EXISTENCE OF REGULAR NUT GRAPHS FOR DEGREE AT MOST 11

Patrick W. Fowler
Department of Chemistry
University of Sheffield, Sheffield, United Kingdom
e-mail: p.w.fowler@sheffield.ac.uk
John Baptist Gauci
Department of Mathematics
University of Malta, Msida, Malta
e-mail: john-baptist.gauci@um.edu.mt
Jan Goedgebeur ${ }^{1}$
Department of Applied Mathematics, Computer Science \& Statistics
Ghent University, Ghent, Belgium
Computer Science Department,
University of Mons, Mons, Belgium
e-mail: jan.goedgebeur@ugent.be
Tomaž Pisanski ${ }^{2}$
Department of Information Sciences and Technologies
University of Primorska, Koper, Slovenia
Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia
e-mail: pisanski@upr.si
AND
\section*{Irene Sciriha}
Department of Mathematics
University of Malta, Msida, Malta
e-mail: irene.sciriha-aquilina@um.edu.mt

[^0]Dedicated to the memory of Slobodan Simic.

Abstract

A nut graph is a singular graph with one-dimensional kernel and corresponding eigenvector with no zero elements. The problem of determining the orders n for which d-regular nut graphs exist was recently posed by Gauci, Pisanski and Sciriha. These orders are known for $d \leq 4$. Here we solve the problem for all remaining cases $d \leq 11$ and determine the complete lists of all d-regular nut graphs of order n for small values of d and n. The existence or non-existence of small regular nut graphs is determined by a computer search. The main tool is a construction that produces, for any d-regular nut graph of order n, another d-regular nut graph of order $n+2 d$. If we are given a sufficient number of d-regular nut graphs of consecutive orders, called seed graphs, this construction may be applied in such a way that the existence of all d-regular nut graphs of higher orders is established. For even d the orders n are indeed consecutive, while for odd d the orders n are consecutive even numbers. Furthermore, necessary conditions for combinations of order and degree for vertex-transitive nut graphs are derived.

Keywords: nut graph, core graph, regular graph, nullity.
2010 Mathematics Subject Classification: 05C30, 05C50, 05C75, 05C90, 68R10.

References

[1] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of graphs: A database of interesting graphs, Discrete Appl. Math. 161 (2013) 311-314. doi:10.1016/j.dam.2012.07.018
[2] G. Brinkmann, J. Goedgebeur and B.D. McKay, Generation of cubic graphs, Discrete Math. Theor. Comput. Sci. 13 (2011) 69-80.
[3] K. Coolsaet, P.W. Fowler and J. Goedgebeur, homepage of Nutgen. http://caagt.ugent.be/nutgen/
[4] K. Coolsaet, P.W. Fowler and J. Goedgebeur, Generation and properties of nut graphs, MATCH Commun. Math. Comput. Chem. 80 (2018) 423-444.
[5] P.W. Fowler, B.T. Pickup, T.Z. Todorova, M. Borg and I. Sciriha, Omni-conducting and omni-insulating molecules, J. Chem. Phys. 140 (2014) 054115. doi:10.1063/1.4863559
[6] J.B. Gauci, T. Pisanski and I. Sciriha, Existence of regular nut graphs and the Fowler construction, (2019).
arXiv preprint arXiv:1904.02229
[7] D. Holt and G.F. Royle, A census of small transitive groups and vertex-transitive graphs, J. Symbolic Comput. (2019), in press.
doi:10.1016/j.jsc.2019.06.006
[8] B.D. McKay and G.F. Royle, The transitive graphs with at most 26 vertices, Ars Combin. 30 (1990) 161-176.
[9] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999) 137-146. doi:10.1002/(SICI)1097-0118(199902)30:2〈137::AID-JGT7〉3.0.CO;2-G
[10] I. Sciriha, On the construction of graphs of nullity one, Discrete Math. 181 (1998) 193-211.
doi:10.1016/S0012-365X(97)00036-8
[11] I. Sciriha, On the rank of graphs, in: Combinatorics, Graph Theory and Algorithms, Vol. II, Y. Alavi, D.R. Lick and A. Schwenk (Ed(s)), (Springer, Michigan, 1999) 769-778.
[12] I. Sciriha, A characterization of singular graphs, Electron. J. Linear Algebra 16 (2007) 451-462.
doi:10.13001/1081-3810.1215
[13] I. Sciriha, Coalesced and embedded nut graphs in singular graphs, Ars Math. Contemp. 1 (2008) 20-31.
doi:10.26493/1855-3974.20.7cc
[14] I. Sciriha and I. Gutman, Nut graphs: maximally extending cores, Util. Math. 54 (1998) 257-272.

Received 30 August 2019
Revised 6 November 2019
Accepted 7 November 2019

[^0]: ${ }^{1}$ Supported by a Postdoctoral Fellowship of the Research Foundation Flanders (FWO).
 ${ }^{2}$ Supported in part by the Slovenian Research Agency (research program P1-0294 and research projects N1-0032, J1-9187, J1-1690), and in part by H2020 Teaming InnoRenew CoE.

