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Abstract

Twin vertices of a graph have the same open neighbourhood. If they are
not adjacent, then they are called duplicates and contribute the eigenvalue
zero to the adjacency matrix. Otherwise they are termed co-duplicates, when
they contribute −1 as an eigenvalue of the adjacency matrix. On removing
a twin vertex from a graph, the spectrum of the adjacency matrix does not
only lose the eigenvalue 0 or −1. The perturbation sends a rippling effect
to the spectrum. The simple eigenvalues are displaced. We obtain a closed
formula for the characteristic polynomial of a graph with twin vertices in
terms of two polynomials associated with the perturbed graph. These are
used to obtain estimates of the displacements in the spectrum caused by the
perturbation.
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1. Introduction

We limit ourselves to simple connected graphs, that is graphs with no multiple
edges or loops. A graph G(V,E) has a vertex set V = {1, 2, . . . , n} and an edge
set E whose elements are distinct pairs of vertices of V . The set E of non-edges
of G are those pairs of distinct vertices not in E. The complement G(V,E) of G
has the same vertex set as G and edge set E. Twin vertices are either duplicate or
co-duplicate. Two vertices are called duplicate if they are non-adjacent and have
the same neighbours. A pair of co-duplicate vertices in a graph G are adjacent,
and they are duplicate vertices in the complement G.

Let A(G), also written as A = (ai,j), be the adjacency matrix of G with
ai,j = 1 if the vertices i, j are adjacent and zero otherwise. The eigenvalues of A
are referred to as the eigenvalues of G and form the spectrum of G. If G has a
pair of duplicate vertices, then the corresponding rows (and columns) in A are the
same. This means that A has the eigenvalue zero. In the case where G has two
co-duplicate vertices, the corresponding rows and columns are the same except
for the two entries defining the edge between them. This means that −1 is in the
spectrum of G. In both cases the associated eigenvector has two non-zero entries.

Unlike what one may assume, removing a twin vertex does not just remove
the eigenvalue 0 or −1 in the respective cases, while preserving the rest of the
spectrum. Indeed, we investigate the shift in eigenvalues on removing a twin
vertex. To calculate the new eigenvalues after removing a twin vertex, one has
to perform the computation on the adjacency matrix of the new graph, ignoring
any information known about the original graph. In this work, we provide ways
to directly calculate estimates for the changes in eigenvalues, as a difference from
those of the original graph. We also give an explicit expression for the change in
the characteristic polynomial due to the removal of a twin vertex.

While to our knowledge this specific problem has not been treated before,
the literature on spectral graph theory contains a number of related works. In
the 1950s, Heilbronner derived the characteristic polynomial of a perturbed graph
from that of the parent graph. He determined explicitly the eigenvalues of the
subgraph on deleting a vertex from a graph, contributing to the study of molecular
orbitals [6–10]. Later, in the literature, one finds expressions for the characteristic
polynomial of an arbitrary graph, of graphs with particular geometric properties
and of perturbed graphs also in the work of Schwenk [17] and Rosenfeld [14].

The well known Cauchy inequalities, involving the eigenvalues of a real sym-
metric matrix and a principal submatrix, are referred to as the interlacing theorem
in spectral graph theory [17]. The theorem states that exactly one root of the
characteristic polynomial of a vertex deleted graph lies between two successive
eigenvalues of the parent graph. It was the subject of many studies by the pi-
oneers in the theory of the matrices that encode the structure of a graph. Its
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application unlocked many remarkable latent properties of classes of graphs. In-
terlacing is the main tool used by Thüne in his PhD Thesis [22] to determine
certain substructures in graphs. Later, Haemers produced a survey [4] of the
various kinds of applications of eigenvalue interlacing to complement his doctoral
thesis [3]. More recently, Lovász emphasised the importance of interlacing and
gave a summary of the main results on the eigenvalues of matrices of a graph [11].
In a collaboration with Simić, Marino et al. used the interlacing theorem to ex-
plore the properties of line graphs of trees with twin vertices deleted [12]. Sciriha
et al. studied classes of graphs that showed the largest possible change in the
multiplicity of the eigenvalue zero as a consequence of interlacing [19]. An inde-
pendent set is a subset of the vertices such that no two of the vertices are adjacent.
One of the graph invariants that is widely studied in combinatorics is the inde-
pendence number, that is the size of the largest independent set. Rowlinson, a
main exponent of graph eigenvalues, finds bounds on the independence number
of a graph basing his arguments on interlacing [15].

Sciriha and Farrugia consider the threshold graph which is a split graph in
which the vertex set is partitioned into an independent set and a clique, which
is a subset of the vertices that induces a complete subgraph in which every two
vertices are adjacent [20]. The independent set may contain duplicates and the
clique may contain co-duplicates. Mohammadian and Trevisan show that there
are no eigenvalues of the adjacency matrix of a threshold graph between 0 and
−1, which in threshold graphs are contributed only by twin vertices [13].

The interlacing theorem applies to all the real symmetric matrices encoding
G, including the Laplacian matrix. When considering the Laplacian, So proved
that only one of its eigenvalues is displaced when an edge is added between two
duplicate vertices to produce a co-duplicate [21]. The rest of the eigenvalues
remain unchanged.

The interlacing theorem provides rough bounds for the displacement of the
eigenvalues of G when a vertex is deleted. Our objective is to obtain better esti-
mates within these bounds. To this end, relations of φ (A(G), λ) to polynomials
of other submatrices of A are obtained. These results would be of interest in any
application where the displacement in eigenvalues is of greater interest than the
eigenvalues of the modified graph.

The rest of the paper is organised as follows. In Section 2, we apply similarity
operations on the adjacency matrix ofG, so that eigenvalues are preserved, to yield
a matrix whose characteristic polynomial is easily expressed in terms of those of
subgraphs of G. In Section 3, we show how the expressions obtained enable the
computation of estimates of the displacement of the eigenvalues of the adjacency
matrix on removing a twin vertex. Finally, we give examples of computing the
estimates of the displacement of the spectrum on removing a twin vertex from a
nested split graph in Appendix A, and from a general graph in Appendix B.
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2. Effect on the Characteristic Polynomial on Removing a Twin
Vertex

To obtain the eigenvalues of a matrix M, it suffices to determine the roots of its
characteristic polynomial φ (M, λ). If M is known to be real and symmetric, then
its algebraic properties allow alternative methods of computation with possibly
lower complexity. The Jacobi-Givens method [2] employs rotation of two axes
of Rn to introduce zero entries in a row of M via a similarity operation and
therefore without altering the eigenvalues. The new form of the matrix allows the
characteristic polynomials of M and of other principal submatrices of M to be
easily related.

Definition 1 (Adjacency matrix). The adjacency matrix A of a graph G of order
n, where the two first labelled vertices v1,v2 are twin vertices, can be written as

(1) A =

 0 a b>

a 0 b>

b b C

 ,

where C = A(G−v1−v2) is the adjacency matrix of the subgraph G−v1−v2 of G,
obtained from G by removing vertices v1,v2 and the edges incident to them. The
entry a is 0 for duplicate and 1 for co-duplicate vertices.

Proposition 2. The adjacency matrix A is similar to the simpler matrix

(2) A′ =

 a 0
√
2b>

0 −a 0>√
2b 0 C

 .

Proof. We use the Jacobi-Givens method to find a matrix P such that A′ =
P−1AP. Since twin vertices have the same open neighbourhood, a rotation by π

4
of the corresponding axes in Rn is required. This is achieved by using

(3) P =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 I

 ,

where I is the identity matrix.

Corollary 3.

(4) φ
(
A′, λ

)
= det(λI−P−1AP) =

∣∣∣∣∣∣
λ− a 0 −

√
2b>

0 λ+ a 0>

−
√
2b 0 λI−C

∣∣∣∣∣∣ .
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Proposition 4. The characteristic polynomial of a graph G with adjacency ma-
trix A having a pair of twin vertices is

(5) φ (A, λ) = (λ2 − a2)φ (C, λ)− 2(λ+ a)b> adj(λI−C)b,

where the adjugate adj(λI−C) is equivalent to the expression

(λI−C)−1 det(λI−C),

for non-singular λI−C.

Proof. Using φ (A′, λ) from Corollary 3 we can express the characteristic poly-
nomial of A as

(6) φ (A, λ) = det(λI−A) = det(λI−A′) = (λ+ a)

∣∣∣∣ λ− a −
√
2b>

−
√
2b λI−C

∣∣∣∣ ,
written as (λ + a) det(M). Expanding this expression in terms of the Schur
complement M|(λI−C) of M,

φ (A, λ) = (λ+ a)φ (C, λ) det(M|(λI−C))(7)

φ (A, λ) = (λ+ a)φ (C, λ)
[
(λ− a)− 2b>(λI−C)−1b

]
.(8)

The result follows immediately.

Lemma 5. If v1 is a twin vertex of G, then the characteristic polynomial of the
subgraph G−v1, obtained from G by deleting vertex v1, is given by

(9) φ (A(G−v1), λ) = λφ (C, λ)− b> adj(λI−C)b.

Proof. Observe that

(10) φ (A(G−v1), λ) =

∣∣∣∣ λ −b>
−b λI−C

∣∣∣∣ .
The result follows using the Schur complement expansion.

Next, we obtain relations of φ (A(G), λ) to polynomials of other submatrices
of A.

Definition 6. Let adj(λI−A) = (h`,k)n×n so that h`,k denotes the entry in row
` and column k of the adjugate adj(λI−A).

Lemma 7. Let v1 and v2 be twin vertices, and C = A(G−v1−v2), then

(11) h1,2 = aφ (C, λ) + b> adj(λI−C)b.
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Proof. The matrix adj(λI−A) is real and symmetric for real λ. So

(12) h1,2 = h2,1 = −
∣∣∣∣ −a −b>
−b λI−C

∣∣∣∣ .
The Schur complement expansion of the determinant, gives

h1,2 = −φ (C, λ)
[
−a− b>(λI−C)−1b

]
(13)

= aφ (C, λ) + b> adj(λI−C)b.(14)

The characteristic polynomial of A in (1) can also be expressed in terms of
two determinants.

Theorem 8. Let the first two labelled vertices v1 and v2 be twin vertices. Then

(15) φ (A(G), λ) = (λ+ a) [φ (A(G−v1), λ)− h1,2] .

Proof. Eliminating b> adj(λI−C)b from (5) and (11) we obtain

φ (A(G), λ) = (λ2 − a2)φ (C, λ)− 2(λ+ a) [h1,2 − aφ (C, λ)](16)

= (λ+ a)2 φ (C, λ)− 2(λ+ a)h1,2.(17)

Similarly, eliminating b> adj(λI−C)b from (9) and (11) we obtain

φ (A(G−v1), λ) = λφ (C, λ)− [h1,2 − aφ (C, λ)](18)
= (λ+ a)φ (C, λ)− h1,2.(19)

Finally, eliminating φ (C, λ) from (17) and (19) completes the proof.

Lemma 9. Pre-multiplying a matrix M = (mi,j)n×n by the permutation matrix

E`,1 =

 0 1 0

I(`−1)×(`−1) 0 0

0 0 I(n−`)×(n−`)


gives M′ =

(
m′i,j

)
n×n

with row ` of M in row 1 of M′; that is the entries of M′

are given by

(20) m′j,k =


m`,k j = 1,

mj−1,k 1 < j ≤ `,
mj,k otherwise.
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The effect of pre-multiplying M by E`,1 is to move row ` of M to row 1 of
M′, shifting rows 1 to ` − 1 of M by one. Post-multiplying M by the transpose
of E`,1 has the same effect on the columns.

Proposition 10. The matrix M′′ is obtained by moving row ` and column ` of
M to the first row and first column, using

(21) M′′ = E`,1ME>`,1.

The determinant of the product of two square matrices is the product of the
separate determinants. Since E>`,1 = E−1`,1 , the next result follows immediately.

Corollary 11.

(22) det(M) = det(M′′).

Recall that entry `, k of the adjugate of a matrix is h`,k, the `, k co-factor of
the matrix.

Proposition 12.

(23) h`,k = (−1)`+k
∣∣∣∣ −a`,k −b>`
−bk λI−B

∣∣∣∣ ,
where B is obtained from A by deleting rows and columns ` and k, ` 6= k.

Proof. This follows immediately from Definition 6.

Applying Proposition 10, Theorem 8 can be generalized to the following result.

Theorem 13. Let v` and vk be twin vertices. Then

(24) φ (A(G), λ) = (λ+ a`,k) [φ (A(G−v`), λ)− h`,k] .

An alternative perspective is that we can obtain the characteristic polynomial
of the graph with a twin vertex removed.

Corollary 14. Let v` and vk be twin vertices. Then

(25) φ (A(G−v`), λ) =
φ (A(G), λ)

λ+ a`,k
+ h`,k.
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3. Estimating the Displacement of Eigenvalues

In this section, the relation (25) is used to obtain first order and second order
estimates of the displacement of eigenvalues on deleting a twin vertex. Define

(26) f(λ) =
φ (A(G), λ)

λ+ a`,k
+ h`,k(λ),

such that φ (A(G−v`), λ) = f(λ), which is a polynomial in λ. Now, we can express
f(λ) using the Taylor series

(27) f(λ) = f(λ0) +
f ′(λ0)

1!
(λ0 − λ) +

f ′′(λ0)

2!
(λ0 − λ)2 + · · · .

Choosing λ0 to be a root of φ (A(G), λ) gives us an expression in terms of δ =
λ0−λ, or the displacement from the eigenvalue λ0 when f(λ) = 0. For a first order
approximation, we truncate the Taylor series to the first power of δ, obtaining

0 = f(λ0) + δf ′(λ0),(28)

δ = − f(λ0)
f ′(λ0)

.(29)

Similarly, a second order approximation can be obtained by solving the quadratic
equation

(30) 0 = f(λ0) + δf ′(λ0) + δ2
f ′′(λ0)

2
.

The displacement depends on the mapping of the eigenvalues of the original graph
to those of the vertex-deleted subgraph. This mapping is uniquely determined by
retaining the order of eigenvalues and excluding the eigenvalue resulting from the
removed vertex (0 for a duplicate or −1 for a co-duplicate). The displacement is
also constrained by the interlacing theorem. The two roots of (30) are either both
real or else they are complex conjugates. In the case of real roots, we first exclude
roots that lie outside the range allowed by the interlacing theorem. If both roots
are within the allowed range, the value closest to the first order approximation
is taken as the estimate. For complex conjugate roots, the real part is taken
instead. The easily obtained values f(λ0), f ′(λ0), and f ′′(λ0) allow us to obtain
an estimate for the eigenvalues of G−v` without solving the high-order polynomial
equation f(λ) = 0.

A. Examples on Nested Split Graphs

We illustrate the use of the results from Section 3 on examples from the class of
nested split graphs (NSG), also known in the literature as threshold graphs. Fol-
lowing the notation of [18], the compact creation sequence is a = (a1, a2, . . . , ar),
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where
∑
ai = n, the number of cells r is even, and ai ≥ 1 for every i. This repre-

sents the connected graph (· · · ((Ka15Ka2) ∪̇ Ka3) · · · ∪̇ Kar−1)5Kar where Ks

is the complete graph on s vertices, Ks is its complement, while 5 and ∪̇ are the
graph operators join and disjoint union, respectively. Note that a has r cells, of
which (a1, a3, . . . , ar−1) are co-clique cells and (a2, a4, . . . , ar) are clique cells. A
NSG with r cells has r main eigenvalues if a1 ≥ 2 and r− 1 if a1 = 1. Recall that
a main eigenvalue of a graph G is an eigenvalue µ of A such that A has some
eigenvector x not orthogonal to the all-one vector j associated with µ [16,20]. The
significance of the non-zero main eigenvalues is that they determine the number
of walks of any length in G [1, 5]. In an NSG, the spectrum consists of the main
eigenvalues (except 0 or −1, which are never main in an NSG), the eigenvalue
zero with multiplicity determined by the duplicate vertices, and the eigenvalue
−1 with multiplicity determined by the co-duplicate vertices.

The following examples consider different operations on the NSG G, having 18
vertices in 10 cells, with compact creation sequence a = (2, 2, 2, 2, 2, 2, 2, 2, 1, 1).
This graph therefore has 10 main eigenvalues. Its characteristic polynomial is

φ (A(G), λ) = λ4(λ+ 1)4
(
λ10 − 4λ9 − 75λ8 − 128λ7 + 371λ6 + 860λ5 − 441λ4

− 1368λ3 + 336λ2 + 704λ− 256
)
.

A.1. Removing a duplicate vertex

Consider deleting a vertex from the third cell of the graph G, resulting in a
graph G′ with compact creation sequence given by a′ = (2, 2, 1, 2, 2, 2, 2, 2, 1, 1),
having 17 vertices in 10 cells. When listing the vertices in the same order in the
adjacency matrix, this means that we are removing one of vertices 5 or 6, which
are duplicates. From Theorem 13 we can obtain the characteristic polynomial of
G′ from that of G by first dividing by λ to remove a zero eigenvalue, then adding
h5,6 to obtain the necessary displacement in the remaining eigenvalues. Using
Proposition 12 we obtain

h5,6 = 7λ15 + 42λ14 + 20λ13 − 348λ12 − 758λ11 + 192λ10 + 2220λ9 + 2124λ8

− 489λ7 − 1722λ6 − 616λ5 + 224λ4 + 128λ3.

It can be verified that applying Theorem 13 gives

φ
(
A(G′), λ

)
= λ3(λ+ 1)4

(
λ10 − 4λ9 − 68λ8 − 114λ7 + 293λ6 + 712λ5 − 202λ4

− 946λ3 + 104λ2 + 416λ− 128
)
.

We can now estimate the shift in the main eigenvalues from G to G′ using the
method of Section 3, after obtaining the necessary functions f(λ), f ′(λ), and
f ′′(λ). Table 1 gives the main eigenvalues of G and G′, the actual displacement,
and the estimates computed using the first-order and second-order approximations
of Section 3.
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Table 1. Removing a duplicate vertex: the eigenvalues of G with compact creation se-
quence a = (2, 2, 2, 2, 2, 2, 2, 2, 1, 1) and G′ with a′ = (2, 2, 1, 2, 2, 2, 2, 2, 1, 1), the actual
displacement, and estimates using first- and second-order approximations.

Eigenvalues Actual Estimates
G G′ Displacement First-order Second-ordera
−4.45 −4.05 0.398 0.151 0.182± 0.148j
−2.28 −2.09 0.182 0.0671 0.0819± 0.0655j
−1.76 −1.72 0.0377 0.0265 0.0660,0.0443
−1.5 −1.43 0.0673 0.0304 0.0502± 0.0231j
−1.43 −1.42 0.00937 −0.00148 0.00880,−0.00127
−1 −1b 0 — —
0 0c 0 — —

0.432 0.431 −0.000233 −0.000233 0.419,−0.000233
0.697 0.52 −0.178 −0.0823 −0.223,−0.131
1 0.901 −0.0990 −0.0513 −0.0736± 0.0462j

1.96 1.95 −0.0116 −0.0108 −0.152,−0.0117
11.3 10.9 −0.406 −0.262 −0.456± 0.176j

aThe chosen estimate is shown in bold.
bRepeated 4 times in G and G′, comparison unnecessary.
cRepeated 4 times in G, 3 times in G′, comparison unnecessary.

A.2. A special case of removing a duplicate vertex

In this example, we delete a vertex from the first cell of the graph G, resulting in
a graph G′ with compact creation sequence given by a′ = (1, 2, 2, 2, 2, 2, 2, 2, 1, 1).
This is a special case, because a single vertex in the first cell is effectively a co-
duplicate of the vertices in the second cell. As a result, the number of main
eigenvalues decreases by one. As in the general case, we obtain the characteristic
polynomial of G′ from that of G by first dividing by λ to remove a zero eigenvalue,
then adding h1,2 to obtain the necessary displacement in the remaining eigenval-
ues. In this case, however, we know that the number of main eigenvalues reduces
by one and the number of eigenvalues −1 increases by one, as effectively an addi-
tional co-duplicate is created. That is, we do not need one of the estimates that
will be calculated. So, proceeding as in the earlier example, using Proposition 12
we obtain

h1,2 = 9λ15 + 72λ14 + 140λ13 − 280λ12 − 1370λ11 − 1304λ10 + 1228λ9 + 2840λ8

+ 793λ7 − 1328λ6 − 800λ5 + 128λ4 + 128λ3.

Using Theorem 13 this gives

φ
(
A(G′), λ

)
= λ3(λ+ 1)5

(
λ9 − 5λ8 − 61λ7 − 31λ6 + 344λ5 + 216λ4 − 632λ3

− 144λ2 + 448λ− 128
)
.



On the Displacement of Eigenvalues 445

Estimates for the shift in the main eigenvalues from G to G′ using the first-order
and second-order approximations of Section 3 are given in Table 2, together with
the main eigenvalues of G and G′ and the actual displacement.

Table 2. Removing a duplicate vertex – special case: the eigenvalues of G with compact
creation sequence a = (2, 2, 2, 2, 2, 2, 2, 2, 1, 1) and G′ with a′ = (1, 2, 2, 2, 2, 2, 2, 2, 1, 1),
the actual displacement, and estimates using first- and second-order approximations.

Eigenvalues Actual Estimates
G G′ Displacement First-order Second-ordera
−4.45 −4.24 0.209 0.113 0.162± 0.101j
−2.28 −2.2 0.0766 0.0452 0.0713± 0.0369j
−1.76 −1.73 0.0275 0.0214 0.0840,0.0288
−1.5 −1.43 0.0686 0.0450 0.110,0.0759
−1.43 −1b 0.432 — —
−1 −1c 0 — —
0 0d 0 — —

0.432 0.432 −2.03× 10−6 −2.03× 10−6 −0.188,−2.03× 10−6

0.697 0.683 −0.0145 −0.0131 −0.130,−0.0145
1 0.951 −0.0486 −0.0323 −0.0598± 0.0167j

1.96 1.85 −0.116 −0.0663 −0.101± 0.0568j
11.3 10.7 −0.634 −0.341 −0.490± 0.307j

aThe chosen estimate is shown in bold.
bMultiplicity of −1 is known to increase by one, comparison unnecessary.
cRepeated 4 times in G and G′, comparison unnecessary.
dRepeated 4 times in G, 3 times in G′, comparison unnecessary.

A.3. Removing a co-duplicate vertex

Finally, we delete a vertex from the second cell of the graph G, resulting in a
graph G′ with compact creation sequence given by a′ = (2, 1, 2, 2, 2, 2, 2, 2, 1, 1).
In this case we are removing a co-duplicate vertex, so we obtain the characteristic
polynomial of G′ from that of G by first dividing by λ+1 to remove one of the −1
eigenvalues, then adding h3,4 to obtain the necessary displacement in the remain-
ing eigenvalues. So, proceeding as in the earlier examples, using Proposition 12
we obtain

h3,4 = λ16 + 9λ15 + 4λ14 − 171λ13 − 596λ12 − 507λ11 + 888λ10 + 1923λ9 + 599λ8

− 1062λ7 − 736λ6 + 96λ5 + 128λ4.

Using Theorem 13 this gives

φ
(
A(G′), λ

)
= λ4(λ+ 1)3

(
λ10 − 3λ9 − 69λ8 − 145λ7 + 232λ6 + 726λ5 − 112λ4

− 926λ3 + 80λ2 + 416λ− 128
)
.
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Estimates for the shift in the main eigenvalues from G to G′ using the first-order
and second-order approximations of Section 3 are given in Table 3, together with
the main eigenvalues of G and G′ and the actual displacement.

Table 3. Removing a co-duplicate vertex: the eigenvalues of G with compact creation
sequence a = (2, 2, 2, 2, 2, 2, 2, 2, 1, 1) and G′ with a′ = (2, 1, 2, 2, 2, 2, 2, 2, 1, 1), the actual
displacement, and estimates using first- and second-order approximations.

Eigenvalues Actual Estimates
G G′ Displacement First-order Second-ordera
−4.45 −4.34 0.101 0.0716 0.162,0.128
−2.28 −2.27 0.00308 0.00299 0.108,0.00308
−1.76 −1.76 0.00206 0.00201 0.0899,0.00206
−1.5 −1.43 0.0685 0.0382 0.0659± 0.0262j
−1.43 −1.35 0.0818 −7.45× 10−5 0.0520,−7.44× 10−5

−1 −1b 0 — —
0 0c 0 — —

0.432 0.432 −3.73× 10−5 −3.73× 10−5 −0.353,−3.73× 10−5

0.697 0.567 −0.131 −0.0759 −0.474,−0.0903
1 0.85 −0.150 −0.0608 −0.0781± 0.0583j

1.96 1.74 −0.227 −0.0921 −0.114± 0.0894j
11.3 10.6 −0.748 −0.372 −0.504± 0.347j

aThe chosen estimate is shown in bold.
bRepeated 4 times in G, 3 times in G′, comparison unnecessary.
cRepeated 4 times in G and G′, comparison unnecessary.

It may come as a surprise that there are shifts in most of the eigenvalues when
removing a twin vertex. Considering the limited interval in which the maximum
eigenvalue can lie, we note that its displacement when the graph is perturbed is
significant.

B. Examples on General Graphs

We also illustrate the use of the results from Section 3 on a more general graph
G, shown in Figure 1. This graph has 6 main eigenvalues, and its characteristic
polynomial is

φ (A(G), λ) = λ(λ+ 1)
(
λ6 − λ5 − 9λ4 + 7λ3 + 19λ2 − 13λ

)
.

B.1. Removing a co-duplicate vertex

Consider deleting a co-duplicate vertex (1 or 2) from graph G, resulting in a
graph G′. We obtain the characteristic polynomial of G′ from that of G by first
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Figure 1. A general graph G with two duplicates (vertices 7 and 8) and two co-duplicates
(vertices 1 and 2).

dividing by λ + 1 to remove a −1 eigenvalue, then adding h1,2 to obtain the
necessary displacement in the remaining eigenvalues. So, proceeding as in the
earlier examples, using Proposition 12 we obtain

h1,2 = λ6 + λ5 − 7λ4 − 5λ3 + 9λ2 − 2λ.

Using Theorem 13 this gives

φ
(
A(G′), λ

)
= λ

(
λ6 − 8λ4 + 14λ2 − 4λ− 2

)
.

We can now estimate the shift in the main eigenvalues from G to G′ using the
method of Section 3, after obtaining the necessary functions f(λ), f ′(λ), and
f ′′(λ). Table 4 gives the main eigenvalues of G and G′, the actual displacement,
and the estimates computed using the first-order and second-order approximations
of Section 3.

B.2. Removing a duplicate vertex

Finally, we delete a duplicate vertex (7 or 8) from graph G, resulting in a graph
G′. In this case we obtain the characteristic polynomial of G′ from that of G by
first dividing by λ to remove one of the 0 eigenvalues, then adding h7,8 to obtain
the necessary displacement in the remaining eigenvalues. So, proceeding as in the
earlier examples, using Proposition 12 we obtain

h7,8 = 2λ5 − 7λ3 − 4λ2 + 3λ+ 2.
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Table 4. Removing a co-duplicate vertex: the eigenvalues of graph G of Figure 1 and G′

obtained by removing vertex 1 or 2, the actual displacement, and estimates using first-
and second-order approximations.

Eigenvalues Actual Estimates
G G′ Displacement First-order Second-ordera
−2.20 −2.18 0.0139 0.0130 0.214,0.0139
−1.89 −1.83 0.0592 0.0642 −0.613,0.0581
−1b — — — —
0 −0.265 −0.265 0 -0.5, 0
0 0c 0 — —

0.664 0.656 −0.00768 −0.00763 −1.26,−0.00768
1.79 1.18 −0.609 −0.385 −17.6,−0.394
2.64 2.45 −0.192 −0.132 −0.262± 0.0261j

aThe chosen estimate is shown in bold.
bDue to co-duplicate in G; removed in G′.
cDue to duplicate in G; remains in G′.

Using Theorem 13 this gives

φ
(
A(G′), λ

)
= (λ+ 1)

(
λ6 − λ5 − 7λ4 + 5λ3 + 11λ2 − 7λ

)
.

Estimates for the shift in the main eigenvalues from G to G′ using the first-order
and second-order approximations of Section 3 are given in Table 5, together with
the main eigenvalues of G and G′ and the actual displacement.

Table 5. Removing a duplicate vertex: the eigenvalues of graph G of Figure 1 and G′

obtained by removing vertex 7 or 8, the actual displacement, and estimates using first-
and second-order approximations.

Eigenvalues Actual Estimates
G G′ Displacement First-order Second-ordera
−2.20 −1.94 0.262 0.265 0.241± 0.264j
−1.89 −1.62 0.388 0.388 0.212± 0.346j
−1 −1b — — —
0c — — — —
0 0 0d — —

0.664 0.618 −0.0458 −0.0531 −0.538,−0.0589
1.79 1.46 −0.322 −0.193 −5.01,−0.201
2.64 2.47 −0.167 −0.162 −0.263± 0.127j

aThe chosen estimate is shown in bold.
bDue to co-duplicate in G; remains in G′.
cDue to duplicate in G; removed in G′.
dDisplacement constrained by interlacing; no estimate required.
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