Sara Osama¹, Francesca Wirth¹, Graziella Zahra², Robert G. Xuereb³, Lilian M. Azzopardi¹

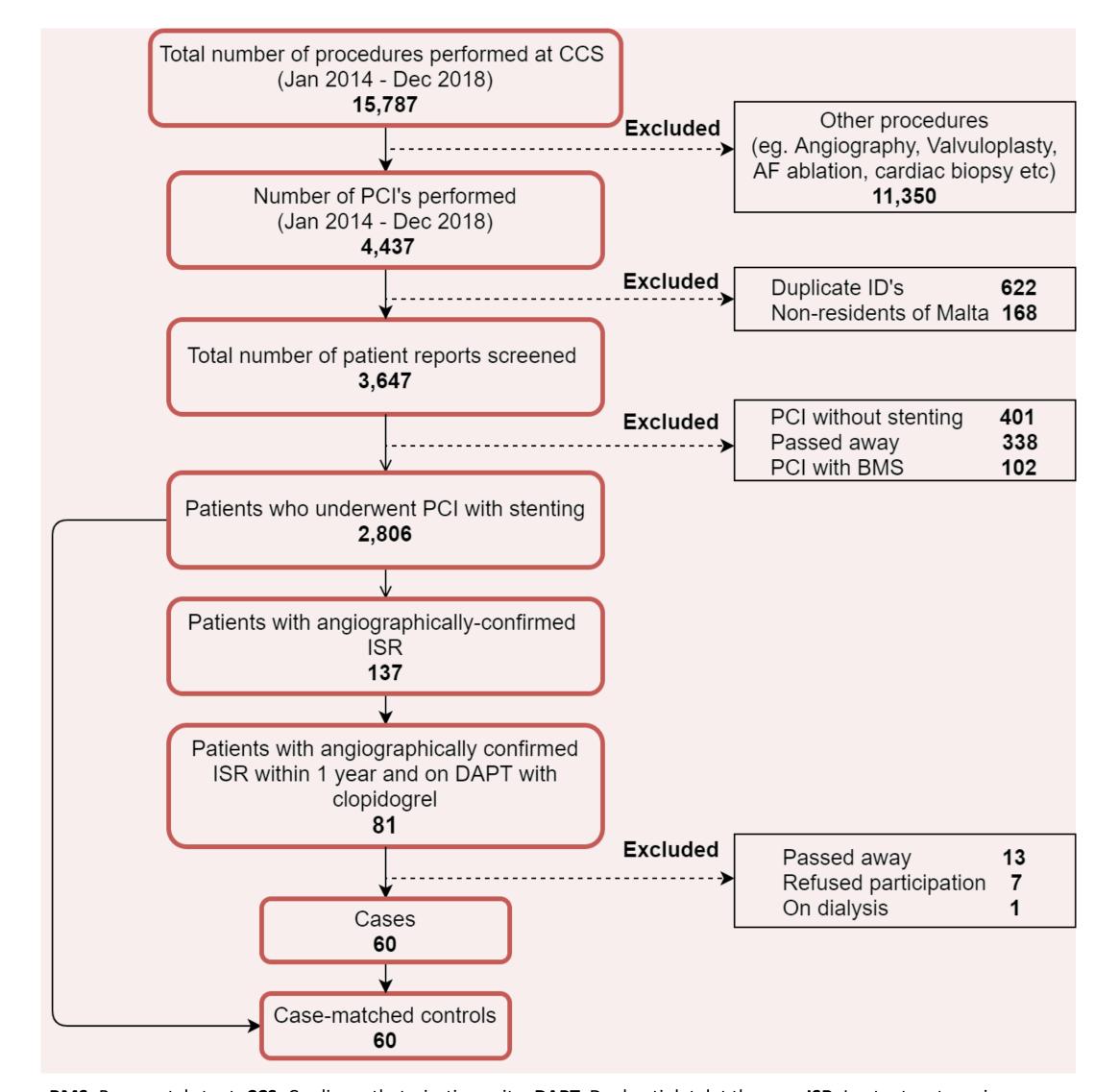
¹ Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta

² Molecular Diagnostics Unit, Department of Pathology, Mater Dei Hospital, Msida, Malta

³ Department of Cardiology, Mater Dei Hospital, Msida, Malta

email: sara.osama.17@um.edu.mt

Introduction


Dual antiplatelet therapy (DAPT) is the cornerstone therapy in patients undergoing percutaneous coronary intervention (PCI) to prevent atherothrombotic complications. Clopidogrel with aspirin is the most commonly prescribed DAPT.¹,² Clopidogrel is a prodrug which requires hepatic activation by the cytochrome P 450 2C19 (CYP2C19) enzyme which is highly polymorphic. The loss-of-function *2 allele is the most common genetic polymorphism.³ CYP2C19*2 has been reported to significantly decrease the concentration of the active metabolite of clopidogrel leading to complications post-PCI, such as major adverse cardiovascular events.³ In-stent restenosis (ISR), defined as ≥50% re-narrowing of a deployed stent, is a complication that may threaten the long term prognosis of PCI.⁴ Few studies have been conducted to explore the association between CYP2C19*2 and coronary ISR in patients receiving clopidogrel and conflicting findings have been reported.⁵-8

Aim

To study the association between the *CYP2C19*2* genetic polymorphism and incidence of ISR within 1-year post-PCI with drug eluting stent (DES) implantation in patients prescribed aspirin and clopidogrel.

Method

- A retrospective matched case-control study design with prospective follow-up was adopted.
- Patients who underwent PCI with stent implantation (January 2014-December 2018) at the
 Cardiology Department of the acute general hospital were screened. Patients with
 angiographically-confirmed DES-ISR within 1 year when aspirin and clopidogrel were identified
 (Cases) and patients with no documented ISR post-PCI in the study period (Controls) were casematched for age, gender, diabetes and estimated glomerular filtration (eGFR) rate (Figure 1).
- Cases and controls were invited by the cardiologists for CYP2C19*2 genotyping, which was
 undertaken at the Molecular Diagnostics Unit of the hospital using gradient polymerase chain
 reaction and reverse hybridization after ethics approval. Carriers of the CYP2C19*2 allele were
 communicated to the cardiologists.
- The association between CYP2C19*2 and incidence of ISR was analysed using the Fisher's Exact test (univariate analysis) and binary logistic regression (multivariate analysis).
 Odds ratio (OR) was calculated and a p-value less than 0.05 was considered statistically significant.

BMS: Bare metal stent; **CCS**; Cardiac catheterisation suite; **DAPT:** Dual antiplatelet therapy; **ISR**: In-stent restenosis; **PCI:** Percutaneous coronary intervention

Figure 1: Patient recruitment flowchart

Results

- Sixty cases and 60 matched controls were enrolled.
- Patient and PCI characteristics are shown in Table 1.
- The majority of cases (n=58) had ISR in 1 stent.
- The most common site of ISR was the left anterior descending artery (n=21). Most ISR occurred after 7-8 months (n=20) and 9-12 months (n=22).
- The association between *CYP2C19*2* carrier status and ISR within 1 year post-PCI was statistically significant in the univariate (p<0.001) and multivariate analysis (p=0.001) (Figure 2).
- Other significant associations for ISR identified in the multivariate analysis were previous revascularisation (OR 38.6, p<0.001), heart failure (OR 17.7, p=0.012) and active smoking (OR 3.5, p=0.026) (Table 2).

Table 1: Patient demographics, clinical and PCI characteristics (N = 120)

Variable	Cases n = 60	Controls n = 60	p-value
Mean age in years ± SD	65 ±9.8	65 ±9.4	0.835
Male gender	51	51	1.000
Caucasian	59	59	1.000
Mean BMI in kg/m ² ±SD	30 ± 4.7	31 ± 5	0.256
Positive family history of IHD	47	42	0.290
Previous revascularisation	54	24	< 0.001
Previous MI	29	15	0.008
Active smoker	32	19	0.016
Current alcohol Intake	30	14	0.002
Patient comorbidities			
Hypertension	37	48	0.027
Dyslipidaemia	22	47	< 0.001
Heart failure	15	2	0.007
Mean LVEF % ±SD	59 ±10	73 ±14	< 0.001
Diabetes mellitus	30	30	1.000
Renal impairment (eGFR <60 mL/min/1.73m²)	10	10	1.000
Mean eGFR ±SD	77 ±20	77 ±19	0.934
Reason for PCI			
IHD	40	27	0.016
NSTEMI	16	13	0.522
STEMI	4	20	<0.001
Type of PCI			
Emergency/Primary	31	35	0.465
Elective	29	25	0.465

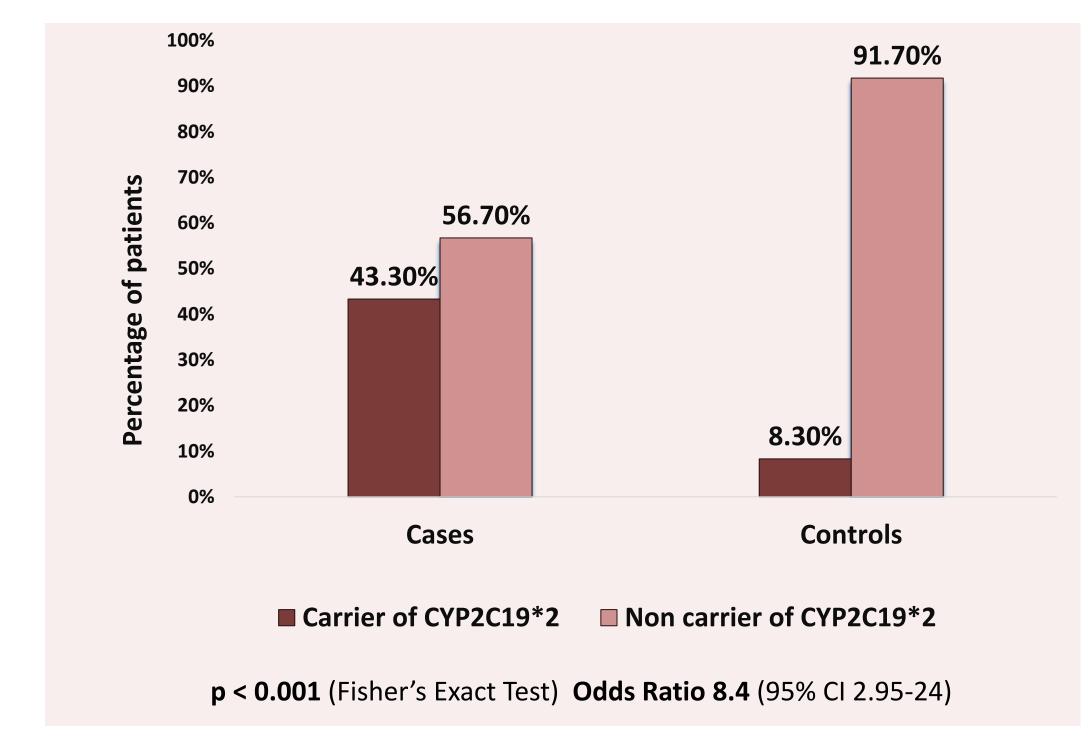


Figure 2: Correlation between CYP2C19*2 and ISR (N = 120)

Table 2: Significant associations of ISR – Multivariate analysis

	p value	Odds Ratio
Previous Revascularisation	p<0.001	38.621
Carrier of CYP2C19*2	0.001	22.612
Heart failure (LVEF ≤50%)	0.012	17.717
Active smoking	0.021	3.489

Conclusions

- The proportion of *CYP2C19*2* carriers who presented with DES-ISR within one-year post-PCI while on clopidogrel was significantly higher compared to patients with no documented ISR.
- Other significant associations of ISR identified were previous revascularisation, heart failure and active smoking.
- CYP2C19*2 genotyping may be used as a tool together with consideration of non-genetic risk factors for precision antiplatelet therapy in patients undergoing PCI with DES implantation and prescribed aspirin and clopidogrel to decrease the risk of ISR.

References

- 1. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroIntervention. 2019;14(14):1435-1534.
- 2. Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease. J Thorac Cardiovasc Surg. 2016;152(5):1243-75.
- 3. Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB et al. PharmGKB summary: Very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics. 2012;22(2):159-65.
- 4. Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56(23):1897-907.
- 5. Nozari Y, Vosooghi S, Boroumand M, Poorhosseini H, Nematipour E, Salarifar M, et al. The impact of cytochrome P450 2C19 polymorphism on the occurrence of one-year instent restenosis in patients who underwent percutaneous coronary intervention: A casematch study. Anatol J Cardiol. 2015;15(5):348-53.
- Ruedlinger J, Prado Y, Zambrano T, Saavedra N, Bobadilla B, Potthoff M, et al. CYP2C19*2 polymorphism in Chilean patients with in-stent restenosis development and controls. Biomed Res Int. 2017;2017:5783719.
- 7. Wirth F, Zahra G, Xuereb RG, Barbara C, Camilleri L, Fenech A, et al. CYP2C19*2 allele carrier status and coronary instent restenosis: Is there an association? J Explor Res Pharmacol. 2018;3(2):55-60.
- 8. Zhang M, Wang J, Zhang Y, Zhang P, Jia Z, Ren M et al. Impacts of CYP2C19 Polymorphism and Clopidogrel Dosing on in-Stent Restenosis: A Retrospective Cohort Study in Chinese Patients. Drug Des Devel Ther. 2020;14:669-76.

Financial support: University of Malta Research Grant (PHRRP12-19)