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Abstract

The ever increasing satellite population in near-Earth orbit has made the mon-
itoring and tracking of active satellites, and orbital debris objects ever more
critical. As the in-orbit population grows, so does the risk of a collision. In re-
cent years, the European Space Agency (ESA)’s Space Situational Awareness
(SSA) programme has been assisting national institutions in the upgrading of
their space detection and monitoring capabilities. One of the latest such sys-
tems within this programme is the BIstatic RAdar for LEo Survey (BIRALES)
space surveillance system consisting of a radio transmitter in Caligari, Sardinia
and the BEST-2 phased array in Medicina, near Bologna, Italy. This research
lays out the foundation for a new space debris detection system for this novel
sensor. First, this work introduces a new software backend that makes use of
data processing pipelines to process the incoming data from the 32-antenna ra-
dio telescope in real-time. The detection pipeline channelises and beamforms
the incoming antenna signals, creating a multi-pixel of beams covering the
Field of View (FoV) of the instrument. The detection algorithm uses a series
of filters to pre-process the incoming data from any interference. In this study,
two novel track detection algorithms are presented. These algorithms identify
the unique doppler echo tracks emanating from resident space objects crossing
the FoV of this bi-static radar. Candidates are identified by these algorithms
are validated to reject false positives. The trajectory of the detected objects
is determined by considering the illumination sequence of the multi-pixel. Ini-
tial experimental results from observation campaigns of known objects show
that the radar can reliably detect in-orbit objects down to a few centimetres
in size in Low Earth Orbit (LEO). These encouraging results represent the
latest scientific contribution from Europe’s emerging space debris monitoring
radar within its growing network of European Space Surveillance and Tracking
(SST) systems.
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Chapter 1

Introduction

Satellites have become indispensable to many areas and disciplines includ-
ing telecommunications, climate research, navigation and human space explo-
ration. Humanity’s reliance on space-based technology makes the safeguarding
of these assets of paramount importance. Since the launch of the first artificial
satellite, the Russian Sputnik-1, the number of satellite launches has increased
dramatically. This exponential growth can be seen in Figure 1.1. It is esti-
mated that as of 2019, a total of 8500 t of space hardware have been put into
Earth’s orbit [1].

Figure 1.1: The evolution of the total payload mass put in orbit and the orbit
these reside in [1]

Of the thousands of satellites that were put in orbit, only a fraction of
these remain operational to date. Satellites are usually decommissioned at the

1
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Figure 1.2: Number of fragmentation events that have occurred to date. The
data is categorised by the most likely cause of the fragmentation event [1]

end of their mission which could span decades. During this time, they can
also suffer from a fatal break-up. Break-ups are the result of either a system
malfunction or an in-orbit collision. In either case, these fragmentation events
lead to the proliferation of inactive hardware in Earth’s orbit. Figure 1.2
shows a breakdown of historical fragmentation events according to their most
likely cause. One may note that most of these fragmentation events are due
to propulsion issues and the number of events whose cause is unknown or
anomalous is substantial. Klinkrad et al. (2006) stated that most (80 %) of
the known fragmentations occurred at altitudes lower than 2000 km.The space
environment is also home to spacecraft that were used to put the satellites in
orbit. This list includes spent rocket bodies, exhaust and dust particles and
leaked cooling agents [2]. These objects are commonly referred to as space or
orbital debris.

1.1 Orbital debris

The United Nations Committee on the Peaceful Uses of Outer Space (UN-
COPUOS)’s space debris mitigation guidelines defined space debris as:
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All man-made objects, including fragments and elements
thereof, in Earth orbit or re-entering the atmosphere, that are
non-functional.

– UNCOPUOS [3]

Orbital debris objects can be categorised into three orbital classes depending
on the altitude in which they reside. It is estimated that the vast majority
of these objects (75 %) of the catalogued objects are put in Low Earth Orbit
(LEO) at a perigee altitude of less than 2000 km. Navigation Global Navigation
Satellite System (GNSS) satellites are put in at a perigee altitude of 20 000 km
[4]. At an altitude of 35 876 km, an inclination of ∼0° and eccentricity of
∼0.0, Geostationary Earth Orbit (GEO) objects move synchronously with the
Earth’s rotation. On these orbits, one finds communication and meteorological
satellites which makes this particular orbit of high commercial value. As of
2016, there are 7 per cent of the catalogued objects reside in GEO [5].

Large objects are routinely monitored, and their orbit is well known. How-
ever, only estimates are available for objects that are less than 10 cm in LEO
and 1 m in GEO. It is estimated that there are twice as many non-trackable
objects as what is currently being tracked in GEO. The number of objects
between 5 mm and 10 cm in LEO is currently estimated at around 600,000 ob-
jects [5]. Smaller objects dominate the orbital debris population. Most of these
objects are the direct result of satellite disintegration or collision processes [6].
Objects orbiting the Earth can reach speeds of up to 8 km s−1 in LEO [7]. At
these speeds, even the smallest of objects can cause extensive damage to an
active satellite. An indicative example of the damage that can be caused by
these projectiles is shown in Figure 1.3.

Objects smaller than 1 cm are harder to detect or track regularly from the
ground. At this scale, the data is unreliable and only estimates that are based
on statistical models are available [8]. Current estimates put the number of
objects smaller than 1 cm to hundreds of millions and those below 1 mm to
tens of billions. These estimates can be determined experimentally through
impact assessment on returned hardware from space. Analysis of the impact
craters can give an estimate for the impact velocity, direction and origin of the
projectile [9].

In 1993, one solar panel from Hubble Space Telescope (HST) was returned
to Earth for analysis. A total of 3600 impacts were reported on its brittle glass
covering the solar array with a surface area of 55 m2. Chemical analysis of the
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Figure 1.3: Crater left by a hyper-velocity impact emulating the damage
caused by a 1.2 cm aluminum sphere travelling at typical LEO velocity of
6.8 km s−1(Source: ESA)

crater pits showed that 69 per cent of the object were micro-meteorites, 10 per
cent originated from human-made objects, and 21 per cent were not classified
[10]. This data suggests that at this scale, human-made objects do not exceed
the natural background objects [11]. Mathews et al. (2001) [12] estimate that
around 4 t to 7 t of space material enter Earth’s atmosphere per day. This
contributes to the hazardous environment satellites are operating in.

The orbiting objects are not distributed evenly around the Earth. An
analysis of the inclination, periodicity and eccentricity ratio of the catalogued
objects can identify regions with a higher density of objects. For instance,
objects are found concentrated at orbital inclinations near 65°, 75°, 83° and
99° [13]. As illustrated in Figure 1.4, a maximum in orbital concentration can
be observed at particular inclination bands such as the sun-synchronous orbits
(inclination of ∼ 100 ± 5°), polar orbits (inclination of ∼90°) and orbits at
which navigation satellites reside in (inclination between ∼55° and ∼65°). On
the other hand, if one considers the eccentricity of the objects, the distribution
is more continuous. Figure 1.5 shows that most of the catalogue objects have
near-circular orbits with an eccentricity of less than 0.01. These accumulation
regions are of particular research interest as they pose a higher statistical threat
than other regions. The likelihood of a collision is highest at locations with
the highest resident probability [11].
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Figure 1.4: A histogram of the catalogue object’s inclination with a bin width
of 1° [11]

Figure 1.5: A histogram of the catalogue object’s eccentricity with a bin width
of 0.01 [11]

In 1996, space agencies witnessed the first-ever known on-orbit collision
between the French Cerise satellite and an Ariane-1 h-10 upper stage debris
[14]. The debris field created by two similar events is manifested in Figure
1.6 as two distinct peaks in the orbital population. The first peak observed
is attributed to the intentional destruction of the Chinese Fengyun-1C polar-
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Figure 1.6: A histogram of the catalogue object’s altitude [11]

orbiting weather satellite [15] in 2007. The second peak is attributed to the
on-orbit collision between an active 560 kg Iridium-33 satellite with a defunct
Russian Kosmos-2251, 900 kg communication satellite in February 2009. The
speed of the impact was over 11 km s−1, destroying the Iridium satellite [16].

Nowadays, the space environment in LEO is mostly driven by the com-
mercial sector. In recent years, there have been several announcements of
mega-constellations, consisting of a network of thousands of satellites such
as Starlink mega-constellation from SpaceX1. This new constellation, whose
initial launch started in 2019, raised fresh concerns on the safety of these con-
stellations in LEO [17].

One can theorise that if no effective measure is taken to control the or-
bital debris population, the likelihood of further collisions can be expected to
increase. In 1978 [18] stated that the uncontrolled debris growth could lead
to a self-supporting process of collisional cascade where in-orbit collisions can
generate a debris cloud of highly energetic projectiles which in-turn trigger
further collisions. Known as the Kessler’s syndrome, this theory predicts that
in the long-term, the debris population would decrease in size as the number
of collisions between space debris increases. The implication is that if no re-
medial action is taken, this process can lead to a situation where the risk of
a collision in LEO is so high that future crewed and uncrewed space missions
will become impractical or dangerous.

1 www.spacex.com
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1.2 Mitigation measures

The increasing risk of orbit collisions has led to a substantial investment in
new preventive measures in order to mitigate the proliferation of space debris.
In the last decade, there have been several techniques that proposed methods
of removing the larger debris directly. However, as yet, no such system is
operational [5].

Effective mitigation strategies are essential for satellites in the LEO and
GEO regions, which are of most importance due to the unique properties
for space activity. The Inter-Agency Space Debris Coordination Committee
(IADC) singled out these two orbital regimes as protected regions of outer
space. Any space activity in this region should strictly abide IADC space de-
bris mitigation guidelines which were set out to ensure a sustainable and safe
future with regards to the generation of space debris [19]. For instance, nowa-
days, post-mission passivation measures [20] have become standard practice.
Furthermore, the orbital lifetime of a spacecraft with a propulsion system can
be reduced by lowering its perigee altitude before being passivated [21].

There are no natural cleaning mechanisms to remove orbiting objects in
GEO. Unlike objects in LEO, there are no energy-dissipating mechanisms,
such as atmospheric drag at this orbital regime [22]. Consequently, collision
risks in GEO are reduced by placing retired spacecraft to an IADC-compliant
‘graveyard’ orbit in order to separate them from operational spacecraft in the
GEO protection zone [23].

While the risk of collision can be reduced significantly through the above
mentioned practices, catastrophic orbital collisions can occur and have oc-
curred in the past. Specialised shielding can protect the spacecraft from sub-
centimetre objects [24]. However, currently, there is no effective shielding
capable of protecting the spacecraft from a collision with medium to large de-
bris objects [25]. Satellite operators have to routinely assess the probability
of a collision of their assets with other objects. For instance, in the case of
the International Space Station (ISS), the accurate tracking of objects that
are larger than its maximum shield capacity is essential. When the risk of a
collision with these objects is high, the ISS can execute evasive manoeuvres
[26, 27].

Tracking of space debris objects is vital for the characterisation of the
debris environment through direct observations. Measurements provide space
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agencies and satellite operators with a deeper understanding of the current
environment. Observational campaigns shed light into the space debris growth
trends [28] and accumulation regions. This data is presently used both at the
mission design phase and in collision risk assessment studies [29]. Additionally,
these measurements are also used in the monitoring campaigns of orbital debris
re-entries.

These measurements are used to populate orbital debris databases or cat-
alogues detailing the space environment produced by human-made objects.
The United States Strategic Command (USSTRATCOM) distributes an ex-
tensive data set of orbital debris objects in Two-Line Element (TLE) format.
This catalogue is maintained through the observations performed by the US
Space Surveillance Network (SSN) [30]. It lists objects in the order of 10 cm in
LEO and 1 m in GEO. This information is made available through the Space-
Track2 website through a public API that allows users to download the TLE
information of the target objects. The USSTRATCOM is also used to build
most of European Space Agency (ESA)’s Database and Information System
Characterising Objects in Space (DISCOS)3 catalogue [31].

1.3 Sensors for space situational awareness

Space agencies amalgamate the output of different sensors in order to detect,
track and identify both known and unknown orbiting objects. At present,
the space environment is determined through both space-borne [32, 9] and
ground-based optical and radar systems [33].

At higher perigee altitudes, such as Medium Earth Orbit (MEO) and GEO,
optical instruments are typically used given that the sensitivity of optical in-
struments decreases with the second power of the distance between the instru-
ment and the target. High-altitude objects are tracked using the Ground-based
Electro-Optical Deep Space Surveillance (GEODSS) and Maui Optical Track-
ing and Identification Facility (MOTIF) USSTRATCOM installations. Each
facility is a system of three 1 m aperture diameter telescopes and part of the US
SSN [34]. Although European and Japanese institutions operate several space

2 www.space-track.org
3 www.discosweb.esoc.esa.int

www.space-track.org
www.discosweb.esoc.esa.int
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surveillance assets, none of them is being used for the operational maintenance
of a catalogue [11].

Optical instruments are dependent on the Sun’s illumination of the target
object and their performance is susceptible to atmospheric conditions [28]. On
the other hand, radar instruments are independent of the Sun’s illumination
of the targets and are not susceptible to meteorological conditions. Radar
instrumentation is often used in the characterisation of the debris environment
at lower altitudes. In these methods, the sky is irradiated with a powerful
microwave beam. The radiation is reflected back to the receiver by any object
that crosses the coverage area of the radar. The reflected signal is used to
infer the position, RADAR Cross Section (RCS) and trajectory of the target
objects [29]. The strength of the returned echo is inversely proportional to
the fourth power of the incident radiation [35], making them most suitable for
LEO monitoring.

The US SSN makes use of several dedicated and collateral sensors for the
routine tracking of space debris objects. Apart from the operational sensors,
there are also experimental instruments which can detect orbital objects to a
higher degree of accuracy. Of particular note is the Haystack radar facility lo-
cated in Lexington, Massachusetts. The system consists of two parabolic dish
X-band radars systems. The Haystack Long-Range Imaging Radar (LRIR)
(Figure 1.7) is a 36 m mono-static parabolic radar with a 250 kW peak power
and having a 0.058° beamwidth. The radar is reported to be capable of de-
tecting sub-centimeter level objects at an altitude of 1000 km [36].

The second facility at Lexington is the Haystack Auxiliary (HAX) 12.2 m
mono-static parabolic dish [37]. The radar has a peak power of 50 kW and a
0.10° beamwidth and can provide accurate range and angle measurements of
debris greater than 2 cm at a range of 1000 km [36]. Even smaller sized objects
are detected by the Goldstone Deep Space Network in the Mojave Desert. The
radar can detect 2 mm objects at 500 km [11]. The Goldstone radars (Figure
1.8) are a bi-static X-band system consisting of a 70 m, 450 kW transmitter
parabolic antenna (0.02° beamwidth) that is coupled with a 34 m receiving
parabolic antenna 500 m away [38, 39].

In Europe, the characterisation of space debris objects is one of the pri-
mary objectives of the ESA Space Situational Awareness (SSA) programme.
The tracking of space debris objects is done through several sensors in the
European network of sensors [29]. In northern Scandinavia, one finds the
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Figure 1.7: The Haystack facility in Massachusetts, US

Figure 1.8: The Goldstone radar system in California, US (Source: NASA)
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low frequency European Incoherent Scatter Scientific Association (EISCAT)4

scatter radar. The primary research goal of the facility is high-latitude atmo-
spheric and ionospheric research. However, it was also shown to be able to
perform space debris observation campaigns in conjunction with the standard
ionospheric measurements. The EISCAT Ultra High Frequency (UHF) radars
located in Tromsø and Svalbard were used for beam park experiments of space
debris objects. The Tromsø radar operates at 920 MHz and uses a 1.6 MW peak
power transmitter. On the other hand, the Svalbard radar is a 32 m parabolic
dish antenna that operates at 500 MHz with a peak transmitting power of
0.7 MW [40]. Both of these radars have been used in the characterisation of
in-orbit events such as the debris field created by the Chinese anti-satellite
incident [41, 42] and the Iridium-Cosmos collision [43]. In a 5000 h observa-
tion campaign, detections of 3.5 cm objects at a range of 700 km to 1000 km
were reported using the EISCAT Svalbard radar [41]. In 2017, studies showed
that a multi-static radar composed of the various radar installations within the
EISCAT network, called EISCAT-3D [44], can be used to obtain an object’s
trajectories and instantaneous position and velocity vectors [45].

Figure 1.9: The 34 m diameter parabolic reflector at the TIRA radar facility
in Wachtberg, Germany (Source: Fraunhofer Institute for High Frequency
Physics and Radar Techniques (FHR))

The French Grand Réseau Adaptó à la Veille Spatiale (GRAVES) radar
system (Figure 1.10) is the only space debris monitoring system outside the US
SSN and Russian Russian Space Surveillance System (SSS) which maintains an

4 www.eiscat.se

www.eiscat.se
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Figure 1.10: The GRAVES radar system in Dijon, France (Source: Office
National d’Etudes et de Recherches Aérospatiales (ONERA))

independent catalogue. Owned by the French Department of Defence (DoD),
the system consists of Very High Frequency (VHF) Continuous Wave (CW)
transmitter and a planar 15 m by 6 m phased antenna arrays acting as receivers.
The quoted resolution of the system, whose operational tests started in 2001,
is of the order of 1 m at an altitude of 1000 km [46].

Wachtberg is home to the German Tracking and Imaging Radar (TIRA)
system (Figure 1.9), of the FHR. This mono-pulse radar system consists of
an L-band, 2 MW transmitter for tracking and a Ku-band, 13 kW transmit-
ter for Inverse synthetic aperture radar (ISAR) imaging (0.50° beamwidth).
The quoted detection threshold of the system is that of ∼2 cm at a range of
1000 km [47]. This sensitivity can be enhanced in bi-static experiments with
the TIRA system acting as a transmitter and a 100 m radio telescope located
in Efflsberg acting as a receiver. In these experiments, detections of objects
as small as 1 cm at a range of 1000 km were reported [48]. Other European
radar systems worth mentioning are Ukraine’s Evpatoria dish antenna and the
French’s Armor system deployed on the Monge tracking ship. An exhaustive
list of experimental and operational radar facilities for SSA is given in [11] and
[5].
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Observational facilities and space surveillance networks monitor a fraction
of the space debris population. Thus, the introduction of new high sensitivity
instrumentation is paramount to the better characterisation of the space en-
vironment. Apart from building new high sensitivity instruments, one of the
research missions of the ESA SSA programme is to adapt existing facilities
for the monitoring of orbital debris. As part of this endevour, the Istituto
Nazionale di Astrofisica (INAF) in collaboration with the University of Malta
and the Politecnico di Milano embarked on an ambitious project to upgrade
one of INAF radio telescope for use in SSA. The aim of this new facility was
to establish the first Italian space survelliance radar facility within the ESA
SSA network.

1.4 Conclusion

The space-age brought with it new challenges for the existing and future ven-
tures in space. One of the more prominent issues is the proliferation of orbital
debris as a consequence of human activity in space. The density of these objects
was shown to be highest in the lower altitudes such as in LEO. This commer-
cially sensitive orbit is predicted to become increasingly more congested with
the advent of new mega-constellations. As the number of Resident Space Ob-
ject (RSO) increase, so does the risk of a catastrophic collision with an active
satellite or human-crewed mission.

The issues mentioned above highlight the need for new high-sensitivity in-
strumentation that can monitor, and subsequently catalogue, this ever-growing
list of objects. An accurate characterisation of the space environment is
paramount to the successful implementation of any space debris mitigation
strategy. Nowadays, cutting-edge US and Russian facilities are actively moni-
toring the space environment. In the last couple of decades, European institu-
tions have also been enhancing their capability for space situational awareness.
This study presents the work put into the realisation of one of the latest space
debris monitoring radars. The objectives of this project are laid out:

• Investigate the applicability of the Northern Cross (Bologna, Italy) radio
telescope as the receiver component for a new bi-static radar that is
dedicated to the monitoring of the space environment in LEO.
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• Characterisation of the radar’s multi-beam receiver’s radiation pattern.

• Design and develop a new data processing backend for the radar’s re-
ceiver that can process the incoming antenna data in real-time.

• Development of new algorithms that are able to detect faint radar echoes
reflected off high-velocity RSO’s crossing the instrument’s radar cover-
age.

The aforementioned objectives are addressed in the ensuing chapters. The
problem statement and the motivation behind the introduction of new Eu-
ropean SSA monitoring facilities were outlined in this chapter. In the next
chapter, the receiver of this new radar facility is described in detail. This is
followed by the design considerations that were put into the development of a
novel data processing system for this receiver. Chapter 4 describes the detec-
tion algorithms that were used to infer the Doppler and trajectory information
of the target objects. In the fifth chapter, the results obtained during several
observations, are presented. Finally, a reflection on the current progress and
the future direction of this study are discussed in the last chapter.



Chapter 2

Space Situational Awareness using
the BEST-II phased array

Since the inception of the European SSA Programme in 2009, SSA activities
have benefited from a 200 million Euro budget from the financial participation
of 19 member states. The Space Surveillance & Tracking (SST) segment of this
program aims to establish an independent SST data acquisition and processing
capability in order to meet the increasing demand for larger, cross-national
instrumentation for SST [49]. Apart from the design and construction of new
SST monitoring assets, existing European national assets are also considered.
The aim is to upgrade these systems for their use in space surveillance [50].

In Italy, INAF has been investigating several possible radar setups at the
Medicina radio astronomical station since the beginning of the programme.
These studies were part of the Italian space debris research program and funded
by Italian Space Agency (ASI). An extensive review of the work done within
this program can be found in [51] and [6]. The facility is located in Medicina
near Bologna, Italy. It hosts two main receiving antennas that are currently
dedicated to astronomical research in the radio regime. The first instrument
is a 32 m diameter parabolic dish which operates from 1.4 GHz to 22 GHz. In
2007, this parabolic antenna was used in several space debris detection tests.
These observation campaigns were done in bi-static mode with the parabolic
dish acting as the receiver and the RT-70 parabola in Evpatoria, Ukraine
acting as the transmitter. The system was shown to be capable of detecting
small-sized debris in LEO and MEO [52].

The second instrument at Medicina is the Northern Cross shown in Figure
2.1. This chapter investigates the use of an upgraded part of this instrument

15



16

for its use as a receiver for a bi-static radar. This instrument is described in
detail in the next section.

2.1 The Northern Cross

The Northern Cross radio telescope is a T-shape array which operates at the
UHF band (408 MHz) with a bandwidth of approximately 2.5 MHz. The main
characteristics of the instrument are summarised in Table 2.1. It is composed
of two branches or arms that are perpendicular to each other. One arm is
aligned in an East-West (E-W) direction while the other is aligned to the
North-South (N-S) direction. The E-W arm is a 564 m long, 29.4 m wide
cylindrical parabolic reflector having a total collecting area of 16 600 m2 [50].

Antenna pointing Declination only
Collecting area 27 400 m2

Frequency bands UHF
Beam N–S 2°
Beam E–W 60°
Polarization Single

Table 2.1: The system specification of the Northern Cross radio telescope [28]

The N-S arm is composed of 64 parallel parabolic-shaped cylindrical an-
tennas that are spaced 10 m apart. Each antenna is 22.6 m long by 7.5 m wide
and is composed of 64 dipoles for a total of 4096 receivers [28]. In total, the
N-S arm has a collecting area of 10 800 m2 [50].

Thus, if both arms of the Northern Cross are considered, the total collecting
area of the instrument is 27 400 m2. This makes the Northern Cross the largest
UHF-capable antenna in the Northern hemisphere. World-wide, this is second
only to the Arecibo Observatory in Puerto Rico [50]. The instrument can
point at objects that transit over the local celestial meridian given that it is
mechanically steerable in declination only [28]. The array has two elevation
limits for its mechanical pointing. In the North pointing configuration, the
array can be steered from 22.5° to 90°. On the other hand, in the South
pointing configuration, the elevation angle can range from 90° to 17° [53].

In 2010, Montebugnoli et al. [28] stated that an upgraded Northern Cross
is an ideal instrument for the tracking of satellites and debris larger than 6 cm
in size. At the operating frequency of 408 MHz, the instrument is characterised
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Figure 2.1: The Northern Cross in Medicina, Bologna Italy.
Source: www.jodrellbank.manchester.ac.uk

by a large Field of View (FoV) of 2° (N-S) to 60° (E-W). The authors report
that the FoV can be populated with up 46,000 beams, 4 min by 4 min each.
As the target object crosses the field of view, a number of beams are illumi-
nated. Simulations of the proposed system show that 85 % of the catalogued
objects within the USSTRATCOM can be detected. A detection of 80 % of
the catalogued objects is still obtained if the FoV is halved [28].

The Northern Cross has been engaged in two important radio-astronomical
projects: the Square Kilometre Array (SKA) [54] and the Low Frequency Array
(LOFAR) [55]. As part of the Square Kilometre Array Design Study (SKADS)
framework, a section of the Northern Cross was upgraded to suit the needs of
these projects. These upgrades consisted of the installation of new low-noise
receivers with a high-dynamic range. It also included the installation of new
vector modulators/mixers and low-cost digital optical links [56, 57].

This re-instrumentation endeavour, called Basic Element for SKA Training
(BEST) [58, 59], was split into three phases. The first phase, the BEST-
1, consisted of the upgrade of a single parabolic cylinder along the N-S arm
[60]. This system has been in operation since 2004. The second phase of this
instrument is discussed in the next section.

www.jodrellbank.manchester.ac.uk
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2.2 The BEST-II phased array

The BEST-2 array, shown in Figure 2.2, is a UHF-band radio telescope oper-
ating at a band of 16 MHz centred at 408 MHz. It consists of a set of eight
East-West oriented cylindrical concentrators having a total collecting area of
1411 m2. Each cylinder has a reflecting surface made of 430 parallel steel wires
of 0.5 mm that are placed 2 cm apart. The feed consists of 64 λ/2 dipoles
that are situated at the focal line of the primary reflector. The elements are
critically spaced by half the wavelength (0.345 m) to minimise grating lobe
effects [59]. A flat sub-reflector is placed behind the focal line to increase the
efficiency of the cylinder [60]. The specifications of the array are summarised
in Table 2.2.

Figure 2.2: The eight East-West cylindrical concentrators making up the
BEST-2 array within the Northern Cross. Source: www.med.ira.inaf.it

Operations such as phase-shifting or analogue-to-digital conversion are too
expensive to implement for each individual element. Thus, in practice, a com-
promise is found whereby the elements are grouped into sub-arrays [62]. The
BEST-2 array makes use of four low noise receivers (sub-array) that are in-

www.med.ira.inaf.it
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Total Collecting Area 1411.2 m2

Total Effective Area (Aeff ) 1001.95 m2

Receiver Temperature 51 K
System Temperature (Tsys) 86 K
Aeff/Tsys 11.65 m2 K−1

Longest Baseline (N-S) 70 m
Longest Baseline (E-W) 17 m
Radio Frequency (RF) band 400 MHz to 416 MHz
Total analogue channels 32
Primary FoV (DEC, 408 MHz) 5.7°
Primary FoV (RA, 408 MHz) 6.6°

Table 2.2: System specification of the BEST-2 array [61]

stalled at the focal line of each cylinder. Each receiver combines the signals
from 16 dipoles using a hierarchical, analogue, beamformer that result in four
analogue sub-arrays per cylinder. Hence, the array consists of a total of 32
elements that are arranged in a 4 × 8 grid [60]. Collectively, these receivers
make up what is referred to as the BEST-2 phased array.

The signals received from the receivers are combined in order to increase
the overall gain and Signal-to-Noise Ratio (SNR) of the instrument relative to
that of a single element. As the aperture size of the array is increased, the
width of the main lobe radiation pattern decreases [63] to the point that a
single narrow pencil-like beam is generated. Such a narrow beam is desirable
in tracking applications [64].

The basic principle behind phased arrays can be explained by considering
a planar wave front, of wavelength λ0, incident on a linear array consisting of
M elements, separated by a distance d. The signals, incident at an angle θ,
will arrive at different times across the array elements. An antenna element m
will experience a phase difference ϕm with respect to the first element. This
phase difference is given by,

ϕm = k0(M −m)d sin(θ) (2.1)

where,
k0 =

2π

λ0
(2.2)

The signal Sm(θ) received at an element m located at xm = (M −m)d can
be written as,
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Sm(θ) = Se(θ) exp(jkoxm sin(θ)) for m = 1, 2, . . . ,M (2.3)

Where Se(θ) is the complex radiation pattern of the elements also known
as the element factor. The elements are assumed to have a uniform amplitude
distribution. The response of the array S(θ) can be obtained by summing the
received signals from the individual elements,

S(θ) = ΣM
m=1Sm(θ) (2.4)

= Se(θ)Σ
M
m=1 exp(jkoxm sin(θ)) (2.5)

The array output can be alternatively written in terms of the element factor
Se(θ) and the Array Factor (AF ) defined as,

AF (θ) = ΣM
m=1 exp(jkoxm sin(θ)) (2.6)

Such that,

S(θ) = Se(θ)AF (2.7)

Thus, the combined radiation pattern for an antenna array consisting of
identical elements and oriented in same direction, is simply the radiation pat-
tern Se(θ) multiplied by the Array Factor (AF ).

The radiation pattern of a phased array can be electronically steered such
that, in the case of a receiving antenna, it is made more sensitive to a particular
direction [65]. This makes it possible for the BEST-2 array to be steered
electronically in both the elevation and the azimuth plane.

The direction of maximum reception of the array can be altered by changing
the phase of the received signal across its elements. This is the principle behind
antenna or beam steering. In beam steering, the received signals Sm(θ) are
multiplied by a steering vector v⃗ = exp(jψm) such that when the signals are
added, they combine coherently towards a particular direction θ0. Thus, the
array factor becomes,

AF (θ) = ΣM
m=1 exp(j[k0(M −m)d sin(θ) + ψm]) (2.8)

Thus, if the phase taper is,
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ψm = −k0xm sin(θ0) for m = 1, 2, . . . ,M (2.9)

the array factor can be expressed as,

AF (θ) = ΣM
m=1 exp(jk0xm[sin(θ)− sin(θ0)]) (2.10)

Hence, phasing the antenna elements according to the beam-pointing di-
rection θ0 will result in an array factor which reaches a maximum at an angle
θ = θ0, as desired. Put differently, the beam is said to be steered towards the
angle θ0. For a planar phased array of K by L elements, such as the BEST-2
array, the radiation pattern in (θ, ϕ) can be shown to be the product of the el-
ement factor Se(θ, ϕ), and the two linear array factors AF1(θ, ϕ) and AF2(θ, ϕ)

in the x and y direction respectively [63, 66],

S(θ, ϕ) = Se(θ, ϕ)AF1(θ, ϕ)AF2(θ, ϕ) (2.11)

In this case, the phased array factor AF (θ, ϕ) = AF1(θ, ϕ)AF2(θ, ϕ) is given
by,

AF (θ, ϕ) = ΣM
m=1Σ

N
n=1 exp(jk0ξxm) exp(jk0ξyn) exp(jψmn) (2.12)

where,

ξxm = xm sin θ cosϕ (2.13)
ξyn = yn sin θ sinϕ (2.14)

and xm and yn is the position of the mnth element and ψmn is the phase
taper that is applied on the incoming signals such that the maximum array
radiation occurs at (θ, ϕ) = (θ0, ϕ0). In general, the position of the mnth

element from the origin can be expressed in terms of the position vector r⃗mn,

r⃗mn = xmx̂+ ynŷ (2.15)

Therefore,

k⃗ · r⃗mn = k0r̂ · r⃗mn = k0xm sin θ cosϕ+ k0ynsinθ sinϕ (2.16)
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Similarly the phase term ψmn can be expressed as,

ψmn = −k⃗0r̂0 · r⃗mn = k0xm sin θ0 cosϕ0 + k0ynsinθ0 sinϕ0 (2.17)

Substituting the terms, the array factor can be written more compactly
in terms of the wave vector k⃗ steered towards the incident radiation with a
wave-vector k⃗0 [67, 66],

AF (k⃗) = ΣM
m=1Σ

N
n=1 exp(j(k⃗ − k⃗0) · r⃗mn) (2.18)

Thus, the complete radiation pattern for a phased array whose elements
are arranged in a grid is given by,

S(k⃗) = Se(k⃗)AF (k⃗) = Se(k⃗)Σ
M
m=1Σ

N
n=1 exp(j(k⃗ − k⃗0) · r⃗mn) (2.19)

The element radiation pattern Se(k⃗) can be obtained either empirically or
through simulation. The next section presents the radiation pattern for an
element within the BEST-2 array that was obtained through simulation. This
pattern is ultimately used to produce the complete radiation pattern of the
array.

2.2.1 An electromagnetic model of the BEST-II array

A complete characterisation of the resulting radiation pattern can be achieved
through a full electromagnetic simulation software packages. Computer Sim-
ulation Technology Studio Suite (CST)1 is an electromagnetic simulation soft-
ware that can simulate the electromagnetic behaviour of an antenna design.

In this work, a single parabolic cylinder of the BEST-2 array was modelled
in CST. The individual steel wires acting as the antenna’s reflector were mod-
elled as a single, solid, sheet of metal in order to simplify the simulation. This
reduced the complexity of the simulation. Mutual coupling effects between
the dipoles were modelled by introducing all the 64 dipoles within a cylinder.
The dipoles, separated by a distance of 0.345 m were put at the focal length

1 www.3ds.com

www.3ds.com
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Figure 2.3: A 3D model of an element of the BEST-2 array (Source: M.
Schiaffino at INAF)

of the reflector. A rectangular sheet of metal was placed behind the dipole
elements to emulate the physical sub-reflector installed. Care was taken to en-
sure that the measurements are as precise as possible. Precise measurements
of the parabolic reflector were obtained from a Computer-Aided Design (CAD)
model developed by Marco Schiaffino at INAF. This CAD model is shown in
Figure 2.3.

The ensuing discussion will detail how the electromagnetic simulation re-
sults obtained in CST were used to build a complete model for the BEST-2
phased array. The electromagnetic results from this simulation were exported
to CSV file and subsequently post-processed in such a way that they could be
imported and used by MATLAB’s Phased Array Toolbox2.

The simulated far-field 3D pattern of an ideal half-wavelength dipole placed
in the middle of the reflector is shown in Figure 2.4a. The corresponding power
pattern in the azimuthal, ϕ and elevation, θ, planes are shown in Figure 2.4b
and Figure 2.4c. The reflector enhances the directivity of the antenna element
when compared to that of a conventional dipole antenna.

2 www.mathworks.com/products/phased-array.html

www.mathworks.com/products/phased-array.html
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(a) 3D representation

(b) Azimuthal plane cut

(c) Elevation plane cut

Figure 2.4: A element radiation pattern of a dipole element at the centre of a
parabolic reflector of the BEST-2 array
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The BEST-2 sub-array, or receiver, was assumed to consist of 16 identical
dipole antennas having the same response. The pencil-shaped power pattern
of the sub-array is shown in Figure 2.5a. The corresponding azimuth and
elevation cuts of the sub-array’s power pattern are illustrated in Figure 2.5b
and Figure 2.5c . One can note that the gain of the combined elements is
enhanced and the directivity of the element is improved as the beamwidth
narrows in the plane parallel to the focal line.

The beam pattern of the full BEST-2 array is realised by aggregating the
response from 32 receivers spread across eight cylinders. The realised pattern
for the BEST-2 phased array is shown in Figure 2.6. The gain of the array
is calculated to be 43.59 dB at broadside while the side-lobe level of the array
is −13.45 dB relative to the main lobe. The Half-Power Bandwidth (HPBW)
along the E-plane is 1.63° and 0.45° along the H-plane. One may also note
that the gain of the synthesised beam is governed by a tapering action of the
element pattern. This tapering effect attenuates the radiation pattern in the
direction of the array’s FoV boundary.

One may note the emergence of grating lobes in the Elevation cut. Grating
lobes are the aliasing effect introduced as a consequence of the array geom-
etry [68]. These maxima are not desirable in radar applications since these
introduce ambiguities in the detection. A radar’s performance is hindered by
the fact that it is not able to distinguish between a detection in the main lobe
with that inside of a grating lobe.

Grating lobes are unavoidable in the BEST-2 array given that the separa-
tion distance d between the antenna elements (along the South-North direc-
tion) is greater than λ/2 (for the end-fire case). A maximum in the radiation
pattern of an antenna is expected at an angle θ which satisfies,

d

λ
(sin θ − sin θs) = m, m = 0,±1,±2 (2.20)

where θs, also known as the scanning angle, is the angle of the array at
which maximal directivity occurs. Thus, at broadside, a beam maxima should
occur at an angle θ [64].

θ = sin−1
(mλ
d

)
(2.21)

In the case of the BEST-2 array operating at a frequency of 410 MHz (the
chosen carrier frequency for space surveillance), the separation distance is 8λ
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(a) 3D representation

(b) Azimuthal plane cut

(c) Elevation plane cut

Figure 2.5: The simulated beam pattern for a sub-array receiver in the BEST-2
phased array
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(a) Azimuthal plane cut

(b) Elevation plane cut

Figure 2.6: The simulated beam pattern of the BEST-2 phased array

and 13.6λ in the H-plane and E-plane respectively. The first grating lobe is
expected to be 4.2° in H-plane and 7.2° in the E-plane away from the main
lobe.

The discussion thus far has investigated the apparent radiation pattern of
the array when the target object is at zenith. As the angle between the target
and the array changes, so does the apparent distance between the cylinders.
Assuming the hour angle between the target and the receiver is very close to
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zero, the apparent change in cylinder distance is equivalent to d sin(θ) where
θ is the elevation angle between the array to the target source. Thus at the
zenith (θ = 90 deg), it will be equivalent to d as required.

2.2.2 Beam steering

The beam pattern for the BEST-2 array can be pointed in any direction by
applying the correct steering vector. Figure 2.7 illustrates the array response
as it is steered to 1.5° and 3.2° in azimuth, respectively. One may note that
as the beam is steered off the broad-side, the shape of the array’s response
changes substantially. While the main beam is correctly steered towards the
specified angle, quantisation lobes start to appear in the array response.

Figure 2.7: Steering of the main beam 1.5° and 3.2° away from broadside in
the azimuth plane. Quantisation lobes are clearly visible at azimuth = 3.2°

Quantisation lobes are a consequence of applying the steering weights at
the subarray level. The same discrete phase shift is applied across all elements
within the sub-array instead of using a linear progressive phase shift where
each element has its own correction [62]. This results in periodic phase and
amplitude errors across the sub-array. These errors are highly correlated and
result in the large, well-defined peaks. These peaks are known as quantisation
lobes [68]. Apart from spatial aliasing, quantisation affects the accuracy of the
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beam pointing [69]. It can be noted that this effect becomes more severe as
the steering angle is increased.

Figure 2.8 shows the angular deviations between the generated beam point-
ing and the desired angle. The resultant pointing of the generated beam is
determined by the azimuth, elevation angle at which the maximum gain is
recorded. As expected, the difference becomes more significant as the beam
is steered farther away from the azimuth direction. Such an error, which can
rise to 0.2° at an azimuth offset of just 3°, is substantial and is not acceptable
for the precise determination of a target’s orbit. It can be shown that this
phenomenon is not present when the beam is steered in the elevation direction
and is independent of the declination of the array. The current understand-
ing is that this deviation is attributed to the prevalence of quantisation lobes.
Further reading into the pointing errors introduced by phase shift quantisation
effects can be found in [70, 68].

Figure 2.8: Angle deviation as a function of the azimuthal pointing away from
broadside

Quantisation lobes can be compensated for by adding phase shifters behind
each antenna element within the sub-array. Phase can be changed by altering
the permeability using a ferrite phase shifter [66]. However, placing a phase
shifter behind each element increases the costs and complexity of the array. In
the absence of these phase shifters, one can alternatively try to model these
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pointing errors. As shown in Figure 2.8, these errors can be quite predictable.
Hence, they can be accounted for if an accurate model of the BEST-2 array
is available. This highlights the need for such a model in order to understand
the deviations from the nominal pointing direction.

This analysis suggests that the beam pointing errors can be minimised if
the steering of the beams is restricted to a few degrees away from the broadside
angle in azimuth. Furthermore, grating lobes effects in the N-S direction can
also be reduced if the beams’ steering in the Elevation (EL) direction is kept
below 3°. However, the coverage area of the multi-pixel is reduced. This means
that a balance needs to be found between the precision of the beam’s pointing
and the maximum coverage area. In Chapter 3, these considerations will be
used to generate an optimal beam configuration for the detection of space
debris.

The model mentioned above can be validated against the response of the
array to an astronomical radio source. Such a technique is a standard practice
that is used to verify the radiation pattern of the instrument. As the source
passes over the array, the processing backend introduced in the following chap-
ter is used to beamform the incoming array signals. The array response in time
is converted in terms of angle such that is could be compared with the model’s
array response, as shown in Figure 2.9.

One can observe the high level of agreement between the data obtained
during a transit of Cassiopeia A and the modelled antenna response. This
agreement can also be seen at the sidelobe levels, where the deviation is less
than 0.1 dB. However, this agreement is less pronounced for the beams that are
steered farthest from broadside. While the presence and general shape of the
quantisation lobes is predicted correctly, their position and relative strength
is not. The implication is that the electromagnetic behaviour of the BEST-2
array is still not completely understood. This could be due to the fact that
the elements do not behave identically. In reality, tapering effects at the edge
of the parabolic cylinder mean that the element radiation pattern changes
depending on its position on the parabolic cylinder.

The results seem to indicate that albeit the agreement between the model
and observed data is favourable, the verification of the actual radiation pattern
in-situ is imperative for a more precise characterisation of the array. Moreover,
only the azimuthal plane could be compared using this method. Ideally, the
radiation pattern is wholly characterised in both E and H planes. Given that
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Figure 2.9: A comparison of the response of row of four beams from an ob-
servation of Cassiopeia A against the simulated beam pattern of the BEST-2
array

this is difficult to achieve using astronomical radio sources, researchers have
been experimenting with the use of artificial sources as verification systems.
The empirical verification of the radiation pattern of large radio antennas such
as the BEST-2 radio telescope is a challenging problem.

Consequently, a new antenna verification system, called ChopPy, was de-
veloped. ChopPy is a new and inexpensive antenna verification solution that
makes use of an Unmanned Aerial Vehicle (UAV) in order to characterise the
radiation pattern of radio antennas. Unlike existing methods, the system was
designed to acquire the data in real-time whilst the artificial RF source is still
airborne. The system is presented in Appendix A.1.

2.3 Calibration

Radio astronomical instruments, such as the BEST-2 array, are subjected to
several sources of errors that hinder the quality of the measurements. These
sources of errors, which can either be inherent or independent of the instru-
ment, can attenuate the strength of the incoming signal, distort the beam
pattern of the instrument or introduce a systematic error in the measurements
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[71]. These errors manifest themselves as gain and phase differences between
the receiving elements of a phase array. Environmental conditions such as
temperatures can also cause variations in amplitude in phase. Moreover, tro-
pospheric or ionospheric effects may cause additional phase delays.

The ionosphere is a region of the upper atmosphere that is characterised by
a significant number of ionized particles, produced primarily by the ultraviolet
light from the sun, that affect the propagation of radio signals [64]. The
propagation path of the electromagnetic waves through this dispersive medium
is thus probabilistic in nature and varies with time [72]. However, in the case
of the BEST-2 array, the FoV is small enough such that it can be assumed
that all receiving elements experience the same propagation conditions. This
makes it possible to calibrate the array on a single strong source in the FoV
of the instrument [73].

The BEST-2 array was calibrated using a standard calibration method in
which a bright, known, radio source is used to obtain a calibration solution for
the array. The received signal is the sum of the signal noise and the source
flux multiplied by the gain of the antenna. While the source flux is correlated
across the array, the system noise and antenna gain are not [74]. The input
data from the 32 element receiver is fed to a correlator as a radio source tran-
sits over the array. The correlator produces a series of co-variance matrices
that are generated by cross-correlating the output from all the receivers com-
monly referred to as baselines visibilities. The generated matrix for the whole
observation is persisted to disk.

Previous studies [74] obtained gain calibration solutions using the column
ratio gain estimation method described in [75]. In this work, per-antenna com-
plex gain solutions are obtained using the popular Statistically Efficient and
Fast Calibration (StEFCal) calibration algorithm described in [76, 77]. StE-
FCal is a computationally efficient method of obtaining per-antenna complex
gain solutions for large radio astronomical arrays. The algorithm tries to find
the minimum Frobenius norm difference between the observed visibilities D
(correlation matrix) and the gain matrix G. This can be written as,

min
G

∥D −GHMG∥F (2.22)

where, M is the model visibilities, and GH is the Hermitian transpose of
the gain matrix G. StEFCal uses the normal equations method to iteratively
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solve for G using a least-squares estimation method. The complex coefficient
solutions G are updated after each iteration until the convergence criteria, set
by the user, is met. A detailed description of this method can be found in [77].

A typical calibration solution is shown qualitatively in Figure 2.10. The
uncalibrated fringe pattern is compared with that obtained once the antenna
corrections are applied. One can observe that in the latter case, the received
signals are aligned in phase, thereby illustrating a calibrated array. The gen-
erated calibration coefficients are the product of both instrumental errors as
well as geometrical corrections. Geometrical corrections compensate for the
fact that the plane wave-front from the source impinges on the array elements
with different time delays. Thus, the geometrical delays are removed such that
the resultant coefficients are valid for all declinations.

Figure 2.10: The baseline visibilities before and after calibration on Taurus A

Calibration techniques relying on astronomical point sources are restricted
to a limited number of calibration windows per day depending on the number
of available point sources. Consequently, the generated calibration coefficients
must remain suitable for multi-day timescales. The degree of stability of the
calibration solution determines the frequency at which calibration observations
need to be performed, which is ideally kept low given that observation time is
expensive.
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The stability of the calibration solution can be determined by analysing
the degree of change in the antenna calibration coefficients that were generated
through successive calibration observations. Back in 2014, Foster et al. [74]
stated that a calibration observation every few days should be satisfactory
for the BEST-2 array given that the calibration solutions were stable in both
phase and amplitude.

Figure 2.11 shows the phase and amplitude antenna corrections for a total
of 10 calibration observations that were taken over a few days. The stabil-
ity of both phase and amplitude is estimated by showing the deviations from
the mean value. Figure 2.11a shows that over this period, the phase correc-
tion varies over a few degrees, across most of the antennas, and can thus be
considered to be stable. However, as shown in Figure 2.11b, the amplitude
correction can vary by tens of dB. One may note that there seems to be a bias
in the corrections that seem to be dependant on the calibration source. One
can theorise that this effect is due to the diurnal effects on the array due to
temperature difference. It was also noted that these effects were independent
of the calibration algorithm used.

These results suggest that, contrary to what was reported in [74], a calibra-
tion observation needs to be performed frequently, preferably at the start of
an SSA observation campaign. Alternatively, a calibration solution performed
within a similar time window can be used to mitigate the impact of diurnal
effects on the array. Multiple calibration solutions, obtained on different times
of day, can be made available depending on the time of observation. Future
studies should aim to confirm these results on a larger set of observations.
These studies should also help to address the impact of diurnal effects and
whether the instability reported is a consequence of spurious Radio-Frequency
Interference (RFI).

It is not always possible to schedule calibration observations at a satisfac-
tory frequency. For instance, it is difficult to schedule a calibration observation
during beam park campaigns, where the bi-static radar is expected to operate
continuously for an extended period. Thus, future work should investigate the
cause of the instability reported in this section and whether they are inherent
to the instrument itself and the impact of the diurnal changes on the system
noise of the array. Besides, other calibration algorithms and techniques can be
evaluated. One alternative is the use of artificial sources as calibrators instead
of astronomical ones as discussed in the previous section.
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(a) Phase

(b) Amplitude

Figure 2.11: Complex gain solutions obtained through 10 calibration obser-
vations of Cassiopeia A (blue), Cygnus B (green), Taurus A (red) and Virgo
(black), taken over a span of 7 days

2.4 Space surveillance using theBEST-II phased array

Since 2014, path-finding studies by INAF and the Istituto di Radioastronomia
(IRA), have investigated the use of the BEST-2 array as a receiver for a bi-
static space surveillance radar. The aim of these studies was to determine
the suitability of the UHF radar measurements for space debris monitoring.
Initial tests used the BEST-2 antenna in a bi-static configuration with a 3 m
transmitter located 5 km from the receiver [78, 50]. The encouraging results
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of those path-finding studies led to the inception of the BIstatic RAdar for
LEo Survey (BIRALES) bi-static radar for SSA. This operational radar was
the fruit of a collaboration between INAF, the University of Malta and the
Politecnico di Milano. The aim of the project was the realisation an operational
bi-static radar for orbital debris in LEO. In so doing, it fulfils the requirements
for the participation within the European SST Support Framework [79, 78].

Early advances in radar technology were driven by military applications,
most often in the tracking and surveillance of enemy ships or aircraft. The
technology saw its initial developments during the 1930s and through the sec-
ond World War [80]. Since then, this technology saw widespread adoption in a
plethora of applications ranging from proximity sensors to 2D/3D dimensional
mapping and meteorological monitoring. More recently, radar technology saw
its use in the detection and tracking of in-orbit objects in LEO.

A basic radar system can be thought of consisting of a transmitter that
irradiates the target with Electromagnetic (EM) signals and a receiver compo-
nent that reads the echoes back-scattered by the target object. Most modern
radars are mono-static where the same antenna is used as both the transmitter
and receiver of EM radiation. In this configuration, the receiver needs to be
shielded from the high-powered EM waves emitted by the transmitter to avoid
damaging the receiver’s electronics. Otherwise, the radar jams itself since the
EM radiation is introduced directly into the receiver [64].

In bi-static radars, the interaction between the transmitter and receiver is
minimised by having these two components physically separated by a consid-
erable distance. Bi-static radars are usually more complicated to deploy and
operate given that two, often very different, antennas are used at the trans-
mitter and receiver sites. Specific communication protocols need to be put in
place for the two components to work in tandem as a single instrument.

Another advantage of having two independent antennas for the reception
and transmission is that it makes it possible to combine the receiver of the
antenna with any transmitter operating in the receiver’s bandwidth. This
flexibility renders itself particularly useful in the design and construction of
new SST monitoring assets which make use of existing instrumentation, such
as astronomical radio telescopes.

The transmitted EM radiation can be classified into two general categories:
CW and pulsed waveforms.In pulsed radars, the transmitter emits a train of
pulses for a finite duration, or pulsed width τ that is typically 0.1 µs to 10 µs
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[64].In long-range applications, such as space surveillance, the pulse width can
exceed 1 ms such as in the case of the EISCAT [40] and TIRA [81] radar
installations. These bursts are separated by a period where the transmitter is
off. During this time, the receiver listens for the EM radar echoes. Range of a
target can be estimated by timing the time taken for the pulse to be received at
the receiver. The velocity of the target object can be determined by analysing
the returned frequency of the radar echo. The total transmission and listening
time is defined as one pulsed radar cycle, also known as the Pulse Repetition
Interval (PRI). Thus, the Pulse Repetition Frequency (PRF) is the inverse of
the PRI and it is the number of cycles the radar completes per second [82].

In a CW radar, the transmitter is operated continuously, usually without
interruption. Range of a target can only be determined if the characteristics
of the transmitted wave are changed. A simplified approach is to modulate
the frequency of the transmitted wave. This technique, known as Frequency
Modulated Continous Wave (FMCW), puts a timing mark on the EM wave,
thereby enabling the target’s range to be determined [72]. Chapter 3 describes
the FMCW radar used in this work to determine the range of a target object.

CW radars are relatively simpler and cheaper to design when compared to
other pulsed radars. In a CW radar, the transmitter can reach a greater mean
power, when compared to a pulsed radar with a fixed peak power transmit-
ter. Unmodulated CW radars can only detect moving targets. The reflected
radiation from stationary objects will be masked by the carrier frequency, f0.
On the other hand, non-stationary objects can be distinguished from the back-
ground clutter by measuring the doppler shift fd of the incident radar echo.
This makes it ideal for the detection of long-range objects such as in the de-
tection of high-altitude orbiting objects. In fact, CW radars are popular as
early warning surface-to-air missiles radars. The main limitation of a CW
radar is the probability of feedback from the transmitter carrier signal that
can ‘feedback’ into the receiver. This can be minimised by having the receiver
separated from the transmitter [64].

2.5 Doppler shift

The frequency fr of the radiation reflected off a target object moving relative to
the radar will be different from the transmitted frequency f0. This is due to the
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Doppler effect in which the received signal, reflected off an approaching target,
has a higher frequency. Conversely, a decrease in frequency is experienced for
a receding target. Given that the velocity υ of the target is a small fraction of
the speed of light c, relativistic effects can be ignored such that the relationship
is given by,

fr = [1 + 2(υ/c)]f0 (2.23)

The difference between the transmitter and the reflected frequency, ∆f , is
known as the Doppler shift and is given by,

∆f =
2υ

c
f0 =

2υ

λ
(2.24)

Where λ is the transmitted wavelength, and positive values of υ correspond
to a target approaching the receiver. Thus, the Doppler shift is shown to be
proportional to the relative velocity along the Line of Sight (LOS) between
the radar and the target object, known as the radial velocity or range rate.
The Doppler shift can be used to distinguish between moving targets from
background radar clutter [83]. Thus, a hyper-velocity RSO can be identified
by their Doppler-shifted radar signatures. In a bi-static radar, the bi-static
Doppler shift is defined as,

∆f = −1

λ

d

dt
(R1 +R2) (2.25)

Where λ is the transmitted wavelength, R1 is the distance between trans-
mitter and target and R2 is the distance between target and receiver [6]. Mea-
surements of the doppler shift in frequency as a target object transits over
the receiver can be used to determine the target object’s orbital state. As the
target object transits over the instrument’s FoV the received frequency will
typically vary from several thousands of Hz above the transmitter frequency
(on approach) to several thousands of Hz below the transmitter frequency as
the object moves away from the receiver [84].

The variation in the frequency with time for a typical object is sometimes
referred to as doppler curve. An example of a doppler curve is given in Figure
2.12. The doppler curve is a function of the relative motion between the
receiver of the radar and the target object. The very high velocity of in-orbit
objects means that passages of the target objects over the BEST-2’s FoV range
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Figure 2.12: A representative doppler curve that is typical of a passage from
a high-velocity orbiting objects such as a satellite

 

from a few seconds to tens of seconds. Given this very short time interval, the
doppler curve can be assumed to be linear in time.
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2.6 The radar equation

A radar system consists of a receiver and a transmitter antenna. In a mono-
static radar, the receiver and the transmitter are the same. On the other
hand, in a bi-static system, such as the one that is investigated in this study,
the transmitter and the receiver antenna are two different antennas at two
different locations. In both scenarios, the power density Qi (W m−2) of the
transmitted signal at a target a distance R away from the radiating antenna
is given by,

Qi =
PtGt

4πR2
(2.26)

where Gt is the gain and Pt is the total peak power (W) of the radar
transmitter antenna. The incident radiation is reflected off by the target and
propagated back to the receiving component of the radar system. The reflected
power Prefl in the direction towards the receiver is proportional to Qi [83] and
is given by

Prefl = Qiσ =
PtGt

4πR2
σ (2.27)

where the constant of proportionality, σ, is often referred to as the target
object’s RCS and is determined by the physical size, the shape and material
of the object [64]. The incident radiation on the target object is reflected back
to the receiving antenna such that the power density at the receiving antenna,
Qr, is given by

Qr =
Prefl

4πR2
(2.28)

Thus, by combining Equation 2.27 and Equation 2.28 an expression for the
received power density at the receiver can be obtained,

Qr =
Qiσ

4πR2
=

PtGtσ

(4π)2R4
(2.29)

The total power Pr received at the radar is the power density at the antenna
multiplied by the effective area Ae of the receiving antenna, hence,

Pr = QrAe =
PtGtAeσ

(4π)2R4
(2.30)
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In an ideal case, the signal received by the radar is solely due to radiation
reflected back by the target object. However, the received signal is usually
characterised by another interfering signal which varies randomly in phase
and amplitude. This interference, also known as white or thermal noise, can
come from multiple sources. Noise sources include galactic, solar, atmospheric,
ground and man-made interference (such as RF sources). These sources can
be represented by the thermal noise power Pn in the radar receiver,

Pn = kBnTs (2.31)

where k is the Boltzmann’s constant, Ts is the system noise temperature
and Bn is the instantaneous noise bandwidth of the receiver. The system noise
temperature is a combination of three separate components, such that,

Ts = Ta + Tr + LrTe (2.32)

where Ta is the noise contribution from the antenna, Tr is the contribution
from the RF components between antenna and the receiver, Lr is the loss of
the input RF components and Te is the temperature of the receiver.

Successful detection of the target can only be made if the power of the
received echo exceeds the noise power by a significant margin. Otherwise, the
received signal would be indistinguishable from the background noise. The
SNR is defined as the ratio between the target signal power Pr and the noise
power Pn. Hence,

ρ = SNR =
Pr

Pn

=
PtGtAeσ

(4π)2R4kBnTs
(2.33)

In the expressions obtained thus far, it was assumed that the distance R1

between the target and the transmitter is equal to the distance between the
target and the receiver, R2, as in the case of a mono-static radar. In the general
case where, R1 ̸= R2, the bi-static form of Equation 2.33 can be generalised
to,

ρ = SNR =
Pr

Pn

=
PtGtAeσ

(4π)2R2
1R

2
2kBnTsL

(2.34)

where the dimensionless term L was introduced to account for the total
system losses arising from the waveguides used, filters, antenna efficiency, beam
shape and attenuation due to the atmosphere.
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Thus far, the dimensionless loss factor L was assumed to be constant. In
reality this is product of multiple loss factors [64],

L = LtLaLrLsp (2.35)

where, L is the total system noise, Lt is the transmitter loss, Lr is the
receiver loss, Lsp is the signal processing loss and La is the loss due atmospheric
attenuation of the signal. The atmospheric loss La is a function of the distance
between the target and the receiver/transmitter. For a bi-static radar, this is
given by [83],

La[dB] = α(R1 +R2) (2.36)

The attenuation coefficient α depends on the condition of the atmosphere
and the signal carrier frequency. The electromagnetic radiation is affected by
several physical phenomena, including absorption and scattering. Absorption
occurs when the water vapour and oxygen present in the atmosphere absorb
some of the electromagnetic wave’s energy. On the other hand, scattering is the
process through which particulates within the atmosphere reflect the incident
radiation in a different direction away from the receiver antenna of the radar
system. The degree of attenuation is frequency dependant, as illustrated in
Figure 2.13a. Similarly, meteorological conditions, such as rain and fog, can
also attenuate electromagnetic waves, as shown in Figure 2.13b [64]. This
suggests that longer-wavelengths radar systems are more suitable for long-
range, all-weather observations.

One may note that UHF radars are less susceptible to atmospheric attenu-
ation. However, atmospheric effects were still accounted for in this study. This
attenuation decreases with altitude as the radio beam path passes through the
rarefied layers of the atmosphere [83]. At ranges greater than 10 km, losses
due to atmospheric attenuation can be neglected [85]. This loss is accounted
for twice since the signal travels through two different paths on transmit and
receiver [64]. The attenuation due to the atmosphere is also affected by the el-
evation of the antenna. The resultant air mass as the elevation of the antenna
is changed can be derived by using the Maddalena and Johnson [86] model or
through the Chebyvhev fitting of the Bemporad [87] tables. These effects are
assumed to be minimal, given the large distances involved and the operating
frequency.
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(a) Attenuation of the radar signal as a function of frequency at two
different temperatures

(b) Attenuation of the radar signal as a function of rain rate at four
different frequencies for the horizontal (H) and vertical (V) field com-
ponents

Figure 2.13: Attenuation of the radar signal as a function of frequency and
rain rate. Figures adapted from [64]

2.7 Radar capability

In this study, the BEST-2 instrument is investigated as a candidate radio tele-
scope for the receiving part of a bi-static radar system. To do so, we simulate
the theoretical capability of such an instrument using the radar-range equa-
tion (Equation 2.34) derived in the previous section. In these simulations the
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antenna bandwidth Bn was assumed to be 9.5 Hz. In the absence of an empir-
ically determined system loss, the transmitter and receiver loss were taken to
be 10 dB while the signal processing loss was assumed to be 2 dB. Moreover an
atmospheric attenuation coefficient of 0.002 dB km−1 was used. This gives a
maximum atmospheric attenuation (two-way) loss of 0.04 dB. The UHF trans-
mitter was assumed to be a 7 m parabolic reflector having a maximum power
of 10 kW while the receiver was taken to be the BEST-2 array. A detection
threshold of 10 dB was assumed. The gain of the transmitter antenna Gt is
given by,

Gt =
4πAt

λ2
(2.37)

where At is the effective aperture of the transmitter antenna. Substituting
Equation 2.37 in the radar range equation (Equation 2.34) gives

ρmin =
Pr

Pn

=
PtAeσAt

4πR2
1R

2
2kBnTsLλ2

(2.38)

where ρmin is the minimum SNR required for a reliable detection [64]. If
we define a constant κ as

κ =
PtAtAe

4πkBTsLρmin
(2.39)

The radar-range equation can be expressed as,

R2
1R

2
2 =

√
κσmin

1

λ
(2.40)

This expression can be used to illustrates the relationship between the
maximum detectable range and the operating frequency of the instrument for
a fixed RCS. Figure 2.14 shows that as the working frequency increases, so
does the theoretical distance at which a fixed sized object can be detected.
Conversely, as the wavelength is decreased the detection range is increased.
However, the improvement in detection is limited since at higher working fre-
quencies the atmospheric losses and influence of water vapour becomes sub-
stantial as discussed in the previous section [16]. The results show that at the
BEST-2 operating frequency (400 MHz to 416 MHz), an object with an RCS of
−10 dB m2 can be theoretically detected around 794 km (59 dB m) away from
the receiver.
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Figure 2.14: The theoretical range at which three different targets of varying
RCS can be detected as a function of the radar’s operating frequency

The target RCS can be used to determine the equivalent diameter for an
idealised conducting sphere [88]. The equivalent diameter dmin varies depend-
ing on the working frequency region. In the optical region (λ ≪ target size),
the relationship is,

dmin = 2

√
σmin

π
(2.41)

while in the Rayleigh region (λ≫ target size), the relationship is given by,

dmin =
(σminλ

4

π

)1/6

(2.42)

Hence,

dmin =
6

√
R2

1R
2
2λ

6

144κπ5
(2.43)

This relationship can be seen illustrated in Figure 2.15. One can note
that at 400 MHz, objects with an equivalent diameter of around 10 cm can
theoretically be detected up to a range of 800 km from the receiver. This
suggests that such a radar would be suitable for the detection of small objects
in LEO
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Figure 2.15: The relationship between the diameter of a detectable target and
the working frequency frequency

Thus far, it was assumed that a 10 kW transmitter was used. Let,

ψ =
ρkBTLπ24(R1R2)

2

GtAe

(2.44)

such that the radar-range equation can be re-written as,

σmin =
ψ

Pt

(2.45)

Thus, Equation 2.45 can be used to estimate the minimum detectable RCS
as a function of the transmitter power or available power budget. Figure 2.16
shows that as the transmitter power increases, so does the smallest detectable
RCS. Targets at an RCS of −2 dB m2 can be detected at a distance of 800 km
if the transmitter power is just 2 kW. However, the transmitter power has to
increase by more than five-fold for the detection distance to increase by 400 km.
These considerations are important in the design of a new radar system.

These simulations are important in order to establish the minimum tech-
nical specifications for a long-range radar system. The results suggest that the
BEST-2 phased array is a promising receiver for a bi-static SSA radar if it is
coupled with a suitable transmitter. Indeed, the array is the basis for one of
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Figure 2.16: The theoretical range at which an object with a given RCS is
detected if this is plotted as a function of the transmitter power

Europe’s latest space surveillance radars. This novel instrument is introduced
in the next chapter.
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2.8 Conclusion

In this chapter, the theoretical background behind the remote sensing of ob-
jects using radar technology was presented. This work investigates the use
of the BEST-2 phased array as a potential receiver for a new bi-static radar.
Simulations have shown that if the BEST-2 array is coupled with a powerful
transmitter, the system should be capable of monitoring space objects in LEO.

In Section 2.2.1, the beam pattern of the BEST-2 array, obtained through
simulation, was presented. The model was validated against the data obtained
empirically using received flux from an astronomical radio source. The agree-
ment between the simulated and experimental data is positive. However, this
agreement becomes less pronounced as the beam is steered away from broad-
side. The analysis of the model indicates that steering far off broadside in
the azimuth direction would give rise to quantisation lobes. Moreover, large
steering angles in the EL plane would introduce grating lobes. This is not
desirable for tracking applications.

These errors can be minimised if the angle at which the beams are steered
is reduced. The emergence of the grating lobes coupled with the pointing
errors introduced by the quantisation lobes re-affirms the need for an accurate
determination of the receiver’s radiation pattern.

Consequently, a new drone-based verification system for large-aperture ar-
rays was proposed in this work. Unlike other systems, this system can obtain
the measurement data of an antenna in real-time. Future versions of this sys-
tem will integrate with a new software backend that was developed for the
BEST-2 array. This software backend is described in detail in the next chap-
ter.



Chapter 3

The BIRALES bi-static radar

In Chapter 2, it was shown that the BEST-2 phased array is a suitable receiver
for a bi-static radar for space surveillance in LEO. In this chapter, we extend
the discussion to present the purposely built BIRALES radar. This radar is
the fruit of an international collaboration between various institutions. The
transmitter part described in this study was developed by the engineers at the
Astronomical Observatory of Caligari, while the receiver chain is a collabora-
tion effort between researchers at the University of Malta and the Medicina
Radio Astronomy station. The discussion focuses on the receiver’s software
components developed in this study.

This chapter is organised as follows. An overview of the components mak-
ing up this new bi-static radar will be discussed first. Then, the theoretical
detection capability is derived using the equations presented in the previous
chapter. This is followed by an in-depth description of the software architec-
ture used for the receiver component of this radar.

3.1 The BIRALES radar

BIRALES is a bi-static radar consisting of the Radio Frequency Transmitter
(TRF) fully steerable parabolic antenna located in the Italian Joint Test Range
in the region ‘Salto di Quirra’, Caligari, Sardinia, Italy. The 7 m transmitter
antenna (Figure 3.1) has a maximum speed of 3 ° s−1 with an accuracy of 0.1°,
and is able to supply a maximum RMS power of 10 kW in the bandwidth
410 MHz to 415 MHz [89]. The receiver of this radar is the BEST-2 array, de-
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scribed in the previous chapter. This gives the bi-static instrument, illustrated
in Figure 3.2, a baseline of about 580 km.

Figure 3.1: The parabolic antenna in ‘Salto di Quirra’, Caligari, Sardinia [90]

The transmitter and receiver environments are characterized by strong RFI
sources [74, 91] that may limit the usable bandwidth and thereby affect the
performance of the receiver [90]. The B-band (250 MHz to 500 MHz) formerly
known as P-band, is used by local TV radio links, WX weather balloon and
military radio communication services such as the TErrestrial Trunked RA-
dio (TETRA) system assigned to the Italian Ministry of Defence (MoD) [89].
These issues were put into considerations when selecting the operating fre-
quency of the transmitter.

It is customary to plot the SNR as a function of the range of interest. The
figure allows one to analyse the performance rating of the instrument. Figure
3.3 illustrates the simulated capability of the BIRALES radar. Assuming a
minimum detection threshold of at least 10 dB, a target object having an RCS
of 0.001 m2 can only be detected at a distance of around 250 km from the
receiver. The detection of such targets using the existing radar configuration
can only be improved by either increasing the transmitter power or by lowering
the threshold by introducing a more sensitive detection algorithm. Simulations
suggests that the present configuration of the BIRALES radar is capable of
detecting RSO whose RCS is greater than 0.1 m2. Targets having an RCS of
1 m2 are expected to be detected at a distance of 1200 km from the receiver.

The radar range equation introduced in the previous section assumes that
a single pulse is used to detect a target. In a pulsed system, several pulses
are transmitted and received, usually in the order of 16 to 20 pulses [64].
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Figure 3.2: The BIRALES bi-static radar is composed of a transmitter in ‘Salto
di Quirra’, Caligari, Sardinia and the BEST-2 antenna within the Northern
Cross located in Medicina, near Bologna, Italy. This distance between the two
instruments (baseline) is 580 km

The maximum radar range coverage is dependant on the power budget of
the transmitter. In a CW radar, the mean power Pm of the transmitter is
equivalent to its peak power Pp, given that it is being operated continuously.
On the other hand, the mean power of a pulsed radar is given by,

Pm = Pp
τp
Td

(3.1)

where τp = ητ is the time taken to transmit η pulses of width τ and Td is
the dwell time. Equation 3.1 can be expressed as,

Pm =
Pm.cw

Q
(3.2)

where Q = τp
Td

≫ 1 . Thus, all things being equal (system loss, detection
threshold), the peak power of a pulsed radar should be Q times as large as
that of a CW to obtain the same range coverage of a continuous wave radar
with the same mean peak power [83]. Given that the radar usually transmits
several pulses and processes the results of those pulses to detect a target, the
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Figure 3.3: The simulated SNR as a function of range

peak power Pp in the radar range equation needs to be replaced by the mean
power Pm that is given by,

Pm = PpτPRF (3.3)

Alternatively, this can be expressed in terms of the dwell time Td = η
PRF ,

Pm = Ppτ
η

Td
(3.4)

The optimum receiver bandwidth, B, for a pulse of width τ is given by
[64],

B =
1

τ
(3.5)

Substituting the term Pm, for the transmitter power Pt in the radar range
equation gives,

SNRp =
PmTdβ

η
· GtGrλ

2ση

(4π)3R4kTLB
(3.6)

Hence, the radar range equation for a pulsed system is given by,
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SNRp =
PmTdGtGrλ

2σ

(4π)3R4kTL
(3.7)

This suggests that the measured SNR can be altered by changing the dwell
time, Td, of the radar which can be altered by increasing the number of pulses
or by lengthening the pulse width (or the decrease the PRF). In fact, long-range
radars, such as those used in space surveillance, typically use pulse lengths in
the order of 1 ms [92].

The capability of the BIRALES radar can be compared against two other
European SSA sensors, the TIRA and the EISCAT radars in Figure 3.4. Care
was taken to ensure that the real-world parameters of these instruments were
used, when these were available. However, it was difficult to obtain the exact
values for all the parameters. In the case where such parameters could not
be found, the parameter, such as system loss, was assumed to be equivalent
to that used in BIRALES. The results show a preliminary evaluation of the
radar against existing state-of-the-art installations. A more rigorous compari-
son would entail the knowledge of the exact parameters of these instruments.
Thus, these results have to be taken with some caution, given that the exact
parameters of both radars are not publicly available. The parameters used as
listed in Table 3.1.

EISCAT1 TIRA2 BIRALES
Operating frequency (MHz) 930 1300 410
Rx Area (m2) 804 1735 1411
Tx Area (m2) 804 1735 38
Tx Peak Power (kW) 1600 1500 10
Pulse length (ms) 1 1 n/a
PRF (Hz) 50 40 n/a
N. Pulses 20 20 n/a
Attenuation coefficient (dB km−1) 0.010 0.010 0.002

Table 3.1: Simulation parameters used to asses the SSA radar capabilities in
Figure 3.4

One may observe that the theoretical detection ability of the BIRALES
radar is not at par with the other more established SSA instruments. Using

1 Data obtained from: www.eiscat.se
2 Data obtained from: www.fhr.fraunhofer.de

www.eiscat.se
www.fhr.fraunhofer.de
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Figure 3.4: A comparison between the simulated performance of the estab-
lished SSA radars EISCAT (Tromsø) and TIRA, with the proposed BIRALES
radar

an expository target of 0.1 m2 and a 10 dB detection threshold, one may note
that the maximum range for such a target in the case of BIRALES is just over
750 km. When this is compared with the performance of other instruments,
one can observe that such a target is still detectable at a range in excess of
1200 km. While the BIRALES radar is shown not as sensitive as the more
established instruments, the results are encouraging.

The BEST-2 receiver is just a small section (8 out of 64 parabolic reflectors)
of the Northern Cross. A fully upgraded Northern Cross would see the total
collecting area of the receiver increase from the current 1411 m2 to 7260 m2.
Such an upgrade would make BIRALES one of the largest space monitoring
instruments in the world. Additionally, the bi-static nature BIRALES means
that its design is not tightly coupled with any transmitter. Thus, it can be eas-
ily be used with any other compatible transmitter in the Northern Hemisphere,
thereby greatly enhancing its potential.
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3.2 System overview

An overview of the radar, together with the main components making up
the system, is shown Figure 3.5. One may observe that the receiver chain
of this radar can be split into two major sub-systems. The first system is
used to determine the range of a target object while the second system in the
BIRALES radar, and the subject of this work, estimates the target’s Doppler
shift information and trajectory. These two very different systems require
a transmitter that can simultaneously work in pulsed compression mode for
range measurements and in CW mode for Doppler measurements.

The doppler system uses a single but continuous sinusoidal RF signal at a
fixed narrow-band frequency. Continuous-wave radar uses the doppler shift of
the returning signal to infer the velocity of the object efficiently. The change
in velocity is derived from the difference in the received frequency and the
transmitted one. However, unmodulated continuous wave radars, such as the
system described in this work, cannot measure range. As a result, a separate
system for range was introduced for a complete characterization of a target’s
attitude.

The output of these systems is amalgamated together at a data fusion step
and saved in Tracking Data Message (TDM) [93] format. The TDM output
serves as the input to the orbital determination block developed by researchers
at the Politecnico di Milano, Italy [94]. The algorithm is used to estimate the
trace of the transiting object within the receiver’s field of view and refine the
orbital parameters of known RSO or perform an initial orbit determination in
the case of unknown objects [94].

3.2.1 Ranging system

A CW radar can also be used to detect the range of the target. Contrary to the
doppler processing system, which makes use of an unmodulated transmission,
the transmitted waveform is modulated by applying a frequency shift that
changes linearly in time [72]. This is known as a FMCW radar and, as is the
case with the BIRALES radar, can be used to establish the range of a target.

The ranging system illuminates the target with a saw-tooth chirped wave-
form having a bandwidth of 4 MHz and centred at 412.5 MHz. The principle of
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Figure 3.5: A block diagram illustrating the main components of the ranging
and doppler detections systems making up the BIRALES bi-static SSA radar

FMCW radars are shown schematically in Figure 3.6 showing the relationship
between the transmitted waveform and the received one.

The transmitted signal ft is varied linearly in time in the range of f0 ± fm.
In the case where the target is stationary, the signal reflected off the target fr,
should follow the same frequency variation of the transmitted one but offset
by a delay td [72], such that,

fr(t) = ft(t− td) (3.8)
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Figure 3.6: The transmitter signal (solid) and the reflected signal frequency
(dashed) used by the ranging system

On the other hand, for a non-stationary target, the calculation has to take
into account that the received signal will be shifted by a term fd due to the
target’s motion. As shown in Figure 3.6, the range of a target can be calculated
by comparing the transmitted signal to the received one. The correlation
between the transmitted and the received signals can give a measure of both
the target’s range and radial speed. The target’s range R can be determined
if the time lag td is measured [95]. Thus,

R =
ctd
2

(3.9)

If the frequency, or doppler, shift between the frequency peaks is deter-
mined, a FMCW transmitter can be used to determine the radial velocity vr,
through [72]

vr =
λfd
2

(3.10)

For a ranging radar, the error in the range measurement is given by [96],
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∆R =
c

2B
(3.11)

where B is the frequency bandwidth. This means that the range resolution
of the range component of the BIRALES radar working with a bandwidth of
5 MHz is around 30 m.

This system requires that the receiver and transmitter components of the
radar are synchronized. GPS-disciplined oscillators installed in both the re-
ceiver and transmitter components give the ranging system a 10−7 s synchro-
nisation error [90].

At the transmitter, a workstation running the system scheduler and wave-
form set is run. The scheduler reads the input data, such as epoch start and
end time, signal power, frequency and pointings. This data is shared with the
receiver at Medicina. The scheduler initiates the waveform set which sends
the signal to the Universal Software Radio Peripheral (USRP)3 block through
an Ethernet connection. The USRP block is a commercial field-programmable
gate array (FPGA) which is used to generate the UHF signal to be sent to
a control unit. The signal is passed through a radio frequency splitter that
splits the signal into seven signals. These signals are individually amplified
before being combined again, filtered using a low pass filter, and sent to the
transmitter antenna for transmission of the RF signal [90].

At the receiver end, an analogue beamformer aggregates the signals from
2 cylinders (8 elements) to generate a single beam. The beamformed signal is
fed to another USRP board at the receiver that digitalizes the 5 MHz signals
before transferring the data to the workstation. At the workstation, the range
from the target objects is determined. Consequently, range measurements from
this block are combined with the data made available by the other system in
BIRALES at a data fusion step.

3.2.2 Doppler processing

The amplified RF signals travel to a receiver room through 520 m long opti-
cal fibre links. These signals are down-converted to the intermediate 30 MHz
frequency and then fed to a digital backend [97] adapted from [74]. The FPGA-

3 www.ettus.com

www.ettus.com
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based system is based on the Reconfigurable Open Architecture Computing
Hardware (ROACH) hardware developed by the researchers at the Collabora-
tion for Astronomy Signal Processing and Electronics Research (CASPER) 4.
The reliability and performance achieved by these architectures saw hundreds
of these boards deployed across many radio telescopes such as the MeerKAT
[98] and Precision for Probing the Epoch of Reionization (PAPER)[99, 97]
installations to name a few.

The BEST-2 digital backend used in this project has already seen extensive
use beyond the SSA applications described here such as in search of radio
transients such as pulsars [100]. The digital backend consists of a ROACH
1 board that is equipped with a CASPER 64ADCx64 ADC accepting the
input from 32 single-polarization antennas. In this design, 32 signal streams
are digitised at a rate of 40 MS s−1 for 20 MHz of digital bandwidth of which
16 MHz are useful [100].

The digital backend channelizes this band into a total of 256 frequency
channels that are 78.125 kHz wide. Of the 16 MHz bandwidth available, a
5 MHz band is reserved for the ranging system. In contrast, a single channel is
used by the doppler processing system given that the maximum Doppler shift
corresponding to a RSO is expected to be in the order of a few tens of kHz.
Consequently, setting the CW frequency at the centre of a coarse frequency
channel band provides for a suitable detection window. At present, this is set
to 410.085 MHz.

The output data rate D of digital backend processing A antennas at a
sampling rate of T samples per second of word length W , across C frequency
channels can be calculated using,

D = A× T ×W × C (3.12)

Thus, for a single channel, C = 1, T = 78 125 samples/s and W = 64 bit
(32 bit real and 32 bit imaginary) the data rate requirements of the doppler
processing system can be calculated to be 19.07 MB s−1. While the output
data rate is not as high as those typical of wide-band radio astronomy, it is
not feasible to save the raw data. At this rate, the storage requirements would

4 www.casper.berkeley.edu

www.casper.berkeley.edu
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be 67 GB per hour, or 1.57 TB daily. This is the motivation behind the basis
of processing the data in real-time.

The channel data stream is transferred as a User Datagram Protocol (UDP)
stream to a processing server over a 10 Gbit link through the on-board 10 Gbe
SFP+ mezzanine cards using the Streaming Protocol for Exchanging Astro-
nomical Data (SPEAD) [101] packet format. At this processing server, the
specialized data processing software developed in this work is used to analyze
the incoming data stream for radar echo signatures of space debris objects or
artificial satellites.

3.3 Stream data processing in radio astronomy

The ever-increasing computational requirements of modern radio astronomy
instrumentation have led to the inception of high-performance, real-time com-
puting installations such as those described in [102]. The application of this
kind of software systems can be seen in large instruments such as the LOFAR
[55] and the SKA [54] radio telescopes.

For instance, the SKA [54], is estimated to produce data in the orders of
10 EB per day [103]. This necessitates the implementation of systems that can
process and analyze the data in real-time such that only the most important
features of the incoming data are stored for later analysis. Processing of this
vast amount of data is a computational challenge. To alleviate the problems
arising from the large data volumes being produced by today’s largest radio
telescopes, many-core architectures, Graphical processing unit (GPU)s and
FPGA boards have seen widespread use [97, 104, 105].

Apart from the enhanced capability introduced by state-of-the-art com-
puting hardware, the real-time processing of the incoming data necessitates
the use of specialized software algorithms that can operate on a continuous
stream of data. Indeed, new stream processing software has become increas-
ingly more popular due to the increasing data processing demand of modern
digital telescopes.

In stream data processing, a set of operations are executing continuously on
the incoming flow of data as it is received. The processing of data continuously
extends beyond the applications of radio astronomy in today’s Big Data-era.
Nowadays, countless on-line applications generate rapid, continuous and large
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volumes of stream data across a vast range of applications including credit
transactions in banking and finance and web server logs in large networked
infrastructures [106].

This programming paradigm has proved to be particularly useful in real-
time processing of digitized voltages from radio telescopes. These radio tele-
scopes make use of tailor-made software that is specifically developed for one
particular instrument. The development of such tools requires specialized
knowledge. For this reason, the scientific community has been developing
more generalized software packages for radio astronomy applications. The
aim of these packages is to reduce the development effort that is required
to produce new data processing backends for new instruments. To name a
few, one can mention Pipeline for Extensible, Lightweight Imaging and CAl-
ibratioN (PELICAN) [107], PSR-Distributed Acquisition and Data Analysis
(PSRDADA)5 and High Availability Shared Pipeline Engine (HASHPIPE)6

data processing frameworks. These software applications are designed to deal
with large data throughput. However, [108] reports that these software ap-
plications are hard to customize for other application domains. To address
this, the Bifrost7 framework has been specifically developed to simplify the
creation of new data processing software for radio telescopes. Bifrost uses a
concise method of creating data processing pipelines in Python that leverage
the computing capabilities of the GPU.

While the list of software in radio astronomy is substantial, the number of
data processing systems designed explicitly for RADAR application is limited.
This is particularly true for the monitoring and tracking of uncooperative space
debris objects in Near Earth Orbit (NEO). The data rate of the narrow-band
radar system is not as high as those found in radio astronomy applications.
However, it is substantial enough to necessitate the introduction of a real-time
detection system as shown in the previous section.

In LEO, RSO objects can reach speeds of up to 11 km s−1. At these speeds,
the debris crosses the coverage area of the radar very quickly. Previous studies
[89] have highlighted the need for a responsive measurement and recording
system that is suitable for measurements of highly transient objects such as

5 www.psrdada.sourceforge.net
6 www.github.com/david-macmahon/hashpipe
7 www.github.com/ledatelescope/bifrost

www.psrdada.sourceforge.net
www.github.com/david-macmahon/hashpipe
www.github.com/ledatelescope/bifrost
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small space debris objects. Such a system can only be realized if the incoming
data being streamed from the radio telescope is processed in real-time. In the
optical regime, there have been several potential pipeline software, such as the
one presented in [109]. However, it is not designed to operate on a continuous
flow of data, but rather relies on user input of static images generated by
optical instruments.

As the need for new SSA instrumentation grows, so does the need for an
easy-to-use, reliable data processing system that are specially built for the
detection of orbital objects and whose application extends beyond that of a
single instrument. In this work, we present a new software architecture for SST
that aims to address these issues. The aim is to simplify the development effort
needed to realize a new data processing system that is designed explicitly for
phased arrays. To the author’s knowledge, this is the first in-depth description
of a stream data processing software framework for a space surveillance radar.
The architecture of this new software backend, named PyBirales, is described
in the next section.

3.4 Architecture

In recent years, Python8 has gained major popularity both within the scientific
community and industry. This can be largely attributed to its intuitive syn-
tax and availability of high-end libraries [110]. The developer is shielded from
the underlying computing elements such as memory allocation and garbage
collection. This expedites the development process and allows the developer
to concentrate on the algorithms being implemented. These properties made
Python an attractive solution on which to base this software framework pre-
sented in this work. Indeed, PyBirales is written almost exclusively in Python.

Python’s abstraction comes at a considerable performance cost [111]. Its
reference interpreter, CPython, is considered to be inefficient when it is com-
pared with lower-level languages such as C, C++, and Fortran. As an inter-
preted language, the Python code is executed line by line rather than compiled
into efficient machine code [110]. Also, Python is limited by its Global Inter-
preter Lock (GIL) that makes sure that no two lines are executed simultane-

8 www.python.org

www.python.org
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ously [111]. This means that parallelising Python code is impossible unless
the GIL is released. Over the years, several strategies have been devised to
address these performance shortcomings. Consequently, the fast development
approach of Python is kept while its performance constraints are mitigated.

PyBirales relies heavily on optimized libraries such as NumPy9 and SciPy10.
Furthermore, computationally intensive tasks are written in C/C++ and im-
ported in Python. This is achieved through the use of the ctypes library
that makes it possible for a Python program to execute arbitrary C functions
from a dynamically loaded shared library. In addition, PyBirales makes use
of Python’s Numba [112] library11. Numba speeds up the processing of the
application by compiling native Python code to native machine instructions
using the Low-Level Virtual Machine (LLVM) tool chain. Numba annotated
parts of a Python application can achieve a level of performance similar to
that achieved by their C or C++ equivalent. The library is still relatively in
its infancy and at present, it does not support all statements or data struc-
tures such as class and function definitions [110]. This limits its widespread
use throughout the codebase.

PyBirales is a software backend that is made from several distinct com-
ponents. A high-level representation of PyBirales is illustrated in Figure 3.7.
One may observe that the system follows a three-tier architecture that can be
categorized into the presentation, data and application layer.

The presentation tier holds the components that allow an operator of this
system to interface with and manage its underlying components. The data
produced by the system, such as events and notifications, are presented to
the operator at this level. Specifically, the information could include system
metrics or detection data.

The managements of these components can become quite complex. This
complexity is hidden from the operator through two user interfaces. At this
layer, one finds a Command Line Interface (CLI) application and a web-based
Graphical User Interface (GUI). Both systems are used to initialise, manage
and monitor the software backend. The latter is described in detail in Section
3.10.

9 www.numpy.org
10 www.scipy.org
11 www.numba.pydata.org

www.numpy.org
www.scipy.org
www.numba.pydata.org
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Communication between the application and presentation layers is done
through a publish-subscribe messaging pattern implemented at the data layer.
PyBirales uses a REDIS12 database as a messaging broker between publishers
of events and their corresponding subscribers. Typically, the backend system
publishes events to the message broker on a specified channel. These events
are then consumed by any subscribers or listeners on that channel, such as the
web-application.

Events can range from system warnings, or errors, to detection results.
A single event can have multiple listeners or subscribers. This way, various
aspects of the PyBirales application, such as the web-application and the back-
end in the application layer, were decoupled entirely. The application layer
contains the software components used in an observation. In BIRALES, an
observation consists of several separate stages that are orchestrated by the
ObservationManager.

An observation first starts by (mechanically) pointing the 8 parabolic cylin-
ders of the BEST-2 array to the desired declination. Secondly, the digital back-
end is initialized and programmed, such that the antenna data starts flowing
through the software backend running on a Fujitsu Celsius R940 processing
server. Both the initialization of the firmware and the control of the antennas
is achieved through hardware controllers. These controllers manage any hard-
ware that is external to the PyBirales system. Finally, results are saved to a
MongoDB database and presented to the user at the presentation layer.

The ObservationManager can be started using either the CLI interfaces or
through the PyBirales scheduler service. This service is a long-running process
that listens for user messages and events on the pub-sub system described
earlier. The type of message received determines the action taken by the
service.

The scheduler service employs a separate worker thread to listen for new
events on the message broker. This worker thread interprets the control mes-
sages that are published on these channels by the front-end application. These
control messages, encoded as JavaScript Object Notation (JSON) strings, can
range from system kill messages to the submission of a new observation. For
instance, when a new observation is created, the application publishes the de-
tails of this observation on the designated channel. This message is received

12 https://redis.io
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by the subscriber, in this case, the BIRALES service, which persists it to the
database and adds it to the observation schedule. This schedule is a First In
First Out (FIFO) queue which hosts the pending observations.

The scheduler service polls the database at frequent intervals to check
whether the time for the next observation has elapsed. In such an instance,
the observation parameters are sent to the Observation Manager, which or-
chestrates the separate stages of a SST observation.

3.5 Observation scheduling

In a sophisticated radar system, the allocation of the instrument’s resources
needs to be carried out in a coordinated fashion. This is mainly because the
radar is composed of different components that were not necessarily designed
to be used together. This schedule, is the process of allocating the resources
ahead of time to perform a series of tasks [113]. In the case of the BIRALES
radar, observation time windows from both the transmitter at Sardinia and
the receiver at Medicina need to be allocated ahead of time.

The availability of these instruments is typically subject to several con-
straints, including scheduled maintenance and meteorological conditions. More-
over, both these instruments are not dedicated exclusively to the BIRALES
space surveillance program. Instead, the instruments are shared amongst other
projects in radio astronomy or SSA. For instance, the transmitter is also used
in a separate experimental installation called BIstatic RAdar for LEO Tracking
(BIRALET) based in Sardinia [90]. At present, an operator needs to coordi-
nate between both facilities in order to find a suitable time window in which
both instruments are available.

Previous studies [114, 115] have identified the difficulty in coordinating an
appropriate schedule between different instruments. This is inherently more
complex in an optical network of instruments given that their observation
window is more limited. To alleviate this problem with optical instruments,
Muntoni [89] proposes a unique approach that uses a genetic algorithm to
find the optimal schedule for a network of optical instruments. Similarly, this
scheduling problem is also present for bi-static radar such as BIRALES.

Figure 3.8 illustrates a typical 24-hour schedule for the bi-static radar. One
may observe that one needs to allocate time not only for targeted observation
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campaigns but also for calibration purposes. The operator needs to ensure
that these observations do not conflict with either a calibration observation
nor other time slots reserved for other projects.

Scheduling horizon
12:00 12:00

1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:0011:0012:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00

Calibration algorithm

Targetted campaign

Reserved slot

Beam-park survey

Calib. source transit

Schedule

Calibration

Detection pipeine

Correlation pipeline

Figure 3.8: An illustration of a typical observation window for the PyBirales
schedule. This schedule illustrates the scheduling of the correlation (orange)
pipeline for calibration purposes. The schedule includes short (target) observa-
tions for known objects and beam park campaigns for unknown objects (blue).
Reserved slots in which the system is not available is shown in grey

An optimized scheduling capability, though useful, is difficult to implement
for the BIRALES radar given that the transmitter and receiver are independent
and physically separate from each other. This physical separation makes it
difficult to automate the allocation of resources. For instance, the transmitter
and receiver system is operated by two different schedulers running on two
different platforms. Moreover, the ranging and doppler detection block are
separate, making the automated start of the two system challenging. This issue
is particularly exacerbated by the fact that the two instruments are operated
by different institutions.

One proposal is the introduction of a single control system whose pur-
pose is to manage and orchestrate all the components of the whole radar.
This centralized approach would then transmit the specific instructions to the
inter-networked facilities making up the BIRALES radar. Only with the in-
troduction of this parent control system can a more advanced scheduler be put
into place. Potentially, the introduction of such a system could pave the way
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for the experimentation of a Multi-Static radar system such as the ones inves-
tigated in EISCAT [45] and MeerKAT [116] space debris radar installations.

In the absence of such a system, the current version of the PyBirales sched-
uler has allowed the operators of radar to efficiently allocate the observation
windows ahead of time in a semi-automated fashion. In a targeted campaign,
the targets of interest are supplied to INAF by the Italian MoD. A preliminary
schedule is generated by INAF together with researchers from the Politecnico
di Milano. In a targeted campaign, the schedule includes the time at which
the targets are predicted to cross the bi-static radar’s coverage area along with
the respective pointings of the transmitter and receiver antenna.

Once the targets of interest are agreed upon by all the participating parties
the schedule is submitted to the BIRALES processing server in the TDM for-
mat. The TDM file is processed and persisted to the database. Alternatively,
individual observations can also be queued manually through the web-based
front-end.

3.6 Hardware Controllers

A controller encapsulates the logic needed to interface with a component. For
instance, the BEST-2 array can be controlled using the InstrumentController.
On initialization, this controller loads the antenna singleton object. Singleton
objects were used to make sure that a single instance exists across the whole
application. This avoids the scenario in which multiple objects send conflict-
ing commands to the same hardware component. The InstrumentController
can be used to get the current pointing of the antenna. It can also be used to
instruct the antenna to move to a new declination.

Similarly, the BackendController is used to interface with the ROACH-
based digital backend. Principally, this controller is used to load and start the
digital backend singleton object. The singleton object, in this case, makes use
of the Corr Python library13 to interface with the digital backend. The Corr
library is a general-purpose control framework for ROACH-based devices such
as the ones used for the BEST-2 digital backend.

13 https://casper.berkeley.edu/wiki/Corr
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Controllers provide an abstract representation of the instruments together
with a concise method of interacting with the underlying hardware. This way,
the intricate implementation details are hidden from the developer. Indeed,
both the aforementioned controllers facilitate the initialization and termination
of the component that they are responsible for. Upon initialisation of the
digital backend, the data starts to flow to the processing server on which the
data processing facilities implemented in this work are installed.

3.7 Data processing pipelines

The incoming data is processed using what are known as data processing
pipelines. In computer science, pipelines are a popular design pattern that
are used in the processing of a continuous stream of data. Pipelines are ad-
ministered by a pipeline manager that is responsible for the initialization,
processing and graceful termination of a pipeline.

Digital Backend
Processing 
Module A

Processing 
Module B

Persister Disk
DATA DATA DATA DATA

Figure 3.9: A graphical representation of a linear software pipeline illustrating
the processing of data through a chain of modules. In this pipeline, antenna
data received from the digital backend are processed at modules A and B and
persisted to the disk using a dedicated module

A pipeline is made up of a chain of separate processing stages, as shown
in Figure 3.9. At each processing stage or module, the incoming data are
mutated and passed over to the next processing stage in the chain. This
process is repeated indefinitely until the processing module, together with the
rest of the modules, is stopped by the pipeline manager. A processing module
is stopped by flipping a stop event flag. In PyBirales, several modules are
available. These can be split into three categories.

Generator modules read data from an external entity and encode the data
in such a manner that is forwarded to the next processing module as output.
Generator modules include the ReceiverModule that reads the incoming an-
tenna voltages and the RawDataReader which is used to read raw antenna
data that has been previously persisted to disk from a past observation using
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the corresponding RawDataPersister module. Generator modules are usually
used at the start of the processing pipeline. They are designed to feed the pro-
cessing data continuously until the processing pipeline is stopped (in the case
of the Receiver module) or data is finished (in the case of the RawDataReader
module.

Processing Modules consume and transforms a chunk of the data stream.
This chunk of data, also known as a data blob is forwarded to the next module
in the pipeline. Processing modules include the Channeliser module that
is tasked with channelizing the antenna signals, and the Beamformer module
which is used to generate several beams within the instrument’s FoV.

Lastly, Terminator modules accept data as input but do not forward the
data to another module. This module is usually the last module of a processing
pipeline.

In PyBirales, different pipelines can be built depending on the problem
being solved. For instance, one pipeline can be built to correlate the antenna
signals offline while another would be used to process the data for radar echoes.
In either case, the processing pipelines in PyBirales are designed to processes
the data in real-time. This means that the following real-time condition at
each module is met,

processing time < Number of samples
Sampling rate (3.13)

For instance, if PyBirales is processing 218 samples, at a sampling rate of
78 125 samples/s, the data should be processed in less than ∼3.36 s for the
real-time condition to be satisfied.

The construction of these pipelines can become a bit cumbersome for ad-
vanced applications. To facilitate this, and speed up the development process,
PyBirales implements a framework that can generate a processing pipeline
with ease. This framework makes it possible for a pipeline to be assembled by
chaining together several pre-built modules that are shipped with PyBirales.

3.7.1 Pipeline builders

A pipeline manager builder implements the Builder design pattern to simplify
the process of creating a complex pipeline manager. As shown in Figure 3.10, a
detection pipeline is built by calling the build() function of the corresponding
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(concrete) builder class. This class takes care of the assembling the processing
modules into a pipeline.

A pipeline is started through a call to the pipeline start() function. This
function starts the processing modules which are run in a separate thread.
Once started, the data flows from one module to the next in a linear fashion.
In PyBirales, this is achieved through data blobs.

PipelineManagerBuilder
+ pipeline_manager

+ build():return PipelineManager

DetectionPipelineManagerBuilder

+ pipeline_manager

+ build():return PipelineManager

PipelineManager
+ name

+ start()

Figure 3.10: A UML Class diagram of the pipeline manager builder

3.7.2 Data blobs

The unit of data on which modules operate are known as data blobs. A module
consumes a data blob and outputs a new data blob to the next processing
module within the pipeline. The output blob can consume one particular data
blob type and output another of a different type.

Data blobs are encoded as multi-dimensional NumPy arrays that act as
fixed-sized circular buffers between two processing modules. Circular or Ring
buffers are a popular data structure in the management of memory buffers in
the processing of stream data in radio astronomy. In PyBirales, the data blob
is made up of several blocks as specified by its buffer factor. These blocks are
the smallest unit of data being consumed or produced by a processing module
in PyBirales. A module reads or writes a single block into a blob at any given
time.

A block can be described by its data type and dimension. These two
parameters are used as a validation check to make sure that the data blob
used between a producer and a consumer module is compatible. For instance,
Figure 3.11 illustrates a graphical representation of a single block within a
typical data blob. The blob consists of three blocks each of size Ns ×Nc ×Nb,
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where Ns is the number of samples, Nc is the number of channels and Nb is
the number of beams being processed.

Sample
Nb

Nc

Ns

Figure 3.11: A graphical representation of a data block in PyBirales of size
Ns ×Nc ×Nb

The memory complexity of a pipeline in PyBirales is largely dependent
on the number of data blobs that are used to solve a given problem. This
also depends on the buffer factor. For a blob of buffer factor B, the memory
complexity is given as O(BNcNbNs). In a pipeline making use of N such data
blobs, this becomes O(NBNcNbNs). Thus, for 5 double-precision 8 byte blobs,
with a buffer factor of 3, operating on 8192 channels, 32 samples and 32 beams,
the memory requirements of such a pipeline is 0.96 GB.

Figure 3.12 shows how data flows from one module to the next. The circular
buffers make use of two pointers or indices; a read and a write pointer. A
producer module writes the processed data to a block in the array specified by
the write index. Upon completion, the write index is incremented to the next
location. When the index reaches the end of the array, it is reset to the start,
thereby overwriting the oldest block of data in a circular fashion. Similarly, a
read pointer keeps track of the last location read by a consumer module. Once
a block is read by module B, the read index is incremented. Data can be lost
if the producer module tries to overwrite a block in a location which has not
been read by the consumer module.
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Figure 3.12: An illustration of the use of ring buffers (buffer factor = 3) by two
Processing modules A and B acting as a producer and consumer respectively

Furthermore, a race condition could arise given that the data blobs are
being accessed by a least two module threads at any one time. One module
could be trying to write to a block in an array while the other module is trying
to read. This is avoided by using a locking mechanism upon reading and
writing. As shown in Figure 3.13, when a module tries to modify its output
blob, which is an input blob to the next module, a write lock request is issued.
When the module is finished with writing to the blob, the lock is released. A
similar approach is used for reading requests.

The architecture of the PyBirales system, together with the main compo-
nents making up a streaming data processing pipeline was discussed in the
previous sections. In the next sections, two data processing pipelines will be
described to demonstrate the use of the concepts introduced thus far. First,
the correlation pipeline is described. This is followed by the introduction of
the PyBirales detection pipeline.
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Figure 3.13: A UML sequence diagram of the concurrency pattern of a typical
processing module in PyBirales

3.8 Correlation pipeline

The correlation pipeline, shown in Figure 3.14, is used to generate the corre-
lation matrix that is used for calibration purposes. This correlation matrix is
populated with baseline visibilities as a calibrator radio source transits over
the FoV of the radio telescope. The pipeline is started several minutes before
the radio source transits the local meridian, with the radio telescope being
pointed at the source’s declination.

The correlation module receives data from the digital backend and com-
putes the correlation between the input from each pair of antennas, or base-
lines. This is performed for all the channels at each integration step which is
currently configured to be 131 072 samples (∼1.667 s).
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Figure 3.14: Illustration of the BIRALES correlation pipeline that is used to
calibrate the BEST-2 array

In the correlation pipeline, the correlated data from the correlation module
is fed to the CorrelationMatrixPersister module, which dumps the matrix
to disk as a Hierarchical Data Format 5 (HDF5) file. As described in Section
2.3, the correlation matrix is used by the calibration algorithm to generate
the calibration coefficients. These coefficients are used to compensate for the
instrumental phase and gain errors.

3.9 Detection pipeline

The PyBirales pipeline framework was used to build a detection pipeline that
is tailored for the detection of high-velocity RSO in LEO. A schematic rep-
resentation of the modules making up the space debris detection pipeline is
shown in Figure 3.15. The data from the digital backend is interpreted using
the Receiver generator module. The incoming array signals are subsequently
beamformed and channelised before being fed into the detection system. The
detection system is central to the detection pipeline, and it consists of three
distinct modules. The detection data extracted by the Detection module is
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then saved to the database. A detailed description of each step in the detection
pipeline is given in the following sections.
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Figure 3.15: Illustration of the BIRALES data processing pipeline for the
detection of orbital debris

3.9.1 Data acquisition

The first module in the detection pipeline is the Receiver generator module
which reads the data coming from the digital backend. The format of the
transmitted data is a 32-32 complex fixed-point format, which is translated to
floating-point. In order to do so, the receiver uses the Data Acquisition (DAQ)
library developed for the Antenna Verification System (AAVS) prototype of the
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Low-Frequency Aperture Array (LFAA) [117] which was extended to accept
the BIRALES data format. The receiver module reads the incoming data
in chunks, converts the data into data blobs and forwards this data to the
second module in the pipeline. The data generated by the receiver can also
be persisted to disk. This is achieved by chaining the receiver module to a
persister module that can persist the raw input data to disk. This file encodes
the phased array’s raw data which can be subsequently processed in offline
mode.

In offline mode, the pipeline uses a separate data reader module that reads
this binary file in chunks in a similar fashion to the Receiver module. Each
chunk is converted into a RawDataBlob that is forwarded to the next processing
module in the pipeline. Hence, the system can run both in offline mode using
the RawDataReader module and in online mode using the Receiver module as
the first module of the pipeline. This way, the next module in the pipeline is
not concerned as to whether the pipeline is running in offline or online mode,
as both reader modules output the same data blob format.

3.9.2 Beamforming and multi-pixel generation

The next module of this pipeline is the Beamformer. Beamformers are designed
to enhance the signals coming from some directions while suppressing the
signals and noise arriving from other directions. In conventional beamforming,
the weights and parameters that define the resultant beam pattern of an array
are fixed. The weights are chosen to produce a specific antenna array response
in a particular direction in the presence of interference [118].

In Section 2.2 (Equation 2.18), it was shown that the pointing direction of
a phased array can be steered to point in any direction within the instrument’s
FoV. The point at which at which the signals add constructively can be changed
by varying the phase shift applied to the antennas signals. Thus, a beam can
be steered to point in any direction within the instrument’s FoV. In PyBirales,
the generation and steering of a beam from the individual antenna signals is
realised by the Beamformer module. Additionally, the calibration coefficients,
correcting for any instrumental errors, are applied on the received signals at
this stage.

As the number of antenna elements combined to form a single beam is
increased, so does the sensitivity of the instrument. Figure 3.16 shows the
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received power of a single beam as a function of the number of elements used
for an observation of an astronomical source (Cassiopeia A). One may observe
that upon doubling the number of elements, and hence the collecting area,
the antenna gain is increased by around 3 dB. This indicates that the element
pattern is being summed coherently.

Figure 3.16: The increase in sensitivity of the instrument as the number of
elements is doubled. Cassiopeia-A observation on the 14th of September 2019

This work investigates whether the trajectory of an orbiting object can
be estimated by a multi-beam receiver. In BIRALES, multiple beams, each
with a different pointing direction, can be created from the same input by
copying the input signal and applying a different phase shift. The arrangement
of these beams within the FoV instrument is referred to as the multi-beam
configuration.

As the high-velocity object crosses the FoV of the BEST-2 array, the
doppler echo is received across multiple beams. A successful detection of this
echo within a beam is henceforth referred to as a beam illumination. Each beam
is associated with a specific pointing in azimuth and elevation. The sequence at
which these beams are illuminated can be used to extrapolate the path taken
by the orbiting object over the array. This data, together with the doppler
shift and ranging data, are used by the tailored orbit determination algorithm
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to determine an initial orbit for the object [119]. The implication is that an
accurate model of the BEST-2’s multi-pixel is an important prerequisite for
the BIRALES SSA radar.

The arrangement of these beams within the FoV of the array is completely
configurable. Earlier studies [120] used a multi-pixel of 32 beams which are
electronically steered inside the instrument’s 5.7° by 6.6° FoV. This configura-
tion is shown in Figure 3.17. The elevation and azimuth angles are the angular
deviations with respect to the array’s pointing direction.
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Figure 3.17: The default multi-pixel configuration of the BIRALES radar. The
large ellipse (dashed) shows the single element pattern at −3 dB. The beams
that are affected by ambiguity due to grating lobes are highlighted in red

This approach tries to fill the available FoV in order to increase the coverage
area, thereby increasing the probability of detection of an object. However,
one may note that grating lobes, marked in red, appear at an offset of 4.2° in
the H-Plane (for the end-fire case). Moreover, pointing errors as a consequence
of quantisation, can be noted at large steering angles in the E-Plane.

In Chapter 2, we saw how these ambiguities can be minimised if the steering
angle from broadside is decreased. Inevitably, this reduces the radar coverage
area since the beams are more densely packed together. An optimal beam con-
figuration should minimise the pointing errors associated with spatial aliasing
while maximising the total area covered by the beams. Moreover, the arrange-
ment of the beams should make the most efficient use of the FoV possible use
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of the available area by minimising the overlap between the beams. Thus,
one needs to find a comprise between beam coverage and the effect of spatial
aliasing. Figure 3.18 shows an alternative beam configuration that attempts
to minimise the pointing errors while making the most efficient use of the
available area.

Figure 3.18: An alternative multi-pixel configuration of the BIRALES radar
showing the reduction of the pointing errors as well as spatial aliasing if the
beam packing factor is improved. This improvement compromises the coverage
area when one compares it to the previous multi-pixel configuration

One can note that tessellating these beams in such a configuration effec-
tively reduces the pointing deviation, thereby reducing the uncertainty in the
target’s trajectory. Additionally grating lobes do not appear at −3 dB using
this configuration. Given the number of parameters, it could be interesting
to investigate the use of evolutionary techniques, such as genetic algorithms,
to find the optimal configuration of beams. In this case, the fitness function
for the genetic algorithm would take into consideration the number of beams
used to form the multi-beam, the area covered, degree of beam overlap and
pointing deviation.

The number of beams generated, together with their pointing, is config-
urable and can be specified by the operator of the PyBirales software backend.
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The computational expense grows with the number of beams generated. In
fact, the complexity of the module is O(NcNbNsNa), where Nb is the number
of beams, Nc is the number of channels, Ns is the number of samples and Na

is the number of antennas.

   
Figure 3.19: Benchmarking of the Beamformer module. The mean processing
time is normalised to the real-time criteria. Error bars represent the associated
standard deviation

  

Figure 3.19 shows the performance benchmark for the Beamformer mod-
ule in PyBirales. The Beamformer module is a Python wrapper to a multi-
threaded routine written in C++. The beamformed data is encoded as a
BeamDataBlob of shape (channel, sample, beam) where Bn represents the
beamformed data in beam n.

One can note that the module can process up to four times the current
data rate within the real-time constraint. This is equivalent to generating up
to 128 independent antennas. The benchmarks described in this section were
measured on a processing server running the latest version of the PyBirales
software (ver. 3.0.1) running on Ubuntu 16.04 on an Intel Xeon E5-2686v4
CPU with hyper-threading enabled and having 32 GB of memory.
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3.9.3 Channeliser

The wide-band nature of most radio telescopes means that they cannot be
used directly as for the monitoring of LEO objects. The channel bandwidth
is too wide for the detection of small signature objects such as space debris.
The bandwidth selection of a radar system needs to take into account several
considerations. On the one hand, Chang et al. [71] state that the advantage
of using a narrow bandwidth reduces the receiver noise since it is less likely
to be affected by RFI sources within that narrow band. On the other, the
channel needs to be wide enough to allow a drift in the central frequency that
will enable accurate and precise measurement. Thus, the channel bandwidth
cannot be smaller than the maximum Doppler shift that is expected by the
targets, in this case, high-velocity RSOs.

Analysis of the expected doppler ranges from TLE data reveals that the
expected doppler shift is in the range of a few kilo Hertz. In the case of the
BEST-2 array, the 78 125 Hz input channel needs to be channelised further.
The power spectrum of the incoming signal x(n) of length N can be computed
by making use of a Discrete Fourier Transform (DFT), denoted by X(k),

X(k) = ΣN−1
n=0 x(n) exp(−2πink/N) k = 0, . . . , N − 1 (3.14)

Evaluating this expression directly requires O(N2), which is computation-
ally expensive. As an alternative, the Fast Fourier transform (FFT) is often
used. The FFT is a computationally efficient algorithm that computes the
DFT and reduces the computational complexity to O(N log2N) [121]. An
unwanted consequence of FFT channelisation is a phenomenon called spectral
leakage in which the unitary response of a channel with a central frequency
µc is not uniform, but is characterised by a non-zero response outside its pass-
band. This results in leakages into its neighbouring frequency channels. This
is a major concern in applications that are characterised by strong narrowband
signals such as RFI.

Another undesirable effect of channelisation is the non-ideal shape of a
channel’s response, causing a narrowband signal to be attenuated at the edge of
the channel. Thus, a Polyphase Filter Bank (PFB) channelizer was used since
leakage is significantly less. A PFB is an implementation of a filterbank, that
consists of a prototype polyphase Finite Impulse Response (FIR) filter frontend
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followed by an FFT [122, 123, 124]. The input signal x(n) is decomposed into
P branches, or phases, denoted by xp(n′).

The branches are put into a buffer of length M until M × P samples are
buffered. Each branch is multiplied by the corresponding filter coefficients
hp(m) which was decomposed into M taps. The output from each branch-
coefficients product is summed over all the taps to obtain yp(n′) [125],

yp(n
′) = ΣM−1

m=0hp(m)xp(n
′ −m) (3.15)

Subsequently, the output of each branch is then fed to into a DFT with P
inputs and the next P samples are read in an iterative fashion,

Y (k, n′) = ΣP−1
p=0 yp(n

′) exp(−2πikp/P ) (3.16)

Substituting Equation 3.15,

Y (k, n′) = ΣP−1
p=0 Σ

M−1
m=0 [hp(m) exp(−2πikp/P )]xp(n

′ −m) (3.17)

The incoming data from the 32 antennas, is fed into the PFB Channeliser
module implemented in PyBirales. The Channeliser splits the coarse channel
of bandwidthB intoN channels with a channel resolution given by ∆µ = B/N .
The channel is split into 8192 separate channels giving a spatial resolution of
∼9.5 Hz. This gives a temporal resolution ∆t of ∼0.10 s as given by the FFT
constraint,

∆t∆µ =
1

N
(3.18)

While the PFB minimises the spectral leakages in adjacent channels, a
radar signature can be detected across multiple channels within the same time
epoch. This phenomenon, known as doppler migration, manifests itself in radar
streaks with a high SNR. This causes the reflected radiation to be detected in
one channel to leak into the adjacent channels as a consequence of the FFT
channelisation being used. The PFB channeliser minimises this effect when
compared to a standard FFT channelizer. In this work, doppler migration is
handled by considering only the channel with the highest SNR per time epoch.
This is usually the one at the centre of the Doppler spread.
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Channelising the data using a PFB as opposed to a direct FFT adds a
slight overhead. The computational complexity is O(NcNa(log2(Nc) + 8Nt)),
where Na is the number of antennas, Nc is the number of channels, Nt is the
number of taps. The PFB channeliser implemented in PyBirales run on a
single thread and makes use of the Numba library [112] in order to speed up
this computation.

Figure 3.20 shows the performance benchmark of the Channeliser mod-
ule with an increasing number of antennas. The channeliser is capable of
processing the incoming data from 32 antennas at 4-times the real-time crite-
ria. Indeed, even if the data rate is doubled, the channeliser can still handle
it comfortably. However, one can note that when scaling to 128 antennas, the
channeliser can barely process this data in real-time. This suggests that the
current version would need to be optimised further for it to be able to handle
the data rate from 128 antenna elements, or half, of the parabolic reflectors
installed at the Northern Cross.
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Figure 3.20: Benchmarking of the Channeliser module. The mean processing
time normalised to the real-time criteria. Error bars represent the associated
standard deviation

The PFB channeliser produces channelised data blobs that are essentially
a spectrogram of M channels by N time samples. The spectrogram is a series
of Fourier transforms combined together such that the image becomes a visual
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representation of the power Pn received across a band of frequencies w over
time [126]. Therefore, the generated spectrogram can be formally defined as:

S = [Sij]N×M =


P0(w0) P0(w1) · · · P0(wM−1)

P1(w0) P1(w1) · · · P1(wM−1)
... ... . . . ...

PN−1(w0) PN−1(w1) · · · PN−1(wM−1)


where i = 0, 1, . . . , N − 1 is the time frame, j = 0, 1, . . . ,M − 1 is the

frequency bin. If this is represented as an image, the vertical axis represents
time whilst the horizontal axis represents the discrete frequency steps. The
intensity in a spectrogram image represents the power measured at each time-
frequency point.

High-velocity objects crossing the field of view of the instrument are char-
acterised by a frequency signal that changes linearly with time. Figure 3.21
illustrates a typical spectrogram generated by the Channeliser module. One
can note that this spectrogram shows the radar echoes of two distinct RSOs
objects at t = 100 and a faint streak at t = 280. The former was correlated
with a US CELESTIS TAURUS rocket body14 (launched in 1998) having a
RCS of 3.752 m2 at a perigee of 782.1 km. The latter and fainter streak could
not be correlated with a catalogued object.

In radio astronomy, the spectrogram is used to record and measure the
spectral content of the signals received by astronomical sources [105]. Simi-
larly, the analysis of the spectral contents of a spectrogram generated after
channelisation reveals the details of the radar echoes reflected off the target
objects entering the radar coverage area of the BIRALES radar. This linear
streak in the generated spectrogram is the pattern that is to be detected by
the subsequent modules in the detection pipeline.

3.9.4 Detection

The final stage of the space debris detection pipeline is the Detection module.
The aim of this module, described in detail in the next chapter, is to analyse the
spectrogram for radar echoes backscattered from space debris targets. When

14 https://www.n2yo.com/satellite/?s=25160
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Figure 3.21: A subset of the channeliser output for a single beam that illus-
trates the radar signature of a US CELESTIS TAURUS rocket body in the
presence of background noise. NORAD 25160 detection on February 11th, 2019

detection of a space debris target is made, an asynchronous event is fired. The
space debris event listener handles such events by persisting the detection data
to the database to be later retrieved by the monitoring front-end described.

The detection data is saved in TDM [93] format, which encodes metadata
of the observation, such as the start time of the observation, transmitter fre-
quency and instrument information. The file is sent over an SFTP connection
to a remote server owned by the MoD. On the remote server, the orbital de-
termination block developed by researchers at the Politecnico di Milano, Italy
[94] is run.

The tailored algorithm makes use of the beam illumination sequence, SNR,
slant range and Doppler shift together with the configuration of the multi-pixel.
These parameters are used to both estimate the path taken by the transiting
object within the receiver’s field of view and to refine the orbital parameters of
known RSO. In the case of unknown objects, the algorithm performs an initial
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orbit determination for the object. A detailed description of the algorithm is
given in [94].

3.10 Frontend

In this chapter we have described the components of the BIRALES radar
processing backend ranging from its hardware controllers to its data processing
facilities. The orchestration of these various components can become quite
complex. The operation of this radar is facilitated through the use of a web-
based front-end application that comes shipped with PyBirales. This front-end
was designed to be a consolidated approach for both the monitoring and control
of the BIRALES radar. A web-based monitoring and control application that is
decoupled from the inner workings of the processing framework has also been
adopted amongst newly-commissioned radio instruments such as the AAVS
SKA path-finder [127] and the Mexican Array Radio Telescope (MEXART)
radio telescope [128]. Indeed, such an application has been in the works for
the more-establish BiFrost pipeline framework [108].

Figure 3.22 illustrates the components that make the front-end part of the
system. One can observe that the front-end makes use of two servers. A Flask
web-server is used to render the web pages to the client. The web server is
also used to issue commands to the PyBirales backend. This is done through
the pub-sub system described in Section 3.4.

Events and metric information are sent to the client-side through a Socket.IO15

server. Socket.IO is a real-time transport protocol that is used to realise an
event-driven communication between a web browser and a server. In tradi-
tional applications, the client-side component polls for changes to a server. In
a socket-based implementation, events are pushed to the client as soon as they
arise. Using Socket.IO, PyBirales implements a monitoring framework that
pushes notifications, antenna metrics or events to the user in real-time.

This event-driven approach was used to monitor the status of the PyBirales
system that is running as a separate process. The system pushes a Keep Alive
(KA) message to the web-server which is subscribed on the pub-sub channel.

15 https://socket.io/
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Figure 3.22: A block diagram of the web-application

The web server forwards this message through Socket.IO. If this message
is not received at the client-side after a specified period, the web-application
informs the user that the system is offline. A similar approach was implemented
when an observation is running. In such an event, the operator can turn-off
the data processing pipeline at any point of the observation should the need
arise.

This approach of decoupling the front-end components from the PyBirales
backend by introducing a message broker presents several advantages. For
instance, the system is scalable to any number of connected clients. This also
means that different clients can subscribe to the data exposed through the
messaging broker.
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This approach makes the front-end independent of the backend’s inter-
nal implementation. Indeed, the front-end component was built to be easily
adapted for other instruments so long as the command interface is the same.
In fact, a modified version of this front-end has been adapted to monitor and
control the MEXART radio telescope in Mexico [128].

PyBirales is a real-time space debris system, and hence, it is paramount
for the operator to be presented with all the system information in real-time.
In the monitoring page of the PyBirales front-end, shown in Figure 3.23, the
operator is presented with the detections as they are detected in the processing
backend. As one can note, the operator is presented with an overview of the
detections that were made in the specified time range. The operator is also able
to monitor the Root Mean Squared (RMS) voltages of the BEST-2 arrays when
an observation is running. This feature is intended to give a quick overview
of the status of each antenna in the array. The operator can decide to disable
any antenna should a problem be detected.

Figure 3.23: The monitoring dashboard of the BIRALES control application
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A complete overview of the state of the system can be obtained through
the dedicated events page. In the events page, the operator has access to a
log of events in a dedicated events page. These events were described earlier
in Section 3.4. This log gives the user a detailed history of the status of the
system. A typical event log is illustrated in Figure 3.24.

Figure 3.24: The event-log page of the BIRALES control application

The operator can administer and schedule new observations using the ded-
icated observation page. The page gives a quick overview of the pending, past
or currently running observations. When a new observation is submitted by
the user, the web-server submits the observation through the pub-sub system.
The backend, subscribed to the appropriate channel, validates the observa-
tion details. If the observation details are correct, an observation is created
and saved to the database. The observation is run by the PyBirales scheduler
service once the time of the observation is up. In the case of monitoring ob-
servations, the detection results are shown to the user as illustrated in Figure
3.25.
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Figure 3.25: The results page for a typical observation of the BIRALES control
application

3.11 Conclusion

This chapter presented the components making up the BIRALES bi-static
radar. The range and doppler information of the target objects is obtained
through two separate systems. It was shown that the BIRALES radar has the
capability of detecting small (RCS ≥ 0.1 m2) targets in LEO.

The data processing system, called PyBirales, processes the incoming data
from the BEST-2 digital backend in real-time. The pipeline framework, which
was explicitly designed for this digital backend, was discussed in Section 3.7.
Using this framework, different pipelines can be created with ease by chaining
different processing modules. These modules modify the incoming data before
forwarding it to the next module in the chain. The pipelines in PyBirales
are linear, and hence two processing modules cannot be chained to the same
processing module or node. Thus, the pipeline framework can be upgraded
such that a processing module could fork its output to two modules which
would enable a pipeline to modify the same data differently in two different
modules.
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Work has started on upgrading the PyBirales system to cater for more
antennas. The upgrade is planned to scale to 128 antennas, thereby increasing
the sensitivity of the instrument. Performance issues were identified when the
data rate is quadrupled. In this case, the PyBirales processing modules may
need to be optimised to account for the increased data rate.

The planned upgrades are part of the ongoing effort of enhancing the ca-
pability of one of the latest space surveillance systems in Europe. This work
presented a complete software system from the processing of phased array sig-
nals to the visualisation of the detection results. The next chapter describes
the detection algorithms that are used in PyBirales to detect orbital objects
in LEO.



Chapter 4

Detection of Orbital Debris

Chapter 3 introduced the modules making up the PyBirales detection pipeline.
The pipeline uses a chain of modules that generate channelised data blobs, or
spectrogram images, in real-time. Subsequent models within the detection
pipeline search these spectrogram images for the presence of radar echoes that
are indicative of high-velocity objects, such as orbital debris, crossing the radar
coverage of BIRALES. This chapter is concerned with the frequency-domain
methods of detecting faint echoes in spectrograms. These echoes, or tracks,
are characterised by a sharp increase in intensity when compared to the back-
ground levels.

A track detection algorithm tries to identify the presence of radar echoes
within non-uniform time-variant background noise. This background noise is
often unique to the instrument and introduces points of high energy that dis-
tort the tracks, causing them to appear disjointed. This effect is particularly
noticeable in radar echoes having a weak SNR. Consequently, a critical crite-
rion was the development of a detection algorithm that can identify faint, low
SNR radar echoes. The higher the sensitivity of the detection algorithm is,
the farther the detection range of the radar becomes.

The track reaction time of the algorithm was also an important prerequisite
given that the timely identification of the transients is essential. Track reaction
time can be defined as the time taken between the target’s entrance in the
instrument’s FoV and the creation of the track. The shorter this time is, the
quicker a detection event can be broadcast to the interested parties. This ties
in with the motivation behind a real-time data processing system.

The third criterion was the quality of the track retrieved by the algorithm.
In practice, this means that measurements that do not belong to a target echo

93
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are minimised while the number of data points belonging to the targets echo is
maximised. It follows that the higher the track quality is, the better the orbit
determination prediction.

The complete retrieval of the radar echoes is made more challenging in
the presence of multiple tracks within a single chunk of data or spectrogram.
Multiple tracks occur when various high-velocity objects transit the FoV si-
multaneously. Thus, an optimal detection strategy should be able to correctly
resolve multiple, sometimes closely spaced, radar echoes as belonging to dis-
tinct targets. Similarly, the detection algorithm should be able to correctly
associate all the tracks belonging to the same source even if these are dis-
jointed. In the next section, we look into some of the algorithms that have
been employed to date. This is followed by the PyBirales detection strategy
that is used to detect faint radar echoes emanating from multiple high-velocity
objects within spectrogram images.

4.1 Track detection in spectrograms

The problem of track detection within spectrogram data shares several simi-
larities with asteroid-identification algorithms applied to images obtained by
optical telescopes. Of particular note is the work done by the ESA-funded
StreakDet framework [129]. More recently, Tagawa et al. [130], describe a
method of skewing and compressing a sequence of images to improve on the
detected SNR of objects to increase their probability of detection. Kim et
al. [131] propose an automated streak detection algorithm, called Automated
Streak Detection for Astronomical Images (ASTRiDE), for fast-moving objects
in astronomical images. The input image is first thresholded to obtain a binary
image. Subsequently, streaks generated by artificial satellites or space debris
are identified by a contour-finding method called marching squares [132], that
draws contour-lines around regions above the threshold value. ASTRiDE eval-
uated these regions identified by the marching square algorithm against several
criteria (inertia ratio, region area and perimeter) that define a typical streak.

While several streak detection algorithms have been proposed in the opti-
cal regime, the number of detection algorithms for high-speed objects in spec-
trogram images has been limited. Consequently, one can source from other
research fields, such as, acoustic analysis.
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The space debris detection problem can be boiled down to the identifica-
tion of tracks within spectrograms (also known as LOFARgrams, sonograms
or spectral waterfalls). Track detection in spectrogram images, especially in
underwater environments, has been an on-going area of research since the in-
vention of the spectrogram in the 1940s by Koenig et al. [133]. Since then,
track identification within spectrogram images has been employed in a plethora
of applications ranging from the monitoring of a patient’s heart rate [134] to
the tracking of a vehicles [135, 136] or humans motion [137, 138, 139]. In the
acoustics field, sonograms have been used to identify marine mammals through
their calls [140, 141] and track torpedoes, submarines or ships via the noise
generated by their machinery [142, 143]. The interdisciplinary nature of the
problem has attracted contributions from several research fields including sta-
tistical modelling [144], image processing [145, 146, 147] and expert systems
[148].

In recent years, track detection techniques in spectrograms have been ap-
plied to the problem of detecting meteors entering the Earth’s atmosphere
[149], [150] and [151]. These studies showed that signal processing threshold-
ing techniques can be used to identify the radio echoes emanated from meteor
objects. In 2015, Roman et al. presented a meteor detection solution that uses
a Artificial Neural Network (ANN) approach to detect meteor radio echoes in
spectrogram data. Using a self-organising map and multi-layered perceptron
neural networks, the authors report a detection rate of 85% of the included
meteor samples obtained from the Belgian Radio Detection System (BRAMS).
However, it reports a high false-negative rate [152].

A survey of the current track detection technology employed in spectrogram
data is given in [126]. The review focuses on the track detection algorithms
used in acoustics and passive sonar systems. These techniques range from
maximum likelihood, neural networks, statistical models, relaxation methods
and expert systems. The study reports that traditional line detection meth-
ods, such as the Hough transform, and the Laplacian detectors [153] degrade in
performance when they are applied on spectrograms containing low-SNR sig-
nals. Thresholding techniques are limited by the result in a high true positive
rate but also detect many false positives.

Lampert et al. [154] draw a distinction between ‘unconstrained’ and ‘con-
strained’ track detection algorithms. Unconstrained methods, such as Bayesian
techniques [155, 156] and the ‘bar’ detector in [154] use the original unprocessed
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data and perform an exhaustive search of the feature space. As a consequence,
they are computationally expensive. On the other hand, constrained methods
such as Principal Component Analysis (PCA) techniques [157] utilise dimen-
sion reduction techniques to reduce the complexity of the problem. In the
process, some information relating to the feature space is lost. The best per-
forming method is the unconstrained ‘bar’ detector which has an False Positive
Rate (FPR) of 0.10 at True Positive Rate (TPR) of 0.70. This, however, comes
at a cost. It took 5.5 min for the detector to go through a 398 by 800 px spec-
trogram [154].

Approaches based on neural networks presented in [158] do not account for
multiple or crossing tracks. Statistical models such as dynamic programming
[159] and the Virtebi line detection algorithm [160] assume that only one track
is in a spectrogram. Hidden Markov Model (HMM) have also been used in the
identification of low SNR tracks within spectrograms. However, the research
presented [160] were tested on relatively stationary tracks (gradients of 1 Hz
over minutes). Lampert [126] concludes that ‘no algorithm combines all the
desirable features to fully realise a viable solution’. It was shown that the SNR
limit of the presented techniques presented in this survey to be in the region
of 2 dB to 4 dB in the frequency domain for tracks which exhibit a low shape
variation (quasi-straight tracks).

The pattern to be extracted can vary across applications and largely de-
pends on the nature of the observed phenomenon. In acoustics, the structure
of the signal of interest can range from straight tracks to a periodic pattern
[154]. Sonar tracks are characterised by long (>100 s) lines within a spec-
trogram. A typical spectrogram image showing the tracks that are typically
found in passive sonar data, is shown in Figure 4.1 [126]. One can conclude
that these properties distinguish them from those that are typical of radar
echoes emanating from a high-velocity orbital object. As shown in Chapter
2, the latter are characterised by an oblique track having at a quasi-constant
gradient resembling a frequency ramp. Moreover, these tracks are very short
(<20 s) in nature and require a very high time-resolution that is typically less
than one second.

In the absence of a standard dataset, the data on which the algorithms
are evaluated is not consistent. Some of the performance results are generated
from synthetic data, while others are from data generated by instruments. Fur-
thermore, the system noise is unique to the instrument. These considerations
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Figure 4.1: A set of 9 tracks that are typically present in passive sonar spec-
trogram images. First 3 tracks are at 3 dB, 2nd three are at 6 dB and the last
3 tracks are at 9 dB [126]

make it difficult to present a direct comparison between the aforementioned
techniques. While the amount of literature in pattern recognition in acoustic
analysis has been substantial, the same could not be said for the identification
of the high-velocity object in spectrogram data. In light of this, this investiga-
tion attempts to bridge this gap by introducing new detection strategies that
are tailored for the real-time detection of orbital debris objects in spectrogram
images.

4.2 Detection strategy in PyBirales

In the PyBirales detection pipeline, the detection strategy is decomposed of
several distinct stages. The first step is the acquisition of the data using the
PyBirales pipeline. The raw antenna voltages incoming from the 32-element
phased-array are channelised and subsequently beamformed. The detection
algorithm sieves through this stream of data for new radar echoes that are
unique to high-velocity objects crossing the field of view of the instrument.
Upon detection of such a radar echo, or streak, a track is initiated. The
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track initiation stage is responsible for the creation of new radar tracks. New
measurements are correlated with the existing tracks and updated correctly in
a stage called track maintenance. The correlated measurements continue to
increase the length of the track until the track termination condition is met.
Finally, validated and correct tracks are reported back to the operator and
saved in TDM format.

4.3 Pre-processing

The Pre-Processor module takes in beamformed, channelized data blobs and
calculates the power by taking the square of the received antenna voltages.
In a BIRALES observation, the detection pipeline is designed to be started a
few seconds before the transmitter starts transmitting. This way, an estimate
for the background noise can be determined. This noise estimate is obtained
for each channel given that the instrument noise value is not assumed to be
uniform across the band. An estimate for the background noise at a channel
was taken to be the mean value of the power of the N samples at that channel
c . The noise estimate Pϵ at a given channel was given by,

Pϵ =

√√√√ 1

N

N∑
i=0

V 2
i (4.1)

A running average of the noise estimate is computed to minimise the impact
of spurious RFI events. The noise estimates are cascaded to the following
modules through the header information of the channelized data blob. The
pre-processed data is passed on to the Filtering module.

4.4 Filtering

The Filtering module consists of a number of separate filters that are applied
on the data sequentially. This process reduces the number of data points
that the detection algorithm has to process thereby simplifying the detection
problem at a later stage. The first filter removes the RFI noise that may be
introduced by the transmitter when this is in close proximity to the BEST-2
instrument.
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4.4.1 Transmitter filter

The RFI signature introduced by the transmitter can distinguished by two
unique characteristics. First, due to the relative proximity of the transmitter,
the measured power is very high, usually orders of magnitude higher than that
corresponding to a radar echo. Secondly, the transmitter frequency does not
change in time and is present within the same frequency channels across time.
These two features are exploited in the transmitter line filter.

The channels at which a high power is measured are identified by per-
forming a simple peak search on the data. Each channel is integrated over N
time samples and evaluated against a predefined threshold τ . Channels whose
summed power is greater than this threshold are considered to be peaks. At
these channels, the power Pc across all time samples was replaced by the mean
noise Pϵ as described by Equation 4.2.

ftx(Pc) =

Pϵ, if
∑N

n=0 Pϵ ≥ τ

Pc, otherwise
(4.2)

4.4.2 Background noise filtering

This study investigates the use of image processing techniques for the removal
of background noise within a spectrogram image. In image processing, image
segmentation refers to the process of attributing different labels to different
regions of the image. It is a pre-processing step that often precedes feature
extraction algorithms that infer patterns from the data. The goal of segmenta-
tion is to simplify the data or change its representation in a way that is easier to
process and analyse by other algorithms. Typically, segmentation techniques
are used to identify regions which have edges, boundaries or curves.

In our case, we use image segmentation techniques to differentiate regions
on the image which belong to a radar echo from noise or any other interfering
signal. It is a very effective tool in removing the background noise from the
target signal. In this study, a number of algorithms were tested given the
limited literature available showcasing the application of these techniques on
radar data. In simple thresholding, pixels that are lower than a threshold
value are labelled as noise. The advantage of this method is its simplicity
and computational efficiency. However, determining an optimal threshold is
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difficult. This is especially true when data is received in chunks and the noise
value changes across the band.

In sigma-clipping, a data point is marked as noise if its power value P

is n standard deviations σ away from the mean noise power Pϵ calculated in
Equation 4.1. Such a filter is defined formally as,

f(P ) =

P, if P ≥ 3σ + Pϵ

0, otherwise
(4.3)

Filters that apply a different thresholding value across an image are called
adaptive thresholding techniques. Other techniques, such as the Otsu’s method,
can determine the optimal threshold automatically from the power spectrum
of the image. This method assumes that the power spectrum of an image is
bimodal. Such an image is characterised by two peaks, one for the source
signal and another for the background noise. In such an image, the optimal
threshold is found to be in the middle of these two peaks. Otsu’s method tries
to determine the optimal location of this point [161]. The problem with this
method is that if the histogram does not contain two peaks, such as in the
presence of RFI or multiple tracks, the results would not be accurate. Other
classical thresholding methods that were used were the minimisation [162, 163]
and yen [164, 165] and triangle thresholding [166]. In the latter, a line joining
the maximum of the histogram and its lowest value is constructed. The dis-
tance d between this line and the histogram values are calculated for each bin.
The global threshold is identified as the bin at which the maximum distance is
obtained. The algorithm is effective in images whose object of interest results
in weak peaks in the histogram [167]. This property makes it attractive for our
application given that radar echo streaks usually result in weak peaks within
the power spectrum.

4.4.3 Salt-and-pepper noise filter

The background filters described earlier are very effective in removing the
majority of the background noise within a spectrogram. However, the image
is still characterised by isolated noise pixels or salt-and-pepper noise. These
data points can be considered to be isolated pixels with no neighbouring pixels.
These pixels can be removed by applying a binary hit-or-miss transform to
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find the location of these pixels. It uses an iterative process where a kernel, or
mask, is moved through-out the target image. Thus, if the kernel is applied
to a subset of the image S, the pixel p at the center of S is deemed to be a
‘hit’ if S matches the kernel’s pattern. Otherwise, the pixel p is considered
to be a ‘miss’. In this case, the transform finds the pixels with no immediate
neighbouring pixels as specified by the kernel represented in Figure 4.2. Once
these pixels are identified, the power value at these locations is set to zero.

Figure 4.2: A graphical representation of the binary mask (kernel) used for
the filtering of speck noise

The effectiveness of this filter however comes at a computational cost given
that the computational complexity of the filter is O(NcNtNk) where, Nc is the
number of channels, Nt is the number of samples and Nk is the size of the
kernel.

4.4.4 Evaluation

The aforementioned filters are tested on synthetic raw images that reproduce
the background noise environment that is typical of the BEST-2 array. Linear
streaks are introduced in the dataset at different SNR levels and inclinations
in order to simulate the radar echoes that are typical of RSO objects. In this
work the SNR is defined as,

SNRdB = 10 log10
(
Ps − Pϵ

Pϵ

)
(4.4)

where Ps is the power from the instrument and Pϵ is the estimated power of
the background noise that was obtained by the Pre-Processor module. Figure
4.3 illustrates a typical ground truth image (Figure 4.3a) together with the
corresponding synthetic test images (in different SNR) on which the filtering
algorithms are applied (Figure 4.3b and Figure 4.3c). One can observe that at
lower SNR levels, the tracks are barely visible to the eye, thereby highlighting
the non-triviality of this problem being solved.
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(a) Ground truth track represented as a binary image

(b) SNR = 1 dB

(c) SNR = 5 dB

Figure 4.3: A typical test track at various SNR levels and the corresponding
ground truth track. One may note that at an SNR of 1 dB, the radar echo is
barely visible to the naked eye
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The typical output of the Triangle image segmentation algorithm is shown
in Figure 4.4a. The output of this filter is passed through the hit and miss
transform and the results is illustrated in Figure 4.4b. One may note that
the majority of the noise pixels are removed using this filter. In this case, the
Triangle thresholding method, followed by a hit-and-miss transform removed
up to 95% of the data points thereby drastically reducing the complexity of
subsequent stages in the detection process.

The performance of the filters is evaluated by comparing the ground truth
data with the binary output of the filters. A True Positive (TP) is a data point
that is present in the ground truth data. This data point is a frequency, time
pair that represents a single data point of a radar echo streak. Conversely, a
True Negative (TN), is a data point that has been correctly identified as noise.

It was essential to choose an algorithm that struck a balance between re-
trieving as much possible of the target echo while maximising the removal
of noisy data and RFI. Sensitivity, commonly referred to recall, is a metric
that measures the ability of a classifier to retrieve all the data points that are
present in the ground truth image. This is defined as:

Recall = TP
TP + FN (4.5)

Furthermore, we are after an algorithm that can reduce the complexity
of the subsequent detection algorithm by removing true negatives as much as
possible. Specificity, or true negative rate, measures the proportional number
of data points that were correctly classified as true negatives. Formally, it is
given by,

Specificity =
TN

TN + FP (4.6)

The combination of both metrics was used to identify the best image seg-
mentation algorithm to use for this data reduction step. Thus, the harmonic
mean of the two was used to identify the optimal algorithm for the application.

Score = 2 · Recall · Specificity
Recall + Specificity (4.7)

The filtering algorithms were applied on the same test image containing
several tracks of different lengths and inclinations, at different SNR levels. The
results of these tests are shown in Figure 4.5. It is clear that both specificity
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(a) Visualisation of the output of the Triangle image segmentation algorithm applied
on a spectrogram containing a track at 5 dB

(b) A spectrogram of the data after the salt and pepper noise filter is applied

Figure 4.4: A typical test track at 5 dB being filtered by the Triangle filter
followed by the salt-and-pepper filter

and recall of the algorithm increases as a function of the SNR. At an SNR
higher than 5 dB, most of the filtering algorithms reach recall and specificity
of unity. This suggests that if the signal strength is strong enough, all the
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filtering algorithms tested are adequate for filtering the target signal from the
background noise.

Figure 4.5: Comparison of the performance obtained from different image
segmentation algorithms applied on different spectrogram images containing
tracks at different levels of SNR. These results, including standard deviations,
are presented in Table A.1 in Appendix A.2

As the target signal gets weaker, there is a sharp drop in the recall levels of
the minimum and yen algorithms. On the other hand, the rest of the algorithms
maintain a 90% recall score down to SNR of 2 dB. Below this threshold, the
Otsu and Iso Data filter obtain a better performance. However, this comes at
the expense of a low true negative rate when compared to the Sigma Clipping
and Triangle thresholding methods. In view of all this, the results indicate
that the triangle and sigma clipping methods achieve the best results overall.
The triangle method appears to be more sensitive at lower levels of SNR, while
the sigma clipping method has a slightly better specificity score.

The time taken for the processing of a (4100 by 160) pixel image is shown
in Figure 4.6. The results show that sigma clip filter is the most computation-
ally expensive. It can also be noted that the hit-and-miss transform takes a
considerable chunk of the filtering stage. This suggests that a more optimised
solution needs to be found. However, all the approaches are well below the
real-time criteria. Passing the spectrogram through the image segmentation
filters reduces the number of possible measurements. The aforementioned fil-
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tering techniques, such as Triangle and sigma clipping thresholding have been
shown to be effective in greatly reducing the computational complexity of the
next stage of the detection process; track initiation.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Processing Time (s)

Yen

Otsu Filter

Iso Data

Triangle

Sigma Clip

Figure 4.6: Performance benchmark of the image segmentation algorithms
tested in this study. The computational time taken by the salt-and-pepper
filter is shown in grey

4.5 Track initiation

The pre-processed and filtered data is passed on to the detection module in
which the track detection algorithms are implemented. The image segmenta-
tion process results in a set of unconnected points, or pixels. These algorithms
exploit only the intensity information at each pixel and thus do not take into
account their relationship with other neighbouring pixels.

A track detection algorithm tries to identify a series of these points, known
as tracklets, that are likely to form part of a radar track. Tracklets can be
considered as low-quality tracks that may be part of a radar track. Target initi-
ation refers to the process of establishing track candidates from these tracklets.

In this study, a number of different feature extraction algorithms were in-
vestigated. Classical edge detection algorithms such as Hough transforms were
initially investigated. The Hough transform solves the edge detection problem
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by converting the problem to a local peak detection search in parameter space
[168]. In earlier work [50], this method proved to be effective in the identifica-
tion of RSO. However, the algorithm proved to be less effective in the presence
of noise and targets with a low SNR.

As a result, clustering techniques were investigated instead. Clustering is
the unsupervised organisation of unlabelled data into groups called clusters.
Patterns within one cluster are considered to be more similar to each other than
to any other pattern associated with a different cluster [169]. The number of
clusters, or tracks, present in a single image is not known a priori. Addition-
ally, the clustering algorithm should be able to account for any residual noise
artefacts which were not caught at the filtering stage. This meant that popular
clustering techniques such as k-Nearest Neighbors (k-NN) or spectral cluster-
ing were not investigated given that they do not cater well for noisy data [170]
and the number of clusters present needs to be specified as an input to the
algorithm [171]. Consequently, this study presents two new track detection
strategies that are tailored for the identification of tracks in spectrogram data.
The first approach uses the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [172] clustering algorithm.

4.5.1 DBSCAN clustering

As a hierarchical clustering technique, the DBSCAN clustering algorithm does
not make any assumption on the number of clusters within an image [173]. This
property makes it possible to detect and distinguish between multiple tracks
within a single spectrogram. An added advantage of this clustering algorithm
is that it is able to classify isolated pixels as noise thereby distinguishing them
from valid clusters.

DBSCAN starts by retrieving all the points that are density-reachable from
an arbitrary point p. A point p is density-reachable from a point q if there is
a chain of points p1, . . . , pn, p1 = q, pn = p such that pi+1 is directly density-
reachable from pi. A point p is said to be directly density-reachable from a
point q if p ∈ NEps(q) and |NEps(q)| ≥ MinPts where MinPts is the minimum
number of points in a cluster. The Eps-neighbourhood of a point q is defined
by

NEps(q) = p ∈ D|dist(q, p) ≤ Eps (4.8)
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where D is the set of data points on which the algorithm is applied,
dist(q, p) is a distance function and Eps is a constant that defines the maxi-
mum distance between p and q to be considered to belong to the same cluster.
In this work, both the Eps and the MinPts parameters were set to be 5. These
values were obtained empirically.

The point p can either be treated as a core point or a border point. A core
point is defined as a point within a cluster whilst a border point is one that
is at the edge of a cluster. In both cases, a cluster C is considered to be a
non-empty subset of D if the following conditions are satisfied.

• ∀p, q : if p ∈ C and q is density-reachable from p w.r.t. Eps and MinPts,
then q ∈ C. (Maximality)

• ∀p, q : if p ∈ C and q is density-connected to q w.r.t. Eps and MinPts.
(Connectivity)

A point p is considered to be density-connected to a point q if there is a
point o such that both p and q are density-reachable from o. This relationship
is both transitive and symmetric. Points which do not satisfy these conditions
are regarded as noise such that if C1, . . . , Ck are clusters of D, then noise =

p ∈ D|∀i : p /∈ Ci.
Once the point p is classified as either a core, border or noise, the algorithm

moves to the next point in D. Thus, this approach groups points that are
closely packed together, expands clusters in any direction where there are
nearby points using a density-based metric. This way, it is able to deal with
different shapes of clusters making it ideal for the detection of radar echoes.

Figure 4.7 shows the groups identified by the DBSCAN for a typical dataset.
One may observe that the algorithm is very effective in grouping most of the
pixels related to the target detection. However, one may also observe the
presence of clusters which are clearly false positives.

False positives are dropped through a validation process that consists of a
set of rules on the track quality. For instance, clusters made up of a few data
points are ignored. Furthermore, the shape of the cluster is also taken into
account. Tracklets are expected to be linear where the frequency and time of
a detection are strongly correlated.

The algorithm searches for clusters with a high degree of correlation be-
tween frequency and time. A cluster is deemed to be a linear cluster if it has
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Figure 4.7: The detection clusters identified by the DBSCAN algorithm in-
cluding the data points that were classified as noise

an r2 value greater than 0.99. In order to do so, the Random sample consensus
(RANSAC) regression was used.

The RANSAC algorithm, gives a lesser weight to outlier, data points which
effectively means that these data points are ignored. In so doing, the track
quality is improved. Another optimisation that was introduced was to ignore
clusters with an unrealistic doppler shift value. Analysis of the typical doppler
shift and altitude of catalogued objects put the expected doppler shift ∆f to
lie between,

−12 143 Hz ≥ ∆f ≥ 13 245 Hz (4.9)

Clusters with a doppler shift value outside of this range were dropped.
Similarly, a range for the detection gradient can be obtained. The rate of
change in the measured doppler is expected to lie between

−291.47 Hz s−1 ≥ ∆f

∆t
≥ −69.62 Hz s−1 (4.10)
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These optimisations ensure that only valid RSO tracklets are passed on to
the next stage. This detection strategy has been used to date in the detec-
tion module of the BIRALES radar. While the results have been encouraging,
observations have highlighted several possible avenues for improvement. For
instance, tests have shown that the algorithm becomes less effective in de-
tecting low-SNR targets. These limitations were the motivation behind a new
approach for the detection of orbital debris. This approach is discussed in the
next section.

4.5.2 A multi-beam streak detection algorithm

This work presents a new detection algorithm, called Multi-beam streak de-
tection strategy (MSDS), that uses a clustering approach to identify streaks
in spectrogram images. The aim is to propose a clustering approach that
attempts to solve the aforementioned limitations of other techniques. In par-
ticular, we sought to develop an algorithm that is sensitive to low-SNR tracks
that exploits the unique characteristics of the BIRALES radar. In this sec-
tion, the input data is assumed to be pre-processed by an image segmentation
algorithm such as the Triangle method. A representative example of the input
data for a single spectrogram is shown in Figure 4.8.

A kd-tree binary tree is used to subdivide the spectrogram into rectangular
boxes to guide the decomposition of the space. The point at which the split
occurs depends on the ‘sliding midpoint’ rule where the domain is split along its
the longest axis [174]. In the case where a split results in no data points in one
side of the rectangle, the mid-point is moved to the closest data point. Each
rectangle is further split along an axis (vertical or horizontal) in a recursive
fashion until the number of points within the rectangle reaches a predefined
bucket or maximum leaf size lmax [175]. The construction of the d-dimension
tree for a spectrogram with n data points is done in O(dn log2 n) time [176].

The algorithm uses a bottom-up approach that tries to identify small linear
streaks in each of the kd-tree’s leaves. These calculations on each leaf are
identical, the only difference being the data they operate on. This problem
is said to be ‘embarrassingly parallel’ since the operations can be executed in
any order. Thus, they can be trivially parallelisable since there is no need to
synchronise the different threads as there is no need to share data amongst
them [177]. This makes it possible to achieve a high computing throughput.
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Figure 4.8: Visualisation of the input data to the feature detection algorithm
(MSDS)

In order to decrease the computational costs in high-SNR environments,
each leaf is passed through a sigma clipping function. This function compares
the intensity value of each data points against the mean within the leaf. Data
points that are 5 dB below the mean intensity within the leaf are dropped. This
filter makes it possible to further remove false positives in a computationally
efficient manner.

An unsupervised hierarchical clustering algorithm processes the kd-tree
leaves in search for group of points that together form a linear track. Agglom-
erative hierarchical clustering is a bottom-up approach where each data point
is initially treated as a potential cluster. Subsequently, the most similar pair
of clusters are merged recursively until a single cluster remains [173]. The sim-
ilarity of two clusters p and q, is determined by the distance function d(p,q)
given by,

d(p,q) =


√

Σ2
i=1(qi − pi)2, if Smin ≤ m(p,q) ≤ Smax

inf, otherwise
(4.11)
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The spacing between two points p and q is given by their Euclidean dis-
tance if the slope m of the line joining the two points m(p,q) is within a range
[Smin, Smax] (Equation 4.10). This range was obtained through simulation and
represents the expected rate of change in doppler shift of the targets. Con-
versely, if the gradient is not within this range, the two points are assumed to
be infinitely far away.

The pairwise distance is computed for all points p1. . . . ,pn in a set D such
that a distance matrix Dm is obtained. Once the distance matrix is obtained,
the data points are organised into clusters using single linkage clustering or
nearest neighbour criteria. The algorithm has a time and memory complexity
of O(n2) [178].

In single-linkage clustering, the similarity of two clusters X and Y is de-
termined by the closest pair of members x, y where x ∈ X and y ∈ Y [179]
such that,

D(X,Y ) = min
x∈X,y∈Y

d(x, y) (4.12)

where d(x, y) is the distance between two points x and y. The clustering
algorithm groups data points in pairs by this distance function. Similarly,
the resulting groups are in-turn merged recursively until all data points are
merged into one group. This group can be represented as a hierarchical tree
(dendrogram) showing the distance at which the individual groups were com-
bined. Groups separated by a distance greater than a maximum inter-cluster
distance t are treated as distinct clusters. This way, a set of clusters is obtained
for each leaf node.

The shape of a cluster can be represented by the two principal axes P1 and
P2 corresponding to the eigenvectors of the covariance matrix. An example of
this is illustrated in Figure 4.9. The ratio of the corresponding eigenvalues,
referred to inertia ratio Ir, gives a description of the degree of elongation of the
cluster’s shape. In this formulation, an inertia ratio of 1 indicates a circle while
a perfect line has an value of 0 [180]. Calculating the inertia ratio Ir for each
of the identified clusters makes it possible to filter out non-linear tracks. The
Ir threshold is set to 0.15. This cluster filtering process yields to the results
shown in Figure 4.10.

One may note that a set of small linear clusters, called tracklets (in green),
within the spectrograms. One may also note that the algorithm is robust to
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Figure 4.9: Visualisation of a linear streak with an inertia ratio of -0.002
(MSDS). The two principal axes are shown as solid lines

noise with a low false-association ratio. The next stage is to correctly merge
the individual tracklets detected across the leaves into larger tracks. To do so,
the same clustering approach, discussed beforehand, is used.

Each cluster is represented by its centroid in order to reduce the computa-
tional expense. The inter-cluster distance threshold is calculated automatically
from the mean length of a leaf’s diagonal. In doing so, the linear clusters within
adjacent leaves are merged together to form the full track. The resultant out-
put of this step is visualized in Figure 4.11.

Figure 4.11 shows that the resulting tracklets have been correctly merged
together to form a single track. Similar to the DBSCAN approach, RANSAC
[181] is used to identify data points that are outliers. Data points that were
identified to be outliers are also tested for linearity. A separate track is created
in the case when a linear model can be fitted on the outlier data points. This
method is particularly useful for distinguishing between crossing streaks.

Crossing streaks occur when two objects, having a similar doppler shift,
cross the field of view of the instrument at the same time. Figure 4.12 illus-
trates how two separate linear tracks, that were labelled to belong to the same
cluster (Figure 4.12a) are correctly separated using the aforementioned step
(Figure 4.12b). The reliability of this approach can be limited for short tracks
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Figure 4.10: Visualisation of the hierarchical clustering showing the labelling
of the sub-divided problem domain (MSDS)
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Figure 4.11: Stage two clustering of the leaves showing the different tracklets
being merged into a single track (MSDS)
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(a) Crossing streaks detected as a single cluster (MSDS)
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(b) Correct track separation of two crossing streaks (MSDS)

Figure 4.12: An example of a crossing track test data
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that do not contain a substantial number of data points. In fact, a robust
method for the correct delineation of crossing tracks is still an open problem
and is the subject of further work.
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Figure 4.13: The resultant track upon track validation (MSDS)

The level of ‘linearity’ of the resulting inlier set of measurements is deter-
mined by a linear least squares regression. The probability of false positives
is minimised by dropping tracks with a relatively low r-value (≤ 0.99), a high
p-value (≥ 0.05). These thresholds were determined empirically. The effec-
tiveness of this validation process is illustrated in Figure 4.13. One can observe
that outliers are correctly removed using this validation process. The follow-
ing section examines the performance achieved by this algorithm against that
obtained by other techniques.

4.5.3 Evaluation

The algorithms developed in this study were first tested on synthetic data
before being deployed in observation campaigns. These tests shed light on the
performance of the chosen algorithms in a more controlled, and reproducible,
environment. Tests were performed on synthetic spectrogram images that
emulated the response of the BIRALES radar. In order to simulate the radar’s
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response as close as possible, RSO tracks, were injected in spectrogram images.
It was made sure that these ‘blank’ spectrograms contained no radar echoes.

A test consists of a spectrogram image containing multiple tracks of differ-
ent lengths, doppler shift and inclination. The value of each of these parameters
was selected at random from a range that is expected from LEO objects. Each
detection algorithm was applied on a set of such tests at different SNR levels.

The performance of the two approaches used in this work, DBSCAN and
MSDS, were compared against that achieved by a standard Hough transform
and the Astride streak detection algorithm. The output of each algorithm is a
set of data points (or pixels), which are predicted to belong to an RSO echo.
The recall and precision metrics were obtained by performing a pixel-by-pixel
comparison between the predicted data points and the ground truth data.

The precision of the detector is defined as,

Precision =
TP

TP + FP (4.13)

where FP (false positives) is the number of data points that were incor-
rectly classified as belonging to an RSO echo. The harmonic mean of these
two metrics is often used to present a single representative measure of the per-
formance of a detector. This metric is defined as the F1 score, that is defined
as,

F1 = 2 · Recall · Precision
Recall + Precision (4.14)

The recall, precision and the subsequent F1 score of the detectors imple-
mented in this study are summarised in Figure 4.14. One observes that both
DBSCAN and MSDS approach achieve better recall and precision scores than
both Astride and the Hough transform. The latter two algorithms do not reg-
ister a substantial improvement in both recall and precision measures as the
SNR level is increased beyond 2 dB.

In the case of the DBSCAN approach, recall improved with increasing levels
of SNR. At an SNR level of 2 dB, the recall score is reduced to less than 50%. In
contrast, the proposed MSDS algorithm is still able to recall 90% of the track
information at an SNR of 2 dB. This represents a substantial improvement in
recall rates when compared to the other approaches.

The increased sensitivity of the MSDS algorithm, however, comes at a com-
putational cost. This is illustrated in Figure 4.15. As one can observe, the
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Figure 4.14: Performance metrics of four streak detection algorithms. These
results, including standard deviations, are presented in Table A.2 in Appendix
A.2
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Figure 4.15: Performance benchmark of four streak detection algorithms

MSDS algorithm is computationally expensive when it is compared with the
other algorithms. Furthermore, one may also observe the substantial variabil-
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ity in the time taken by the MSDS algorithm. This variability is expected
given that the processing time is dependant on the number of clusters identi-
fied at each stage of the detection process. However, these performance issues
can be addresses through a multi-processing. As will be shown in the next
chapter, the appropriate implementation of a multi-processing version of the
MSDS algorithm is able to process the data in real-time.

4.6 Track association

In the previous sections we saw how the detection algorithms proposed in this
work are able to identify multiple tracks present in a spectrogram. A track
can span multiple iterations and thus be present across multiple, subsequent,
data blobs. As a result, different clusters in subsequent data blobs can belong
to the same RSO track. Thus, a system of merging, or linking, these tracklets
belonging to the same RSO was put in place. This process is called tracklet
linking or track association. Tracks identified in subsequent data blobs should
also be associated with any tracks identified in the previous spectrograms or
pipeline iterations. Data association of these tracks ensures that a single TDM
file is created for a transiting object.

The data association algorithm used in detection module is described in
Listing 4.1. New tentative tracks detected in blob i are iteratively compared
against the tracks present in this queue (detected in blob i−1, i−2, . . .). This
comparison consists of a similarity score between a candidate track parame-
ters and the validated tracks. The similarity s is calculated as the coefficient
of variation between the slopes of the track and the candidate track being
compared. This is calculated as,

s =
σ

µ
(4.15)

where σ is the standard deviation and µ is the mean of the slopes being
compared. If the similarity is below a threshold ϵ = 0.1, the candidate track
data is merged, or associated, with the ‘parent’ track. Thus, the track grows
as new tracks are detected and associated with it. Tracks which were created
or modified during an iteration are persisted to the database.

for t r a c k l e t in t r a c k l e t s :
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for t rack in t r a ck s :
# I f t r a c k l e t i s s i m i l a r to t rack : a s s o c i a t e
i f t rack . i s_s imi la r_to ( t r a c k l e t ) :

t rack . a s s o c i a t e ( t r a c k l e t )

break
else :

# I f t r a c k l e t does not match any track ,
# crea t e a new t rack from the t r a c k l e t .
t rack = SpaceDebrisTrack ( t r a c k l e t )

# Add the RSO track to the t r a c k s queue
t r a ck s . append ( t rack )

Listing 4.1: Tracklet linking

On the other hand, when no track exists in the queue, the candidate track
is put on the queue as a tentative track. The track is kept in memory in order
to compare it with any future detection of new candidate tracks until the
quality of the track increases to a point where it becomes a confirmed track.
A track is considered to be valid if it is detected across more than 2 beams,
has a track length of at least 3 s and a correlation coefficient greater than 0.99.
In the case where the quality of a track does not meet the predefined criteria
after a number of iterations, the track is cancelled. When a track is cancelled,
it is removed from the database. On the other hand, valid tracks are kept in
memory until the track termination criteria is met.

4.7 Track termination

At a certain point in a track’s lifetime, a decision has to be made as to when
the track should be terminated. Failure to do so at the correct time, can be
detrimental to the quality of the track. In the case when the track is terminated
too quickly, would result in a track with missing data. On the other hand, when
the track is not closed, new tracklets belonging to a separate source can be
incorrectly associated with the track. In PyBirales, a track is terminated if
it is not updated for a specified time span τ . The threshold is based on the
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expected maximum transit time of an object in LEO. At present, this was set
to 3 s.

This simple track termination method proves to be adequate for this ap-
plication since the number of track initiation events is low. A more precise
approach is to calculate the theoretical time at which the space candidate ex-
ists the instrument FoV based on its velocity. However, it is difficult to obtain
this estimate without ranging information of the target.

Upon track termination, the track is saved in TDM format and an ‘New
Tracked Detected’ event is fired. The event is pushed in real-time to PyBi-
rales monitoring dashboard described in the previous chapter. An operator is
immediately notified of any detection data.

4.8 Conclusion

In this chapter, a review of the existing track detection algorithms in spec-
trograms was given. The review highlighted the research gap in the detection
of radar echo in spectrogram data. Consequently, this work proposed two
detection algorithms for the detection of orbital objects in spectrogram data.
The algorithms make use of image segmentation techniques to remove the
background and RFI noise artefacts in the received data. Filtering techniques
reduce the number of pixels, or data points, which are processed in the detec-
tion algorithm.

Experimental results on synthetic data showed that the Triangle image
segmentation algorithm is particularly effective in segmenting low-SNR signals.
However, a feature detection step is required to identify the valid tracks from
the background noise. Apart from the intensity value of the pixels, a feature
detection algorithm takes into consideration the structure of the track and the
relationship of the pixels with other neighbouring pixels. The tracks initiated
by the feature detection algorithm are validated against a number of criteria.
The tracks are kept in memory until their track lifetime expires. On creation
and update, these are saved to a database and made available to the real-time
monitoring front-end.

Simulations on synthetic data have shown that the two detection strategies
developed in this investigation, can achieve a significant performance improve-
ment when they are compare against existing methods. The MSDS approach is
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particularly effective in detecting low SNR tracks. Its F1 score was also shown
to be consistently better than the other approaches across all SNR levels. How-
ever, the improved detection rate of this approach comes at a computational
cost. Future work on this algorithm can investigate if a computational speed
up can be achieved using GPU architectures.

Future research should consider the realisation of a higher fidelity simulator
of the real-world radar echoes emanating from LEO objects. Rather than
relying on idealised track lines, this simulator should emulate the real-world
echo emanating from an orbiting object such as those shown in Chapter 2. It
could also model doppler migration effects which were not modelled in this
work. The creation of such a simulator can be used to create a standard
data set of spectrograms against which future detection algorithms can be
benchmarked.

In the last couple of years, the BIRALES system has been routinely engaged
in several observation campaigns. The algorithms discussed in this chapter
were used to detect hundreds of orbital debris objects using this novel radar
system. In the next chapter, we present some of the results obtained during
these campaigns.



Chapter 5

Experimental Results

Since 2018, BIRALES has been engaged in hundreds of observation campaigns1

that were meant to test its space surveillance capability. These campaigns
amount to more than 1100 hours of observation time. Moreover, the radar has
collected over 20 hours of raw antenna data that has been mostly used for the
development and verification of the data processing pipelines and detection
algorithms described in this work2. A historical overview of the observation
campaigns conducted by the BIRALES radar is shown in Figure 5.1.

This verification process led to the system’s first operational use in the
Tiangong-1 re-entry campaign in April 2018. Since then, this new SSA radar
has generated over 3100 TDM of objects in LEO during both targeted cam-
paigns as well as beam park experiments. These files have been used to obtain
the target’s orbital parameters using the tailor-made orbit determination al-
gorithm, designed by the researchers of Politecnico di Milano.

The method uses the measured beam illumination sequence, range, and
SNR profile to reconstruct the trajectory and estimate the complete orbital
state of the object. The algorithm, called Multibeam Orbit Determination
Algorithm (MODA), generates several possible first guesses of the object track
by identifying the relative gain peak sequences that are consistent with the
measurement beam illumination sequence. These tracks are passed through a
filtering process that removes unrealistic paths and instances with large angular
displacements between two consecutive gain peaks. The remaining trajectories
are sorted according to the track that gives the best linear fit. Results on

1 910+ detection and 95+ calibration observations
2 9.2+ hours detection campaigns and 17+ hours calibration observations

123
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Figure 5.1: An overview of the observation campaigns conducted by the BI-
RALES radar

simulated data show that the theoretical error is expected to range from 1e-3
to 1e-2 deg. Further information on this algorithm can be found in [53].

To the author’s knowledge, this approach represents the first algorithm
that exploits the multi-beam configuration of this radar for the reconstruction
of the trajectory of an orbiting object. As an alternative approach, this study
proposes a simple method of estimating the path of an object by considering
only the data from the doppler system. This chapter presents some of the more
notable results that were acquired since the inception of this novel SSA radar.
These results represent the culmination of the work put into the present state
of BIRALES.

5.1 Experimental results

In Chapter 2, the BIRALES radar was shown to be theoretically capable of
detecting RSO targets in LEO. Throughout the last couple of years, the capa-
bility was experimentally proven during the aforementioned observation cam-
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paigns. Some of these results obtained from these observation campaigns are
illustrated in Figure 5.2 and Figure 5.3.

The results presented in this section were obtained using the MSDS algo-
rithm using the tessellated multi-pixel configuration described in Chapter 3
(Figure 3.18). Prior to each observation campaign, a calibration observation
was scheduled in order to obtain a calibration solution for the array. The tar-
get’s RCS, range, transit time and Doppler information were taken from the
object’s TLE. These parameters were manually correlated with the detection
data. A target was deemed to be successfully detected if the difference between
the expected and measured transit time, δt, and doppler shift, δf , were very
close (δt ≤ 15 s and δf ≤ 400 Hz).
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Figure 5.2: Detections of 12 known RSO targets acquired during various ob-
servation campaigns. Figure shows the SNR level measured as a function of
the target’s RCS

One may note that, as expected, the radar has no difficulty in detecting the
larger objects (>10 m2). Indeed, these objects are detected at an SNR level in
excess of 20 dB. The high SNR measured can also be attributed to the fact
that the slant range of these targets was less than 1000 km.

The detection of smaller targets is more challenging. However, one may
observe that the radar has shown that it is capable of detecting objects down
to an RCS of 1 m2. These targets were measured at an SNR level of less than
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Figure 5.3: Detections of 12 known RSO targets acquired during various BI-
RALES observation campaigns. Figure shows the slant range of the target
objects as a function of the SNR level measured

10 dB which is less than the detection threshold used in simulations presented
in Chapter 2. For instance, NORAD 27944, having an RCS of 0.13 m2 was
detected at an SNR level of 6 dB at a slant range of over 1900 km. The detection
of these radar echoes at these SNR levels are testament to the sensitivity of
the detection algorithm employed.

The results from these observations can also be used to obtain a estimate
for the system loss of the BIRALES radar. Re-arranging Equation 2.45, the
total loss L of the radar can be calculated using,

L =
σminGtAePt

ρkBTπ24(R1R2)2
(5.1)

Thus, the system loss Lsys for the radar can be obtained by subtracting the
atmospheric loss from the total loss. The mean system loss, calculated from
the system loss obtained for each of the aforementioned targets, was estimated
to be 15.98± 4.49 dB.

A limitation of this method, however, is that the target information was
retrieved using TLE, which is not guaranteed to be precise. A precise value
for the system loss can be obtained if calibration spheres, such as Lincoln
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Calibration Sphere (LCS), whose orbital parameters are known accurately, are
used as targets.

It is important to highlight the fact that the detection data was correlated
manually with the catalogued objects. Such a process is laborious and not
feasible for long running campaigns such as beam park experiments. Thus,
further studies should investigate new techniques that automatically correlate
these detections with catalogued objects. This should also make it possible to
identify uncatalogued objects, such as new orbital objects, automatically.

In the next sections, we analyse the detection data obtained for two of
the aforementioned targets. The intention is to showcase the typical detection
vectors, such as Doppler shift and transit time, that are obtained. Additionally,
we investigate the use of the beam illumination sequence within the multi-pixel
configuration as a means of determining the target’s trajectory over the FoV
of the instrument.

5.2 The re-entry of the Tiangong-1 space station

One of the first operational uses of the BIRALES system was in the monitoring
of the re-entry of China’s first prototype space station, the Tiangong-1. The
8.5 t space station was in orbit for six years until it was decommissioned in
2013. The Chinese space station was scheduled to have a controlled re-entry
in which the station is manoeuvred into a safe unpopulated zone on Earth.
However, in March 2016, the Tiangong-1 operators reported that they have
lost control of the station. It had been falling uncontrollably ever since.

In satellite re-entries, the heat generated by the friction with the atmo-
sphere can completely destroy the satellite. In some cases, the satellite is not
completely burnt up and parts of it make it to the surface of the Earth. Experts
predicted that the Tiangong-1 space station would not burn up completely and
may result in pieces of debris of up to 100 kg hitting the Earth’s surface over
an area a few hundred kilometres in size. While the probability of the space
station falling on populated areas is small, it is difficult to estimate when and
where this will land to a high degree of accuracy. In fact, such a prediction is
only available just a few hours before it starts its decent.

Consequently, several SST sensors were engaged in the monitoring of its
descent. Its decaying orbit was being monitored and updated with each pass
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of the Tiangong-1 over the instruments. The BIRALES system was one of
the European sensors within the European Union (EU)’s SST consortium that
were actively engaged in monitoring its descent. This campaign consisted of
daily measurements of the stations decaying orbit. The measurements were
exported in TDM format to the competent Italian authorities and European
partners.

On the 29th of March 2018, the BIRALES system was the first instrument
to detect the ill-fated space station after more than 15 hours as the station
passed through a no-visibility area for the US radars. This detection was a
welcomed result by the international community. It represents the orbital state
of the station just three days before its fiery re-entry on April 2nd at 00:15
UTC.

Transit time (UTC) 07:56:15
TRF Elevation (°) 25.61
TRF Azimuth (°) 28.80
BEST-2 Declination (°) -4.65
RangeTx (km) 430.60
RangeRx (km) 297.14
Slant Range (km) 727.74
RCS (m2) 17.84
Doppler shift (Hz) -4453.52

Table 5.1: The parameters for the Tiangong-1 observation campaign on 29th
March, 2018

The parameters of this observation are represented in Table 5.1. The de-
tected doppler-shifted radar echo reflected off the space station is illustrated
in Figure 5.4. The figure shows the Doppler shift relationship with time as the
station passed through the instrument’s FoV. As one may observe, a strong
linear relationship between frequency and time (r-value = −0.9994).

The SNR profile of this detection is presented in Figure 5.5. As expected
from a target object of the size and at this range, a strong SNR is measured
across all the 29 beams within the multi-pixel. One may also note that the
target was detected at within the side-lobe and grating lobes of the beam.
These detections can introduce ambiguities in the path taken by the object.

The transit time of the target object was expected at 07:56:15 UTC at a
Doppler shift of −4453.52 Hz. The transit time of the space station was regis-
tered in the central beam at 07:56:02 UTC at a Doppler shift of −4549.94 Hz.
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Figure 5.4: The measured Doppler shift against time sample. Tiangong-1
detection on March 29th, 2018
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Figure 5.5: The SNR profile across the activated beams. Tiangong-1 detection
on March 29th, 2018
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Figure 5.6: The SNR profile across the activated beams produced by taking the
beam at which the maximum SNR, per time epoch, was measured. Tiangong-1
detection on March 29th, 2018

This meant that the transit time was detected more than 13 s earlier than ex-
pected. This disagreement was attributed to the unpredictable nature of the
object’s orbit as it enters the denser parts of the atmosphere during its final
re-entry. This unpredictability highlights the importance of these monitoring
campaigns.

The sequence delineating the time of transit of an object within the indi-
vidual beams is known as the beam illumination sequence. It was determined
by considering the peak SNR at each time epoch. The results of this approach
are shown in Figure 5.6. We assumed that the target passes at the points
where the maximum SNR is measured. This also implies that only the main
lobe profile, for each beam, has to be taken into account.

The beam illumination sequence can be used to derive the path taken by
the target object as it crosses the FoV of the instrument. This can be achieved
by analysing which beams within the multi-pixel were illuminated and at which
order. If the pointing of each beam is known, the AZ and EL pointings through
which the target passed can be determined.
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Figure 5.7: The reconstructed trajectory of the RSO (black), together with
the trajectory predicted by the latest TLE (blue). Data points represent the
weighted mean of the beam pointings in which a detection is made. Pointings
are expressed as angular deviation from the reference pointing (EL = 41.14°,
Azimuth (AZ) = 180°). Tiangong-1 detection on March 29th, 2018

A track T spanning k time samples and detected across N beams can be
represented as T(t) = [f(t), s(t), b(t)], t ∈ {0, 1, . . . , k − 1}, where f(t) is the
Doppler shift, s(t) is the measured SNR and b(t) ∈ {0, 1, . . . , N − 1} is the
beam the detection was made at a time sample t. If the pointing angle pb(θ, ϕ)
of each beam is known, the AZ and EL pointings through which the target
passed can be determined. For a data point i, detected at a time sample t,
within beam b, the corresponding θ, ϕ angle, denoted by pi(θ, ϕ), is given by
the beam’s pointing pi = pb(θ, ϕ).

There are two approaches that were investigated to determine the path of
an object at each time sample. The first approach, shown earlier, was to take
the pointing at which the maximum SNR was measured. Another approach,
and the one used in the ensuing discussion, is to take a weighted mean, p̄(θ, ϕ),
of the pointings at which a detection is made. This is given by,

p̄(θ, ϕ) =
n∑

i=1

wipi (5.2)
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where, wi is the normalised SNR level measured in that beam. This process
is repeated for all time samples such that the path taken by the RSO, expressed
as a vector of pointings, can be reconstructed. The pointing of the beams is
assumed to be the AZ and EL pointing at which the maximum gain is recorded.
The maximum gain is given by the multi-pixel configuration obtained through
simulation.

As was discussed in Chapter 2 the multi-pixel changes with declination.
The multi-pixel configuration at this declination (41.14 deg EL and 180° AZ),
is shown in Figure 5.7. One may observe that at this declination, the beam
widths at −3 dB are larger than the zenith case. This reaffirms the importance
of having an accurate model of the BEST-2 array. The implication is that
the multi-pixel should be simulated at each angle of elevation given that this
changes as a function of the array’s declination.

The figure also illustrates the predicted path taken by space station (in
black) when this is compared with the expected trajectory extracted from the
latest TLE data (in blue). The Root Mean Square Error (RMSE) between
the predicted and the measured trajectory was calculated to be 0.19°. This
discrepancy is attributed to the inherent uncertainty of the TLE for an RSO
during re-entry. In fact, re-entry campaigns usually involve multiple sensors
across the globe where the measurement data for the object is shared to re-fine
its orbital parameters upon each pass over a sensor within its network. The
BIRALES radar was one such sensor involved in the last few days before the
Tiangong-1 re-entry.

5.3 NORAD 1328

On March 5th, 2019, the BIRALES system was used in its TRF-Medicina
configuration for another routine targeted campaign. In order to increase the
likelihood of a detection, objects with an RCS greater than (2 m2) were chosen
as targets in these campaigns. One such RSO was the Explorer 27 (NORAD
1328) decommissioned satellite. Launched on April 1965, Explorer 27 has a
RCS of 2.16 m2 and orbits the Earth at a perigee altitude of around 926.8 km.
The satellite was subsequently decommissioned in July, 1973.
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Table 5.2 lists the parameters used for this observation. The BEST-2 dec-
lination was put to 21.24° whilst the transmitter was pointed to 45.24° AZ and
73.07° EL. At these pointings, the slant range was expected to be 2107.4 km.

Transit time (UTC) 10:37:53
TRF Elevation (°) 73.07
TRF Azimuth (°) 45.24
BEST-2 Declination (°) 21.24
RangeTx (km) 1035.56
RangeRx (km) 1071.84
Slant Range (km) 2107.40
RCS (m2) 2.16
Doppler shift (Hz) -1462.14

Table 5.2: The parameters for the NORAD 1328 observation campaign on 5th
March, 2019

The BIRALES system was able to successfully detect the radar echo re-
flected by the target RSO. Figure 5.8 illustrates the linear relationship between
the measured Doppler shift and time (r-value =−0.99991). Such a strong lin-
ear relationship together with the measured Doppler shift is evidence of a
hyper-velocity object crossing the FoV of the instrument.
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Figure 5.8: The measured Doppler shift against time. NORAD 1328 detection
on March 5th, 2019
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Figure 5.9: The SNR profile across the activated beams. NORAD 1328 detec-
tion on March 5th, 2019
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Figure 5.10: The SNR profile across the activated beams produced by tak-
ing the beam at which the maximum SNR, per time epoch, was measured.
NORAD 1328 detection on March 5th, 2019
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Figure 5.9 illustrates the SNR profile of the detection with time while the
beam illumination sequence is shown in Figure 5.10. It can be noted that the
radar echo was detected across several beams of the multi-pixel. A strong SNR
was measured in each of these beams, with the highest SNR value of 19.07 dB.
Taking the median time sample as the transit time of the RSO, the target
object crossed beam 15 at 10:37:53 UTC at a Doppler shift of −1357.99 Hz.
Table 5.2, gives an expected Doppler shift of −1462.14 Hz at 10:37:53 UTC
which is very close to the experimental values.

Figure 5.11: The reconstructed trajectory of the RSO (black), together with
the trajectory predicted by the latest TLE (blue). Pointings are expressed
as angular deviation from the reference pointing (EL = 66.72°, AZ = 180°).
NORAD 1328 detection on March 5th, 2019

The predicted path of the object is shown in Figure 5.11. At a pointing
angle of 66.72 deg EL and 180° AZ, the beam width along the EL direction
are smaller than the zenith case. In this case, one may note that the beam
arrangement is more efficient since the overlap between the beams is minimised.

In this case, an RMSE of 0.10° between the predicted and the expected
trajectory suggests that the predicted trajectory is very close to the one ex-
pected. However, one can observe an offset between the measured and the
expected path. Such an error would still result in appreciably significant er-
rors in position a velocity rendering an accurate Initial Orbit Determination
(IOD) measurement difficult. Future research should certainly further test
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whether the accuracy of the reconstructed trajectory can be improved if rang-
ing information is used. These studies should also investigate whether such
an approach can be integrated with more rigorous IOD algorithms such as the
MODA algorithm developed at the Politecnico di Milano. It would also be
interesting to test MODA’s performance using real-world data such as those
presented in this section.

The positive results presented through these two expository examples show
that, in principle, it is possible to obtain an estimate of the trajectory of
the object can be obtained. However, thus far, this is still considered to be
an initial approximation and not suitable for the precise determination of an
object’s orbit. For such a calculation, ranging information is necessary to
completely characterise the object’s orbital parameters. These preliminary
results, pave the way for further research into this method of determining an
object’s trajectory.

5.4 Conclusion

In this chapter, the results obtained during a number of observation campaigns
were presented. Experimental results have shown that the system is capable of
detecting catalogued objects with an RCS of less than 1 m2 at a slant range of
more than 1900 km. These results are at the limit of the design specifications
of this new radar.

Apart from routine measurements of known objects, the radar has also been
part of an international monitoring campaign of the Tiangong-1 re-entry. On
May 11th, the radar was engaged in the monitoring of the 21 t Long March 5B
rocket body. These achievements mark one of the latest positive developments
of the EU SST program.

While the results are promising, the system is still constantly being im-
proved in order to enhance the capability of this new radar. This provides a
good starting point for discussion and further research.

For instance, future studies should aim to confirm the estimated system
loss presented in this chapter. A more precise measurement of the system loss
of the radar can be achieved if calibration spheres, with a precisely defined
radar cross-section and range, are used.
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The planned future upgrades to the BEST-2 array are meant to improve
the sensitivity of the instrument. In so doing, objects with a smaller RCS can
be detected at farther distances. An enhanced sensitivity is essential for rou-
tine beam park experiments meant to discover new uncatalogued space debris
objects. Such experiments would necessitate the introduction of algorithms
that can automatically correlate the detection data with known objects such
that unknown objects can be discovered. The in-depth analysis of the de-
tected data in such campaigns are used to characterise the near Earth space
environment and assess the growth trends of the orbital debris population.

Potentially, this data can be used to create an independent catalogue for
the system such as that of the French GRAVES system. This catalogue can
be compared with existing public catalogues and be made available to the
international space community. In so doing, the system would play an im-
portant role in the mitigation of such the international effort required for the
future sustainability of space. The conclusions of this study together with the
planned future extensions of this work are summarised in the next chapter.
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Conclusion

The world’s economy has become heavily dependant on the services provided
by satellites. With the exponential increase in satellite launches, the pop-
ulation of defunct or inactive hardware in space has grown substantially.
This is especially true in sensitive orbits such as the LEO and GEO regimes.
These objects, collectively known as orbital debris, can reach speeds of up to
28 000 km h−1 in LEO. At these orbital speeds, even the smallest of objects
can pose a considerable threat to the operational satellites or astronauts. A
potential in-orbit collision could create a cloud of debris which can in turn
cause a catastrophic cascade of further collisions that can lead to a situation
where the space environment is unusable. This makes the monitoring of these
objects of the utmost importance.

Unfortunately, there are a limited number of European facilities that are
routinely engaged in the detection and tracking of orbital debris. The ESA’s
SST programme was established to address this deficit by building new facili-
ties and upgrading existing systems for their potential use in SSA. One of the
latest facilities within the ESA SST consortium is a new SSA radar named BI-
RALES that is the focus of this work. BIRALES is a bi-static radar consisting
of a CW transmitter in Sardinia, Italy and the BEST-2 radio telescope located
within the Northern Cross radio telescope in Medicina near Bologna, Italy.

This work set out to investigate the use of this radio telescope in the de-
tection of orbital debris. The aim of this study was to lay out the foundations
necessary for the realisation of the first operational space debris detection radar
in Italy. Consequently, the key outcomes of this investigation were presented
in this work.
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In Chapter 2, it was showed that the BEST-2 astronomical instrument is a
suitable receiver for a new bi-static radar. Simulations showed that if the re-
ceiver is coupled with a powerful CW transmitter in the northern hemisphere,
the radar is able to detect LEO objects. In addition, if the radiation pattern
of the receiver is known, the trajectory of the RSO can be estimated. This is
achieved by considering the illumination sequence of the array’s beams as the
transient passes over the FoV of the instrument. An accurate characterisation
of the array’s theoretical beam pattern can be obtained through a full electro-
magnetic simulation. However, the true assessment of the instrument’s actual
radiation pattern is ultimately achieved by in-situ experiments carried out by
an antenna verification system.

This study introduces a new UAV-based antenna verification system, called
ChopPy. ChopPy was designed to be an end-to-end solution that is capable
of characterising the far-field radiation pattern of large radio telescopes whose
study in anechoic chambers is impractical. Researchers have only recently
been using drone-based antenna verification systems and to date no commer-
cial system is available. Unlike existing prototypes, ChopPy cuts down on
the time taken to characterise an antenna by implementing a real-time data
acquisition system. In ChopPy, the position of the transmitter is combined
with the antenna’s response through a specially designed real-time synchroni-
sation algorithm. The system is still in preliminary stages, however the results
on smaller antennas have been encouraging. Its applicability to the BEST-2
antenna is the subject of ongoing research.

The realisation of a new radar for space debris detection necessitated the
implementation of a new software backend for the BEST-2 array’s digital back-
end. Chapter 3 introduced the PyBirales data processing backend. PyBirales
is a Python application that is used to process the incoming signals from the
instrument’s 32 receivers. The application processes one, 78 kHz wide, sin-
gle polarisation, channel using a system of processing pipelines. A processing
pipeline is a software construct that uses a series of modules that are chained
together in such a way that the output of one processing module is the input
to another module. At each module, the input data is mutated in real-time.

The detection pipeline is designed to sieve through the input data for radar
echoes reflected off hyper-velocity in-orbit objects. The signals from the 32
antennas are beamformed into a 32-beam multi-pixel covering the FoV of the
instrument. Each beam is finely channelized at a spectral resolution of around
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9.5 Hz and a temporal resolution of around 100 ms. Chapter 4 presented the
track detection strategy used by the detection pipeline. The strategy consists
of an image segmentation stage that is used to filter the incoming data from
the background noise and any RFI interference. Filtering the data reduces the
number of data points that are processed by the subsequent feature extraction
algorithm.

This work presented two methods of extracting the track information from
the incoming spectrogram data. The first method uses a popular clustering
algorithm, called DBSCAN, to detect the linear radar echoes. This approach
was shown to be effective at detecting linear streaks in spectrogram images.
However, the precision and recall score fell dramatically for low-SNR tracks.
These limitations were addressed with the introduction of a new track detec-
tion algorithm, called MSDS. This algorithm is a bottom-up approach which
makes use of single-linkage clustering to identify faint radar streaks. Tests
on synthetic data have shown that the algorithm obtains a substantially bet-
ter recall and precision score when compared with existing methods. Unlike
other approaches, the MSDS algorithm was still able to recall 90% of the track
information at an SNR of 2 dB.

A selection of the results obtained in various test campaigns were presented
in Chapter 5. It was shown that the system is capable of detecting radar sig-
natures reflected from objects with an RCS of less than 0.15 m2 at a slant
range of more than 1900 km. A high level of agreement was achieved between
the measured and the expected orbital state of the target object. The results
are representative of a series of test campaigns which led to the instrument’s
monitoring of the Tiangong-1 space station’s uncontrolled re-entry. In this
campaign, BIRALES joined an international network of sensors monitoring
the station’s decaying orbit a few days before its re-entry. The positive results
obtained during the various observation campaigns together with the deliver-
ables of this work, lay the foundation on which future extensions to this work
can build upon.

6.1 Future work

The results obtained in this study are promising, however, they are still pre-
liminary and further work is needed before the system can be used for the
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routine tracking of orbital debris whose orbital state is not known a priori. In
this investigation it was shown that an accurate prediction of the trajectory
and, subsequently, orbit determination of the detected targets is not possible
without a deep understanding of the position and shape of the main beams and
their respective side lobes. Thus, the verification of the model can be achieved
experimentally using an antenna verification system such as that proposed in
this study. This is the subject of future work.

Recently, work started on upgrading the BEST-2 array to its BEST-3 con-
figuration. The upgraded system increases the number of receivers to 56 in-
stalled on 14 cylinders along the Northern Cross. This upgrade increases the
collecting area from the current 1410 m2 to 7260 m2 [60]. The increase in data
rate has yet to be tested on the data processing software developed for the
BEST-2 array. It is envisaged that some of the modules, such as the Detec-
tion module, would need to be optimised in order to handled the increased
data rate.

The detection algorithms investigated in this study were evaluated using
ideal linear streaks within spectrogram images. These results can be repro-
duced on test data generated by a high-fidelity orbital simulator that emulates
the radar echo streaks emanating from high-velocity orbital objects. Such a
simulator would take into account, the radiation pattern of the receiver, the
object’s range and RCS to generate the expected radar echo. Ranging infor-
mation can also be used to improve the existing detection techniques presented
in this study. Future studies can investigate how ranging information can en-
hance the false-positive rejection rates and thereby increasing the precision of
the proposed approaches.

Further test and observation campaigns are envisaged in order to verify
the system suitability in the routine detection of orbital debris. Routine beam
park experiments can be performed to potentially discover new uncatalogued
orbital objects thereby fulfilling the European overarching SSA commitment.
The ultimate goal of these advances is to build upon the results achieved thus
far in the quest for the continued enhancement of Europe’s latest orbital debris
monitoring system.
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Appendix

A.1 Antenna Verification

Antenna verification is a term that is usually used to describe a series of
experiments that are performed on an antenna to characterise its radiation
pattern in real operative conditions. This process is particularly useful in novel
antenna designs whose radiation pattern is not known. It is also valuable for
the validation of simulations for these types of antennas. The data derived
from these experiments can also be used for calibrating the instrument and
maximise its efficiency.

The study of an antenna is typically performed in a controlled environment
which is shielded from external RFI sources such as an-echoic chambers. These
experiments can give the radiation pattern of the Antenna Under Test (AUT)
to a high degree of accuracy. However, these chambers can only accommodate
small antennas that are a few meters in size. This limitation prohibits their
use in the study of the large antennas that are typical of radio astronomy.

Radio telescopes, such as the Northern Cross, can extend to hundreds of
meters, making their study in an-echoic chambers difficult. Thus, these types
of antennas have to be studied in-situ. These experiments shed light into the
influence of the surrounding environment, such as soil and background RFI,
on the AUT [182]. Furthermore, they are also useful to establish the present
state of an antenna. Such a system is particularly helpful in the study of older
antennas whose performance may have degraded over time.

Traditionally, the study and beam calibration of antennas is performed
through the use of a bright astronomical source such as the sun [183] or known
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radio sources [184]. As will be discussed in Chapter 3, this is the method that is
used to calibrate the BEST-2 array. The beam pattern of the AUT is obtained
by measuring the power signal being the output of the AUT as the astronomical
source passes through the beam. The limitation of this method is that the
number of available strong radio sources is limited and not readily available.
Thus, artificial, high-altitude, RF sources such as balloons or helicopters [185,
186] have also been investigated. However, such techniques are often not trivial
to set-up and are very expensive.

In recent years, less expensive solutions that make use of commercial drones
equipped with an RF source, have been introduced. There have been several
studies detailing the results obtained by these systems. This methodology was
used in the measurements of smaller antenna elements such as biconical and
log-periodic antennas in [187] and [188]. Digitally beam-formed arrays were
also investigated in [189], whilst small radio dishes have also been characterised
in [190] at VHF and in UHF [71].

Conventional systems use a total station to pin-point the drone in 3D space.
While this system poses some advantages, it can be challenging to align the
drone with the base station, especially as its altitude increases. With the
increased accuracy and reliability of commercial GNSS solutions, the use of an
accurate GNSS device has been proposed as an alternative way to track the
drone in 3D space.

These studies combine the output power of the AUT at a particular fre-
quency with the position of the GNSS at a final post-processing stage once
the drone lands. Given the limited flight-time of these drones, the full as-
sessment of an antenna typically requires multiple flights. The acquisition of
these measurements is very time-consuming. Thus, to cater for these issues
and improve on existing systems, this work introduces a new control system
capable of testing the far-field of an antenna in real-time, drastically decreas-
ing the time needed to obtain the beam pattern of the AUT. The aim of the
system, named ChopPy, is to put in place the components necessary for the
verification of large antennas, whose study using traditional methods, is either
difficult or too time-consuming.
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A.1.1 A real-time antenna verification system

ChopPy is an antenna verification system that was designed to be an end-
to-end solution for the verification of an antenna’s radiation pattern. The
system makes use of a drone equipped with a variable RF source acting as
a transmitter and a frequency spectrum analyser to read the corresponding
power output measured by the AUT. As shown in Figure A.1, this system can
be broadly split into two main components; the rover system and the control
unit.

Frequency
source

Received  
Power

Monitoring 
Application

ChopPy
AVS

UAV
Telemetry

Measurements

Antenna Under Test (AUT)

Figure A.1: System overview of the ChopPy antenna verification system

The Rover

ChopPy was designed to be independent of the vehicle that is used to ma-
noeuvre the transmitting antenna. This feature makes it easily portable to the
equipment available to the operators of the system. In this study, a Mikro-
copter ARF-OktoXL 4S121 UAV was used. This commercially available UAV
is an octocopter drone with a maximum payload of 2.5 kg. The maximum range

1 www.mikrocontroller.com

www.mikrocontroller.com
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of the drone while carrying a 1 kg payload, is that of a few hundred meters
with a maximum flight time of less than 30 min on a 10 mA h charge. A custom
payload box was built to house the components of the system, including the
variable signal generator feeding the dipole antenna transmitter.

Accurate GNSS positioning was achieved by using two high precision GNSS
modules (u-Blox NEO-M8P2) which are housed in the payload box. GNSS
data from these devices, is extracted by a Python application running on
a Raspberry Pi3 module which is also installed on the drone. This simple
application, henceforth referred to as ChopPy-Rover reads the GNSS data
from a standard serial (USB) port at 1 Pulse Per Second (PPS). Data is then
published on the network as JSON strings through the ZeroMQ4 messaging
library. At present, the data-link between the drone and the control unit is
through a standard 3G connection.

The Control Unit

The system was designed to be able to work with any National Instruments -
Virtual Instrument Software Architecture (NI-VISA)5 compatible device. As a
result, ChopPy was made extensible to a wide range of devices which support
the NI-VISA protocol. In this work, the response of the antenna is measured
by an Anritsu6 MS2724B portable spectrum analyser.

The ChopPy control unit can be run on any standard machine. This ma-
chine is usually a portable device for practicality in on-site experiments. The
control unit initiates a frequency sweep from the spectrum analyser which is
connected to the control unit through an ethernet link. For every frequency
sweep, the power at the test frequency is determined. The control unit is
also responsible for combining these readings with the corresponding GNSS
measurements which can arrive at different times. The interval at which the
data is being polled is different. Whilst the GNSS can polled at 1 PPS, the
spectrum analyser can only extract a reading every ∼5 s. Network latency
issues in both the spectrum analyser and the Choppy-Rover system can cause

2 www.u-blox.com
3 www.raspberrypi.org
4 www.zeromq.org
5 www.ni.com/visa
6 www.anritsu.com

www.u-blox.com
www.raspberrypi.org
www.zeromq.org
www.ni.com/visa
www.anritsu.com
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added random delays that are difficult to control. Furthermore, there could
be instances where the connection between the control unit and the rover is
lost. When the connection is re-established, the GNSS positions need to be
matched with the corresponding power measurements.

It is thus essential to develop a system which can sync the data between
the two devices. While this task can be done at a post-processing stage, where
the time-stamps of the individual devices are matched, this application can do
this in real-time. The advantage is that the analysis of the test antenna can be
done on the fly, making it easier and faster to generate an accurate assessment
of the test antenna. This is especially useful when the test antenna is spread
over a large area such as those typical in radio astronomy.

A.1.2 Real-time synchronisation

The real-time synchronisation of the data is done at the control unit, which
makes use of 2 separate non-blocking consumers: the GNSS and the spectrum
analyser threads which consume the data coming from the respective devices.
The synchronisation algorithm is described in Figure A.2.

The consumers push the data to a queue in a FIFO fashion. The algorithm
is run iteratively through the duration of the campaign. A separate ‘combiner’
thread consumes data from these queues. This combiner thread blocks until a
spectrum analyser reading become available.

A reading from the spectrum analyser is matched with a GNSS measure-
ment whose time-stamp is closest. This is achieved by popping measurements
from the GNSS queue iteratively until a match is found. In the case where
no GNSS data is present in the queue, which could occur when the network
connection is lost, the spectrum analyser measurements are queued. This way,
the queue acts as a buffer and ensures that data losses are minimised. The
synchronised measurements are saved to a MongoDB database and sent in
real-time to a dedicated monitoring application through Socket.IO7.

7 www.socket.io

www.socket.io


148

GNSS:Queue 

time/lon/lat/altitude

SA:Queue Agg:Thread 

create_measurement(gnss, sa)

get_sa_data()

save_measurement()

get_gnss_data()

SA data

:Database :Monitoring 

loop
[!gnss_queue.empty()]

loop

get_closest_gnss_measurement(sa)

send_measurement()

Figure A.2: A UML sequence diagram describing the real-time synchronisation
algorithm used in ChopPy

A.1.3 Monitoring application

The monitoring application distributed as part of the ChopPy system was
designed to visualise, in real-time, the measurements being acquired by the
ChopPy system. This way, the user can monitor the measurement campaign
and thereby be able to identify any potential problem quickly. Figure A.3
illustrates the real-time monitoring plots that are typical of a measurement
campaign.

The antenna response to the transmitting drone is presented in the top
right plot. This is helpful to assess the operating environment of the antenna.
One can note that the antenna was tested in a very noisy environment where
some RFI peaks are present. The frequency transmitted by the drone’s antenna
can be identified as a small peak at 1 GHz. The power at this frequency can
be monitored over time by the second plot in the monitoring dashboard. In
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this example, the power reading changes as the drone passes over the antenna
and back again.

The altitude of the drone can be monitored in the bottom left plot in Figure
A.3. As one may note, the drone’s altitude is not perfectly constant throughout
the flight path. This can be either due to windy conditions or inaccuracies in
the drone’s inbuilt guidance system. In this case, the height of the UAV above
the antenna varies between (70 ± 2)m which can be considered to be constant
with respect to the far-field condition for the particular AUT.

The path taken by the drone is visualised in the last plot in which part of
the grid-like flight strategy can be seen. The flight path’s colour represents the
power response of the AUT at that coordinate. These plots give the operator
an indication of the quality of the measured data before the subsequent post-
processing stage.

A.1.4 Methodology

The measurements stored in the database mentioned above are used to gener-
ate the radiation pattern of the AUT. This is achieved by using the far-field
two antenna method. The transmitter is kept at a constant distance from the
AUT such that the far-field condition of the antenna is satisfied [191]. The
far-field region R, of an antenna with a baseline D, operating at wavelength
λ, is given by,

R >
2D2

λ
(A.1)

Initial tests were carried out on small antennas whose radiation pattern is
known. One such antenna is the log-periodic antenna whose model is shown
in Figure A.4. The far-field region for this 95.1 cm antenna, is estimated to be
at 6 m at 1 GHz. The gain of the antenna, under the far-field approximation
is given by [187, 192],

G(r̂)M(r̂) =
PR(r)

GS(r̂, α, β, γ)PSGR

·
(4πR

λ

)2

(A.2)

where, G is the gain of the antenna in spherical coordinates, r̂ is the unit
vector, r is the position vector of the transmitter (drone), M is the polarization
mismatch and PR is the received power as measured by the spectrum analyser.
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Figure A.4: The model of the log-periodic antenna used in the initial tests of
the ChopPy system

The power of the transmitter is represented by PS, and its radiation pattern
is denoted by GS. The angles α, β and γ are the bearing, pitch and roll of the
UAV source while GR accounts for the Low Noise Amplifier (LNA) gain and
cable losses. Equation A.2 can be expressed in logarithmic decibel form, such
that,

G(dB) = PR(dB)−GS(dB)−GR(dB)− PS(dB)− 20 log
( λ

4πR

)
(A.3)

Thus, the radiation pattern of an antenna is obtained by removing the
contribution of the source antenna, the path loss quantities PS and GR from
the measured power received by the ChopPy system. The drone is flown at a
constant altitude above the far-field region in a quasi-rectangular grid covering
a total area of 900 m2 centred around the AUT. The orientation of the UAV
is such that the flight path is aligned with the antenna’s co-polar E-plane. As
the drone manoeuvres through the pre-programmed flight path, its position is
transmitted to the control unit in real-time.

Analysis of the received data is usually done in a separate post-processing
step. The GNSS positioning of the UAV is transformed into a 2D cartesian
coordinate system by projecting the coordinates to the Universal Transverse
Mercator (UTM) coordinate system. At each point, the gain of the antenna at
these positions is calculated through Equation A.3. The data is then linearly
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interpolated across the whole domain such that the complete radiation pattern
of the AUT can be obtained. The radiation pattern obtained experimentally
can be validated against theoretical or simulated models of the AUT.

A.1.5 Results

The radiation pattern of the log-periodic antenna that was obtained using
this system is shown in Figure A.5. The E-plane pattern obtained for the
log-periodic antenna is shown in Figure A.6. Validation of the results was per-
formed by comparing the measurements to the numerical simulations obtained
from CST Microwave Studio.

Figure A.5: The calculated radiation pattern for the log-periodic antenna at a
frequency of 1 GHz in cartesian coordinates

The simulations of the AUT pattern are computed in the far-field region,
neglecting the electromagnetic coupling between the AUT and the transmitting
antenna. One can notice that there is a good agreement between the measured
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and the simulated data. However, this agreement is not apparent for higher
values of θ. The current understanding is that this is due to the background
environment, such as the soil and nearby metallic structures, were not included
in the simulation. Additionally, it would be interesting to compare these results
with another study which scans a more substantial area over the antenna.

Figure A.6: The measured (dashed) and the simulated (solid) co-polar gain at
the zenith in the E-plane for the log-periodic antenna

A.1.6 Future work

The ChopPy antenna verification system presented in the preceding sections
marks the first step towards an inexpensive antenna verification system for
large arrays. While the preliminary results are encouraging, several limitations
need to be addressed before the system can be marketed as a robust method
for antenna verification. For instance, the drone does not make use of the
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external, accurate GNSS module for navigation. Consequently, its flight path
and bearing are not precise. Furthermore, the drone’s orientation (yaw, pitch
and roll) are not being accounted for in the radiation pattern calculation. The
system assumes that the drone’s yaw is kept constant.

At present, ChopPy uses an off-the-shelf spectrum analyser to measure
the power of the antenna as the artificial source flies over it. However, the
rate of measurements of such a device is rather limited (1 measurement every
5 s). Ideally, the spectrum analyser is replaced by a high-performance digital
backend which can achieve a higher data throughput. This results in a better
characterisation of the AUT radiation pattern.

Another limitation is the 3G data link that is currently being used to
transmit the drone’s location. In radio-silent zones, this data link would also
need to be changed to a dedicated data-link. A dedicated data-link would also
make it possible to receive real-time telemetry over larger areas.

The goal of ChopPy is its deployment for the calibration of large phased
arrays. However, if the system were to be used on the BEST-2 antenna, the
transmitter would have to exceed a height of 1.5 km for just one parabolic
reflector of the BEST-2 antenna. This rises to 13.4 km if the full array is used.
At these, altitudes, a drone-based solution is not feasible. One solution is to
modify the ChopPy system for use in non-drone vehicles, such as aircraft.

As a compromise, ChopPy can be used to characterise the radiation pattern
of a single receiver within a parabolic cylinder. In this case, the far-field region
is around 175 m. At this height, a modern battery-powered drone should be
suitable. Once the radiation pattern of all the receivers within the BEST-
2 array are obtained, they can be combined to produce the corresponding
synthesised beam as shown in Chapter 2. In principle, this method makes it
possible to verify any phased array, albeit it would require multiple observation
campaigns to characterise all the elements within large phased arrays. This
emphasises the need for a real-time antenna verification system that makes it
possible to expedite the analysis of the incoming data.
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A.2 Performance metrics

SNR Algorithm Time Recall Specificity Score
mean std mean std mean std mean std

0 Iso Data 0.04 0.00 1.00 0.01 0.80 0.00 0.89 0.00
0 Otsu Filter 0.04 0.00 1.00 0.01 0.80 0.00 0.89 0.00
0 Sigma Clip 0.04 0.00 0.28 0.05 0.96 0.00 0.43 0.05
0 Triangle 0.04 0.00 0.33 0.13 0.95 0.02 0.47 0.13
0 Yen 0.04 0.00 0.00 0.00 1.00 0.00 0.01 0.00
1 Iso Data 0.04 0.00 1.00 0.00 0.80 0.00 0.89 0.00
1 Otsu Filter 0.04 0.00 1.00 0.00 0.80 0.01 0.89 0.00
1 Sigma Clip 0.04 0.00 0.51 0.10 0.96 0.00 0.67 0.07
1 Triangle 0.04 0.00 0.54 0.20 0.96 0.02 0.67 0.14
1 Yen 0.04 0.00 0.01 0.00 1.00 0.00 0.01 0.01
2 Iso Data 0.04 0.00 1.00 0.00 0.80 0.00 0.89 0.00
2 Otsu Filter 0.04 0.00 1.00 0.00 0.80 0.01 0.89 0.00
2 Sigma Clip 0.04 0.00 0.93 0.05 0.96 0.00 0.95 0.03
2 Triangle 0.04 0.00 0.93 0.10 0.95 0.01 0.94 0.05
2 Yen 0.04 0.00 0.01 0.01 1.00 0.00 0.03 0.02
3 Iso Data 0.04 0.00 1.00 0.00 0.80 0.00 0.89 0.00
3 Otsu Filter 0.04 0.00 1.00 0.00 0.80 0.00 0.89 0.00
3 Sigma Clip 0.04 0.00 1.00 0.00 0.96 0.00 0.98 0.00
3 Triangle 0.04 0.00 1.00 0.00 0.96 0.01 0.98 0.01
3 Yen 0.04 0.00 0.06 0.05 1.00 0.00 0.11 0.08
4 Iso Data 0.04 0.00 1.00 0.00 0.81 0.00 0.89 0.00
4 Otsu Filter 0.04 0.00 1.00 0.00 0.80 0.01 0.89 0.00
4 Sigma Clip 0.04 0.00 1.00 0.00 0.96 0.00 0.98 0.00
4 Triangle 0.04 0.00 1.00 0.00 0.96 0.01 0.98 0.01
4 Yen 0.04 0.00 0.25 0.29 1.00 0.00 0.35 0.29
5 Iso Data 0.04 0.00 1.00 0.00 0.81 0.00 0.89 0.00
5 Otsu Filter 0.04 0.00 1.00 0.00 0.81 0.00 0.89 0.00
5 Sigma Clip 0.04 0.00 1.00 0.00 0.96 0.00 0.98 0.00
5 Triangle 0.04 0.00 1.00 0.00 0.96 0.01 0.98 0.01
5 Yen 0.04 0.00 1.00 0.00 1.00 0.00 1.00 0.00
6 Iso Data 0.04 0.00 1.00 0.00 0.81 0.00 0.89 0.00
6 Otsu Filter 0.04 0.00 1.00 0.00 0.81 0.00 0.89 0.00
6 Sigma Clip 0.04 0.00 1.00 0.00 0.96 0.00 0.98 0.00
6 Triangle 0.04 0.00 1.00 0.00 0.95 0.01 0.98 0.01
6 Yen 0.04 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Table A.1: Performance metrics for the image segmentation algorithms pre-
sented in Chapter 4



156

SNR Algorithm Time F1 Precision Recall
mean std mean std mean std mean std

0 Astride 1.99 0.03 0.00 0.00 0.00 0.00 0.00 0.00
0 DBSCAN 0.53 0.18 0.02 0.06 0.07 0.21 0.01 0.04
0 Hough 0.22 0.11 0.00 0.00 0.00 0.00 0.00 0.00
0 MSDS 1.66 0.86 0.12 0.15 0.30 0.31 0.10 0.14
1 Astride 1.99 0.04 0.08 0.10 0.25 0.26 0.05 0.07
1 DBSCAN 0.49 0.19 0.13 0.20 0.28 0.36 0.10 0.16
1 Hough 0.20 0.11 0.00 0.00 0.00 0.00 0.00 0.00
1 MSDS 1.49 0.87 0.40 0.21 0.67 0.28 0.33 0.25
2 Astride 1.99 0.03 0.39 0.07 0.41 0.02 0.39 0.12
2 DBSCAN 0.52 0.16 0.52 0.23 0.64 0.25 0.46 0.25
2 Hough 0.21 0.10 0.17 0.21 0.39 0.41 0.12 0.17
2 MSDS 1.68 0.80 0.83 0.09 0.81 0.12 0.88 0.10
3 Astride 2.00 0.04 0.38 0.07 0.40 0.02 0.38 0.13
3 DBSCAN 0.50 0.16 0.58 0.27 0.65 0.25 0.55 0.31
3 Hough 0.19 0.10 0.17 0.30 0.24 0.38 0.15 0.30
3 MSDS 1.51 0.78 0.89 0.06 0.84 0.10 0.96 0.02
4 Astride 2.00 0.03 0.38 0.07 0.40 0.02 0.37 0.12
4 DBSCAN 0.49 0.18 0.61 0.29 0.64 0.25 0.61 0.33
4 Hough 0.19 0.10 0.21 0.27 0.37 0.39 0.16 0.22
4 MSDS 1.50 0.77 0.88 0.10 0.82 0.13 0.95 0.07
5 Astride 2.02 0.04 0.38 0.07 0.40 0.03 0.37 0.12
5 DBSCAN 0.51 0.19 0.68 0.18 0.70 0.12 0.67 0.25
5 Hough 0.19 0.10 0.24 0.28 0.41 0.44 0.19 0.23
5 MSDS 1.51 0.77 0.88 0.11 0.82 0.14 0.95 0.08
6 Astride 1.99 0.05 0.38 0.07 0.40 0.03 0.37 0.12
6 DBSCAN 0.51 0.18 0.64 0.27 0.66 0.25 0.63 0.32
6 Hough 0.20 0.11 0.24 0.24 0.46 0.42 0.18 0.20
6 MSDS 1.57 0.83 0.89 0.10 0.84 0.13 0.95 0.07
7 Astride 2.00 0.03 0.38 0.07 0.40 0.03 0.37 0.12
7 DBSCAN 0.49 0.14 0.73 0.28 0.71 0.26 0.77 0.33
7 Hough 0.20 0.10 0.30 0.30 0.46 0.41 0.25 0.29
7 MSDS 1.52 0.79 0.91 0.09 0.87 0.13 0.97 0.03

Table A.2: Performance metrics for the feature detection algorithms presented
in Chapter 4
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