m = 0.3 and
Ω0

Λ = 0.7 [20] is shown for comparison (the associated quantities are indicated by a subscript Λ).
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constants of integration are treated as functions of spatial curvature. Once κ has been
assigned a value, c1 and c2 may be determined by applying the boundary conditions
derived in Chapter 2: a(t̄0) = a′(t̄0) = 1.

The resulting dynamics are compared to the standard model predictions in Figs. 4.1,
4.2 and 4.3. It may be noted that the acceleration of the Universe according to ΛCDM
is significantly steeper. Furthermore, our model is only valid at late times and cannot
account for the matter-dominated deceleration that preceded the current epoch. This
feature also emerges in Fig. 4.2. Here, we observe that while the matter density in a
ΛCDM cosmology increases appreciably as we go back in time, finally exceeding the
energy density of the vacuum, the same cannot be said for the dynamical-Λ model.
Nor should such behaviour be expected: these analytical solutions were constructed as
potential models of the Universe for the period of dark energy-dominated expansion.

H)

Figure 4.2: The variation of Λ(H) and ρm with time. The evolution of the matter density in a
flat ΛCDM cosmology (ρΛ

m) is shown for comparison, while the horizontal dashed line represents the
cosmological constant.

The decaying nature of Λ(H) shows up clearly in Fig. 4.2. It gives Λ(H) the ability
to interpolate between a large value at early times and a small one at present, meaning
that the model may naturally evade the smallness problem associated with the cos-
mological constant. Meanwhile, Fig. 4.3 deals with the effect of spatial curvature on
the acceleration of the Universe. We note that negative curvature appears to enhance
the acceleration at late times.
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Figure 4.3: The variation of acceleration with time in a universe filled with dust-like matter and
dark energy. The latter takes the form of a dynamical Λ given by D+EH2. The spatially non-flat
models have |κ| = 0.0067H2

0 , and the parameters c1 and c2 are curvature dependent: c1 = 0.9,
c2 = 1.454/H0 (κ = 0), c1 = 0.893, c2 = 1.5/H0 (κ > 0), c1 = 0.905, c2 = 1.418/H0 (κ < 0).

Model 2

This time, we model Λ(t) as a function of a and H having four constants (I, J , n
and m):

Λ(a,H) = IHn + Jam = I
(
ȧ

a

)n
+ Jam . (4.8)

For our choice of Λ(t), Eq. (4.2) reads:

2äa− (1 +wm)a
2−n

(
Jam+n + Iȧn

)
+ (1 + 3wm)

(
κ+ ȧ2

)
= 0 , (4.9)

which needs to be simplified if we hope to find an analytical solution. The most
intuitive option is to put n equal to 2 and m to −2, whence Eq. (4.9) becomes

2äa− (1 +wm)
(
J + Iȧ2

)
+ (1 + 3wm)

(
κ+ ȧ2

)
= 0 . (4.10)

Setting I to (3wm − 1)/(1 +wm) further reduces this to

2äa+ 2ȧ2 + κ(1 + 3wm)− J(1 +wm) = 0 . (4.11)
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Figure 4.4: The variation of the scale factor and acceleration with time. The Universe is assumed
to have flat spatial sections, a matter distribution with wm = 1, and a dynamical Λ given by
IH2 + Ja−2, where I is a function of wm and J represents an arbitrary constant, here set to 1.1H2

0 .
The evolution in a flat ΛCDM cosmology having Ω0

m = 0.3 and Ω0
Λ = 0.7 [20] is shown for comparison

(the associated quantities are indicated by a subscript Λ).

It is now fairly straightforward to solve for a. We find that the scale factor varies with
t according to the relation58

a(t) =

√√√√c2 + γ2t2 + γ2c1(2t+ c1)

γ
. (4.12)

Here, c1 and c2 are constants of integration, and the dependence on κ is via the
parameter γ:

γ =
1
2 [J(1 +wm)− κ(1 + 3wm)] .

The main features of the resulting cosmic dynamics are shown in Figs. 4.4, 4.5 and 4.6.
It can be seen (Fig. 4.4) that the acceleration asymptotes to zero, in stark contrast to
what happens in ΛCDM. On the other hand, Fig. 4.5 demonstrates that the evolution
of the matter densities is very similar at late times. This despite the fact that the
matter distribution is modelled as a stiff fluid (with wm = 1) in the presence of a
dynamical Λ (putting wm = 0 makes it difficult to meet the requirements listed in
subsection 4.3.1), whereas for ΛCDM wm is fixed at zero.

58Setting Λ(t) = Ua−2 +Wa−4 (where U and W are constants) yields a similar expression for a.
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a,H)

Figure 4.5: The variation of Λ(a,H) and ρm with time. The evolution of the matter density in
a flat ΛCDM cosmology (ρΛ

m) is shown for comparison, while the horizontal dashed line represents
the cosmological constant.

Figure 4.6: The variation of acceleration with time in a universe filled with a stiff fluid and
dark energy. The latter takes the form of a dynamical Λ given by IH2 + Ja−2. The spatially
non-flat models have |κ| = 0.0106H2

0 [20], and the parameters c1 and c2 are curvature-dependent:
c1 = −0.041/H0, c2 = 0.1H2

0 (κ = 0), c1 = −0.023/H0, c2 = 0.079H2
0 (κ > 0), c1 = −0.058/H0,

c2 = 0.121H2
0 (κ < 0).
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As done in the case of model 1, the integration constants are treated as functions
of spatial curvature. The reason is that the conditions a(t̄0) = a′(t̄0) = 1 cannot
otherwise be satisfied for κ = 0, κ > 0 and κ < 0 simultaneously. We again note
(Fig. 4.6) that the cosmic acceleration is largest for the open universe and smallest
for the closed one.

4.4 The Generalised Running Vacuum Model

The inspiration for the GRVM comes from the interpretation of Λ as a running pa-
rameter in the curved space-time version of QFT. The associated energy density,
ρΛ, is thus expected to evolve according to a renormalisation group equation of the
form [259]

dρΛ

d ln β =
1

(4π)2

∞∑
n=1

Snβ
2n , (4.13)

where the dynamical variable β represents some characteristic infrared-cutoff scale.
In a cosmological context, the role of β may be played by the Hubble parameter H,
since the latter is of the order of the energy scale associated with the Friedmann-
Lemaître-Robertson-Walker (FLRW) cosmology [214]. We furthermore note that the
coefficients Sn result from loop contributions of fields having different masses and
spins [259]. Meanwhile, the absence of odd powers of β reflects the general covariance
of the effective action [214,260].

Given that β ∼ H, the small present-day value of H (∼ 10−27 m−1) implies that terms
in Eq. (4.13) with n ≥ 2 would be suppressed in the current epoch. An expression
for ρΛ

(
henceforth ρΛ(H)

)
may hence be obtained by integrating the remaining term

on the right-hand side. One gets the relation (4π)2ρΛ(H) = S0 + S1β2/2, with S0

denoting the constant of integration. Consequently, if β2 is identified with a linear
combination of 59 H2 and dH/dt, the expression for ρΛ(H) becomes (4π)2ρΛ(H) =

S0 + S̃2H2 + S̃3(dH/dt), where S̃2 and S̃3 are constants [214].

In conclusion, we shall be investigating a model in which the cosmological constant is
replaced with

Λ(H) = A+BH2 +CḢ . (4.14)

The leading constant and the coefficients of H2 and Ḣ have been written as A, B
and C for the sake of simplicity, B and C being dimensionless and A having units of

59These two quantities represent independent degrees of freedom [212].
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length−2. The model specified by Eq. (4.14) is none other than the GRVM, introduced
in section 4.1 – the RVM and GRVS follow as special cases by setting C = 0 and
B = 0, respectively. One notes that Λ(H) is not an explicit function of time (the
dependence on t is established implicitly, via H), and it is this property that the name
‘running vacuum model’ is meant to reflect [214].

The dynamic nature of Λ(H) means that the Bianchi identity may be satisfied in one
of two ways [226,261,262]. Let us see how such a possibility comes about. If Λ(H) is
not incorporated into Tµν , Einstein’s field equations read

Gµν = 8πGTµν −Λ(H)gµν , (4.15)

so that the twice-contracted Bianchi identity, ∇µGµν = 0 [8], implies that

∇µ(8πGTµν) = gµν∇µΛ(H) . (4.16)

The above makes use of the fact that ∇µ is constructed from a metric-compatible
connection (i.e. ∇ρgµν = 0 at all points) [8]. In the presence of a time-varying G,
Tµν may be conserved separately, in which case Eq. (4.16) becomes 8πTµν∇µG(t) =
gµν∇µΛ(H). If G is constant, however, the Bianchi identity requires that 8πG∇µTµν
= gµν∇µΛ(H). In other words, we have the option of either a ‘running’ gravitational
coupling G(t) or of energy transfer between the vacuum and any other component/s
of the cosmic fluid.60 We shall take the constant-G approach. Assuming that the
densities of baryonic matter and radiation evolve as in the standard model, it may be
deduced that dark energy interacts with cold dark matter (whose energy density is
denoted by ρcdm) according to the equation

ρ̇cdm + 3Hρcdm = −ρ̇Λ(H) . (4.17)

The relation ρΛ(H) = Λ(H)/(8πG) and Eq. (4.14) can be combined to give

ρΛ(H) =
1

8πG
(
A+BH2 +CḢ

)
, (4.18)

so that Eq. (4.17) becomes

ρ̇cdm = −3Hρcdm −
1

8πG
(
2BHḢ +CḦ

)
. (4.19)

60It is also possible to combine the two options.
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To obtain an expression for Ḣ, one uses (4.14) in conjunction with the second Fried-
mann equation [refer to Chapter 1, Eq. (1.37)], which reads:

Ḣ +H2 = −4πG
3 (ρ+ 3p) + Λ(H)

3 . (4.20)

Here, ρ denotes the sum of the energy densities of cold dark matter (ρcdm), baryons
(ρb) and radiation61 (ρr), while p represents the total of the corresponding pressures.
Dark energy is modelled with an equation of state parameter wΛ(H) fixed at −1, as
in ΛCDM. If wΛ(H) is instead allowed to vary, it would be possible for dark energy
to be conserved independently of the other cosmic components. Such a scenario has
been investigated in Ref. [219].

As stated previously, it is assumed that neither radiation nor baryons interact with
dark energy. Consequently, cosmic expansion dilutes the respective energy densities
in accordance with the familiar ΛCDM relations:

ρb = ρ0
ba
−3 , ρr = ρ0

ra
−4 . (4.21)

A 0-superscript indicates present-day quantities.

Let us now return to Eq. (4.20). It provides us with an expression for Ḣ, and we
proceed by differentiating it with respect to t to find Ḧ. We are then able to eliminate
the first and second time derivatives of H from Eq. (4.19), getting that

4πG
{
(C − 2)(C − 3)ρ′cdm(a)a+ 2 [9−B +C(C − 5)] ρcdm − [2B + (C − 5)C]ρ0

ba
−3

− 4
3 [3B +C(2C − 9)]ρ0

ra
−4
}
+ 2(B −C)

[
A+ (B − 3)H2

]
= 0 , (4.22)

where a prime denotes differentiation with respect to the argument and d/dt has been
replaced with aH(d/da). The next step is to solve the differential equation (4.22),
but before attempting to do so, the Hubble parameter must be expressed in terms of
a. To this end, one makes use of the first Friedmann equation [Chapter 1, Eq. (1.38)]:

H2 =
8πG

3
(
ρcdm + ρb + ρr + ρΛ(H)

)
− κa−2 . (4.23)

The energy densities in Eq. (4.23) may be replaced with the corresponding relations

61Radiation refers to photons and massless neutrinos.
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given by Eqs. (4.18) and (4.21). This allows us to determine H as a function of a:

H =

[
24πGa(C − 2)

(
ρcdma

3 + ρ0
b
)
+ 16πG(2C − 3)ρ0

r − 6(C − 3)κa2 − 6Aa4
]1/2√

6(B − 3) a2
.

(4.24)
Inserting the above into Eq. (4.22) yields the final version of Eq. (4.17):

8πG
[
(C − 2)ρ′cdm(a)a+ 2(B − 3)ρcdm + (2B − 3C)ρ0

ba
−3 +

8
3(B − 2C)ρ0

ra
−4
]
−

4(B −C)κa−2 = 0 , (4.25)

which can readily be solved for ρcdm. It is found that

ρcdm =

[
a

2(3−B)
C−2 Ω0

cdm −
(
a−3 − a

2(3−B)
C−2

)
Ω0

b −
4(B − 2C)

3(B − 2C + 1)

(
a−4 − a

2(3−B)
C−2

)
Ω0

r

− 2(B −C)
3(B −C − 1)

(
a−2 − a

2(3−B)
C−2

)
Ω0
k

]
3H2

0
8πG . (4.26)

Now we require a similar expression for ρΛ(H). Equipped with Eq. (4.26), one
first eliminates ρcdm from Eq. (4.24). Next, Eq. (4.26) is used in conjunction with
Eq. (4.21), the updated version of Eq. (4.24), and Eq. (4.14); they are inserted into
Eq. (4.20) and Ḣ is solved for. In all cases, the energy densities are written in terms of
the current values of the density parameters. Finally, one replaces Ḣ in Eq. (4.18) with
the newly-found solution, and substitutes Eq. (4.24) for H. Eq. (4.18) consequently
takes the form

ρΛ(H) =
3H2

0
8πG

{
(2B − 3C)
2(B − 3)

(
1− a

2(3−B)
C−2

)
Ω0

m +
B − 2C

3(B − 3)(B − 2C + 1)

[
(B − 3)a−4

+2(3C − 2B)a
2(3−B)
C−2 + 3(B − 2C + 1)

]
Ω0

r −
(B −C)

3(B − 3)(B −C − 1)

[
(B − 3)a−2

+(2B − 3C)a
2(3−B)
C−2 − 3(B −C − 1)

]
Ω0
k + Ω0

Λ(H)

}
, (4.27)

with Ω0
m = Ω0

cdm + Ω0
b. The requirement that ρΛ(H) is currently equal to

3H2
0 Ω0

Λ(H)/(8πG) has been used to fix the value of A at H2
0 (3Ω0

Λ(H) −B).

A few comments about the role of spatial curvature are in order before we proceed.
In Ref. [201], the RVM is represented as the late-time limit of a model that can
describe the complete cosmic history. Its generalised version takes spatial curvature
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into account [199], and is based on the following expression for Λ:

Λ(H, a) = Λ∞ + 3ν
(
H2 −H2

F +
κ

a2

)
+ 3ζ

(
H

HI

)n (
H2 +

κ

a2

)
, (4.28)

where the integer n satisfies n ≥ 1 [201] and Λ∞ is the limit of Λ(H, a) as a → ∞.
HI and HF stand for the Hubble parameter in two different epochs. The former
characterises inflation, while the latter denotes the ‘final’ value of H (or the limit of
H as a→∞) [199]. Lastly, ν and ζ correspond to dimensionless constants [199]. The
quantity 3ν is the counterpart of the model parameter B introduced in Eq. (4.14).

The reason why we shall limit ourselves to the RVM, instead of analysing the extended
version just described, is twofold. Firstly, H is expected to be already much smaller
than HI at the start of the adiabatic radiation phase [199]. Since we are not concerned
with inflation, but rather with the late-time behaviour of dark energy models, the term
in (H/HI)

n may be dropped. Secondly, the explicit inclusion of κ in Eq. (4.28) is
motivated by phenomenological considerations [199]. It would therefore be interesting
to study how the RVM – in its original simple form – behaves if Ω0

k is allowed to vary.

4.5 Likelihoods and Observational Data

If a dark energy model is to be considered a viable alternative to ΛCDM, one must
firstly determine whether it is compatible with observational data. To this end, we
shall employ Bayesian statistics, and perform a Markov Chain Monte Carlo (MCMC)
analysis using the Cosmic Linear Anisotropy Solving System (CLASS) v.2.6.3 [263]
in conjunction with Monte Python v.2.2.2 [264].

This section is a brief introduction to the likelihoods with which cosmological and
model-specific parameters shall be constrained.

4.5.1 The JLA likelihood for SNeIa

Type-Ia supernovae (SNeIa) make it possible to probe the expansion history of the
Universe by looking at how the luminosity distance to an object varies with redshift
z. Whenever this relation departs from a pure Hubble law [2], the difference (to
lowest order in z) depends on just the deceleration parameter, and can thus yield
important information about the rate of cosmic expansion. SNeIa are ideal in this
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regard because they act as standard candles – in the sense that their homogeneity as a
group means their intrinsic luminosity (or absolute magnitude) can be calibrated [7],
and hence astronomers may readily find how distant they are by measuring their
observed luminosity (called the apparent magnitude) [10].

The Joint Light-Curve Analysis (JLA) data set is based on a sample of 740 SNeIa [265].
The observable relevant to us is the distance modulus µobs, which has a theoretical
counterpart given by:

µth = 5 log10

(
dL
Mpc

)
+ 25 , (4.29)

where the luminosity distance dL should be quoted in Mpc, and is in turn determined
from the equation

dL =
1 + z

H0
√
|Ω0

k|
F̄
(√
|Ω0

k|
∫ z

0

H0dz̄
H(z̄)

)
. (4.30)

The above was derived in Chapter 1 [refer to Eq. (1.78)].

We are now in a position to construct the associated χ2. This may be expressed as

χ2
JLA = ∆µTC−1

JLA∆µ , (4.31)

where ∆µ is a vector whose ith entry is the quantity (µiobs − µith) – the difference
between the observed and theoretical distance moduli of the ith supernova. ∆µT

represents its transpose [266].

The inverted covariance matrix for the observational values of µ is denoted in Eq. (4.31)
by C−1

JLA. The reader is directed to Ref. [265] for more details about its construction.

4.5.2 The cosmic chronometer (clocks) likelihood

The Hubble parameter is defined in terms of the scale factor as the ratio ȧ/a, and
the relation a = 1/(1 + z) allows us to express it as a function of the redshift z:

H(z) = − 1
1 + z

dz
dt . (4.32)

The differential age (or cosmic chronometer/clocks) method entails measuring
dz/dt to directly arrive at H(z). This approach, first put forward in Ref. [274], effec-
tively involves determining the age difference between two cosmic ‘chronometers’ [274]
located in a given redshift interval. The best chronometers are massive early-type
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Table 4.1: Cosmic chronometer data. Each value of H(z) in the third column is measured at an
effective redshift z given in the second column, and has a corresponding error σ (fourth column).

Ref. z H(z) σ Ref. z H(z) σ(
km s−1 Mpc−1

) (
km s−1 Mpc−1

)
[267] 0.0700 69.0 19.6 [268] 0.4783 80.9 9.0
[267] 0.1200 68.6 26.2 [269] 0.4800 97.0 62.0
[270] 0.1700 83.0 8.0 [271] 0.5929 104.0 13.0
[271] 0.1791 75.0 4.0 [271] 0.6797 92.0 8.0
[271] 0.1993 75.0 5.0 [271] 0.7812 105.0 12.0
[267] 0.2000 72.9 29.6 [271] 0.8754 125.0 17.0
[270] 0.2700 77.0 14.0 [269] 0.8800 90.0 40.0
[267] 0.2800 88.8 36.6 [270] 0.9000 117.0 23.0
[271] 0.3519 83.0 14.0 [271] 1.0370 154.0 20.0
[268] 0.3802 83.0 13.6 [270] 1.3000 168.0 17.0
[270] 0.4000 95.0 17.0 [272] 1.3630 160.0 33.6
[268] 0.4004 77.0 10.2 [270] 1.4300 177.0 18.0
[268] 0.4247 87.1 11.2 [270] 1.5300 140.0 14.0
[268] 0.4497 92.8 12.9 [270] 1.7500 202.0 40.0
[273] 0.4700 89.0 49.6 [272] 1.9650 186.5 50.4

galaxies which acquired more than 90 percent of their stellar mass very rapidly at
high redshifts, and have been evolving passively since then, without major episodes
of star formation [271] that would otherwise dominate the emission spectrum [274].
The age of such a galaxy can consequently be inferred from the differential dating of
its stellar population [271].

Table 4.1 lists the cosmic chronometer data employed in this chapter.62 Where possi-
ble, constraints on H(z) obtained using the Bruzual and Charlot 2003 (BC03) stellar
population synthesis (SPS) model [275] were given preference. It should be pointed
out, however, that the values of the Hubble parameter at different redshifts are ex-
pected to be largely unaffected by the choice of SPS [269,271].

The χ2 for the cosmic chronometer likelihood reads:

χ2
H(z) =

∑
i

Hobs
i −Hth (zi )

σ
H(z),i

2

. (4.33)

62In the case of the Ratsimbazafy et al. data point [273], σ was calculated by summing the sys-
tematic and statistical errors in quadrature.
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Here, each Hobs
i is the observed value from Table 4.1 corresponding to z = zi, σi

represents the associated error, and Hth(zi) stands for the theoretical prediction at
the same redshift.

4.5.3 The CMB likelihood

Anisotropies present in the temperature and polarization power spectra of the CMB
can yield a wealth of information when used as cosmological probes. We shall work
with two main distance priors: the shift parameter R and the acoustic scale lA.
These are related to the amplitude and distribution of the temperature anisotropy
peaks. The shift parameter R characterises the temperature power spectrum in the
line-of-sight direction and is defined as follows [276]:

R(z∗) =
√

Ω0
mH0(1 + z∗)dA(z∗) , (4.34)

where z∗ denotes the redshift of the photon decoupling epoch. The angular diameter
distance dA may be expressed via the distance-duality relation as dL/(1 + z)2, dL
being the luminosity distance from Eq. (4.30).

The acoustic scale lA, on the other hand, relates to attributes of the CMB temperature
power spectrum in the transverse direction [277]. It, too, depends on dA [276]:

lA(z∗) = (1 + z∗)
πdA(z∗)

rs(z∗)
. (4.35)

Here, rs(z∗) is the comoving sound horizon evaluated at z∗. In our case, it shall be
determined numerically by CLASS, although it is worth noting that in general, the
function rs(z) takes the form

rs(z) =
∫ ∞
z

cs(z̄)

H(z̄)
dz̄ , (4.36)

where cs(z) is the sound speed in the photon-baryon fluid and equates to
1/
√

3[1 + η(z)]. The function η(z) is given by 0.75ρb/ργ in the standard scenario
[276–278] (ργ stands for the energy density of photons), but should be modified when
considering cosmological models in which ρb and ργ scale differently with z. More
details may be found in Ref. [214].

It is interesting to note that while lA determines the acoustic peak structure, changes
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Table 4.2: Mean values and corresponding errors for the CMB distance priors [277].

R lA Ω0
bh

2

1.7448± 0.0054 301.460± 0.094 0.02240± 0.00017

in R are mainly responsible for modifying the amplitude of the peaks [116,277].

The data used to constrain our model parameters is taken from Ref. [277] and shown
in Table 4.2. It was obtained in the context of a flat ΛCDM cosmology with AL as
a free parameter (AL being the amplitude of the lensing power spectrum). The fact
that a particular cosmological model had to be assumed is, however, only a minor
disadvantage, since R(z∗) and lA(z∗) are effective observables, while the quantity
Ω0

bh
2 – which serves as a third distance prior63 –is virtually unaffected by the choice

of cosmology [277].

The χ2 associated with this likelihood reads:

χ2
CMB = ∆xTC−1

CMB∆x . (4.37)

In the above, ∆x is the vector {Robs(z∗) −Rth(z∗), lobsA (z∗) − lthA (z∗), (Ω0
bh

2)obs −
(Ω0

bh
2)th}. The notation ‘obs’ is used to indicate the observed values listed in Ta-

ble 4.2, while ‘th’ denotes theoretical quantities. The covariance matrix CCMB may
be obtained in normalised form from Ref. [277]. It is reproduced below for ease of
reference:

C
norm
CMB =


R lA Ω0

bh
2

R 1.00 0.53 −0.73
lA 0.53 1.00 −0.42

Ω0
bh

2 −0.73 −0.42 1.00

 . (4.38)

4.5.4 The BAO likelihood

The physics of BAOs is centred around the imprint left by pre-recombination acoustic
waves on large-scale structure [283]. Simply put, galaxies clustered with a preferred
comoving separation equal to rs(zd), the sound horizon at the drag epoch.64 A promi-
nent signature of BAOs is the presence of a localised peak in the galaxy correlation
function. Another characteristic feature consists of a damped series of oscillations in

63The dimensionless constant h is equivalent to H0/(100 km s−1 Mpc−1).
64rs(z) is given by Eq. (4.36), and zd denotes the redshift of the drag epoch.
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Table 4.3: Uncorrelated BAO data measured at different effective redshifts, zeff. Column 4 gives
the error in each quantity.

Ref. zeff Quantity σ Type
[279] 0.106 0.323 0.014 1
[280] 0.150 4.490 0.170 2
[281] 1.520 26.005 0.995 2
[282] 2.330 1.031 0.026 3
1: rs(zd)/dv ; 2: dv/rs(zd) ;
3: α0.7

‖ α0.3
⊥ ;

rs, fid(zd) = 147.78 Mpc [283].

Table 4.4: BAO data. In the case of the first six data points, the associated errors – displayed in
column 4 – were derived from the corresponding covariance matrix. The value of σ for the last two
entries was estimated by constructing the covariance matrix for the quantities numbered 4 and 5.

Ref. zeff Quantity σ Type
[283] 0.380 1512.390 24.994 4
[283] 0.380 81.209 2.368 5
[283] 0.510 1975.220 30.096 4
[283] 0.510 90.903 2.329 5
[283] 0.610 2306.680 37.083 4
[283] 0.610 98.965 2.502 5
[284] 2.400 5277.480 246.091 4
[284] 2.400 225.067 8.750 5
4: DA × rs, fid(zd)/rs(zd)(Mpc) ;
5: H × rs(zd)/rs, fid(zd)(km s−1 Mpc−1) ;
rs, fid(zd) = 147.78 Mpc [283].

the CMB power spectrum (see Ref. [283] and works cited therein), and so rs(zd) may
be inferred from CMB data. Once the comoving separation between clusters is known,
it may be combined with measurements of the angular and redshift separations, and
utilised to calculate both the local expansion rate H(z) and the angular diameter
distance to the clusters [285]. However, it is common practice to adopt a distance
measure that depends on H and dA simultaneously – and this is where the volume
distance (or dilation scale) dv comes in [208]:
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dv =
(
D2

A
z

H

)1/3
. (4.39)

In the above, DA stands for the comoving angular diameter distance and is equivalent
to (1 + z)dA.

The data employed in our analysis is summarised in Tables 4.3 and 4.4. We shall
be using rs, fid(zd) to represent the sound horizon as evaluated at the drag epoch in
the fiducial cosmology (quantities pertaining to this cosmology shall henceforth be
indicated by a sub/superscript ‘fid’). As for the dimensionless parameters α⊥ and
α‖, these describe how the BAO peak is displaced with respect to its position in the
fiducial model, and correspond to shifts perpendicular and parallel to the line of sight,
respectively [283]:

α⊥ =
DArs, fid (zd)

Dfid
A rs (zd)

, α‖ =
Hfid rs,fid (zd)

H rs (zd)
. (4.40)

The choice of a fiducial cosmology is necessary to convert redshifts into comoving
distances. The problem is that this may inadvertently distort the data. In Ref. [283],
therefore, constraints on distances are scaled by the ratio rs, fid(zd)/rs(zd), the aim
being to make a conversion of length scales and thus erase any bias potentially re-
sulting from the fiducial model [283]. The same fiducial value of rs(zd) has been used
to scale any data points obtained from other studies. Accordingly, the values listed
under ‘Quantity’ in Table 4.3 and in the last two rows of Table 4.4 are scaled versions
of the original.

The χ2 for the BAO likelihood may be expressed in the usual way:

χ2
BAO = ∆xTC−1

BAO∆x . (4.41)

Here, the vector ∆x gives the difference between the observed quantities from Tables
4.3 and 4.4 (in that order) and their theoretical counterparts, while CBAO is the
covariance matrix and takes the form indicated below:

CBAO =



σ2
1 0 0 0 0 0

0 σ2
2 0 0 0 0

0 0 σ2
3 0 0 0

0 0 0 σ2
4 0 0

0 0 0 0 CA 0
0 0 0 0 0 CB


, (4.42)
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σ1 to σ4 being the standard deviations listed in column 4 of Table 4.3.65 As for the
submatrices, CA is the covariance matrix for the Alam et al. observations (the first
six data points in Table 4.4), and CB corresponds to the quantities reported by des
Bourboux et al. (the last two entries in Table 4.4). These matrices may be constructed
from the data available in Refs. [283] and [284], respectively.

4.5.5 The LSS likelihood

The redshift of a galaxy depends on its velocity relative to us, and is hence affected
by any peculiar velocity the galaxy might have. If only the Hubble recession is taken
into account when converting redshifts into distances, therefore, the recovered over-
density field is characterised by redshift space distortions (RSDs) [286] along the line
of sight. The anisotropies that RSDs introduce into the galaxy power spectrum encode
information about the growth of large-scale structure (LSS) [287].

In this work we shall be using LSS data in the form of fσ8 measurements. The growth
rate f and the quantity σ8 are defined as follows [288]:

f =
d(ln δm)
d ln a , σ8 = σ8,0

δm(a)

δm(1)
, (4.44)

where δm denotes the matter density contrast function, δm(1) = δm(a = 1) and σ2
8,0 is

the variance of the density field in spheres of radius R8 = 8h−1 Mpc. It is important
to note that σ8,0 is calculated by linearly evolving the initial power spectrum to the
present time, so the square of its value is not necessarily equal to the variance of the
current distribution [289].

Let us consider δm and σ8 one by one. In both cases, the derivations are closely based
on the work presented in Refs. [215] and [290].

65Data points from different studies can be put together into one set as long as one knows how
they are correlated. The associated covariance matrix is formulated as follows:

C =


data pt. 1 data pt. 2 ... data pt.n

data pt. 1 σ2
1 c12σ1σ2 . . . c1nσ1σn

data pt. 2 c21σ2σ1 σ2
2 . . . c2nσ2σn

...
...

...
. . .

...
data pt.n cn1σnσ1 cn2σnσ2 . . . σ2

n

 . (4.43)

In the above, σi is the uncertainty in the ith data point and cij reflects the degree of correlation
between the ith and jth data points: it takes the value 0 if they are uncorrelated, and 1 if i = j (i.e. if
there is maximal correlation). When two experiments A and B are independent, the data produced
by A is not correlated with the data from B.
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The matter density contrast function (δm)

The linear perturbation analysis is carried out as detailed in Appendix A. One starts
by considering Eq. A.14, the time-time component of the perturbed Einstein equation,
but replaces ρmδm (= δρm) with a sum over baryon, cold dark matter and dark energy
perturbations:66

Φ(k2
† − 3κ) + 3H

[
Φ′(τ ) + ΦH

]
+ 4πGa2∑

i

δρi = 0 ;

i = {b, cdm,Λ(H)} . (4.45)

The presence of vacuum energy perturbations reflects the dynamic nature of Λ in the
models under study – they are, in fact, absent from ΛCDM. Radiation need not be
taken into account for the late times we are interested in.

We proceed by considering the conservation of the energy-momentum tensor. Let
us recall that cold dark matter and dark energy interact with each other, and hence
are conserved jointly: ∇µ(Tµνcdm + TµνΛ(H)) = 0 [290]. This condition still holds when
perturbations are introduced. Therefore, the equivalents of Eqs. (A.20) and (A.21)
read, respectively:67

∑
i=cdm,Λ(H)

{
δρ′i(τ ) + (ρi + pi)

[
k†v(i) − 3Φ′(τ )

]
+ 3H (δρi + δpi)

}
= 0 ; (4.46)

∑
i=cdm,Λ(H)

{
− d
dτ

[
(ρi + pi) v(i)

]
+ (ρi + pi)

(
k†Φ− 4Hv(i)

)
+ k†δpi

}
= 0 , (4.47)

although the above equations also hold when baryons are considered on their own
(that is, when the sum is over baryons only, so to speak).

Our next task is to simplify Eqs. (4.46) and (4.47). One starts by assuming that
δpi/δρi = pi/ρi = wi (wi being the equation-of-state parameter for the ith distribu-
tion of matter/energy) [291], and then uses the conformal analogue of Eq. (4.17) to
substitute for ρ′cdm(τ ) (since δρcdm = ρcdmδcdm). As for the perturbations in dark
energy, it can be shown that δρΛ(H) � δρcdm for modes that are deep inside the

66δρi denotes the perturbation in the density ρi of the ith fluid, while δpi is the perturbation in
the corresponding pressure (pi). Additionally, δi = δρi/ρi. The symbols τ , Φ, k† and H stand
for conformal time, the metric perturbation, the comoving wave number, and the conformal (or
comoving) Hubble parameter, respectively.

67v(i) is the velocity potential of the ith fluid, and should not be confused with vi, the ith component
(in covariant form) of the spatial velocity (itself a perturbation).
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horizon [290]. The sub-horizon and quasi-static approximations are also introduced
at this point.

Once all of the above considerations have been taken into account, Eqs. (4.46) and
(4.47) become

δ′cdm(τ ) + ψδcdm = −k†vcdm + 3Φ′(τ ) ; (4.48)

v′cdm(τ ) + vcdm(H+ ψ)− k†Φ + k†
δρΛ(H)

ρcdm
= 0 , (4.49)

where ψ = −ρ′Λ(H)(τ )/ρcdm, while w = 0 for cold dark matter and −1 for Λ(H).
The terms vcdmψ and k†δρΛ(H)/ρcdm in Eq. (4.49) reflect the rate of change in vcdm
attributable to the decay of dark energy. If this decay is solely due to an increase in
the mass of cold dark matter particles – and provided the weak equivalence principle
(i.e. the universality of free fall) holds [292] – Eq. (4.49) should reduce to its ΛCDM
counterpart. With this in mind, one imposes the relation

δρΛ(H) = −
ψ

k†
vcdm ρcdm =

ρ′Λ(H)(τ )

k†
vcdm , (4.50)

which is also valid if vacuum decay occurs via the only other alternative – particle
production. Eq. (4.49) may hence be replaced with its ΛCDM equivalent:

v′cdm(τ ) +Hvcdm − k†Φ = 0 . (4.51)

Thus far, we have been considering the conservation of energy-momentum for cold
dark matter and dark energy. As previously mentioned, baryons are conserved sepa-
rately, so in their case Eqs. (4.46) and (4.47) become

δ′b(τ ) = −k†vb + 3Φ′(τ ) ; (4.52)

v′b(τ ) +Hvb − k†Φ = 0 . (4.53)

The contrast function and velocity potential may be cast in a form that accounts for
baryons and cold dark matter jointly (the subscript ‘m’ simply stands for ‘matter’):

δm =
ρcdmδcdm + ρbδb

ρcdm + ρb
; vm =

vcdmρcdm + vbρb
ρcdm + ρb

. (4.54)

The above definitions make it possible to combine Eqs. (4.51) and (4.53) into one
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equation that reads:
v′m(τ ) +Hvm − k†Φ = 0 . (4.55)

The details are given in Appendix A. Similarly, Eqs. (4.48) and (4.52) may be con-
jointly expressed as:

δ′m(τ ) + ψδm = −k†vm + 3Φ′(τ ) . (4.56)

Differentiating this with respect to τ and inserting Eq. (4.55) into the result yields

δ′′m(τ ) + ψδ′m(τ ) + ψ′(τ )δm + k2
†Φ− k†Hvm − 3Φ′′(τ ) = 0 . (4.57)

Next, we apply the sub-horizon and quasi-static approximations to Eq. (4.45), and
find that

Φ(k2
† − 3κ) + 4πGa2

(
ρcdmδcdm + ρbδb + δρΛ(H)

)
= 0 . (4.58)

The above equation can be further simplified by recalling that δρΛ(H) � δρcdm on
sub-horizon scales. Moreover, values of the comoving wave number k† in the relevant
range – that is, the range that most contributes to the integral in Eq. (4.72) [290] –
can be shown to satisfy k2

† � |κ|. Therefore, the final version of Eq. (4.45) is simply:

k2
†Φ + 4πGa2ρmδm = 0 , (4.59)

where ρmδm = (ρcdm + ρb) δm = ρcdmδcdm + ρbδb [refer to Eq. (4.54)]. Finally,
Eq. (4.59) is inserted into Eq. (4.57) along with Eq. (4.56). The result is a second-order
differential equation that stipulates how matter density perturbations evolve:

δ′′m(τ ) + δ′m(τ )(ψ+H) + δm
[
ψ′(τ ) + ψH− 4πGa2ρm

]
= 0 . (4.60)

The absence of any terms in Φ′(τ ) or Φ′′(τ ) is a consequence of employing the sub-
Hubble and quasi-static approximations, as explained in Appendix A. In terms of the
scale factor a, the above equation reads:

δ′′m(a) +
F1(a)

a
δ′m(a) +

F2(a)

a2 δm(a) = 0 , (4.61)

with

F1(a) = 2 + aH′(a) + ψ

H
;

F2(a) =
aψ′(a) + ψ

H
− 4πGa2ρm

H2 . (4.62)
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We are now in a position to derive initial conditions for δm and δ′m(a). Let us start by
finding the approximate form that ρcdm and ρΛ(H) take deep in the matter-dominated
epoch. We return to Eqs. (4.26) and (4.27) and look for the dominant terms by taking
a number of factors into account, such as the order of magnitude of the ratios Ω0

m/Ω0
r

and Ω0
m/Ω0

k, the value of a at which the initial conditions will be applied (a = 0.01),
and the fact that B and C are expected to be much less than unity – which makes it
possible to expand algebraic functions of B and/or C via the binomial theorem. To
first order in B and C, the final expressions read:

ρm ≈
3H2

0
8πGΩ0

ma
B−3−3C/2 , Ω0

m = Ω0
b + Ω0

cdm , (4.63)

ρΛ(H) ≈
3H2

0
8πG

[
Ω0

Λ(H) +
1
6(2B − 3C)Ω0

ma
B−3−3C/2

]
. (4.64)

These are used in conjunction with Eq. (4.24) to obtain an approximation for H:

H ≈ H0
√

Ω0
m

[
1 + 1

12(2B − 3C)
]
a(2B−3C−2)/4 , (4.65)

while combining Eqs. (4.63)–(4.65) allows us to write ψ as:

ψ = −
ρ′Λ(H)(τ )

ρm
= −

ρ′Λ(H)(a)Ha
ρm

,

≈ 1
2(2B − 3C)H0

√
Ω0

m a
(2B−3C−2)/4 . (4.66)

Next, the above results are inserted into Eq. (4.62) to estimate F1 and F2, and it is
found that:

F1 ≈
1
4(6 + 6B − 9C) , F2 ≈

1
2(−3 + 2B − 3C) . (4.67)

Eq. (4.61) may finally be solved analytically. The expression obtained for the density
contrast function is a sum of two modes:

δm = A1a
1−B+3C/2 +A2a

(−6−2B+3C)/4 , (4.68)

a growing mode and a decaying one. The latter is expected to be subdominant at the
redshifts of interest (z . 100), and so only the former is retained:

δm = A1a
1−B+3C/2 . (4.69)

This is the ‘initial’ condition that is assigned to δm at a = 0.01. Taking its derivative
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with respect to a yields the corresponding initial value for δ′m(a). We shall deal with
the constant of integration (A1) below.

The standard deviation of density perturbations (σ8)

The variance of the perturbation density field in spheres of radius R8 = 8h−1 Mpc
may be calculated as follows [288,293]:

σ2
8,0 =

1
2π2

∞∫
0
P (k†)W

2(k†)k
2
† dk† . (4.70)

Here, P (k†) is the present-day power spectrum, and the function W (k†) represents
the Fourier transform of a spherical top-hat window function having radius R8:

W (k†) =
3

k2
†R

2
8

[
sin (k†R8)

k†R8
− cos (k†R8)

]
. (4.71)

An expression for P (k†) is constructed as outlined in Refs. [215] and [290]. The result
is inserted into Eq. (4.70), and we get that

σ2
8(a) = δ2

m(a)

∞∫
0
k2+ns
†

[
4
25

As k
1−ns
∗

H4
0 (Ω0

m)
2

]
T 2(k†)W

2(k†) dk† , (4.72)

where use has been made of Eq. (4.44). The absence of the normalising factor [δm(1)]
is due to the fact that we account for it indirectly by putting the integration factor of
Eq. (4.69) equal to unity.

The quantities ns and As that appear in Eq. (4.72) are the index and amplitude
of the primordial scalar power spectrum, respectively, defined at a pivot scale k∗
of 0.05Mpc−1 [294]. As is either fixed by setting ln

(
1010As

)
equal to the Planck

2015 TT+lowP+lensing mean value of 3.062 [22] or treated as a free parameter.
In the latter case, a likelihood is constructed for As by assuming that it is sam-
pled from a Gaussian distribution whose mean and standard deviation are given by
(2.139± 0.063)× 10−9 [22]. The primordial spectral index ns is allowed to vary sub-
ject to the CMB constraint of Ref. [277] (ns = 0.9680± 0.0051), while the matrix of
Eq. (4.38) is updated to include the correlation between ns and the parameters R, lA
and Ω0

bh
2 (which is also provided in Ref. [277]). Finally, the transfer function T (k†)

is modelled as specified in the work of Eisenstein and Hu [295]. T (k†) describes how
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perturbations evolve as they cross the horizon and as matter begins to dominate [296],
and computing it requires that we estimate the wave number (keq† ) of the mode that
crosses the horizon at matter-radiation equality.

An approximation for keq† is arrived at by following the method of Ref. [290]. Terms
whose order in B and C is higher than linear are discarded, and the fact that the
scale factor at equality satisfies a ∼ O(10−3) is used to remove subdominant terms.
The resulting expression reads:

keq† ≈
√

2H0
Ω0

m√
Ω0

r

1− 7B
6 +

19C
8 +

2Ω0
k

3Ω0
m
(C −B) +

(
B − 3C

2

)
ln
(

Ω0
r

Ω0
m

) . (4.73)

Table 4.5: LSS data from the compilation presented in Ref. [288]. Each fσ8 measurement is listed
together with the corresponding redshift z and error σ. Column 5 shows the values of Ω0

m for the
respective fiducial cosmologies.

Ref. z fσ8(z) σ Ωfid
m,0

[21, 297] 0.02 0.3140 0.0480 0.266
[298] 0.17 0.5100 0.0600 0.300
[299] 0.18 0.3600 0.0900 0.270
[299] 0.38 0.4400 0.0600 0.270
[300] 0.25 0.3512 0.0583 0.250
[300] 0.37 0.4602 0.0378 0.250
[301] 0.44 0.4130 0.0800 0.270
[301] 0.60 0.3900 0.0630 0.270
[301] 0.73 0.4370 0.0720 0.270
[302] 0.60 0.5500 0.1200 0.300
[302] 0.86 0.4000 0.1100 0.300
[303] 1.40 0.4820 0.1160 0.270

Constructing χ2

The data employed (Table 4.5) is a subset of the updated Gold-2017 compilation of
Nesseris et al. [288, 304]. Apart from the fσ8 values from Ref. [301] – which are cor-
related with each other – all data points are independent. Moreover, measurements
derived from the same survey data as any of the observables associated with previ-
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ous likelihoods (especially the BAO likelihood) are excluded. This is done to avoid
potential correlations.

At a given redshift zi, the theoretical prediction fσth8 is computed by combining σ8(zi)

with the growth rate f(zi) returned by CLASS. The quantity σ8(zi) itself is obtained
from Eq. 4.72.

The χ2 to be minimised is constructed as follows [305]:

χ2 = V iC−1
ij V

j . (4.74)

In the above, C is the covariance matrix, assembled as described in Refs. [288] and
[304], and the vector V contains elements of the form68 [305]

V i = fσobs8 (zi)− fσth8 (zi)/riAP , (4.75)

fσobs8 (zi) being the ith data point from Table 4.5. The factor 1/riAP is designed
to correct for the Alcock-Paczynski (AP) effect. As was also the case with BAO
data, each of the studies from which the values in Table 4.5 are quoted makes use of a
different fiducial cosmology to convert redshifts to distances. If the fiducial cosmology
is not the same as the true one, the data incorporates an additional anisotropy that
is degenerate with RSDs [305]. This is the above-mentioned AP effect [306]. One
way of correcting for it involves multiplying the observational value of fσ8(zi) and its
associated error by the ratio [307]

riAP =
H(zi)dA(zi)

Hfid(zi)dfidA (zi)
. (4.76)

A superscript ‘fid’ indicates quantities calculated in the framework of the respective
fiducial cosmologies (flat ΛCDM).

Alternatively, one may simply rescale fσth8 (zi) by 1/riAP [305], as done in Eq. (4.75).

68There is no summation over i in Eq. (4.75); zi is simply the redshift of the ith data point from
Table 4.5.
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4.6 Results

4.6.1 Preliminaries

The joint likelihood on which our analysis is based is specified by the function

Ltot ∝ exp
[
−1

2
(
χ2
JLA + χ2

H(z) + χ2
CMB + χ2

BAO + χ2
LSS

)]
, (4.77)

where the relation Li ∝ exp
(
−χ2

i/2
)
has been used for each likelihood considered in

section 4.5. The full data set – consisting of the JLA+H(z) + CMB+ BAO+ LSS
measurements – shall be referred to as All + LSS, and as the All data set when
LSS observations are excluded.

In order to investigate how results are affected by the value of the Hubble constant,
the parameters of each model are constrained six times, first using the All data
set, then extending this to JLA+H(z) + CMB+ BAO+HR

0
(
All +HR

0
)
and to

JLA + H(z) + CMB + BAO + HE
0
(
All +HE

0
)
, and finally repeating the whole

procedure with the All+LSS data set replacing All. HR
0 is the value of H0 reported

by Riess et al. [26] and equates to 73.48± 1.66 km s−1 Mpc−1. As for HE
0 , this stands

for the Hubble constant as determined by Efstathiou [308] and amounts to 70.6±
3.3 km s−1 Mpc−1. We shall not include the Planck result [20], opting instead for
values of H0 which were derived independently of any cosmological model.

One of the topics currently at the forefront of cosmological research is the growing
discrepancy between – on the one hand – the value of H0 determined locally from
Cepheid parallax measurements [26], and on the other, that obtained in a ΛCDM
framework using measurements of CMB observables. It turns out that HR

0 is in
a 3.5σ tension with the Planck 2018 value (H0 = 67.27± 0.60 km s−1Mpc−1) [20].
One reason for the said tension could be the presence of systematic errors in the
data used by either group. However, despite the investigative studies carried out,
no obvious problem has been identified so far (refer to [20] and works cited therein).
The other possibility is that this discrepancy provides compelling evidence for new
physics [309–311].

In conclusion, the lack of consensus about the value of the Hubble constant makes it
imperative to consider different options for H0, especially since, as we later find out
from the posterior probability plots, there is significant correlation between H0 and
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Table 4.6: The flat priors for the baseline parameters.

Parameter Min Max
H0

(
km s−1Mpc−1) 50 95

Ω0
bh

2 0.005 0.100
Ω0

cdmh
2 0.01 0.99

Ω0
k -0.3 0.3

B -1.0 1.0
C -1.0 1.0
ns 0.75 1.25

the model parameters B and C.

The likelihood combinations just described are used to run MCMC chains and place
constraints on the parameters of the GRVM, RVM and GRVS. The general baseline
set Θ is given by69 {H0, Ω0

bh
2, Ω0

cdmh
2, Ω0

k,B, C, ns}, although Ω0
k is set to zero for

a flat space-time, and so is C (B) when the RVM (GRVS) is studied. Furthermore,
the primordial spectral index is only considered a free parameter if LSS observations
are included in the data sets. The reason is that ns features explicitly in the LSS
likelihood but is of minimal importance otherwise. We shall also differentiate between
two scenarios in relation to the amplitude of the primordial power spectrum: the case
with a fixed value of As, and that in which As is incorporated into Θ and allowed to
vary freely. However, the two approaches yield very similar results, and consequently
one need not distinguish between them when discussing the effects of introducing
growth data.

The flat priors for the main baseline parameters are listed in Table 4.6. With the
exception of the reionization redshift zreio (which is set to 8.8 [22]), all other parameters
take the CLASS default values.70 In particular, this implies that the effective number
of relativistic neutrino species (Neff) is fixed at 3.046 [312], and the current CMB
temperature (TCMB) at 2.7255 K [313].

The plots presented in the next subsections were constructed using the MCMC anal-
ysis package GetDist v.0.2.8 [314].

69The four nuisance parameters associated with the JLA likelihood (α, β, M and ∆M) also form
part of Θ.

70The exception is As, and only when LSS data is included in the analysis. More details are
provided in subsection 4.5.5.
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4.6.2 The GRVM

The GRVM is characterised by two highly-correlated parameters, B and C. The
constraints we get in the flat case are nonetheless tight enough to be informative
(Fig. 4.7), but when Ω0

k is allowed to vary, the data used proves insufficient to break
the degeneracy between B and C or between Ω0

k and the model parameters (Fig. 4.8).

Table 4.7: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a flat GRVM scenario. LSS observations were excluded from the analysis. Results for the
baseline parameters are presented in the top block, whereas the last row is reserved for the derived
parameter, Ω0

Λ(H). H0 is quoted in units of km s−1 Mpc−1.

Parameter All All+HR
0 All+HE

0

H0 68.8330+1.6845
−1.6725 71.1120+1.2073

−1.1912 69.1850+1.4937
−1.4954

103 Ω0
bh

2 22.4090+0.1755
−0.1744 22.4190+0.1747

−0.1726 22.4110+0.1735
−0.1732

Ω0
cdmh

2 0.1217+0.0070
−0.0073 0.1305+0.0056

−0.0059 0.1230+0.0064
−0.0066

B 0.0555+0.1660
−0.1430 0.2341+0.1186

−0.1069 0.0845+0.1491
−0.1306

C 0.0365+0.1096
−0.0940 0.1553+0.0776

−0.0701 0.0558+0.0980
−0.0858

Ω0
Λ(H) 0.6958+0.0070

−0.0067 0.6976+0.0069
−0.0065 0.6961+0.0069

−0.0066

Table 4.8: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a flat GRVM scenario. Double dashes indicate cases in which ln(1010As) was assigned a
fixed value.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 67.5240+0.8710
−0.8880 68.8020+0.7935

−0.8142 67.7140+0.8367
−0.8635 67.5440+0.8705

−0.8936 68.8580+0.8092
−0.8326 67.7460+0.8515

−0.8706

103Ω0
bh

2 22.4140+0.1750
−0.1732 22.4470+0.1729

−0.1742 22.4210+0.1737
−0.1743 22.4160+0.1732

−0.1734 22.4460+0.1754
−0.1740 22.4200+0.1728

−0.1724

Ω0
cdmh

2 0.1151+0.0024
−0.0025 0.1170+0.0024

−0.0024 0.1154+0.0024
−0.0025 0.1152+0.0025

−0.0026 0.1173+0.0025
−0.0026 0.1155+0.0025

−0.0026

B −0.0491+0.1118
−0.1014 0.0571+0.1022

−0.0933 −0.0338+0.1088
−0.0996 −0.0483+0.1114

−0.1027 0.0619+0.1026
−0.0937 −0.0301+0.1093

−0.1000

C −0.0340+0.0719
−0.0655 0.0353+0.0657

−0.0602 −0.0240+0.0700
−0.0644 −0.0334+0.0718

−0.0662 0.0385+0.0661
−0.0604 −0.0215+0.0704

−0.0644

ns 0.9683+0.0052
−0.0052 0.9688+0.0053

−0.0052 0.9684+0.0053
−0.0052 0.9683+0.0052

−0.0052 0.9688+0.0052
−0.0052 0.9683+0.0052

−0.0052

ln
(
1010As

)
−− −− −− 3.0580+0.0310

−0.0294 3.0503+0.0314
−0.0298 3.0571+0.0309

−0.0296

Ω0
Λ(H) 0.6983+0.0067

−0.0065 0.7052+0.0062
−0.0059 0.6993+0.0066

−0.0064 0.6982+0.0068
−0.0064 0.7051+0.0062

−0.0060 0.6993+0.0066
−0.0063

The challenges posed by the fact that B is correlated with C are also highlighted in
Ref. [214]. In this work, the authors find a way around the problem by defining a
particular combination of ν ( = B/3) and α ( = C/2) as another effective parameter
– labeled νeff – that is then constrained instead of the original two. They do this by
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Figure 4.7: (top panel)Marginalised posterior probability distributions for the GRVM parameter B
vs (left) H0, (right) Ω0

m. The bottom panel shows analogous plots for the second GRVM parameter,
C. Darker (lighter) shades denote 1σ (2σ) confidence intervals (the first two data sets listed in the
legend produce contours that overlap almost exactly). Space-time is assumed to be spatially flat.

Table 4.9: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a GRVM scenario. LSS observations were excluded from the analysis, and the condition
of spatial flatness was not imposed.

Parameter All All+HR
0 All+HE

0

H0 68.8780+1.6279
−1.6844 71.0800+1.1760

−1.1827 69.2380+1.4922
−1.5051

103 Ω0
bh

2 22.4050+0.1754
−0.1715 22.4180+0.1698

−0.1739 22.4060+0.1719
−0.1725

Ω0
cdmh

2 0.1219+0.0069
−0.0072 0.1303+0.0055

−0.0058 0.1232+0.0063
−0.0067

Ω0
k −0.0019+0.0121

−0.0110 −0.0020+0.0067
−0.0150 −0.0023+0.0109

−0.0124

B 0.1068+0.7911
−0.3660 0.2685+0.7313

−0.1610 0.1587+0.8389
−0.2599

C 0.0688+0.5045
−0.2378 0.1765+0.4745

−0.1036 0.1027+0.5202
−0.1861

Ω0
Λ(H) 0.6978+0.0143

−0.0144 0.6998+0.0173
−0.0110 0.6986+0.0145

−0.0140
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Table 4.10: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a GRVM scenario. Ω0

k was treated as a free parameter.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 67.7460+0.8958
−0.9245 69.0740+0.7971

−0.8411 67.8870+0.8656
−0.8824 67.7420+0.9102

−0.9459 69.1410+0.8361
−0.8330 67.9370+0.8750

−0.8964

103Ω0
bh

2 22.4070+0.1716
−0.1729 22.4430+0.1723

−0.1756 22.4140+0.1743
−0.1733 22.4090+0.1716

−0.1730 22.4400+0.1664
−0.1741 22.4180+0.1739

−0.1709

Ω0
cdmh

2 0.1157+0.0026
−0.0028 0.1180+0.0026

−0.0027 0.1160+0.0026
−0.0028 0.1159+0.0027

−0.0028 0.1183+0.0027
−0.0026 0.1162+0.0027

−0.0028

Ω0
k −0.0050+0.0106

−0.0141 −0.0073+0.0064
−0.0155 −0.0029+0.0105

−0.0124 −0.0035+0.0111
−0.0129 −0.0062+0.0071

−0.0160 −0.0040+0.0108
−0.0149

B 0.1637+0.8362
−0.2790 0.3591+0.6489

−0.2050 0.0834+0.6882
−0.4039 0.0979+0.7169

−0.4212 0.3148+0.6953
−0.3449 0.1248+0.8194

−0.3556

C 0.1019+0.5339
−0.1816 0.2282+0.4148

−0.1312 0.0508+0.4411
−0.2577 0.0599+0.4592

−0.2687 0.2000+0.4444
−0.2230 0.0773+0.5241

−0.2270

ns 0.9680+0.0052
−0.0051 0.9687+0.0050

−0.0052 0.9682+0.0053
−0.0052 0.9681+0.0051

−0.0052 0.9686+0.0051
−0.0052 0.9682+0.0049

−0.0053

ln
(
1010As

)
−− −− −− 3.0584+0.0311

−0.0293 3.0514+0.0309
−0.0275 3.0578+0.0302

−0.0293

Ω0
Λ(H) 0.7038+0.0170

−0.0132 0.7128+0.0193
−0.0091 0.7024+0.0154

−0.0130 0.7021+0.0152
−0.0144 0.7116+0.0198

−0.0102 0.7034+0.0176
−0.0141
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Figure 4.8: (top panel) Marginalised posterior probability distributions for the GRVM parameter
B vs (left) H0, (centre) Ω0

m, (right) Ω0
k. The bottom panel shows analogous plots for the second

GRVM parameter, C.

making the approximation

ξ =
1− ν
1− α ∼ 1− (ν − α) ≡ 1− νeff , (4.78)

which is justified on the basis that |ν| and |α| must both be much smaller than unity
if the deviation from ΛCDM is to be mild. The parameter ξ controls the way the
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matter energy density (ρm) scales with a, and for the purposes of data fitting the
authors assume that ρr evolves as in the standard model.

There are several reasons, however, why the approach outlined in Ref. [214] cannot
be taken here. To begin with, the authors determine ρm and ρr in terms of a by con-
sidering the cosmic fluid to have only two components at any given time – dynamical
dark energy and either matter or radiation, depending on which of the two dominates.
The expressions thus obtained are then used to formulate ρΛ(H) as a function of ρm
and ρr. The fact that we do not simplify our analysis likewise introduces more terms
into the relevant equations, as does the decision to treat Ω0

k as a free parameter for
part of the study. In conclusion, the relations we get for ρcdm and ρΛ(H) – Eqs. (4.26)
and (4.27), respectively – include several different combinations of B and C, so that
it is not possible to reduce the number of degrees of freedom as detailed in Ref. [214].

The constraints one gets in the context of a flat geometry are nonetheless instructive.
The most prominent feature of Fig. 4.7 is the shift in the marginalised 2D posteriors
that is brought about by the addition of LSS data. Table 4.8 shows that (in the
absence of the HR

0 likelihood) this shift results in negative mean values for B and C –
rather than the positive ones obtained otherwise (Table 4.7). A second characteristic
which emerges in Fig. 4.7 is the correlation between B (or C) and H0. In the case
of B, this behaviour is in stark contrast with the negative correlation observed in
the RVM scenario (Figs. 4.9 and 4.10). The fact that a larger value of H0 favours a
larger B explains why, in the top panel of Fig. 4.7 , the contours corresponding to the
All +HR

0 and All + LSS+HR
0 data sets have a marked shift in the direction of

increasing B relative to their HE
0 counterparts. The same holds true for C (Fig. 4.7,

bottom panel). Consequently, in the context of a flat geometry, the All +HR
0 mean

values of B and C are inconsistent with zero within a 1σ confidence interval. However,
Fig. 4.7 plainly demonstrates that the introduction of growth data causes the contours
to close around the ΛCDM limit. Additionally, the 2D posteriors for B (or C) vs H0

make it clear that LSS data lends support to the Hubble constant as established
by Planck

(
H0 = 67.27± 0.60 km s−1Mpc−1

)
[20], rather than to HR

0 . This may be
observed in both the flat and non-flat cases (results for the latter are shown in Tables
4.9 and 4.10). We find that even the All +HR

0 mean values for H0 become more
compatible with the Planck constraints when the LSS likelihood is added. Moreover,
the Hubble constant from Planck is endorsed irrespectively of whether As is allowed
to vary, which makes it less likely that this is an indirect consequence of using the
ΛCDM value for As. Before the possibility can be ruled out, however, one would need
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to repeat the procedure with a wider Gaussian likelihood for As.71

4.6.3 The RVM

The results for the RVM are summarised in Tables 4.11–4.14. As can be deduced
from Figs. 4.9 and 4.10 (left panel), there is significant negative correlation between
the model parameter B and the Hubble constant H0, although in the flat case the
use of LSS data makes this much less pronounced. The said correlation explains why
including HR

0 with the observational data – rather than the lower value of HE
0 – shifts

the corresponding contours in all the plots of Figs. 4.9 and 4.10 downwards, in the
direction of decreasing B.

Table 4.11: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a flat RVM scenario. LSS observations were excluded from the analysis. Results for the
baseline parameters are presented in the top block, whereas the last row is reserved for the derived
parameter, Ω0

Λ(H). H0 is quoted in units of km s−1 Mpc−1.

Parameter All All+HR
0 All+HE

0

H0 67.4240+0.4759
−0.4944 67.8950+0.4785

−0.4939 67.4900+0.4723
−0.4939

103 Ω0
bh

2 22.3030+0.1380
−0.1387 22.3830+0.1378

−0.1373 22.3140+0.1393
−0.1383

Ω0
cdmh

2 0.1175+0.0032
−0.0035 0.1190+0.0033

−0.0036 0.1177+0.0032
−0.0035

103B 3.0279+3.1358
−3.1698 1.0225+3.1603

−3.1745 2.7498+3.1121
−3.1691

Ω0
Λ(H) 0.6925+0.0066

−0.0064 0.6932+0.0067
−0.0064 0.6926+0.0066

−0.0064

Table 4.12: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a flat RVM scenario. Double dashes indicate cases in which ln(1010As) was assigned a
fixed value.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 67.8130+0.6130
−0.6275 68.4770+0.5816

−0.5896 67.9030+0.6059
−0.6135 67.8270+0.6179

−0.6319 68.5050+0.5812
−0.6036 67.9160+0.6059

−0.6155

103Ω0
bh

2 22.3780+0.1568
−0.1561 22.4970+0.1517

−0.1497 22.3940+0.1551
−0.1551 22.3800+0.1550

−0.1560 22.4990+0.1512
−0.1509 22.3960+0.1548

−0.1547

Ω0
cdmh

2 0.1158+0.0019
−0.0019 0.1161+0.0019

−0.0019 0.1159+0.0019
−0.0019 0.1159+0.0019

−0.0020 0.1163+0.0019
−0.0020 0.1160+0.0019

−0.0020

103B 3.6665+1.9661
−2.0391 2.3309+1.8986

−1.9689 3.4801+1.9351
−2.0277 3.5647+2.0408

−2.1165 2.1456+1.9740
−2.0357 3.3725+2.0146

−2.0964

ns 0.9670+0.0045
−0.0046 0.9705+0.0044

−0.0044 0.9675+0.0045
−0.0045 0.9671+0.0046

−0.0045 0.9706+0.0044
−0.0044 0.9675+0.0045

−0.0045

ln
(
1010As

)
−− −− −− 3.0564+0.0307

−0.0294 3.0525+0.0311
−0.0294 3.0559+0.0308

−0.0293

Ω0
Λ(H) 0.6994+0.0063

−0.0061 0.7043+0.0060
−0.0058 0.7000+0.0062

−0.0060 0.6993+0.0063
−0.0060 0.7042+0.0060

−0.0058 0.6999+0.0062
−0.0060

71A flat prior would not work well, as it would result in the LSS likelihood ‘picking’ values of As
well outside the established range.
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The introduction of LSS data is a game-changer. In the flat scenario, it reduces or
even neutralizes the positive/negative correlation between B and the parameters H0,
Ω0

m and Ω0
Λ(H) (Fig. 4.9). This makes the constraints on B less compatible with the

ΛCDM limit, and indeed the new 1D posteriors for B exclude a null value at a little
over 1σ. Similar behaviour is noted when Ω0

k is allowed to vary. A few differences are
worth mentioning, however: in the presence of spatial curvature, the effect of the LSS
likelihood on the negative correlation between B and H0 is less significant (Fig. 4.10).
Furthermore, comparison of the average values of B in Tables 4.13 and 4.14 reveals
that the addition of growth data changes their sign from negative to positive (which
results from the tightening of contours around positive values of B; see Fig. 4.10).
Another point of interest is the fact that while the All +HR

0 posteriors favour an
open universe at more than 2σ, the inclusion of LSS data causes them to close up
around Ωk = 0. Moreover, we note that the tendency of the LSS likelihood to select
smaller values for the Hubble constant emerges again in the non-flat case. It may
easily be deduced that the resulting mean values of H0 resonate with the Planck
constraint rather than with HR

0 .

(H)

Figure 4.9: Marginalised posterior probability distributions for the RVM parameter B vs (left) H0,
(centre) Ω0

m, (right) Ω0
Λ(H). Space-time is assumed to be spatially flat.

Let us now take a look at the literature and see how our findings for the flat scenario
fare in comparison.72 The authors of Ref. [224] report that the RVM appears to
be more consistent with observations than ΛCDM, and furthermore remark that
the inclusion of an LSS likelihood tips the balance in favour of the Planck value
for H0. Our results paint a somewhat different picture. We find no statistically
significant evidence that the RVM is preferred over ΛCDM (more details are provided
in subsection 4.6.5). Secondly, the addition of LSS data increases the mean values
of H0 slightly when Ω0

k = 0, although one cannot say that it spoils the consistency

72The studies considered here are based on the assumption of spatial flatness.
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with the Planck constraints. Nonetheless, once the conversion from ν to B ( = 3ν)
is made, the mean values of B and the corresponding uncertainties (Tables 4.11 and
4.12) are found to be of the same order of magnitude73 as those obtained in Ref. [224]
with the full data set.

Table 4.13: Mean values and 1σ confidence limits obtained with each data set combination in the
context of an RVM scenario. LSS observations were excluded from the analysis, and the condition
of spatial flatness was not imposed.

Parameter All All+HR
0 All+HE

0

H0 68.5350+1.5435
−1.5236 70.7750+1.1456

−1.1488 68.8920+1.4166
−1.3974

103 Ω0
bh

2 22.2870+0.1420
−0.1399 22.2940+0.1409

−0.1396 22.2870+0.1394
−0.1404

Ω0
cdmh

2 0.1220+0.0066
−0.0069 0.1309+0.0055

−0.0057 0.1234+0.0062
−0.0065

103Ω0
k 2.1474+2.9676

−2.6744 5.9320+2.1120
−2.0502 2.7793+2.6796

−2.5027

103B −0.3265+4.9193
−5.8219 −7.1221+3.6466

−4.1096 −1.5054+4.6128
−5.2781

Ω0
Λ(H) 0.6908+0.0069

−0.0068 0.6883+0.0067
−0.0065 0.6903+0.0068

−0.0067

Table 4.14: Mean values and 1σ confidence limits obtained with each data set combination in the
context of an RVM scenario. Ω0

k was treated as a free parameter.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 67.5010+0.8679
−0.8693 68.7760+0.7858

−0.7956 67.7000+0.8428
−0.8546 67.5280+0.8876

−0.8918 68.8250+0.8011
−0.8075 67.7310+0.8496

−0.8716

103Ω0
bh

2 22.4130+0.1730
−0.1696 22.4500+0.1730

−0.1714 22.4180+0.1728
−0.1723 22.4120+0.1723

−0.1725 22.4490+0.1724
−0.1725 22.4190+0.1717

−0.1733

Ω0
cdmh

2 0.1150+0.0026
−0.0026 0.1170+0.0025

−0.0025 0.1153+0.0025
−0.0026 0.1151+0.0026

−0.0027 0.1173+0.0026
−0.0027 0.1154+0.0026

−0.0027

103Ω0
k −1.0358+2.1119

−2.0708 1.0969+1.9576
−1.9154 −0.6868+2.0555

−2.0362 −0.9842+2.1179
−2.0898 1.1876+1.9680

−1.9402 −0.6480+2.0761
−2.0397

103B 4.0567+2.1064
−2.2043 2.0203+1.9293

−2.0197 3.7450+2.0332
−2.1945 3.9637+2.1855

−2.3301 1.7766+2.0335
−2.1403 3.6112+2.1647

−2.2666

ns 0.9682+0.0052
−0.0051 0.9689+0.0051

−0.0051 0.9683+0.0052
−0.0052 0.9682+0.0051

−0.0052 0.9689+0.0052
−0.0052 0.9683+0.0052

−0.0052

ln
(
1010As

)
−− −− −− 3.0581+0.0311

−0.0292 3.0504+0.0315
−0.0302 3.0572+0.0312

−0.0294

Ω0
Λ(H) 0.6994+0.0063

−0.0059 0.7039+0.0060
−0.0057 0.7001+0.0062

−0.0060 0.6993+0.0063
−0.0061 0.7036+0.0060

−0.0058 0.7000+0.0063
−0.0060

The tendency of the RVM to lend support to the Planck bounds for H0 is also pointed
out in Ref. [225]. The authors find that ν = 0 is excluded at more than 3σ when they
include LSS data, and although our results do not corroborate this conclusion, the
mean and uncertainty for ν again translate into values for B that match ours in order
of magnitude. The same can be said of the constraints placed on ν in Ref. [226] by
means of a fit to SNeIa+BAO+H(z)+LSS+BBN+CMB data. This despite the fact

73Two values (a× 10p and b× 10p, where 1 ≤ a, b < 10 and p is an integer) shall be deemed to
have the same magnitude if |a− b| < 5.
Given the quantity M+n

−` , n+ ` shall be referred to as the uncertainty in M .
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that the study in question considers radiation to interact with dark energy, which is
not the case here. We note that our mean values for B (excluding the ones obtained
with the All+HR

0 and All+LSS+HR
0 data sets) have ν equivalents that lie within

1σ of the value found in Ref. [226] using the full dataset.

On the contrary, our results are in some tension with that of Ref. [218] [ν = B/3 =

(1.37+0.72
−0.95)× 10−4]. The authors attribute their strong constraints on ν to the effec-

tiveness of CMB temperature fluctuations as cosmological probes [218]. One should
keep in mind, however, that the approach taken in Ref. [218] differs from ours in a
number of ways, the most prominent being the assumption that dark energy decays
into both radiation and matter, and the incorporation of massive neutrinos into the
model.
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Figure 4.10: Marginalised posterior probability distributions for the RVM parameter B vs (left)
H0, (centre) Ω0

m, (right) Ω0
k.

We turn our attention to the study presented in Ref. [215] next. Here, the joint
analysis is based on measurements of observables associated with SNeIa, BAOs, cosmic
chronometers, LSS and the CMB, and again it transpires that the mean value of ν
and associated standard deviation have the same order of magnitude as the ones we
get (for B/3). The authors also investigate the impact of the individual likelihoods on
the results, and observe that using both LSS and CMB data tightens constraints on
ν, consequently endowing it with a definite sign. They go on to show that the absence
of either makes ν compatible with the ΛCDM limit (ν = 0). The authors conclude
that the BAO+LSS+CMB combination excludes the standard model at more than
3σ.

Although some of the studies we’ve just reviewed allow radiation to couple with
vacuum energy, we shall not do likewise. There is an important reason for this: namely,
any interaction between radiation and dark energy would cause the CMB temperature
(TCMB) to scale differently with redshift than it does in ΛCDM. Additionally, any net
changes in photon number would alter the relation between the angular diameter and
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luminosity distances [315]. The literature contains many examples of studies that have
constrained departures from the standard-model prediction for TCMB [TCMB ∝ (1 +
z)] [315–318], or placed bounds on violations of the distance-duality relation [319–322].
As yet, however, no compelling evidence of deviations from ΛCDM has been found.
In other words, there is currently little observational justification for energy exchange
between radiation and the vacuum to be incorporated into a cosmological model.

In the same vein, since Ω0
b is subject to very tight constraints, it is best to refrain

from coupling the baryon component with dark energy, as this would alter the way in
which ρb scales with redshift. The reader is referred to Refs. [323] and [324] (and the
works cited therein) for a review of the said constraints.

4.6.4 The GRVS

Results are presented in Tables 4.15–4.18. The inclusion of LSS data again proves
to be important. In the flat case, it tightens constraints on C and endows it with
a definite (negative) sign, while also reducing (or even neutralizing) the correlation
between C and the parameters H0, Ω0

m and Ω0
Λ(H) (Fig. 4.11). As a result, the 1D

posteriors for C exclude the ΛCDM limit at a little over 1σ. The situation is in many
ways analogous to the RVM scenario. When the assumption of spatial flatness is
relaxed, we again find that LSS data shows mild preference for a closed (rather than
open) geometry, and tends to decrease the mean values of H0 (Fig. 4.12). Contrary
to what was observed for the RVM, the latter effect is also noted in the flat case.

Table 4.15: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a flat GRVS scenario. LSS observations were excluded from the analysis. Results for the
baseline parameters are presented in the top block, whereas the last row is reserved for the derived
parameter, Ω0

Λ(H). H0 is quoted in units of km s−1 Mpc−1.

Parameter All All+HR
0 All+HE

0

H0 68.2640+0.7812
−0.8232 69.2520+0.7381

−0.7772 68.3850+0.7663
−0.8033

103 Ω0
bh

2 22.4300+0.1647
−0.1640 22.5740+0.1559

−0.1563 22.4490+0.1627
−0.1617

Ω0
cdmh

2 0.1193+0.0036
−0.0040 0.1222+0.0037

−0.0041 0.1197+0.0036
−0.0040

103C −0.1050+2.4635
−2.4237 2.2458+2.3401

−2.2670 0.1792+2.4189
−2.3773

Ω0
Λ(H) 0.6957+0.0069

−0.0066 0.6980+0.0069
−0.0066 0.6960+0.0069

−0.0066
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Table 4.16: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a flat GRVS scenario. Double dashes indicate cases in which ln(1010As) was assigned a
fixed value.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 67.7840+0.6186
−0.6298 68.4770+0.5943

−0.5972 67.8800+0.6095
−0.6200 67.8000+0.6284

−0.6370 68.4960+0.5958
−0.5968 67.8990+0.6132

−0.6292

103Ω0
bh

2 22.3790+0.1543
−0.1565 22.5010+0.1519

−0.1500 22.3960+0.1540
−0.1539 22.3820+0.1549

−0.1567 22.5020+0.1501
−0.1493 22.3980+0.1547

−0.1540

Ω0
cdmh

2 0.1157+0.0019
−0.0019 0.1161+0.0019

−0.0019 0.1158+0.0019
−0.0019 0.1158+0.0019

−0.0020 0.1163+0.0019
−0.0020 0.1159+0.0020

−0.0020

103C −2.3810+1.3190
−1.2607 −1.4761+1.2662

−1.2102 −2.2558+1.2957
−1.2541 −2.3120+1.3602

−1.3179 −1.3684+1.3103
−1.2737 −2.1795+1.3530

−1.3042

ns 0.9671+0.0045
−0.0045 0.9706+0.0044

−0.0044 0.9675+0.0044
−0.0044 0.9671+0.0045

−0.0045 0.9707+0.0044
−0.0044 0.9676+0.0045

−0.0045

ln
(
1010As

)
−− −− −− 3.0565+0.0309

−0.0295 3.0522+0.0309
−0.0294 3.0560+0.0310

−0.0292

Ω0
Λ(H) 0.6993+0.0063

−0.0061 0.7043+0.0060
−0.0057 0.7000+0.0062

−0.0060 0.6992+0.0063
−0.0061 0.7041+0.0060

−0.0057 0.6999+0.0062
−0.0060

The correlation between C and H0 explains why the HR
0 likelihood shifts the contours

in Figs. 4.11 and 4.12 in the direction of increasing C. The introduction of growth
data makes this displacement much less pronounced.

(H)

Figure 4.11: Marginalised posterior probability distributions for the GRVS parameter C vs (left)
H0, (centre) Ω0

m, (right) Ω0
Λ(H). Space-time is assumed to be spatially flat.

Table 4.17: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a GRVS scenario. LSS observations were excluded from the analysis, and the condition
of spatial flatness was not imposed.

Parameter All All+HR
0 All+HE

0

H0 68.7530+1.5454
−1.5507 70.9130+1.1628

−1.1578 69.0730+1.4051
−1.4109

103 Ω0
bh

2 22.4090+0.1726
−0.1718 22.4320+0.1720

−0.1700 22.4120+0.1716
−0.1715

Ω0
cdmh

2 0.1214+0.0066
−0.0070 0.1298+0.0056

−0.0058 0.1227+0.0062
−0.0064

103 Ω0
k 1.0452+2.9292

−2.7865 4.3585+2.3047
−2.2526 1.5638+2.7015

−2.6167

103C 0.7443+3.7198
−3.2210 4.9508+2.6763

−2.3946 1.4163+3.3940
−2.9272

Ω0
Λ(H) 0.6946+0.0074

−0.0073 0.6928+0.0074
−0.0072 0.6943+0.0074

−0.0072
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Table 4.18: Mean values and 1σ confidence limits obtained with each data set combination in the
context of a GRVS scenario. Ω0

k was treated as a free parameter.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 67.5080+0.8646
−0.8940 68.7710+0.7891

−0.7891 67.7040+0.8326
−0.8632 67.5270+0.8799

−0.9011 68.8250+0.7975
−0.8066 67.7270+0.8537

−0.8650

103Ω0
bh

2 22.4130+0.1718
−0.1742 22.4490+0.1719

−0.1728 22.4190+0.1739
−0.1709 22.4140+0.1734

−0.1718 22.4500+0.1720
−0.1716 22.4170+0.1707

−0.1723

Ω0
cdmh

2 0.1150+0.0025
−0.0026 0.1170+0.0025

−0.0025 0.1153+0.0025
−0.0026 0.1151+0.0026

−0.0027 0.1173+0.0026
−0.0026 0.1154+0.0026

−0.0027

103Ω0
k −0.9464+2.0824

−2.0889 1.1408+1.9543
−1.9133 −0.6118+2.0552

−2.0364 −0.9229+2.1097
−2.0864 1.2022+1.9458

−1.9261 −0.5637+2.0727
−2.0289

103C −2.5839+1.4209
−1.3420 −1.2927+1.2993

−1.2392 −2.3797+1.3910
−1.3091 −2.5323+1.4719

−1.4069 −1.1341+1.3627
−1.2930 −2.3232+1.4490

−1.3732

ns 0.9682+0.0052
−0.0052 0.9689+0.0051

−0.0052 0.9683+0.0052
−0.0051 0.9682+0.0051

−0.0052 0.9690+0.0051
−0.0052 0.9683+0.0052

−0.0052

ln
(
1010As

)
−− −− −− 3.0584+0.0309

−0.0297 3.0504+0.0313
−0.0299 3.0571+0.0312

−0.0296

Ω0
Λ(H) 0.6993+0.0063

−0.0061 0.7038+0.0060
−0.0059 0.7000+0.0062

−0.0060 0.6993+0.0063
−0.0061 0.7036+0.0061

−0.0058 0.6999+0.0062
−0.0061
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Figure 4.12: Marginalised posterior probability distributions for the GRVS parameter C vs (left)
H0, (centre) Ω0

m, (right) Ω0
k.

Before we move on, let us consider how well the GRVM, RVM and GRVS account
for RSD measurements. The values of fσ8(z) inferred from CMB data (for a ΛCDM
cosmology) seem to be in excess of what observations related to structure growth
suggest. This is a result of the fact that the constraints on Ω0

m and σ8,0 obtained
from weak lensing, Sunyaev-Zel’dovich cluster counts, and RSDs appear to be in some
tension with the Planck analysis of primary fluctuations [305]. However, the cause
of the discrepancy is as yet a subject of debate. According to a recent study, the
lower value for the reionisation optical depth reported in more recent Planck papers
has partially solved the problem [325]. Whether or not any tension is detected also
depends on the choice of data set. In particular, RSD measurements published in the
last few years tend to probe higher redshifts, at which degeneracies can set in between
different models. Such measurements are therefore more likely to be consistent with
the ΛCDM values for fσ8 [305].

Figs. 4.13 and 4.14 show the variation of fσ8 with z for the dynamical-Λ models and
ΛCDM. The greater majority of the data points are located below the ΛCDM curve,
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Figure 4.13: The variation of fσ8 with z in a flat scenario. The data points of Table 4.5 are shown
as black circles with 1σ error bars, and it can be seen that they mainly probe redshifts less than
unity, at which different models are less likely to be degenerate [305]. The dynamical-Λ curves are
based on the All+LSS (+ fixed As) mean values. In the greater majority of cases, these curves are
closer to the observed values than their ΛCDM counterpart, which was obtained using the Planck
2015 (TT+lowP+lensing) results.

Figure 4.14: The variation of fσ8 with z. The dynamical-Λ curves are based on the All+LSS (
+ HR

0 /HE
0 ) data set, with the HR

0 /HE
0 likelihood included if specified in the legend. All curves but

one were obtained in the context of a flat geometry. The sole exception is labelled accordingly.
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so the fact that the GRVM, RVM and GRVS yield smaller values for fσ8(z) augurs
well. Indeed, both figures show that the dynamical-Λ set of curves is closer to the
mean values of the observations. It can be noted that the performance of the running
vacuum models is almost identical in this regard, although the GRVM and the non-
flat RVM produce slightly lower curves – a feature that in all probability is due to
their having an extra parameter (and hence an extra degree of freedom). Finally, it
appears that the addition of HR

0 to the data set results in a slightly higher value of
fσ8 at a given z. This observation is perfectly in accord with our conclusion that LSS
data lends support to the Planck constraints on H0.

4.6.5 Comparison with ΛCDM

In this subsection, we consider the cosmological parameter constraints obtained by us-
ing the All+LSS, All+LSS+HR

0 and All+LSS+HE
0 data sets in the framework

of a ΛCDM cosmology with freely-varying Ω0
k. The mean values and 1σ confidence

limits are presented in Table 4.19.

Table 4.19: Mean values and 1σ confidence limits for the baseline cosmological parameters (top
block) and the derived quantity Ω0

Λ (bottom row) in the context of a ΛCDM cosmology. The condition
Ω0
k = 0 was not imposed.

Parameter All+LSS All+LSS+HR
0 All+LSS+HE

0 All+LSS All+LSS+HR
0 All+LSS+HE

0

H0 68.6250+0.6557
−0.6720 69.2690+0.6243

−0.6256 68.7000+0.6456
−0.6569 68.6080+0.6579

−0.6631 69.2560+0.6229
−0.6348 68.6790+0.6499

−0.6644

103Ω0
bh

2 22.4650+0.1700
−0.1697 22.4740+0.1697

−0.1707 22.4640+0.1711
−0.1705 22.4570+0.1707

−0.1696 22.4680+0.1706
−0.1694 22.4600+0.1703

−0.1711

Ω0
cdmh

2 0.1190+0.0015
−0.0015 0.1191+0.0015

−0.0015 0.1190+0.0015
−0.0015 0.1191+0.0015

−0.0015 0.1191+0.0015
−0.0015 0.1191+0.0015

−0.0015

103Ω0
k 0.3456+1.9551

−1.9447 1.6406+1.8794
−1.8476 0.5135+1.9412

−1.9091 0.4033+1.9647
−1.9491 1.6730+1.8754

−1.8582 0.5333+1.9657
−1.9232

ns 0.9698+0.0051
−0.0051 0.9697+0.0051

−0.0051 0.9698+0.0051
−0.0051 0.9696+0.0051

−0.0051 0.9696+0.0051
−0.0051 0.9696+0.0051

−0.0051

ln
(
1010As

)
−− −− −− 3.0417+0.0300

−0.0287 3.0425+0.0300
−0.0286 3.0418+0.0303

−0.0282

Ω0
Λ 0.6991+0.0063

−0.0060 0.7032+0.0060
−0.0057 0.6995+0.0063

−0.0060 0.6987+0.0063
−0.0060 0.7029+0.0060

−0.0058 0.6992+0.0062
−0.0060

How may the results obtained for ΛCDM be compared with those for the GRVM,
RVM and GRVS? The number of baseline parameters differs from model to model
(11 for the GRVM, 10 for the RVM and GRVS, and 9 in the case of ΛCDM), so
one cannot simply assess performance by looking at the minimum χ2. Instead, we
employ the Akaike Information Criterion (AIC) [326]. This takes into account both
the number of free parameters (p) and the value of the maximum likelihood (Lmax):

AIC = 2p− 2 ln (Lmax) . (4.79)
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Additionally, since the theoretical quantities associated with each likelihood are treated
as samples from a multivariate Gaussian distribution, the AIC may equivalently be
expressed in terms of the minimum χ2:

AIC = 2p+ χ2
min . (4.80)

Another tool for model selection is the Bayesian Information Criterion (BIC) [327]:

BIC = p lnN − 2 ln (Lmax) . (4.81)

Here, N is the number of observations, which in this work amounts to 798 or 799,74

depending on whether HR
0 or HE

0 are included. Provided the assumption of sampling
from a multivariate Gaussian distribution holds, Eq. (4.81) may alternatively take the
form

BIC = p lnN + χ2
min . (4.82)

The AIC and BIC for the RVM and GRVS can be found in Tables 4.20 and 4.21. The
GRVM is not included, since some of its parameters are not well-constrained in the
non-flat case.

Table 4.20: The AIC and BIC statistics for the RVM, GRVS and ΛCDM. The values in the top,
middle and bottom sections were obtained using the All+LSS, All+LSS+HR

0 and All+LSS+
HE

0 data sets, respectively. Ω0
k was treated as a free parameter in all cases, while As was set to a

fixed value.

Model χ2
min. AIC ∆AIC BIC ∆BIC

RVM 722.9 742.9 −1.8 789.7 2.9

GRVS 722.9 742.9 −1.8 789.7 2.9

ΛCDM 726.7 744.7 0.0 786.8 0.0

RVM (+HR
0 ) 733.2 753.2 1.1 800.0 5.8

GRVS (+HR
0 ) 733.1 753.1 1.0 799.9 5.7

ΛCDM (+HR
0 ) 734.1 752.1 0.0 794.3 0.0

RVM (+HE
0 ) 723.7 743.7 −1.4 790.5 3.3

GRVS (+HE
0 ) 723.7 743.7 −1.4 790.5 3.3

ΛCDM (+HE
0 ) 727.1 745.1 0.0 787.3 0.0

74JLA: 740, H(z): 30, CMB: 4, BAO: 12, LSS: 12 .
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Table 4.21: The AIC and BIC statistics for the RVM, GRVS and ΛCDM. Ω0
k and As were treated

as free parameters in all cases.

Model χ2
min. AIC ∆AIC BIC ∆BIC

RVM 723.1 745.1 −1.2 796.6 3.5

GRVS 722.7 744.7 −1.6 796.2 3.1

ΛCDM 726.3 746.3 0.0 793.1 0.0

RVM (+HR
0 ) 733.2 755.2 1.5 806.7 6.2

GRVS (+HR
0 ) 733.1 755.1 1.4 806.6 6.1

ΛCDM (+HR
0 ) 733.7 753.7 0.0 800.5 0.0

RVM (+HE
0 ) 724.0 746.0 −0.6 797.5 4.1

GRVS (+HE
0 ) 723.7 745.7 −0.9 797.2 3.8

ΛCDM (+HE
0 ) 726.6 746.6 0.0 793.4 0.0

Tables 4.20 and 4.21 demonstrate that the minimum χ2 for the RVM and GRVS is
smaller than its ΛCDM counterpart. What is more, this holds for all three data set
combinations. One must however determine whether the difference in χ2

min is enough
to justify the extra free parameter of the RVM and GRVS. The reason is that although
the addition of parameters introduces more degrees of freedom – and hence allows the
model to better approximate the data – it does not necessarily yield a model of greater
merit, because when the information supplied by the data has to be ‘shared’ among
more parameters the resulting estimates tend to be less precise [328]. In such cases,
information criteria like the AIC and BIC become indispensable to find a trade-off.75

As can be deduced from Eqs. (4.79) and (4.81), the AIC and BIC statistics do not only
penalise for a smaller value of Lmax, but also for a larger number of free parameters.
In general, a smaller AIC/BIC indicates better performance.

Let us consider this in more detail. We start by noting that ∆AIC indicates the level
of support the data provides for the model with the smaller AIC. An absolute value
between 0 and 2 is usually not deemed enough to draw conclusions. If |∆AIC| lies in
the range from 2 to 4, the model with the larger AIC is considerably disfavoured, while
a value of |∆AIC| > 10 renders it practically irrelevant. In the same vein, a difference
of magnitude 2 in the BIC is considered as evidence against the model with the larger

75There is nonetheless a caveat: the AIC and BIC should, strictly speaking, only be applied
if certain conditions are satisfied [329, 330]. For instance, they are both meant to be used with
independent observations [331,332].
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BIC, while a difference of magnitude 6 or more constitutes strong evidence [333]. It
may thus be concluded that the models perform similarly when assessed by the AIC.
However, the BIC penalises for extra parameters more harshly than the AIC [334],
and consequently provides a considerable level of support for ΛCDM.

4.7 In Brief. . .

This chapter focuses on three models from the literature that feature a dynamical
Λ: the GRVM, whose characteristic Λ(H) takes the form A+BH2 + CḢ, and two
sub-cases: the RVM, obtained by setting C to zero, and the model we have called the
GRVS, which has B = 0 instead. It is assumed that the vacuum only interacts with
cold dark matter. The parameters B and/or C are constrained by fitting the models
to cosmological observations using MCMC techniques.

In the case of the GRVM, we find that the addition of the LSS likelihood lowers the
average values of H0 when Ω0

k = 0, enhancing compatibility with the results reported
by the Planck collaboration [20]. This was also noted for the RVM (in the non-flat
scenario) and the GRVS.

Another consequence of including LSS observations when constraining the GRVM –
again under the assumption of flatness – is the tightening of the posterior distributions
for B and C around the ΛCDM limit. On the other hand, we have seen that for both
the RVM and GRVS, the introduction of growth data results in a dynamical Λ being
preferred to a cosmological constant at a little over 1σ.76 Additionally, it makes
constraints on Ω0

k consistent with a flat geometry.

We may conclude that a running vacuum (modelled as in the RVM or GRVS) is only
marginally favoured over a cosmological constant. Moreover, this mild preference
comes at the cost of an extra parameter which – while not given much weight by the
AIC – has a negative impact on the BIC score. Another point of interest is the fact
that merging the RVM and GRVS expressions for Λ into a two-parameter combination
(the GRVM) appears to weaken support for dynamical vacuum energy. Furthermore,
the addition of LSS data reduces the ability of the models to accommodate a non-zero
Ω0
k.

76In the majority of cases, this holds whether or not we assume that the Universe is spatially flat.
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CHAPTER 5

Spatial Curvature in Metric f(R) Gravity

5.1 Introduction

Fourth-order metric theories of gravitation can be said to have originated from Weyl’s
1918 non-integrable relativity theory. This theory (or variants of it) was further
investigated by scientists such as W. Pauli, R. Weitzenböck and F. Jüttner, and served
to introduce or promulgate key concepts such as conformal invariance, gravitational
theories based on a geometrical approach, and the unification of the forces of nature
[335]77. However, the popularity of Weyl’s theory soon declined, namely due to the
ambiguity of the Lagrangian and the problems posed by the higher order of the field
equations. Additionally, there did not seem to be any experimental evidence against
General Relativity that would favour the introduction of a more complicated theory
[335]. It was not until the 1970s that interest was revived. This happened as a result
of factors such as the one-loop renormalizability of fourth-order metric theories, and
the natural way in which inflation can be incorporated into them [335]. Moreover,
given a classical gravitational field arising from the energy-momentum tensor (Tµν)
of quantised matter/radiation, the Lagrangian of fourth-order theories helps to erase
any singularities that the gravitational interaction induces in Tµν [336].

The general class of Fourth-Order Gravity is governed by an action whose gravitational
part reads [337,338]

S =
∫ √−g

16πG f
(
R,RαβRαβ,RαβγδRαβγδ

)
d4x , (5.1)

where R, Rαβ and Rαβγδ are the Ricci scalar and the Ricci and Riemann tensors,
respectively, and f represents an unspecified analytical function. In the metric ap-
proach, the field equations are derived by varying the action with respect to gµν [338].

77Also refer to works cited therein.
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Among the theories obtained in such a way is Conformal Weyl Gravity [77]. This is
based on the principle of conformal invariance, and has been the subject of significant
interest in the last thirty years.

Another popular example is metric f(R) gravity. Formulated by replacing the Ricci
scalar in the GR action with a function thereof, f(R) theory can be seen as a natural
extension of General Relativity (GR) [339]. Despite its simplicity, however, it incorpo-
rates some of the basic characteristics of higher-order theories of gravity (i.e. theories
constructed from actions in which R is generalised to some function of higher-order
curvature invariants), and is furthermore advantageous in that it appears to be the
only higher-order theory that does not suffer from the Ostrogradski instability [56].
The prototype of f(R) gravity has f(R) = R − α4/R (where α ∼ H0). It was
adopted in an attempt to explain late-time cosmic acceleration [57,340,341], but has
been ruled out on the basis of the Dolgov-Kawasaki instability [57, 342] and the fact
that it does not have a viable weak-field limit [57,343]. In general, the class of models
with f(R) = R + αR−n cannot give rise to an acceptable cosmological expansion
history for any n > 0 and n < −1 [344].

The function associated with Starobinsky’s inflationary model [f(R) = R+αR2] [345]
was also one of the first to be proposed. Since then, f(R) gravity has been the subject
of numerous studies. One of its apparent benefits is the ability of certain models
to reproduce both the early period of inflation and the current acceleration [346].
That said, due to the stringent constraints that a candidate model must satisfy – for
example, it has to predict a matter-dominated era – only a few are still considered
valid [339]. These are best tested on cosmological scales. It is here that deviations
from GR show up, so measurements of observables such as those related to galaxy
clustering, the CMB or weak lensing make excellent probes [347].

5.2 Metric f(R) Gravity: Preliminaries

5.2.1 The field equations

f(R) theory is a modified gravity model. In other words, it adjusts the General
Relativistic description of space-time geometry in a way that precludes the need for
a mysterious dark energy component. At the basis of f(R) theory is a generalisation
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of the Einstein-Hilbert action of GR [Chapter 1, Eq. (1.5)]:

S =
∫ √−g

16πG f(R) d4x . (5.2)

Here, f(R) is a generic function of the Ricci curvature scalar. The field equations are
obtained by varying the action with respect to the inverse metric tensor gµν [57], and
collectively read

(
Gµν +

1
2Rgµν −∇µ∇ν + gµν�

)
fR −

1
2f(R)gµν = 8πGTµν , (5.3)

where fR = df/dR, the quantity ∇µ represents the covariant derivative operator
constructed from the metric connection, and � ≡ gµν∇µ∇ν . We shall model the
matter/energy content of the Universe as a perfect fluid with proper density78 ρ,
corresponding isotropic pressure p and four-velocity uµ, and hence

Tµν = (ρ+ p)uµuν + pgµν . (5.4)

In an FLRW cosmology, the field equations [(5.3) above] can be cast in the same form
as their General Relativistic counterparts79 [348]. We may therefore write:80

H2 =
8πG

3 ρtot −
κ

a2 ; (5.5)

ä

a
= −4πG

3 (ρtot + 3ptot) , (5.6)

with ρtot = ρ+ ρde and ptot = p+ pde, ρ and p being the energy density and pressure
from Eq. 5.4. However, while in General Relativity ρde and pde are attributes of a
physical dark energy component – namely, the vacuum energy we denote by Λ – in
f(R) theory they refer to a collection of terms which result from the modification to
the geometry of space-time:

ρde =
1

8πG

[1
2(fRR− f)− 3HḟR + 3(1− fR)H2 +

3κ
a2 (1− fR)

]
; (5.7)

pde =
1

8πG

[
−1

2(fRR− f) + f̈R + 2HḟR − (1− fR)(2Ḣ + 3H2) +
κ

a2 (fR − 1)
]

.

(5.8)

78The proper density is the density as measured by an observer comoving with the fluid [18].
79Refer to Chapter 1, Eqs. (1.38) and (1.37).
80An overdot again indicates differentiation with respect to t, the cosmic time.
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Simply put, the occurrence of these geometric terms mimics the presence of dark
energy [348] and is hence able to drive the late-time cosmic acceleration. Eq. (5.6)
implies that the expansion of the Universe accelerates if ρtot < −3ptot, or equivalently
if

ρ+ 3p < − (ρde + 3pde) . (5.9)

In other words, acceleration sets in when matter and radiation have become too
dilute to offset the effect of dark energy. For theories in which dark energy is a
physical component of the cosmic fluid, such as a scalar field, the said effect is a
repulsion arising from its negative pressure. Here, however, the acceleration is due to
the geometry of the spacetime manifold itself (although, as shown in subsection 5.2.3,
f(R) gravity may be interpreted as a type of Brans-Dicke theory by treating fR as a
scalar field). We additionally note that this effective dark energy does not interact with
matter or radiation. Consequently, conservation of energy and momentum implies
that:

ρ̇+ 3H(ρ+ p) = 0 , (5.10)

where ρ = ρm + ρr and p = pm + pr. The subscripts ‘m’ and ‘r’ denote matter (cold
dark matter and baryons) and radiation (photons and massless neutrinos), respec-
tively.

A valid f(R) theory must satisfy a number of constraints [56, 57, 349]. Firstly, since
the quantity Geff ≡ G/fR acts as an effective gravitational coupling, the requirement
that the graviton carries positive kinetic energy implies that Geff > 0, which in turn
imposes the condition fR > 0. Secondly, avoiding instabilities of the Dolgov-Kawasaki
type [342] necessitates that f ′′(R) ≥ 0. As for the cosmological dynamics, the theory
should behave like ΛCDM at high redshifts, because the standard model is well-
supported by CMB data in this regime. We therefore stipulate that limR→∞ f(R) =

R+ constant. A late-time expansion history similar to the one in a ΛCDM cosmology
is also desirable, albeit in the absence of a cosmological constant; that is to say, one
expects that limR→0 f(R) = R+ 0 [210].

The successes of ΛCDM on Solar-System scales suggest that its phenomenology should
be included as a limiting case [210] of any viable alternative theory. In metric f(R),
however, the Ricci curvature introduces a scalar degree of freedom, which could cause
post-Newtonian constraints obtained from Solar System experiments to be violated.
The model only remains valid if the scalar field can somehow be ‘shielded’ from such
experiments. This may be achieved via the so-called chameleon mechanism, whereby



5.2. METRIC f(R) GRAVITY: PRELIMINARIES 151

the effective mass M of the scalar varies according to the energy density of the local
environment. In high-density regions like the Solar System, a large M would shorten
the range of the scalar field to scales that cannot currently be probed by weak-field
experiments. On the other hand, M would have to be small at cosmological densities,
so as to allow the scalar field to act over a long range and drive the acceleration of
the Universe [56, 350, 351]. One important thing to note about chameleon behaviour
is that it cannot be described as a fine-tuning mechanism. Rather, it is a natural and
intrinsic property of those f(R) models whose weak-field limit satisfies observational
constraints.

Phase space analysis can also yield a wealth of information. In a particularly note-
worthy study that takes this approach [344], the authors consider the quantities
m = [RfRR/fR](r) (fRR stands for d2f/dR2) and r = −RfR/f and investigate
the behaviour of the m(r) curve on the (r,m) plane. It is found that for an f(R)

model to admit a viable matter-dominated epoch, the curve should satisfy the con-
ditions m(r) ≈ +0 and dm/dr > −1 at r ≈ −1. Additionally, a valid period of
late-time acceleration requires that m = −r − 1 while (

√
3− 1)/2 < m ≤ 1 and

dm/dr < −1, or that m lies in the range (0, 1] at r = −2 [344].

5.2.2 The cosmological equations as a set of first-order dif-
ferential equations

To avoid instabilities when solving Eqs. (5.5) and (5.6) numerically, we rewrite them
as a set of first order ordinary differential equations. To this end, we follow the study
of de la Cruz-Dombriz et al. [352], generalising their equations to the case of a non-
flat geometry and also including a radiation component. The starting-point is the
following change of variables:

s =
R

6
(
HΛ

0 η
)2 ; x = −R′(z)(1 + z) ;

y =
f(R)

6fR
(
HΛ

0 η
)2 ; ωm =

ΩΛ
m,0(1 + z)3

η2fR
;

ωr =
ΩΛ

r,0(1 + z)4

η2fR
; K =

κ(1 + z)2(
HΛ

0 η
)2 . (5.11)
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Here, a prime denotes differentiation with respect to the argument, η = H/HΛ
0 , Ωm,0

and Ωr,0 are the present-day values of the matter and radiation density parameters,
respectively, and a superscript Λ indicates quantities as measured/inferred in the
framework of a ΛCDM cosmology.

We have already seen that a candidate f(R) model ideally satisfies the condition
limR→∞ f(R) = R + constant. The constant should be equal to −2Λ (Λ stands
for the cosmological constant), so that Eq. (5.2) becomes indistinguishable from the
Einstein-Hilbert action at high redshifts. At late times, though, an f(R) cosmology
diverges from ΛCDM. As a result, the values that parameters like Ωm andH currently
attain are expected to differ in the two models, and we can write [353]

H
f(R)
0 6= HΛ

0 ; Ωf(R)
m,0 6= ΩΛ

m,0 , (5.12)

where a 0 subscript labels present-day quantities and a superscript is used to indicate
the corresponding model.

The matter density ρm in f(R) gravity takes the same form as in ΛCDM:

ρm =
3H2

0 Ωm,0
8πG (1 + z)3 . (5.13)

This follows from the fact that in both cases, matter is conserved independently of any
other cosmic fluid component. We may thus infer that there must be some redshift
zbound at which

ΩΛ
m,0

(
HΛ

0
)2

(1 + zbound)
3 → Ωf(R)

m,0

(
H
f(R)
0

)2
(1 + zbound)

3 , (5.14)

because the f(R) models we consider reduce to ΛCDM at high redshifts. Conse-
quently,

ΩΛ
m,0

(
HΛ

0
)2

= Ωf(R)
m,0

(
H
f(R)
0

)2
. (5.15)

This is another way of saying that the matter density (as expressed in physical units)
is not model-dependent [210]. Similarly, for radiation density we have that:

ΩΛ
r,0
(
HΛ

0
)2

= Ωf(R)
r,0

(
H
f(R)
0

)2
. (5.16)

The curvature parameter κ does not change with time and hence must satisfy
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κΛ = −ΩΛ
k,0
(
HΛ

0
)2

= −Ωf(R)
k,0

(
H
f(R)
0

)2
= κf(R) , (5.17)

since the relevant f(R) models evolve into ΛCDM as we go back in time. We recall
(from Chapter 1, section 1.3) that κ is defined as the ratio k/R2

0, k being the nor-
malised curvature parameter (equal to ±1 or 0) and R0 the present-day value of the
non-normalised scale factor. So if κΛ = κf(R), it must mean that at high redshifts,
an f(R) model with current scale factor R̂0 behaves as a ΛCDM model that also has
R0 = R̂0.

Eqs. (5.15)–(5.17) make it possible to rewrite the parameters Hf(R)
0 , Ωf(R)

m,0 , Ωf(R)
r,0

and Ωf(R)
k,0 in terms of their ΛCDM counterparts. This was already done for the

expressions in Eq. (5.11). Additionally, the fact that Λ represents the cosmological
constant in both models implies that

3
(
HΛ

0
)2

ΩΛ
Λ,0 = 3

(
H
f(R)
0

)2
Ωf(R)

Λ,0 . (5.18)

The equivalence between the spatial curvature and energy densities (in physical units)
of ΛCDM and f(R) gravity becomes especially useful when we carry out the fitting
analysis, because it enables us to construct priors for the cosmological parameters
from the Planck mean values and 1σ confidence intervals [20] (which were obtained
in the context of a ΛCDM cosmology).

Let us now return to Eq. (5.11). In terms of the new variables (η, s, x, y, ωm, ωr and
K), the system of cosmological equations to be solved becomes:

η′(z) =
η

z + 1(2− s+K) ; (5.19)

s′(z) = − s

z + 1

(
x

R
+ 4− 2s+ 2K

)
; (5.20)

x′(z) =
1

Γ(z + 1)
[
(xΓ)2 + s(xΓ− 1) + 3y− 1−K(1 + xΓ) + ωr

]
− xΓ′(z)Γ−1 ; (5.21)

y′(z) = − 1
z + 1

[
s
x

R
+ y(4− xΓ− 2s+ 2K)

]
; (5.22)

ω′m(z) =
ωm
z + 1(xΓ + 2s− 2K − 1) ; (5.23)

ω′r(z) =
ωr
z + 1(xΓ + 2s− 2K) ; (5.24)
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K ′(z) = − 2K
z + 1(K − s+ 1) , (5.25)

where Γ is equal to fRR/fR and serves to identify the model. The majority of the
above differential equations result directly from the change of variables specified in
Eq. (5.11). In other words, they would automatically be satisfied if the new variables
were rewritten in terms of the original ones. The sole exceptions are Eq. (5.21) – which
incorporates (5.5) and (5.6) – and Eq. (5.19); the latter is simply the expression for
R in an FLRW Universe:

R = 6
(
Ḣ + 2H2 +

κ

a2

)
, (5.26)

as rendered by the new choice of variables. Since Eqs. (5.24) and (5.25) do not in
themselves contain any information about cosmological dynamics, we replace them
with the relations for ωr and K from Eq. (5.11) to simplify the numerical analysis.

5.2.3 The Einstein and Jordan frames

The action of metric f(R) [Eq. (5.2)] may be recast in a form suggestive of scalar-
tensor theory. More specifically, it turns out to be the same as the action for a
Brans-Dicke theory with characteristic parameter ω = 0 [56]. An outline of the main
points is provided below.

To begin with, let us introduce a new field χ and consider the action [56]

S =
∫ √−g

16πG
[
f(χ) + f ′(χ)(R− χ)

]
d4x . (5.27)

Variation with respect to χ yields

f ′′(χ)(R− χ) = 0 , (5.28)

from which if follows that if f ′′(χ) 6= 0, χ must necessarily be equal to R, and the
original action [Eq. (5.2)] is recovered. Provided f ′′(χ) 6= 0, therefore, the actions in
Eqs. (5.2) and (5.27) are equivalent.

Next, we model f ′(χ) as a scalar field that we denote by φ. This implies that f(χ) +
f ′(χ)(R − χ) = f(χ) + φR − φχ = φR − [φχ − f(χ)] [56], and consequently Eq.
(5.27) becomes [56]



5.2. METRIC f(R) GRAVITY: PRELIMINARIES 155

S =
∫ √−g

16πG [φR− V (φ)] d4x , (5.29)

with the quantity φχ− f(χ) playing the role of the field potential V (φ). Eq. (5.29) is
the Jordan frame representation of the action for an ω = 0 Brans-Dicke theory [56].
However, Solar System data constrains |ω| to be greater than 40 000 [152], so metric
f(R) gravity would be invalidated were it not for the chameleon mechanism.

f(R) theory may be formulated in the Einstein frame via a conformal transformation
[56]:

gµν → ḡµν = Θ2gµν . (5.30)

Here,81 Θ2 = fR = φ, and a bar has been introduced to indicate Einstein-frame
quantities. The field φ is related to its Einstein-frame counterpart, φ̄, as specified
below [56]:

φ ≡ fR = exp
(
φ̄
√

16πG/3
)

. (5.31)

The potential associated with φ̄ takes the form [56]

V̄ (φ̄) =
RfR − f(R)

16πGf2
R

, (5.32)

while the conformally-transformed gravitational action reads [56]

S̄ =
∫ √
−ḡ

[
R̄

16πG −
1
2∂

αφ̄∂αφ̄− V̄ (φ̄)

]
d4x . (5.33)

5.2.4 Specific f(R) models

Among the viable f(R) models are the ones put forward by Hu and Sawicki [210],
Starobinsky [354], Tsujikawa [355] and Cognola et al. [346]. The said models are
the subject of numerous works in the literature [339, 348, 356], but almost always in
the context of a spatially flat Universe. In contrast, we will use observational data
to constrain cosmological and model-specific parameters without setting Ω0

k to zero.
First, however, let us take a closer look at each of these models in turn.

81We have already seen that φ = f ′(χ) and χ = R, which means that φ = fR.
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The Hu-Sawicki model

Hu and Sawicki proposed a class of ‘broken power-law’ models [210]:

f(R)HS = R− µ2 c1
(
R/µ2

)nHS

1 + c2 (R/µ2)nHS
. (5.34)

Here, c1 and c2 are dimensionless parameters, nHS represents a positive constant that
is usually assumed to be an integer, and µ2 ≈ H2

0 Ω0
m.

It may be shown that the Hu-Sawicki model includes ΛCDM as a limiting case and
can, in fact, be seen as a late-time modification of the latter [356]. Moreover, it
is possible to explicitly incorporate the cosmological constant Λ into Eq. (5.34) by
making the substitutions [357]

Λ =
µ2c1
2c2

; b =
2c1−n

−1
HS

2
c1

, (5.35)

which cast f(R)HS into the form [357,358]:

f(R)HS = R− 2Λ
(

1− 1
1 + [R/(bΛ)]nHS

)
. (5.36)

Eq. (5.36) makes it apparent that at high redshifts, when R� Λ, f(R)HS reduces to
R− 2Λ and ΛCDM is consequently recovered [358]. The differences that emerge at
smaller redshifts are quantified by the deviation parameter b [357] (b = 0 corresponds
to ΛCDM). Constraints placed on b by means of cosmological data, therefore, translate
into bounds on the allowed variation from the standard model. Additionally, the time
at which these variations set in is controlled by nHS: the larger its value, the longer
it takes for the Hu-Sawicki model to diverge from ΛCDM [210].

Now that we have clarified what effect any changes in nHS would have, we may
(without loss of generality) simplify the analysis by fixing this parameter at some
specified value. We shall follow other works in the literature and set nHS to unity
[348, 356, 357]. Furthermore, only non-negative values of b will be considered. The
reason is that when nHS = 1, fRR = 4bΛ2/(R+ bΛ)3, and so having b < 0 would
mean that fRR becomes negative as soon as R > −bΛ. We have already seen that
fRR is required to be positive (or zero) for an f(R) theory to be viable.

Before proceeding to the next model, it would be interesting – and extremely useful for
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the fitting analysis performed later – to determine at what redshift the Hu-Sawicki
model becomes effectively indistinguishable from ΛCDM. To this end, we adopt a
procedure similar to the one proposed in Ref. [353] for exponential f(R). Eq. (5.36)
allows us to deduce that if f(R)HS is to approach R − 2Λ at high redshifts, the
magnitude of 1/{1+ [Rf(R)/(bΛ)]nHS} must decrease asymptotically to zero as we go
back in time. This may be expressed as the requirement that at some redshift zbound,
the quantity 1/|1 + [Rf(R)/(bΛ)]nHS| is equal to ε (with ε � 1), at which point
any differences between the f(R) model and ΛCDM are negligible. Additionally, at
z = zbound one expects Rf(R) to take the form RΛ + ξ (for some |ξ| � |RΛ|). With
these considerations in mind, we may write

1 +
(
RΛ + ξ

bΛ

)nHS

≈ 1 +
(
Rf(R)

bΛ

)nHS

=
1
ε

;

=⇒
(

bΛ
RΛ + ξ

)nHS

≈ ε

1− ε ;

=⇒ bΛ
RΛ + ξ

≈
(

ε

1− ε

)n−1
HS

= ν ;

=⇒ bΛ
RΛ ≈ ν

(
1 + ξ

RΛ

)
,

and if terms higher than first order in ε and ξ/RΛ are discarded, it follows that

ν =
(

ε

1− ε

)n−1
HS

= εn
−1
HS(1− ε)−n

−1
HS ≈ εn

−1
HS

(
1 + ε

nHS

)
≈ εn

−1
HS ;

=⇒ bΛ
RΛ ≈ ν

(
1 + ξ

RΛ

)
≈ εn

−1
HS

(
1 + ξ

RΛ

)
≈ εn

−1
HS ≈ ν . (5.37)

Therefore, bΛ/RΛ ≈ ν at z = zbound. Using the relation82 RΛ = 3H2
0 [Ω0

m(1+ z)3 +

4Ω0
Λ], we solve for zbound and find that

zbound =

[
Ω0

Λ
Ω0

m

(
b

ν
− 4

)]1/3
− 1 . (5.38)

82This may be obtained from Eq. (5.26) by writing H2 as H2
0 (Ω

0
ma
−3 + Ω0

ra
−4 + Ω0

Λ + Ω0
ka
−2),

which is simply Eq. (1.38) with ρ = ρm+ ρr and ρm, ρr, Λ and κ expressed in terms of the respective
density parameters.
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The Starobinsky model

Starobinsky proposed the function [354]:

f(R)S = R+ λRS

(1 + R2

R2
S

)−nS

− 1
 , (5.39)

where nS and λ denote positive constants, and the third constant (RS) is of the order
of the present-day Ricci scalar [355]. As was done for the Hu-Sawicki model, we cast
f(R)S in the form of a perturbed ΛCDM Lagrangian [348]:

f(R)S = R− 2Λ

1−
(

1 + R2

(bΛ)2

)−nS
 , (5.40)

which clearly shows that f(R)S → R− 2Λ when R� Λ or when b→ 0. Λ and b may
be expressed in terms of the original parameters as λRS/2 and 2/λ, respectively [348].

The redshift zbound is again given by Eq. (5.38). This time, though, we have that

ε =

(
1 + R2

(bΛ)2

)−nS

; ν =

√√√√ ε1/nS

1− ε1/nS
. (5.41)

The Exponential model

In this case, the f(R) function reads [346]

f(R)E = R+ β [exp(−γR)− 1] , (5.42)

or equivalently [348]

f(R)E = R− 2Λ
[
1− exp

(
− R

bΛ

)]
, (5.43)

with Λ = β/2 and b = 2/(γβ). The parameter γ must be non-negative so that at
high redshifts, when R� Λ, the exponential function becomes negligible and ΛCDM
is recovered [353]. This also happens for b = 0.

The redshift zbound may be estimated from Eq. (5.38) by making use of the relations

ε = exp
(
− R

bΛ

)
; ν =

1
ln (1/ε)

. (5.44)
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The Tsujikawa model

The model proposed by Tsujikawa is based on the function [355]

f(R)T = R− ζRT tanh
(
R

RT

)
, (5.45)

where ζ and RT are positive constants. We may alternatively write

f(R)T = R− 2Λ tanh
(
R

bΛ

)
. (5.46)

Here, b = 2/ζ and Λ = ζRT/2 [348], and the model becomes equivalent to ΛCDM
either when R � Λ or when b = 0 (since tanh [R/(bΛ)] → 1 in both cases). The
quantities ε and ν required to calculate zbound [Eq. (5.38)] are given by

ε = 1− tanh
(
R

bΛ

)
; ν =

1
arctanh(1− ε) . (5.47)

5.3 Perturbations in f(R) Gravity

The perturbation equations are derived as outlined in Appendix A. The f(R) analogue
of Eq. (A.3) is given by:

δGµνfR + (Rµν −∇µ∇ν + δµν�) fRRδR+
(
δgµα∇ν∇α − δµν δgαβ∇α∇β

)
fR+(

gαµδΓγαν − δµν gαβδΓγβα
)
∂γfR = 8πG δTµν , (5.48)

where Rµν is the Ricci tensor, and the quantities δR, δgµν and δΓµσν denote perturba-
tions in the Ricci scalar, the metric tensor and the metric connection, respectively.
The perturbations in the energy-momentum tensor are as specified in Eq. (A.4).

To first order in the metric perturbations Φ and Ψ, and expressed in terms of
momentum-space variables, the time-time component of Eq. (5.48) reads:

2fR
{

Ψ
(
k2
† − 3κ

)
+ 3H

[
Ψ′(τ ) + ΦH

]}
+ fRR

[
3H′(τ )δR− k2

†δR− 3H δR′(τ )
]
−

3H δR f ′RR(τ ) + 3f ′R(τ )
[
2HΦ + Ψ′(τ )

]
+ 8πGa2ρmδm = 0 , (5.49)
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with all symbols having the same meaning as in Appendix A, and

δR =

2
a2

{
k2
† (Φ− 2Ψ)− 3

[
2ΦH′(τ ) + 3HΨ′(τ ) +HΦ′(τ )− 2κΨ + Ψ′′(τ ) + 2ΦH2

]}
.

(5.50)

Φ and Ψ are not equal in f(R) gravity. Instead, they satisfy:

Ψ−Φ =
fRRδR

fR
. (5.51)

This relation follows from the i-j component (i 6= j) of Eq. (5.48).

Eqs. (5.49) and (5.50) are quite involved but may be simplified using the sub-Hubble
and quasi-static approximations, whence they become:83

2fRΨ(k2
† − 3κ)− fRRk2

†δR+ 8πGa2ρmδm = 0 ; (5.52)

δR =
2
a2

[
k2
† (Φ− 2Ψ) + 6κΨ

]
. (5.53)

Meanwhile, the conservation equations retain the same form as in GR:84

δ′m(τ ) = (1 +wm)
[
−k†v+ 3Ψ′(τ )

]
; (5.54)

v′(τ ) = Hv(3wm − 1) + k†

(
Φ +

wmδm
1 +wm

)
. (5.55)

and may readily be combined to give:

δ′′m(τ ) +Hδ′m(τ ) + k2
†Φ− 3Ψ′′(τ )− 3HΨ′(τ ) = 0 , (5.56)

where we have utilised the fact that a dust distribution (which provides a good de-
scription of the matter in the Universe) has wm = 0. Under the sub-Hubble and
quasi-static approximations, Eq. (5.56) further simplifies to

δ′′m(τ ) +Hδ′m(τ ) + k2
†Φ = 0 . (5.57)

To obtain an expression for Φ, we insert Eq. (5.53) into Eqs. (5.51) and (5.52) and

83More details about the way in which Eqs. (5.49), (5.50) and (5.56) are reduced to Eqs. (5.52),
(5.53) and (5.57), respectively, may be found at the end of Appendix A.

84Refer to Appendix A, Eqs. A.20 and A.21.
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solve the last two for Φ (and Ψ), then use the solution to substitute for Φ in Eq. (5.57),
getting that

δ′′m(τ ) +Hδ′m(τ )− 4πGρma2 k2
†
[
a2fR + 4fRR(k2

† − 3κ)
]

fR
[
3fRRk2

†
(
k2
† − 4κ

)
+ a2fR

(
k2
† − 3κ

)]δm = 0 ,

(5.58)
which may also be written as

δ′′m(τ ) +Hδ′m(τ )− 4πρmδma2Geff = 0 , (5.59)

with
Geff
G

=
k2
†
[
a2fR + 4fRR(k2

† − 3κ)
]

fR
[
3fRRk2

†
(
k2
† − 4κ

)
+ a2fR

(
k2
† − 3κ

)] . (5.60)

In terms of our new variables [Eq. (5.11)], Geff/G reads:

Geff
G

=
k2
†ωma

3η2
[
a2 + 4Γ(k2

† − 3κ)
]

ΩΛ
m,0

[
a2(k2

† − 3κ) + 3k2
†Γ(k

2
† − 4κ)

] . (5.61)

5.4 Numerical Analysis

5.4.1 Preliminaries

The parameter values that best allow the models to describe what we observe are
those that maximise the joint likelihood function:

Ltotal ∝ exp
[
−1

2
(
χ2
SNeIa + χ2

H(z) + χ2
CMB + χ2

BAO + χ2
LSS

)]
. (5.62)

We shall use the same observables and likelihoods presented in Chapter 4, section 4.5.
The few modifications made are listed below.

• The JLA likelihood is exchanged for a more recent version available with Monte
Python v.3.0.1 – the Pantheon likelihood, based on a sample of 1048 SNeIa in
the redshift range 0.01 < z < 2.3 [359].

• The index of the primordial scalar power spectrum, ns, is added to Table 4.2
(as was done in Chapter 4 when we included LSS measurements with the data).
The new set of CMB distance priors is shown below:
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Table 5.1: Mean values and corresponding errors for the CMB distance priors [277].

R lA Ω0
bh

2 ns

1.7448± 0.0054 301.460± 0.094 0.02240± 0.00017 0.9680± 0.0051

The normalised covariance matrix of Eq. (4.38) is updated accordingly:

CCMB =



R lA Ω0
bh

2 ns

R 1.00 0.53 −0.73 −0.80

lA 0.53 1.00 −0.42 −0.43

Ω0
bh

2 −0.73 −0.42 1.00 0.59

ns −0.80 −0.43 0.59 1.00


. (5.63)

• For the BAO likelihood, we shall be using Table 4.4 in conjunction with the
following selection from Table 4.3:

Table 5.2: Uncorrelated BAO data measured at different effective redshifts, zeff. Column 4 gives
the error in each quantity.

Ref. zeff Quantity σ Type
[279] 0.106 0.323 0.014 1
[280] 0.150 4.490 0.170 2
[282] 2.330 1.031 0.026 3
1: rs(zd)/dv ; 2: dv/rs(zd) ;
3: α0.7

‖ α0.3
⊥ ;

rs, fid(zd) = 147.78 Mpc [283].

The remaining entries are excluded so as to remove potential correlations be-
tween BAO and fσ8 data.

• The compilation of fσ8 measurements is taken from Ref. [288] and presented
in Table 5.3. The covariance matrices for the data points from Ref. [301] and
those from Ref. [360] may be found in Ref. [288].

To calculate fσ8(z) for a given model, we need two quantities: the growth rate f ,
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Table 5.3: LSS data. Each fσ8 measurement is listed together with the corresponding redshift z
and error σfσ8

. Column 5 shows the values of Ω0
m in the respective fiducial cosmologies.

Ref. z fσ8(z) σfσ8
Ωfid

m,0

[21, 297] 0.02 0.314 0.048 0.266
[301] 0.44 0.413 0.080 0.27
[301] 0.60 0.390 0.063 0.27
[301] 0.73 0.437 0.072 0.27
[302] 0.60 0.550 0.120 0.30
[302] 0.86 0.400 0.110 0.30
[303] 1.40 0.482 0.116 0.27
[360] 0.978 0.379 0.176 0.31
[360] 1.230 0.385 0.099 0.31
[360] 1.526 0.342 0.070 0.31
[360] 1.944 0.364 0.106 0.31

and the standard deviation of density perturbations in spheres of radius 8h−1 Mpc,
σ8(z). The former is a function of δm, the matter density contrast:

f =
d(ln δm)
d ln a , (5.64)

which may in turn be obtained from Eq. (5.58) by solving it as part of the system of
differential equations given by (5.19)–(5.23) [ωr and K are directly inputted as defined
in Eq. (5.11)].

Since Eq. (5.58) is dependent on k†, it is necessary to choose an appropriate comoving
wave number at which f is evaluated. We shall focus exclusively on values of k†
lying in the range 0.02hMpc−1 ≤ k† ≤ 0.2hMpc−1. The choice of bounds is based
on two considerations: firstly, modes with k† . 0.2hMpc−1 represent perturbations
which may safely be considered linear [296], and secondly, the mode that crosses the
horizon at matter-radiation equality has85 k† ∼ 0.015hMpc−1. The latter implies
that smaller scales – corresponding to a larger k† – would be well within the horizon
deep in the matter era and during the subsequent period of acceleration (these being
the epochs of interest). We shall therefore determine f at two different wave numbers:

85This estimate is obtained from Eq. (4.73) by putting B = C = 0 (i.e. assuming a ΛCDM
cosmology) and assigning the Planck TT,TE,EE+lowE+lensing mean values to H0, Ω0

m and zeq [20].
The quantity zeq is the redshift at which matter and radiation densities were equal, and may be used
to calculate Ω0

r [since Ω0
r = Ω0

m/(1 + zeq)].
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k† = 0.1hMpc−1 and k† = 0.05hMpc−1. These values of k† satisfy the relation86

k2
† � |κ|, and so Eq. (5.60) may be simplified to:

Geff
G

=
a2fR + 4fRRk2

†

fR
(
3fRRk2

† + a2fR
) . (5.65)

Finally, solving Eq. (5.58) requires a pair of initial conditions. The simplest choice
is putting δm(aini) = aini and δ′m(a = aini) = 1 [or equivalently, δm(τini) = aini and
δ′m(τ = τini) = H(aini)a

2
ini ], aini and τini being the scale factor and conformal time at

which the initial conditions are applied, respectively. However, this is only an option if
two requirements are met: firstly, aini must be deep in the matter-dominated epoch,
when dark energy and any spatial curvature are still very sub-dominant and need
not be taken into account. Secondly, the given initial conditions are only valid in a
ΛCDM cosmology [296]. This is where the quantity zbound derived in subsection 5.2.4
comes in. Let us recall that when z = zbound, f(R) = R− 2Λ(1− ε) for some ε� 1.
Therefore, by calculating zbound for the expected range of values of b, we may estimate
the maximum redshift at which a model becomes effectively indistinguishable from
ΛCDM, and we can also ensure that this happens in the matter-dominated era by
choosing an adequate ε. Consequently, we know where to apply the initial conditions
in question. The specific value of ε is thus dependent upon the dynamics of the model
being considered (Table 5.4). For instance, in the case of the Hu-Sawicki model,
it suffices to have ε ∼ 10−5. On the other hand, the Exponential model converges
to ΛCDM extremely rapidly and hence a smaller ε works better, although it is still
necessary to fix zini (= a−1

ini − 1) at a value larger than the maximum zbound. The
same can be said for the Tsujikawa model. It should be noted that the final results
are not dependent on the exact value of ε (provided ε is chosen properly). This was
verified for both the Exponential and Tsujikawa models.

The initial conditions for Eqs. (5.19)–(5.23) are essentially the ΛCDM limits of the
quantities in Eq. (5.11). Once we have an approximate upper bound for zbound, we
are able to identify a range of redshifts at which these conditions are best specified.
The exact value we pick is not important.

The second quantity we need is σ8(z). This is defined as in Eq. (4.72), but with one

86For the given range of wave numbers, we have that 4×10−4 h2 Mpc−2 ≤ k2
† ≤ 4×10−2 h2 Mpc−2.

In contrast, Eq. (1.51) implies that the spatial curvature κ (= −Ω0
kH

2
0 ) is constrained to lie in the

interval −H2
0 ≤ κ ≤ H2

0 , otherwise expressed as −1.11× 10−7 h2 Mpc−2 ≤ κ ≤ 1.11× 10−7 h2 Mpc−2

– although in reality |Ω0
k| is not expected to exceed 0.1 [20], let alone approach unity.
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Table 5.4: The value of ε adopted for each model.

Model ε

Hu-Sawicki 10−5

Starobinsky 10−10

Exponential 10−50

Tsujikawa 10−15

exception: the contrast function δm is k†-dependent in f(R) gravity, and so must be
included as part of the integrand when we integrate over k†:

σ2
8(z) =

∞∫
0
δ2
m(z, k†) k2+ns

†

[
4As k1−ns

∗
25H4

0 (Ω0
m)

2

]
T 2(k†)W

2(k†) dk† . (5.66)

That one modification, however, means much in terms of code complexity and run
time. Every different value of k† we consider entails that we solve Eq. (5.58) nu-
merically for δm over the relevant redshift range. The results are stored in a table,
and at a given redshift z and comoving wave number k†, δm(z, k†) is extracted from
the table by interpolation and used to calculate the integrand in Eq. (5.66). This
way, the numerical integrator is supplied with the value of the integrand at any k†
and z. To cut down on running time, it is best to solve equations (5.19)–(5.23) first.
These do not contain δm or any of its derivatives. Hence, solving them separately
from Eq. (5.58) is perfectly feasible. The results can then be made accessible to the
numerical integrator, enabling it to read in (or acquire by interpolation) the value of
the relevant parameters at any redshift while solving Eq. (5.58) for δm.

The approach detailed above makes it necessary to truncate the range of wave numbers
over which integration is performed. The best way to achieve this is by plotting the
integrand as a function of k† for various values of z, then inferring the cut-off point
from the outcome. Fig. 5.1 shows a sample of such plots. The intuitive choice is
k† = 0.5hMpc−1, but one must keep in mind that perturbations evolve non-linearly
on scales smaller than around 0.2hMpc−1. Consequently, the linear perturbation
equations we work with do not give an accurate description of structure growth beyond
this limit. k† = 0.5hMpc−1 is nonetheless a good starting point. We refine it further
by calculating σ8,0 for a ΛCDM cosmology and comparing it with the value returned
by the default CLASS code. The two are closest when the upper integration limit is
≈ 0.4hMpc−1.
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Figure 5.1: The variation of the integrand in Eq. (5.66) with comoving wave number (only the
k†-dependent part is plotted). The curves labelled ‘Hu-Sawicki’ are based on the mean parameter
values presented in Table V of Ref. [356], while the remaining parameters were fixed in accordance
with either the Planck 2018 [20] or the WMAP 9-year [19] results. The label ‘ΛCDM’ indicates that
only Planck or WMAP values were used. The curve for the Starobinsky model was obtained by
combining the results of Ref. [339] with Planck values.

Table 5.5: The flat priors for the baseline parameters.

Parameter Min Max

H0
(
km s−1Mpc−1) 50 90

Ω0
bh

2 0.005 0.040

Ω0
cdmh

2 0.05 0.20

Ω0
k -0.3 0.3

b 0.0 1.0

ns 0.75 1.25

ln (1010As) 2.8 3.2

The study was performed using the Cosmic Linear Anisotropy Solving System (CLASS)
v.2.6.3 [263] (with the necessary modifications to the background module) to simulate
the cosmological evolution. Markov Chain Monte Carlo (MCMC) sampling of pa-
rameter probability distributions was done with Monte Python v.3.0.1 [264, 361],
and the plots presented in the next section were constructed with the MCMC anal-
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ysis package GetDist v.1.0.3 [314]. The priors required for the MCMC part of the
analysis are listed in Table 5.5. Any parameters not included in the baseline set were
allowed to take their CLASS default values, the only exception being the reionization
optical depth, which was set to 0.0544 [20]. Moreover, ln (1010As) was varied subject
to a likelihood constructed from the Planck 2018 TT,TE,EE+lowE+lensing mean
value and 1σ confidence interval {As = (2.10± 0.03)× 10−9 [20]}. This is necessary
because otherwise, the LSS likelihood attempts to make model predictions compatible
with LSS data by ‘picking’ values of As well outside the established range.

5.5 Results

5.5.1 The Hu-Sawicki model

As shown in Figs. 5.2 and 5.3, as well as in the triangle plots provided in Appendix B,
the 2D posteriors for b are not Gaussian. Therefore, the mean and standard deviation
tell us very little, and for this reason Table 5.6 includes the 68th and 95th percentiles i.e.
the values of b below which 68% or 95% of sampled points (approximately equivalent
to 68% or 95% of the one-dimensional posterior) may be found. Here it is important
to note that not all sampled points are distinct: whenever a proposal is rejected by
the algorithm, the previous sample (in other words, the last point to be incorporated
into the chain) is repeated. A concise review of Markov Chain Monte-Carlo sampling
is provided in Appendix D.

Figure 5.2: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
Λ, in the context of the Hu-Sawicki model. The label ‘Flat’ denotes

constraints obtained with Ω0
k fixed at zero, while ‘Nonflat’ means that Ω0

k was treated as a free
parameter. Dark and light shades represent 1σ and 2σ confidence intervals, respectively.
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Table 5.6: Mean values and 1σ confidence limits for the Hu-Sawicki model.

Parameter Flat Nonflat Nonflat

k† = 0.1hMpc−1 k† = 0.1hMpc−1 k† = 0.05hMpc−1

H0 68.5280+0.4797
−0.4851 68.6820+0.6489

−0.6655 68.6880+0.6491
−0.6628

103Ω0
bh

2 22.4790+0.1441
−0.1460 22.4310+0.1722

−0.1711 22.4310+0.1731
−0.1725

Ω0
cdmh

2 0.1188+0.0010
−0.0010 0.1194+0.0015

−0.0016 0.1194+0.0015
−0.0016

103Ω0
k −− 0.8612+1.9846

−1.9610 0.8798+1.9762
−1.9557

104b 0.2739+0.1789
−0.2739 0.3819+0.0438

−0.3819 1.8695+1.5232
−1.8695

104b (68%) < 0.2721 < 0.3316 < 1.3738

104b (95%) < 0.9357 < 1.2139 < 5.3355

ns 0.9705+0.0041
−0.0041 0.9689+0.0051

−0.0051 0.9689+0.0051
−0.0051

ln
(
1010As

)
3.0442+0.0148

−0.0144 3.0442+0.0148
−0.0145 3.0442+0.0150

−0.0143

Ω0
Λh

2 0.6989+0.0062
−0.0061 0.6982+0.0063

−0.0061 0.6982+0.0063
−0.0061

Figure 5.3: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
k, in the context of the Hu-Sawicki model. The contours are labelled

according to the comoving wave number at which the growth rate f was calculated.

From the information presented in Table 5.6, we conclude that the constraints placed
on b when k† = 0.05hMpc−1 are considerably weaker than those corresponding to
k† = 0.1hMpc−1. This feature also emerges clearly in Fig. 5.2. As for spatial
curvature, the role it plays is hardly significant: the 2D posteriors for b vs Ω0

k are
compatible with a flat geometry within a 1σ confidence interval (as are the results
of Table 5.6 for Ω0

k), and Fig. 5.2 demonstrates that apart from slightly loosening
constraints, the presence of curvature has minimal effect on b. We shall note much
the same behaviour for the Starobinsky, Exponential and Tsujikawa models.
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5.5.2 The Starobinsky model

As is immediately apparent from Fig. 5.5, constraints on b are again appreciably
tighter for the larger wave number. It would be interesting to extend the analysis
and investigate whether this is a general trend; in other words, whether smaller scales
allow for less deviation from ΛCDM.

Here, too, spatial curvature has little impact on the mean values and percentiles we
get for b.

Table 5.7: Mean values and 1σ confidence limits for the Starobinsky model.

Parameter Flat Nonflat Nonflat

k† = 0.1hMpc−1 k† = 0.1hMpc−1 k† = 0.05hMpc−1

H0 68.4300+0.4808
−0.4885 68.6080+0.6570

−0.6666 68.5910+0.6512
−0.6586

103Ω0
bh

2 22.4620+0.1461
−0.1457 22.4250+0.1723

−0.1711 22.4250+0.1703
−0.1729

Ω0
cdmh

2 0.1190+0.0010
−0.0010 0.1195+0.0015

−0.0016 0.1195+0.0015
−0.0015

103Ω0
k −− 0.7888+2.0068

−1.9766 0.7448+2.0605
−1.8984

b 0.0074+0.0256
−0.0074 0.0087+0.0246

−0.0087 0.0132+0.0021
−0.0132

b (68%) < 0.0067 < 0.0068 < 0.0137

b (95%) < 0.0178 < 0.0189 < 0.0382

ns 0.9699+0.0041
−0.0042 0.9687+0.0051

−0.0051 0.9687+0.0050
−0.0051

ln
(
1010As

)
3.0442+0.0148

−0.0146 3.0442+0.0150
−0.0146 3.0442+0.0152

−0.0144

Ω0
Λh

2 0.6976+0.0063
−0.0061 0.6975+0.0063

−0.0061 0.6974+0.0064
−0.0058

Figure 5.4: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
Λ, in the context of the Starobinsky model.
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Figure 5.5: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
k, in the context of the Starobinsky model. The contours are labelled

according to the comoving wave number at which the growth rate f was calculated.

5.5.3 The Exponential model

Results are presented in Table 5.8, in Figs. 5.6 and 5.7, and in Appendix B. As was
the case for the Hu-Sawicki and Starobinsky models, the constraints obtained for the
cosmological parameters87 with k† = 0.1hMpc−1 and k† = 0.05hMpc−1 are very
similar; this conclusion is especially reinforced by the triangle plot in Appendix B.
The same plot shows that there is a high degree of anti-correlation between the age of
the Universe and Ω0

k. Accordingly, a universe with positive curvature (negative Ω0
k)

would be older than one having κ < 0. This feature is common to all f(R) models
we study. Contrary to what was noted for the previous two models, however, we find
that a change in wave number does not have significant consequences for b.

The 2D marginalised posteriors for the flat and non-flat scenarios (included in
Appendix B) demonstrate that fixing Ω0

k at zero tends to tighten contours, especially
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Figure 5.6: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
Λ, in the context of the Exponential model.

87b is classified as a model parameter, not a cosmological one.
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Table 5.8: Mean values and 1σ confidence limits for the Exponential model.

Parameter Flat Nonflat Nonflat

k† = 0.1hMpc−1 k† = 0.1hMpc−1 k† = 0.05hMpc−1

H0 68.3990+0.4800
−0.4810 68.5510+0.6598

−0.6648 68.5650+0.6520
−0.6657

103Ω0
bh

2 22.4560+0.1457
−0.1448 22.4210+0.1701

−0.1719 22.4220+0.1719
−0.1715

Ω0
cdmh

2 0.1191+0.0010
−0.0010 0.1195+0.0016

−0.0016 0.1195+0.0015
−0.0016

103Ω0
k −− 0.7000+2.0506

−1.9734 0.7216+1.9878
−1.9544

b 0.1601± 0.1029 0.1641± 0.1135 0.1769± 0.1124

ns 0.9697+0.0041
−0.0041 0.9686+0.0051

−0.0052 0.9686+0.0051
−0.0052

ln
(
1010As

)
3.0443+0.0147

−0.0146 3.0441+0.0149
−0.0144 3.0442+0.0149

−0.0144

Ω0
Λ 0.6972+0.0063

−0.0061 0.6971+0.0063
−0.0061 0.6971+0.0063

−0.0061

those that involve the age of the Universe. Such behaviour is in line with our previous
observation that spatial curvature and cosmic age are strongly (anti-) correlated.

Another curious feature that emerges in Figs. 5.6 and 5.7 is the bi-modality of the 2D
posteriors for b. In this regard, some important points to consider are the following:

• Bi-modality also appears in the plots presented in Fig. 4 of Ref. [348], especially
the ones obtained with the combination of JLA, BAO, CC (cosmic clocks), and
H0 data sets. Let us focus on what the two studies have in common: the JLA,
BAO and CC likelihoods (there are some differences – to begin with, we use the
Pantheon rather than the JLA likelihood, and the BAO and CC data does not
exactly match ours, either).

• Removing these likelihoods one at a time from the set specified in Eq. (5.62), and
running a few chains, quickly allows us to deduce that the observed bi-modality
cannot be attributed to the JLA, BAO or CC likelihoods. Whether or not it is
an intrinsic property of the model is hard to tell, however, since it is not easy
to test if any features of the posteriors are due to the LSS or CMB likelihoods.
In the absence of the former, constraints on b become extremely weak, whereas
removing the latter makes it very difficult to get good convergence.
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Figure 5.7: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
k, in the context of the Exponential model. The contours are labelled

according to the comoving wave number at which the growth rate f was calculated.

5.5.4 The Tsujikawa model

In this case, the 2D marginalised posteriors for b (Figs. 5.8 and 5.9) also turn out to
be bimodal. We again note (from Table 5.9 and the triangle plots in Appendix B)
that changing k† from 0.1hMpc−1 to 0.05hMpc−1 has very little effect on the results,
and that parameter constraints are, on the whole, more stringent when the Universe
is assumed to be flat.

Table 5.9: Mean values and 1σ confidence limits for the Tsujikawa model.

Parameter Flat Nonflat Nonflat

k† = 0.1hMpc−1 k† = 0.1hMpc−1 k† = 0.05hMpc−1

H0 68.3970+0.4811
−0.4815 68.5620+0.6480

−0.6591 68.5540+0.6552
−0.6608

103Ω0
bh

2 22.4550+0.1448
−0.1450 22.4220+0.1713

−0.1712 22.4210+0.1706
−0.1706

Ω0
cdmh

2 0.1191+0.0010
−0.0010 0.1195+0.0015

−0.0016 0.1196+0.0015
−0.0016

103Ω0
k −− 0.7180+1.9853

−1.9563 0.7129+1.9839
−1.9624

b 0.3028± 0.1858 0.2999± 0.1843 0.3312± 0.2031

ns 0.9697+0.0041
−0.0041 0.9686+0.0052

−0.0051 0.9686+0.0051
−0.0051

ln
(
1010As

)
3.0443+0.0148

−0.0144 3.0442+0.0149
−0.0145 3.0442+0.0149

−0.0145

Ω0
Λ 0.6972+0.0063

−0.0061 0.6971+0.0063
−0.0061 0.6970+0.0063

−0.0061
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Figure 5.8: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
Λ, in the context of the Tsujikawa model.
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Figure 5.9: Marginalised posterior probability distributions for the deviation parameter b vs (left)
H0, (centre) Ω0

m, (right) Ω0
k, in the context of the Tsujikawa model. The contours are labelled

according to the comoving wave number at which the growth rate f was calculated.

5.6 In Brief. . .

This chapter analyses the role of spatial curvature in the framework of f(R) gravity:
more specifically, in the context of the Hu-Sawicki, Starobinsky, Exponential and
Tsujikawa models. The deviation from ΛCDM is quantified by a parameter b, which
was found to exclude the ΛCDM limit (b = 0) at 1σ in the Exponential and Tsujikawa
models.

We have seen that treating Ω0
k as a free parameter has little impact on the results

in comparison to fixing it at zero. Moreover, the constraints obtained for Ω0
k are all

compatible with a flat geometry within a 1σ confidence interval. This appears to be
independent of the value we choose for the comoving wave number k†. In general, the
constraints placed on cosmological parameters when k† = 0.1hMpc−1 are essentially
the same as those resulting from k† = 0.05hMpc−1, but may change significantly in
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the case of the model parameter b. The latter effect was mainly noted for the Hu-
Sawicki and Starobinsky models, which yielded considerably tighter constraints for b
when k† was set to 0.1hMpc−1.



Conclusion

A successful cosmological model must incorporate the observed accelerated expansion
of the Universe. This can mainly be done in two ways: by adding dark energy (i.e.
a component with negative pressure) to the cosmic fluid, or by modifying gravity i.e.
altering the General Relativistic description of the geometry of space-time. The most
popular cosmological model is undoubtedly ΛCDM, in which the negative pressure
is provided by a cosmological constant Λ that is identified with the energy of the
vacuum itself. Unlike matter and radiation, this energy does not get diluted as the
Universe expands. It eventually comes to dominate and causes the cosmic expansion
to accelerate. ΛCDM has proven to be successful on many fronts, but its various
shortcomings have prompted the scientific community to propose other models of
dark energy. Chapter 1 provides an overview of the most well-known among these.
The greater majority are characterised by some form of dark energy whose density
varies with time (contrary to what happens in ΛCDM), and are hence called dynamical
dark energy models. Theories which modify the gravitational sector directly are also
included in this category, because they usually give rise to the same effects as a
dynamical dark energy component.

Chapter 1 additionally introduces the issue of spatial curvature. The Universe is
often assumed to be spatially flat, as evidenced by a great number of works in the
literature. Many times, this is based on the fact that a flat geometry appears to be
consistent with observations. For the most part, however, the studies which present
evidence for such consistency do so in a ΛCDM context [19, 20, 106, 107]. It appears
that the compatibility of observational data with non-zero spatial curvature depends
on the model considered and even on the selected data sets. Indeed, some dynamical
dark energy models seem to accommodate a non-flat geometry more readily than
ΛCDM [112–114]. The crux of the matter is that spatial curvature is correlated with a
good number of cosmological or model-dependent parameters, so a wrong assumption
about it can greatly distort our conclusions regarding the nature and evolution of dark
energy [115,117]. It is therefore of utmost importance that the possibility of a curved
geometry is not treated lightly. This brings us to the aim of the work presented here:
the investigation of whether different dynamical dark energy models also support the
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hypothesis of spatial flatness, or whether they fit the data best in the presence of
curvature. In all cases, the space-time manifold is equipped with the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric. Chapter 1 outlines the main features of
an FLRW cosmology.

In Chapter 2, dark energy is modelled as a scalar field that can either be minimally
or non-minimally coupled to the Ricci scalar. Several analytical late-time solutions
to the Friedmann equations are constructed – three are valid in the absence of spatial
curvature, two hold in a closed universe, and another two in an open one. These
solutions all give rise to an accelerated expansion and satisfy the weak energy condi-
tion. However, a good proportion of them have some unpalatable characteristic, such
as the failure to account for a matter distribution, or the prediction of a cosmic age
that is not in line with current constraints. The most promising is a model in which
the scale factor increases exponentially with time, the matter content is dust-like, the
minimally-coupled scalar field φ is given by C(D1−D2e−Bt)3/2 (C, D1 and D2 being
constants), and the spatial curvature is positive. The energy density of the scalar
field gradually loses its dynamic nature, indicating that φ begins to behave like a
cosmological constant as time goes by.

The work presented in Chapter 2 illustrates an important point: it is often necessary
to combine analytical methods with numerical techniques when trying to solve the
field equations for a particular model. The introduction of spatial curvature tends to
increase the complexity of the equations. This makes it very difficult to find exact
analytical solutions that can be reconciled with cosmological observations.

Chapter 3 attempts to answer the question: if three models are identical in all aspects
except for curvature at some fixed point in time, how would they evolve? The role
of curvature is thus investigated in the context of five models from the literature
[176,199]. The first model is constructed by using the Van der Waals (VdW) equation
of state (EoS) to describe the cosmic fluid. This way, it is confirmed that a dark
energy component is needed to correctly reproduce the current period of acceleration,
and so in the remaining four models, dark energy is introduced as Quintessence, a
Chaplygin gas or a dynamical Λ. Meanwhile, the matter distribution takes the form
of a VdW fluid in the first four models but is dust-like in the last one. What is
especially interesting about the fifth model is the fact that, since there is no VdW
fluid which can give rise to inflation, the time-dependent vacuum must be the factor
responsible for the accelerated expansion during both early and late times [199].

The effects due to curvature turn out to be quite significant. It is found that the
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transition to the epoch of decelerated expansion would be delayed for the closed
universe (with respect to the flat one); so would the start of the current dark energy-
dominated era. Moreover, positive curvature appears to enhance both the inflationary
acceleration and also the subsequent deceleration. On the other hand, the opposite is
noted for an open universe. The commonality of these features among all five models88

suggests that they are independent of the form that matter and dark energy take.
Furthermore, small variations in the initial conditions or in any of the parameters only
alter the magnitude of the effects due to curvature. Another interesting characteristic
is the fact that the evolution appears to be much less dependent on spatial curvature
at late times.

The work presented in Chapter 3 may be extended in a number of ways. In Ref. [362],
the authors show that it actually is possible to attribute the current acceleration to a
VdW fluid. It does not appear likely, however, that the EoS parameter values which
reproduce the inflationary and matter-dominated epochs might, at the same time,
also account for late-time acceleration. Hence, one could generalise the constant-
value parameters in the VdW EoS to functions of time, and attempt to do this in
such a way that the resulting EoS describes the whole cosmic evolution. Another
option would be to cast the first four models in a form that enables comparison
with ΛCDM. This promises to be quite challenging, because in their current state the
models are mainly phenomenological, in the sense that they are meant to highlight the
fact that a simple combination of fluids – a VdWmatter distribution and a dark energy
component – can provide an explanation for the basic features of the complete cosmic
history. Choosing values for the EoS parameters solely on the basis of theoretical or
observational considerations is another thing altogether. Indeed, with reference to
log [ρm(z = 0)/ρcm], Capozziello et al. report that ‘there are no physical motivations
to select a plausible range’ of values [362].

Chapter 4 deals with three models from the literature that feature a dynamical Λ.
The first is the General Running Vacuum Model (GRVM) – whose characteristic
Λ(H) takes the form A+ BH2 + CḢ [212] – and it is followed by two sub-cases:
the Running Vacuum Model (RVM), obtained by setting C to zero [213], and the
model we call the General Running Vacuum Sub-case (GRVS), which has a null value
for B instead [219]. It is assumed that the vacuum only exchanges energy with cold
dark matter as it decays. The parameters B and/or C are constrained by employing
Markov Chain Monte Carlo techniques, initially using data for observables associated

88Or the last four, in the case of late-time acceleration.
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with Type Ia supernovae, cosmic chronometers, the cosmic microwave background,
and baryon acoustic oscillations. Each model is first investigated in the context of
a flat space-time. Then Ω0

k is allowed to vary and any significant differences are
analysed. The effects of introducing a measurement of the Hubble constant as a fifth
likelihood are also considered. This is done for two different values of H0: HR

0 =

73.48± 1.66 km s−1 Mpc−1 [26] and HE
0 = 70.6± 3.3 km s−1 Mpc−1 [308]. Finally,

observations related to the growth of large-scale structure (LSS) are included in the
collection of data sets, and the whole procedure is repeated. The amplitude of the
primordial scalar power spectrum is either assigned a fixed value or treated as a
freely-varying parameter.

In the case of the GRVM, the data employed is insufficient to break parameter de-
generacies when the assumption of flatness is relaxed. The constraints obtained in
the flat scenario are, however, informative: it is found that the addition of the LSS
likelihood makes the 2D posteriors for B versus H0 or Ω0

m close around the ΛCDM
limit (and likewise for C). It also changes the mean values of B and C from positive
to negative – although only if HR

0 is absent from the combination of data sets, because
the correlation between B (or C) and the Hubble constant causes the HR

0 likelihood
to shift the posteriors in the direction of increasing B (or C). It is furthermore noted
that the inclusion of growth data lowers the averages for H0, enhancing compatibility
with the range of values established by Planck [20].

Next, we turn our attention to the RVM. This time, the use of LSS data excludes the
ΛCDM limit at a little over 1σ (in both the flat and non-flat cases, with one exception
in the latter). When spatial flatness is not imposed, the mean values of B change
from negative to positive, and again it is found that growth data lends support to
values of H0 which resonate with the Planck result. Of particular relevance is the fact
that all the constraints on Ω0

k become consistent with a flat geometry (within a 1σ
confidence interval) once LSS observations are taken into account.

The GRVS parallels the RVM in many ways. Here, too, growth data is responsible
for a dynamical Λ being preferred to a cosmological constant at a little over 1σ, and
once more this turns out to hold (for the most part) whether or not the Universe is
assumed to be flat. The LSS likelihood establishes a definite (negative) sign for C and
increases compatibility between the average values of H0 and the Planck constraints.
Its effect on the 1D posterior distributions for Ω0

k is similar to what was noted for
the RVM. In all cases, the addition of LSS observations puts Ω0

k = 0 at less than
1σ from the resulting mean, but in its absence both the RVM and GRVS show some
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preference for an open universe, and indeed the level of support provided by the RVM
for a positive Ω0

k is over 2σ when HR
0 is included with the data.

To sum up, Chapter 4 indicates that a mildly-evolving Λ (modelled as in the RVM
or GRVS) is only marginally favoured over the cosmological constant. Moreover, this
comes at the cost of an extra parameter which – while not given much weight by the
Akaike Information Criterion – has a negative impact on the BIC score (where BIC
stands for ‘Bayesian Information Criterion’). Another point of interest is the fact that
merging the RVM and GRVS expressions for Λ into a two-parameter combination (the
GRVM) appears to weaken the support for dynamical vacuum energy. Additionally, it
seems that the addition of LSS data reduces the ability of the models to accommodate
a non-zero Ω0

k.

Chapter 4 opens up the possibility for further research in several ways. The study
makes use of perturbation equations as approximated in the sub-Hubble, quasi-static
regime. To begin with, therefore, one could compute the full set of linear perturba-
tions, as this would increase the reliability of parameter constraints obtained with
the LSS likelihood. A second advantage would be a much wider choice of data sets.
There is also room for improvement with respect to the behaviour of the models deep
in the radiation epoch. The exchange of energy between dark matter and the running
vacuum means that at very early times, the high energy density of the dynamical-Λ
component causes dark matter to have a negative energy density, which is not phys-
ically viable. In Ref. [218], the authors suggest that such problems could be avoided
by allowing dark energy to interact with radiation as well, so this is something that
could be looked into. One should however tread with caution here: if radiation is no
longer conserved separately, the distance-duality relation would deviate from the form
established by the standard model, as would the dependence of the CMB temperature
on redshift. These modifications are constrained very tightly by numerous works in
the literature [315–322].

In Chapter 5, we consider the f(R) theory of gravitation and focus especially on four
models: the Hu-Sawicki, Starobinsky, Exponential and Tsujikawa models. All of these
become indistinguishable from ΛCDM at high redshifts, and are characterised by a
deviation parameter b that quantifies the departure from ΛCDM. First, we generalise
the differential equation for the contrast function and include spatial curvature. Then,
using a collection of data sets very similar to the ones described above, an MCMC
analysis is carried out. It turns out that the constraints placed on b are largely
independent of curvature. Furthermore, the 2D posterior distributions for b vs Ω0

k
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appear to be compatible with a flat geometry (within a 1σ confidence interval) in
all cases. However, we must not forget that it is the LSS likelihood which puts the
strongest bounds on b. . . and in the study presented here, we limit the perturbation
analysis to the sub-Hubble, quasi-static regime. It remains to be seen if using the
full set of perturbations would reinforce our results. Non-linear growth could also be
taken into account.

In conclusion, it appears that whether spatial curvature is ruled out or not is deter-
mined by a combination of factors. The properties of the particular model definitely
play an important part, and for this reason, some authors have proposed ways in which
to obtain model-independent constraints. Additionally, we might ask what happens
if the FLRW metric is replaced [363].

The influence that the choice of data set has on curvature constraints emerges clearly
in Chapter 4. We note that LSS data tends to favour a flat geometry (at least in
the context of the dynamical-Λ models we consider), while in its absence, the HR

0
likelihood provides support for a spatially curved universe (this might partly explain
why the results obtained for f(R) gravity are so consistent with spatial flatness – the
combined data set we use includes LSS data). We need to ask why it is that certain
cosmological observables tend to rule out spatial curvature. For instance, in Fig. 29 of
Ref. [20], the addition of BAO data causes the 2D posterior for Ω0

m vs Ω0
k to close up

around Ω0
k = 0. Could the dependence of BAO measurements on a fiducial cosmology

be causing this?

One thing is certain. The possibility of a non-flat geometry should not be treated
lightly. After all, Chapter 3 demonstrates that the presence of curvature could affect
the whole expansion history in more ways than one.
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APPENDIX A

Perturbations in General Relativity

The background cosmology is assumed to be homogeneous and isotropic, but
galaxy clusters and super-clusters are evidence to the fact that these assumptions
break down on smaller scales. The formation of cosmic structure is attributed to the
presence of over-densities in the early Universe. Although initially small, the said
over-densities (thought to have been seeded by quantum fluctuations during infla-
tion [364]) would have drawn in more matter by gravitational attraction, and this
would in turn have strengthened the gravitational pull of the region. Provided grav-
ity could outbalance the repulsive pressure arising from the random thermal motion
of particles, matter accretion would have been sustained, ultimately leading to the
formation of stars, galaxies, galaxy clusters and filaments. In short, cosmic growth
can be attributed to gravitational instability [296].

Nowadays the literature contains a wealth of data relating to large-scale structure.89

If we are to use it to test our models, however, it is imperative to move beyond
the background analysis and incorporate matter perturbations into our equations.
Furthermore, Einstein’s equations tell us that there is an intrinsic connection between
the matter content of the Universe and its geometry; as John A. Wheeler aptly puts
it, ‘space-time tells matter how to move; matter tells space-time how to curve’ [366].
The feedback mechanism between the two means that perturbations in the matter
sector must be accompanied by fluctuations in the metric tensor, since this provides
the basis for any geometrical construct.

We shall be using quasi-Cartesian coordinates when dealing with perturbations. In
this coordinate system, the Friedmann-Lemaître-Robertson-Walker (FLRW) metric
takes the form:

ds2 = −dt2 + a2(t)γijdxidxj , (A.1)

89Large-scale structure usually refers to inhomogeneities on scales larger than that of a galaxy [365].
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where γij = δij
[
1 + 1

4κ
(
x2 + y2 + z2

)]−2
and δij is the Kronecker delta [367]. The

cosmic time t shall henceforth be replaced with its conformal analogue τ (the two
quantities are related via the scale factor: dτ = dt/a).

The analysis of cosmological perturbations requires a gauge to be selected. Given
a physical, perturbed space-time S, one may think of the background cosmology as
a separate, fictitious space-time S̃ whose coordinate system x̃µ is extended to S by
way of a one-to-one correspondence between points in S and S̃. There are usually
a number of candidate points in S to which a given point P̃ in S̃ may be mapped,
and so a specific correspondence is said to define a choice of gauge. Changing the
correspondence (without altering the background coordinates) is equivalent to making
a gauge transformation [368].

We shall be working exclusively in the conformal Newtonian gauge. This is sometimes
also referred to as the longitudinal gauge, and is particularly simple due to the fact
that it renders the metric diagonal [367,369]:

ds2 = a2(τ )
[
−(1 + 2Φ)dτ2 + γij(1− 2Ψ)dxidxj

]
, (A.2)

although the simplicity comes at a price: the metric is only valid to study the scalar
modes of perturbations [369]. Nonetheless, a generalised version that also incorporates
vector and tensor modes is not difficult to obtain [370].

Eq. (A.2) introduces the scalar potentials Φ(τ , ~x) and Ψ(τ , ~x). These constitute the
metric perturbations in the conformal Newtonian gauge and are assumed to satisfy
the condition |Φ|, |Ψ| � 1. Moreover, up to a factor of ±1, they are of the same
form as Bardeen’s gauge-invariant variables [368] (provided the latter are expressed
in the longitudinal gauge). Another advantage is the fact that Φ plays the role of
gravitational potential in the Newtonian limit [369], and so has a straightforward
physical interpretation. Finally, the absence of residual gauge modes in the conformal
Newtonian gauge [367] means that the meaning of physical modes cannot be obscured
[369].

Metric perturbations appear on the left-hand side of the perturbed Einstein field
equation:

δGµν = 8πG δTµν . (A.3)

Meanwhile, the right-hand side constitutes the perturbed part δTµν of the energy-
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momentum tensor, and may be expanded as follows [368]:

δT 0
0 = −δρm ; δT 0

i = (ρm + pm)vi ; δT i0 = −(ρm + pm)v
i ; δT ij = δpm δ

i
j .
(A.4)

Here, ρm and pm are the background values of the matter energy density and pressure,
respectively, and δρm, δpm the associated perturbations. The 3-vector vi represents
the perturbation in the spatial velocity.90 Its covariant counterpart, vi, may be ob-
tained by using the spatial metric γij from Eq. (A.1) (vi = γijv

j). We keep to the
perfect-fluid form and hence do not consider anisotropic stresses (which explains why
δT ij = 0 for i 6= j) [367]. Moreover, perturbations are included into the equations at
linear order only, and are assumed to have adiabatic initial conditions.

The groundwork has now been laid to express the perturbed Einstein equations in
physical space. The time-time component of Eq. (A.3) reads [367,372]:

2
{
−Ψ

(
~∇2 + 3κ

)
+ 3H

[
dΨ
dτ + ΦH

]}
+ 8πGa2ρmδm = 0 , (A.5)

where the conformal Hubble parameter H is equivalent to the ratio a′(τ )/a, while
the matter density contrast δm is defined as δρm/ρm. Finally, ~∇i is the covariant
derivative constructed from the spatial metric γij [refer to Eq. (A.1)], and ~∇2 ≡ ~∇i~∇i.

The 0-i, i-i and i-j (i 6= j) components of Eq. (A.3) respectively take the form
[367,372]:

HΦ +
dΨ
dτ = 4πGa2 (ρm + pm) v ; (A.6)

2dHdτ Φ +H2Φ +HdΦ
dτ +

d2Ψ
dτ2 + 2HdΨ

dτ − κΨ +
1
2
[
~∇2 − ~∇i0 ~∇i0

]
(Φ−Ψ)

= 4πGa2δpm (no summation over i0) ; (A.7)

Ψ−Φ = 0 . (A.8)

A few comments about the decomposition of the vector field vi are in order before we
proceed. The first thing to recall is that any vector may be expressed as the sum of
two components, one corresponding to the gradient of a scalar field (and hence termed
the scalar part) and the other with zero divergence (the vector part) [367,371,373]. In
other words, a vector wi may be written in the form wiS +wiV, where the subscripts S

90The isotropic nature of the FLRW geometry implies that the cosmic fluid is at rest in the
background universe, so that its unperturbed 4-velocity uµ is a−1(1,~0) [371].
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and V stand for ‘scalar’ and ‘vector’ and wiS = −~∇iw [371]. Since we are dealing with
first-order perturbation theory, the scalar and vector parts evolve independently of
each other, and so we can focus exclusively on the scalar perturbations – these being
the ones that lead to the formation of structure [367]. The component wiV may thus
be safely excluded from our equations. The parameter v that appears in Eq. (A.6),
meanwhile, is the velocity potential associated with vi (viS = −~∇iv).

The next thing to consider is how to model perturbations as wave functions in mo-
mentum space. If the spatial hypersurfaces are flat, the perturbation δf in a given
quantity f may be expressed as an integral over Fourier modes:91

δf(τ , ~x) =
∫
δfk†(τ )e

i~k†·~x d3k† . (A.9)

Each of these modes has a characteristic comoving wave vector ~k† [374], and is an
eigenfunction of the Laplace-Beltrami operator ~∇2 with eigenvalue −k2

† (k† = |~k†|)
[375]: (

~∇2 + k2
†
)
ei~k†·~x = 0 . (A.10)

The form that the eigenfunctions take in the presence of spatial curvature will be
dealt with later. At the moment, we shall simply replace ei~k†·~x with a generalised
function Q(~k†, ~x): (

~∇2 + k2
†
)
Q(~k†, ~x) = 0 . (A.11)

Expanding the above equation in a quasi-Cartesian coordinate system yields:
{ 1

16(4 + κX)2
[
− 2κ

4 + κX
(x∂x + y∂y + z∂z) + ∂2

x + ∂2
y + ∂2

z

]
+ k2
†

}
Q(~k†, ~x) = 0 ,

(A.12)
where X = x2 + y2 + z2 = |~x|2.

Eq. (A.9) indicates that a perturbation in physical space translates into a sum over
k†-modes in momentum space (the sum becomes an integral if the spectrum of modes
is continuous). Since our perturbation equations are linear, however, it follows that
if δf(τ , ~x) satisfies a particular equation, then all of the individual eigenfunctions
summed over in Eq. (A.9) also satisfy the equation in question, albeit for different
values of k†. We may thus write our perturbations in terms of a generic mode Q

91π pre-factors are redundant in this context. Note also that ~x is the spatial vector (x, y, z).
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[368,375]:

Φ(τ , ~x) = Φk†(τ )Q(
~k†, ~x) ; Ψ(τ , ~x) = Ψk†(τ )Q(

~k†, ~x) ;

δρm(τ , ~x) = δρ
k†
m (τ )Q(~k†, ~x) ; δpm(τ , ~x) = δp

k†
m (τ )Q(~k†, ~x) ;

vi(τ , ~x) = vk†(τ )Q
i(~k†, ~x) ; Qi(~k†, ~x) = −k−1

†
~∇iQ(~k†, ~x) . (A.13)

Quantities on the left-hand side denote perturbations in physical space, while the
right-hand side is reserved for their momentum-space counterparts.

In view of the above, we can conclude that the conversion to momentum space requires
us to make the following modifications:

• Expressing perturbations as in Eq. (A.13);

• Replacing ~∇2 with −k2
† . Let us take as example the quantity ~∇2Φ(τ , ~x). In mo-

mentum space, this becomes ~∇2[Φk†(τ )Q(
~k†, ~x)], which is equal to

Φk†(τ )
~∇2Q(~k†, ~x) and hence – via Eq. (A.11) – to Φk†(τ )[−k

2
†Q(

~k†, ~x)]. We
can thus infer that ~∇2Φ(τ , ~x) = −k2

†Φk†(τ )Q(
~k†, ~x).

• Rewriting the velocity potential92 v as k−1
† v. This follows from the last line of

Eq. (A.13): vi(τ , ~x) = −vk†(τ )k
−1
†
~∇iQ(~k†, ~x) = −~∇i[k−1

† vk†(τ )Q(
~k†, ~x)]. In

physical space, vi(τ , ~x) = −~∇iv(τ , ~x).

• Putting ~∇i0 ~∇i0Φ (where there is no summation over i0) equal to −k2
†Φ/3, the

reason being that the relation ~∇2Φ = −k2
†Φ can be expressed in quasi-Cartesian

coordinates as (~∇x~∇x + ~∇y ~∇y + ~∇z ~∇z)Φ = −k2
†Φ, and so we may invoke the

isotropy of the Universe to deduce that ~∇i0 ~∇i0Φ = −k2
†Φ/3. In other words,

~∇x~∇xΦ, ~∇y ~∇yΦ and ~∇z ~∇zΦ all contribute the same amount to −k2
†Φ.

Eq. (A.8) allows us to simplify our work significantly. It should be noted, however,
that the absence of shear stresses does not necessarily imply the equivalence of Φ and
Ψ in alternative theories of gravity.

92The introduction of k−1
† and of a minus sign when writingQi as−k−1

†
~∇iQ is mainly a convention.

Variations exist in the literature, and consequently one must compare equations from different sources
with caution.
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The momentum-space equivalents of Eqs. (A.5)-(A.7) read:

2
{

Φ
(
k2
† − 3κ

)
+ 3H

[
Φ′(τ ) + ΦH

]}
+ 8πGa2ρmδm = 0 ; (A.14)

k†
[
HΦ + Φ′(τ )

]
= 4πGa2 (ρm + pm) v ; (A.15)

2H′(τ )Φ +H2Φ + Φ′′(τ ) + 3HΦ′(τ )− κΦ = 4πGa2δpm . (A.16)

Here, a prime indicates differentiation with respect to the argument, k† is the comoving
wave number and the function Q(~k†, ~x) has been factored out of the equations, while
Φ takes the place of Ψ. Additionally, despite the fact that k† is not included explicitly
as a sub/super script, one should keep in mind that Φ, δm and v correspond to Φk†(τ ),
δ
k†
m (τ ) and vk†(τ ), respectively.

Let us now take a look at the perturbed version of energy-momentum conservation.
The condition ∇µTµν = 0 still holds, but in this case Tµν = T̃µν + δTµν (the tilde
denotes the unperturbed part) and the covariant derivative ∇µ – not to be confused
with the spatial covariant derivative, ~∇i – must be constructed from the perturbed
metric tensor of Eq. (A.2) [291]. The relation ∇µTµν may consequently be expanded
as follows:

∇̃µT̃µν + ∇̃µδTµν + δΓµσµT̃
σ
ν − δΓσνµT̃

µ
σ = 0 , (A.17)

where:

• ∇̃µ is the covariant derivative based on the metric of Eq. (A.1);

• T̃µν is the unperturbed energy momentum tensor. We shall assume that it de-
scribes a perfect fluid (with energy density ρm, pressure pm and 4-velocity uµ):

T̃µν = (ρm + pm) u
µuν + pmδ

µ
ν . (A.18)

• δTµν is its perturbed counterpart and has been specified in Eq. (A.4);

• δΓµνσ represents the perturbed Christoffel symbols and is given by:

δΓµνσ =
1
2δg

µα (∂σg̃αν + ∂ν g̃ασ − ∂αg̃νσ) +
1
2 g̃

µα (∂σδgαν + ∂νδgασ − ∂αδgνσ) .
(A.19)

The quantities g̃µν and δgµν may be determined by writing the metric in Eq. (A.2)
as the sum of an unperturbed part (g̃µν) and a perturbed one (δgµν): gµν =

g̃µν + δgµν .

We note that the first term in Eq. (A.17) has no perturbed components. It is therefore
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conserved separately, giving rise to the familiar relation ρ′m(τ ) = −3H(ρm+ pm). The
remaining terms yield the equations:

δ′m(τ ) = (1 +wm)
[
−k†v+ 3Φ′(τ )

]
; (A.20)

v′(τ ) = Hv(3wm − 1) + k†

(
Φ +

wmδm
1 +wm

)
, (A.21)

which correspond to the cases ν = 0 and ν = i, respectively. The above utilise the fact
that Φ = Ψ and are based on the implicit assumption that δpm/δρm = pm/ρm = wm

[291]. If matter is modelled as a pressureless perfect fluid (called ‘dust’) [18], wm

equates to zero, and the two equations are easily combined to give:

δ′′m(τ ) +Hδ′m(τ ) + k2
†Φ− 3Φ′′(τ )− 3HΦ′(τ ) = 0 . (A.22)

Eqs. (A.5)–(A.7) and (A.22) may be simplified by applying the sub-Hubble and quasi-
static approximations. The former holds if we limit our analysis to modes that are well
within the horizon93 during the time of interest – in other words, those with k† � H.
There is considerable advantage in working on scales that are significantly sub-horizon.
In this regime, the dynamics of the metric potentials are effectively ‘frozen out’ [376],94

and the quasi-static approximation comes into play as the condition that [380,381]:

|Y ′(τ )| . H|Y | , where Y = Φ, H or Φ′(τ ) . (A.23)

This means that the (conformal) time derivative of ln |Y | is at most of order H. In
short, we can conclude that the evolution of Y may essentially be attributed to the
expansion of the Universe [382], and is thus negligible in comparison to its spatial
derivatives. Interestingly, the quasi-static regime is the relevant stage for weak lens-
ing/galaxy redshift surveys [383].

The sub-Hubble and quasi-static approximations reduce Eq. (A.22) to:

δ′′m(τ ) +Hδ′m(τ ) + k2
†Φ = 0 . (A.24)

The remaining terms are discarded on the basis that:

93In perturbation theory, the word ‘horizon’ generally refers to the Hubble distance (1/H) or its
comoving counterpart (1/H).

94Explicit references to the ‘quasi-static approximation’ are usually found in the context of modified
gravity models. The information presented here is mainly an adaptation of the concept for General
Relativity [377–379].
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• |Φ′′(τ )| . H|Φ′(τ )| ;

• H|Φ′(τ )| . H2|Φ| � k2
† |Φ| ,

while similar considerations imply that Eq. (A.14) may be simplified to:

Φ(k2
† − 3κ) + 4πGa2ρmδm = 0 . (A.25)

In our analysis, we shall be focusing exclusively on values of k† lying in the range
0.01hMpc−1 ≤ k† ≤ 0.2hMpc−1. The reason for this is twofold: firstly, modes
with k† . 0.2hMpc−1 represent perturbations which may safely be considered linear
(in most models, at least) [296], and secondly, the mode that crosses the horizon at
present has k† = H = aH = 1× 105 c−1 hMpc−1 ∼ 10−4 hMpc−1, but we require
that k† � H for the sub-horizon approximation to hold and so fix the lower bound
at k† ∼ 10−2 hMpc−1 [290,374].

The range of values for k2
† is therefore:

10−4 h2 Mpc−2 ≤ k2
† ≤ 4× 10−2 h2 Mpc−2 . (A.26)

In contrast, the spatial curvature κ (= −Ω0
kH

2
0 ) is theoretically constrained to lie in

the interval −H2
0 ≤ κ ≤ H2

0 , otherwise expressed as

− 10−7 h2 Mpc−2 ≤ κ ≤ 10−7 h2 Mpc−2 , (A.27)

although in reality the low and high ends are out of bounds for any physically viable
model. Indeed, we do not expect |Ω0

k| to reach 0.1 in ΛCDM [20] – much less approach
unity.

Comparing (A.26) and (A.27) makes it amply clear that |κ| � k2
† . In light of this,

Eq. (A.25) is reduced to just two terms:

k2
†Φ + 4πGa2ρmδm = 0 . (A.28)

The above relation can be used to substitute for Φ in Eq. (A.24). The result reads:

δ′′m(τ ) +Hδ′m(τ )− 4πGa2ρmδm = 0 , (A.29)

and the absence of k† leads us to conclude that the evolution of δm is scale-
independent in the sub-horizon regime.
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Momentum-space modes in the presence of spatial curvature

We know that when κ = 0, the eigenfunctions of the Laplace-Beltrami operator take
the form ei~k†·~x. To find how these eigenfunctions change in the presence of spatial
curvature, let us start by noting that the exponential function can be expressed in
terms of the spherical Bessel functions j`(k†r) and the spherical harmonics95 Y`m [375]:

ei~k†·~x = 4π
∑
`,m

i`j`(k†r)Y
∗
`m(θk† ,φk†)Y`m(θ,φ) . (A.30)

The harmonics are in turn constructed from the associated Legendre functions Pm` :

Y`m(θ,φ) =
[
(2`+ 1)(`−m)!

4π(`+m)!

]1/2
Pm` (cos θ)eimφ . (A.31)

Eq. (A.30) allows us to deduce that the spatial component of each mode is Q(~x) =
j`(k†r)Y`m(θ,φ). Since only the radial dependence of the metric in Eq. (A.1) is
affected by a non-zero κ, we expect changes solely in that part of the eigenfunctions
which is a function of r, and may hence generalise Q(~x) as indicated below [375]:

Q(~x) = Θ`
β(r)Y`m(θ,φ) . (A.32)

The function Θ`
β depends directly on the geometry of the Universe [375]:

• When κ = 0, Θ`
β = j`(k†r).

• When κ > 0,

Θ`
β =

 πM `
β

2β2 sin ε

1/2

P−1/2−`
−1/2+β(cos ε) , (A.33)

where M `
β =

∏`
n=0(β

2 − n2) and k2
† = κ(β2 − 1) (β = 3, 4, 5 . . . , β > `). P is

an associated Legendre function, while sin ε = 4r
√
κ/(4 + κr2).

• When κ < 0,

Θ`
β =

 πN `
β

2β2 sinh ε

1/2

P−1/2−`
−1/2+iβ(cosh ε) , (A.34)

withN `
β =

∏`
n=0(β

2 +n2), k2
† = −κ(β2 + 1) (β ≥ 0) and sinh ε = 4r

√
−κ/(4+

κr2).

95A superscript ∗ stands for complex conjugation, while θ and φ give the direction of ~x [126]
(similarly, θk† and φk† give the direction of ~k†).
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Now that we have determined what form the eigenfunctions take, we may proceed
with the transformation from physical to momentum space by using them as the new
modes. A given perturbation δf may then be expressed in the following way:

δf(τ , ~x) =
∑
k†

∑
`,m

δfk†(τ )i
`Θ`

β(r)Y
∗
`m(θk† ,φk†)Y`m(θ,φ) , (A.35)

or, in the case of a continuous spectrum of modes:

δf(τ , ~x) =
∫
δfk†(τ )×

∑
`,m

i`Θ`
β(r)Y

∗
`m(θk† ,φk†)Y`m(θ,φ) d3k† . (A.36)

In the above, individual modes are labelled by β, ` and m [375] and π pre-factors
have been dropped. The linearity of our perturbation equations means that different
modes decouple, and so we may conclude that a perturbation δf(τ , ~x) in physical
space has momentum-space counterpart δfk†(τ )Θ`

β(r)Y`m(θ,φ) [375], which we can
write concisely as f(τ )Q(~k†, ~x) (having restored ~k† as an explicit argument of the
generic function Q). The absence of the factors i` and Y ∗`m(θk† ,φk†) reflects the fact
that the Laplace-Beltrami operator only acts on functions of the spatial coordinates.
Any factors that are independent of these coordinates are therefore redundant.

Baryons: to include or not to include?

Thus far, the subscript ‘m’ (in ρm, δm etc.) has been used to indicate attributes of
the matter component. We are now in a position to ask what exactly this component
comprises. There is broad consensus in the scientific community that the greater
proportion is cold dark matter (cdm) [20, 384, 385], a form of non-baryonic matter
that interacts very weakly with electromagnetic radiation (hence why it is termed
‘dark’) and is furthermore non-relativistic or ‘cold’ [18]. Cdm is expected to make up
some 26% of the cosmic fluid. On the other hand, only about 5% of this fluid consists
of baryons [20]. If one is mainly interested in getting a simple approximation for the
growth of matter perturbations, therefore, baryons may be left out of the picture.

How does the presence of baryons affect matter perturbations? Before recombination,
baryons are tightly coupled to photons due to Thomson scattering. This induces
damped acoustic oscillations in the modes that enter the horizon [369], a consequence
of the competition between gravitational attraction on one hand and strong radiation
pressure on the other. After recombination, the now-decoupled baryons quickly fall
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into the potential wells of cdm, and as a result their density contrast function δb
experiences rapid growth, ultimately catching up with its cdm counterpart (δcdm). In
fact, δb and δcdm are almost identical at low redshifts [369]. The velocity potentials
vb and vcdm are also very similar at late times. The difference between them scales
as 1 + z, and so one may write vb ∼ vcdm for sufficiently small values of z [290].

Let us introduce the density-weighted contrast function and velocity potential [290]:

δm =
ρcdmδcdm + ρbδb

ρcdm + ρb
; v =

vcdmρcdm + vbρb
ρcdm + ρb

. (A.37)

In the above, ρcdm and ρb denote the energy densities of cdm and baryons, respectively.
The new definition of v makes it clear that having vb ∼ vcdm in turn implies that
v ∼ vb ∼ vcdm. Consequently, Eq. (A.21) – with wm = 0 – holds both when matter is
assumed to consist of cdm only (so that v = vcdm), and also when baryons are included
and v is expressed as in Eq. (A.37) – provided we consider late times [290]. Similarly,
the validity of Eq. (A.14) does not depend on whether we account for baryons or not.
One recalls that any matter attributes appearing in this equation were introduced
there via δT 0

0 . In the cdm-only scenario, −δT 0
0 = δρcdm = ρcdmδcdm ≡ ρmδm, while

the addition of baryons changes ρmδm to (ρcdm + ρb) δm, with δm defined as in Eq.
(A.37). It follows that ρmδm = ρcdmδcdm + ρbδb = δρcdm + δρb, which is indeed the
form that −δT 0

0 takes in the presence of baryons and cdm.

Eq. (A.20) is not as straightforward to generalise. In the first place, let us note that
it holds for baryons and cdm separately:

δ′cdm(τ ) = −k†vcdm ; (A.38)

δ′b(τ ) = −k†vb . (A.39)

Here, we have applied the sub-horizon and quasi-static approximations. The next
step consists of taking the τ -derivative of δm [with δm as defined in Eq. (A.37)],
then substituting for ρ′cdm(τ ) and ρ′b(τ ) using the conformal conservation equations
[ρ′cdm(τ ) + 3Hρcdm = 0; ρ′b(τ ) + 3Hρb = 0], and for δ′cdm(τ ) and δ′b(τ ) by utilizing
Eqs. (A.38) and (A.39), respectively. After replacing vcdm and vb with v, it becomes
evident that Eq. (A.20) remains valid when δm is given by Eq. (A.37) [290].

In short, at late times Eq. (A.29) holds whether the baryon component is included or
not. One simply has to define v, δm and ρm accordingly.
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The sub-Hubble and quasi-static approximations in f(R) gravity

Detailed explanations of the sub-Hubble and quasi-static approximations have been
given in this same appendix. Here, we briefly summarise the two:

• Sub-Hubble approximation: k† � H ;

• Quasi-static approximation: |Y ′(τ )| . H|Y | ; Y = Φ, Ψ, H, Φ′(τ ), Ψ′(τ ) or
H′(τ ) .

The presence of Ψ reflects the fact that Φ and Ψ are not equal in f(R) gravity.

The equation for δR, the perturbation in the Ricci scalar

The full equation is:

δR =

2
a2

{
k2
† (Φ− 2Ψ)− 3

[
2H′(τ )Φ + 3HΨ′(τ ) +HΦ′(τ )− 2κΨ + Ψ′′(τ ) + 2H2Φ

]}
,

(A.40)

but the quantity 2a−2k2
† (Φ− 2Ψ) dominates, since

• |H′(τ )Φ| . H2|Φ| � k2
† |Φ| ;

• H|Ψ′(τ )| . H2|Ψ| � k2
† |Ψ| ;

• H|Φ′(τ )| . H2|Φ| � k2
† |Φ| ;

• |Ψ′′(τ )| . H|Ψ′(τ )| . H2|Ψ| � k2
† |Ψ| ;

• H2|Φ| � k2
† |Φ| .

Whether or not the term in κ is negligible depends on how κ compares with the values
k2
† is allowed to take. The term in question shall therefore be retained for now, which

means that Eq. (A.40) becomes

δR =
2
a2

[
k2
† (Φ− 2Ψ) + 6κΨ

]
. (A.41)



195

The time-time component of the field equations

Let us first rewrite the equation in its entirety:

2fR
{

Ψ
(
k2
† − 3κ

)
+ 3H

[
Ψ′(τ ) +HΦ

]}
+ fRR

[
3H′(τ )δR− k2

†δR− 3H δR′(τ )
]
−

3H δR f ′RR(τ ) + 3f ′R(τ )
[
2HΦ + Ψ′(τ )

]
+ 8πGa2ρmδm = 0 . (A.42)

Next, we consider that

• H|Ψ′(τ )| . H2|Ψ| � k2
† |Ψ| ;

• H2|Φ| � k2
† |Φ| ∼ k2

† |Ψ| ;96

• |H′(τ )δR| . H2|δR| � k2
† |δR| ;

• −3H[fRRδR′(τ ) + δRf ′RR(τ )] = −3H[δR fRR]′(τ ). Using the i− j component
of the field equations, δR fRR may be expressed as fR(Ψ−Φ), and hence we
get that −3H[fRRδR′(τ ) + δRf ′RR(τ )] = −3H{f ′R(τ )(Ψ − Φ) + fR[Ψ′(τ ) −
Φ′(τ )]}. The second term on the right-hand side can be absorbed into the curly
brackets of Eq. (A.42). We immediately note, however, that it is negligible in
comparison to 2fRΨ(k2

† − 3κ), so we turn our attention to the first term instead.
This may be combined with the second-from-last term of Eq. (A.42):

− 3Hf ′R(τ )(Ψ−Φ) + 3f ′R(τ )[2HΦ + Ψ′(τ )] =

3fRRR′(τ )[−H(Ψ−Φ) + 2HΦ + Ψ′(τ )] =

3fRR{6a−2[H′′(τ )− 2H3 − 2Hκ]}[3HΦ−HΨ + Ψ′(τ )] =

18a−2fRR[3HH′′(τ )Φ−HH′′(τ )Ψ +H′′(τ )Ψ′(τ )− 6H4Φ + 2H4Ψ

− 2H3Ψ′(τ )− 6H2κΦ + 2H2κΨ− 2HκΨ′(τ )] . (A.43)

In the above, the function f ′R(τ ) that appears in the first line is subsequently
replaced by fRRR′(τ ), and the expression for R′(τ ) follows from the conformal-
time counterpart of Eq. (5.26). The terms of (A.43) are analysed one by one:

∗ 3|HH′′(τ )Φ| . 3H×H|H′(τ )| × |Φ| = 3H2|H′(τ )Φ| . 3H2 ×H2|Φ| =
3H4|Φ| � 3k4

† |Φ|. Similarly, |HH′′(τ )Ψ| � k4
† |Ψ|. Terms in k4

†Φ and k4
†Ψ

are present in k2
†δR.

∗ |H′′(τ )Ψ′(τ )| . |H′′(τ )|H|Ψ| = |HH′′(τ )Ψ| � k4
† |Ψ| ;

96Φ and Ψ are assumed to be of the same order.
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∗ H4|Φ| � k4
† |Φ| ;

∗ H4|Ψ| � k4
† |Ψ| ;

∗ H3|Ψ′(τ )| . H4|Ψ| � k4
† |Ψ| ;

∗ 6H2|κΦ| � 6k2
† |κΦ|. Similarly, 2H2|κΨ| � 2k2

† |κΨ|. The expression 18a−2fRR(−6H2κΦ+

2H2κΨ) is thus sub-dominant to−fRRk2
†δR [which forms part of Eq. (A.42)],

since k2
†δR contains a term in k2

†κΨ.

∗ 2H|κΨ′(τ )| . 2H|κ| ×H|Ψ| = 2H2|κΨ| � 2k2
† |κΨ| .

In conclusion, the sub-Hubble and quasi-static approximations reduce Eq. (A.42) to:

2fRΨ(k2
† − 3κ)− fRRk2

†δR+ 8πGa2ρmδm = 0 . (A.44)

The evolution equation for the density contrast function, δm

This time, our starting point is Eq. (5.56):

δ′′m(τ ) +Hδ′m(τ ) + k2
†Φ− 3Ψ′′(τ )− 3HΨ′(τ ) = 0 . (A.45)

Again we have that

• |Ψ′′(τ )| . H|Ψ′(τ )| . H2|Ψ| � k2
† |Ψ| ;

• H|Ψ′(τ )| . H2|Ψ| � k2
† |Ψ| ,

and so the evolution equation becomes

δ′′m(τ ) +Hδ′m(τ ) + k2
†Φ = 0 . (A.46)



APPENDIX B

Marginalised Posteriors for f(R) models

Figure B.1: Marginalised 2D and 1D posterior probability distributions for the Hu-Sawicki model.
The label ‘Flat’ denotes constraints obtained with Ω0

k fixed at zero, while ‘Nonflat’ means that Ω0
k

was treated as a free parameter. Dark and light shades represent 1σ and 2σ confidence intervals,
respectively.
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Figure B.2: Marginalised 2D and 1D posterior probability distributions for the Hu-Sawicki model.
The legend refers to the comoving wave number at which the growth rate f was calculated.
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Figure B.3: Marginalised 2D and 1D posterior probability distributions for the Starobinsky model.
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Figure B.4: Marginalised 2D and 1D posterior probability distributions for the Starobinsky model.
The legend refers to the comoving wave number at which the growth rate f was calculated.
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Figure B.5: Marginalised 2D and 1D posterior probability distributions for the Exponential model.
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Figure B.6: Marginalised 2D and 1D posterior probability distributions for the Exponential model.
The legend refers to the comoving wave number at which the growth rate f was calculated.
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Figure B.7: Marginalised 2D and 1D posterior probability distributions for the Tsujikawa model.
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Figure B.8: Marginalised 2D and 1D posterior probability distributions for the Tsujikawa model.
The legend refers to the comoving wave number at which the growth rate f was calculated.



APPENDIX C

Source Code

Listing C.1: Mathematica code for the principal STT equations.

1 (* First Friedmann equation *)
Eq1 := \[ Kappa ]/a[t]^2 + Derivative [1][a][t]^2/a[t]^2 - ((8* Pi*G)

/(3*(1 - 8* Pi*G*\[ Xi ]*\[ Phi ][t]^2)))*( Derivative [1][\[ Phi ]][t
]^2/2 + V[t] + 6*\[ Xi ]*( Derivative [1][a][t]/a[t]) *\[ Phi ][t]*
Derivative [1][\[ Phi ]][t]+\[ Rho ]0/a[t ]^(3*(1 + w)))

(* Klein - Gordon equation in curved space -time *)
5 Eq2 := Derivative [2][\[ Phi ]][t] + 3*( Derivative [1][a][t]/a[t])*

Derivative [1][\[ Phi ]][t] + ((8* Pi*G*\[ Xi ]*\[ Phi ][t]) /(1 - 8*Pi*G
*\[ Xi ]*\[ Phi ][t]^2))*(- Derivative [1][\[ Phi ][t]^2 + 18*\[ Xi ]*(
Derivative [1][a][t]/a[t]) *\[ Phi ][t]* Derivative [1][\[ Phi ]][t] + 4*
V[t] + (\[ Rho ]0*(1 - 3*w))/a[t ]^(3*(1 + w))+6*\[ Xi]* Derivative
[1][\[ Phi ]][t]^2 + 6*\[ Xi ]*\[ Phi ][t]* Derivative [2][\[ Phi ]][t]) +
D[V[t], t]/ Derivative [1][\[ Phi ]][t]

(* Energy density of scalar field *)
\[ Rho ]\[ Phi] := (1/(1 - 8* Pi*G*\[ Xi ]*\[ Phi ][t]^2)) *((1/2) * Derivative

[1][\[ Phi ]][t]^2 + V[t] + 6*\[ Xi ]*( Derivative [1][a][t]/a[t]) *\[
Phi ][t]* Derivative [1][\[ Phi ]][t])

10 (* Pressure of scalar field *)
P\[ Phi] := (1/(1 - 8*Pi*G*\[ Xi ]*\[ Phi ][t]^2)) *((1/2 - 2*\[ Xi])*

Derivative [1][\[ Phi ]][t]^2 - V[t] - 2*\[ Xi ]*\[ Phi ][t]* Derivative
[2][\[ Phi ]][t] - 4*\[ Xi ]*( Derivative [1][a][t]/a[t]) *\[ Phi ][t]*
Derivative [1][\[ Phi ]][t])

(* Potential of scalar field *)
V[t_] := ( -(1/(8*G*Pi)))*a[t]^( -3 - 3*w)*( -4*G*Pi *\[ Rho ]0 - 12*G*Pi*w

*\[ Rho ]0 + 24*G*Pi *\[ Xi]*a[t]^(2 + 3*w)*\[ Phi ][t]* Derivative [1][a
][t]* Derivative [1][\[ Phi ]][t] - 8*G*Pi*a[t]^(3 + 3*w)* Derivative
[1][\[ Phi ]][t]^2 + 24*G*Pi *\[ Xi]*a[t]^(3 + 3*w)* Derivative [1][\[
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Phi ]][t]^2 - 3*a[t]^(2 + 3*w)* Derivative [2][a][t] + 24*G*Pi *\[ Xi
]*a[t]^(2 + 3*w)*\[ Phi ][t]^2* Derivative [2][a][t] + 24*G*Pi *\[ Xi]*
a[t]^(3 + 3*w)*\[ Phi ][t]* Derivative [2][\[ Phi ]][t])

Listing C.2: Mathematica code for extracting coefficients from a polynomial equation.

1 Eq3 :=
(* Provide the relevant equation here , in expanded form. Exponents

should not be factorised , and if they contain multiple terms ,
these should not be placed over a common denominator *)

\[ Alpha ]1 := Position [Eq3 , t^_]
5 \[ Alpha ]2 := Position [Eq3 , t]

\[ Beta] := If[ Length [\[ Alpha ]1] == Length [\[ Alpha ]2],
DeleteDuplicates [ Extract [Eq3 , \[ Alpha ]1]] , DeleteDuplicates [Join[
Extract [Eq3 , \[ Alpha ]1], {t}]]]

\[ Beta]
(* Returns a list of all powers of t that appear in Eq3 *)

10
list := Reap[Do[

\[ Gamma] := Collect [Eq3 , \[ Beta ][[\[ Iota ]]]];
\[ Delta] := Position [\[ Gamma ], \[ Beta ][[\[ Iota ]]]];
\[ Epsilon ]1 := Total [ Flatten [ DeleteCases [Reap[Do[Sow[ Extract [\[

Gamma ], {\[ Delta ][[i ,1]]}]] , {i, 1, Length [\[ Delta ]]}]] , Null
]]]*(1/\[ Beta ][[\[ Iota ]]]);

15 \[ Epsilon ]2 := Position [\[ Epsilon ]1, t];
\[ Epsilon ]3 := Total [ Flatten [ DeleteCases [Reap[Do[Sow[ Extract [\[

Epsilon ]1, {\[ Epsilon ]2[[i ,1]]}]] , {i, 1, Length [\[ Epsilon
]2]}]] , Null ]]]; Sow[ Simplify [\[ Epsilon ]1 - \[ Epsilon ]3]] ,

{\[ Iota], 1, Length [\[ Beta ]]}]]
(* Extracts the coefficient of each element of \[ Beta] from Eq3 *)

20 \[Nu] := Flatten [ DeleteCases [list , Null ]]

\[ Digamma ] := Position [Eq3 , t];
\[ Lambda ] := Total [ Flatten [ DeleteCases [Reap[Do[Sow[ Extract [Eq3 , {\[

Digamma ][[i ,1]]}]] , {i, 1, Length [\[ Digamma ]]}]] , Null ]]];
\[ Omicron ] := { Simplify [Eq3 - \[ Lambda ]]};

25 \[ Omicron ]
(* Returns any constant terms in Eq3 *)

\[ Upsilon ] := Join [\[ Nu], \[ Omicron ]]
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30 Do[Print ["No", i, ":=", \[ Upsilon ][[i]]], {i, 1, Length [\[ Upsilon ]]}]

Length [\[ Beta ]]

(* Check that everything is correct *)
35 Simplify [Sum [\[ Beta ][[i]]*\[ Upsilon ][[i]], {i, 1, Length [\[ Beta ]]}] +

\[ Upsilon ][[ -1]] - Eq3]

Listing C.3: Mathematica code that takes as input a polynomial in t, with exponents that are
functions of some parameter s. It equates each pair of exponents to each other and attemps to solve
for s, returning any solutions.

1 Eq3 :=
(* Provide the relevant equation here , in expanded form. Exponents

should not be factorised , and if they contain multiple terms ,
these should not be placed over a common denominator *)

\[ Alpha ]1 := Position [Eq3 , t^_]
5 \[ Alpha ]2 := Position [Eq3 , t]

\[ Beta] := If[ Length [\[ Alpha ]1] == Length [\[ Alpha ]2],
DeleteDuplicates [ Extract [Eq3 , \[ Alpha ]1]] ,
DeleteDuplicates [Join[ Extract [Eq3 , \[ Alpha ]1], {t}]]]

\[ Beta]
10 (* Returns a list of all powers of t that appear in Eq3 *)

\[ Digamma ] := Position [Eq3 , t];
\[ Lambda ] := Total [ Flatten [ DeleteCases [Reap[Do[Sow[ Extract [Eq3 , {\[

Digamma ][[i ,1]]}]] , {i, 1, Length [\[ Digamma ]]}]] , Null ]]];
\[ Omicron ] := { Simplify [Eq3 - \[ Lambda ]]};

15 \[ Koppa] := If[ ContainsExactly [\[ Omicron ], {0}] ,
Flatten [ DeleteCases [Reap[Do[Sow[ Exponent [\[ Beta ][[i]], t]], {i, 1,

Length [\[ Beta ]]}]] , Null ]],
Join[ Flatten [ DeleteCases [Reap[Do[Sow[ Exponent [\[ Beta ][[i]], t]], {

i, 1, Length [\[ Beta ]]}]] , Null ]], {0}]]
\[ Koppa]
(* Extracts the exponents of elements of \[ Beta ]. Also checks if Eq3

contains any constant terms , and adds 0 to the list of exponents
if it does *)

20
\[ Sampi ]1 := Do [{\[ Stigma ]1 := Solve [{\[ Koppa ][[i]] == \[ Koppa ][[j

]]}, {s}]; If [\[ Stigma ]1 != {}, Sow[s /. \[ Stigma ]1, tag1],
Sow[s /. \[ Stigma ]1, tagnull ]]}, {i, 1, Length [\[ Koppa ]] - 1},

{j, i + 1, Length [\[ Koppa ]]}]
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(* Equates each pair of exponents to each other , and if possible ,
solves for s*)

25 \[ Gamma ]1 := DeleteDuplicates [ Flatten [ DeleteCases [Reap [\[ Sampi ]1,
tag1], Null ]]]

\[ Gamma ]1

Listing C.4: Mathematica code that takes as input a polynomial in t, with exponents that are
functions of s and/or m. It equates each pair of exponents to each other and attemps to solve for s,
then for m, returning any solutions.

1 Eq3 :=
(* Provide the relevant equation here , in expanded form. Exponents

should not be factorised , and if they contain multiple terms ,
these should not be placed over a common denominator *)

\[ Alpha ]1 := Position [Eq3 , t^_]
5 \[ Alpha ]2 := Position [Eq3 , t]

\[ Beta] := If[ Length [\[ Alpha ]1] == Length [\[ Alpha ]2],
DeleteDuplicates [ Extract [Eq3 , \[ Alpha ]1]] , DeleteDuplicates [Join[
Extract [Eq3 , \[ Alpha ]1], {t}]]]

\[ Beta]
(* Returns a list of all powers of t that appear in Eq3 *)

10
\[ Digamma ] := Position [Eq3 , t];
\[ Lambda ] := Total [ Flatten [ DeleteCases [Reap[Do[Sow[ Extract [Eq3 , {\[

Digamma ][[i ,1]]}]] , {i, 1, Length [\[ Digamma ]]}]] , Null ]]];
\[ Omicron ] := { Simplify [Eq3 - \[ Lambda ]]};
\[ Koppa] := If[ ContainsExactly [\[ Omicron ], {0}] , Flatten [ DeleteCases [

Reap[Do[Sow[ Exponent [\[ Beta ][[i]], t]], {i, 1, Length [\[ Beta
]]}]] , Null ]],

15 Join[ Flatten [ DeleteCases [Reap[Do[Sow[ Exponent [\[ Beta ][[i]], t]], {
i, 1, Length [\[ Beta ]]}]] , Null ]], {0}]]

\[ Koppa]
(* Extracts the exponents of elements of \[ Beta ]. Also checks if Eq3

contains any constant terms , and adds 0 to the list of exponents
if it does *)

\[ Sampi ]2 := Do [{\[ Stigma ]1 := Solve [{\[ Koppa ][[i]] == \[ Koppa ][[j
]]}, {s}]; \[ Stigma ]2 := Solve [{\[ Koppa ][[i]] == \[ Koppa ][[j]]},
{m}]; If [\[ Stigma ]1 != {}, Sow[s /. \[ Stigma ]1, tag1],

20 If [\[ Stigma ]2 != {}, Sow[m /. \[ Stigma ]2, tag2 ]]]} , {i, 1,
Length [\[ Koppa ]] - 1}, {j, i + 1, Length [\[ Koppa ]]}]
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(* Equates each pair of exponents to each other ,and if possible , solves
for s or m*)

\[ Gamma ]1 := DeleteDuplicates [ Flatten [ DeleteCases [Reap [\[ Sampi ]2,
tag1], Null ]]]

\[ Gamma ]1
25

\[ Gamma ]2 := DeleteDuplicates [ Flatten [ DeleteCases [Reap [\[ Sampi ]2,
tag2], Null ]]]

\[ Gamma ]2
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APPENDIX D

Markov Chain Monte–Carlo Sampling

The name Markov Chain Monte-Carlo (MCMC) reflects two important properties
of this sampling technique. The Monte-Carlo part refers to the practice of making
inferences about a distribution by analysing random samples from it. Each new
sample provides a ‘stepping stone’ to the next one (which is why we talk of Markov
chains) [386]. More specifically, the Markov nature of these chains means that given a
sampled point xs, the next element of the sequence (xs+1) is conditionally independent
of x1, x2, . . . ,xs−1 [387].97

MCMC is especially useful in Bayesian statistics. This is because one of the main
features of the latter – the posterior distribution – is often difficult to study analyt-
ically. It is important to keep in mind, however, that MCMC is a sampler, and as
such is not well-suited to search the parameter space for good models, or to optimise
posterior distributions [388].

Bayes’ theorem

According to the Bayesian point of view, the probability that a theory or model is
correct is a subjective ‘degree of belief’ [390]. Bayes’ theorem essentially tells us how
to update and improve our initial beliefs using new information [387]. It may be
expressed in the form:98

P (θM |D) =
π(θM )P (D|θM )

P (D)
, (D.1)

97Conditional independence of two events A and B given another event C means that, if C is true,
knowledge about A does not influence our belief about B (and vice-versa) [387].

98A bar denotes conditional probability: in general, P (A|B) is the probability for event A to
happen, given event B.
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Figure D.1: Illustration of Bayes’ theorem [389].

where θM represents a set of values for the parameters of model M , D is our data,
and the different probability distributions are described below [389,391]:

• The prior π(θM ) is independent of D – it incorporates our initial beliefs about
what θM should be. These beliefs are usually based on physical considerations
or on the results of previous studies.

• P (D|θM ) establishes how probable it is for D to have resulted from our partic-
ular θM . It may thus be said to quantify the likelihood of θM being the true
set of parameter values, although when interpreted in this way it is commonly
referred to as the likelihood L [L (θM |D) = P (D|θM )].

• The evidence P (D) indicates how well the model M describes D if we take into
account all the possibilities for θM [i.e. if we integrate over the full parameter
space: P (D) =

∫
π(θM )P (D|θM )dθM ]. In other words, it reflects how good a

fit the predictions of M provide for D. If only one model is considered, P (D)

is a fixed quantity and may be treated as a normalising factor.

• The posterior probability P (θM |D) is a measure of our belief in θM after we
have combined π(θM ), our prior intuition, with the data D and normalised by
the overall evidence, P (D).
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The Metropolis-Hastings algorithm

Even when our knowledge of the mathematical properties of a probability distribution
function (pdf) is limited, attributes like the mean and median may be inferred by
analysing a large number of samples drawn randomly from the distribution. This
makes MCMC an indispensable tool to extract information from posterior pdfs. It is
often the case that the evidence P (D) is very difficult to calculate, so that one can
construct the posterior pdf solely up to a constant. The good news about MCMC is
that it is insensitive to the normalising factor, and only requires us to calculate ratios
of the pdf at arbitrary points of the parameter space. Furthermore, in its simplest
form MCMC sampling can be carried out without having to integrate or differentiate
the pdf [388].

The default MCMC algorithm implemented in Monte Python is known as Metropolis-
Hastings. Let us suppose that we have already generated a number of samples, the
last of which is θk. The next sample, θk+1, is obtained as follows [387,388]:

• A point θ̃ is drawn from the proposal distribution, which we shall denote by
q(θ̃|θk); q(θ̃|θk) may be, for instance, a multi-variate Gaussian for θ̃ with mean
θk. The Markov property requires that the proposal function is independent of
any values of θ that precede θk in the chain.

• A number u is chosen randomly from a top-hat distribution that is non-zero
over the range (0, 1).

• The function f(θM ) ≡ π(θM )×P (D|θM ) is evaluated at θM = θ̃ and θM = θk.
Then one computes the acceptance ratio r:

r =
f(θ̃)

f(θk)
× q(θk|θ̃)
q(θ̃|θk)

. (D.2)

If u < r, θ̃ is accepted and incorporated into the chain. Otherwise, θk+1 is set
equal to θk.
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