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Abstract

Tunnel structural health monitoring is predominantly done through periodic
visual inspections, requiring humans to be physically present on-site, possibly ex-
posing them to hazardous environments. Drawbacks associated with this include
the subjectivity of the surveys and, most of the time, the shutting down of op-
erations during the inspection. To mitigate these, an increasing effort was made
to automate inspections using robotics to reduce human presence and computer
vision techniques to detect defects along tunnel linings. While defect identification
is beneficial, comprehensive monitoring to identify changes on tunnel linings can
provide a more informative survey to further automate inspection and analysis.

CERN, the European Organisation for Nuclear Research has more than 50 km
of tunnels which need monitoring. This raised the need for a remotely operated
surveying system to monitor the structural health of the tunnels. Hence, a tunnel
inspection solution to monitor for changes on tunnel linings is proposed here.

Using a robotic platform hosting a set of cameras, tunnel wall images are au-
tomatically and remotely captured. The tunnel environment poses a number of
challenges, with two of these being different light conditions and reflections on
metallic objects. To alleviate this, pre-processing stages were developed to cor-
rect for the uneven illumination and to localise highlights. Crack detection using
deep learning techniques is employed following the pre-processing stages to iden-
tify cracks on concrete walls. A change detection process is implemented through a
combination of different bi-temporal pixel-based fusion methods and decision-level
fusion of change maps. The evaluation of the proposed solution is made through
qualitative analysis of the resulting change maps followed by a quantitative com-
parison with ground-truth changes. High recall and precision values of 81% and
93% were respectively achieved. The proposed solution provides a better means of
structural health monitoring where data acquisition is carried out on-site during
shutdowns or short, infrequent maintenance periods and post-processed off-site.

ii



Acknowledgements

“And, when you want something,
all the universe conspires in helping you to achieve it.”
- The Alchemist by Paulo Coelho

Every challenging work needs self-efforts as well as support from those around.
I would like to express my gratitude towards all those who sustained me during
the completion of this thesis. I am extremely grateful to my parents for their
unconditional love and support through the years. I am also indebted to my brother
for his constant encouragement, his interest through the course of this research
and most of all for keeping up with my anxiety throughout. I am truly grateful to
Aeden, for his love and understanding, for making me feel whole again when I was
in pieces, for supporting me towards completing my studies, for being there. I also
owe thanks to other relatives who always cared for me even from miles away.

Earnest thanks go to my supervisors, Prof. Dr. Ing. Carl James Debono and
Dr. Ing. Gianluca Valentino, from the University of Malta, who have provided
me with utmost guidance and assistance throughout the course of my studies and
for being generous with their time. Equal thanks go to my supervisor Dr. Mario
Di Castro and my colleague Giacomo Lunghi, for their recurring support and vital
guidance throughout my placement at CERN. Futhermore, I would like to thank
the SMB department at CERN for the opportunity they gave me to work on such
a project.

Sincere thanks go to you my neighbours Esmeralda and Joost. In you, I felt
like having second parents while living in France. Gratitude also to those I got
to know during these 3 years. Thank you Meng for the long chats, shopping and
great meals we shared, especially the Chinese hot-pot. Thank you Franci for your
care, laughs, good food and Italian conversations. Thank you Laura, for the nice
chats and your help when at CERN. Thank you Luca for your support whenever
I asked your help at work. Thanks to those I shared R1-009 with, over the years;
Clare, Antonio, Julia. Thanks to my ‘brothers’ Simone and Daniele for the good
moments shared with the ‘family’. Thank you Francesco, Pawel, Jorge, Andrzej
and the rest of my colleagues residing at one time or another in Bld. 628. You all
made me feel at home while being an expat.

iii



A heartfelt thanks to my Maltese friends who cheered me up during our travels,
through their messages and our meet-ups when visiting the rock.

Last but not least, I would like to thank SITES for providing ScanTubes R©
camera system for a demo test in the LHC tunnel. The data collected during this
test allowed me to appropriately develop and test the proposed solution.

iv



List of Related Contributions

1. Leanne Attard, Carl James Debono, Gianluca Valentino, Mario Di Castro,
Tunnel inspection using photogrammetric techniques and image processing:
A review, ISPRS Journal of Photogrammetry and Remote Sensing, Volume
144, 2018, pp. 180-188
doi: https://doi.org/10.1016/j.isprsjprs.2018.07.010.

2. L. Attard, C. J. Debono, G. Valentino and M. Di Castro, J. A. Osborne, L.
Scibile, A comprehensive virtual reality system for tunnel surface documen-
tation and structural health monitoring, 2018 IEEE International Conference
on Imaging Systems and Techniques (IST), Krakow, 2018, pp. 1-6.
doi: 10.1109/IST.2018.8577139

3. L. Attard, C. J. Debono, G. Valentino, M. Di Castro, A. Masi and L. Sci-
bile, Automatic Crack Detection using Mask R-CNN, 2019 11th International
Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik,
Croatia, 2019, pp. 152-157.
doi: 10.1109/ISPA.2019.8868619

4. L. Attard, C. J. Debono, G. Valentino, M. Di Castro and A. Masi, VR-
SHM - A structural health monitoring tool to assist crack detection using
deep learning and virtual reality, Sustainable Built Environment conference
(SBE), Malta, 2019

5. L. Attard, C. J. Debono, G. Valentino and M. Di Castro, Specular high-
lights detection using a U-Net based deep learning architecture, Interna-
tional Conference on Multimedia Computing, Networking and Applications
(MCNA2020) [under review]

6. L. Attard, C. J. Debono, G. Valentino and M. Di Castro, Automatic crack de-
tection in concrete infrastructure using deep learning models - a comparative
analysis, Automation in Construction [under review]

7. L. Attard, C. J. Debono, G. Valentino and M. Di Castro, A machine vi-
sion solution for change detection on tunnel linings using fusion, Journal of
Machine Vision and Applications [under review]

The reader is referred to Appendix E for copies of the above publications.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Related Contributions . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1
1.1 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 LHC tunnel scenario . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review 6
2.1 General tunnel inspection . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Tunnel wall deformation . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Crack and defect detection . . . . . . . . . . . . . . . . . . . 8

2.1.2.1 Crack detection using deep learning . . . . . . . . . 11
2.2 Data fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Image fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Levels of image fusion . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Image fusion categories . . . . . . . . . . . . . . . . . . . . . 15

2.3.2.1 Multi-view image fusion . . . . . . . . . . . . . . . 16
2.3.2.2 Multi-modal image fusion . . . . . . . . . . . . . . 17
2.3.2.3 Multi-temporal image fusion . . . . . . . . . . . . . 18

2.3.3 Image fusion domains and techniques . . . . . . . . . . . . . 19
2.3.3.1 Spatial domain . . . . . . . . . . . . . . . . . . . . 19
2.3.3.2 Pyramid-based . . . . . . . . . . . . . . . . . . . . 21
2.3.3.3 Transform and wavelet-based . . . . . . . . . . . . 21

2.4 Change detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Pre-processing for change detection . . . . . . . . . . . . . . 22

2.4.1.1 Alignment corrections . . . . . . . . . . . . . . . . 22
2.4.1.2 Radiometric adjustments . . . . . . . . . . . . . . . 23
2.4.1.3 Semantic segmentation . . . . . . . . . . . . . . . . 23

2.4.2 Change detection techniques . . . . . . . . . . . . . . . . . . 24
2.4.2.1 Pixel-based methods . . . . . . . . . . . . . . . . . 25
2.4.2.2 Object-based methods . . . . . . . . . . . . . . . . 27
2.4.2.3 Anomaly detection methods for change detection . 28

vi



2.4.3 Change detection in tunnel environments . . . . . . . . . . . 28
2.4.4 Common metrics for performance evaluation . . . . . . . . . 30

2.5 Tunnel surface visualisation . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Virtual reality . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Solution overview 34
3.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Crack detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Specular highlight localisation . . . . . . . . . . . . . . . . . . . . . 36
3.5 Change detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Data acquisition 40
4.1 Environment constraints . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Image sensors investigation . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Mobile platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Preliminary camera system . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Camera setup . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Automatic image capturing . . . . . . . . . . . . . . . . . . 45
4.4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Operational camera system . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1 Setup of the system . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.2 Demo test dataset . . . . . . . . . . . . . . . . . . . . . . . 48

5 Crack detection and monitoring 51
5.1 Semantic segmentation method . . . . . . . . . . . . . . . . . . . . 52

5.1.1 U-Net model . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 SegNet model . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . 55
5.1.3.2 Encoder architectures . . . . . . . . . . . . . . . . 56
5.1.3.3 Data augmentation . . . . . . . . . . . . . . . . . . 56

5.2 Instance segmentation method . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Mask R-CNN model . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2.1 Transfer learning . . . . . . . . . . . . . . . . . . . 59
5.2.2.2 Data augmentation . . . . . . . . . . . . . . . . . . 60

5.3 Crack datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 SDNET subset . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 LHC dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . 63

vii



5.4.1.1 SDNET . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1.2 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2.1 SDNET . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2.2 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Class-specific object-based change detection . . . . . . . . . . . . . 78
5.5.1 Temporal comparison of cracks . . . . . . . . . . . . . . . . 78

5.6 Contributions summary . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Specular Highlight Localisation 85
6.1 Specular highlight detection . . . . . . . . . . . . . . . . . . . . . . 86
6.2 U-Net semantic segmentation . . . . . . . . . . . . . . . . . . . . . 87
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Batch normalisation . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.3 Training and optimisation . . . . . . . . . . . . . . . . . . . 89
6.3.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Highlights datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.1 PURDUE set . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 LHC set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.1 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . 92

6.5.1.1 PURDUE set . . . . . . . . . . . . . . . . . . . . . 93
6.5.1.2 LHC set . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.2 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . 103
6.5.2.1 PURDUE set . . . . . . . . . . . . . . . . . . . . . 103
6.5.2.2 LHC set . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Contributions summary . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Change detection 106
7.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.1 Uneven illumination correction . . . . . . . . . . . . . . . . 107
7.1.2 Specular highlights localisation . . . . . . . . . . . . . . . . 109

7.2 Ideal change detection . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 PBCD using bi-temporal image fusion . . . . . . . . . . . . . . . . 111

7.3.1 Image difference . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.2 Principal Component Analsyis (PCA) . . . . . . . . . . . . . 117
7.3.3 Structural Similarity Index (SSIM) . . . . . . . . . . . . . . 121

7.4 Decision-level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.1 Fusion using logical operations . . . . . . . . . . . . . . . . . 124
7.4.2 Fusion using PCA-weighted summation . . . . . . . . . . . . 125
7.4.3 Fusion using majority voting . . . . . . . . . . . . . . . . . . 127

7.5 Change map analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5.1 Specular highlight filtering . . . . . . . . . . . . . . . . . . . 128

viii



7.5.2 Morphological operations . . . . . . . . . . . . . . . . . . . . 128
7.5.3 Connected components labelling . . . . . . . . . . . . . . . . 129
7.5.4 Dimension filtering . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.5 Binary comparison . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . 133
7.6.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . 134
7.6.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . 135

7.7 Contributions summary . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Conclusion and Future work 141
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 142
8.3 Recommendations for future work . . . . . . . . . . . . . . . . . . . 142

Bibliography 146

Appendices 179

Appendix A Examples of acquired LHC tunnel images 180

Appendix B Crack detection 184

Appendix C Highlight detection 188

Appendix D Change detection 190

Appendix E Publications 194

ix



List of Figures

1.1 Some of CERN’s tunnels . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 CERN accelerator complex . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Low lighting conditions which vary from one area to another . . . . 4

2.1 Invar wire and gauge used during manual surveys . . . . . . . . . . 7
2.2 An example of ‘photogrammetric levelling’ . . . . . . . . . . . . . . 7
2.3 Original image and crack segmentation result . . . . . . . . . . . . 9
2.4 An example of an image acquisition system . . . . . . . . . . . . . . 10
2.5 A sample of crack detection results from DeepCrack . . . . . . . . . 13
2.6 Several applications of image fusion applications . . . . . . . . . . . 14
2.7 On-site structural inspections in the LHC tunnel . . . . . . . . . . . 29

3.1 Block diagram of the proposed inspection solution . . . . . . . . . . 35
3.2 Block diagram of the change detection module within the proposed

inspection solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Cross-section of the LHC tunnel . . . . . . . . . . . . . . . . . . . . 41
4.2 Camera on the arm extending from one of the wagons of the TIM . 43
4.3 Multiple cameras on the CERNbot robotic platform . . . . . . . . . 43
4.4 Robust metal rig with multiple cameras on horizontal metal blocks

fixed to a vertical structure on a robust base fixed on the CERNBot 45
4.5 Camera attached to a quick release plate . . . . . . . . . . . . . . . 45
4.6 Samples of images captured by the three cameras on the vertical

structure placed on the CERNBot . . . . . . . . . . . . . . . . . . . 47
4.7 Camera rig in the provisional commercial camera system . . . . . . 48
4.8 Provisional commercial camera system integrated on the CERNBot 48
4.9 A sample set of images captured using the provisional commercial

camera system during the demo test in the LHC tunnel . . . . . . . 49
4.10 Orthophotos generated from DataT1 and DataT2 captured during

the demo test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 U-Net architecture pipeline . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 SegNet architecture pipeline . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Mask R-CNN pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 A sample of crack markings from the SDNET subset . . . . . . . . 61
5.5 A sample of crack markings from the LHC dataset . . . . . . . . . . 62

x



5.6 A plot of the cross entropy loss during training of different models
on the SDNET subset . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 A plot of the cross entropy loss during validation of different models
on the SDNET subset . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 The plots of the class loss and mask loss while training Mask R-CNN
on the SDNET subset . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 A plot of the cross entropy loss during training of U-Net and SegNet
models with different encoder architectures, on the LHC dataset . . 72

5.10 A plot of the cross entropy loss during validation of U-Net and Seg-
Net models with different encoder architectures, on the LHC dataset 73

5.11 The plots of the class loss and mask loss while training Mask R-CNN
on the LHC dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.12 Crack detection results using the U-Net model on the SDNET subset 75
5.13 Crack detection results using the SegNet model on the SDNET subset 76
5.14 Crack detection results using the Mask R-CNNmodel on the SDNET

subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.15 A crack detection example from the LHC dataset . . . . . . . . . . 77
5.16 Crack masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.17 Crack Bounding boxes . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.18 Flow diagram for the crack comparison procedure . . . . . . . . . . 80
5.19 Crack detection example 1 . . . . . . . . . . . . . . . . . . . . . . . 83
5.20 Crack comparison result listing the status of each identified crack in

example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.21 Crack detection example 2 . . . . . . . . . . . . . . . . . . . . . . . 84
5.22 Crack comparison result listing the status of each identified crack in

example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 U-Net model with the proposed modifications . . . . . . . . . . . . 88
6.2 A sample of images and their corresponding original GT mask from

the PURDUE dataset and the inverted mask. . . . . . . . . . . . . 91
6.3 A sample of images and their corresponding GT markings from the

annotated specular highlights dataset built using the LHC dataset . 91
6.4 F-score and loss from the U-Net model with the proposed encoder

architecture during training and validation on the PURDUE set . . 95
6.5 Plots of training and validation F-score for the LHC set using the

U-Net model with different batch sizes . . . . . . . . . . . . . . . . 97
6.6 Plots of training and validation IoU for the LHC set using the U-Net

model with different batch sizes . . . . . . . . . . . . . . . . . . . . 98
6.7 Plots of training and validation loss for the LHC set using the U-Net

model with different batch sizes . . . . . . . . . . . . . . . . . . . . 99
6.8 Plots of training and validation F-score for the LHC set using the

U-Net model with different encoder architectures . . . . . . . . . . 100
6.9 Plots of training and validation IoU for the LHC set using the U-Net

model with different encoder architectures . . . . . . . . . . . . . . 101

xi



6.10 Plots of training and validation loss for the LHC set using the U-Net
model with different encoder architectures . . . . . . . . . . . . . . 102

6.11 Comparison of the GT and segmentation masks on the PURDUE set 103
6.12 Specular highlights example 1 . . . . . . . . . . . . . . . . . . . . . 104
6.13 Specular highlights example 2 . . . . . . . . . . . . . . . . . . . . . 104

7.1 Light variation in the LHC tunnel . . . . . . . . . . . . . . . . . . . 107
7.2 The original reference and survey images at a particular position and

the corresponding pre-processed images . . . . . . . . . . . . . . . . 109
7.3 Difference images of the greyscale and pre-processed images . . . . 110
7.4 Specular highlight localisation on the reference and survey images

and the corresponding highlight mask . . . . . . . . . . . . . . . . . 111
7.5 Change Detection in an ideal-world scenario . . . . . . . . . . . . . 112
7.6 Difference images of the greyscale and pre-processed images with

illumination changes . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.7 Image difference using different values for the fixed threshold . . . . 114
7.8 Histogram of the pixel absolute difference values . . . . . . . . . . . 114
7.9 Image difference using different automatic thresholding techniques . 117
7.10 The first 4 principal components of the stacked original images . . . 118
7.11 Histogram of normalised PC1 from PCA on original RGB images . 119
7.12 The principal components of the stacked pre-processed images . . . 119
7.13 Histogram of normalised PC0 from PCA on pre-processed images . 120
7.14 Resulting CMs from PCA applied to different images . . . . . . . . 121
7.15 Diagram of the SSIM measurement system . . . . . . . . . . . . . . 121
7.16 CMs from SSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.17 Fusion of CMs using logical operators . . . . . . . . . . . . . . . . . 125
7.18 Diagram of CM fusion by PCA-weighted summation . . . . . . . . 126
7.19 CM decision-level fusion by PCA-weighted summation . . . . . . . 126
7.20 CM decision-level fusion by majority voting . . . . . . . . . . . . . 127
7.21 CM analysis process . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.22 Concept of morphological operations . . . . . . . . . . . . . . . . . 128
7.23 Concept of connected components labelling . . . . . . . . . . . . . . 130
7.24 Change candidates and their difference ratios . . . . . . . . . . . . . 131
7.25 Change candidate patches . . . . . . . . . . . . . . . . . . . . . . . 132
7.26 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.27 An example showing similar results for both majority voting and PCA137
7.28 An example showing different detection results from majority voting

and PCA-weighted summation . . . . . . . . . . . . . . . . . . . . . 138
7.29 An example showing a different simulated defect on the wall . . . . 139
7.30 An example exhibiting lighting changes . . . . . . . . . . . . . . . . 140

8.1 Augmentation of inspection findings on a VR model . . . . . . . . . 143
8.2 A screenshot of ThermoVis . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 Thermal and RGB camera placed on a tripod . . . . . . . . . . . . 144

xii



8.4 A sample of the captured RGB and TIR images . . . . . . . . . . . 145

A.1 Images captured by the three cameras on CERNBot . . . . . . . . . 181
A.2 Example 1 of a sample set of images captured using the provisional

commercial camera system during the demo test in the LHC at a
particular location . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.3 Example 2 of a sample set of images captured using the provisional
commercial camera system during the demo test in the LHC at a
particular location . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.1 Example 1 of crack detection results from the SDNET subset . . . . 185
B.2 Example 2 of crack detection results from the SDNET subset . . . . 185
B.3 Example 1 of crack detection results from the LHC dataset . . . . . 186
B.4 Example 2 of crack detection results from the LHC dataset . . . . . 186
B.5 Example 3 of crack detection results from the LHC dataset . . . . . 187

C.1 Example 1 of specular highlights detection results from the LHC
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.2 Example 2 of specular highlights detection results from the LHC
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.1 Example showing similar detection results from the majority voting
and PCA-weighted summation methods . . . . . . . . . . . . . . . . 191

D.2 Example showing different change detection results from the major-
ity voting and PCA-weighted summation methods, as a result of the
change map analysis stage on the respective change maps . . . . . . 192

D.3 Example showing different change detection results from the major-
ity voting and PCA-weighted summation methods . . . . . . . . . . 193

xiii



List of Tables

2.1 Comparison of image fusion levels and performance . . . . . . . . . 16

4.1 Dataset summary, including data type, camera and resolution . . . 47

5.1 Different augmentation pipelines . . . . . . . . . . . . . . . . . . . . 60
5.2 Mean IoU from the Mask R-CNN model trained on the SDNET subset 65
5.3 IoU from the different models trained on the SDNET subset . . . . 68
5.4 Mean IoU from the Mask R-CNN model trained on the LHC dataset 71
5.5 IoU from the different models trained on the LHC dataset . . . . . 71

6.1 Summary of results on the PURDUE dataset during the validation
of the U-Net model with different encoder architectures . . . . . . . 94

6.2 Validation results on the LHC dataset for different encoder architec-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Quantitative results from the change detection algorithm . . . . . . 135

xiv



List of Acronyms

AI Artificial Intelligence. 60

ALICE A Large Ion Collider Experiment. 3

ANN Artificial Neural Network. 27

API Application Programming Interface. 36

ASPP Atrous Spatial Pyramid Pooling. 12

ATLAS A Toroidal LHC Apparatus. 3

BN Batch Normalisation. 54, 87, 88, 93, 94, 96

CERN European Organisation for Nuclear Research. 1–4, 40

CM Change Map. 25, 27, 30, 37, 106, 109, 110, 112, 113, 116, 120,
123–125, 127–130, 134, 136, 142

CMS Compact Muon Solenoid. 4

CNN Convolutional Neural Network. 11, 12, 24, 30, 51, 56, 75, 76

CSV Comma-Separated Values. 143, 144

CT Computed Tomography. 17

CVA Change Vector Analysis. 18, 26

DCT Discrete Cosine Transform. 21

DSLR Digital Single Lens Reflex. 44

DT Discrete Transform. 21

DWT Discrete Wavelet Transform. 21

EM Expectation-Maximisation. 27

EN-SMM Engineering, Survey, Mechatronics and Measurements. 2

FCN Fully Convolutional Network. 12, 24

FN False Negative. 133

FoV Field of View. 2, 32, 42, 44, 130

FP False Positive. 133

xv



FPN Feature Pyramid Network. 57

GT Ground-Truth. 60–63, 75–77, 90–92, 103, 185

GUI Graphical User Interface. 143

HOG Histogram of Oriented Gradients. 12

IHS Intensity Hue Saturation. 19, 20

IoU Intersection over Union. 63, 64, 68, 70, 71, 75, 76, 81, 92, 93, 96

IR Infrared. 17

KTT Kauth-Thomas Transformation. 26

LHC Large Hadron Collider. 1, 2, 4, 40–43, 45, 46

LiDAR Light detection and ranging. 17

MLP Multiple Layer Perceptron. 12

MRI Magnetic Resonance Imaging. 17

MRO Mechatronics, Robotics and Operations. 2

ND Non-Destructive. 6

OBCD Object-based Change Detection. 78, 81, 82

PBCD Pixel-based Change Detection. 37, 78, 81, 106, 111, 123, 124

PCA Principal Component Analysis. 18–20, 26, 37, 117, 118, 124, 125,
135, 136

ReLU Rectified Linear Unit. 13, 52–54, 87

ROI Region of Interest. 56, 58, 59

ROV Remotely Operated Vehicle. 2, 43

RPN Region Proposal Network. 57, 58, 64

SDK Software Development Kit. 46

SfM Structure from Motion. 30, 32, 33

SLAM Simultaneous Localisation and Mapping. 29

SMB Site and Management Buildings. 2, 4

SNR Signal-to-Noise Ratio. 18

SP segmentation prediction. 63

SPC Statistical Process Control. 119, 120

SPS Super Proton Synchrotron. 1

xvi



SSIM Structural Similarity Index. 37, 121–124

SVDD Support Vector Data Description. 11

SVM Support Vector Machine. 11, 27, 28

SWT Stationary Wavelet Transform. 21

TIM Train Inspection Monorail. 2, 40, 43, 44

TIR Thermal Infrared. 9, 17, 42, 143, 144

TLS Terrestial Laser Scanner. 7, 8, 32

TM Thematic Mapper. 20

TN True Negative. 133

TP True Positive. 133

TS Total Station. 33

TT1 Transfer Tunnel 1. 1

UQI Universal Quality Index. 121

VE Valley Emphasis. 115, 116

VR Virtual Reality. 33, 34, 39, 143

xvii



1 | Introduction

To safeguard the structural integrity of concrete tunnels, periodic inspections are

essential to pre-empt further damages and accidents. Monitoring is principally

done through visual observations which require people to be physically present on-

site, possibly exposing them to hazards that might be present in the environment.

This has led to an increase in the need for these inspections to be done through

automatic platforms. Robotic operations can reduce direct human intervention and

lower the time needed for inspection and operation disruption, while deployment

of computer vision techniques allows more objective and faster inspection analysis.

The European Organisation for Nuclear Research (CERN) has more than 50km

of tunnels hosting machinery used for various experiments in difficult environments.

Examples of these tunnels, are those hosting the Large Hadron Collider (LHC),

Super Proton Synchrotron (SPS) and Transfer Tunnel 1 (TT1) shown in Fig. 1.1.

(a) LHC (b) SPS (c) TT1

Figure 1.1: Some of CERN’s tunnels

Systems to aid tunnel monitoring are already in place through mobile applica-

tions used to record the structural integrity of the tunnels using location-tagged

images taken during observations, however these are used as a reference rather
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than to automate inspections. A vision-based system that monitors changes on the

tunnel wall linings was further developed in an earlier project [1,2]. It uses images

from a single camera placed on a Train Inspection Monorail (TIM) and thus has a

limited Field of View (FoV).

This work forms part of the strategy at CERN to develop an automated tunnel

structure health monitoring solution. It is part of a collaborative project between

the University of Malta, the Mechatronics, Robotics and Operations (MRO) section

within the Engineering, Survey, Mechatronics and Measurements (EN-SMM) group

and Site and Management Buildings (SMB) Department at CERN. This work

builds on [1] while focusing on the implementation of novel techniques for remote

and automated tunnel monitoring using computer vision and data fusion.

1.1 Aims and objectives

This work aims to contribute to the field of tunnel inspection by providing a

remotely operated comprehensive framework to monitor the CERN LHC tunnel

which with a few modifications might be also deployed in other infrastructures.

The main objective is to automate the inspection process. First, the data acqui-

sition needs to be automated. Hence, this works aims to design a multiple image

sensor set up to obtain data for tunnel inspection and to automate the capturing

of data from different sensors placed on a Remotely Operated Vehicle (ROV).

Following this, to automate the structural inspection process in general, this

work mainly seeks to:

• automate crack detection;

• use computer vision techniques to implement different bi-temporal and decision-

level image fusion for change detection;

2
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1.2 CERN

Figure 1.2: CERN accelerator complex [3]

CERN is a European research organisation located in the suburbs of the Swiss

city of Geneva, operating the largest particle physics laboratory in the world.

At CERN, scientists, physicists and engineers from different countries (including

Malta) collaborate on various projects, rendering it a very multicultural and di-

verse research environment. It was established in 1954 and it has been contin-

uously evolving since then. CERN is at the forefront of scientific research with

very important discoveries taking place inside the experimental areas within its

premises. Technological developments necessary for the construction and opera-

tion of CERN’s particle accelerators and detectors have resulted in several spin-offs

within the fields of engineering, computer science and medicine.

CERN uses large, complex instruments and machinery to study the basic con-

stituents of matter and the related fundamental forces. As a result, a number of

facilities hosting different experiments: A Toroidal LHC Apparatus (ATLAS), A
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Large Ion Collider Experiment (ALICE) and Compact Muon Solenoid (CMS) were

constructed within the CERN accelerator complex as illustrated in Fig. 1.2. The

main machines used at CERN are purpose-built particle accelerators and detectors.

One of CERN’s accelerators, the LHC was built in order to answer open funda-

mental questions in particle physics, in particular those concerning the Standard

Model and the Higgs Boson particle. The 27 km long tunnel hosting the LHC lies

at around 100 m below the ground, with most of it being located in France.

1.2.1 LHC tunnel scenario

The LHC tunnel is circular in shape however, over its large distance, the curve is

practically negligible for the field of view considered, as shown in Fig. 1.1(a) and

Fig. 1.3. This tunnel requires regular monitoring whereby measurements of radi-

ation, oxygen presence, temperature and humidity are conducted. Furthermore,

by sending personnel on site, infrastructure inspection is carried out by visually

checking the area for any structural changes and making the necessary sketches

and measurements to later consult the SMB Department taking care of the facility.

Such an operation entails a considerable amount of time, which is also limited by

the tunnel access time as well as personnel to physically enter the tunnel, with risks

of radiation present, further limiting them only to certain areas.

Figure 1.3: Low lighting conditions which vary from one area to another
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To a certain degree, the LHC tunnel presents a harsh working environment. It

has low lighting conditions which vary from one area to another as shown in Fig.

1.3 as well as over time. Due to the limited free space available, any machinery

used for inspection surveys should be small in dimensions. The non-uniform envi-

ronment, comprising cables, wall racks, pipes and the accelerator itself also present

difficulties. The amount of dust present in the LHC tunnel should also be taken

into consideration when placing devices in the tunnel, as they can be affected.

Such scenario conditions raise the need of a structural health monitoring solu-

tion to remotely collect data from the tunnel and perform objective inspections.

1.3 Thesis structure

The remainder of this thesis is structured as follows. Chapter 2 reviews previous

works in the related fields. An overview of the proposed solution together with

an introduction to its different modules are presented in Chapter 3. The data ac-

quisition module is described in Chapter 4. Crack detection using deep learning

techniques is discussed in Chapter 5. Specular highlights localisation using a deep-

learning based segmentation approach, as a pre-processing stage before image com-

parison is described in Chapter 6. The implemented change detection techniques

using computer vision and data fusion techniques are explained in Chapter 7. A

summary description of the proposed solution highlighting the contributions to the

state of the art and suggestions for future work conclude the thesis in Chapter 8.
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2 | Literature review

2.1 General tunnel inspection

Aging infrastructures may have issues in structural integrity due to poor mainte-

nance, construction defects, unexpected overloading and natural phenomena. Con-

sequently, to maintain compliance and safety in concrete tunnels, regular inspec-

tions are necessary. To avoid negative effects, Non-Destructive (ND) approaches

such as strength-based, sonic and ultrasonic, radar, thermographic, electrical and

endoscopic are commonly adopted as discussed in [4, 5]. However, inspections are

predominantly performed through periodic visual observations, looking for lining

defects such as cracks, spalls and water deposition to locate possible changes be-

tween one survey and another. To make such observations, inspectors are required

to be physically on-site. Associated with this, there are several disadvantages such

as the human presence in hazardous environments and the financial cost involved

to train and hire people to do the surveys. In addition, these inspections require

considerable time to perform, leading to longer operation down-times and thus

higher monetary losses. In addition, the outcome is subjective, leading to possible

inaccuracy such as missing or false detections.

For these reasons, significant attention has been given to the field of automated

inspections of tunnel structures as recorded in [4] and [6]. Such solutions were

proposed to increase personnel safety and save time with remotely operated fast

data acquisition, identification and documentation of tunnel lining defects. The

extensive review in [7] presents previous works made within the different fields of
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Figure 2.1: Invar wire and gauge used during manual surveys [11]

Figure 2.2: An example of ‘photogrammetric levelling’ as used in [11]

the image-based tunnel inspection spectrum, such as for the monitoring of tunnel

profiles, crack and leakage localisation and tunnel surface documentation.

2.1.1 Tunnel wall deformation

The structural condition of a tunnel can be analysed through measuring and mon-

itoring of the deformation of its cross-section such that proactive maintenance can

be conducted in time. To measure tunnel profiles, several methods include the use

of a mechanical gauge such as a tape extensometer as shown in Fig. 2.1, Terres-

tial Laser Scanner (TLS) [8–10] and geodetic instruments. Physical indicators as

proposed in [11], and shown in Fig. 2.2, may be used to measure the tunnel pro-

file. Deformations in the tunnels’ cross-section are found by measuring the target

coordinates on the images captured along the wall.

Other works, instead of using physical targets, project a laser light to create

virtual targets. In [12], laser pointers are used to outline the tunnel surface and

an image of the resulting profile is captured. 3D tunnel clearance inspection using
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the optical triangulation principle through structured light projectors and multiple

cameras was proposed in [13]. A laser emitter and a set of cameras were similarly

used in [14] to generate a perpendicular plane to the horizontal tunnel axis. Later,

photogrammetric methods and geometry equations are used to obtain features of

the tunnel profile. Commercial systems, such as [15], were also proposed to replace

conventional methods to monitor tunnel profiles. Despite these efforts to automate

tunnel clearance measurement using image processing, both commercial projects

and literature on this are lacking and the most common approach is still TLS. This

is mostly because of its large scale tunnel scan capacity and simultaneous 3D model

generation and work progress monitoring.

2.1.2 Crack and defect detection

Cracks are the initial signs of infrastructure deterioration, thus if detected at an

early stage, larger damages can be preempted. Cracks may develop due to ag-

ing, topographic changes, downpours, recurring weight loading, poor repair and

expansion/contraction variations of concrete due to temperature changes. On-site

visual inspection, physical measurements and manual sketches are generally used

to locate cracks in concrete structures. Such an approach is dependent on the sur-

veyors’ experience, leading to report subjectivity. Hence, considerable effort has

been made to objectively identify and evaluate cracks’ status using image process-

ing and pattern recognition techniques. Literature specifically dealing with the

detection of cracks in tunnels is limited. However, as reviewed in [16, 17], vari-

ous image processing-based crack identification methods were proposed in other

infrastructures including bridge decks, pavements and roads.

Since the background is usually brighter than crack areas, thresholding tech-

niques can be used to segment the potential crack regions in an image. In [18],

images of tunnel linings are captured and cracks with a larger variation along the

line edges, are chosen. Detected edges joined to others are extracted using hystere-

sis thresholding. To locate cracks in subway tunnels, a wireless sensor network was

8



Figure 2.3: Wall image and the result of crack segmentation from [13]

built in [13]. A threshold segmentation using the Otsu method [19] is made. After,

crack properties including length, width and area are calculated from the segmented

images such as that in Fig. 2.3 and compared against different thresholds to locate

the definite crack areas.

Cracks usually occupy a small region within images and the variance with the

background is affected by other objects on the surface including racks, cables and

pipes thus, it is difficult to differentiate them from the background. To mitigate

such issues, a block binarisation was proposed in [20]. First, the image contrast

is improved and the noise is reduced through filtering. Then, to detect cracks,

segmentation via local binarisation using a threshold set to the mean intensity of

a square neighbourhood of pixels is made.

The rig of line scan cameras in Fig. 2.4 was proposed to capture images and

identify cracks in [21]. The centre pixel of an image region is identified as a crack

seed if the overall gray level difference of the area is below a pre-defined threshold

value. By recognising the line connecting these seeds, a crack is located.

In [22], Thermal Infrared (TIR) is used to detect cracks on a tunnel lining. Pre-

processing is applied to each image in the frequency domain. The pre-processed

image is then split up into regions such that the directionality of the texture is

calculated and crack regions are identified through a thresholding stage.

Crack identification in different concrete structures using a threshold-based ap-

proach include [23–29]. While this method is relatively straightforward and compu-

tationally inexpensive, its accuracy merely depends on the preset threshold value,

causing difficulty when the sizes of cracks vary considerably.
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Figure 2.4: The image acquisition system used in [21]

Visual changes in the texture of a surface often indicate defects or flaws in it.

Using a Wigner model, [30] proposes an algorithm to identify cracks in backgrounds

with complex textures. In works such as [31, 32] a rotation invariant Gabor Filter

is used to conduct texture analysis for crack detection at the pixel level, regardless

of the crack’s direction.

Due to their contrast with the surroundings, salient regions are visually more

conspicuous however, works using saliency for crack identification, such as [33] are

very limited in number. In [34], complex coefficient maps are generated from a 2D

continuous wavelet transform and wavelet coefficients maximal values are found

for crack detection. However, such approaches cannot handle examples with cracks

lacking continuity or having a high curvature due to the anisotropic characteristic

of wavelets.

Challenges due to the environment and characteristics of concrete cracks, make

it difficult to apply rule-based methods that are capable of effectively extracting
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generalised features. These methods often rely on manually fine-tuned parameters

which do not cater for the complex conditions often exhibited by concrete surfaces.

A more adaptive solution relies on the use of pattern recognition and machine

learning algorithms. In [35], a thresholding stage is used to identify crack areas

which are then analysed through features such as pixel number, average grey level

and standard deviation of the shape distance histogram. Such features are fed as

inputs to various machine learning models for a crack vs. non-crack classification of

the candidates. In [36], Support Vector Data Description (SVDD) was adopted to

identify cracks on concrete surfaces. Colour images are first converted to grayscale

and segmented through a threshold followed by a morphological closing operation.

To identify cracks, properties including packing density, eccentricity and circularity

are used to build a feature vector which is input into a trained SVDD.

For automatic identification and characterisation of cracks in pavements, [37]

used a combination of unsupervised learning (clustering) followed by supervised

learning (classification). A fuzzy logic-based algorithm was introduced in [38] to

locate cracks in pavements. In [39], AdaBoost was used to form textural descriptors

while CrackForest [40], adopts a random structured forests descriptor to charac-

terise cracks. In [41], a comprehensive review of defect detection on pavements

identified Support Vector Machine (SVM) as the most commonly used supervised

learning approach for the detection of road cracks.

2.1.2.1 Crack detection using deep learning

Although the performance of these methods is high, it is dependent on the extracted

features. Due to surface complexities, it is difficult to find features applicable for

diverse structural scenarios. Hence, deep learning algorithms have been recently

used to overcome such variability limitations.

In [42, 43], vision-based methods using a deep Convolutional Neural Network

(CNN) architecture was proposed to detect concrete cracks. However, these do not

consider the pixel level and can only identify cracks at patch level. Using local
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patch information, [44] suggests a CNN to classify an individual pixel as part of

a crack or not. Despite this, the spatial relations among pixels are still ignored

and the crack width is overestimated. Similarly, [45] uses a CNN to predict the

class for every pixel in an image, however, at the pre-processing stage, manually

designed feature extractors are still needed, thus the CNN is only used as a classi-

fier. A CNN-based defect detector was proposed in [46]. Image properties including

edges, texture, entropy, frequency and Histogram of Oriented Gradients (HOG) are

used to construct input high-level features to a Multiple Layer Perceptron (MLP),

trained to detect tunnel lining defects. In [47], a modified version of AlexNet is

used as a classifier and a sliding window search is made to locate cracks in an im-

age. Using a CNN and taking the advantage of atrous convolution, Atrous Spatial

Pyramid Pooling (ASPP) module together with a depthwise separable convolution,

an end-to-end crack detection model is proposed in [48].

In [49], defects on a subway tunnel are found using semantic segmentation

through features extracted by Fully Convolutional Network (FCN). Using multiple

forward inference and backward learning loops, separate FCNmodels are trained for

crack and leakage detection. An encoder-decoder FCN network with the VGG16-

based encoder is trained end-to-end on a subset of annotated crack-labeled images

for semantic segmentation to detect cracks on concrete in [50].

The U-Net [51] model was adopted to detect the concrete cracks in [52]. The

focal loss function is selected as the evaluation function and the Adam optimiser

is used to train the network on a small set of images under various conditions such

as different illumination, complex backgrounds and varying crack widths. In [53],

a cost function based on a distance transform is introduced to assign pixel-level

weight according to the minimal distance to the ground-truth segmentation in

order to train a U-Net based model for automatic crack detection, achieving a high

pixel level segmentation accuracy. The pixel-level surface crack detection proposed

in [54] is also based on U-Net with a slight modification to avoid shrinking for all

the convolutional layers through zero padding.
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Figure 2.5: A sample of crack detection results from DeepCrack [55]

To detect cracks on bridges, [56] proposes a model based on SegNet [57] with

a few changes to the original architecture, including a different input size, a batch

normalisation layer between the convolutional layers and a Rectified Linear Unit

(ReLU) activation function. To segment crack images such as those in Fig. 2.5,

DeepCrack [55], uses a skip-layer fusion to connect the encoder and decoder paths

in the original SegNet model in order to utilise both continuous and sparse feature

maps at each scale. Using the cross-entropy loss, a one-channel prediction map

showing the pixel probability of belonging to the crack, is generated.

2.2 Data fusion

In some instances, neither a single method nor an individual sensor suffice to fully

examine objects under inspection. Multiple techniques should be applied such that

their combination ultimately benefits from their respective advantages achieving

increased reliability, lower detection error rate, higher redundancy and improved

identification. Data fusion has been used in various fields, such as: battlefield

surveillance, remote sensing [58, 59], control of autonomous vehicles [60, 61], bio-

metrics [62–64], wireless sensor networks [65–67] and robotics [68,69].

Applications for data fusion are so widespread that no common architecture can

be used across all fields. The type of fusion architecture has a vital role in the effi-

ciency of the processed information and the significance of the decision made at the

output level. Considering this, significant research concerning fusion architectures
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Figure 2.6: Several applications of image fusion applications [77]

was made, as discussed in [70, 71]. The first architecture was proposed in [72]. A

general data fusion structure based on multi-sensor integration was then presented

in [73]. The fusion centre processes the data collected at sensor level hierarchi-

cally and sequentially. A hierarchical architecture and model for data combination

was proposed in [74]. The architecture introduced in [75, 76] consisting of four

levels: logical robot, functional, control and decision levels implements modules

in real-time systems. The architecture selection is a trade-off between different

features; computing resources, desired accuracy, sensors capability, communication

bandwidth and available budget.

2.3 Image fusion

Image fusion integrates multiple images in order to increase the visual interpreta-

tion both for humans as well as in machine vision. Image fusion is widely used

in the areas of medical diagnosis, military, satellite imaging, object detection and

recognition, robotic vision, surveillance and other fields as illustrated in Fig. 2.6.
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2.3.1 Levels of image fusion

Image fusion can be categorised into low, medium and high levels while other

literature [78] may refer to pixel, feature and decision levels. Regardless of the

fusion level, the main aim is to maintain all valid information from multiple images

such that the resultant image contains more accurate and complete information

than the individual images. At the same time, the fusion should not introduce

artifacts that interfere with subsequent analysis.

At the lowest, pixel-level, the unprocessed outputs from different sensors are

mixed in the signal domain to generate a fused signal. The fused result, a single

gray or chromatic image, is created by fusing individual pixels, usually after some

form of processing is applied to the source images. Feature-level fusion extracts

salient information such as edges, lines, corners and texture parameters from in-

dependent images and merges them into one/multiple feature map/s which are

used with/instead of the original data for further processing. Such a fusion type is

commonly used during pre-processing for image segmentation or change detection.

Decision-level fusion merges interpretations of different images obtained by multi-

ple algorithms of local decision makers to yield a final decision. When the results

are expressed as probabilities, fusion is referred to as ‘soft fusion’ while, if decisions

are used, the term ‘hard fusion’ applies. Table 2.1 portrays the different levels of

image fusion including a comparison of their individual characteristics.

2.3.2 Image fusion categories

These include:

• multi-view - fusing images from the same modality from different viewpoints;

• multi-modal - fusing images coming from different sensors;

• multi-temporal - fusing images taken at different times to identify changes

among them or to synthesise images of objects;
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Table 2.1: Comparison of image fusion levels and performance (adapted from [79])

Characteristic Pixel-level Feature-level Decision-level
information content highest medium lowest
loss of information lowest medium highest
fault tolerance worst medium best
noise immunity worst medium best
sensor dependancy highest medium lowest
merging difficulty hardest medium easiest
pre-processing lowest medium highest
classification performance best medium worst

• multi-focus - fusing images of the same viewpoint at different focal lengths;

• multi-frame super-resolution - fusing two or more same-scene, same-modality

images which are blurred and/or noisy to produce a deblurred and/or de-

noised image.

In every category, if fusion is conducted at the pixel level, the first stage involves

image registration to bring the input images in spatial alignment to each other.

Registration applications can be classified by the image information used. Methods

which use the whole image’s data are referred to as area-based while those using

only particular pixels within the image are called feature-based methods.

2.3.2.1 Multi-view image fusion

In multi-view fusion, images of the same scene captured from several viewpoints

by the same sensor or a set of sensors having similar characteristics, are fused to

supply complementary information from different views. This is commonly used to

attain a higher resolution image or to recover a scene 3D representation. A multi-

view dense matching algorithm for high-resolution aerial images based on a graph

network was proposed in [80]. Based on the generated graph, point clouds of base

views are constructed by triangulating all connected nodes, followed by a fusion

process using the mean reprojection error as a priority measure. A probabilistic
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algorithm for multi-view reconstruction from the fusion of calibrated images was

presented in [81]. The algorithm is based on multi-resolution volumetric range

image integration. The method introduced in [82], merges a set of depth maps into

a single point cloud so that the redundant points are fused together by assigning

a higher weight to specific measurements. The original depth maps are then re-

registered to the fused point cloud to generate the refined extrinsic parameters.

2.3.2.2 Multi-modal image fusion

This type of fusion combines images captured by different types of sensors to pro-

vide a more comprehensive and informative view of the task at hand. Images of

different types, such as visible, Infrared (IR), Computed Tomography (CT), and

Magnetic Resonance Imaging (MRI), are good source images for fusion. A review

of existing approaches and results on multi-modal data fusion from different dis-

ciplines was presented in [83]. An overview of the main challenges in this type of

fusion is given in [84].

The applications using this type of fusion vary among remote sensing, medi-

cal imaging, multimedia and inspection. Multi-spectral, hyperspectral, radar and

Light detection and ranging (LiDAR) images can be available for the same geo-

graphical region. In [85], a review of the approaches used to combine this data

to improve the classification of materials, was presented. New approaches and

challenges of audiovisual data fusion for speech recognition were presented in [86].

TIR images can differentiate targets from their backgrounds through their radi-

ation difference. This functions in all-weather and all-day/night conditions. On

the other hand, visible images provide colour and texture details with high spatial

resolution which are consistent with the human visual system. Hence, by fusing

such image types, thermal radiation information and detailed texture information

can be combined. A survey of works employing this type of fusion was published

in [87].
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2.3.2.3 Multi-temporal image fusion

This type of fusion merges images of the same view, captured using the same

modality at different times. Generally, it is used for the detection of the medi-

cal and environmental changes or to synthesise images of items which were not

photographed at a specific time. A number of methods can be applied to statisti-

cally and numerically process co-registered temporal images to generate new data.

General temporal image fusion techniques include arithmetic operations involving

addition/subtraction, rationing/multiplication or transformed-based methods such

as Principal Component Analysis (PCA).

A common approach for multi-temporal optical image fusion is that of image

comparison which mainly relies on the difference operator. This is because the

noise model in optical images is additive and the natural classes have a Gaussian

distribution. Thus, the difference operator results to be the most effective one.

Subtraction of same-scene images serves to enhance their differences so that even

minor changes become detectable and can be evaluated correctly. In remote sens-

ing, several difference operators such as univariate image differencing, vegetation

index differencing and Change Vector Analysis (CVA) are used to monitor for en-

vironmental changes as discussed in [88]. In medical imaging, a typical example

of temporal fusion using subtraction, is subtractive angiography where the base

image captured before applying a contrast agent is subtracted from the image of

the same scene once the substance is applied, as explained in [89]. Similarly, tem-

poral images may be added together or averaged in order to increase the contrast of

interesting structures and suppress random zero-mean noise. This technique may

be useful in gamma imaging, where the Signal-to-Noise Ratio (SNR) of individual

images is usually low.
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2.3.3 Image fusion domains and techniques

Image fusion methods can be further classified by the type of domain in which they

operate. The spatial domain methods deal with the manipulation of pixel values

of source images. Intensity Hue Saturation (IHS) [90] and PCA [91] are commonly

used in this domain. In frequency domain fusion approaches, the image is first

transferred to the frequency domain, then the fusion operations are conducted

and finally the inverse transform is applied to get the final image. Pyramid-based

transforms and Discrete transforms are commonly used. Reviews of the different

image fusion techniques and applications can be found in [92–96].

2.3.3.1 Spatial domain

The first evolution of image fusion research performed basic pixel by pixel related

mathematical operations like summation, difference and mean. Average fusion

estimates the mean of the intensity of the input images on a pixel-by-pixel basis.

The technique assumes very accurate spatial and radiometric alignment. For each

pixel in every image, its block mean is computed. The corresponding pixel in the

combined image is selected by taking the pixel with the maximum block mean

amongst all the corresponding pixels in the images. This fusion technique lowers

the resultant image quality by bringing in noise into the combined image and

tends to reduce the contrast also. In order to improve the fusion reliability, [97]

uses a weighted average technique where varying weights are designated to all

source images. The fused image is obtained through the weighted addition of

all corresponding pixels. The select-maximum/minimum technique chooses the

maximum and minimum pixel values from corresponding images and generates the

fused image by averaging the minimum and maximum values of all corresponding

pixels in all the images.

PCA transforms a number of correlated variables into several uncorrelated ones.

For image fusion, PCA is applied to create a weighted sum of the source images.
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The weights for each source image are obtained from the normalised eigenvector

of the covariance matrices of each source image. This approach is commonly used

in multi-spectral imaging such as in [98,99], where the PCA method generates un-

correlated images and replaces the first component with the panchromatic band,

which has a higher spatial resolution than the multi-spectral images. After, the

inverse PCA transformation is used to get the image in the RGB colour space. Im-

age fusion using PCA and wavelets can also be used as in [100]. Useful information

may not be completely represented by a single pixel but also present in the size,

shape and edges of the image content hence, [101] suggests a PCA region-based

fusion using a 3× 3 kernel of the input images. The PCA method is simple, com-

putationally efficient and results in high spatial quality. On the other hand, it may

introduce some colour distortion and spectral degradation.

IHS is a common approach for fusing single band, pan, high and low spatial

resolution, multispectral remote sensing images such as in [102,103]. The R, G and

B bands of the multispectral image are transformed into IHS components, using the

pan image to replace the intensity component and the inverse transformation is then

performed to obtain a high spatial resolution multi-spectral image. In [104], IHS is

used to integrate radar with Landsat Thematic Mapper (TM), airborne geophysical

and thematic data. The IHS method is simple, computationally efficient and has

high sharpening ability. Unfortunately, it only processes three multi-spectral bands

and may generate some colour distortion.

Multiplication is not widely used as an image fusion operator, however, an im-

portant fusion application which uses multiplication is in Brovey Transform. As an

example, [105] proposes a remote sensing image fusion approach based on a modi-

fied version of Brovey transform and wavelets. The approach is relatively simple to

implement, computationally efficient and produces higher contrast images, however

it can generate some colour distortion.
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2.3.3.2 Pyramid-based

Another fusion approach is to construct a pyramid transform, comprising multiple

images at a set of scales which together represent the original image. The fused

image is obtained by merging the pyramids at the respective levels and then taking

the inverse pyramid transform. The Gaussian pyramid [106], Laplacian pyramid

[107] and ratio of low pass pyramid [108] are different types of pyramids used in this

technique. Pyramid decomposition-based methods generate very similar outputs

while the number of decomposition levels affects the fusion result.

2.3.3.3 Transform and wavelet-based

Whereas pyramid-based fusion methods use filters, Discrete Transform (DT) meth-

ods use transforms. Although different transforms may be used, a common pipeline

is followed. If the input images are in colour, their RGB channels are first sepa-

rated and the specific transform technique is then applied. Next, the mean of

corresponding pixels is computed to get the fused transform components. The in-

verse transform is then applied to convert the transform components into an image.

In the case of colour images, the separated R, G and B planes are finally combined.

A review on DT image fusion is found in [109].

Discrete Wavelet Transform (DWT) is used to fuse medical images in [110]. The

Kekre’s Wavelet Transform was introduced in [111] and a comparison of different

techniques using this transform for image fusion was presented in [112]. Other

transforms such as Discrete Cosine Transform (DCT) [113], Stationary Wavelet

Transform (SWT) [114] and a combination of DCT and Stationary Transform [115]

are also recorded in image fusion literature.

2.4 Change detection

This is the identification of variations in an object state by monitoring it at differ-

ent times. It quantifies temporal effects using multi-temporal datasets. Timely and
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correct change detection provides the basis for better understanding the evolution

of an environment while identifying the relationships, temporal effects and inter-

actions of objects within a scene. Identifying changed areas in same-scene images

taken at different times is essential for varying applications in multiple disciplines.

A vast amount of related literature is found in [116–118] amongst others. Im-

portant change detection applications include video surveillance [119–121], remote

sensing [122–124], medicine [125–127], underwater sensing [128–130], civil infras-

tructure [131–133] and intelligent transportation and traffic systems [134–136].

A change may be caused by a number of factors, including appearance or dis-

appearance, relative motion or shape changes of objects. Furthermore, images of

static objects can change in brightness and/or colour. In general, change detection

answers some of the fundamental questions such as how fast changes are taking

place, their size, shape and also the trend at which they are occurring. However,

during this detection process, various challenges exist, limiting its accuracy. The

absence of a reference background, differences in lighting conditions and varying

viewpoints make the multi-temporal comparison difficult. Moreover, the lack of a

priori information about the type, shape and size of changed areas make identifi-

cation challenging.

2.4.1 Pre-processing for change detection

The aim of change detection is to simultaneously identify significant changes and

reject unimportant ones. Apparent intensity changes resulting from camera motion

and different lighting should be ignored. Hence, pre-processing involving geometric,

radiometric adjustments and semantic segmentation is generally required.

2.4.1.1 Alignment corrections

Proper alignment of images from different viewpoints and at different times is fun-

damental for change detection. This is commonly referred to as image registration

and is the process of spatially aligning multiple same-scene photos which are either
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taken from different angles using multiple sensors or at a different time. Detailed

surveys on image registration methods can be found in [137–139]. The possibility

of localised registration errors causing false changes, should be carefully catered

for, consequently, [140–142] study how change detection is affected by registration

errors.

2.4.1.2 Radiometric adjustments

Intensity changes caused by variations in the strength or location of light sources

within a scene should be compensated for to prevent their classification as changes.

Several techniques for radiometric adjustments exist, including: intensity normal-

isation, homomorphic filtering, illumination modelling and linear transformations

of intensity. Independent on the field in which change detection is applied, this

pre-processing step should be considered in order to achieve a good quality change

detection result. A discussion of the various image pre-processing techniques that

can be applied, is found in [116].

2.4.1.3 Semantic segmentation

This is the process of segmenting an image by specifying a class for each pixel. Se-

mantic segmentation plays a very important role in scene understanding in various

computer vision applications in which each visual information has to be associ-

ated with an entity while considering the spatial information. In change detection

applications, semantic segmentation can be applied to delimit nuisance regions

that might otherwise be falsely identified as a change such as specular highlights

occurring because of electronic flash units.

There are different types of segmentation approaches such as those using thresh-

olding, edge detection and clustering. While these are relatively easy to implement

and incur low computational cost, they have various limitations. When there is

no significant grayscale of colour difference, it is very difficult to get accurate seg-

ments with region-based segmentation using thresholding. Edge-based approaches
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are not suitable when a large amount of edges are present in the image or if there

is low contrast between objects. Whilst they generate excellent bounded regions,

clustering-based approaches incur an expensive computation time and are not suit-

able for clustering non-convex scenarios when using distance based algorithms such

as k-means clustering.

With the introduction of CNN and deep learning, semantic segmentation ad-

vanced rapidly in the last few years. Initial approaches involved patch classification

to separately classify each pixel into classes using a patch around it. To overcome

the fixed size constraint of fully connected layers, FCN was proposed in [143]. The

latter popularised CNN architectures for dense predictions without fully connected

layers, allowed segmentation maps to be generated for images irrelevant of their

size. Subsequent approaches on semantic segmentation used this paradigm.

In addition to fully connected layers, another issue with using CNNs for se-

mantic segmentation is pooling layers. While the latter increase the field of view

and aggregate the context, they discard the ‘where’ information, which is re-

quired by semantic segmentation. There are two main architectures to tackle

this issue: encoder-decoder and atrous convolutions. Popular architectures us-

ing the encoder-decoder structure include U-Net [51], SegNet [57] and RefineNet

[144]. Works based on dilated/atrous convolutions for semantic segmentation in-

clude [145], DeepLabV2 [146], DeepLabV3 [147] and Pyramid Scene Parsing Net-

work [148].

2.4.2 Change detection techniques

Change detection techniques can be categorised by the unit of image analysis.

Pixel-based approaches use pixel values as the fundamental unit of analysis while

object-based methods use segmentation to extract regions on which analysis is then

made. Below, both types of change detection are discussed in terms of the different

approaches taken, including image algebra, transformation and classification.
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2.4.2.1 Pixel-based methods

In the simplest approach, referred to as image differencing, two images I(x, y, t1)

and I(x, y, t2) of the same scene taken at times t1 and t2 respectively, are subtracted

pixel-wise. Following subtraction, the magnitude of the difference value is checked

against a threshold. Pixels with a difference higher than the threshold are noted as

‘change’ and set to 1, otherwise they are noted as ‘no change’ and set to 0, creating

a Change Map (CM). Due to its simplicity and computationally inexpensive nature,

this approach is most often adopted in motion detection such as in [149]. However,

it requires exact image registration and is highly dependent on a threshold.

A similar method that uses the same pixel by pixel logic, but calculating a ratio

instead, is commonly referred to as image ratioing. Pixel intensity values of one

image at t1 are divided by the corresponding pixel values at t2. Unchanged pixels

will have a ratio equal to or near 1. This method also requires exact registration

as it is pixel-based as well as a comparison against a ratio threshold. Also, cases

requiring division by zero need to be handled. On the other hand, a vital advantage

of this method is that it minimises the variations in illumination such as shadow.

A comparative study of the image differencing and image ratioing methods as used

in remote sensing is found in [150].

Image regression can also be used for change detection. This approach estab-

lishes a relationship between temporal images through a regression function. Image

at time t2 can be expressed as a linear function of image at t1:

I(x, y, t2) = αI(x, y, t1) + β (2.1)

where α and β are error constants. Under this assumption, one can adjust I(x, y, t1)

to match the radiometric conditions of image I(x, y, t2) using least-squares regres-

sion and then subtract the regressed image from I(x, y, t1). Image regression re-

duces the impact of sensor and environmental differences, however it requires exact

image registration and does not provide a change matrix.
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CVA uses multiple image bands/channels to detect change and is often used in

remote sensing. Pixel values are considered to be the vectors of the spectral values

and the change vector can be computed by subtracting the vectors at various

dates. The type of change can be determined from the direction of the change

vector while the length corresponds to the magnitude of the change. A review on

CVA algorithms for change detection was published in [151].

In contrast to the previous techniques, the following works use a transforma-

tion approach rather than linear equations. PCA [152] reduces the data redun-

dancy by transforming multivariate data to new components with the assump-

tion that change regions have a low correlation. Similar to PCA, other methods

such as Kauth-Thomas Transformation (KTT) [153] and Gram Schmidt (GS) [154]

emphasise different information in derived components however they cannot pro-

vide detailed change matrices and require the selection of thresholds to identify

changed areas. Another disadvantage is the difficulty in interpreting and labelling

the change information on the transformed images.

Another category of change detection techniques comprises post-classification

methods [155, 156] where multi-temporal images are classified into thematic maps

using both supervised and unsupervised classification. A pixel by pixel comparison

of the classified images is then applied to measure the changes. A limitation of this

method is that the accuracy of the final image depends entirely on the classification

accuracy of the individual images. When using supervised classification methods,

accurate, complete and high quality labelled training datasets are inevitable to

produce accurate classification. However, acquiring such data is often difficult

and time consuming. Unsupervised classification on the other hand, encounters

problems in selecting the number of clusters.

Another type of classification-based approach uses probabilistic mixture models.

Such an approach smoothly classifies pixels into mixture components correspond-

ing to various generative models of change including parametric object/camera mo-

tion and illumination amongst others. This technique is best illustrated by [157].
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Here, the algorithm uses the optical flow field between two images and applies the

Expectation-Maximisation (EM) [158] algorithm to assign each vector in the flow

field to the possible classes.

Object texture provides structural information on the items and their local

neighbourhood relationships. In [159], textural values comparison is used to mea-

sure changes using a gray level co-occurrence matrix. Instead of per-pixel compar-

ison, initially the image is split into smaller regions on which the texture is then

computed and later compared at window level.

The use of machine learning for change detection is continuously increasing.

One approach is to use an Artificial Neural Network (ANN) algorithm which builds

networks between input images and the changes represented by the output nodes.

The CM is then obtained by applying the trained network to the main dataset as

in [160, 161]. Other works such as [162, 163] use SVMs as a binary classifier on

stacked multi-temporal images to categorise change vs no-change. The algorithm

learns from training data and finds threshold values from the spectral features

automatically for classifying change from no-change. The decision tree, a non-

parametric classification algorithm can also be used for change identification as

in [164]. It builds a hierarchical structure where every node is used to test multiple

attribute values, the test outcome is represented by each branch and tree leaves

stand for the classes and their distribution. The node classification rules depend

on the attribute value analysis. Genetic programming [165] and random forest

[166] are amongst other machine learning algorithms that are applied for change

identification.

2.4.2.2 Object-based methods

Rather than using pixels, some methods use objects extracted from the images.

Object-based algorithms segment images into objects using thresholds or by ex-

tracting features before comparing the different regions. Image-object methods

focus on direct image-object comparisons of geometrical properties (width, area,
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compactness etc.), spectral information or connectivity analysis such as in [167].

Class-object approaches for change detection extract objects and assign them to

specific classes. These independently classified objects from multi-temporal images

are then compared. The classification algorithms incorporate both texture and

spectral information. Such techniques include decision-tree, maximum likelihood,

nearest neighbour and fuzzy logic [168].

2.4.2.3 Anomaly detection methods for change detection

Change detection can also be thought of as an anomaly detection task whereby a

data instance is found to be different with respect to others in the dataset, with

the deviating data being the change occurring. Anomaly detection has been well

recorded in literature and various techniques were considered. Anomalies are rare

under most conditions. Thus, even though training data may be available, often

only very few anomalies exist among huge data points sets. Classification methods

such as SVM or Random Forest will classify almost all data as normal. Gener-

ally, the class imbalance is catered for through an ensemble built by resampling

data several times. If the data points are autocorrelated with each other, then

simple classifiers are not adequate. In such situations or when no training data

is available, unsupervised anomaly detection techniques are used. These include

clustering [169], One-Class SVM, Isolation Forest [170] and Local Outlier Factor

algorithm [171] among others.

2.4.3 Change detection in tunnel environments

Further to identifying defects, analysing their evolution is more advantageous as it

manifests the tunnel health condition and deterioration. Such changes are usually

observed by human inspectors who traverse a tunnel looking for any variations

arising since an earlier survey, through on-site physical measurements as shown in

Fig. 2.7. This is an expensive and subjective process and since some tunnels may

present precarious working conditions, automating this process is advantageous.
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Figure 2.7: On-site structural inspections in the LHC tunnel

Works dealing with tunnel wall change detection are still low in number, possi-

bly due to the challenges in this field including the lack of light, contrast and image

features, characterising images captured in tunnels. An essential prerequisite for

change detection via image comparison is accurate image registration. To register

remote sensing images, GPS is usually utilised but this is not available in tunnels.

Instead, Simultaneous Localisation and Mapping (SLAM) may be used for image

registration and to aid navigation as in [172] or to assist 3D model generation.

Despite such issues the following tunnel change detection systems were proposed.

A railway tunnel change detection system using a set of cameras with overlap-

ping viewing angles placed on a rail trolley is described in [173]. Images are aligned

and filtered using normalised cross-correlation to identify the differences between

two images. The method takes into account the neighbouring pixels and corrects

lighting variations via mean-based intensity normalisation, making it more robust,

however, the presented theory details are insufficient .

A tunnel lining change detection system using a camera on a monorail inspection

train, was proposed in [1]. Position offsets between different survey images are

corrected for using the mosaic-based method presented in [174]. Following this, a
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hybrid change detection method using image subtraction, binary pixel comparison

and optical flow is applied. Then, the ‘actual change’ regions are noted while ‘false

changes’ caused by misalignment, parallax and shadows are ignored, by using a

combined-weight model. Despite the good results obtained, this system monitors

only a limited section of the wall.

The automated system presented in [175] uses five synchronised cameras with

electronic flash units. Photos are then registered to a 3D model generated through

Structure from Motion (SfM) [176] techniques. By establishing a distance function

between an inspection image and its corresponding one in a previous image set, a

CM is estimated. Using SfM information, a geometric expression mapping image

locations to corresponding 3D points is formed. On-surface and off-surface two-

dimensional SIFT features are distinguished by the distance of their 3D points from

the nearest point on the constructed surface. The image pixels are divided into

groups of similar colour and textures through mean shift segmentation. A pixel

group’s inliers and outliers vote towards its overall classification. At points that are

considered to be less reliable or off-surface, the prior has a lower weight, reducing

the false detection of changes implied by pipes and/or other items.

In [177], overlapping images along the tunnel cross-section are captured by an

autonomous system of a camera and polarised lighting moved along a monorail.

Panoramas of the surface are built using SfM and neighbouring reconstructed sets

are temporally registered via Procrustes alignment [178] on a confident feature

correspondence set. The input pair is classified as changed or unchanged using a

CNN architecture.

2.4.4 Common metrics for performance evaluation

Change detection performance can be qualitatively and quantitatively evaluated,

based on the requirements of the particular application. Furthmore, components

of change detection methods can also be individually evaluated.

During qualitative/visual evaluation, the most reliable approach is to superim-
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pose the change mask on either image such as using a semi-transparent overlay,

with different colours for different change types. Another practice is to display a

short video file of a registered pair of images, played in fast successive intervals

of around a second. When there is no change, a static image is perceived while

flickering appears when changes are present.

Quantitative evaluation can be more challenging, mainly due to the difficulty of

obtaining a valid ground-truth. Generally, an expert human observer is the most

suitable source for ground-truth data, however, over time the same person may also

give different interpretations for the same data. Considering this, an algorithm may

need to crate a ground-truth from a number of conflicting observers. An improved

approach that does not merely depend on a single observer is to use a majority

rule. Once the ground-truth is obtained, there are various standard methods that

can be used to compare the ground-truth to a candidate binary change mask.

For quantitative performance analysis, the following metrics are generally cal-

culated:

Recall = True Positive Rate (TPR) =
TP

TP + FN
(2.2)

Precision = Positive Detection Rate (PDR) =
TP

TP + FP
(2.3)

False Positive Rate (FPR) =
FP

FP + TN
(2.4)

F1-score = 2× PDR× TPR
PDR + TPR

(2.5)

where TP is the number of objects/pixels correctly identified as changed, TN is

the number of correctly identified no-change objects/pixels, FP is the number of

false change detections and FN is the number of misses/false negatives.

2.5 Tunnel surface visualisation

In this regard, visualisation, is a way of organising vast sets of images to build

a site-plan of the tunnel lining to improve the inspection process. By applying
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vision-based techniques on the generated models, technical condition evaluation

can be made remotely, reducing the human presence in the tunnels.

Conducting inspections based on photogrammetric methods, generate large

amounts of image data which need to be well organised. Image mosaicing is typi-

cally applied to stitch individual photos to build a larger image. A larger surface

FoV improves the identification of minor defects including fine cracks, that might

be missed in the single image context.

The following works use image mosaicing in tunnel environments. To build

tunnel surface panoramic images, a set of line scan cameras was built in [179].

Images are stitched together by extracting and matching feature points based on

the colour and textured differences. A modified rail carriage hosting multiple line

scan cameras and laser lights was deployed in [35] to acquire images which are later

stitched into a mosaic assuming a horse-shoe geometry. Rather than geometry,

[180–182] use SfM information to spatially register the images before stitching.

2.5.1 3D reconstruction

A tunnel 3D model gives comprehensive visual and geometric information of its

linings that can help surface documentation. Furthermore, it can be used by sur-

veyors to better contextualise the defects located during on-site visits and enables

visual validation of such defects with respect to their neighbouring regions. Since

it provides ample data to reconstruct the actual tunnel geometry, TLS is the most

used approach taken to inspect tunnel surfaces. A commercial solution which takes

this approach is [183] and a review of works on laser scanning can be found in [184].

Laser-based 3D models lack image data which can be more beneficial for inspec-

tion. In contrast, photogrammetric methods require relatively cheaper and smaller

equipment while also generating image and texture data.

Active and passive image sensor fusion was proposed in [185] for high resolution

and dense surface reconstruction. In [186], a 3D surface model is generated from

overlapping images covering the full tunnel profile. Geo-referencing and alignment
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is made using targets signalled by a laser pointer. Later, a transformation between

the known 3D Total Station (TS) signalised points and their local 3D coordinates

obtained via local bundle adjustment, is used for the global images orientation.

Dense stereo matching is made and the disparities are then used to project the

generated 3D texture on a surface mesh.

While works such as [182] assume a cylindrical shape, to deal with varying

tunnel geometries, the following use SfM techniques. In [187], the 3D geometry of

the tunnel is recovered by fitting quadratic surfaces to the generated point cloud

locally. A wire-frame 3D surface model is reconstructed and textured by image

data. The approach in [188] uses SfM to create a dense point cloud which is used

to generate a 3D mesh frame. The same images used by SfM are later used to

texture this mesh. In [189], images gathered by a stereo camera pair are used to

create high fidelity models of crack areas which are later used to analyse tunnel

wall cracks. In [190, 191], 3D scene reconstruction is employed to detect cracks in

structures.

2.5.2 Virtual reality

Virtual Reality (VR) makes use of image processing, computer graphics and mul-

timedia technology to build an interactive computer simulation, sensing the move-

ments of a user and subsequently replaces sensory feedback information so the user

can experience a sense of immersion in the simulation (virtual environment). As

discussed in [192], VR applications include those related to entertainment, design,

health-care, engineering and education. VR technology has also been applied within

different areas in civil engineering [193], including design, planning, construction

progress demonstration and monitoring/inspection. In [194], two VR-based proto-

type solutions for infrastructure maintenance planning were proposed to aid regular

monitoring of both interior/exterior wall maintenance. An inspection and report-

ing system using 3D modeling techniques, VR and multimedia was developed for

tunnels in [195].
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3 | Solution overview

This thesis aims to advance the state of the art by contributing to the field of

robotics, vision and inspection; proposing a vision-based comprehensive system to

aid structural health monitoring and to provide a better means of tunnel surface

documentation. A mobile robotic platform is equipped with sensors to acquire

data in a tunnel environment. The images are then processed to generate use-

ful inspection information through subsequent image processing and deep learning

techniques. Such data include results from pre-processing steps involving radio-

metric adjustments and specular highlight localisation as well as crack detection

and monitoring. Image fusion is employed at different stages to achieve change

detection.

3.1 Pipeline

This chapter gives an overview of the proposed solution shown in Fig. 3.1, focusing

on the highlighted area. Section 3.2 describes the data acquisition, while crack

detection and monitoring are explained in Section 3.3. An overview of specular

highlight localisation as a pre-processing step is given in Section 3.4. Change

detection is then explained in Section 3.5. The possibility of visualisation using 3D

models and VR to aid tunnel surface documentation is mentioned in Section 3.6.
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Figure 3.1: Block diagram of the proposed inspection solution

3.2 Data acquisition

The design of the data acquisition system is generally dependent on the constraints

present in the particular scenario. These include space limitations, available time

and environmental conditions. More important, the choice of the sensors utilised

depends on the data that is required; its quality, resolution and accuracy.

After an investigation in the possible sensors that can be used for tunnel inspec-

tion, visible light cameras were found to be the best option. Visible light cameras

provide the ability of inspection at a distance, in contrast to the close proximity

required by other sensors such as ultrasonic ones. Furthermore, visible light cam-

eras are compact and multiple sensors can be hosted in a relatively small space.

In general, visible light cameras are less expensive and require trivial training to

operate them.
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The primary purpose of the developed health monitoring solution is to auto-

mate inspection while reducing the on-site human presence, thus automatic image

capturing was implemented. Using the cameras’ Application Programming In-

terface (API), images are captured remotely by sending commands from a client

application to a server program hosted on the robotic platform.

Further on, during continuous market research on available camera systems used

for inspection, a camera system that was primarily designed to inspect cylindrical

infrastructures such as tunnels, was identified. A demo test of this system in the

LHC tunnel was carried out and the generated images were used to implement and

test subsequent modules of the developed solution.

3.3 Crack detection

To mitigate the disadvantages of manual inspection, multiple research works have

proposed automatic crack detection methods as a partial replacement of manual

inspections. In this research, a crack detection module is fitted within the solution

to automate part of the defect detection process. In this solution, state of the art

semantic segmentation models and an instance segmentation model are used to

compare their effectiveness at detecting cracks in an image.

Rather than merely classifying an image as containing a crack or not, such

models also generate the predicted mask for each target which is useful for further

processing. While the detection of cracks is essential, monitoring their evolution

can be even more beneficial. A temporal comparison of the detected cracks is also

proposed to identify new cracks or any changes occurring in existing ones.

3.4 Specular highlight localisation

Due to low lighting conditions, electronic flash units are added to the camera system

during image acquisition. These can cause reflections, resulting in specular higlights
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in the images. Such highlights are not constant neither in time nor in place, leading

to false detections when monitoring for changes. Therefore, a specular highlight

localisation module is used as a pre-processing stage to identify these highlights in

the reference and survey images to generate binary masks. Such highlight masks

are later fused with CMs to mask out these false change candidates.

3.5 Change detection

Timely and accurate monitoring for changes in an infrastructure provides the foun-

dation for better understanding the evolution of structural degradation. In addition

to new faults, the evolution of already existing ones including, higher level of cor-

rosion appearing on the wall and an increase in the length, depth or width of a

crack or spall are also important to identify. Hence, the change detection module

illustrated in Fig. 3.2 is included within the proposed solution.

In order to properly compare temporal images for change detection, accurate

image registration is essential. In this scenario, the images are registered using

location information from the encoder wheel attached to the robot together with a

position reference on the lining of the tunnel that is used as the starting point.

To identify changes between reference and survey images, bi-temporal image

fusion is implemented using different Pixel-based Change Detection (PBCD) tech-

niques including image differencing, PCA and Structural Similarity Index (SSIM).

Each of these methods generates a binary CM indicating the presence of change in

each pixel.

The developed solution combines the benefit of each of these different change

detection methods by using decision-level fusion. Merging of the resulting PBCD

CMs is investigated through the implementation of various fusion strategies to em-

pirically find the optimal one. Furthermore, specular highlight localisation masks

are combined to the final fused CM to minimise false change candidates.
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Figure 3.2: Block diagram of the change detection module within the proposed
inspection solution

3.6 Visualisation

The research contributions in this thesis concentrate on the part enclosed with a

red box in Fig. 3.1, however the use of different visualisation methods as a means

to aid structural health documentation was also investigated. Outputs from the

crack detection and change detection modules can be overlaid on images captured

by the data acquisition module to provide a better means of visualisation of the

automatic inspection outcome. Such inspection data can then be directly analysed

on the tunnel images, providing a better context for the findings.
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Furthermore, by organising image datasets to create a layout plan of the tunnel

linings, surface documentation can be done using a 3D model. Using the im-

ages captured by the data acquisition module, 3D models can be reconstructed.

Moreover, the output of the crack detection module can be used to re-texture the

reference 3D models to include also the identified cracks. Such tunnel wall models

provide comprehensive visual and geometric images of its environments, aiding in-

spectors to better contextualise the location of damages found during observations.

In addition, 3D information enables visual validation of defects with respect to the

areas around them.

In addition to this, with the introduction of VR, easier and more contextualised

technical condition evaluation can be conducted offline and analysed further using

a VR headset to observe the reconstructed 3D models. A game engine can be used

to generate the virtual model and refine it by changing the scale, adding lights and

other modifications through a user interface. In turn, the VR headset together

with a handheld controller can then be used to view the VR model and navigate

through the scene.
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4 | Data acquisition

This chapter describes the data acquisition module implemented within the tunnel

health monitoring solution. In this scenario, the CERN LHC tunnel is considered.

As will be explained in Section 4.1, the latter posed different environment con-

straints when choosing the acquisition method. Considering these constraints, an

investigation into the possible sensors used for infrastructure monitoring was done

and the outcome is discussed in Section 4.2. At CERN, there are currently two

mobile platforms that can be used for the LHC inspection system: TIM [196] and

CERNbot [197] which are mentioned in Section 4.3. The designed camera system

is described in Section 4.4, where details of the camera setup, automatic image

capturing and the acquired dataset, are given. Section 4.5 presents the operational

camera system and the dataset generated during the demo test.

4.1 Environment constraints

The LHC tunnel structure consists of eight straight sections connected by eight

arcs. Due to its large scale it imposes a further restraint on the data capturing

method to be used, not to be very time consuming. The main tunnel cross-section

has an internal diameter of around 3.76 m. As shown in Fig. 4.1, this cross-section

is divided into two parts:

• inner side - which is set aside for handling equipment and for the passage of

personnel (around 1.4m passageway available for inspection equipment);
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• outer side - where the machine components are installed (not available for

inspection equipment)

Figure 4.1: Cross-section of the LHC tunnel, the inner side is the passageway
available for personnel, robots etc.

As the primary priority, the developed system needs to scan the inner side

of the tunnel, which only includes the wall (including service equipment such as

extinguishers, pipes, cables etc). Consequently, the equipment to be used for data

capturing should fit the width of the inner side.

The LHC tunnel has a non-uniform environment made up of pipes, machinery,

cables and dust, amongst other conditions present within its structure. These pose

various constraints on the choice of the acquisition setup. In addition to this,

the tunnel has a limited amount of ambient light and thus some extra lighting of

adequate brightness might be required. Moreover, the amount of light varies from

one part of the tunnel to another as well as over time as some parts may not be

fully lit.

Furthermore, the time windows available for data acquisition in the LHC tunnel

are very limited. Although robots and other equipment can be remotely operated

to access the tunnel even when this is not possible to personnel, such availability

is still restricted to certain periods when the accelerator beam is turned off. In

addition, during data acquisition missions, some personnel intervention may be

required, such as setting up the equipment, imposing a further time constraint.
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4.2 Image sensors investigation

An investigation into the possible use of different techniques for inspection such as

sonic, ultrasonic, electrical and strength-based, was made. Although these methods

can offer valuable and detailed information on the tunnel wall, they should be used

in contact or close proximity to the surface. Such an approach is not feasible in a

large scale scenario such as the 27 km long LHC tunnel.

Thus, to keep up with time and space constraints, the inspection system must

be easy to set up and small in size while the method used to capture the data

should be time efficient. Taking these into consideration, an investigation into the

different possible sensors to use, was conducted. These include monocular, colour-

depth (RGB-D) and TIR cameras. Each sensor was analysed both individually and

in combination with others.

Following that, a set of images were captured using a FLIR A300 TIR camera

and an Intel RealSense RGB-D camera in order to investigate their usefulness for

a change monitoring system. Compared to the DSLR cameras, both the thermal

and RGB-D cameras provided further information that was otherwise hidden in

the visible spectrum. These include water or moisture presence in thermal images

and further information in the third dimension for cracks and other defects in the

depth images. Whilst producing supplementary data, the latter sensors usually

have a small FoV and images from multiple such sensors are difficult to register

and stitch without any human-provided input such as fiducial points or markers.

Thermal cameras cannot be used to properly identify cracks that are flat. Moreover,

active thermography is usually suggested for inspection tasks and this requires a

further heat source such as a powerful lamp making an inspection system larger

and with a high power consumption possibly requiring an added power supply.

Depth information can be useful to help with the generation of 3D models as well

as to give information on the size/shape of known defects however the primary

identification of such defects is not possible when their depth is shallow.
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Hence, for the primary purpose of crack identification and change monitoring,

visual inspection through images captured using multiple visible light cameras was

opted for. Thermal and depth cameras can be used for a deeper inspection of

specific areas with already known defects.

4.3 Mobile platforms

TIM is a remotely operated modular inspection train moving on an overhead track

installed on the LHC tunnel ceiling. For image capturing, a camera can be fixed

on a robotic arm, which extends downwards from one of the wagons as shown in

Fig. 4.2. In the future, other robotic arms, even customised for an inspection

system, can be attached to the TIM. CERNbot is an in-house developed ROV on

which different devices, such as sensors and robotic arms, can be placed to conduct

different interventions. For image capturing, it is equipped with a metal structure

on which multiple sensors can be placed as shown in Fig. 4.3.

Figure 4.2: Camera on the arm extending from one of the wagons of the TIM

Figure 4.3: Multiple cameras on the CERNbot robotic platform
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4.4 Preliminary camera system

Either Digital Single Lens Reflex (DSLR) or mirror-less cameras can be used with

both mentioned mobile platforms however the mirror-less type was preferred due

to its compactness and light weight. Only a single camera can be installed on the

current robotic arm attached to the TIM while multiple ones can be placed on

the CERNbot. Using multiple cameras, overlapping images can be captured and

stitched, allowing a larger area of the tunnel wall to be observed. Consequently,

CERNbot was selected as the mobile platform for the preliminary system.

4.4.1 Camera setup

Three mirror-less cameras facing the tunnel wall were used to gather overlapping

images of the inner wall, for a possible larger FoV via image stitching. Each one of

them was a Nikon 1 V3 mirror-less camera. Due to the close distance to the wall,

a wide angle lens of 6.7-13 mm was used to provide a sufficient FoV.

Using the given camera’s sensor dimensions, the lens focal length and the dis-

tance from the wall, the image overlap or the spacing between the cameras is

estimated. This is done by roughly assuming that the sensor lies at the centre of

the camera and that the cameras themselves are approximately aligned with each

other. The angle of view (AoV ) in an image can be calculated by using the camera

sensor dimensions and the distance from the wall:

AoV = α = 2× arctan
dims

(2× f) (4.1)

where dims is the sensor dimension and f is the focal length of the lens. Using the

AoV and d, the distance from the wall, the FoV covered by a single image can be

approximated by Eq. 4.2, where α is the angle of view.

FoV = 2×R = 2× d tan α
2

(4.2)

44



A more robust rig with multiple cameras on a vertical structure with horizontal

metal blocks as shown in Fig. 4.4 was built to replace the previous metal structure

in Fig. 4.3. These horizontal blocks are adjustable such that the cameras can

be placed at varying distances from the wall, possibly forming an arch structure.

Furthermore, the cameras themselves are attached to quick release plates which

are in turn fixed to adjustable holders such that the sensors’ orientation can be

adapted to the optimal capturing one as shown in Fig. 4.5.

(a) Robust metal rig (b) Three-Camera setup

Figure 4.4: Robust metal rig with multiple cameras on horizontal metal blocks
fixed to a vertical structure on a robust base fixed on the CERNBot

Figure 4.5: Camera attached to a quick release plate

4.4.2 Automatic image capturing

In general, closure of infrastructures to conduct inspection on roads, bridges and

tunnels, should be kept at a minimum not to disrupt traffic flow and normal op-

eration. In this scenario, since the access to the LHC tunnel is restricted to the
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technical stops, any sensor data can only be acquired during such time windows.

Hence, the time to capture the images should be kept at a minimum.

To allow this, images are captured automatically while the robotic platform is

moving. This is possible through the software interface developed using the Nikon

camera Software Development Kit (SDK) [198]. This camera interface can capture

both images and videos and save them to the SD card and/or the host computer

according to the previously defined configuration parameters. Each camera has

its own thread such that three threads are running simultaneously and once a

capture command is sent to the server, each camera takes a photo with only a

small latency due to synchronisation being done at the software level. Similarly,

when videos are required, start and stop commands sent to the server initiate and

terminate the recording on each of the three cameras. Further improvement may

involve hardware-level synchronisation.

4.4.3 Dataset

Due to the limited time periods in which the LHC tunnel can be accessed as well

as the similarities of the different sections, the datasets generated are limited to

certain small sections representative of the rest of the tunnel. Using the setup

described in the previous section, two types of datasets were generated; image and

video. A summary of the properties for each is given in Table 4.1. A few samples of

the images captured by the three mirror-less cameras while the CERNBot is moving

can be observed in Fig. 4.6. The use of video enabled the dataset generation to be

done faster as it does not require the robotic platform to be moved slowly to avoid

photo blurring. Furthermore, video frames for 3D reconstruction can provide more

complete models due to a large overlap between the frames.
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Table 4.1: Dataset summary, including data type, camera and resolution

Dataset type Camera used Resolution FPS
Images Nikon 1 V3 2607 x 1744 N/A
Video Nikon 1 V3 1920 x 1080 59

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 4.6: Samples of images captured by the three cameras on the vertical struc-
ture placed on the CERNBot

4.5 Operational camera system

Market research on camera systems used for inspection surveys was continuously

conducted throughout the project. Considering various systems suggested by dif-

ferent consultants, a demo test with the camera rig [199] that is shown in Fig. 4.7

was requested.

4.5.1 Setup of the system

The system is composed of twelve (5MP) cameras with adapted lenses, two elec-

tronic flash units, an encoder wheel, two batteries and a small computer unit with

software for camera synchronisation. For the demo test, the camera rig together

with the PC unit and batteries were placed on the CERNBot base as shown in Fig.

4.8(a) while an encoder wheel was attached to one side of the CERNBot as shown

in Fig. 4.8(b).
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Figure 4.7: Camera rig in the provisional commercial camera system

(a) Integrated system (b) Encoder wheel

Figure 4.8: Provisional commercial camera system integrated on the CERNBot

4.5.2 Demo test dataset

A system demo was performed over a short section of around 60m of the LHC

tunnel. For this demo, the adaptation of the system [199] on the CERN robot was

done together with a representative from the external company. The latter then

provided, on-site data capture and a set of raw data during the test and after,

generated 3D models and orthophotos.

The CERNbot was placed such that the camera head was at around 1.5m from

the wall. It was then driven at a speed of around 0.2m/s along a tunnel section

in one direction while capturing images from the synchronised camera set. This
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image set is referred to as DataT1. Changes were then simulated by marking crack-

like defects on the wall and inserting/moving objects in the scene. The CERNbot

was again driven for the same distance and at the same speed in the same section

capturing the dataset DataT2. A sample set of images from the camera head at a

single location is displayed in Fig. 4.9.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6 (g) Camera 7 (h) Camera 8

(i) Camera 9 (j) Camera 10 (k) Camera 11 (l) Camera 12

Figure 4.9: A sample set of images captured using the provisional commercial
camera system during the demo test in the LHC tunnel

The 3D models generated using the synchronised camera images captured dur-

ing the demo test were then unwrapped into orthophotos. Using the location

information from the encoder wheel, orthophotos could be easily registered with

high precision as shown in Fig. 4.10. These generated orthophotos were segmented

into smaller images. Each orthophoto was segmented in ten parts along its height

and each of the image crops covers 0.5m of the tunnel length. Such images were

used for training and testing of the models and algorithms of the developed system.

In the next chapters, this dataset is referred to as the LHC Dataset.
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(a) Orthophoto from DataT1

(b) Orthophoto from DataT2

Figure 4.10: Orthophotos generated from DataT1 and DataT2 captured during the
demo test
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5 | Crack detection and monitoring

To improve on manual surveys, various works have used a number of image pro-

cessing techniques to automate crack detection. Whilst they are robust in various

scenarios, these methods use shallow representations and conditions that may not

overcome the intrinsic challenges related to crack images. These include difficult

crack topology, surface texture variation, crack inhomogeneity, background com-

plexity and resemblance of objects of similar shape/texture to cracks such as joints.

To cater for these, deep learning methods have been recently used, allowing better

abstractions and generalisation without extracting fixed features. Using CNNs,

dramatic advances in cutting-edge solutions for fundamental tasks such as object

detection, were made. Here, the semantic segmentation models of SegNet [57],

U-Net [51] and Mask R-CNN [200] as an instance segmentation model, are used to

compare their effectiveness at detecting cracks in an image. Using these models, a

mask is predicted for the crack targets, which is useful for further analysis.

The rest of this chapter is structured as follows. Crack detection using semantic

segmentation is explained in Section 5.1, where an introduction on the U-Net and

SegNet models is given and the applied methodology is described. In Section 5.2,

crack detection using instance segmentation through the Mask R-CNN model is

discussed, giving related background information and details of the methodology

used. The datasets utilised for training and testing of the models are presented in

Section 5.3. A comparative analysis of the models used for crack detection is made

in Section 5.4, where quantitative and qualitative results are discussed.
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5.1 Semantic segmentation method

Semantic segmentation involves the classification of each image pixel as part of

a particular object class in order to understand the image at pixel level. In this

chapter, semantic segmentation is used to segment images of walls in order to

detect cracks using the U-Net and SegNet models. Below, is an explanation of

the two models, including background information on their architectures and the

methodology applied.

5.1.1 U-Net model

The U-Net model proposed in [51] also has an encoder-decoder architecture. In

a classical autoencoder architecture, the size of the input information is initially

reduced, along with the following layers. Later, linear feature representation is

learned in the decoder section, and the size gradually increases. At the end of the

architecture, the output size is equal to the input size. While this architecture is

ideal to preserve the output size, it compresses the input linearly, resulting in a

bottleneck in which all features cannot be transmitted. In contrast, U-Net performs

deconvolution on the decoder side (i.e. in the second half) and can overcome this

bottleneck problem, which results in the loss of features through connections from

the encoder side of the architecture.

U-Net consists of multiple convolutional layers arranged in a top-down and

bottom-up manner in different paths creating a U-shaped network.

Encoder The first path is referred to as the encoder or contracting path. It is

made up of convolutional and max-pooling layers and is used to extract features

while capturing the context in an image. As shown in Fig. 5.1, U-Net’s pipeline

involves the recurrent application of two 3 × 3 unpadded convolutions. Every

convolution is succeeded by a ReLU and a 2× 2 max-pooling operation using a

stride of 2 for downsampling.
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Decoder The second part of the U-Net network is referred to as the decoder or

expansion path. It uses transposed convolutions to enable precise localisation. In

this path, at each step, the feature map is upsampled and then a 2×2 convolution is

applied, reducing the number of channels by a factor of two. After, a concatenation

of the generated feature maps with the corresponding ones from the contracting

path is made.

Next, two successive 3 × 3 convolutional layers each followed by a ReLU are

applied. To map each feature vector to the specific classes, a 1 × 1 convolution is

used at the final layer. In total, the model has four levels in each of its two paths

with a bridge connection in between.

Figure 5.1: U-Net architecture pipeline from [51]

5.1.2 SegNet model

The architecture consists of a sequence of non-linear processing layers (encoders)

and a corresponding set of decoders followed by a pixelwise classification layer as
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illustrated in Fig. 5.2. The encoder network consists of 13 convolutional layers

(VGG16 network’s first 13 convolutional layers). In SegNet, the fully connected

layers are removed to keep higher resolution feature maps at the deepest encoder

layer and at the same time reduce the number of parameters. For every encoder

layer, there is a decoder layer. At the end, class probabilities for each pixel are

generated by a multi-class soft-max classifier.

Encoder Each block in the encoder network has a filter bank which generates

feature maps using convolutions. Batch Normalisation (BN) and an element-wise

ReLU are then applied consecutively. A max-pooling operation with a 2× 2 non-

overlapping window and a stride of 2 is performed and the result is sub-sampled

by a factor of 2. Translation invariance over minor spatial shifts in the input image

is achieved through max-pooling. Sub-sampling allows a larger spatial context for

every feature map pixel. Using multiple layers of max-pooling and sub-sampling

has the drawback of a loss in the spatial resolution of the feature maps. To cater for

this, SegNet captures and stores the encoder feature maps’ boundary information

before applying sub-sampling, using max-pooling indices. For every encoder feature

map, the points of the highest feature value in each pooling window, are kept. This

has the important advantages of retaining high frequency details in the segmented

images and also reducing the total number of trainable parameters in the decoders.

Furthermore, due to this, SegNet requires less memory than U-Net which instead

of using pooling indices, it transfers entire feature maps from the encoder to the

decoder.

Decoder For each encoder block, the corresponding decoder block upsamples

its input feature maps using the recorded max-pooling indices, producing sparse

feature maps. Following this, a decoder filter bank produces dense feature maps

on which BN is then applied. The high dimensional feature representation at the

output of the final decoder is fed to a trainable soft-max classifier which classifies

each pixel independently. Its output is a K-channel image of probabilities for
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K classes. The predicted segmentation corresponds to the class with maximum

probability at each pixel.

Figure 5.2: SegNet architecture pipeline from [57]

5.1.3 Methodology

To train both the SegNet and U-Net models for crack detection, the Keras deep

learning framework was utilised. The code in [201] was used as a basis and then,

various modifications were made to adapt the implementation to our scenario.

Although the SegNet and U-Net model architectures are different, the same

common training pipeline is used. First, the training and validation datasets are

verified, checking that each image has its corresponding mask image. Every image-

mask pair is pre-processed to the expected format at the input. The model is then

created followed by training and validation on the respective subsets.

5.1.3.1 Pre-processing

The input image is first resized to the dimensions required by the network at its

input. Such dimensions are configurable and set empirically. For faster convergence

during training, the image mean is subtracted across every individual pixel in the

image. Such a pre-processing step has the geometric interpretation of centering the

cloud of data around the origin along every dimension. Since image pixel values are

all within the 0-255 range, normalisation is implicit. The sample mean computed
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on a large training set of the ImageNet dataset [202] is used and the values of 123.68,

116.779 and 103.939 are subtracted from the R, G and B channels respectively.

5.1.3.2 Encoder architectures

Both SegNet and U-Net can be used in their original architecture format or with

other known architectures for the encoder part. In this work, Vanilla CNN, VGG16

[203] and ResNet-50 [204] based encoders are used and a comparative analysis of

the trained models is made at the end of this chapter.

5.1.3.3 Data augmentation

To learn the desired invariant features and have robustness properties, a deep learn-

ing model requires training on a large amount of data. When only a few samples

are available, data augmentation is applied to expand the variability of the avail-

able data. Here, smooth deformations of the existing image samples are generated

through vertical and horizontal flips, vertical and horizontal displacements in the

range [-20% , 20%] and rotations in the range [-45◦, 45◦].

5.2 Instance segmentation method

Semantic segmentation can locate objects in an image, separate them from the

background and cluster them based on their class. Instance segmentation further

detects each individual item within a group of objects, identifying the boundaries

for each of them. The Mask R-CNN model is an example of this.

5.2.1 Mask R-CNN model

The initial deep learning object detection methods were based on the Region-

based CNN (R-CNN) approach [205]. After, Fast R-CNN [206] was proposed to

extend R-CNN addressing multiple Region of Interest (ROI)s on feature maps using

RoI-Pooling. After that, Faster R-CNN [207] replaced the slow selective search
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algorithm by a Region Proposal Network (RPN). For pixel level segmentation,

Mask R-CNN [200] was later introduced.

Mask R-CNN is a two stage framework. The first stage scans the image and

generates proposals of areas that are likely to contain an object. The second stage

classifies the proposals and generates bounding boxes and masks. This part is

referred to as the decoder or expansion path. It uses transposed convolutions to

enable precise localisation.

Backbone The backbone architecture of Mask R-CNN identifies low level fea-

tures by the early layers while the later layers successively detect features at an

upper level. Mask R-CNN improves on this base architecture by using a Feature

Pyramid Network (FPN). High level features are propagated to lower layers, such

that features at each level have access to both their upper and lower level features.

A ResNet [208] architecture with a FPN backbone is used in this Mask R-CNN

implementation.

RPN First a RPN moves a sliding window over the backbone feature maps using

anchors distributed over the image to identify whether or not there is an object,

per location per anchor box. These anchors are boxes distributed over the image

area. Generally, there are about 200K anchors of different sizes and aspect ratios

and they overlap to cover as much of the image as possible. The RPN scans over

the backbone feature map rather than over the raw image directly, thus reuses the

extracted features efficiently and avoidS duplicate calculations.

The RPN generates two outputs for each anchor. The class specifies the fore-

ground or background implying the possible presence or not of an object. A fore-

ground (positive) anchor might not be centred perfectly over the object, so the

RPN further estimates a delta (change in x, y, width, height) to refine the anchor

box to fit the object better. Using the RPN predictions, the top anchors that are

likely to contain objects are selected and their location and size are refined.
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ROI classifier and bounding box regressor This stage runs on the regions of

interest (ROIs) proposed by the RPN. Similar to the previous stage, it generates two

outputs for each region of interest. This network is deeper and has the capacity to

classify regions to specific classes, so the class output in this case gives a particular

class rather than distinguising between foreground and background. The purpose of

bounding box refinement, is to further refine the location and size of the bounding

box to encapsulate the object.

ROI-Align Classifiers typically require a fixed input size, however, due to the

bounding box refinement step in the RPN, the ROI boxes can have different sizes.

To solve this issue, ROI-pooling is used to crop a part of a feature map and resize

it to a fixed size. To improve on the segmentation accuracy, Mask R-CNN uses

ROI-Align which samples the feature map at different points and apply a bilinear

interpolation. Unlike the ROI-pooling, ROI-Align does not adjust the input pro-

posal from RPN to fit the feature map. Instead, it splits the object proposal into

a specific number of bins. Multiple points are sampled from every bin and their

values are determined via bilinear interpolation.

Segmentation masks The final part of Mask R-CNN involves a mask branch.

This is a convolutional network that takes the positive regions selected by the ROI

classifier and generates masks for them.

When compared to Faster R-CNN, Mask R-CNN has only a minor overhead.

It has been employed to detect varying classes such as cars, animals, pedestrians,

traffic signs, buildings and nucleus segmentation in medical imaging. Here, Mask

R-CNN is used to locate cracks in concrete. The model’s pipeline is illustrated in

Fig. 5.3.
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Figure 5.3: Mask R-CNN pipeline from [209]

5.2.2 Methodology

The Mask R-CNN implementation in this system is based on that released by

Matterport [210]. It uses the Keras and Tensorflow libraries.

5.2.2.1 Transfer learning

Since only relatively small datasets were available, instead of training the network

from scratch, a transfer learning methodology was used. The model is initialised

with weights pre-trained on the COCO [211] and ImageNet [202] datasets. Modi-

fying several hyperparameters such as learning momentum, learning rate and train

ROIs per image, fine-tuned the network to adapt it to the crack data.
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Table 5.1: Different augmentation pipelines

Pipeline Functions
1 vertical, horizontal flips
2 vertical, horizontal flips

rotation, blur, brightness
3 vertical, horizontal flips

rotation, blur, brightness
contrast normalisation, crop

5.2.2.2 Data augmentation

Additionally, to improve on the lack of training data, an augmentation pipeline

was used to train the Mask R-CNN model. Experimentation with several transfor-

mations for augmentation included different rotations, vertical and horizontal flips,

blurring through a Gaussian kernel and changes in the brightness. To examine

the benefits of using data augmentation, different pipelines were assembled using

a number of functions from the imgaug library [212] and tested by training with

the respective pipelines. A short account of each pipeline is given in Table 5.1.

5.3 Crack datasets

The U-Net, SegNet and Mask R-CNN models were trained using crack images from

two datasets. One was built from a subset of the SDNET dataset [213] and the

other from images captured in the LHC tunnel as described in Section 4.5.2.

5.3.1 SDNET subset

The SDNET dataset is a benchmark image set for Artificial Intelligence (AI) crack

detection algorithms. It provides only the crack vs non-crack classification, rather

than Ground-Truth (GT) masks as required by U-Net, SegNet and Mask R-CNN

networks. Thus, a mask dataset was built using 200 256 × 256 images from the

whole SDNET set. Using the PixelAnnotationTool the crack masks were generated.
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Examples from the built dataset are displayed in Fig. 5.4. The 80/20 rule was used

to split the samples in 128 for training, 32 for validation and 40 for testing.

(a) crack image (b) GT of (a) (c) crack image (d) GT of (c)

Figure 5.4: A sample of images and their corresponding GT crack markings from
the annotated crack dataset built using a subset of the SDNET dataset

5.3.2 LHC dataset

A subset of images showing the wall areas, was chosen from the dataset mentioned

in Section 4.5.2. Then, the cracks in each of these images, were manually marked

using the same tool [214] to generate the mask annotations. The images in the

generated mask dataset have a resolution of 1885× 711, two samples of which are

displayed in Fig. 5.5. The 80/20 rule was used to split the samples into 110 for

training, 28 for validation and 34 for testing.
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(a) crack image (b) GT of (a)

(c) crack image (d) GT of (c)

Figure 5.5: A sample of images and their corresponding GT crack markings from
the annotated crack dataset built using the LHC dataset
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5.4 Comparative analysis

Experiments using different configurations of the three models were conducted to

define the optimal one by analysing the resulting values of different evaluation met-

rics. In class imbalanced scenarios, pixel accuracy can easily give a false impression

of good performance.

Thus, more reliable metrics, namely the training and validation loss and Inter-

section over Union (IoU), were used. By monitoring the loss, different configura-

tions could be analysed to empirically find the optimal one, avoiding underfitting

or overfitting issues. The IoU measures how good the segmentation prediction (SP)

matches the corresponding GT annotation by dividing their intersection by their

union:

IoU =
intersection

union
=
GT ∩ SP
GT ∪ SP (5.1)

5.4.1 Quantitative results

Crack images from both the SDNET subset and the LHC dataset were used to

train the U-Net, SegNet and Mask R-CNN models using different configurations

and hyperparameters. To evaluate their individual and relative performance, the

loss and resulting IoU of each model were analysed as discussed below.

5.4.1.1 SDNET

When considering the U-Net and SegNet models, each of them was trained for

200 epochs using the SDNET subset, however the models’ loss levelled off even

before 100 epochs as can be observed in Fig. 5.6. When comparing these curves

with the validation ones displayed in Fig. 5.7, one can observe that the latter are

not as consistent. In general U-Net performed better and had a more consistent

decaying loss when using it with Vanilla and VGG16 encoder architectures. During

training, the IoU value was also monitored. This had a fairly consistently increasing
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behaviour for any of the trained models, however during validation, the U-Net

model performed better implying improved generalisation. Furthermore, testing

the models on the testing dataset confirmed that for the SDNET subset, the U-Net

model with a VGG-based encoder had the best segmentation performance with the

highest mean IoU value of 0.73 as recorded in Table 5.3.

The Mask R-CNN model was initialised with weights pre-trained on the Ima-

geNet and COCO datasets for the ResNet-50 and RestNet-101 backbones respec-

tively. Upon training the model with these two backbones and using different

hyperparameters, it was noted that ResNet-101 pre-trained on the COCO dataset

performed marginally better. During training of the Mask R-CNN model with a

ResNet-101 backbone, the classification and mask losses were monitored to iden-

tify the number of epochs at which the model had a high probability of giving the

best performance. The class loss is the RPN anchor classifier loss and it reflects

the confidence at which the model predicts the class labels. The mask loss is the

output of a cross entropy loss function applied to the mask branch of the network

and it penalises wrong per-pixel binary classifications.

Different training schedules were used to train the model, including training

solely the heads of the network, training all the layers of the network and a com-

bination of both, with the latter outperforming the others. The plots shown in

Fig. 5.8, show the losses when the heads were trained for 50 epochs followed by

training all the layers for another 250 epochs using a permanent learning rate of

0.001. As observed here, training further than 200 epochs did not do any major

improvements to the network. To confirm this, predictions on the testing subset

were done with the trained model at 200, 250 and 300 epochs, obtaining the highest

IoU value at 200 epochs as observed in Table 5.2.
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Table 5.2: Mean IoU from the Mask R-CNN model trained for different number of
epochs on the SDNET subset

Number of Epochs Mean IoU
200 0.68
250 0.66
300 0.67
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(a) U-Net

(b) SegNet

Figure 5.6: A plot of the cross entropy loss during training of U-Net and SegNet
models with different encoder architectures, on the SDNET subset
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(a) U-Net

(b) SegNet

Figure 5.7: A plot of the cross entropy loss during validation of U-Net and SegNet
models with different encoder architectures, on the SDNET subset
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Experiments of training with the different augmentation pipelines listed in Table

5.1 were done, and the optimal results were obtained when using Pipeline 3. Hence,

using the Mask R-CNN model with a ResNet-101 backbone, trained for 200 epochs

with a fixed learning rate and a data augmentation pipeline involving horizontal and

vertical flipping, rotation, brightness, blur, contrast normalisation and cropping

resulted in the optimal configuration to generate the highest mean IoU value of

0.68.

When comparing all the trained networks, Table 5.3 shows that, for the SDNET

subset Dataset, the U-Net with a VGG16-based encoder generated the highest

mean IoU with a value of 0.73.

Table 5.3: IoU from the different models trained on the SDNET subset

Model Mean IoU
U-Net 0.70
U-Net with VGG16 0.73
U-Net with ResNet-50 0.56
SegNet 0.54
SegNet with VGG16 0.68
SegNet with ResNet-50 0.53
Mask R-CNN with ResNet-101 0.68

68



(a) Class Loss

(b) Mask Loss

Figure 5.8: The plots of the class loss and mask loss while training Mask R-CNN
on the SDNET subset
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5.4.1.2 LHC

Similar to the training procedure for the SDNET dataset, each of the U-Net and

SegNet models was trained for 200 epochs however, the models’ loss levelled off

even before 100 epochs as can be observed in Fig. 5.9. Also, when comparing

the training curves with the validation ones displayed in Fig. 5.10, the latter were

not as consistent. One can observe that the latter had lower values for the U-Net

model.

Similar to the previous dataset, when monitoring the IoU, a fairly consistently

increasing behaviour for any of the trained models was observed. In contrast, dur-

ing validation, the U-Net model performed better implying better generalisation.

Furthermore, testing the models on the testing subset confirmed that for the LHC

dataset, the U-Net model with a ResNet-based encoder had the best segmentation

performance with the highest mean IoU value of 0.72 as recorded in Table 5.5.

Again, for this dataset, the Mask R-CNN model was also initialised with the

ImageNet and COCO pre-trained weights for the ResNet-50 and RestNet-101 back-

bones respectively. Upon training the model using different configurations, the

one with a ResNet-101 backbone pre-trained on the COCO dataset performed

marginally better overall.

Hence, the Mask R-CNN model with a ResNet-101 backbone architecture was

trained with different hyperparameters, and the classification loss and the mask

loss were monitored in order to identify the number of epochs at which the model

had a high probability of giving the best performance.

To train this dataset, the same training schedules utilised with the SDNET

subset, were adopted. The plots displayed in Fig. 5.11, show the losses when

the heads of the network were trained for 50 epochs followed by training all the

layers for another 250 epochs using a fixed learning rate of 0.001. As noted here,

training further than 200 epochs did not result in any major improvements to the

network. To confirm this, predictions on the testing subset were done with the

trained model at 200, 225 and 250 epochs, obtaining the highest IoU value at 200
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epochs as observed in Table 5.4.

Furthermore, training with the different augmentation pipelines listed in Ta-

ble 5.1 was made. The optimal results were attained using only horizontal and

vertical flipping. Hence, using the Mask R-CNN model with a ResNet-101 back-

bone, trained for 200 epochs with a fixed learning rate and a data augmentation

pipeline involving flipping resulted in the optimal configuration to generate the

highest mean IoU with a value of 0.57.

Table 5.4: Mean IoU from the Mask R-CNN model trained for different number of
epochs on the LHC dataset

Number of Epochs Mean IoU
200 0.57
225 0.55
250 0.54

Table 5.5: IoU from the U-Net, SegNet and Mask R-CNN models trained on the
dataset built from images in the LHC Tunnel

Model Mean IoU
U-Net 0.70
U-Net with VGG16 0.61
U-Net with ResNet-50 0.72
SegNet 0.63
SegNet with VGG16 0.61
SegNet with ResNet-50 0.72
Mask R-CNN with ResNet-101 0.57

When comparing all the trained networks, Table 5.5 shows that, for the LHC

dataset, both the U-Net and SegNet with a ResNet-50-based encoder generated

the highest Mean IoU with a value of 0.72.
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(a) U-Net

(b) SegNet

Figure 5.9: A plot of the cross entropy loss during training of U-Net and SegNet
models with different encoder architectures, on the LHC dataset
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(a) U-Net

(b) SegNet

Figure 5.10: A plot of the cross entropy loss during validation of U-Net and SegNet
models with different encoder architectures, on the LHC dataset
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(a) Class Loss

(b) Mask Loss

Figure 5.11: The plots of the class loss and mask loss while training Mask R-CNN
on the LHC dataset
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5.4.2 Qualitative results

A further qualitative interpretation of the results from training the different net-

works on both datasets was done. In this section, a sample of these is presented,

while further examples can be referred to in Appendix B.

5.4.2.1 SDNET

From the quantitative results, the semantic segmentation method using the U-

Net model with a VGG16 encoder network resulted in the highest IoU. Moreover,

when comparing the sample results in Fig. 5.12 and Fig. 5.13, the U-Net model’s

performance was in general better, with the U-Net model with a VGG16 based

encoder showing the segmentation results closest to the corresponding GT mask.

The trained Mask R-CNN model also generated segmentation maps very close to

the GT, for the same sample images as shown in Fig. 5.14. However, drawbacks

of the Mask R-CNN include a larger architecture and longer training time.

(a) Crack images (b) GT masks of (a)

(c) U-Net with Vanilla CNN encoder (d) U-Net with VGG16 encoder

(e) U-Net with ResNet-50 encoder

Figure 5.12: Crack detection results using the U-Net model on the SDNET subset
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(a) Crack images (b) GT masks of (a)

(c) SegNet with Vanilla CNN encoder (d) SegNet with VGG16 encoder

(e) SegNet with ResNet-50 encoder

Figure 5.13: Crack detection results using the SegNet model on the SDNET subset

5.4.2.2 LHC

The quantitative results from the LHC dataset presented in Section 5.4.1.2, imply

that the semantic segmentation models with a ResNet-50 encoder network both

resulted in the highest IoU. This is also observed in the following sample image in

Fig. 5.15 where the U-Net and SegNet model’s performance outcome was better

than that of Mask R-CNN, with the segmentation maps being very close to the

corresponding GT of each image.

Considering further images from the LHC dataset such as those in Appendix B,

the U-Net with a ResNet-50 encoder generated the best results in general. Hence,

this trained model was used in the final implementation of the crack detection

module of the developed monitoring solution.
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(a) Crack images (b) GT masks of (a)

(c) Mask R-CNN

Figure 5.14: Crack detection results using the Mask R-CNN model on the SDNET
subset

(a) Crack image (b) GT (c) U-Net (d) SegNet (e) Mask R-CNN

Figure 5.15: Original crack image example from the LHC dataset and its corre-
sponding GT mask together with the resulting crack detection results using Mask
R-CNN with ResNet-101 backbone and both U-Net and SegNet with a ResNet-50
encoder

When considering both datasets, U-Net achieved better overall results when

compared to the other models. This is mainly attributed to a smaller and simpler

architecture. U-Net has a lower number of model parameters and therefore well

suited the relatively small datasets that were available for training.

77



5.5 Class-specific object-based change detection

While the detection of cracks is important, monitoring their evolution can be even

more beneficial. By applying change detection techniques to images from different

times, temporal comparison of the detected cracks can be made to find any changes

occurring due to new changes or an evolution in existing ones. One approach of

change detection is Object-based Change Detection (OBCD). Rather than using

individual pixels as in PBCD, this uses image objects.

OBCD methods usually involve a two-step process: object extraction and object

correspondence. The former usually involves a combination of segmentation and

connectivity analysis and is applied to N temporal images, such that the outcome

is N sets of objects. Secondly, the objects in one set are compared to those in the

other sets, using attributes like the area, perimeter and centroid.

5.5.1 Temporal comparison of cracks

In this bi-temporal scenario, a class-specific OBCD approach is used. Cracks in

the reference and survey images are extracted as ‘objects’ using the crack detection

deep learning model and then compared using geometrical properties.

First, crack masks corresponding to the reference and survey images such as

the ones shown in Fig. 5.16, are retrieved. Morphological closing is then applied to

fill in any missing parts of the crack. Connectivity analysis is then made to extract

the different crack bounding boxes separately as displayed in Fig. 5.17.
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(a) reference (b) survey

Figure 5.16: Crack masks corresponding to (a) reference and (b) survey image

(a) reference (b) survey

Figure 5.17: Crack bounding boxes corresponding to cracks in the (a) reference
and (b) survey image
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Figure 5.18: Flow diagram for the crack comparison procedure
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Comparison of ‘object’ properties is then made using the location, width and

height of the crack bounding boxes as depicted in the flow diagram in Fig. 5.18.

For each crack in the survey image, the width and height ratios with respect to

every crack in the reference image are calculated. If the width and/or height ratios

show that the cracks are similar in dimensions, the IoU with respect to the same

crack in the reference image is calculated. If this is above 0 then a match is implied.

If the IoU is higher than a pre-defined threshold, a ‘known crack’ status is assigned

to the crack. If IoU is greater than 0 but less than the threshold, the crack is

marked as a ‘changed crack’. If none of the conditions are satisfied for any of the

reference cracks, the crack is assigned a ‘new crack’ status.

Once all the cracks in the survey images are assigned a status, the unmatched

cracks in the reference images are recorded. This is done to cater for cases where

the crack detection module detected a crack in the reference image but did not

detect the same crack in the survey image, thus this should not be considered as a

change.

Considering the scenario in Fig. 5.17, the survey image contains a crack which

was also detected in the reference image and a new one, thus as shown in Fig. 5.20,

crack [0] is marked as a ‘new crack’ while the other is a ‘known crack’.

In another scenario displayed in Fig. 5.21, the survey image contains a new crack

in the same area in which a crack was already identified in the previously captured

reference image. Furthermore, the common cracks were detected differently in the

reference and survey images, thus as shown in Fig. 5.22, crack [0] is marked as a

‘new crack’ while the other is a ‘changed crack’.

Such an approach to change detection is beneficial for systems in which exact

image registration is not possible. Using this OBCD method, crack monitoring

can still be done to identify changes in cracks over time. During this research,

registered images were later readily available, thus, for this solution, a general

change detection using PBCD techniques was later implemented as will be discussed

in Chapter 7.
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5.6 Contributions summary

The contributions from the work described in this chapter include:

• using deep learning models to automate crack detection;

• monitoring of cracks (new and/or changed) over time using image processing

and OBCD techniques;

• building groundtruth datasets of masks on images from a subset of a standard

crack image set as well as a set of images captured in the LHC tunnel.
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Figure 5.19: Crack detection example 1

Info[CH-CR002] ref 0, survey 0 IoU=0, width ratio =0.37 , height ratio =0.95
Info[CH-CR002] ref 0, survey 1 IoU =0.55 , width ratio =0.687831 , height ratio =0.80
Info[CH-CR001] 0: newCrack
Info[CH-CR001] 1: knownCrack

Figure 5.20: Crack comparison result listing the status of each identified crack in
example 1
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(a) reference (b) survey (c) comparison

Figure 5.21: Crack detection example 2, displaying bounding boxes corresponding
to cracks in the (a) reference and (b) survey image and (c) the comparison result

ref 0, survey 0 IoU=0.19, width ratio =0.50, height ratio =0.38
ref 0, survey 1 IoU=0.46, width ratio =0.65, height ratio =0.62
Results:
[0]: new crack
[1]: changed crack

Figure 5.22: Crack comparison result listing the status of each identified crack in
example 2
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6 | Specular Highlight Localisation

Specular highlights occur from an electronic flash unit or continuous light falling on

a reflective surface. These are ubiquitous in the physical world however, they neg-

atively impact the performance of segmentation, detection or matching algorithms

in computer vision applications. When light falls on a boundary between two dif-

ferent media, it immediately reflects back to the medium it came from. The visual

appearance of such specular reflections is known as a specular highlight. Applica-

tions involving visual recognition, object tracking, stereo reconstruction or change

detection, require consistent object appearance, and hence the need to identify such

highlights and/or correct them.

When electronic flash units are used during image acquisition, they can cause

specular highlights which are not constant in each image. During image acquisition

in the LHC tunnel, the two electronic flash units on the camera system described

in Section 4.5, caused reflections on metal racks on the wall and the beamline,

resulting in specular highlights in the images. Such highlights are not constant

neither in time nor in place, leading to false detections when comparing images

to identify changes. Hence, a specular detection module was developed as a pre-

processing stage to the change detection algorithm in order to localise these areas.

The rest of this chapter is structured as follows. An introduction to specular

highlight detection is made in Section 6.1, where related previous works are also

mentioned. The semantic segmentation method used to localise the highlight areas

is introduced in Section 6.2. Methodology details are presented in Section 6.3 while

the datasets used for training and testing the models are described in Section 6.4.
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Experiments of varying configurations of the U-Net model with different encoder

architectures are explained in Section 6.5, where quantitative and qualitative results

on the used datasets, are discussed.

6.1 Specular highlight detection

To detect these highlights, there are different types of segmentation approaches

that can be adopted, including those involving thresholding, edge detection and

clustering. An analytical survey in [215] discusses different methods for specular

highlight detection.

A common approach is that of intensity thresholding, using either a fixed or

an adaptive value that is set automatically. This works best when the threshold

context is darker and the image dynamic range is well distributed. When applied

to specular-free images this method might produce false positives such as white

objects while images with specularities do not necessarily have a peak at the end

of the histogram. Another general issue of this approach is the over/under esti-

mation of highlight areas. In some works, instead of setting a global threshold, an

adaptive threshold from different image channels is used to isolate highlight areas.

In addition, other works use varying colour spaces where the threshold on one or

more channels is estimated dynamically using information from the histogram of

the same channel and/or brightness calculated using intensity values. Dimension-

ality reduction and optimisation algorithms can also be used to isolate specular

reflections by mapping the colour distribution between images of an object un-

der different illumination conditions. While these methods are relatively simple

to implement and incur low computational cost, they have various limitations as

mentioned above.

To mitigate such issues, machine learning has also been used to detect specular

highlights. In [216], a perceptron neural network is implemented to classify specular

regions. To detect highlights in endoscopic images, a deep learning approach based
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on the SegNet architecture is used in [217]. The SegNet architecture is trained on

pairs of images and dense per-pixel labels. For reflection segmentation, the labels

specify whether a pixel is part of a reflection or not.

To detect specular highlights on objects in images captured in the LHC tun-

nel, semantic segmentation is used. In particular, the U-Net [51] model is used as

the basis architecture, to which, some modifications were done. The following sec-

tions describe the methodology used and experiments done with different backbone

architectures for the same model.

6.2 U-Net semantic segmentation

The original U-Net architecture described in Section 5.1 is used. As illustrated

in Fig. 6.1, a few modifications to this baseline model were made. These include

a reduction in the model size, the introduction of BN and usage of dropout, as

explained in [218].

U-Net combines the location information from the downsampling path with

the contextual information in the upsampling path to finally obtain information

combining localisation and context, which is necessary to predict a good segmenta-

tion map as required by specular highlights localisation. Compared to other image

processing methods such as thresholding, this method generalises better and does

not depend on any predefined values. Considering the limited number of available

training data samples, U-Net was a natural choice for the base architecture as it

requires relatively small amounts of training samples.

6.3 Methodology

The modified architecture in Fig. 6.1 consists of three convolutional blocks for

each of the downsampling and upsampling paths. Each block contains two 3 × 3

convolutional layers each followed by a ReLU. A 2 × 2 max-pooling layer follows
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Figure 6.1: U-Net model with the proposed modifications

each convolutional block. In this path, the number of channels increases from the

input three-channel image, N = 3 to N = 32 for the first block up to N = 256.

In the upsampling phase, convolutional blocks are correspondingly symmetric to

those in the downsampling path, decreasing the number of channels from N = 256

to N = 32. As opposed to the architecture in [51], a BN layer is inserted after each

convolutional layer. Furthermore, experiments with dropout at different locations

within the architecture were made.

6.3.1 Batch normalisation

A BN layer is added after each 3× 3 convolution in the convolutional block. This

normalises activations in a network, across the mini-batch during training and

restricts them to have a zero mean and unit variance reducing the internal covariate

shift. BN is added to the modified architecture to speed up the convergence during

training and to apply an indirect regularisation term to avoid overfitting.

6.3.2 Dropout

During training, neurons develop co-dependency amongst each other, which re-

strains the individual power of each neuron and leads to overfitting of training

data. To mitigate this, dropout is generally used, providing implicit data augmen-
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tation. When using dropout, at each training stage, individual nodes are dropped

with a pre-defined probability p, indirectly reducing the network size. The dropout

step does not change the volume size of the output as it has no trainable parame-

ters. Different configurations with no dropout or dropout p = 0.2 after each level

or at the end, were tested.

6.3.3 Training and optimisation

During training, the Adadelta optimiser [219] was used. This optimiser adapts

the learning rate based on a moving window of gradient updates, rather than

accumulating all past gradients. In this way, Adadelta continues learning even

after many updates have been made. The optimiser was initialised with a learning

rate of 1.0 and a decay factor of 0.95. The weights of the network layers were

initialised using the Xavier uniform initialiser which draws samples from a uniform

distribution within [−limit, limit], defined by:

limit =

√
6

(fanin + fanout)
(6.1)

where fanin and fanout are the number of input and output units in the weight

tensor.

6.3.4 Data augmentation

The successful implementation of deep learning models requires a large amount of

varied training data. To enable the network to learn the desired invariance and

robustness properties, a large number of training data is essential otherwise data

augmentation is essential. Here, smooth deformations of the existing image samples

through vertical and horizontal flipping, vertical and horizontal displacements in

the range [-20%, 20%] and rotations in the range [-45◦, 45◦] are generated.
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6.4 Highlights datasets

To train and test the network, two different datasets were used. In the following

sections, these are referred to as the PURDUE set and LHC set. The former is a

publicly available dataset with highlights on different objects while the latter was

built from images captured in the LHC tunnel.

6.4.1 PURDUE set

The generic specular highlights dataset PURDUE RVL SPEC-DB [220] was used.

This dataset contains 300 images with specular highlights under three different

conditions, namely ambient, directed and diffused. The images in this dataset

have a resolution of 150× 150 and consist of objects of different sizes, colours and

materials. The dataset contains GT segmentation images corresponding to 200

of these images. The 80/20 rule was used to divide the data in 128 images for

training, 32 for validation and 40 for testing. Fig. 6.2 presents two samples from

this dataset. As observed in Fig. 6.2(b), the masks provided by [220] contain

pixels with white representing background and black representing the highlights.

However, to train the proposed segmentation network for n classes, pixels should

have values (1, 2, ...n) to represent the segmentation classes while the background

is represented by ‘0’. Hence, the original masks were inverted, with ‘0’ assigned to

the background and ‘1’ to highlight areas as shown in Fig. 6.2(c).

6.4.2 LHC set

A subset of images, was chosen from the dataset mentioned in Section 4.5.2. These

images have a resolution of 1885× 711. To generate the masks, the specular high-

lights in each of these images were manually marked using an annotation applica-

tion [214]. Fig. 6.3 shows two samples from the generated mask dataset. Similar

to the previous dataset, ‘0’ was assigned to the background and ‘1’ to highlight
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(a) original images

(b) GT

(c) inverted GT

Figure 6.2: A sample of images and their corresponding original GT mask from
the PURDUE dataset [220] and the inverted mask

areas. The 80/20 rule was used to divide the data in 76 images for training and 18

for validation. The remaining 24 images were used for testing.

(a) scene A (b) GT of (a) (c) scene B (d) GT of (c)

Figure 6.3: A sample of images and their corresponding GT markings from the
annotated specular highlights dataset built using the LHC dataset
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6.5 Experiments and results

The U-Net Keras implementation in [201] was used. The previously discussed

modifications to the original architecture were then made on this. Furthermore,

the model was also trained with other encoder architectures, including those based

on VGG16 and ResNet-50.

6.5.1 Quantitative results

Different configurations of the U-Net model with the proposed encoder modifica-

tions were trained and analysed through different evaluation metrics. The model

loss, IoU, and F-score were monitored during both training and validation to em-

pirically define the optimal configuration.

The F-score multiplies the intersection area of the predicted segmentation and

GT by two and divides it by the total number of pixels in both images as defined

by:

F − score = 2× intersection

union
=
GT ∩ SP
GT + SP

(6.2)

The IoU, on the other hand, divides the intersection area by the union of the

predicted segmentation and GT. Although as shown in Eq. 5.1 and 6.2, these

metrics are very similar, in general, the IoU metric tends to inflict a higher penalty

on single instances of bad classification than the F-score, quantitatively. The IoU

metric tends to have a ‘squaring’ effect on the errors relative to the F-score. Hence,

the F-score tends to describe the average performance, while the IoU score implies

the worst case performance. By studying the loss, different configurations were

analysed to find the optimal one, avoiding any underfitting or overfitting issues.

To analyse the segmentation performance, two IoU-based metrics were used;

mean IoU and frequency-weighted IoU defined by:
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mean IoU =
1

k
.

k∑

i=1

nii

ti − nii +
∑k

j=1 nji
∈ [0, 1] (6.3)

frequency − weighted IoU = (
k∑

i=1

ti)
−1.

k∑

i=1

ti.
nii

ti − nii +
∑k

j=1 nji
∈ [0, 1] (6.4)

where k is the number of classes and nji with i, j ∈ 1, 2, ..., k is the number of

pixels which belong to class i but were labelled as class j. While, the ground-truth

total number of pixels for class i is given by:

ti =
k∑

i=1

nji (6.5)

The mean IoU calculates the mean of all class results. The frequency-weighted

IoU is an extension of the previous metric used to better interpret results in class

imbalance scenarios. If a class dominates most part of the images in a dataset such

as the background, it needs to be weighed down compared to other classes. Thus

instead of taking the mean of all the class results, a weighted mean is taken based

on the frequency of the class region in the dataset.

6.5.1.1 PURDUE set

For the PURDUE dataset, first the U-Net model with the proposed encoder ar-

chitecture was trained with a batch size of 1. It was observed that the F-score

kept increasing during both training and validation. As for the loss, the curve

seemed to behave differently for training and validation, where the validation loss

was constantly oscillating at higher values than during training.

The same model was then trained using a batch size of 20 and inserting a BN

layer after each convolutional layer. As shown in Fig. 6.4, the performance of

the network improved, with the training and validation curves for both the Cross-

Entropy loss and F-score being very close to each other implying no overfitting.
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In addition to this, as depicted in Fig. 6.4, the validation loss did not improve

after 120 epochs. Considering this, in the experiments that followed, the network

was trained for 120 epochs. Following this, using a batch size of 20 with BN,

experiments with the use of dropout within the network were made. The optimal

configuration was empirically found to be a dropout after each stage as shown in

Fig. 6.1. Considering the small amount of available images, a data augmentation

pipeline using the transformations described in Section 6.3.4 was used.

Table 6.1: Summary of results on the PURDUE dataset during the validation of
the U-Net model with different encoder architectures

Encoder Frequency- Mean
architecture weighted IoU IoU

ResNet 0.80 0.70
VGG 0.77 0.68

MobileNet 0.81 0.70
Proposed 0.83 0.75

In addition, the U-Net model was also trained using different architectures for

the encoder including VGG16 and ResNet-50. Metric results in Table 6.1 show

that, for the relatively small dataset available, the proposed encoder network with

a smaller and simpler architecture, could achieve better overall results, achieving a

highest frequency weighted and mean IoU of 0.83 and 0.75 respectively.
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(a) F-score for batch size = 20, using BN

(b) Loss for batch size = 20, using BN

Figure 6.4: F-score and loss from the U-Net model with the proposed encoder
architecture during training and validation on the PURDUE set
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6.5.1.2 LHC set

Similarly, several experiments were conducted to train and test the model on the

LHC set. These include varying configurations of the proposed encoder architec-

ture, with and without BN, different batch sizes and dropout at different stages

within the network. In addition, the U-Net model was also trained with different

encoder architectures, to compare the performance with the proposed architecture.

The model was trained with a batch size of 1 and later with a batch size of 20

with BN. For both experiments, different configurations with no dropout or dropout

p = 0.2 after each level or at the end, were tested. The optimal configuration was

empirically found to be a dropout after each stage as shown in Fig. 6.1. A better

general performance is observed when using a batch size of 1, where during both

training and validation, the values of F-score in Fig. 6.5 and IoU in Fig. 6.6 are

higher, while the loss in Fig. 6.7 is lower than when using a batch size of 20.

The U-Net model was trained using different architectures for the encoder in-

cluding VGG16 and ResNet-50. In general, the training and validation curves for

F-score in Fig. 6.8, IoU in Fig. 6.9 and loss in Fig. 6.10 imply that the U-Net

with a VGG16 encoder architecture performed better. From these plots, one can

also observe that the network did not exhibit any significant improvement after 75

epochs. Thus, the checkpoint at 75 epochs was used to test the models on the ‘test’

subset. From the results in Table 6.2, the proposed modified architecture with a

smaller and simpler architecture than VGG16 or ResNet-50, achieved better over-

all results when tested on a subset of new images, achieving the highest frequency

weighted and mean IoU values of 0.98 and 0.80 respectively.

Table 6.2: Validation results on the LHC dataset for different encoder architectures

Encoder architecture Frequency-weighted IoU Mean IoU
ResNet 0.97 0.73
VGG 0.98 0.76

Proposed 0.98 0.80
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Figure 6.5: Plots of training and validation F-score for the LHC set using the U-Net
model with different batch sizes
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Figure 6.6: Plots of training and validation IoU for the LHC set using the U-Net
model with different batch sizes
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Figure 6.7: Plots of training and validation loss for the LHC set using the U-Net
model with different batch sizes
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Figure 6.8: Plots of training and validation F-score for the LHC set using the U-Net
model with different encoder architectures
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Figure 6.9: Plots of training and validation IoU for the LHC set using the U-Net
model with different encoder architectures
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Figure 6.10: Plots of training and validation loss for the LHC set using the U-Net
model with different encoder architectures
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6.5.2 Qualitative results

6.5.2.1 PURDUE set

As observed in the test images in Fig. 6.11, when comparing the segmentation

results with the GT masks, the proposed architecture identified the specular high-

lights very well. Compared to other larger encoder architectures, such as VGG16

and ResNet-50, in general, the proposed architecture gives less false positive areas.

(a) Original images

(b) GT masks (c) U-Net with proposed encoder

(d) U-Net with VGG16 encoder (e) U-Net with ResNet-50 encoder

Figure 6.11: Comparison of the GT (b) and segmentation masks on the PURDUE
set, from U-Net with (c) the proposed architecture and (d)-(e) other architectures
for the encoder

6.5.2.2 LHC set

Similarly, as observed in the test images in Fig. 6.12 and 6.13, the U-Net model

with the proposed encoder architecture generated segmentation maps very similar

to the GT ones. Compared to the larger architectures, VGG16 and ResNet-50, the

proposed encoder, produced less false positive areas.
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(a) GT (b) proposed (c) VGG16 (d) ResNet-50

Figure 6.12: Example 1 of a comparison of the highlight detection results using
U-Net with (b) the proposed modified architecture and (c)-(d) other architectures

(a) GT (b) proposed (c) VGG16 (d) ResNet-50

Figure 6.13: Example 2 of a comparison of the highlight detection results using
U-Net with (b) the proposed modified architecture and (c)-(d) other architectures
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Summarising the quantitative and qualitative results discussed in this chapter

and other sample results presented in Appendix C, the U-Net with the proposed

encoder architecture with a dropout of 0.2 at every stage and a batch size of 1,

generated the best results in general. Hence, this trained model was used in the final

implementation of the specular highlight localisation of the developed monitoring

solution.

6.6 Contributions summary

The work described in this chapter makes several contributions including the:

• proposal of a modified U-Net-based architecture for the purpose of specular

highlight localisation

• generation of a groundtruth dataset of masks on image captured in the LHC

tunnel;

• detection of specular highlights as a pre-processing step to subsequent inspec-

tion stages.
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7 | Change detection

The majority of recorded works related to automatic tunnel inspection generally

identify cracks and other deformities along the tunnel linings. Some of them, further

classify the defects in terms of their type and/or severity. Whilst defect identifica-

tion is beneficial to automate inspection, regular monitoring of tunnel linings can

provide a more useful and informative survey to further automate inspections and

analyse the structural health over time.

Detecting regions of change in multiple images captured at the same place

but at different times is of widespread interest, providing a fundamental analysis

tool in fields such as traffic and pedestrian surveillance, medical diagnosis, remote

sensing and civil infrastructure. Thus, a considerable amount of research in change

detection has been carried out however, works on change detection specific to tunnel

environments are still lacking. Taking the above into consideration, in addition

to crack detection, the developed tunnel structural health monitoring solution,

includes also a change detection module. Using different data fusion techniques, it

offers a means to automatically monitor for changes on tunnel wall lining.

The rest of this chapter is organised as follows. Section 7.1 introduces the

need of pre-processing and explains the related stages. The ideal change detection

scenario is presented in Section 7.2. Section 7.3 reports the implemented PBCD

methods. The implementation of decision-level fusion to merge the different CMs

and specular highlight masks is described in detail in Section 7.4. The CM analysis

applied to obtain the final change components is explained in Section 7.5. Finally

a performance evaluation of the change detection algorithm is made in Section 7.6.
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7.1 Pre-processing

Whilst making sure that all actual changes are not missed, it is also beneficial if

false detections are kept at a minimum. In civil infrastructure, changes in images

can be due to new cracks, spalls or other defects as well as due to the evolution

of already existing defects. Unfortunately, computer vision solutions have to face

other possible sources of changes that include different lighting sources, uneven

illumination, image noise and registration errors in some areas of the image. Such

regions should be identified as a nuisance to prevent them from being propagated

in a change detection pipeline giving rise to false changes. To cater for the above,

images are first pre-processed to correct for uneven illumination and to localise

specular highlights to prevent them from reducing the precision of the change

detection system.

7.1.1 Uneven illumination correction

Lighting falling on certain areas only, varying light colour, shadows set from differ-

ent light source directions and vignetting by the camera lens cause non-uniformity

in images as shown in Fig. 7.1. Furthermore, these conditions lead to a varying

appearance of scene objects and imply nuisance changes when comparing images.

This raises the need for illumination correction.

Figure 7.1: Light variation in the LHC tunnel
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To correct uneven illumination, there are two approaches. Prospective cor-

rection involves capturing additional images; namely a dark image of the scene

background with no light or a bright image of the scene background with light but

without objects that can be later used to correct the required image. Retrospective

correction uses an estimate of the background from the image to be corrected itself.

In this scenario, the prospective approach cannot be used since it is not practical to

take a sample bright/dark image at each capture position along the tunnel, hence

a retrospective approach was adopted.

Uneven illumination can be represented by the multiplication of the ‘perfect

image’ and a ‘shading function’ as described by:

I(x, y) = Iideal(x, y)× S(x, y) (7.1)

where I(x, y) represents the image having uneven illumination, Iideal(x, y) is the

‘perfect image’ and S(x, y) defines the shading function.

Unnaturally darker image areas can be caused by lighting not reaching certain

areas or camera lenses causing a decreased brightness from the centre of the image

to its ends, known as vignetting. Shadow consists of low frequency content that

can be represented by low-pass filtering the original image and then isolated to

get the ‘perfect image’. Here, the shading algorithm proposed in [174] is applied

to adjust the uneven illumination. First, the image is low-pass filtered by a large

kernel median filter. Then, using Eq. 7.1, the shading corrected image is attained

through a division of the original image by the low-pass filtered image element-wise.

As illustrated in Fig. 7.3(a), subtracting the original images in Fig. 7.2 (a) and

(b) after converting them to greyscale generates a difference image full of ‘white

areas’ implying change, however this is only due to the uneven illumination. On the

other hand, when the images are pre-processed to correct the uneven illumination,

as displayed in Fig. 7.2 (c) and (d), their difference image does not have any ‘white

areas’ due to the change in lighting as shown in Fig. 7.3(b).

This method simultaneously discards the uneven illumination and ameliorates
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(a) Rorig (b) Sorig (c) Rcorr (d) Scorr

Figure 7.2: The original (a) reference and (b) survey images at a particular position
and the corresponding (c-d) illumination corrected images

the contrast in the image such that wall ‘features’ are better distinguished from

the ‘white’ background. The computation time required is significant due to the

filtering stage and the division operation, yet, the processing time of the latter may

be decreased through parallel computing. Hence, this is an effective pre-processing

method to prepare more uniform images for subsequent change detection methods.

7.1.2 Specular highlights localisation

The two electronic flash units on the camera system described in Section 4.5 caused

reflections on metal racks on the wall and the beamline, resulting in specular high-

lights in the images. Such highlights are not constant neither in time nor in place,

leading to false detections when subtracting images to identify changes as shown in

Fig. 7.3. Therefore, the specular highlight detection module described in Chapter

6 is used as a pre-processing stage to localise these highlights in the reference and

survey images as displayed respectively in Fig. 7.4 (a) and (b). Morphological op-

erations and connectivity analysis are applied to the highlight segmentation results

to generate bounding boxes in highlight areas both in the reference and survey

images as illustrated in Fig. 7.4(c). Such highlight masks are later fused with CMs

to mask out these false change candidates.
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(a) original (b) pre-processed

Figure 7.3: Difference images of the (a) original greyscale (b) pre-processed refer-
ence and survey images at a particular position

7.2 Ideal change detection

In an ideal scenario in which images are taken from a fixed camera, the change

detection process can be merely a subtraction between the temporal images. Since

each pixel position corresponds to both images being compared, the difference in

intensity identifies a change occurring in any of the images. When the bi-temporal

images in Fig. 7.5 are subtracted from each other, the difference magnitude should

be non-zero only at the ‘crack’ area bound by a red rectangle in Fig. 7.5(d).

However, in a real-world context, the CM contains some minor areas having a

greyish tone, implying ‘change areas’, generated from image noise and even after

the pre-processing stage, changes in illumination might render a few ‘false changes’.

These can be reduced by setting a pre-defined minimum threshold after subtrac-

tion however, no single change detection technique is able to generate the ideal

CM. Hence, various change detection techniques are investigated in the following

sections.
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(a) reference (b) survey (c) mask

Figure 7.4: Specular highlight localisation on the (a) reference image and (b) survey
image and the corresponding highlight mask (c)

7.3 PBCD using bi-temporal image fusion

Image fusion is the process of merging two or more images to produce a single

composite image to reveal more inclusive information for further analysis. Multi-

temporal fusion combines data from same-scene images, acquired at different times.

Hence, this approach can be used to identify scene changes by comparing images.

In this scenario, bi-temporal image fusion is applied between two temporal images;

the reference and the survey images.

PBCD methods require exact image registration. In this scenario, this is im-

plicitly done using the location information from the encoder wheel attached to the

robotic platform, thus the reference and survey images are assumed to be captured

at the same location. Consequently, pixel by pixel techniques can be applied.

Bi-temporal fusion using algebraic and transform-based methods is discussed

next. These are generally simple to implement and fast to execute however, the

detection depends on the registration accuracy of the images being compared.
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(a) reference (b) survey (c) ideal CM (d) changed area

Figure 7.5: Change detection between the (a) reference and (b) survey images in
an ideal-world scenario, generating the (c) ideal CM and (d) the corresponding
bounding box

7.3.1 Image difference

In this method, two images of the same scene taken at separate times t1 and t2

are subtracted pixel-wise. Following the image subtraction, the magnitude of the

difference value is checked against a threshold condition. Pixels whose difference

magnitude is higher than the pre-defined threshold are classified as ‘change’, oth-

erwise noted as ‘no change’. The CM is generated using:

Diff(x, y) = |I(x, y, t1)− I(x, y, t2)|

CMD(x, y) =




1 if Diff(x, y)≥T

0 otherwise

(7.2)

where I(x, y, t1) is the image at time t1, I(x, y, t2) is the image at time t2 and T is

the threshold on the difference magnitude.

Due to its simplicity and low computation, it is the most common image com-

parison approach for change detection. The detection accuracy of this method,
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highly depends on the pre-defined threshold. Considering the images in Fig. 7.5,

image differencing with a fixed threshold is applied to the converted greyscale im-

ages and the pre-processed images. As shown in Fig. 7.6, the resulting difference

image from the grasycale images shows the crack pixels as change, however, it also

has alot of false change pixels due to the different lighting conditions. On the

other hand, the difference image from the pre-processed images, eliminated the

pixels undergoing a light change while keeping the actual crack change. Thus, the

pre-processed images corrected for uneven illumination are used in this method.

(a) original (b) pre-processed

Figure 7.6: Difference images of the (a) original greyscale (b) pre-processed refer-
ence and survey images with illumination changes

The outcome of modifying the threshold T is investigated. The CMs in Fig.

7.7 reveal that as T increases, the number of ‘change’ pixels decreases, improving

noise suppression. However, the ‘valid change’ pixels are lost when T ≥ 30.
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(a) T = 10 (b) T = 20 (c) T = 30 (d) T = 40

Figure 7.7: Image difference using different values for the fixed threshold

Figure 7.8: Histogram of the pixel absolute difference values

A fixed threshold value cannot however satisfy all scenarios, thus a better ap-

proach is to set the threshold automatically. Several automatic thresholding ap-

proaches such as Otsu method [19] produce adequate outcomes for images having a

bimodal distribution, assuming an ideal threshold value at the valley between the

two peaks of the histogram. However, most automated selection methods break if

the histogram is unimodal as observed in Fig. 7.8.
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If the number of pixels with value i is ni and n is the total number of pixels in

an image then, the probability of occurrence of value i is given by:

pi =
ni
n

(7.3)

During thresholding, the image pixels are categorised into two classes C1 =

[0, 1, . . . , th] and C2 = [th + 1, th + 2, . . . , L − 1], where th is the threshold value

and L states the number of grey levels. The class probabilities are given by ω1(th)

and ω2(th) while the mean values of the two classes are given by µ1(th) and µ2(th).

ω1(th) =
th∑

i=0

pi

ω2(th) =
L−1∑

i=th+1

pi

(7.4)

µ1(th) =
th∑

i=0

ipi
ω1(th)

µ2(th) =
L−1∑

i=th+1

ipi
ω2(th)

(7.5)

In unimodal distributions, the ideal threshold generally lies at the edge of the

peak of the histogram. Considering this observation, the Valley Emphasis (VE)

method was proposed in [221]. This selects a threshold value with a low occurrence

probability pth which also maximises the inter-class variance. Using a weightW (th)

that is indirectly proportional to pth:

W (t) = 1− pth (7.6)
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the best threshold is selected by maximising the function below:

th∗ = argmax
0≤th<L

{W (th)(ω1(th)µ
2
1(th) + ω2(th)µ

2
2(th))} (7.7)

The weighting term in Eq. 7.6 might be insufficient in scenarios where the

variance of one class varies considerably from the other and hence fails to find a

correct value for the threshold. Thus, [222] proposed the inclusion of neighbouring

values around the threshold to ameliorate the weighting effect. This was later

improved by [223], which adopted a weighting scheme that includes neighbourhood

information in the objective function such that for every possible value th, a new

weighting term is given by:

W (th, σ) = 1−
∑

x

pxe
(x−th)2

2σ2 (7.8)

A Gaussian window with a standard deviation σ is utilised to ensure that thresh-

old locations which are further away from the candidate threshold get a smaller

weight than those nearer. This weight term is more significant than that in Eq.

7.6 and the smoothing achieved by the Gaussian window ensures that the modified

weight calculation is less vulnerable to noise. Here, σ is empirically set to 5.

The above automatic thresholding techniques were tested on various image

pairs. From the resulting CMs in Fig. 7.9 corresponding to the same image pair

in Fig. 7.5, it is observed that the Gaussian VE method produced the best CM,

reducing the ‘noise changes’ while retaining the ‘crack change’.
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(a) VE (b) Neighbour VE (c) Gaussian VE

Figure 7.9: Image difference using different automatic thresholding techniques

7.3.2 Principal Component Analsyis (PCA)

PCA is a transformation-based approach to change detection which is often used

with remote sensing data. This mathematical technique reduces the dimensionality

of a dataset while maintaining the variances. There are mainly two ways in which

PCA can be used to detect changes in images. Independent data transformation

analysis applies PCA on each of the temporal images separately. The derived prin-

cipal components are then analysed by applying other change detection techniques

such as image differencing and regression. On the other hand, merged data trans-

formation analysis stacks N temporal images of p channels each, fuses them into a

single N × p-channel image and applies PCA on the latter.

In this bi-temporal scenario, the merged data approach is used and the reference

and survey images are stacked on each other. The method was investigated in terms

of two input types, original colour images and pre-processed images ie. illumination

corrected images.

When the original colour (RGB, p = 3) images (N = 2) were used, the stacked

images were merged into a 6-channel image. It was observed that the first compo-

nent (PC0) corresponding to the highest eigenvalues, contained most of the infor-
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(a) PC0 (b) PC1 (c) PC2 (d) PC3

Figure 7.10: The first 4 principal components of the stacked original images

mation from both images. PC1 represented the difference between temporal images

while later components contained noise information as seen in Fig. 7.10.

Experimental results on different image samples showed that PCA is scene-

dependent, thus change detection results between different dates are often diffi-

cult to interpret using a fixed condition, implying the need to determine scenario-

dependant thresholds. In this case, when considering PC1, the ‘crack change’ has

a low value (black), the ‘pipe reflections change’ has a higher value (white) and

the rest of the wall has a medium value (grey). This implies that the histogram

contains changes at both of its tails, thus a double threshold is required. However

as observed in Fig. 7.11, the histogram shape is not clearly defined at its tails,

making it difficult to find an adaptive threshold pair.

On the other hand, when the pre-processed images (p = 1, N = 2) were used,

the stacked images were merged into a 2-channel image. Here, it was observed that

the first component PC0 represents the difference between temporal images while

PC1 contains most of the information from both images as seen in Fig. 7.12.

In this case, when considering PC0, the ‘crack change’ has a high value (white),

the ‘pipe reflections change’ has a low value (black) and the rest of the wall has

a medium value (grey). This again, implies that the histogram contains changes
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Figure 7.11: Histogram of normalised PC1 from PCA on original RGB images

(a) PC0 (b) PC1

Figure 7.12: The principal components of the stacked pre-processed images

at both of its tails. In this case, however, as observed in Fig. 7.13, the histogram

shape follows a Gaussian trend.

To automatically find a threshold pair, the Statistical Process Control (SPC)

principle [224] was used to set up the control limits to distinguish between ‘change’

and ‘no-change’ pixels. This involves binarising an image with a range of pixel

values away from the mean pixel level where the range is controlled by an input

control factor.
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Figure 7.13: Histogram of normalised PC0 from PCA on pre-processed images

Hence, a double threshold is heuristically determined using:

Tlow = µ− cσ

Thigh = µ+ cσ
(7.9)

where µ and σ are the mean and the standard deviation of the PCi respectively, c

is a control constant set empirically.

Upon applying SPC on the PC1 and PC0 of the original and pre-processed

images respectively, the CMs in Fig. 7.14 were generated following Eq. 7.10. As

observed below, the actual real ‘crack change’ is only identified as a change when

the pre-processed images are used.

CMPCA(x, y) =





1 if PCi(x, y)>Thigh

1 if PCi(x, y)<Tlow

0 otherwise

(7.10)
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(a) PC1 (b) PC0

Figure 7.14: Resulting CMs from PCA applied to different images (a) original
images (PC1) (b) pre-processed images (PC0)

7.3.3 Structural Similarity Index (SSIM)

This is a well-known metric for image quality assessment. It was initially proposed

in [225] and then further detailed in [226, 227] to improve upon a similar previous

metric Universal Quality Index (UQI), replacing the average weight function by

a Gaussian one. To compare two images, SSIM performs three different similar-

ity measurements of luminance (l), contrast (c) and structure (s), and thereafter

combines them to obtain a single value as shown in Fig. 7.15.

Figure 7.15: Diagram of the SSIM measurement system [226]
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Considering two image blocks x and y, the individual comparison functions are

defined by:

l(x, y) =
2µxµy + c1

µx2 + µy2 + c1

c(x, y) =
2σxσy + c2
σx + σy + c2

s(x, y) =
σxy + c3
σxy + c3

(7.11)

where µx, µy are the averages and σx2, σy2 are the variances of x and y while σxy

is the covariance between x and y. The constants c1, c2, c3 are calculated using:

c1 = (K1L)
2

c2 = (K2L)
2

c3 =
c2
2

(7.12)

where K1, K2 � 1, generally K1 = 0.01, K2 = 0.03 and L is the dynamic range

of the pixel values (L = 255 for 8-bit greyscale images). SSIM is then a weighted

combination of the above as defined by:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (7.13)

Setting the weights α, β, γ to 1, the equation is reduced to:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
(7.14)

Apart from image assessment, the SSIM index has been widely used in various

applications including image compression [228], image fusion [229], image water-

marking [230], video hashing [231], target recognition [232], visual surveillance [233]

and remote sensing [234]. Considering that change detection identifies changed ar-
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eas by analysing the similarity of multi-temporal images, then, SSIM has a signifi-

cant prospect in this process. Here, SSIM is used as a PBCD method to generate

a CM between a pair of reference and survey images.

The resultant SSIM index is a value in the range [-1, 1] where 1 is only reached

when the images compared are exactly the same, indicating ideal structural sim-

ilarity. Here, the SSIM is calculated using Eq. 7.15 and its values are shifted to

generate a CM with a dynamic range of [0, 255]. It is later thresholded using Eq.

7.16.

D(x, y) = 1− SSIM(x, y) + 1

2
(7.15)

CMSSIM(x, y) =




1 if D(x,y)≥ T

0 otherwise
(7.16)

where D(x, y) represents the difference image and T is a pre-defined threshold. A

fixed threshold value cannot however satisfy all scenarios, thus the same automatic

thresholding method described in Section 7.3.1 is used with SSIM.

The SSIM formula is commonly applied only on the luma component. Here,

an investigation of the performance in change detection is done using greyscale

images, the V channel in HSV images and the pre-processed images corrected for

uneven illumination. In general, the best results with minimum difference noise

were obtained using greyscale images as shown in Fig. 7.16.
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(a) greyscale (b) HSV (c) pre-processed

Figure 7.16: Resulting CMs from SSIM applied to the (a) greyscale images (b) V
channel in HSV images and (c) pre-processed images

7.4 Decision-level fusion

Analysing the complementary advantages of the three implemented PBCD meth-

ods, the generated CMs from image differencing (CMD), PCA (CMPCA) and SSIM

(CMSSIM) are fused into a single CM using decision-level fusion. Different fusion

methods including logical operations, PCA and majority voting were implemented.

7.4.1 Fusion using logical operations

Logical operators AND and OR are used to combine the CMs using:

CMAND(x, y) = CMD ∧ CMPCA ∧ CMSSIM

CMOR(x, y) = CMD ∨ CMPCA ∨ CMSSIM

(7.17)

The resulting CMAND combines the presence of change only if confirmed by all the

CMs thus, while it reduces noise pixels, some change pixels are ignored if any one

of the methods eliminates them. On the other hand, the resulting CMOR combines

the presence of change if the pixel is ‘1’ in any of the CMs. Hence, it closes any
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gaps which are present in the individual CMs at the expense of having more noise

pixels. This can be observed in the example shown in Fig. 7.17.

(a) CMAND (b) CMOR

Figure 7.17: Fusion of CMs using logical operators (a) AND (b) OR

7.4.2 Fusion using PCA-weighted summation

The information flow diagram of the PCA-based fusion algorithm is illustrated in

Fig. 7.18. PCA is applied to the three CMs; CMD, CMPCA and CMssim. The

resulting principal components PCi are then used as weights multiplied to each of

the CMs. A summation of these weighted terms generates the fused CM using:

CMPCA(x, y) = CMD(x, y)·PC0+CMPCA(x, y)·PC1+CMSSIM(x, y)·PC2 (7.18)

As shown in Fig. 7.19, this method performs better than the logical operators

as it generates less noise pixels while at the same time the actual changes, in this

case those belonging to the crack, are retained.

125



Figure 7.18: Diagram of CM fusion by PCA-weighted summation

Figure 7.19: CM decision-level fusion by PCA-weighted summation
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7.4.3 Fusion using majority voting

This is a basic and simple decision integration method, designed to combine several

inputs by multiple processors using specific voting rules. Here, the three different

CMs; CMD, CMPCA and CMSSIM cast a unit vote and if at least two of the

CMs register a change, then the corresponding pixel in the fused CM is assigned

‘1’ (change), otherwise ‘0’ (no change). Similar to the previous method, this fu-

sion approach generates only a few noise pixels while retaining the actual changes

belonging to the crack.

Figure 7.20: CM decision-level fusion by majority voting

7.5 Change map analysis

At this point, the fused CM may still contain ‘nuisance change’ areas that should

not be considered as ‘changes’. Hence, the CM analysis process illustrated in Fig.

7.21 was developed. Details of each step are given in the subsequent sections.

Figure 7.21: CM analysis process

127



7.5.1 Specular highlight filtering

As indicated in Section 7.1.2, those false changes occurring from specular reflections

are masked out. Fusion between the binary image SpecH(x, y) and the final CM

is done through an AND operation defined by:

CMfiltered(x, y) = CMfused(x, y) ∧ SpecH(x, y) (7.19)

7.5.2 Morphological operations

Furthermore, the CMfiltered(x, y) may contain some small ‘change areas’ coming

from image noise and minor registration errors. Such areas are eliminated using bi-

nary image enhancement through morphological operations, connected components

labeling and filtering by dimensions.

Morphological operations, process every pixel in the image based on the neigh-

bourhood pixel values. Here, to remove ‘change noise’ and close gaps in the CM,

erosion and dilation are respectively applied.

(a) original (b) eroded (c) dilated

Figure 7.22: Concept of morphological operations

Erosion When any of the elements making up the structuring element (red boxes

in Fig. 7.22) overlaps the background such that at least one ‘0’ in the image is

overlapped, then the pixel on which the origin of the structuring element falls, is

set to a value of ‘0’ otherwise set to ‘1’. Hence, erosion leads to thinning of the

original binary image as shown in Fig. 7.22(b).
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Dilation This operation is the opposite of erosion. The origin of the structuring

element traverses over different locations in the image. When the origin is trans-

lated to points such that the structuring element overlaps at least one ‘1’, then

the pixel corresponding to the origin of the structuring element is assigned a value

of ‘1’. Otherwise, where the structuring elements do not overlap any ‘1’ then the

origin’s pixel is assigned a ‘0’. Consequently, dilation leads to the closing of holes

within an image as shown in Fig. 7.22(c).

Opening and closing The opening operation successively erodes an image and

dilates the resulting eroded image, using the same structuring element for both

operations. This is essential to discard objects that are small in dimension while

maintaining the size and shape of larger image objects. In contrast, the closing

operation dilates an image and then erodes the result, using the same structuring

element for both operations. This is used to fill small gaps while maintaining the

size and shape of the image objects. Here, morphological closing is applied to the

fused CM in order to join any change segments by filling gaps, such as in ‘crack

changes’ while at the same time ignoring the ‘noise changes’.

7.5.3 Connected components labelling

This is used to assemble neighbouring pixels in the CM into ‘change components’.

This process scans the binary image and groups pixels into components depending

on pixel connectivity as illustrated in Fig. 7.23. Here, 8-connectivity is used to

identify and group neighbouring pixels in the CM.

7.5.4 Dimension filtering

The components are now filtered by size. A ‘change component’ is only retained

if its width or height satisfies a pre-defined threshold. The latter is a configurable

constant Smin calculated on the actual dimensions captured by the image. Using

the GDAL library [235], the scale in the orthophoto raster is obtained. Following
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(a) original image (b) labelled image

Figure 7.23: Concept of connected components labelling

that, using the simple proportion principle, the physical dimensions of the FoV of

a photo segment is calculated. Using the latter, the ratio of the photo dimensions

and the configurable Smin, the size thresholds Thmin are calculated using:

ThWmin =
dimmin × widthimg

widthFOV

ThHmin =
dimmin × heightimg

heightFOV

(7.20)

If a candidate ‘change component’ has a width larger than ThWmin and/or a

height larger than ThHmin then the component is confirmed as a ‘change compo-

nent’ otherwise eliminated.

7.5.5 Binary comparison

A further analysis is done to reduce false changes due to reflections, shadows and

parallax errors. Wall images consist of a white background and darker areas where

cracks, marks etc. appear. The images are inverted to generate images with a

black background and a foreground of white pixels. Then, the bounding rectangle

of each ‘change candidate’ is masked out for both the reference and survey images

using the corresponding area in the CM as a mask. The difference in number of

white pixels is divided by the total number of mask pixels.
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(a) candidates (b) ratios

Figure 7.24: Change candidates and their difference ratios

Considering the same example, the ‘change candidates’ in Fig. 7.24(a), gener-

ated the difference ratios listed in Fig. 7.24(b) corresponding to the image patches

displayed in Fig. 7.25. This shows that the difference ratio for component ‘0’

which is the ‘actual change’, is much larger than for the others. Thus a threshold

is empirically set to filter out the ‘false changes’. If the ratio is higher than a

threshold, this is considered as a ‘change’, otherwise ignored such that in this case

for example, only ‘change candidate 0’ is considered as a change.
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(a) R0 (b) S0

(c) R1 (d) S1

(e) R2 (f) S2

(g) R3 (h) S3

Figure 7.25: Change candidates (a)-(b) reference and survey patch ‘0 (c)-(d) ref-
erence and survey patch ‘1’ (e)-(f) reference and survey patch ‘2’ (g)-(h) reference
and survey patch ‘3’

7.6 Performance evaluation

To demonstrate the effectiveness of the proposed change detection module, a set

of experiments were conducted by simulating different changes such as cracks and

other markings on the walls. In addition, some markings were made on the images

during post-processing using a graphical editing software. For each test scenario,

the areas manually identified as changes were marked with a red dot. The change

detection output marked with green boxes and indices, was manually compared
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to the corresponding reference-survey image pair. An actual ‘change component’

was marked as a True Positive (TP). Each actual ‘change component’ that was not

identified by the algorithm was added to the False Negative (FN) list. A region

which was falsely marked as a change as it does not relate to any of the actual

changes, was recorded as a False Positive (FP). To quantitatively evaluate the

performance of the change detection algorithm, the following metrics were used.

7.6.1 Evaluation metrics

In predictive analytics, a confusion matrix as illustrated in Fig. 7.26 is generally

used. Usually this matrix also includes an entry for the True Negative (TN)s, which

is not applicable in this scenario.

Figure 7.26: Confusion matrix of the ground-truth (GT) and the results from the
change detection (CD) algorithm

This matrix allows a more detailed analysis than a mere proportion of correct

guesses. Using its values, different metrics are calculated. The recall of the pro-

posed system is calculated using Eq. 7.21. This is the fraction of changes that

are actually detected, implying the sensitivity or ability of the system to find the

changes. The precision is calculated using Eq. 7.22. This is the ratio of the iden-

tified true changes to the total number of changes detected, hence it implies the

ability of the system to identify only the actual changes. Furthermore, using both

the precision and recall values, the F1-score is calculated using Eq. 7.23. This

combines the precision and recall and is useful to find an optimal blend of both.
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TPR(Recall) =
TP

TP + FN
× 100% (7.21)

PDR(Precision) =
TP

TP + FP
× 100% (7.22)

F1−score = 2× Precision×Recall
Precision+Recall

× 100% (7.23)

7.6.2 Quantitative results

During the development of the change detection module, different decision-level

fusion methods were implemented however, the PCA-weighted summation and ma-

jority voting methods resulted in the best CMs. Therefore, subsequent testing was

undertaken using these two methods while varying the threshold of the final stage

binary comparison.

The quantitative results recorded in Table 7.1 show that the decision-level fusion

by PCA-weighted summation generated a higher precision rate. As the threshold

of the final binary comparison was increased from 0.1 to 0.2, the precision value

increased from 83.03% to 94.5%. When the majority voting approach was used, a

precision of 78.84% and 92.99% was achieved at the same thresholds of 0.1 and 0.2

in the final comparison stage. This implies that, the PCA-weighted sum approach

distinguished better between actual and nuisance changes.

However, it is also important to evaluate the effectiveness of the algorithm with

respect to its ability to find all the data points of interest, in this case the identified

changes. This is given by the recall rate, which had higher values of 83.71% and

81.11% for the majority voting approach with binary comparison stage threshold

values of 0.1 and 0.2 respectively. This implies that the majority voting approach

could identify more actual changes with fewer misses.

It is beneficial if the algorithm can correctly classify the changes, to avoid false

alarms, however, it is important that changes due to defects on the tunnel lining
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are not missed. Hence, a trade-off between precision and recall is essential. This

is found by analysing the F1−score which combines both metrics. As observed

in the Table 7.1, the fusion using the majority voting approach achieved a better

general performance with respect to the F1−score.

Table 7.1: Quantitative results from the change detection algorithm using different
decision-level fusion methods; majority voting (MV) and PCA-weighted summation
(PCA) with different threshold values for the binary comparison in the change
component analysis stage

Method Binary TH TP FP FN Recall % Precision % F1-score
MV 0.1 149 40 29 83.71 78.84 81.20
MV 0.2 146 11 34 81.11 92.99 86.65
PCA 0.1 137 28 39 77.84 83.03 80.35
PCA 0.2 103 6 73 58.52 94.50 72.28

7.6.3 Qualitative results

Further to the quantitative results, a qualitative analysis was made on different

scenarios with ‘crack changes’, other defects and also ‘nuisance changes’ caused by

varying light conditions and shadows.

In the example presented in Fig. 7.27, both of the fusion approaches identified

the actual changes correctly. However, the majority voting approach generated a

more confined bounding box around the ‘crack change’ identified by ‘1’.

Using the reference and survey images in Fig. 7.28, the change detection al-

gorithm using majority voting correctly identified both of the ‘crack changes’. On

the other hand, the connectivity and binary comparison stages following the PCA-

weighted summation method incorrectly identified this as a ‘nuisance change’ and

thus discarded it.

In Fig. 7.29, another ‘defect’ was simulated on the wall. In this case, both

methods correctly identified the change. The final example in Fig. 7.30 only
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exhibits ‘nuisance changes’ with respect to the light. Both CMs show white pixels

in different areas in the image, implying possible changes due to specular highlights,

shadows and light changes. However, the CM analysis stage ignored most of these

regions except for the small shadow area at the bottom of the image when using

fusion by the PCA-weighted sum method, generating a ‘false change’.

Considering both the quantitative and qualitative results, the final implementa-

tion of the proposed solution uses a majority voting approach for the decision-level

fusion and a threshold of 0.2 for the final binary comparison stage.

For further examples showing results from the change detection module, the

reader is referred to Appendix D.

7.7 Contributions summary

The main contributions of this chapter include the:

• study, implementation and analysis of different bi-temporal image fusion tech-

niques for image comparison and change map generation

• implementation and evaluation of two decision-level fusion techniques for ro-

bust change detection

• use of image processing for uneven illumination correction and application of

specular highlight localisation to provide an illumination-invariant solution
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(a) reference (b) survey

(c) majority voting (d) PCA-weighted summation

Figure 7.27: An example showing similar results for both majority voting and PCA
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(a) reference (b) survey

(c) majority voting (d) PCA-weighted summation

Figure 7.28: An example showing different detection results from majority voting
and PCA-weighted summation
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(a) reference (b) survey

(c) majority voting (d) PCA-weighted summation

Figure 7.29: An example showing a different simulated defect on the wall whereby
the changed area was identified correctly by both methods
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(a) reference (b) survey

(c) majority voting (d) PCA-weighted summation

Figure 7.30: An example exhibiting lighting changes, that are correctly identified
as a nuisance and not detected as a change
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8 | Conclusion and Future work

8.1 Conclusion

Periodic tunnel structural inspections are a necessity. Construction defects, aging,

unexpected overloading and natural phenomena may lead to problems in struc-

tural integrity over time. These cause failures and possible fatal accidents if not

pre-empted in time. Inspections are predominantly performed through visual ob-

servations which involve looking for structural defects and making sketches for civil

engineers to assess them and in turn suggest the required maintenance and/or re-

pairs. Associated with this method, there are several drawbacks including personnel

exposure to hazardous conditions and outcome subjectivity that is highly depen-

dent on human intervention which may lead to inaccuracies or misinterpretations.

Furthermore, manual inspections are costly and require downtime to conduct the

observations. All this has led to an increase in the need for automatic inspections.

Hence, using robotics, computer vision and data fusion, a tunnel inspection

solution to monitor for changes on tunnel linings was proposed in this thesis. The

solution comprises data acquisition from a rig of cameras hosted on a robotic plat-

form and the use of computer vision and data fusion techniques to implement

automatic tunnel lining monitoring. A study of the different methods for crack

detection was carried out and deep learning techniques were employed to devise

a crack detection module in order to identify cracks on concrete walls. To alle-

viate the effects of different light conditions on change detection, pre-processing

stages were implemented. These include a shading correction to adjust uneven
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illumination and highlights localisation to reduce false changes due to reflections

from electronic flash units. Subsequently, a change detection algorithm was devel-

oped through a combination of different bi-temporal pixel-based fusion methods

and decision-level fusion of CMs. Qualitative evaluation of the resulting CMs was

followed by a quantitative analysis indicating high recall and precision values of

81% and 93% respectively.

The proposed solution aids the process of structural health monitoring and

provides a better means of tunnel surface documentation. Data acquisition is

carried out on-site during shutdowns or short, infrequent maintenance periods while

objective inspection through crack and change detection is executed off-site, on a

high-performance computer. Although the prime purpose of the system is for

deployment in the CERN LHC tunnel, with a few modifications and a different

configuration, it could be adapted to other infrastructure monitoring scenarios.

8.2 Summary of contributions

The main contributions of this work in the related fields include the:

• study of a multiple image sensor set up to obtain data for tunnel inspection

and the implementation of automatic image data acquisition from off-the

shelf commercial cameras;

• study and implementation of crack detection using deep learning techniques;

• development of a change detection algorithm using computer vision tech-

niques to implement different bi-temporal and decision-level image fusion.

8.3 Recommendations for future work

A tunnel goes through three phases; planning, construction, and maintenance.

An essential part of its maintenance is the documentation and evaluation of its
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structure in general. Thus, the quality requirements in structural health monitoring

render the efficient administration and documentation of all data, indispensable.

Immediate availability, clear visualisation and presentation of the data are therefore

essential for a reliable tunnel inspection system.

Hence, a future improvement on the proposed solution may include the use of

overlaid images, 3D models and VR. As illustrated in Fig. 8.1, the generated in-

spection information can be augmented to a VR model rendering mixed reality as

suggested in [236] and [237]. This would further reduce the presence of personnel in

the tunnels by providing a means of remote observation allowing familiarisation of

the environment before going for a survey, reducing the time spent on-site. More-

over, off-site inspection can also be carried out remotely via the 3D and VR models.

Hence, such an addition would be beneficial for wall surface documentation, remote

inspection and post-survey analysis.

Figure 8.1: Augmentation of inspection findings on a VR model

During this research, an inquiry into the combination of data from multi-modal

sensors was carried out. Considering the possible use of a TIR camera for fur-

ther in-depth inspection, a Linux-based interface that is able to capture images

remotely from the FLIR A300 TIR camera was developed. In addition, the actual

temperature values are also stored in a Comma-Separated Values (CSV) file for

possible future use. Furthermore, ThermoVis, a Graphical User Interface (GUI)

based on the C# samples available online [238], was developed. This GUI can

be used to connect to the TIR camera by searching the current devices or using
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a known IP address and capture images or video sequences. Images can also be

saved as temperature values in a CSV file. Moreover, the application can also be

used to open saved thermal image and video files. A screenshot of ThermoVis is

displayed in Fig. 8.2.

Figure 8.2: A screenshot of ThermoViss, a GUI implemented in C#, to be used
with the TIR camera

Figure 8.3: Thermal and RGB camera placed on a tripod

A small set of images was also acquired using a TIR and a colour camera fixed on

a tripod as shown in Fig 8.3. A few samples are displayed in Fig. 8.4. In addition,

a study of multi-modal camera calibration and data fusion methods was conducted.

Future investigation into this can benefit from the complimentary properties of the

144



infrared and visible spectrum towards performing automatic in-depth inspection of

cracks, spalling and water deposition areas.

(a) RGB, Scene 1 (b) RGB, Scene 2 (c) RGB, Scene 3

(d) TIR, Scene 1 (e) TIR, Scene 2 (f) TIR, Scene 3

Figure 8.4: A sample of the captured RGB and TIR images
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Appendix A | Examples of acquired

LHC tunnel images
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(a) C3, Point A (b) C3,Point B (c) C3, Point C

(d) C2, Point A (e) C2, Point B (f) C2, Point C

(g) C1, Point A (h) C1, Point B (i) C1, Point C

Figure A.1: Images captured by the three cameras (C1, C2, C3) on the vertical
structure on the CERNBot as different points (Points A, B and C)
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(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6 (g) Camera 7 (h) Camera 8

(i) Camera 9 (j) Camera 10 (k) Camera 11 (l) Camera 12

Figure A.2: Example 1 of a sample set of images captured using the provisional
commercial camera system during the demo test in the LHC at a particular location
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(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6 (g) Camera 7 (h) Camera 8

(i) Camera 9 (j) Camera 10 (k) Camera 11 (l) Camera 12

Figure A.3: Example 2 of a sample set of images captured using the provisional
commercial camera system during the demo test in the LHC at a particular location
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Appendix B | Crack detection
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(a) Crack image and corresponding GT

(b) U-Net (c) SegNet (d) Mask R-CNN

Figure B.1: Example 1 of crack detection results from the SDNET subset using
Mask R-CNN with ResNet-101 backbone, U-Net and SegNet with VGG16 encoder

(a) Crack image and corresponding GT

(b) U-Net (c) SegNet (d) Mask R-CNN

Figure B.2: Example 2 of crack detection results from the SDNET subset using
Mask R-CNN with ResNet-101 backbone, U-Net and SegNet with VGG16 encoder
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(a) Crack image (b) GT (c) U-Net (d) SegNet (e) Mask R-CNN

Figure B.3: Example 1 of crack detection results from the LHC dataset using Mask
R-CNN with ResNet-101 backbone and both U-Net and SegNet with a ResNet-50
encoder

(a) Crack image (b) GT (c) U-Net (d) SegNet (e) Mask R-CNN

Figure B.4: Example 2 of crack detection results from the LHC dataset using Mask
R-CNN with ResNet-101 backbone and both U-Net and SegNet with ResNet-50
encoder
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(a) Crack image (b) GT (c) U-Net (d) SegNet (e) Mask R-CNN

Figure B.5: Example 3 of crack detection results from the LHC dataset using Mask
R-CNN with ResNet-101 backbone and both U-Net and SegNet with a ResNet-50
encoder
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Appendix C | Highlight detection
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(a) Highlight (b) Proposed (c) VGG16 (d) ResNet-50

Figure C.1: A comparison of the specular highlights marked on image example 1
and the resulting highlight detection results using U-Net with (b) the proposed
modified architecture and (c)-(d) other architectures

(a) Highlight (b) Proposed (c) VGG16 (d) ResNet-50

Figure C.2: A comparison of the specular highlights marked on image example 2
and the resulting highlight detection results using U-Net with (b) the proposed
modified architecture and (c)-(d) other architectures
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Appendix D | Change detection
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(a) reference (b) survey

(c) MV (d) PCA-weighted summation

Figure D.1: Example showing similar detection results from the majority voting
and PCA-weighted summation methods
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(a) reference (b) survey

(c) MV (d) PCA-weighted summation

Figure D.2: Example showing different change detection results from the majority
voting and PCA-weighted summation methods, as a result of the change map
analysis stage on the respective change maps
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(a) reference (b) survey

(c) MV (d) PCA-weighted summation

Figure D.3: Example showing different change detection results from the majority
voting and PCA-weighted summation methods, with a FP for the former and FN
for the latter
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A B S T R A C T

During the last few decades many tunnelling projects were conducted in order to use limited land surface area
more efficiently. Such underground constructions are used for transportation such as for railways, subways and
roads, to host equipment used for experiments like particle accelerators, as well as for pipelines and mines.
Independent of their purpose, tunnels should be regularly inspected in order to avoid accidents resulting from
structure failure and to simultaneously extend their lifetime by identifying deterioration at an early stage and
perform the required maintenance. Traditional methods of tunnel inspection rely on manual vision monitoring
and sensing equipment that requires installation and contact with the tunnel surface. Apart from being time
consuming, tedious and expensive, manual inspection is also highly dependent on human subjectivity and ex-
poses inspection personnel to possible dangerous environments. Taking these issues into consideration, various
systems were proposed to automate different procedures of tunnel inspection using photographic equipment to
capture photos of the tunnel environment, apply photogrammetric and computer vision (CV) techniques and
conduct image processing (IP) on them to achieve different surveying goals. This manuscript provides a col-
lective review of the current state of the art in tunnel inspection based on photogrammetric techniques and IP.

1. Introduction

A considerable amount of tunnelling was performed in the last few
decades, and concerns have been raised over the need to improve the
current methods employed in civil construction management, mon-
itoring and inspection in general. The use of photogrammetry and CV is
already being utilized to provide better automated approaches for these
tasks. Using IP techniques, 3D maps are generated to help with Building
Information Modelling (BIM) Eastman et al. (2008) as in Ptrucean et al.
(2015) and Martin et al. (2016). Continuous area monitoring to analyse
the progress on a construction site is also being improved by the in-
troduction of CV systems Lukins et al. (2007). Over time, much of the
infrastructure shows signs of deterioration due to ageing and stresses
which may eventually cause problems in structural integrity. Conse-
quently, to ensure safety in concrete tunnels, periodic inspections have
to be conducted.

Currently, structural tunnel inspection is predominantly performed
through periodic visual observations by trained inspectors. They try to
detect structural defects such as cracking, spalling and water leakage as
well as to identify possible changes in the infrastructure with respect to
a previous survey. It is important that such inspections are made

without creating a negative effect on the structure itself. Thus non-de-
structive (ND) inspection methods are commonly used other than de-
structive ones. ND methods (Montero et al., 2015; Boving, 1989) can be
divided in visual observation, strength-based, sonic and ultrasonic,
electrical, thermography, radar and endoscopy methods, each requiring
specific equipment. In order to conduct such methods, presently, per-
sonnel often are required to be physically present in the tunnel and
move around with the equipment. This approach has several drawbacks
including the cost involved for hiring and training personnel to do the
inspections and the considerable amount of time necessary to perform
them. In addition, it is highly dependent on human subjectivity leading
to possible inaccuracies, false and missing detections. Furthermore,
tunnel inspections may demand personnel to access hazardous en-
vironments characterized by lack of light, inadequate temperatures,
dust and possibly lack of adequate ventilation or presence of poisonous
gases. For these reasons, research on automated health monitoring of
tunnel structures has received significant attention in recent years in
order to facilitate the process of visual inspection as in Balaguer et al.
(2014) and Montero et al. (2015).

The use of cost-effective photographic equipment and photogram-
metric techniques and CV (Linder, 2013; Förstner and Wrobel, 2016;
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Ikeuchi, 2014; Szeliski, 2011) techniques implemented through IP has
led to various solutions that deal with different aspects of automated
tunnel inspection. Such systems aim to achieve time-saving automated
surveying solutions with fast data acquisition, identification and doc-
umentation of cracks as well as detection of structural changes. This
publication reviews the use of CV to facilitate and automate tunnel
inspections. Although reviews on general crack identification, image
mosaicking and change detection are available in literature, these
generally focus on natural scene images. In contrast, this paper provides
an extensive survey of previous works presented within the whole
image-based tunnel inspection spectrum, including tunnel profile
monitoring, crack and leakage detection as well as tunnel surface
documentation and visualization.

The remainder of this article is structured as follows. Section 2 re-
views the state of the art with respect to techniques used for tunnel
profile measurement and deformation monitoring. Section 3 gives an
overview of methods for tunnel interior visualization. The latter in-
cludes both image mosaicking of the tunnel wall as well as 3D re-
construction. Section 4 discusses works related to crack and defect
detection using different methods. Image-based water leakage detection
systems are reviewed in Section 5. Section 6 investigates change iden-
tification systems. Future trends are then discussed in Section 7. A
summary of the state of the art in tunnel inspection using CV concludes
this publication.

2. Tunnel profile deformation

The deformation of a tunnel’s cross-section indicates the structural
condition of the tunnel in general. Measurement and monitoring of the
tunnel profile are thus critical proactive maintenance activities to en-
sure tunnel safety. Several methods can be used to measure tunnel
profiles such as mechanical gauge, tape extensometer, Terrestrial Laser
Scanning (TLS) (van Gosliga et al., 2006; Jian et al., 2012; Kang et al.,
2012) and geodetic instruments.

A tunnel profile measurement system that makes use of physical
indicators was proposed in Scaioni et al. (2014). Relative deformations
of traversal cross-section of tunnels are achieved by installing targets on
the tunnel vault and measuring their coordinates in images captured
along the wall. First, targets are independently measured on the images
with the Least Square Template Matching (LSTM) Gruen (1985) algo-
rithm. The 3D coordinates of the targets are then estimated using free-
net bundle adjustment Luhmann et al. (2013). Finally, the scale ambi-
guity is removed using an invar wire and gauge as shown in Fig. 1 and
the relative distances between the targets are computed. Photogram-
metric levelling using a calibrated camera and photogrammetric rods
and three circular targets as shown in Fig. 2 is then used for the mea-
surement of vertical deformations. In these experiments, the camera
was set on a topographic tripod to avoid blurring effects, making it
inadequate for moving platforms.

A solution that installs physical objects in the tunnel is not an

optimal one as it is installation and the maintenance is time consuming,
especially in long and wide tunnels. The following works, instead fo-
cused on using laser light projections to create ‘virtual targets’ instead
of physical ones.

The tunnel cross-section measurement method proposed in Wang
et al. (2010) makes use of the profile-image method proposed earlier in
Wang et al. (2009). This method uses laser pointers to beam the surface
and capture the resulting tunnel profile using a camera. It is important
that the planes of the laser-lit profile and the camera image are parallel,
thus, Wang et al. (2010) parallelizes the image, by locating all the ca-
libration points on the periphery of the profile as shown in Fig. 3 in-
stead of adjusting the camera orientation as in Wang et al. (2009). The
transformation relationship of the global 3D coordinates and the local
2D coordinates is found using perspective projection.

Multiple structured light projectors and cameras mounted on a
dedicated vehicle, were used for 3D tunnel clearance inspection in Shen
et al. (2015). The optical triangulation principle is used to reconstruct
the 3D metric information of the tunnel. This is achieved by a global
calibration, whereby the intrinsic and extrinsic parameters of each
neighboring camera are found using the pinhole camera model. Based
on this, the mapping of a 3D world point =P x y z( 1)T to a 2D image
point =p u v( 1)T can be described by:

= = ⎡⎣⎢⎢ ⎤⎦⎥⎥sp A R T P A
α γ u

β v( ) , 0
0 0 1

0

0
(1)

where s is a non-zero arbitrary scale factor, A contains the intrinsic
parameters, including α and β which are the scale factors in the image
axes u and v. The principal point is represented by u v( , )0 0 and γ is the
skew of the two image axes. The extrinsic parameters are represented
by R for the rotation and T for the translation. The equation of the
structured light plane is then used together with the latter found
parameters to obtain the global model.

Similarly, in Ai et al. (2016), a set of CCD cameras and a laser
emitter were placed on a cart fitted with a distance encoder. The laser
emitter generates a plane perpendicular to the longitudinal axis of a
metro tunnel and when the cart reaches a predefined location, the
cameras are synchronously triggered to acquire images of the profile.
Using photogrammetry-based algorithms and the related geometry
equations, features of the sectional profile are obtained using a trans-
missive projection system. First, the calibration of the coordinate
system transformation is conducted using an exterior target. Two
neighboring cameras capture a picture of the target. Next, IP is applied
on the acquired images to convert the color image to grayscale. Binary
images are obtained using thresholding (TH) segmentation and used to
extract the geometric information. The coordinates of points from the
obtained profile are fitted to an ellipse using the Least-Squares method
and the severity of the deformation is directly analyzed. The accuracy
of the this system is about ± 25 mm at a speed of at least 5 km/h.

The use of laser pointers and cameras is becoming increasingly
common to measure tunnel profiles as a cheaper, simpler and faster
method to conduct than using targets, gauges and geodetic instruments.

Fig. 1. The invar wire and the gauge used to remove the scale ambiguity in
Scaioni et al. (2014). Reprinted by permission from: Springer Nature Earth
Science Informatics (Photogrammetric techniques for monitoring tunnel de-
formation, M. Scaioni, L. Barazzetti, A. Giussani, M. Previtali, F. Roncoroni, M.
Alba), © (2014).

Fig. 2. An example of the basic operational scheme of ‘photogrammetric le-
velling’ as used in Scaioni et al. (2014). Reprinted by permission from: Springer
Nature Earth Science Informatics (Photogrammetric techniques for monitoring
tunnel deformation, M. Scaioni, L. Barazzetti, A. Giussani, M. Previtali, F.
Roncoroni, M. Alba), © (2014).
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However, the precision of these approaches is highly influenced by the
type of laser used, number of calibration points and contrast of the laser
profile to the background.

As previously discussed, during the last few decades there have been
multiple efforts to replace traditional methods for tunnel profile mon-
itoring with vision-based approaches as recorded in literature and used
in commercial products, such as the Tunnel & Clearance products from
MERMEC MERMEC (2014). However, still, literature on tunnel clear-
ance measurement based on IP is lacking and TLS is still the most
commonly adopted method. Considering the capacity of TLS to auto-
matically scan large tunnels and generate 3D models together with the
ability to monitor work progress, it is still preferred over image-based
methods.

3. Tunnel interior visualization

Visualization, in this context, is a means of organizing large image
datasets to create a layout plan of tunnel lining, to aid inspection.
Technical condition evaluation can be conducted offline and analyzed
further using digital processes on the constructed models, reducing the
presence of personnel in the tunnels while providing a more objective
observation. Various means of visualizing a tunnel layout exist, in-
cluding: image stitching/mosaicking and 3D reconstruction.

3.1. Image stitching/mosaicking

During tunnel inspection, a large amount of photographic data is
generated, which needs to be effectively organized. A typical solution is
to apply image mosaicking. This technique stitches individual images
together to form a larger image, hence reducing the number of images
requiring successive inspection. Moreover, having a larger field of view
of the tunnel surface can help identifying minor faults such as fine
cracks, which would have otherwise been missed in the context of the
original small image.

Mosaicking applications spatially align the images such that they
are on the same coordinate system. They are then blended together on a
common canvas to form the final mosaic image. A lot of previous work
(Pravenaa, 2016; Arya, 2015; Shaskank et al., 2014; Ghosh and
Kaabouch, 2016) exists in the field of image stitching and mosaicking,
however, these mainly dealt with natural images rather than tunnel
environments where images lack brightness, contrast and features. The
following is a review of image mosaicking in tunnel environments.

A system composed of line sensor cameras was proposed in Ukai
(2007) to create panoramic images of a tunnel surface. The acquired
images are spliced together by detecting characteristic points based on
differences in color and texture followed by matching. Unfortunately
further details on the algorithms used were not presented. Although the
example image given in Ukai (2007) shows the matched points, the
algorithm used to obtain these results is not described. Furthermore, the

transformation matrix, if any, used to align the images in order to join
them, is not mentioned.

During automated tunnel inspections, images are normally captured
from a moving platform, therefore it is highly unlikely that images
during different inspections are taken from the same points, requiring a
position offset correction. In Attard et al. (2017) image mosaicking is
proposed as a means for this correction. A shading correction is applied
as a pre-processing step to adjust the uneven illumination. The method
then uses binary edges as features for image registration via template
matching. After alignment, the images are attached to each other to
form a single image.

A modified subway train carriage fitted with nine line scan cameras
placed at different angles and five laser light sources was designed in
Zhang et al. (2014). The acquired discontinuous images are stitched
together into a mosaic for subsequent IP. Assuming a horse-shoe shaped
subway tunnel geometry model and the fact that the covering area of
each image is also fixed, the images are directly put together. Although
the mosaic is presented as having low complexity and low execution
time, it lacks the presentation of details how warping to correct for the
roundness of the tunnel structure is achieved if any.

Similarly, an image mosaicking algorithm using the equation of a
horse-shoe-shaped cross section was proposed in Lee et al. (2013).
Consumer level Digital Single-Lens Reflex (DSLR) cameras are used to
capture wall images. Laser markers, are used to provide control points
used in mosaicking. The images are rectified for geometric distortion
and spliced together to form a mosaic which can then be used for
manual inspection and identification of cracks as shown in Fig. 4.

Rather than using geometry to create a parametric model of the
tunnel surface and then transform the 3D coordinates to this model,
information from Structure-from-Motion (SfM) Granshaw (2018) was
used in the following works to register the images into a common co-
ordinate frame.

Fig. 3. Schematic illustration of the profile-image
method proposed in (a) Wang et al. (2009) and (b)
the improved method in Wang et al. (2010). Rep-
rinted from Tunnelling and Underground Space
Technology, vol. 25, No. 1, T.T. Wang, J.J. Jaw,
C.H. Hsu, F.S. Jeng, Profile-image method for
measuring tunnel profile - improvements and pro-
cedures, pp. 78–90, © (2010) with permission from
Elsevier.

Fig. 4. Mosaic image and manually identified cracks in Lee et al. (2013).
Reprinted from Tunnelling and Underground Space Technology, vol. 34, C.H.
Lee, Y.C. Chiu, T.T. Wang, T.H. Huang, Application and validation of simple
image-mosaic technology for interpreting cracks on tunnel lining, pp. 61–72, ©
(2013) with permission from Elsevier.
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The system in Stent et al. (2015), consisting of two DSLR cameras
and LED arrays on a rotating unit, was set up on a monorail track to
capture an area of a tunnel wall. Inferred camera poses for each image
and sparse 3D point clouds are produced by a SfM pipeline based on Wu
(2013). Using this information, a cylindrical projection is used to map
the 2D coordinates to a 2D image mosaic plane defined by the trans-
lation of the robot along the tunnel and the angle of rotation around the
sensor axis. Central quadrilaterals are selected from individual images
and pieced together with planar perspective warping to produce a
jigsaw-like image as displayed in Fig. 5. In addition to this, a simple
image filtering pipeline is employed to retrieve location barcode
stickers on the wall to create a catalogue of tunnel segments.

A system that mosaics the tunnel images via robust quadric surface
estimation was presented in Chaiyasarn et al. (2013). Wall images are
input to the sparse multi-view reconstruction algorithm based on the
work in Wu (2011), to find an estimate of the 3D model. A support
vector machine (SVM) classifier is then applied to discriminate the
tunnel surface points from non-surface points. The feature vectors used
as input to the SVM are extracted using the scale-invariant feature
transform (SIFT) algorithm. Given the constraints on the image col-
lection process where cameras are put inside the cylinder and each ray
intersects the surface in only a single visible point, defining a bijection
between an image sample and a point on the surface, these allow a
warping definition producing the flattened versions of the input images.
The warped images are then stitched using Microsoft Image Compositor
Editor (ICE) Microsoft Research (2017).

The SVM classifier used in the latter approach, requires training for
different tunnel environments. Moreover, this method uses a cylinder as
the surface proxy for warping which leads to notable distortion for non-
cylindrical tunnel profiles. Taking this into consideration, the algorithm
proposed in Zhu et al. (2016) models the projection surface using
tunnel design geometry instead. Images are first fed to the incremental
SfM software Wu (2011) to reconstruct the 3D scene, generating a
sparse 3D point cloud. In addition, the 3D tunnel lining shape is also
modelled using streamline sweeping along a path line. This projection
surface and the point cloud are input to the shape estimation compo-
nent, finding a rigid transformation which ensures the best overlap
between the point cloud and the target shape. The images are hence
rectified and later stitched using Microsoft Research (2017). This ap-
proach is able to create a layout panorama of tunnels including non-
circular shaped ones.

3.2. 3D reconstruction

Having a 3D model of the tunnel provides an actual comprehensive
visual and geometric image of its environment. It is useful to examiners
in terms of contextualising the location of damages found during in-
spection. The provision of 3D information further facilitates the eva-
luation of defects relative to the neighboring areas.

During the last decade, TLS has been the most commonly adopted
method to survey tunnel surfaces, providing sufficient data to be able to
reconstruct the true geometry of a tunnel. A commercial system using
this approach is Pavemetrics TM (2017) and an overview on the use of
laser scanning can be found in Frohlich and Mettenleiter (2004). Con-
currently, such 3D models lack image data that would be more useful

for a thorough inspection of the tunnel. Photogrammetry methods on
the other hand require significantly cheaper and probably smaller
equipment while providing image data.

The fusion between active and passive imaging sensors was pro-
posed in Paar et al. (2005) to combine the benefits of both technologies
to generate dense and high resolution surface reconstruction. In order
to fuse the data, the orientation of the camera must be known in the
scanners coordinate system, thus both data are projected on a common
regular grid on the tunnel surface. Once projected, Hierarchical Feature
Vector Matching (HFVM) Paar and Polzleitner (1992) is applied to
match the interest points. Using this correspondence, the laser in-
formation and the RGB camera data are combined to fill the surface
grid, creating a 3D textured model of the tunnel walls.

In Bauer et al. (2015), a 3D surface model is produced using a single
camera with a 24mm lens. Six images are acquired to cover the whole
tunnel profile with adequate overlaps. A laser pointer is used to sig-
nalize targets for geo-referencing and alignment. Tie points are iden-
tified in the images using speeded up robust features (SURF), and the
correspondences are found using Fast Library for Approximate Nearest
Neighbors (FLANN) Muja and Lowe (2009). Local block bundle ad-
justment is then applied to create a locally consistent set of orientations
for all the images involved. The targets are detected in the images using
Hough transform and morphological operations. Global orientation of
all the images is then conducted using a seven parameter transforma-
tion between the known 3D signalized points from a TS and their local
3D coordinates from local bundle adjustment. Dense stereo matching
Gerhard Paar (1994) is then utilized and disparities are used to project
the resulting 3D textural information on a surface grid.

In Stent et al. (2016), SfM techniques are used to recover the 3D
geometry and model of the tunnel by locally fitting quadratic surfaces
to the resulting point cloud. A 3D wire frame surface model is generated
and then texture mapped with captured images. The 3D models from
the previously-mentioned two systems are later used to detect changes
occurring on the tunnel walls. Similarly, in Jenkins et al. (2017), 3D
reconstruction is achieved using SfM techniques. An array of cameras
and lights are used to acquire generic tunnel surface images. In order to
deal with different tunnel geometries, rather than assuming a cylind-
rical shape as in Stent et al. (2016) or Chaiyasarn et al. (2013), the
authors utilize the SfM algorithm in Wu (2013) which does not rely on
geometric priors. A dense point cloud is generated and processed to
create a 3D mesh frame which is later textured using the same images
fed to the SfM.

To further analyze the cracks detected on the tunnel wall, in
Protopapadakis et al. (2016) a stereo camera pair captures images
which are later used to create a full 3D reconstruction of high fidelity
models of the areas of cracks. On the other hand, Jahanshahi and Masri
(2012) and Torok et al. (2013)use 3D scene reconstruction to do the
actual crack detection in general structures.

4. Crack and defect detection

During concrete tunnel inspection, the most sought after defects are
cracks as they are the earliest indications of structure degradation. If
cracks are identified at an early stage, preventive measures can be taken
to avoid larger infrastructural damages as well as to avoid accidents
that might otherwise take place. Several factors can cause cracks in
tunnels, amongst which are: ageing, fluctuations between contraction
and expansion of concrete due to temperature changes, heavy seasonal
rainfall, topographic change, cyclic weight loading and poor repair.

The conventional approach for lining defects detection and mon-
itoring involves physical visual inspection, manual sketches and phy-
sical measurements on site. Such a method depends on the inspectors’
knowledge and experience, lacking objectivity. Therefore, the use of IP
for crack detection and monitoring has been studied considerably to
provide systems and techniques to be able to objectively assess the
status of cracks in concrete structures Wang and Huang (2010). A

Fig. 5. Sample mosaic highlighting individual image segments in red Stent
et al. (2015). Reprinted from Proceedings of the 32nd International Symposium
on Automation and Robotics in Construction, S. Stent, C. Girerd, P. Long, R.
Cipolla, A low-cost robotic system for the efficient visual inspection of tunnels,
pp. 1–8, © (2015) with permission from the International Association for Au-
tomation and Robotics in Construction (IAARC).
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design study, supporting analysis, visualization and rendering of cracks
on tunnel linings can be found in Ortner et al. (2016). Approaches using
binary TH and morphological operations are the most commonly used.
Although literature dealing specifically with crack detection in tunnels
is limited, various works using IP for crack detection were realised in
other infrastructure fields such as pavements and bridges. Even though
the scenario conditions might be different with respect to the image
acquisition, illumination present and other limitations, certain basic
principles still hold and can be applied to crack detection in tunnels. A
further review of image-based methods used for crack detection in
general concrete surfaces can be found in Wang and Huang (2010),
Koch et al. (2015), and Mohan and Poobal (2017).

4.1. Methods based on TH techniques and morphological operators

Generally, crack areas are darker than those of their surroundings,
resulting in lower intensity values compared to the background. Such a
property allows TH techniques to be used as a first step to segment the
image and extract potential crack features.

In Ukai and Nagamine (2007), a tunnel scanner capable of taking
panoramic annular images of the tunnel lining was proposed. It consists
of multiple line sensor cameras and lighting mounted on a rail-car that
can be driven at speeds of 10–30 km/h. Once the acquisition is com-
pleted, images are pre-processed to correct for blurring and misalign-
ment. Utilising the existence of luminance gradient variations along the
line edges, cracks with larger luminance variation are selected. A hys-
teresis threshold method is then applied to select only edges joined to
others detected by high threshold values. The resulting image contains
segments of line pixels implying cracks, for which the width, height and
direction are found. When two or more cracks connect to generate a
closed crack region, the risk of exfoliation and concrete failure is
higher, thus a blob region analysis is further employed to detect such
regions.

An automated crack detection method based on a wireless multi-
media sensor network was developed for subway tunnels in Shen et al.
(2015). The system is composed of vehicular wireless multimedia
sensor nodes, sink node stations and a data centre. Each sensor node,
having a laser source and CCD cameras, captures an image, stores it,
performs binarization and compresses it to keep up with the limited
bandwidth. When the train arrives at a sink node, it transfers the image
to this station which in turn sends it to a central data centre. This
central server processes the data using a crack detection algorithm.
Images are preprocessed using median filtering and high cap transfor-
mation. The Otsu method Otsu (1979) for threshold segmentation is
then applied to crack regions. Crack width, length and areas are cal-
culated from the resulting image such as that in Fig. 6. The latter
properties are compared against respective thresholds to distinguish
true crack areas.

Generally, crack information occupies only a small portion of the
images, making it difficult to distinguish from the background.
Furthermore, the inter-class variance between the background and the
crack is affected by other items on the wall such as pipes and cables. To
counteract these problems, a block binarization was proposed in Qi
et al. (2014). Histogram equalisation, median filtering and top-hat

transformation Serra (1983) are applied to enhance the contrast and
remove the noise from the images. Segmentation is then performed
through local binarization using the average intensity value of a square
region of pixels as the threshold. Areas with a number of pixels lower
than a pre-defined value are eliminated. The algorithm is simple and
easy to implement however no detailed results were presented in Qi
et al. (2014). The authors suggest that machine learning can be used for
automatic threshold setting.

In Zhang et al. (2014), tunnel wall images are first merged into a
mosaic and then smoothed by an averaging filter to reduce the noise. A
black top hat transformation Serra (1983) is then applied to detect local
dim regions. Crack segmentation is then achieved through a TH op-
eration. The resulting binary images give an indication of the cracks
present. However, there are some local dark regions misidentified as
cracks. Thus, an opening operation is applied to filter these irrelevant
regions. The crack detection and recognition system proposed in Zhiwei
et al. (2002), makes use of two thresholds to produce a binarized image.
The resulting object edge image shows crack areas distinguished from
the background. Such an image is then processed further to classify
whether the areas are actually cracks or not.

A rig of CCD line scan cameras as shown in Fig. 7 to capture
grayscale images and identify crack defects was used in Huang et al.
(2017). The images are first pre-processed to compensate for the image
shift caused by vibration of the moving platform. The original image is
divided into local image elements. The grayscale values of the pixels are
used to calculate the brightness and contrast of the area. The overall
gray value difference of the region is calculated and the product of the
latter two values results in a value ranging between 1 and 0. The lower
the value, the greater is the probability that the area includes a crack.
This difference value is compared to a pre-defined value and if it is
below this value, the centre pixel is recorded as a crack seed. A crack is
recognized by the connecting line between the crack seeds.

Rather than intensity data, Yu et al. (2016) used infrared images to
detect tunnel lining surface cracks through a three-step method. First,
the images are pre-processed in the frequency domain. Each image is
then divided into sub-blocks and the directional dependence of the
texture in each of them is calculated. The optimum threshold is ob-
tained by an iterative method. Crack areas are identified through a
comparison against this threshold value and the cracks in each sub-
block are connected.

Threshold-based methods for crack detection in general concrete
structures include: Ito et al. (2002), Hu et al. (2012,), Fujita and
Hamamoto (2011), Su (2013), Lee et al. (2013), Dorafshan and Maguire
(2016), and Ayaho et al. (2007). The TH technique is relatively simple
and computationally inexpensive rendering it as the most commonly
used, at least in preliminary stages of crack detection. On the other
hand, its accuracy highly depends on the predefined value at which the

Fig. 6. Original image and crack segmentation result from Shen et al. (2015).
Reprinted from International Journal of Distributed Sensor Networks, vol. 11,
No. 6, B. Shen, W. Zhang, D. Qi, X. Wu, Wireless Multimedia Sensor Network
Based Subway Tunnel Crack Detection Method, © (2015) This is an open access
article distributed under the Creative Commons Attribution License.

Fig. 7. Image acquisition system used in Huang et al. (2017), to capture images
and then identify tunnel defects. Reprinted from Advanced Engineering Infor-
matics Journal, vol. 32, H. Huang, Y. Sun, Y. Xue, F. Wang, Inspection equip-
ment study for subway tunnel defects by grayscale image processing, pp.
188–201, © (2017) with permission from Elsevier.
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threshold is set, implying some difficulty in scenarios where crack sizes
vary considerably.

4.2. Texture analysis methods

Visual texture is a vital characteristic that can be used to distinguish
one surface from another. In addition, changes in texture along a sur-
face can be used to identify defects or flaws in it. Using texture-analysis,
a crack detection method using a rotation invariant Gabor Filter was
suggested in Medina et al. (2017). This method allows cracks to be
analyzed at the pixel level and to be detected regardless of their di-
rection. The filter’s parameters are set using a modified genetic algo-
rithm based on the Differential Evolution optimization method. A
railroad mobile platform equipped with a linear camera was developed
to test this method. Gabor filters were also used to detect cracks in
pavements in Salman et al. (2013).

4.3. Pattern recognition methods

Various image-based crack detection algorithms recorded in litera-
ture make use of pattern recognition techniques. In Zhang et al. (2014),
the crack areas identified by the TH stage are analyzed through features
such as standard deviation of shape distance histogram, pixel number
and average gray level. Such features are used as inputs to a radial basis
function neural network (RBF), Extreme Learning Machine (ELM), SVM
and K-nearest neighbor (KNN) algorithm to classify the candidate ob-
jects as cracks or not. The different classifiers achieved similar ac-
curacies, with ELM being the most accurate. Following binarization, the
image is then segmented into local regions and SVM is used to classify
the sub-images into three types of classes: crack, non-crack and inter-
mediate.

A defect detector using Convolutional Neural Networks (CNN) was
proposed in Makantasis et al. (2015). The information extracted from
the RGB images includes edges, frequency, texture, entropy and His-
togram of Oriented Gradients (HOG). The CNN takes these features and
constructs high-level features as inputs to a Multi-Layer Perceptron
(MLP) which is trained to identify defects on the tunnel lining.

An image recognition algorithm for semantic segmentation of cracks
and leakage defects of metro shield tunnel using hierarchies of features
extracted by fully convolutional network (FCN) was presented in Huang
et al. (2018). FCN models of crack and leakage are separately trained
through several iterations of forward inference and backward learning.
Following this, semantic segmentation of defect images is implemented
via the corresponding FCN models using a two-stream algorithm. One
stream is used to recognize the crack while the other is adopted for the
leakage. Similarly, Cha et al. (2017) uses a deep architecture of CNNs
for detecting concrete cracks without calculating the defect features.
The algorithm was tested on tunnel RGB images captured by a DSLR
camera.

In order to detect cracks in general concrete surfaces, a Support
Vector Data Description (SVDD) approach was undertaken in Weiguo
et al. (2017). The proposed method converts the color image to
grayscale and then segments it using a threshold. A morphological
closing operation is then applied on the binary image. Once, pre-pro-
cessed, properties including eccentricity, circularity and packing

density are compiled into a vector and input into a trained SVDD to
identify cracks.

5. Water leakage detection

To ensure the safety of the concrete structure, tunnels should also be
monitored for water leakages. Detection for water ingress is often
performed during human visual inspection, however during the last
decade, efforts to automate this process using IP were done to reduce
the subjectivity and improve efficiency. Leakage detection and re-
cognition can be treated as an object detection problem similar to crack
detection, using similar IP principles. In general, leakage areas are
darker than the rest due to low reflectance, where edges of leakage
areas have larger gradient gray values and form closed irregular shapes.

The inspection system in Huang et al. (2017) also includes a leakage
recognition component. It uses edge detection followed by the Otsu
algorithm to calculate the threshold in order to binarize the image,
segmenting the leakage areas from the surrounding regions. The work
presented only outlines the approach taken and neither gives further
details nor quantitative results of the proposed method.

Water leakage on walls is commonly identified through darker areas
occurring near the ingress location, traced vertically down implying the
water flow. Using, this observation, Ukai and Nagamine (2007)
smooths tunnel images in the horizontal direction to eliminate pattern
content in this direction. Dynamic threshold value processing is then
utilized to extract regions which are darker than the background as the
leakage areas, as shown in Fig. 8.

In ChuanPeng et al. (2010), color images are first converted to
grayscale and then Canny Edge detection is applied to extract the edges.
Non-maxima suppression is then used to remove the noise while a
hysteresis threshold is utilized to obtain more accurate edges. Since
objects present on the tunnel lining, such as pipes and segment joints,
generally have similar intensity features, their edges will also be ex-
tracted. Taking this into consideration, a classifier using an Artificial
Neural Network (ANN) was proposed to distinguish them. The gradient
magnitude and orientation, RGB value, line width and line length are
first extracted. Their mean and variance values are then used as inputs
to the ANN. The detection result is claimed to be satisfactory when the
background is relatively simple with few occlusions, however the per-
formance reduces significantly in the presence of more complex back-
grounds and light reflection.

Further to visible images, other methods currently used to find a
leak include: acoustics using noise logger and sensitive microphones
and tracer gas. Thermal Infrared (TIR) imagery has also been used to
detect moist areas and perform leakage detection in underground pipes.
In Fahmy and Moselhi (2009) a study was conducted for the detection
of water leaks, and identification of their respective locations in un-
derground pipelines using a TIR camera. In Parida et al. (2013), an
automated water leakage detection system using a wireless sensor
network created along the distribution pipes based on TIR was pro-
posed. IP techniques such as edge detection are used to determine if
there is a water leakage in the region of interest in the imaged zone.

Although several systems that use IP to detect water leaks in dif-
ferent environment scenarios were previously presented, works re-
corded in the specific field of tunnel inspection are very limited.

Fig. 8. Detection of water leakage using
the method in Ukai and Nagamine (2007).
(a) Original image showing generation of
a water leakage (b) Stronger smoothing in
the horizontal direction (c) Dynamic
threshold value processing to extract
darker regions (d) Minimum bounding
rectangles around water leakage areas.

Reprinted from Railway Technical Research Institute, M. Ukai, A High-performance Inspection System of Tunnel Wall Deformation Using Continuous Scan Image,
2011© (2016) with permission from International Union of Railways (UIC).
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Moreover, none of the above mentioned water leakage detection sys-
tems present any quantitative results and they display only a few re-
sulting detection images. General statistics on the detection accuracy
could have been used in order to provide a better evaluation of the
results from such works. These include the true positive rate (TPR) and
false positive rate (FPR) given by:= ⎛⎝ + ⎞⎠TPR TP

TP FN (2)

= ⎛⎝ + ⎞⎠FPR FP
FP TN (3)

where TP is the number of true leakage detection areas, FP is the
number of falsely detected areas, TN is the number of leakage-free areas
and FN is the number of missed leakage detections. Moreover, such
rates could be further utilized in order to perform receiver operating
characteristic (ROC) analysis, comparing the behavior of each of the
above rates as they vary with each other.

6. General change detection

There are several types of faults that structural inspectors look for
when inspecting a tunnel, including cracks, spalls and water ingress. As
discussed in the previous sections, most of the inspection research dealt
with detection of such faults rather than deformation monitoring.
Sometimes it is more beneficial to study the evolution of such de-
formations as this gives a better indication of the structural health
status of the tunnel and its deterioration if any. Deformation on the
tunnel lining results in changes which are visible on the wall. Early
detection of such visual changes is a critical requirement for structural
failure prevention. Observing the tunnel for such changes is often the
work of human inspectors. They, have to traverse the tunnel and check
for any changes occurring since a previous inspection by comparing to
previous records. Similar to all the manual detections mentioned pre-
viously, this is a costly and time-consuming process and given that some
tunnels present adverse working environment conditions, it is very
beneficial to automate this process.

Change detection in 2D images is a well researched problem, par-
ticularly in the fields of video surveillance, remote sensing and medical
imaging. Reviews of such change identification methods are found in Lu
et al. (2004) and Radke et al. (2005). However, literature on the de-
tections of changes on tunnel linings is still lacking, possibly due to the
challenges encountered in this area. Accurate image registration is an
important prerequisite for precise image comparison for change de-
tection. In remote sensing, GPS is commonly used for registration,
however, this is unavailable in tunnels, thus, Simultaneous Localization
and Mapping (SLAM) can be used to achieve this as well as to help with
navigation as in Castro et al. (2014) or to assist in generating 3D
models. Furthermore, images in tunnel environments are characterized
by lack of features, low contrast and low brightness. Despite these
problems, the following are some change detection systems that were
proposed for tunnel environments.

A change detection system for railway tunnels is described in
Jenkins et al. (2017). It uses an array of overlapping cameras placed on
a railway trolley. Change detection is conducted by comparing an
image from a previous scan as a template and the best matched image
from the current scan as the query. Images are first aligned, then nor-
malized cross-correlation based filtering is applied to detect the dif-
ferences between the two images. The method is claimed to be more
robust than comparing single pixels as it takes into account the sur-
rounding pixels as well as it corrects lighting variation through mean-
based intensity normalization. Despite such claims, insufficient theory
details are given in each step involved.

TInspect, a tunnel wall change monitoring system making use of
low-cost camera equipment placed on a train inspection monorail, was
proposed in Attard et al. (2018). The system corrects for position offset

variances between the query and a previous survey image using the
mosaicking solution given in Attard et al. (2017). A hybrid change
detection algorithm that uses image differencing, binary image pixel
comparison and optical flow is then applied. Using a combined
weighting model, the ‘actual change’ areas are identified and false de-
tections due to parallax, misalignment and shadows are discarded. This
system achieves high sensitivity and precision rates while it is able to
detect changes within a resolution of around 10 cm in width and/or
height. Despite the good result obtained, only a limited area of the
tunnel could be monitored by one camera, and thus multiple sensors are
needed to cover the whole tunnel.

An automated system using five synchronized cameras with flash
units was presented in Stent et al. (2013). Inspection images are re-
gistered to a 3D tunnel surface model recovered by SfM techniques. A
change map is estimated by defining a distance function between the
query and its matching image from a previously obtained dataset. The
information from SfM is used to form a geometric prior, mapping image
locations to corresponding 3D points. Two-dimensional SIFT features
are categorized in two groups, inlier (on-surface) and outlier (off-sur-
face), based on the distance of their corresponding 3D points to their
closest point on the locally fitted surface. Mean shift segmentation is
then applied to the query image to delineate the image into groups of
similar color and textures. Inliers and outliers contained within a pixel
group vote towards its overall classification. The geometric prior im-
plies a lower weight to detected changes where the geometry is either
known to be off surface or known to be unreliable, reducing false de-
tections of changes caused by cables and other objects on the walls.

In Stent et al. (2015), overlapping 360° rings of images are gathered
by an autonomous calibrated camera running along a monorail, com-
bined with polarized lighting and orthogonally polarized lens filters to
remove or attenuate image variations due to scene secularities. SfM is
used to build panoramas of the surface. Neighboring reconstructed
subsets are registered across time using a similarity transform estimated
via Procrustes alignment Crosilla (2003) on a subset of confident fea-
ture correspondences. A CNN architecture is used to classify the input
pair between changed and unchanged states. The quantitative evalua-
tion reported in the paper shows that the CNN outperformed the change
detection implemented using absolute differencing (RGB) and NCC
approach used in Stent et al. (2013) as well as manual detection when a
slightly higher false positive rate was allowed.

7. Future trends

The low cost of ubiquitous photographic equipment as well as the
availability of very fast processors that can be used to execute IP al-
gorithms makes this approach a better alternative to manual inspection.
Nonetheless, the use of photogrammetry has not been fully exploited
yet in the field of tunnel inspection due to the various challenges in the
area. In general, tunnel environments are usually characterized by low
lighting, thus leading to dark and low contrast images, making them
unsuitable for subsequent processing. Also, when considering tunnel
walls, in particular painted ones, images contain low texture leading to
a lack of features. The latter are fundamental in common IP tasks such
as registration, recognition and 3D reconstruction. In order to exploit
better the use of CV in tunnel inspection, investigation into new
methods that improve feature extraction and matching should be done.
Furthermore, the application of already established deep learning
techniques applied in other fields can help recognition tasks improve
the identification of faults in the tunnel structure, including cracks and
water detection. In addition, the use of multiple sensors, such as
thermal cameras and RGB-D cameras, generating different data and
fusing them together can combine the advantages of each modality and
provide better data for analysis in inspections. A recent technology
being used in civil infrastructure is that of unmanned aerial vehicles
(UAVs) which can also be used to inspect tunnels, making the whole
process that much safer and more effective as discussed in Commercial
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UAV News (2018). Several commercial UAVs that can be used for in-
spection are PRODRONE (2018), FLYABILITY (2018) and Orbital
Technical Solutions (2018).

8. Conclusion

Due to ageing, continuous loading and other environmental factors,
tunnel structures deteriorate over time, reducing the safety of such
infrastructures. Thus, regular tunnel inspection is necessary to identify
any faults at an early stage and perform the required maintenance.
Traditional methods involved manual inspection through visual ob-
servation and measurement using geodetic devices. In order to improve
inspection in terms of efficiency, safety of personnel as well as survey
objectivity, there has been an increasing interest in automating such
inspections. This publication provided a collective review of automated
tunnel inspection systems based on IP and photogrammetric techni-
ques. Surveys on general crack identification, change detection and
image mosaicking based on IP already exist in literature, however, a
comprehensive review focusing on image-based tunnel inspection was
still missing. This manuscript thus contributes a study and review of the
state of the art in vision-based automation used in different tunnel in-
spection procedures. These include: tunnel profile monitoring, crack
and leakage detection as well as tunnel surface documentation and
visualization. As discussed in this paper, each of these inspection tasks
has been improved in different respects over time. Unfortunately some
of the literature does not give extensive details of the methods im-
plemented while others lack the presentation of results and statistics
and therefore a fair comparison cannot be made. Although considerable
advancements have been made in the field of tunnel inspection, the use
of photogrammetry has not been fully exploited yet due to the various
challenges in the area. Improving on this, recent technology innova-
tions such as UAV’s, advanced and compact photographic equipment
together with the use of data fusion from multi-modal sensors are
continuously being introduced to the field.
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Abstract—Infrastructures may develop defects over time and
thus periodic monitoring is required to evaluate their health.
Structural inspection of such constructions can sometimes be
restricted due to short time windows in which humans can access
the area as well as due to various hazardous conditions that may
be present. This work advances the state of the art in structural
inspection by contributing to the field of robotics, vision and
inspection by proposing a comprehensive system to provide a
better means of surface documentation and to aid structural
health monitoring. A mobile robotic platform is equipped with
one or more cameras to capture images of walls. Such images
are then reconstructed into a 3D model that can be visualised
through Virtual Reality (VR). The model can then be further
analysed via subsequent image processing stages. Although the
prime purpose of the system is for deployment in tunnels, it can
be adapted to various other scenarios.

Index Terms—robotic tunnel inspection, visualisation, image
processing, virtual reality

I. INTRODUCTION

The underground infrastructure is becoming increasingly
important to use the available land area more efficiently.
A broad variety of tunnel projects ranging from railways,
subways and roads to pipelines, mines and further on to
tunnels hosting equipment used for research experiments, have
been developed. Due to ageing, ground motion, environmental
elements, structural stress such as increased loading as well
as neglect, including poor maintenance and deferred repairs,
such underground structures may develop defects over time.
The latter consist of opening of joints, concrete reinforcement

corrosion, cracks, spalls and even deformation of the tunnel
profile. Consequently to ensure safety, periodic monitoring of
such tunnels is needed. Traditionally, structural inspection is
carried out manually through visual surveys by inspectors. Due
to surveillance conditions and large-scale requirements, this
approach is challenging and demanding. It involves a high
amount of time, high cost for hiring the personnel and is
human subjective. Considering this, recently, the automation of
structural health monitoring received significant consideration.

By using robotics, photographic gear and visualization
techniques, several systems were built to carry out varying
automated inspection tasks. We propose a vision-based robotic
system to gather image data from a tunnel for its surface
documentation and use such data for structural monitoring
purposes. It automatically captures images of the tunnel walls,
feeds them into a reconstruction module to create the 3D
model of the tunnel surface and visualizes the latter through
VR. In this paper, the LHC tunnel [1] of the European
Organization for Nuclear Research (CERN), was used as a
tunnel environment scenario.

The rest of the paper is as follows. The state of the art
relevant to the approaches used in the proposed system is
presented in Section II. An overview of the system is given in
Section III. Section IV describes the image capturing compo-
nent. The 3D image reconstruction is discussed in section V
while the visualization element is explained in section VI. A
summary and an indication of future work conclude the paper.

978-1-5386-6628-9/18/$31.00 ©2018 IEEE
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II. BACKGROUND INFORMATION

During the last few decades there were several efforts in
automating inspection of tunnel infrastructure through the use
of laser scanners, photography equipment and robotics. Gen-
eral surveys on existing automated tunnel inspection systems
can be found in [2] and [3].

In this paper we propose a robotic system composed of
three modules. The first component automatically captures
images which are then reconstructed into a 3D model by the
second module. The final module visualizes the model through
VR. The following sub-sections provide some background
information on each of these system parts.

A. Image Acquisition

The choice of the image acquisition system is generally
dependent on the constraints present in the particular scenario.
Theses include space limitations, available time and envi-
ronmental conditions. Related works in vision-based tunnel
inspection have used different equipment for data acquisition.
For the detection of cracks, the system in [4] uses a line-
scanning camera. A line-scanning camera array combined with
powerful lighting was used in [5]. Other systems using CCD
line-scan cameras were proposed as in [6]. A fish-eye camera
and structured light were utilised in [7] for inspection as
well as to find the robot’s location using visual odometry. A
Digital Single Lens Reflex (DSLR) camera was utilised in
[8] to capture photos for image mosaicking. A similar system
was proposed in [9] however the image capturing process is
manual. A mirror-less camera installed on a monorail system
to capture images along the tunnel and then perform change
detection on these images was used in [10].

B. 3D Reconstruction

The availability of a 3D model for surface documentation
of a tunnel wall provides comprehensive visual and geometric
images of its environments, aiding inspectors to contextualise
better the location of damages found during observations. In
addition, 3D information enables visual validation of defects
with respect to the areas around them. Laser scanning is
predominantly used for such reconstructions and a review on
its use can be consulted in [11]. Such laser-based 3D models
are devoid of image data that can be more useful in inspection.
The combination of passive and active imaging sensors was
proposed in [12]. A 3D surface model was generated through a
stereo-based photogrammetry workflow in [13]. Structure from
motion (SfM) techniques were used in [9] and [14] to recover
the 3D geometry of a tunnel by fitting local quadric surfaces
to the generated point cloud. In [15], 3D reconstruction of
the crack areas on a tunnel wall is used to further analyse
previously detected cracks.

C. Virtual Reality

VR is a blend of digital image processing, computer graph-
ics and multimedia technology used to create an interactive
computer simulation, which senses the user’s state and move-
ments and subsequently replaces sensory feedback information

in such a way that the user experiences a sense of being
immersed in the simulation (virtual environment). Work on VR
has been recorded for a long time as listed in [16] however,
it became more popular in the current decade. The various
applications of VR include health-care, entertainment, design,
education and engineering. VR technology has also been used
in the civil engineering field [17] such as for planning and
design, construction progress demonstration as well as for
monitoring and inspection. Two prototype solutions based on
VR technology for use in maintenance planning of buildings
were proposed in [18]. These support the execution of periodic
inspections and the monitoring of interior and exterior wall
maintenance. Furthermore, an inspection and reporting system
that uses VR, multimedia and 3D modeling techniques was
developed for the Troll Gas landfall tunnels [19].

III. SYSTEM OVERVIEW

The proposed system consists of three components. First, it
captures wall photos automatically from camera/s on a moving
platform. Then, the second module uses this image data in
order to make the 3D reconstruction of the tunnel wall. This
model is fed to the final module that uses VR technology
to render the tunnel wall structures. The end user visualizes
this on a VR headgear for the purpose of monitoring and
inspection.

IV. IMAGE DATA ACQUISITION

In order to keep up with space and time constraints, inspec-
tion systems must be simple to set up and small in dimensions.
In this work, we use the LHC tunnel environment in which its
restricted access areas, low lighting and dust impose various
other limitations on the choice of image acquisition set-up.
The proposed system uses a mobile platform to move a camera
around the LHC tunnel and captures images of the walls.

A. Mobile Platforms

There are currently two mobile platforms that can be used
for the proposed system: Train Inspection Monorail (TIM)
[20] and CERNbot [21]. TIM is a modular inspection train
remotely operated to move on an overhead track installed on
the LHC tunnel ceiling. For image capturing, a camera is fixed
on a robotic arm extending downwards from one of the TIM
wagons as shown in Fig. 1. CERNbot is an in-house developed
remotely operated vehicle (ROV), on which different devices
such as sensors and robotic arms can be placed to conduct
different interventions. For image capturing, it is equipped
with a metal structure that houses multiple cameras as shown
in Fig. 2. The CERNbot is remotely operated via a graphical
user interface [22] and for our solution it is driven roughly in
a straight line in parallel to the tunnel wall.

B. Camera Setup

Either a DSLR or a mirror-less camera can be used with
both mobile platforms however the latter type is preferred
due to its compactness and light weight. In the case of the
CERNbot, multiple cameras can be used, such that a number
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Fig. 1. Camera on the arm extending from one of the wagons of the TIM

Fig. 2. Camera on the CERNbot robotic platform

of overlapping images can be captured. This method allows a
larger surface area of the wall to be reconstructed from a single
run along the tunnel. A simple application was developed
to calculate the camera set-up configuration parameters. For
the given camera’s sensor dimensions, lens focal length and
distance from the wall, the application calculates the image
overlap when setting the spacing between the cameras or vice
versa. A screenshot of the application is displayed in Fig. 3.

C. Automatic image capturing

Images are captured by the cameras automatically while
the robotic platform is moving. This is possible through the
interface developed using the camera software development kit
(SDK) [23]. The camera interface can capture both images and
videos and saves them to the SD card and/or the host computer
according to the previously defined configuration parameters.

V. 3D IMAGE RECONSTRUCTION

In general, 3D reconstruction algorithms use salient points
extracted from images such as corners, blobs, etc. In our
scenario images from the tunnel walls, mainly contain a white
surface with some dirt, cracks and some equipment, which
may lie on the wall, implying lack of features in the image.
While there has been a surge of interest in generating 3D
models of objects and scenes from photos, reconstruction
from images lacking texture and consequently reliable features
is still very limited. After evaluating various existing 3D

Fig. 3. Screenshot of the application used to find the camera set-up parameters

Fig. 4. Zephyr 3D reconstruction process

reconstruction software applications, 3DFlow Zephyr Aerial
[24] commercial software was chosen due to its high quality
output even when the image content lacks features. This
software can operate either on a set of single images or on
a frame sequence from a video file. It uses SfM techniques to
calculate the camera parameters and generates a sparse point
cloud. A multi-view stereo algorithm is then used to create a
dense point cloud followed by a mesh generation. The mesh
is then textured using the content in the original images. The
following subsections give further details on each part of the
3D reconstruction process displayed in Fig. 4 as applied to
the captured images and video frames of the LHC tunnel wall.
Such reconstruction is done offline once the image dataset is
captured.

A. Structure from Motion

SfM deals with the recovery of the 3D geometry of a
scene, i.e. structure, when observed through a moving camera,
i.e. motion. Zephyr first extracts keypoints from all n input
images. It uses a scale-space feature extractor based on Dif-
ference of Gaussian, with a radial and symmetric descriptor.
A spanning tree defining the overlap relationship between the
images is then built to establish the order in which the images
must be processed. Feature matching then follows a near-
est neighbour approach [25]. M-estimator Sample Consensus
(MSAC) [26], is subsequently used to compute homographies
and fundamental matrices between pairs of matching images.
MSAC gives outliers a fixed penalty but scores inliers on how
well they fit the data. Next, the images are organized into
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Fig. 5. Camera positions as calculated by SfM

Fig. 6. Sparse reconstruction corresponding to the scene in Fig. 5

a tree with agglomerative clustering in a bottom-up manner,
using the overlap measure as the distance. The dendrogram
generated by the clustering stage imposes a hierarchical orga-
nization of the views. At each node of the dendrogram, three
operations are possible: two views reconstruction, one view
addition or fusion. This stage establishes the camera location
for each frame as shown in Fig. 5 and the corresponding sparse
reconstruction of the scene as in Fig. 6. For details on the SfM
stage of the reconstruction the reader is referred to [27].

B. Multi-View Stereo

In order to reconstruct a dense model using several images
captured from multiple known camera viewpoints, which in
our case were found using SfM, MVS is used. For each
pixel m, candidate depths are extracted by considering the
reference image Ii and N(Ii) neighbouring views. The latter
are chosen using an overlap measure based on the Jaccard
index. Candidate depths for each m are searched along the
epipolar line of each neighboring image using block matching
and Normalised Cross Correlation (NCC). The final depth map
is built from the depth hypothesis using a discrete Markov
random field (MRF) optimization method over the (regular)
image grid. The MRF assigns a label l ∈ {l1...lk, lk+1} to
each m, where the candidate depths are represented by the
first k labels and lk+1 is the undetermined state. A sequential
tree re-weighted message passing optimization [28] was used
to solve the MRF. The Poisson algorithm [29] is then used to
create a surface. For every 3D point, a normal is computed by
fitting a plane to its nearest neighbours. At this stage, a mesh
of the wall surface is available as shown in Fig. 7.

C. Texture mapping

In the final stage of the reconstruction, the mesh from the
previous stage is textured using the content of the original
images fed into the software such that the 3D model has close
resemblance to the real tunnel wall surface. Zephyr’s texturing
stage is based on the color balance method and although the
approach is quite different it is based on a modified multiband
algorithm [30]. Once the mesh is textured using the image
content, the complete 3D model of the tunnel wall is available
as displayed in Fig. 8.

D. Experiments

The reconstruction module was tested on different image
datasets captured using both the TIM and CERNBot. With

Fig. 7. Zoomed in wire-frame mesh corresponding to the scene in Fig. 5

Fig. 8. Final 3D model corresponding to the tunnel section in Fig. 5

the current robotic arm on the TIM only a single camera can
be used while multiple ones can be placed on the CERNbot.
Using multiple cameras, overlapping images in both directions
(horizontal and vertical) can be captured and stitched, allowing
a larger area of the tunnel wall to be observed. Consequently,
the CERNbot was selected as the mobile platform for the
proposed system.

In order to have an overlap of approximately 60% between
each images considering that the cameras are at around 1m
away from the wall with 35cm between their centres, the focal
length (F ) was set to 10mm. For a wider field of view, a
shorter focal length can be chosen, however this may then
introduce lens distortion. To avoid blurring, ideally, the shutter
speed should be set at 1

F s or faster so, in this case, the speed
should be at least 1

10s. When the camera was set at a speed
of 1

15s, with an aperture of f
5.6 and ISO400, the exposure

was relatively dark. Improving the brightness by increasing
the exposure time would introduce blurring. Furthermore, the
camera is on a moving platform, thus there is already the
possibility of blurring from this egomotion. To improve the
brightness, the exposure triangle principle was used. This
states that if the exposure is to be kept the same, if one element
of aperture, ISO or shutter speed is changed with x stops then
the combination of the other two should change by x stops
too. Consequently, as the speed was increased by four stops
to 1/60s, the ISO was pushed up to 1600 as shown in Fig. 9.
The CERNBot was driven at different speeds, according to the
overlap required. For an overlap of 60%, taking a photo every
second, the spacing in between each capture should be around
0.33m, thus the optimal speed was found to be 0.3m/s.

Two different dataset types were used to reconstruct the
tunnel wall and a summary of the properties for each is given
in table I. The use of video enabled the dataset gathering to
be done faster as it does not require the robotic platform
to be moved slowly to avoid photo blurring. Furthermore,
the reconstruction was more complete due to a large overlap
between the frames. While both single images and video
frames achieved high quality reconstruction, some blurring
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Fig. 9. Camera settings involving the ISO, Aperture and Shutter speed using
the Exposure Triangle Principle

TABLE I
DATASET SUMMARY, INCLUDING DATA TYPE, CAMERA AND RESOLUTION

Dataset type Camera used Resolution FPS
Images Nikon 1 V3 2607 x 1744 N/A
Video Nikon 1 V3 1920 x 1080 59

was observed when using videos. In some cases, holes ap-
peared in the mesh, however these were filled using the
water-tightness feature of the software. Although mesh-filling
produced good results in general, some abnormalities occurred
in places where the images had nearly no features.

For each of the models created, a processing report was
exported from Zephyr and analyzed manually to check the
performance. Considering the sample model used in the pre-
sented figures and its corresponding report, we now discuss
the quantitative values. Although this is a sample model it
is representative of the other generated models. As observed
in Fig. 5, there are two sets of cameras, one on top of
each other, as datasets from two cameras set as shown in
Fig. 2 were used. When using video as a data source, video
frames were extracted at an empirically set frame rate of
1 FPS. When extracting frames, a similarity score between
the current frame and the previous one is calculated; if the
deviation is lower than a defined threshold, then the frames
are considered too similar and the current frame is discarded.
Once the images/video frames are available, using SfM, the 3D
reconstruction module finds the camera parameters as shown in
table II. To decrease the computation time, the images/frames
are resized by a factor of 0.5 for subsequent steps of the
reconstruction. The quality of the 3D reconstruction of the
tunnel wall depends on the overlap of the neighboring images
which is directly related to the speed of the moving platform
and the texture on the wall. The slower the speed, the larger
the overlap and thus the better the results. As for the lack
of features in the images, on-going work is focusing on
improving the feature extraction capabilities of the system. On
average, the images/frames had an overlap between 60-70%
for a successful reconstruction.

TABLE II
INTERNAL CAMERA PARAMETERS OBTAINED BY THE 3D

RECONSTRUCTION MODULE FOR THE SCENE IN FIG. 5

Skew Focals Optical Radial Tangential
Center Distortion Distortion

0 X: 1035.1 X: 982.38 K1: 0.0080082 P1: 0
Y: 1035.1 Y: 538.87 K2: -0.062066 P2: 0

K3: 0.022664

0 X: 1086.6 X: 965.05 K1: 0.011798 P1: 0
Y: 1086.6 Y: 534.76 K2: -0.078762 P2: 0

K3: 0.032365

Fig. 10. Virtual model of the tunnel wall being refined in Unity

VI. TUNNEL WALL MODEL VISUALISATION

Building and maintaining infrastructures typically involves
four phases: construction, monitoring, preventive maintenance
and repair; throughout which engineers increasingly demand
a visual and geometrical digital representation of the structure
surfaces. Using the image data capture on-site and generating
3D models of the environment helps with better documentation
and also offers a means of remote inspection. Moreover,
viewing such 3D models using VR technology offers further
benefits, thus the final module of our proposed system uses
the generated 3D models and renders them such that they can
be viewed via VR.

VR is a computer-generated scenario that simulates expe-
rience. Through such a model, tele-presence comes into play,
where a user is able to view the walls as if s/he is in the
tunnel itself and thus can perform inspection remotely in a
better contextualised scenario than through 2D or 3D models.
In addition, such a model can also be used by personnel
to familiarise themselves to the environment before going
on a mission. Our system uses Unity3D, a cross-platform
game engine [31] to generate the virtual model and refine it
by changing the scale, adding lights and other modifications
through a user interface as demonstrated in Fig. 10. In turn, an
HTC VIVE headset together with an HTC controller are then
used to view the VR model and navigate through the scene as
illustrated in Fig. 11.

VII. CONCLUSION AND FUTURE WORK

Infrastructures such as tunnels and bridges may develop
some defects due to ageing and stresses, thus they need to
be regularly monitored. Traditionally this process is done by
visually observing the structure itself, however this is not very
efficient. Some tunnels cannot be closed for traffic and others
may not be accessible to humans due to hazardous conditions
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Fig. 11. Virtual model of the tunnel wall viewed using an HTC headset

that may be present. Furthermore, manual inspection is highly
dependant on human subjectivity. Taking this into considera-
tion we developed a comprehensive system to automatically
capture images using one or more cameras placed on a moving
platform. The images are then reconstructed into 3D models
and viewed in VR. Such a system is beneficial for wall
surface documentation, remote inspection and analysis. Further
improvements to the system can be the use of more sensors to
provide a more accurate 3D model as well as the automation
of 3D reconstruction via an SDK rather than the user interface.
In addition, some information on the environment can be
augmented to the VR model rendering mixed reality.
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Abstract—In order to avoid possible failures and prevent
damage in civil infrastructures, such as tunnels and bridges,
inspection should be done on a regular basis. Cracks are one
of the earliest indications of degradation, hence, their detection
allows preventive measures to be taken to avoid further damage.
In this paper, we demonstrate that Mask R-CNN can be used
to localize cracks on concrete surfaces and obtain their corre-
sponding masks to aid extract other properties that are useful
for inspection. Such a tool can help mitigate the drawbacks of
manual inspection by automating crack detection, lowering time
consumption in executing this task, reducing costs and increasing
the safety of the personnel. To train Mask R-CNN for crack
detection we built a groundtruth database of masks on images
from a subset of a standard crack dataset. Tests on the trained
model achieved a precision value of 93.94% and a recall of 77.5%.

Index Terms—object detection, crack detection, mask r-cnn,
vision-based inspection

I. INTRODUCTION

As civil infrastructure (e.g. bridges, tunnels and dams) ages
due to weathering, corrosion, carbonation and thermal cycles,
it becomes susceptible to structural deterioration which may
lead to deviations from their original design functions. It
is therefore of utmost importance that such structures are
inspected on a regular basis to proactively respond to prevent
damage and possible failures which may also lead to fatal
accidents. Cracks on concrete surfaces are one of the earliest
indication of degradation of a structure. The number of cracks
together with their type, width and length show the degradation
level and carrying capacity of the concrete structure of a
surface. Their early detection allows preventive measures to
be taken in order to avoid further damage.

The acclaimed traditional method used to inspect cracks is
through manual, visual surveys. Inspectors conduct site visits,
either in person or through the use of drones or other robotic or
remotely operated equipment and traverse the structure looking
at surfaces and noting conditions of the irregularities through
manual sketches of cracks. Such on-site inspections require
closing bridge and tunnel systems, disrupting traffic flow,
building structures around high buildings as well as shutting

down facilities within the structures being surveyed. All this,
leads to high expenses, time consumption and inefficiency.
Furthermore, this manual approach depends on the surveyor’s
knowledge and experience, thus it lacks objectivity in the
quantitative analysis.

To mitigate the above, various research groups have pro-
posed automatic crack detection methods as a partial re-
placement of manual inspections. Over the last few decades,
numerous works on automatic crack detection on different
structural surfaces such as roads, bridge decks, pavements and
tunnel walls were published. Surveys reviewing such works
can be found in [1], [2] and [3]. A number of image pro-
cessing techniques were implemented. Early works relied on
a combination of techniques such as thresholding, mathemat-
ical morphology and edge detection. More recent approaches
study crack detection under more challenging conditions using
other methods including saliency detection, texture analysis,
wavelet transform, minimal path finding and machine learning.
Whilst being reliable in some applications, these methods
use shallow abstractions and use rule-based approaches which
cannot overcome inherent challenges associated with crack
images. The latter include inhomogeneity of cracks, diversity
of surface texture, background complexity, inference of noises
with similar texture to cracks such as joints and difficult
topology of cracks. Such challenges make it impossible to use
a rule-based method which is capable to extract generalized
features effectively under varying conditions. To overcome
these challenges, deep learning using convolutional neural
networks (CNNs) has been recently proposed, featuring high
level of abstractions and generalization without any need of
extracting hand-crafted features.

In this study, we use Mask R-CNN [4], a region-based CNN
classifier that not only detects targets in the image but also
gives the predicted mask for each target which is useful for
further processing. This model has been used and proved to
perform very well on natural images. Here we use it to detect
cracks and other artifacts on concrete surfaces, and obtain their
corresponding masks to aid with extracting further properties
of the crack such as length and width.
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II. BACKGROUND INFORMATION AND RELATED WORKS

A. Crack Detection

Generally, crack areas are darker than those of their sur-
roundings, resulting in lower intensity values compared to
the background. Such a property has been used to fix one or
more thresholds for segmentation, creating binary images that
distinguish crack and non-crack pixels. The classical intensity
thresholding technique is relatively simple and computation-
ally inexpensive however, its accuracy depends merely on the
predefined threshold value, implying difficulty in scenarios
where crack sizes, backgrounds and lighting conditions vary
considerably.

When surfaces are highly textured, the patterns in the texture
along the surface can be used to identify defects in it. An algo-
rithm that uses a Wigner model to identify cracks in complex
textural backgrounds was proposed in [5]. Texture-analysis
based methods using a rotation invariant Gabor Filter were
suggested to detect cracks in concrete tunnels and pavements
in [6] and [7] respectively.

Salient regions are visually more conspicuous due to their
contrast with the surroundings. Although existing methods
demonstrate their effectiveness in detecting salient regions in
natural content images, they perform poorly on the complete-
ness and continuity of the detected crack. Works using saliency
for crack detection such as [8] are very limited in number.

A 2D continuous wavelet transform is used to build complex
coefficient maps, where wavelet coefficients maximal values
are obtained for crack detection in [9]. Due to the anisotropic
characteristic of wavelets, these approaches cannot handle
scenarios with cracks of high curvature or low continuity.

The above image processing based techniques have limited
learning capabilities and sometimes rely on parameters fine-
tuned manually as they do not encompass the complexity
of conditions that a concrete surface might exhibit. A better
solution that has more real-world situation adaptability is
to use machine learning algorithms. An integrated system,
CrackIT, for automatic detection and characterization of cracks
in flexible pavement surfaces using a combination of unsu-
pervised learning (clustering) followed by supervised learning
(classification) was proposed in [10]. A pavement crack detec-
tion algorithm based on fuzzy logic was introduced in [11]. In
[12], AdaBoost was used to select textural descriptors that can
describe crack images. In CrackForest [13], a descriptor based
on random structured forests to characterize cracks is sug-
gested. A comprehensive review of the computer vision based
defect detection on pavements presented in [14] identified
Support Vector Machine (SVM) as the most popular machine
learning technique for image-based road crack detection.

1) Crack Detection using Deep Learning: The performance
of these machine learning methods is high but very dependent
on the extracted features. However, due to complicated surface
conditions, it is hard to find features effective for all structural
scenarios. Considering this, deep learning algorithms have
been recently applied to overcome such adaptability limita-
tions. In [15] and [16], a vision-based method using a deep

architecture of CNNs for detecting concrete cracks without
calculating the defect features was proposed. However, both
works can only find patch level cracks without considering
the pixel level. In [17], a CNN is used to predict whether
an individual pixel belongs to a crack based on the local
patch information, however this method still ignores the spatial
relations between pixels and overestimates crack width. In
[18], a CNN is used to predict class for each pixel of the image.
However, it still needs manually designed feature extractors at
a pre-processing stage, such that the CNN is only used as a
classifier.

B. Mask R-CNN

The last years were characterized by dramatic advances in
the state of the art solutions for fundamental tasks in computer
vision. This was mainly based on the use of CNN for object
detection, semantic segmentation and object localization.

The Region-based CNN (R-CNN) approach [19], is noted
to be the pioneering work of using deep learning for object
detection. A manageable number of candidate object regions
are generated at the first stage. Then, for each candidate
region, features are extracted. R-CNN was later extended to
Fast R-CNN [20] attending to regions of interest (RoIs) on
feature maps using RoIPool, leading to higher speed and better
accuracy. Following that, Faster R-CNN [21] was introduced,
replacing the slow selective search algorithm with a fully
convolutional neural network on top of the already generated
features, specifically using a Region Proposal Network (RPN).
The latter works by sliding a window over the CNN feature
map and at each window, outputting k potential bounding
boxes and scores.

Mask R-CNN [4] was proposed to extend Faster R-CNN for
pixel level segmentation. It adds a branch for predicting an ob-
ject mask in parallel with the existing branch for bounding box
recognition while replacing the ROI-Pooling operation with
ROI-Align that allows very accurate instance segmentation
masks to be constructed. Mask R-CNN is simple to train and
adds only a slight overhead to Faster R-CNN. Recently, Mask
R-CNN has been used for object detection of various classes
including pedestrians, cars and traffic signs for surveillance
and self-driving cars, building extraction using aerial imaging
as well as nucleus segmentation in medical imaging. In this
paper we demonstrate that Mask R-CNN can also be used to
detect cracks in concrete surfaces to aid the automation of
infrastructure inspection when monitoring structural health.

III. METHODOLOGY

Our framework is based on Mask R-CNN [4], with the
pipeline shown in Fig. 1. First, the Region Proposal Network
(RPN) outputs a set of bounding boxes (ROIs) with scores
indicative of how probable they contain an object within them.
Then, a combination of a Faster R-CNN classifier and a binary
mask prediction branch are used to find the class of the object
within the ROIs and the corresponding mask respectively. Our
detection framework is based on the implementation released
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Fig. 1. Mask R-CNN pipeline diagram adapted from [22]

by Matterport under the MIT license [23]. This is itself based
on the open-source libraries of Keras and Tensorflow.

A. Architecture

a) Backbone: The backbone architecture of Mask R-
CNN consists of a standard neural network that serves as a
feature extractor. The early layers detect low level features and
the later layers successively detect higher level features. While
this is a good backbone, Mask R-CNN improves upon it using
a feature pyramid network (FPN). This adds a second pyramid
that takes the high level features from the first pyramid and
passes them down to lower layers allowing features at every
level to have access to both lower and higher level features.
This implementation of Mask R-CNN uses a ResNet [24]
architecture with a FPN backbone.

b) RPN: The RPN is a lightweight neural network that
finds areas that contain images using a sliding window fashion.
The regions that the RPN scans over are boxes distributed
over the image area and are referred to as anchors. The
RPN anchor scales, ratios, strid and non-maximum suppres-
sion (NMS) threshold are related hyperparameters that were
heuristically modified during training until satisfactory results
were obtained.

B. Transfer Learning

As only a relatively small dataset could be built, to enable a
robust training of a complete deep learning model, a transfer
learning methodology is recommended. Hence, rather than
training the network end-to-end from scratch, we initialize
the model with pre-trained weights from training on the
COCO [25] and Imagenet [26] datasets. By tweaking several
hyperparameters we could fine-tune the network to adapt it to
our own data. The Matterport implementation [23] provides
the possibility to change various parameters, for instance;
learning rate, learning momentum and train ROIs per image.

C. Data Augmentation

Since the data available for training is not very large,
we introduced an augmentation pipeline to provide different
variations of the available images. Augmentation mimics a

(a) original (b) groundtruth of (a)

(c) original (d) groundtruth of (c)

Fig. 2. Sample images from the annotated crack dataset we built

larger dataset which improves the training performance of
the network as will be discussed later. We experimented with
several transformations for augmentation, such as vertical and
horizontal flips, different rotations, changes in the brightness
and addition of blurring using a Gaussian kernel. To investigate
the benefits of using data augmentation, we built and tested
different pipelines using the various functions from the imgaug
library [27]. A brief description of each pipeline is given in
Table III.

IV. DATA

To demonstrate the effectiveness of using Mask R-CNN
for crack detection, we train the network using images of
cracks and other defects to counteract for any possible false
detections. To train the model to detect cracks, we built a
dataset based on the SDNET dataset [28], an annotated image
set for training, validation, and benchmarking of artificial
intelligence based crack detection algorithms for concrete.
However this dataset provides the groundtruth for images,
classified as crack vs non crack only rather than groundtruth
masks for instance object segmentation as required by Mask
R-CNN. Consequently we built a mask dataset from a subset
of 200 images of the complete SDNET set. Once the subset
was chosen, mask annotation was then conducted. We used
the PixelAnnotationTool [29] which enabled us to use a brush
with a small radius to mark the ‘crack objects’ which are quite
fine, very narrow and long in nature. Two samples from the
developed mask dataset are shown in Fig. 2. The RGB color
images have a resolution of 256 × 256. We used the 80/20
rule to divide the data in 128 images for training and 32 for
validation. The remaining 40 images were used for testing.

V. EXPERIMENTS & RESULTS

In order to evaluate the varying models trained using
different hyperparameters configurations we used the Precision
and Recall metrics. Precision shows how much of the detected
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cracks were actually cracks. It was calculated using the ratio
of the ‘true cracks’ detected to the total number of cracks
identified. On the other hand, Recall is a measure of how much
of the actual cracks were detected. It was calculated using the
ratio of the ‘true cracks’ detected to the total number of actual
cracks. When a groundtruth crack mask overlapped a detected
crack mask by 30% or more, a match is defined and taken as a
true positive. Otherwise, if the overlap is greater than 0% but
less than 30%, the detected crack mask is labelled as a false
negative. If a detected crack mask did not match with any of
the groundtruth masks, this is taken as a false positive.

a) Backbone Architecture: In order to train our network,
we started from weights pre-trained on the Imagenet and
COCO datasets for the ResNet-50 and RestNet-101 backbones
respectively. As noted in Table I the ResNet-101 pre-trained
on the COCO dataset performed slightly better in general.

b) Training schedule: Since we used a small dataset and
started from pre-trained weights, we did not need to train for a
long time. We experimented with different training schedules
as shown in Table I, where H and AL define the numbers of
epochs used to train the Heads of the network and all the layers
respectively. When fine-tuning our network by re-training only
the heads of the network as in Tests 1 and 2, a high precision
was obtained however the recall value was low, this implies
that while the detections were correctly made, a lot of misses
also occurred. When the first few epochs re-trained the heads
for a fraction of these epochs and then all the layers for the
remaining epochs (Tests 3 and 4), the precision value was
still high however less misses were incurred when compared
to Tests 1 and 2. When the number of training epochs was
increased, comparing Tests 3 and 4, the validation loss did
not improve much further as shown in Fig. 3 and the accuracy
of the detections remained very similar, implying that training
for a longer time will not do any mayor improvements to the
network. In another training schedule, instead of increasing the
number of epochs, we increased the number of steps per epoch
however and, whilst the precision value remained similar, the
recall value decreased considerably for Test 5. Hence, the best
training schedule was that of training the heads of the network
for 50 epochs and all the layers for the next 150 epochs as
recorded in Test 3.

The learning rate hyperparameter controls how much the
weights of a network are adjusted with respect to the loss
gradient. While using a low learning rate might be a good
idea not to miss any local minima, it could also cause the
network to take a long time to converge, especially if it gets
stuck in a plateau region for some time. Consequently, we
experimented with setting both a fixed learning as well as
changing it along the epochs as shown in Table II, where H
and AL define the numbers of epochs used to train the Heads
of the network and all the layers respectively. The original
paper reporting Mask R-CNN [4] used a learning rate of
0.02 however on the Tensorflow implementation [23] weights
increased too much thus, a lower value of 0.001 was used.
Taking into consideration a training schedule of 50 epochs
on heads only, keeping the learning rate fixed resulted in a

high precision value however the recall achieved was very
low. Reducing the learning rate by half at 25 epochs did
improve the recall value however, the optimum values were
achieved when the learning rate was reduced as the validation
loss came to a plateau as shown for Test 9. When training for
the heads and all the layers, changing learning rate throughout
the epochs did not achieve better results.

Considering the results from the experiments above, it can
be concluded that the best achieved results were obtained with
the trained model in Test 3. This consists of a ResNet-101
backbone, trained starting from pre-trained weights from the
COCO dataset. The learning rate was set at 0.001 and kept
fixed throughout the 50 epochs fine tuning the heads of the
network while training all the layers for the remaining 150
epochs.

c) Augmentation: First, we trained our Mask R-CNN
model without any augmentation and then proceeded with
training using the three augmentation pipelines described in
Section III-C. As observed in Table III, the lowest Pre-
cision and Recall values occurred when no augmentation
was involved. When flipping was introduced the values were
slightly higher and then improved even further when rotation,
brightness variation and blurring were introduced. When the
augmentation pipeline included also contrast normalization as
well as cropping, the performance deteriorated only slightly.
Such results imply that using data augmentation when training
our Mask R-CNN, in general improved the model perfor-
mance.

Further to the tests conducted on the modified SDNET
annotated subset [28], to test the generalization of the model,
we used the model with the configuration applied in Test 3
to detect cracks on images randomly found on the Internet as
well as on images we captured in a tunnel. As seen in the
images in Fig. 5, varying cracks were successfully detected
under different exposure settings and wall surfaces.

VI. CONCLUSION AND FUTURE WORK

During the last few decades automatic vision-based de-
tection has been proposed as a replacement to mitigate the
drawbacks of manual inspection. Various approaches were
recorded in literature including; saliency detection, texture
analysis, wavelet transform, minimal path finding and ma-
chine learning. In this paper we adapt the state of the art
detection model Mask R-CNN to automate crack detection
on concrete surfaces. We train this model using our own
groundtruth dataset which was built on a subset of images from
a recent benchmark annotated image set aimed for training
and validation of artificial intelligence based crack detection
algorithms for concrete. In order to adapt our framework to
scenarios with more varying surfaces and lighting conditions,
in the future we aim to retrain the network on a larger and
more varied dataset. Furthermore, multi-class detection for
other infrastructure components and defects can help to reduce
the false detections as well as provide a better means for civil
structures inspection.
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Fig. 3. Plot of the validation loss against the number of epochs for Test 3 and Test 4

TABLE I
PRECISION AND RECALL VALUES WHEN VARYING THE PRE-TRAINED WEIGHTS AND THE TRAINING SCHEDULE.

Test Pre-trained Backbone Training Schedule Results %
No. Weights Architecture H AL steps Precision Recall
1 COCO ResNet-101 50 N/A 200 85.7 15
2 COCO ResNet-101 200 N/A 200 95 47.5
3 COCO ResNet-101 50 150 200 93.9 77.5
4 COCO ResNet-101 100 200 200 93.6 72.5
5 COCO ResNet-101 50 150 400 94.7 45
6 Imagenet ResNet-50 50 150 200 92 57.5
7 Imagenet ResNet-50 100 200 200 90.9 50

(a) original image 1 (b) original image 2 (c) original image 3 (d) original image 4 (e) original image 5

(f) detection in (a) (g) detection in (b) (h) detection in (c) (i) detection in (d) (j) detection in (e)

Fig. 4. Sample images from the crack detection results
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Specular Highlights Detection Using a U-Net Based
Deep Learning Architecture

Abstract—Different lighting conditions surrounding an object
can cause specular reflections, resulting in specular highlights in
the captured image. These can interfere with image processing
algorithms, leading to false interpretation of results. Hence,
applications that demand consistent object appearance require
that such highlights are detected and localized for subsequent
processing. Using a slightly modified U-Net architecture, we
propose a semantic segmentation model to localize specular
highlights. The model achieved a frequency-weighted and mean
IoU of 0.83 and 0.75 respectively when tested on a benchmark
dataset. Furthermore, the proposed network was also trained
and tested on a custom dataset, focusing on flash light reflections
in an underground tunnel environment. For this custom dataset,
the model achieved a frequency-weighted and mean IoU of 0.98
and 0.80 respectively.

Index Terms—specular highlights detection, semantic segmen-
tation, U-Net

I. INTRODUCTION

While highlights from continuous or flash lights are ubiq-
uitous in the physical world, they can disrupt results in com-
puter vision applications involving segmentation, detection or
matching. When light is incident on a boundary between two
different media, it immediately reflects back to the medium
it came from. The visual appearance of specular reflections
is known as a specular highlight. Its identification provides
useful information for applications that need consistent object
appearance such as stereo reconstruction, change detection,
visual recognition and tracking. There are different types of
segmentation approaches that can be applied for specular
highlights detection such as those using thresholding, edge
detection and clustering. While these are relatively easy to
implement and incur low computational cost, they have various
limitations.

In this work, we use semantic segmentation to detect
specular highlights on objects in images. With the introduction
of convolutional neural networks (CNN) and deep learning,
semantic segmentation advanced rapidly in the last few years.
Here, we use the U-Net architecture [1] with a few mod-
ifications, mainly reducing the size of the baseline model
and introducing batch normalization (BN). Compared to other
image processing methods such as thresholding, this method
generalizes better and does not depend on any predefined
values. The U-Net architecture lends itself to applications
where the amount of training samples is small, such as this
case, and hence was adopted as the base architecture. U-Net
combines the location information from the downsampling
path with the contextual information in the upsampling path
to finally obtain a general information combining localization

and context, which is necessary to predict a good segmentation
map as required by specular highlights detection.

The rest of the paper is organized as follows. Background
information on specular highlights detection is presented in
Section II. Then, in Section III we briefly explain the baseline
architecture upon which we base our network. Section IV
describes our method in detail. Section V discusses the training
and optimization techniques used. Experiments for different
configurations and their results are analyzed in Section VI. A
summary and ideas for future work conclude the paper.

II. BACKGROUND INFORMATION

An analytical survey of different approaches to detect spec-
ular highlights is presented in [2]. A common approach is
that of intensity thresholding using either a fixed or adaptive
threshold. The main problem of this method is the over/under
estimation of highlight areas. By thresholding the Y channel
at the last peak in the Y histogram of a YUV colorspace
image, specularities are isolated in [3]. This method is used in
endoscopic images where the context is darker and the image
dynamic range is generally well distributed. However, with
specular-free images this method might produce misdetections,
such as white objects, while images with specularities do not
necessarily have a peak at the end of the histogram. In [4],
images are first converted to the HSV colorspace and then
absolute bright regions are isolated by two threshold values on
the V and S channels. Another approach of specularities detec-
tion using thresholding in the RGB colorspace and grayscale
image is proposed in [5]. An automatic thresholding technique
applied in the HSV colorspace is used in [6]. The threshold
on the V channel is estimated dynamically using information
from the histogram of the same channel and brightness values
calculated using the RGB channel intensities.

Dimensionality reduction and optimization algorithms can
also be used to isolate specular highlights. A truncated least
squares approach was proposed in [7] to map color distribution
between images of an object under different illumination
conditions to detect specular highlights. In [8] a bi-dimensional
histogram allows the exploitation of the relations between the
signals of intensity and saturation of a color image. Threshold-
ing is then applied on this histogram to isolate specularities.
A histogram equalization is used to keep the threshold value
constant. This method produces fast results however using
histogram equalization can lead to false detections as it can
emphasize other outliers as well as white surfaces and noise.

Machine learning has also been applied to the task of
specular highlights detection. A perceptron neural network
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is used in [9] to classify specular regions. A deep learning
approach based on the SegNet [10] segmentation architecture
was used to detect highlights in endoscopic images in [11].
The SegNet architecture is trained on pairs of images and
dense per-pixel labels. For reflection segmentation, the labels
specify whether a pixel is part of a reflection or not.

III. U-NET BASELINE MODEL

The U-Net architecture consists of convolutional (CONV)
layers arranged in a top-down and bottom-up manner in two
paths forming a U-shaped network. The first path is referred
to as the contraction or encoder path. It is made up of CONV
and max-pooling layers. This path is used to extract features
and capture context in an image. The second path, referred
to as the expansion or decoder part is used to enable precise
localization using transposed convolutions.

The architecture proposed in [1] involves the repeated
application of two 3×3 unpadded convolutions, each followed
by a rectified linear unit (ReLU) and a 2× 2 max-pooling
operation with a stride of 2 for downsampling. In each step
of the decoder path, the feature map is upsampled and then a
2×2 convolution that halves the number of channels is applied.
Following this, a concatenation with the corresponding feature
map from the contracting path is done. Two successive 3× 3
convolutions, each followed by a ReLU, are then applied. At
the final layer a 1×1 convolution is used to map each feature
vector to the desired number of classes. In total, the model has
four levels in each path and a bridge connection in between.

IV. METHODOLOGY

The proposed model is based on the U-Net architecture
described in Section III. Using a smaller network while adding
other layers such as dropout and BN, the architecture in Fig. 1
is proposed to segment images to identify specular highlights.

A. Pre-processing

First, the input image is resized to the input size of the
network. Following this, mean subtraction is applied for faster
convergence. It involves subtracting the mean across every
individual feature in the data, and has the geometric interpre-
tation of centering the cloud of data around the origin along
every dimension. Normalization is implicit as the image pixel
values are all within the 0-255 range. In our work, we use the
sample mean computed on a large training set of the ImageNet
dataset [12] and subtract 123.68, 116.779 and 103.939 from
the R, G and B channels respectively.

B. Modified U-Net architecture

The proposed model in Fig. 1 consists of three CONV
blocks for each of the downsampling and upsampling paths.
Each block contains two 3 × 3 CONV layers each followed
by a ReLU. A 2 × 2 max-pooling layer follows each CONV
block. In this path, the number of channels increases from
the input three-channel image to N = 32 for the first block
up to N = 256. In the upsampling phase, CONV blocks are
correspondingly symmetric to those in the downsampling path,

decreasing the number of channels from N = 256 to N = 32.
As opposed to the the model in [1], we inserted a BN layer
after each CONV layer. Furthermore, we experimented with
dropout at different locations within the architecture.

C. Batch Normalization

As shown in Fig. 1, we add a BN layer after each 3 × 3
CONV in the CONV block. This method normalizes activa-
tions in a network across the mini-batch during training. For
each feature in the mini-batch, BN computes the mean and
variance of that feature. It then subtracts the mean and divides
the result by the standard deviation of the mini-batch. In this
way, it restricts the activations to have a zero mean and unit
variance. BN rescales the normalized activations and adds a
constant, ensuring the expressiveness of the network does not
change. In general, BN reduces the internal covariate shift in
the network during training. We thus added BN to our model
to speed up the convergence during training and to apply an
indirect regularization term to avoid overfitting.

D. Dropout

Neurons develop co-dependency amongst each other during
training which restrains the individual power of each neuron
leading to overfitting of training data. Dropout is generally
used to mitigate this by providing implicit data augmentation.
When using dropout, individual nodes are dropped with a
probability p at each training stage, indirectly reducing the
network size. The dropout step has no trainable parameters,
and does not change the volume size of the output. We tested
different configurations with no dropout, dropout p = 0.2 after
each level or dropout p = 0.2 at the end.

V. TRAINING AND OPTIMIZATION

During training, the Adadelta optimizer [13] was used with
default parameters. In order to initialize the weights of the
network we use the Xavier uniform initializer. The latter draws
samples from a uniform distribution within limits calculated
using the number of input and output units in the weight
tensor. The categorical cross entropy [14] was used as the
loss function.

A. Data Augmentation

The successful implementation of deep learning models de-
mands a large amount of varied training data. When this is not
feasible, data augmentation can be used such that the network
learns the desired invariance and robustness properties. We
generate smooth deformations of the existing image samples
through vertical and horizontal flipping, vertical and horizontal
displacement of -20% to 20% and rotation of -45°to 45°.

VI. EXPERIMENTS AND RESULTS

The Keras deep learning framework was used to implement
the proposed model and to train it using different config-
urations by making modifications to the code in [15]. All
experiments are preformed using an Intel®Xeon®CPU E5-
1630 v3, 3.70GHz × 8 and an Nvidia GeForce GTX 1080.
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Fig. 1. U-Net model with proposed modifications.

A. Datasets

To train our network, we use the publicly available dataset
PURDUE RVL SPEC-DB [7]. This dataset contains 300 im-
ages with specular highlights under three different conditions,
namely ambient, directed and diffused. The images in this
dataset consist of objects having different sizes, colors and
materials. A ground-truth segmentation corresponding to 200
of these images is included. We used the 80/20 rule to divide
the data in 128 images for training and 32 for validation. The
remaining 40 images were used for testing.

Furthermore, the proposed network was also trained and
tested on a custom dataset, focusing on flash light reflections
in a tunnel environment. This set contains images with a
resolution of 1885× 711. To generate the masks, the specular
highlights in each of these images were manually marked
using an annotation application [16]. Similar to the previous
dataset, ‘0’ was assigned to the background and ‘1’ to high-
light areas. The 80/20 rule was used to divide the data in 76
images for training and 18 for validation. The remaining 24
images were used for testing.

B. Evaluation Metrics

Experiments were conducted to determine the optimal con-
figuration of the proposed model by considering different
evaluation metrics. In class imbalance scenarios pixel accuracy
can easily give a false good performance impression.

Thus, we use more reliable metrics consisting of the training
and validation loss, intersection over union (IoU), and F-score
referred to also as Dice similarity coefficient. By monitoring
the loss, we could analyse the different configurations to
empirically find the optimal one avoiding any underfitting or
overfitting issues. The F-score/Dice and IoU are very similar,
however the former divides the intersection area by the total
number of pixels in both images instead of the union.

In general, the IoU tends to penalize single instances of bad
classification more than the F-score quantitatively as it tends

to have a “squaring” effect on the errors relative to the F-
score. In summary, the F-score tends to measure the average
performance, while the IoU score gives an indication of the
worst case performance.

(a) F-score for batch size = 20, using BN

(b) Loss for batch size = 20, using BN

Fig. 2. Training and validation curves using batch normalization with a batch
size of 20.
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TABLE I
SUMMARY OF RESULTS ON THE PURDUE DATASET DURING THE
VALIDATION OF THE U-NET MODEL WITH DIFFERENT ENCODER

ARCHITECTURES

Backbone Frequency-weighted IoU Mean IoU
ResNet 0.80 0.70
VGG 0.77 0.68

MobileNet 0.81 0.70
Proposed model 0.83 0.75

C. Quantitative results

a) PURDUE RVL SPEC-DB dataset: Using the proposed
model with a batch size of 1 without BN, the F-score kept
increasing during training and validation. As for the loss, the
curve behaved differently for training and validation. During
validation the loss constantly oscillated at higher values than
during training. We then trained the network using a batch
size of 20 and inserting a BN layer after each CONV layer.
As shown in Fig. 2, the performance of the network improved,
with the training and validation curves for both the Cross-
Entropy loss and Dice being very close to each other implying
no overfitting. In addition to this, as depicted in Fig. 2, the
validation loss did not improve after 120 epochs. Considering
this, in the experiments that followed, we trained the network
for 120 epochs.

Following the above, using a batch size of 20 with BN,
we also experimented with the use of dropout within the
network with the optimal configuration empirically found to
be a dropout after each stage as shown in Fig. 1. Considering
the small amount of images that we had at our disposal we
also introduced a data augmentation pipeline as described in
Section V-A.

In addition, we also trained the U-Net using different en-
coder architectures including VGG-16 and ResNet50. Metric
results in Table I show that, for the relatively small dataset we
had, our model with a smaller and simpler architecture, could
achieve better overall results, achieving a highest frequency
weighted and mean IoU of 0.83 and 0.75 respectively.

TABLE II
VALIDATION RESULTS ON THE CUSTOM TUNNEL WALL DATASET FOR

DIFFERENT ENCODER ARCHITECTURES

Encoder architecture Frequency-weighted IoU Mean IoU
ResNet 0.97 0.73
VGG 0.98 0.76

Proposed 0.98 0.80

b) Tunnel wall dataset: Similarly, several experiments
were conducted to train and test the model on the tunnel image
set. These include varying configurations of the proposed
encoder architecture, with and without BN, different batch
sizes and dropout at different stages within the network. In
addition, the U-Net model was also trained with different

encoder architectures, to compare the performance with the
proposed architecture.

The model was trained with a batch size of 1 and later with
a batch size of 20 with BN. For both experiments, different
configurations with no dropout or dropout p = 0.2 after each
level or at the end, were tested. The optimal configuration
was empirically found to be a dropout after each stage as
shown in Fig. 1. However, for this dataset, a better general
performance is observed when using a batch size of 1, where
during both training and validation, the values of F-score were
higher, while the loss was lower than when using a batch size
of 20.

The U-Net model was trained using the VGG16 and
ResNet-50 architectures for the encoder. In general, the train-
ing and validation curves for F-score and the loss implied
that the U-Net with a VGG16 encoder architecture performed
better. From these plots, we observed that the network did not
exhibit any significant improvement after 75 epochs. Thus,
the checkpoint at 75 epochs was used to test the models on
the ‘test’ subset. From the results in Table II, the proposed
modified architecture with a smaller and simpler architecture
than VGG16 or ResNet-50, achieved better overall results
when tested on a subset of new images, achieving the highest
frequency weighted and mean IoU values of 0.98 and 0.80
respectively.

D. Qualitative results

As observed in the test images in Fig. 3, when comparing
the segmentation results with the ground-truth masks, the
proposed architecture identified the specular highlights very
well. When U-Net was used with larger backbones such as
VGG, ResNet and MobileNet, in general, our segmentation
gives less false positive areas than VGG and with respect to
MobileNet and ResNet, it gives less false negative areas.

Similarly, as observed in the custom tunnel wall test images
in Fig. 4, the U-Net model with the proposed encoder archi-
tecture generated segmentation maps identifying the highlight
locations as those in ground-truth ones. Compared to the larger
architectures, VGG16 and ResNet-50, the proposed encoder,
produced less false positive areas.

VII. CONCLUSION

When specular highlights are present, they change image
features drastically, disrupting computer vision applications
involving segmentation, detection or matching. Hence, their
detection is essential as a preprocessing step in various ap-
plications. We presented the use of semantic segmentation to
identify specular highlights with a reduced version of the U-
Net model architecture. Using this model we achieved a fre-
quency weighted and mean IoU of 0.83 and 0.75 respectively.
Furthermore, the proposed network was also employed as a
preprocessing stage in an inspection application focusing on
change detection in tunnel environments, to prevent nuisance
changes caused by flashlights. Future improvements may in-
clude training on a larger dataset comprising various surfaces,
objects and backgrounds for a more generalized detection.
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(a) samples images

(b) ground-truth

(c) proposed

(d) VGG

(e) MobileNet

(f) ResNet
Fig. 3. A few samples of the specular highlight detection using the proposed
U-Net-based architecture compared to the corresponding ground-truth masks
and other encoder architectures.
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(a) highlights (b) proposed

(c) VGG16 (d) ResNet-50

Fig. 4. Examples of a comparison of the highlight detection results using U-Net with (b) the proposed modified architecture and (c)-(d) other architectures

229



Automatic crack detection in concrete infrastructure
using deep learning models - a comparative anlaysis

Leanne Attarda, Carl James Debonoa,∗, Gianluca Valentinoa, Mario di Castrob

aDepartment of Communications and Computer Engineering, University of Malta, Msida,
MSD 2080, Malta

bEngineering Department, Survey, Mechatronics and Measurements group, CERN,
Switzerland

Abstract

Cracks are the earliest indications of infrastructure degradation. The conven-

tional approach to localise them involves visual inspection, manual sketches

and physical measurements on-site, possibly exposing persons to environments

with hazardous conditions. Moreover, this approach is highly dependent on hu-

man subjectivity leading to possible inaccuracies. To mitigate these drawbacks,

various works proposed automatic crack detection using image processing and

object classification techniques. Whilst reliable in some scenarios, these meth-

ods use shallow abstractions and rule-based procedures which cannot overcome

the inherent challenges associated with images containing cracks. In this work,

we propose the identification and localisation of cracks from images through the

use of deep learning. The U-Net, SegNet and Mask R-CNN models are used

to compare their effectiveness at detecting concrete cracks in an image. These

methods detect the areas occupied by cracks and generate the corresponding

mask which is useful for further processing.

Keywords: crack detection, automatic inspection, deep learning, object

detection, object segmentation, supervised learning

∗Corresponding author, Tel. +356 2340 2076
Email addresses: leanne.attard@um.edu.mt (Leanne Attard), c.debono@ieee.org (Carl

James Debono), gianluca.valentino@um.edu.mt (Gianluca Valentino),
mario.di.castro@cern.ch (Mario di Castro)

Preprint submitted to Automation in Construction April 8, 2020

230



1. Introduction

Over time, concrete infrastructures may develop cracks due to ageing, topo-

graphic changes, fluctuations between expansion and contraction of concrete due

to temperature changes, heavy rainfall, cyclic weight loading and poor repair.

Cracks are the earliest evidence of structural degradation hence, if detected at5

an early stage, preventive measures can be made to avoid larger infrastructural

damages such as collapses and accidents.

The conventional approach to locate cracks in concrete structures demands

visual inspection, manual sketches and physical measurements on site. Such a

method depends on the inspectors’ knowledge and experience, lacking objectiv-10

ity. Hence, considerable effort has been made to objectively identify and assess

the status of cracks in structures using image processing and pattern recognition

techniques. However, challenges due to the environment and characteristics of

concrete cracks, make it difficult to apply rule-based methods that are capa-

ble of effectively extracting generalised features, as these methods often rely on15

manually fine-tuned parameters which do not encompass the complexity of con-

ditions that a concrete surface might exhibit. A more adaptive solution relies

on the use of pattern recognition and machine learning algorithms. Although

the performance of these methods is high, it is very dependent on the extracted

features. Due to complicated surface conditions, it is difficult to find features20

effective for diverse structural scenarios.

Considering this, deep learning has been recently applied to overcome such

adaptability limitations. Here, three different deep learning models; U-Net [1],

SegNet [2] and Mask R-CNN [3] are trained and a comparison of their effective-

ness at detecting cracks in images capturing concrete infrastructure is made.25

The rest of this paper is structured as follows. The motivation behind this

work is presented in Section 2. Previous works in the field of crack detection

using image processing, pattern recognition and deep learning techniques are

reviewed in Section 3. Automatic detection of cracks using semantic segmenta-

tion is explained in Section 4. Here an introduction on the U-Net and SegNet30

2
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models is made and the methodology applied is described. In Section 5, crack

detection using instance segmentation through the Mask R-CNN model is dis-

cussed, giving related background information and details of the methodology

used. The datasets used for training and testing of the models are presented

in Section 6. A comparative analysis of the models used for crack detection is35

then made, where quantitative and qualitative results are discussed in Section

7 and 8 respectively.

2. Motivation

Our research deals with incorporating a vision-based automatic crack de-

tection module on a robotic platform to automate structural health monitoring40

in tunnel environments. In this work, we first review the currently existing

image-based techniques used to detect cracks. Following this, we train different

deep learning models on crack datasets and make a comparative analysis of the

results. This allows us to determine the optimal deep learning solution for our

scenario.45

3. Background information

To mitigate the drawbacks of manual crack detection, a substantial number

of works to automate this process through images-based techniques have been

recorded in literature. Mainly these works involve the use of image process-

ing, pattern recognition and machine learning techniques as discussed in the50

following subsections.

3.1. Crack detection using image processing

Generally, crack areas are darker than those of their surroundings, result-

ing in lower intensity values compared to the background. Such a property

allows thresholding and edge detection techniques to segment the image and55

extract potential crack features. In [4], crack detection in tunnel linings is pro-

posed. Utilising the existence of luminance gradient variations along the line

3
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edges, cracks with larger luminance variation are selected. A hysteresis thresh-

old method is then applied to select only edges joined to others detected by high

threshold values. In [5], a wireless multimedia sensor network was developed60

to detect cracks in subway tunnels. After pre-processing the images, threshold

segmentation using the Otsu method [6] is applied to find crack regions.

Generally, cracks occupy only a small portion of the image and the inter-

class variance between the background and the crack is affected by other items

on the wall such as pipes and cables. To counteract these problems, a block65

binarisation is used in [7]. After pre-processing to enhance the contrast and

remove the noise from the images, segmentation through local binarisation using

the average intensity value of a square region of pixels as the threshold, is made.

In [8], the grayscale values of the image pixels are used to calculate the brightness

and contrast of the local image area. The overall gray value difference of the70

region is calculated and compared to a threshold, if it is below this predefined

value, the centre pixel is recorded as a crack seed. A crack is recognised by the

line connecting the crack seeds.

Other threshold-based methods for crack detection in general concrete struc-

tures include [9–15]. The thresholding technique is computationally inexpen-75

sive and relatively simple to implement, rendering it the most commonly used

method, at least in preliminary stages of crack detection. On the other hand,

its accuracy depends merely on the predefined value at which the threshold is

set, implying some difficulty in scenarios where crack sizes vary considerably.

Visual texture is a vital characteristic to distinguish surfaces while changes80

in texture along a surface can identify defects or flaws in it. An algorithm

using a Wigner model to identify cracks in complex textural backgrounds was

proposed in [16]. By using a rotation invariant Gabor Filter, crack detection

through texture-analysis was suggested in [17] and [18]. This method allows

cracks to be analysed at the pixel level and to be detected regardless of their85

direction. Salient regions are visually more conspicuous due to their contrast

with the surroundings. Although existing methods demonstrate their effective-

ness in detecting salient regions in natural content images, they perform poorly

4
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on the completeness and continuity of the detected crack. Works using saliency

for crack detection such as [19] are very limited in number. Other works in crack90

detection involve wavelet transforms. In [20], a 2D continuous wavelet transform

is used to generate complex coefficient maps, from where, wavelet coefficients

maximal values are obtained for crack detection. Due to the anisotropic char-

acteristic of wavelets, these approaches cannot handle scenarios with cracks of

high curvature or low continuity.95

3.2. Crack detection using pattern recognition

The previous methods have limited learning capabilities and sometimes rely

on manually fine-tuned parameters as they do not encompass the complexity

of conditions that a concrete surface might exhibit. A solution with better

adaptability is to use pattern recognition techniques and machine learning algo-100

rithms. In [21], the crack areas identified by the thresholding stage are analysed

through different features. The standard deviation of shape distance histogram,

pixel number and average gray level are used as inputs to a neural network to

classify the candidate objects as cracks or not. In order to detect cracks in gen-

eral concrete surfaces, a support vector data description (SVDD) approach was105

undertaken in [22]. Properties including eccentricity, circularity and packing

density are compiled into a vector and input into a trained SVDD network to

identify cracks. CrackIT [23] is an integrated system, for automatic detection

and classification of cracks in pavement surfaces. It uses a combination of unsu-

pervised learning (clustering) followed by supervised learning (classification). A110

pavement crack detection algorithm based on fuzzy logic was introduced in [24].

To characterise cracks CrackForest [25], adopts a descriptor based on random

structured forests.

3.3. Crack detection using deep learning

The performance of the previous methods is high but very dependent on the115

extracted features. Due to complicated surface conditions, it is hard to find

features effective for all structural scenarios. Considering this, deep learning

5
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algorithms were recently applied to overcome such adaptability limitations and

automate the feature engineering and extraction process.

In [26–28], a vision-based method using a deep CNN architecture is used to120

detect concrete cracks. However, these works can only find patch level cracks

and do not provide labels at the pixel level. In [29], a CNN is used to predict

the class for each pixel of the image. However, it still needs manually designed

feature extractors at a pre-processing stage, such that the CNN is only used as

a classifier. In [30], edges, frequency, texture, entropy and histogram of oriented125

gradients (HOG) are used as inputs to a multilayer perceptron (MLP) which is

trained to identify defects on the tunnel lining. In [31], crack detection using a

CNN is designed through modifying the AlexNet model. Using the trained clas-

sifier and an exhaustive search with a sliding window, cracks can be separated

from images accordingly. Taking the advantage of atrous convolution, atrous130

spatial pyramid pooling (ASPP) module and depthwise separable convolution,

an end-to-end crack detection model is proposed in [32].

Semantic segmentation of cracks and leakage defects of metro shield tun-

nel, using hierarchies of features extracted by a fully convolutional network

(FCN), is presented in [33]. Similarly, in [34], an encoder-decoder FCN with the135

VGG16-based encoder is trained on a subset of annotated crack-labeled images

for semantic segmentation to detect cracks on concrete. Works in [35–37] use

the U-Net model [1] with several modifications, to achieve pixel-level surface

crack detection. To detect cracks on bridges, [38] proposes a model based on

SegNet [2]. To segment crack images, DeepCrack [39] uses a skip-layer fusion to140

connect the encoder network and decoder network in the original SegNet model

in order to utilise both sparse and continuous feature maps at each scale.

4. Semantic segmentation method

In order to understand a scene, visual information has to be associated

to an entity while simultaneously considering spatial information. A better145

comprehension of the environment is useful in many fields. For an autonomous

6
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car to move by itself, it needs to delimitate the roadsides with a high precision.

In robotics, production machines need to delimitate the exact shape of the object

to understand how to grab, turn and place components. Semantic segmentation

can be used to achieve this. It consists of assigning a class to each pixel in150

an image, to understand the image at pixel level enabling the concept of scene

understanding.

In this paper, semantic segmentation is used to segment images of walls to

detect cracks using the U-Net and SegNet models. For each model, an explana-

tion, including background information on their architectures, followed by the155

methodology applied, is presented.

4.1. U-Net model

The U-Net model [1] is based on an encoder-decoder architecture. This

consists of multiple convolutional layers arranged in a top-down and bottom-up

manner in two paths creating a U-shaped network. The first path is referred to160

as the contracting or encoder path. This is made up of multiple convolutional

and max-pooling layers. While capturing the context in an image, this path

extracts features. The second part, is referred to as the expansion or decoder

path. This uses transposed convolutions to enable precise localisation.

Figure 1: U-Net model architecture
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Figure 2: SegNet model architecture

As illustrated in Fig. 1, U-Net’s pipeline involves the repeated application165

of two 3×3 unpadded convolutions. Every convolution is followed by a rectified

linear unit (ReLU) and a 2 × 2 max-pooling operation using a stride of 2 for

downsampling. In the decoder path, at each step, the feature map is upsampled

and then a 2 × 2 convolution is applied, reducing the number of channels by a

factor of two. After, the generated feature maps and the corresponding feature170

maps from the contracting path are concatenated. Next, two successive 3 × 3

convolutional layers each followed by a ReLU, are applied. At the final layer, a

1 × 1 convolution is used to map each feature vector to the desired number of

classes. In total, the model has four levels in each of its two paths with a bridge

connection in between.175

4.2. SegNet model

The SegNet architecture [2] consists of an encoder and a corresponding de-

coder network followed by a pixel-wise classification layer. The encoder part

consists of 13 convolutional layers corresponding to the VGG16 [40] network’s

first 13 convolutional layers. In favour of retaining higher resolution feature180

maps at the deepest encoder output and at the same time reducing the number

of parameters, SegNet does not use the fully connected layers. For each layer in

the encoder part, there is a corresponding layer in the decoder network, hence

the latter has 13 layers also. At the end, to produce class probabilities for each

pixel, SegNet has a multi-class soft-max classifier.185
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The SegNet architecture is illustrated in Fig. 2. A set of feature maps is

produced using convolutions by a filter bank in each block in the encoder net-

work. Batch normalisation (BN) and an element-wise ReLU are then applied

consecutively. A max-pooling operation with a stride of 2 and a 2 × 2 non-

overlapping window is performed. Using max-pooling, translation invariance190

over small spatial shifts in the input image is achieved. Sub-sampling allows a

large input image context (spatial window) for each pixel in the feature map.

When using multiple layers of max-pooling and sub-sampling, a loss in the spa-

tial resolution of the feature maps occurs. To cater for this, before applying

sub-sampling, SegNet captures and stores the encoder feature maps’ boundary195

information using max-pooling indices. For each encoder feature map, the loca-

tions of the maximum feature value in each pooling window, are kept. Hence,

in this respect, SegNet requires less memory than U-Net which transfers entire

feature maps from the encoder to the decoder instead of using pooling indices.

Each block in the decoder network upsamples its input feature maps using200

the recorded max-pooling indices. The produced feature maps are convolved

with a decoder filter bank generating dense feature maps on which BN is then

applied. At the output of the final decoder block, the high dimensional feature

representation is fed to a soft-max classifier to classify each pixel independently.

Its output is a K-channel image of probabilities where K is the number of205

classes. For each pixel, the class with maximum probability is assigned.

4.3. Methodology used for the SegNet and U-Net architectures

To train these semantic segmentation models, the Keras deep learning frame-

work was used. The code in [41] was adopted as a basis and then, various modi-

fications were made to adapt the implementation to our scenario. Although the210

SegNet and U-Net model architectures are different, the same common train-

ing pipeline was used. First, the training and validation datasets are verified,

checking that each image has its corresponding mask image. Every image-mask

pair is pre-processed to the expected format at the input. The model instance

is then created followed by training and validation on the respective subsets.215
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4.3.1. Pre-processing

The input image is first resized to the input dimensions of the network. Such

dimensions are configurable and set empirically. For faster convergence during

training, mean subtraction is applied. This involves subtracting the image mean

from every pixel in the image. This has the geometric interpretation of centring220

the cloud of data around the origin along every dimension. Since image pixel

values are all within the 0-255 range, normalisation is implicit. The sample

mean R, G and B values, computed on a large training set of the ImageNet

dataset [42] are subtracted from the R, G and B channels respectively.

4.3.2. Encoder architectures225

Both SegNet and U-Net models can be used in their original architecture

format or with other known architectures for the encoder part. In this work,

Vanilla CNN, VGG16 [40] and ResNet-50 [43] based encoders are used with the

two models and a comparative analysis of the trained models is made.

4.3.3. Data augmentation230

A deep learning model requires training on a large amount of data in or-

der to learn the desired invariant features and have robustness properties. In

this work, since the available data was limited, data augmentation is used to

increase the diversity of the available data. Smooth deformations of the existing

image samples are generated through vertical and horizontal flips, vertical and235

horizontal displacements in the range [-20%, 20%] and rotations in the range

[-45◦, 45◦].

5. Instance segmentation method

Semantic segmentation detects objects within an image, isolates them from

the background and groups them based on their type. Further to this, instance240

segmentation detects each individual object within a cluster of similar objects,

identifying their boundaries individually. The Mask R-CNN model is an exam-

ple of a deep learning approach to instance segmentation.
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Figure 3: Mask R-CNN pipeline from [44]

5.1. Mask R-CNN model

The deep learning approach for object detection is based on the region-based245

CNN (R-CNN) [45]. At the first stage, a number of candidate object regions

are generated. Then, for each candidate region, features are extracted.

Fast R-CNN [46] was later proposed to extend R-CNN by attending to multi-

ple ROIs on feature maps using RoIPool. The latter led to a lower computation

time and better accuracy. After that, Faster R-CNN [47] was introduced. In-250

stead of the slow selective search algorithm, it uses a regional proposal network

(RPN) to generate proposals using an end-to-end network in a single stage.

Mask R-CNN [3] was later proposed, extending Faster R-CNN to achieve

pixel level segmentation. In parallel with the existing branch for bounding

box recognition, Mask R-CNN adds a branch for predicting an object mask.255

Furthermore, in Mask R-CNN the ROI-Pooling operation is replaced by ROI-

Align. ROI-Align does not adjust the input proposal from RPN to fit the feature

map correctly as ROI-Pooling. Instead, it takes the object proposal and divides

it into a certain number of bins. A number of points are sampled from each

bin and the value at those points is determined using the bilinear interpolation.260

This allows more accurate instance segmentation masks to be generated.

Mask R-CNN adds only a slight overhead to Faster R-CNN. It has been used

for object detection of varying classes including animals, pedestrians, cars, traffic
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signs for surveillance and self-driving cars, nucleus segmentation in medical

imaging and for building extraction using aerial imaging. Here, Mask R-CNN265

is used to detect cracks in concrete surfaces.

The model pipeline is illustrated in Fig. 3. First, the RPN outputs a set

of bounding boxes (ROIs) with scores indicating the probability of having an

object within them. Then, the combination of a Faster R-CNN classifier and

the binary mask prediction branch is used to find the class of the object lying270

within the ROIs and the corresponding mask.

5.2. Methodology used for the Mask R-CNN architecture

The Mask R-CNN implementation in this work is based on that released

by Matterport under the MIT license [48]. It uses the open-source libraries of

Tensorflow and Keras.275

5.2.1. Backbone architecture

A standard neural network that serves as a feature extractor is used for the

backbone architecture. Low level features are identified by the early layers while

the deeper layers successively detect features at a higher level. Mask R-CNN

improves on this base architecture by using a FPN. High level features from the280

first pyramid are fed into a second pyramid which then passes them down to

lower layers. This allows features at every level to have access to both lower

and higher level features. This implementation of Mask R-CNN uses a ResNet

[43] architecture with a FPN backbone.

In RPN, a lightweight neural network, finds areas containing objects. To do285

this, a sliding window is moved over the feature maps, using regions distributed

over the image, referred to as anchors, to identify whether or not there is an

object, per location per anchor box. In this work, the RPN anchor scales, ratios,

stride and NMS threshold are related hyperparameters that were heuristically

modified during training until satisfactory results were obtained.290

12

241



Table 1: Different augmentation pipelines.

Pipeline Functions

1 horizontal, vertical flips

2 horizontal, vertical flips,

rotation, brightness, blur

3 horizontal, vertical flips,

rotation, brightness, blur,

contrast normalisation, crop

5.2.2. Transfer learning

Since only a limited number of training samples were available, rather than

training the network end-to-end from scratch, a transfer learning methodology

was used. The model is first initialised with pre-trained weights obtained by

training the network on the COCO [49] and Imagenet [42] datasets. By tweaking295

several hyperparameters such as learning momentum, learning rate and train

ROIs per image, the network is fine-tuned to adapt it to crack images.

5.2.3. Data augmentation

To further counteract the lack of training data, an augmentation pipeline

was used to train the Mask R-CNN. Experimentation with several transforma-300

tions for augmentation included vertical and horizontal flips, different rotations,

changes in the brightness and addition of blurring using a Gaussian kernel. To

investigate the benefits of using data augmentation, various pipelines were built

using several functions from the imgaug library [50] and tested by training using

the respective augmentation pipelines. A brief description of each pipeline is305

given in Table 1.

6. Datasets

To demonstrate the effectiveness of a deep learning approach for crack de-

tection, the U-Net, SegNet and Mask R-CNN models were trained using crack

13

242



images from two different datasets. One set is based on a subset of the pub-310

licly available SDNET [51] dataset and the other is a dataset built from images

captured in CERN’s Large Hadron Collider (LHC) tunnel.

6.1. SDNET subset

The SDNET dataset is an annotated image set used for training and bench-

marking of AI-based crack detection algorithms. It provides the crack vs non-315

crack ground-truth classification only, rather than masks as required by U-Net,

SegNet and Mask R-CNN networks. Consequently, a mask dataset was built

using a subset of 200 images from the complete SDNET set. The images have

a resolution of 256 × 256. Using the PixelAnnotationTool [52], a brush with a

small radius was used to mark the cracks, which are very narrow and long in320

nature. A sample from the developed mask dataset is shown in Fig. 4. The

80/20 rule was used to randomly divide the data in 128 images for training, 32

for validation and 40 for testing.

(a) crack image (b) ground-truth

Figure 4: A sample of crack markings from the SDNET dataset subset

6.2. LHC dataset

This dataset was built from images captured in the CERN LHC tunnel. This325

tunnel is 27 km long and lies at around 100 m below the ground, with most of it

being located in France. Using a set of images captured in this tunnel, the cracks

in this dataset, were manually marked using the same annotation tool [52] to

generate the mask annotations. A sample from the generated mask dataset is
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shown in Fig. 5. The images have a resolution of 1885 × 711. The 80/20 rule330

was used to divide the data into 110 images for training and 28 for validation.

The remaining 34 images were used for testing.

(a) crack image (b) ground-truth

Figure 5: A sample of crack markings from the LHC dataset

7. Quantitative analysis

Crack images from both the SDNET subset and the LHC dataset were used

to train the U-Net, SegNet and Mask R-CNN models using different config-335

urations and hyperparameters. Experiments using different configurations of

the three models were conducted to define the optimal one by analysing the

resulting values of different evaluation metrics.

7.1. Evaluation metrics

In class-imbalanced scenarios, pixel accuracy can easily give a false impres-340

sion of good performance. Hence, more reliable metrics, namely the training

and validation loss and intersection over union (IoU), were used. By monitoring

the model loss, different configurations can be analysed to empirically find the
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optimal one, avoiding underfitting or overfitting situations. The IoU divides the

intersection area of the predicted segmentation and ground-truth by the total345

number of pixels in both images. It measures how well a predicted segmentation

matches the corresponding ground-truth annotation by dividing the intersection

of two segments by their union. For the Mask R-CNN, the class and mask loss

were monitored. The class loss is the RPN anchor classifier loss which reflects

the confidence at which the model predicts the class labels. The mask loss is350

the output of a cross entropy loss function applied to the mask branch of the

network and penalises wrong per-pixel binary classifications.

7.2. Analysis on the SDNET subset

When considering the semantic segmenation method, the U-Net and SegNet

models were individually trained for 200 epochs using the SDNET subset, how-355

ever the models’ loss reduced to a plateau even before 100 epochs were reached

as can be observed in Fig. 6. When comparing these curves with the validation

ones displayed in Fig. 7, one observes that the latter are not as consistent. In

general U-Net performed better and had a more consistent decaying loss when

using the U-Net with Vanilla CNN and VGG16 encoder architectures.360

(a) U-Net (b) SegNet

Figure 6: A plot of the cross entropy loss during training of different models on the SDNET

subset

During training, the IoU value was also monitored. This had a fairly con-

sistently increasing behaviour for any of the trained models, however during
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(a) U-Net (b) SegNet

Figure 7: A plot of the cross entropy loss during validation of U-Net and SegNet models with

different encoder architectures, on the SDNET subset

Table 2: Mean IoU from the Mask R-CNN model trained for different number of epochs on

the SDNET subset

Number of Epochs Mean IoU

200 0.68

250 0.66

300 0.67

validation, the U-Net model performed better implying improved generalisa-

tion. Furthermore, testing the models on the testing dataset confirmed that the

U-Net model with a VGG-based encoder had the best segmentation performance365

with the highest mean IoU of 0.73 as recorded in Table 3.

The Mask R-CNN model was initialised with weights pre-trained on the

Imagenet and COCO datasets for the ResNet-50 and RestNet-101 backbones

respectively. Upon training the model with these two backbones and using dif-

ferent hyperparameters, it was noted that ResNet-101 performed slightly bet-370

ter in general. Hence, the Mask R-CNN model with a ResNet-101 backbone

was trained with different hyperparameters and the class and mask losses were

monitored to identify the number of epochs at which the model had a high

probability of giving the best performance. This model was trained in different
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training schedules; training only the heads of the network, training all the layers375

of the network and a combination of both, with the latter outperforming the

others. The plots in Fig. 8, show the losses when training the heads of the

network for 50 epochs followed by training all the layers for another 250 epochs

using a fixed learning rate of 0.001. As observed here, training further than 200

epochs did not add any major improvements to the network. To confirm this,380

predictions on the testing subset were done with the trained model at different

epochs, obtaining the highest IoU at 200 epochs as observed in Table 2.

(a) Class Loss (b) Mask Loss

Figure 8: The plots of the class and mask loss while training Mask R-CNN on the SDNET

subset

The different augmentation pipelines listed in Table 1 were used to train the

model and the optimal results were obtained when using Pipeline 3. Hence,

using the Mask R-CNN model with a ResNet-101 backbone, trained for 200385

epochs with a fixed learning rate and a data augmentation pipeline involving

horizontal and vertical flipping, rotation, brightness, blur, contrast normalisa-

tion and cropping resulted in the optimal configuration generating the highest

mean IoU of 0.68.

When comparing all the trained networks, Table 3 shows that, for the SD-390

NET subset dataset, the U-Net with a VGG16-based encoder generated the

highest mean IoU with a value of 0.73.
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Table 3: IoU from the U-Net, SegNet and Mask R-CNN models trained on the SDNET subset

Model Mean IoU

U-Net 0.70

U-Net with VGG16 0.73

U-Net with ResNet-50 0.56

SegNet 0.54

SegNet with VGG16 0.68

SegNet with ResNet-50 0.53

Mask R-CNN with ResNet-101 0.68

7.3. Analysis on the LHC dataset

Both the U-Net and SegNet models were trained for 200 epochs however the

models’ loss reduced to a plateau even before 100 epochs as can be observed in395

Fig. 9. Furthermore, when comparing the training loss curves with the valida-

tion ones displayed in Fig. 10, the latter were not as consistent. When mon-

itoring the IoU, we observed a consistently increasing behaviour. In contrast,

during validation, the U-Net model performed better implying better general-

isation. Furthermore, testing the models on the testing subset confirmed that400

for the LHC dataset, the U-Net model with a ResNet-based encoder had the

best segmentation performance with the highest mean IoU of 0.72 as recorded

in Table 5.

For this dataset, the Mask R-CNN model was also initialised with weights

pre-trained on the Imagenet and COCO datasets, for the ResNet-50 and RestNet-405

101 backbones respectively. Upon training the model using different configura-

tions, the one with a ResNet-101 backbone performed slightly better in general.

Hence, the Mask R-CNN model with a ResNet-101 backbone architecture was

trained with different hyperparameters, and the classification loss and the mask

loss were monitored to identify the number of epochs at which the model had a410

high probability of giving the best performance.
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(a) U-Net (b) SegNet

Figure 9: A plot of the cross entropy loss during training of the U-Net and SegNet models

with different encoder architectures, on the LHC dataset

(a) U-Net (b) SegNet

Figure 10: A plot of the cross entropy loss during validation of the U-Net and SegNet models

with different encoder architectures, on the LHC dataset

To train this dataset, the same training schedules were used. The plots

displayed in Fig. 11, show the losses when training the heads of the network for

50 epochs followed by training all the layers for another 250 epochs using a fixed

learning rate of 0.001. As noted here, training further than 200 epochs did not415

result in any major improvements to the network. To confirm this, predictions

on the testing subset were done with the trained model at 200, 225 and 250

epochs, obtaining the highest IoU at 200 epochs as observed in Table 4.

The augmentation pipelines in Table 1 were also applied to this dataset.

In this case, the optimal results were obtained when using only horizontal and420
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(a) Class Loss (b) Mask Loss

Figure 11: The plots of the class loss and mask loss while training the Mask R-CNN model

on the LHC dataset

Table 4: Mean IoU from the Mask R-CNN model trained on the LHC dataset

Number of Epochs Mean IoU

200 0.57

225 0.55

250 0.54

vertical flipping. The Mask R-CNN model with a ResNet-101 backbone, trained

for 200 epochs with a fixed learning rate and a data augmentation pipeline

involving flipping resulted in the optimal configuration generating the highest

mean IoU with a value of 0.57.

When comparing all the trained models, Table 5 shows that, for the LHC425

dataset, both the U-Net and SegNet with a ResNet-50-based encoder generated

the highest mean IoU with a value of 0.72. This implies that the semantic

segmentation models performed better in our scenario.

8. Qualitative Analysis

A further qualitative interpretation of the results from training the different430

networks on both datasets was done. A sample of these is presented in the

following subsections.
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Table 5: IoU from the U-Net, SegNet and Mask R-CNN models trained on the dataset built

from images captured in the LHC Tunnel

Model Mean IoU

U-Net 0.70

U-Net with VGG16 0.61

U-Net with ResNet-50 0.72

SegNet 0.63

SegNet with VGG16 0.61

SegNet with ResNet-50 0.72

Mask R-CNN with ResNet-101 0.57

8.1. Results from the SDNET subset

When comparing the sample results in Fig. 12 - 14 with their corresponding

ones in Fig. 15 - 17, the U-Net model’s performance is in general better, with435

the U-Net model with a VGG16 based encoder generating segmentation results

closest to the ground-truth mask. The Mask R-CNN model also generated

segmentations very close to the ground-truth, as shown in Fig. 18, Fig. 19 and

Fig. 20. However, drawbacks include a larger architecture and longer training

time.440

8.2. Results from the LHC dataset

The quantitative results from the LHC dataset presented in Section 7 im-

ply that the semantic segmentation models with a ResNet-50 encoder network

both resulted in the highest IoU. This is also observed in the sample image in

Fig. 22 where the U-Net and SegNet model’s performance outcome was better445

than that of Mask R-CNN, with the segmentation maps being very close to the

corresponding ground-truth of each image.
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(a) original (b) ground-truth

(c) vanilla CNN (d) VGG16 (e) ResNet-50

Figure 12: Crack detection results of example 1 from the SDNET subset using the U-Net

model with different encoder architectures

(a) original (b) ground-truth

(c) vanilla CNN (d) VGG16 (e) ResNet-50

Figure 13: Crack detection results of example 2 from the SDNET subset using the U-Net

model with different encoder architectures
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(a) original (b) ground-truth

(c) vanilla CNN (d) VGG16 (e) ResNet-50

Figure 14: Crack detection results of example 3 from the SDNET subset using the U-Net

model with different encoder architectures

(a) original (b) ground-truth

(c) vanilla CNN (d) VGG16 (e) ResNet-50

Figure 15: Crack detection results of example 1 from the SDNET subset using the SegNet

model with different encoder architectures
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(a) original (b) ground-truth

(c) vanilla CNN (d) VGG16 (e) ResNet-50

Figure 16: Crack detection results of example 2 from the SDNET subset using the SegNet

model with different encoder architectures

(a) original (b) ground-truth

(c) vanilla CNN (d) VGG16 (e) ResNet-50

Figure 17: Crack detection results of example 3 from the SDNET subset using the SegNet

model with different encoder architectures
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(a) original (b) ground-truth (c) Mask R-CNN

Figure 18: Crack detection results of example 1 from the SDNET subset using the Mask

R-CNN model

(a) original (b) ground-truth (c) Mask R-CNN

Figure 19: Crack detection results of example 2 from the SDNET subset using the Mask

R-CNN model

(a) original (b) ground-truth (c) Mask R-CNN

Figure 20: Crack detection results of example 3 from the SDNET subset using the Mask

R-CNN model
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(a) crack image (b) ground-truth (c) U-Net (d) SegNet (e) Mask R-CNN

Figure 21: First example of crack detection results from the LHC dataset using Mask R-CNN

with ResNet-101 backbone and both U-Net and SegNet with a ResNet-50 encoder

(a) crack image (b) ground-truth (c) U-Net (d) SegNet (e) Mask R-CNN

Figure 22: Second example of crack detection results from the LHC dataset using Mask R-

CNN with ResNet-101 backbone and both U-Net and SegNet with a ResNet-50 encoder

27

256



9. Conclusion

Our current research deals with automating structural health monitoring

in tunnel environments by using computer vision solutions to detect cracks in450

concrete linings. In this work, we reviewed the currently existing techniques used

for crack detection and focused on the application of deep learning techniques.

Different deep learning models for semantic and instance segmentation were

trained on crack image datasets. A comparative analysis of the results was made

to find the optimal solution to be used for crack detection in tunnel linings.455

These results show that the semantic segmentation models with a ResNet-50

encoder are the best solutions for detecting cracks in the CERN LHC tunnel

infrastructure.
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Abstract Tunnel inspections are predominantly done
through periodic visual observations, requiring humans

to be physically present on-site, possibly exposing them
to hazardous environments. Furthermore, such surveys
are subjective, time consuming and may require op-

eration shutdown, thus raising the need for accurate
automatic inspection systems. To improve structural
health monitoring, this work proposes a remotely op-
erated machine vision change detection application. It

comprises data acquisition from a rig of cameras hosted
on a robotic platform that is driven parallel to the tun-
nel walls. Once the data is acquired, image processing

and deep learning techniques are used to pre-process the
images to reduce nuisance changes cause by light varia-
tions. Data fusion techniques are then applied to iden-

tify the changes occurring in the tunnel structure. Dif-
ferent pixel-based change detection approaches are used
to generate temporal change maps. In addition, for a
more reliable detection of changes, decision-level fusion

methods are used to combine the change maps obtained
earlier. This is further discussed through a quantitative
and qualitative analysis of the results achieved. The

proposed change detection application achieved high re-
call and precision values of 81% and 93% respectively.
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1 Introduction

Over time, infrastructure shows signs of deterioration
due to construction defects, ageing, unexpected over-
loading and natural phenomena, possibly leading to

problems in structural integrity. Consequently, to en-
sure safety in concrete tunnels, periodic inspections have
to be conducted. These are predominantly performed

through periodic visual observations, looking for struc-
tural defects such as cracking, spalling and water leak-
age to identify possible changes in the infrastructure

with respect to a previous survey. To conduct such
observations, personnel are required to be physically
present in the tunnel. Associated with this, there are
several drawbacks including the human presence in haz-

ardous environments and the financial cost involved to
train and hire people to do the inspections. In addition,
these inspections require a considerable amount of time

to perform, leading to longer operation down-times and
thus higher monetary losses. In addition, the outcome
is highly dependent on human subjectivity, leading to
possible inaccuracies, false and missing detections.

All this has led to an increase in the need for robotic

operations to reduce direct human intervention and ma-
chine vision applications can be used to obtain more ob-
jective results. Hence, substantial effort has been done
to automate inspections using image processing to de-

tect and classify cracks, deformities and the presence of
water along the tunnel linings. Whilst defect identifica-
tion is essential to automate inspection, regular moni-

toring of tunnel linings can provide a more informative
survey to further automate inspection and analysis. Us-
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ing robotics, computer vision and data fusion, here we
propose a tunnel inspection application to monitor for
changes on tunnel linings. The tunnel in this scenario is
within CERN, the European Organization for Nuclear

Research. The considered tunnel is a 27 km long tunnel
lying at around 100m below the ground, hosting the
world’s largest particle accelerator, the Large Hadron

Collider (LHC).

The remainder of this article is structured as follows.

Sect.2 reviews the state of the art with respect to auto-
mated tunnel inspection and the techniques used here.
The proposed solution is presented in Sect.3. Sect.4 ex-
plains the image acquisition part. In Sect.5 pre-processing

tasks are described. Bi-temporal image fusion is de-
scribed in Sect.6. Sect.7 discusses decision-level fusion
in the context of change detection, followed by the change

map (CM) analysis process presented in Sect.8. A per-
formance evaluation is made in Sect.9. A summary and
suggestions for future work conclude this article.

2 Background Information

2.1 General tunnel inspection

Research on automated health monitoring of tunnel
structures has received significant attention in recent

years as recorded in [17,8]. Various solutions that deal
with different aspects of automated tunnel inspection
were proposed through the use of cost-effective photo-
graphic equipment and computer vision. In [5] an ex-

tensive survey of works within the whole image-based
tunnel inspection spectrum is presented. This includes
tunnel profile monitoring, crack and leakage detection

as well as tunnel surface documentation and visualisa-
tion.

2.2 Change Detection

Change detection is a well researched problem in the
fields of video surveillance, remote sensing and medical

imaging amongst others. Reviews of change identifica-
tion methods are found in [16] and [19]. However, lit-
erature on the detection of changes on tunnel linings is
still lacking, possibly due to the challenges encountered

in this area. Some of these can be referred to in [14],
[3], [24], [23], [10]. The goal of a change detection algo-
rithm is to detect significant changes. Apparent inten-

sity changes resulting from camera motion and differ-
ent lighting, ideally should not be detected as changes.
Hence, pre-processing steps involving geometric, radio-
metric adjustments and semantic segmentation are gen-

erally required as a primary stage to change detection.

2.3 Data Fusion

Data fusion combines data from different methods for
increased reliability, higher redundancy and improved
identification. Surveys of different fusion architectures

are presented in [6] and [7]. Image fusion is a specific
type of data fusion, classified into pixel, feature and
decision levels. Image fusion applications can also be

categorised by the time, view or modality at which the
images are taken. Multi-view applications such as [20]
and [26] fuse images from the same modality but from
different viewpoints. Images taken at different times are

combined using multi-temporal fusion to detect changes
between them or to synthesise images not photographed
at a desired time as in [9] and [13]. In multi-modal fu-

sion, images coming from different sensors are combined
such as in [1] and [15].

3 Solution Overview

The proposed solution is illustrated in Fig. 1. Image
acquisition is made by a mobile robotic platform. Pre-
processing steps involving radiometric adjustments and
specular highlight localisation are applied. Bi-temporal

fusion, involving image differencing, principal compo-
nent analysis (PCA) and structural similarity index
(SSIM) and decision-level image fusion are employed

at respective stages to achieve change detection.

4 Image Data Acquisition

4.1 Acquisition system

A camera system [22] designed to inspect cylindrical
environments, was identified on the market. The sys-
tem is composed of the twelve unit camera rig in Fig.

2(b), two flash lights, an encoder wheel, two batteries
and computer unit with software for camera synchro-
nisation. During a demo test in the LHC tunnel, this

system was integrated on CERNBot [11], one of the
robotic platforms at CERN as shown in Fig. 2(a). The
encoder wheel was attached to the CERNBot as shown
in Fig. 2(c).

4.2 Dataset

CERNbot was driven parallel to the wall at a speed
of around 0.2m/s along a section of the LHC tunnel

while capturing synchronised images. This image set is
referred to as DataT1. Changes were then simulated
by marks on the wall. The CERNbot was again driven

along the same section capturing DataT2.
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Fig. 1 Block diagram of the proposed inspection solution

(a) integration (b) camera rig (c) encoder wheel

Fig. 2 Commercial camera system [22] integrated on the CERNBot

Using this data, 3D models were generated and un-
wrapped into orthophotos using scripts run by the com-
pany supplying the same camera system [22]. Using lo-
cation information from the encoder wheel, orthopho-

tos could be accurately registered as seen in Fig. 3 such
that pixel-based change detection (PBCD) techniques
could be applied. Each orthophoto is segmented in ten

parts along its height and each of the image crops cov-
ers 0.5m of the tunnel length. Such images were used
for training and testing of different algorithms of the

solution.

5 Image Pre-processing

Changes can be due to new defects or from the evolu-
tion of already existing ones. Other changes caused by
lighting sources should be identified as nuisance, pre-
venting them from being propagated in a change detec-

tion pipeline.

5.1 Uneven illumination correction

An uneven amount of light falling on different areas
causes non-uniformity in images leading to nuisance

when comparing images. To adjust the uneven illumina-
tion, we use the shading algorithm in [2]. A low-pass fil-
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(a) Orthophoto from DataT1

(b) Orthophoto from DataT2

Fig. 3 Orthophotos generated from DataT1 and DataT2

captured during the demo test

ter is applied on the original image using a median filter
with a large kernel. The illumination corrected image

is obtained through a pixel-wise division of the origi-
nal image by the low-pass filtered image. As observed
in Fig. 4(c), subtracting the original images generates

a difference image full of ‘white change areas’, however
this is due to uneven illumination. On the other hand,
when the images are pre-processed to correct the un-
even illumination, their difference image does not have

any ‘white areas’ even if there is a change in lighting
as shown in Fig. 4(f). Thus, this method is an effec-
tive pre-processing method to provide useful images for

subsequent processing.

5.2 Specular highlight localisation

During image acquisition, flash lights cause reflections
on metal racks/pipes on the wall, resulting in specu-
lar highlights in the images. Such highlights are not

constant neither in time nor in place, leading to false
detections when subtracting images to identify changes
as shown in Fig. 4. Thus, highlight detection was im-

plemented to localise these regions in the image pair as
displayed Fig. 5. For this, semantic segmentation using
the modified U-Net [21] architecture proposed in [4], is

implemented. Morphological operations and connectiv-
ity analysis are then applied to the segmentation images
to generate bounding boxes around highlight areas in
the image pair as illustrated in Fig. 5(c). Such masks

are later fused with the CM to mask out these false
change candidates.

6 Bi-temporal image fusion

Multi-temporal fusion combines data from images of

the same scene, acquired at different times. Hence, this
approach can be used to identify changes in a scene by

(a) Ir (b) Is (c) Ir − Is

(d) Cr (e) Cs (f) Cr − Cs

Fig. 4 The original reference (a) and survey (b) images, the
difference image (c), the pre-processed reference Cr (d) and
survey Cs (e) images, and the difference image of the pre-
processed images (f)

comparing images. In this scenario, bi-temporal image
fusion is applied between the two temporal images; ref-

erence and survey. The pair of a reference and survey
image in Fig. 6 is used in the explanation of the subse-
quent methods.

6.1 Image Difference

In this method, two images of the same scene taken at

separate times t1 and t2 are subtracted pixel-wise. After
the subtraction, the magnitude of the difference value is
compared against a threshold. Pixels with a difference

magnitude higher than the pre-defined threshold are
classified as ‘change’, otherwise noted as ‘no change’.
The CM is generated using:

Diff(x, y) = |I(x, y, t1)− I(x, y, t2)|

CM(x, y) =

{
1 if Diff(x, y)≥T
0 otherwise

(1)
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(a) Ir (b) Is (c) mask

Fig. 5 Highlight localisation on the reference image (a), sur-
vey image (b) and their corresponding combined mask (c)

where I(x, y, t1) is the image at time t1, I(x, y, t2) is
the image at time t2 and T is the threshold on the dif-
ference magnitude. This method is simple and requires

low computation however, its accuracy depends on the
threshold set. As T is increased, the number of change
pixels decreases, implying the elimination of lower dif-
ference magnitudes, thus more noise suppression. How-

ever, the ‘valid change’ pixels are lost at T ≥ 30 in this
particular example.

A fixed threshold value cannot satisfy all scenar-
ios, thus a better approach is to set the threshold au-
tomatically depending on the images being compared.

The Gaussian valley emphasis (VE) method proposed
in [18] is used, generating a CM with only a few ‘noise
changes’ while retaining the ‘crack change’ as observed

in Fig. 7.

6.2 Principal component analysis (PCA)

PCA reduces the dimensionality of a dataset while main-
taining the variances. Independent data transformation

analysis applies PCA on each of the temporal images
separately. The derived principal components are then
analysed by applying other change detection techniques
such as image differencing or regression. On the other

hand, merged data transformation analysis stacks N
temporal images of p channels each, fuses them into
a single N × p-channel image and applies PCA on the

latter. In this bi-temporal scenario, the merged data ap-
proach is used and the reference and survey images are
stacked on each other. The method was investigated in

terms of the original RGB images and the pre-processed
images ie. illumination corrected images.

When RGB images (p = 3, N = 2) are used, the
stacked images are merged into a 6-channel image. The

first component (C0), corresponding to the highest eigen-

values, contains most of the information from both im-
ages. C1 represents the difference between temporal
images while later components contain noise informa-

tion. Experimental results show that PCA is scene-
dependent, thus comparison between different data is
often difficult to interpret using a fixed condition, im-

plying the need of scenario-dependent thresholds. When
considering C1, the histogram shape is not clearly de-
fined at its tails, making it difficult to find an adap-
tive threshold pair. When pre-processed images (p =

1, N = 2) are used, a stacked 2-channel image is gen-
erated. From PCA, the first component C0 represents
the difference between temporal images while C1 con-

tains most of the information from both images. In this
case, when considering C0, the ‘crack change’ has a high
value (white), the ‘pipe reflections change’ has a low
value (black) and the rest of the wall has a medium

value (grey). This again, implies that the histogram
contains changes at both of its tails. In this case, how-
ever, as observed in Fig. 8, the histogram shape follows

a Gaussian distribution. To automatically find a thresh-
old pair, the statistical process control (SPC) principle
[25] is used.

A double threshold is heuristically determined us-

ing:

Tlow = µ− cσ
Thigh = µ+ cσ

(2)

where µ, σ are the mean and standard deviation of Ci,
c is a constant.

CM(x, y) =





1 if Ci(x, y)>Thigh

1 if Ci(x, y)<Tlow

0 otherwise

(3)

Applying Eq. 3 on the C1 of the original and C0 of
the pre-processed images generated the CMs in Fig. 9.

6.3 Structural similarity (SSIM) index

SSIM [27] performs different similarity measurements of

luminance, contrast and structure, and thereafter com-
bines them to obtain a single value. Considering two
image blocks x and y, the SSIM is given by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σx2 + σy2 + c2)
(4)

where µx, µy are the mean and σx
2, σy

2 are the variance
of x and y while σxy is the covariance between x and y.
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(a) Ir (b) Is (c) CM (d) change

Fig. 6 Change detection between (a) reference and (b) survey images in an ideal-world scenario, generating the (c) ideal
change map and (d) the corresponding bounding box

Fig. 7 Image differencing using Gaussian valley emphasis for
automatic thresholding

Fig. 8 Histogram of normalised C0 from PCA on pre-
processed images

Constants c1, c2, c3 are calculated using:

c1 = (K1L)2, c2 = (K2L)2, c3 =
c2
2

(5)

(a) C1 (b) C0

Fig. 9 CMs from PCA applied to (a) original images (C1)
(b) pre-processed images (C0) where the ‘crack change’ is
only identified when the pre-processed images are used

where K1,K2 � 1, generally K1 = 0.01,K2 = 0.03 and

L is the dynamic range of the pixel values (L = 255
for 8-bit greyscale images). Here, SSIM is used as a
PBCD method to generate a CM between a reference

and survey image. The SSIM is normalised to a range
of [0, 255] and thresholded using:

D(x, y) = 1− SSIM(x, y) + 1

2

CM(x, y) =

{
1 if D(x,y)≥ T

0 otherwise

(6)

where D(x, y) represents the difference image and T is a
constant. A fixed threshold value cannot satisfy all sce-
narios, thus the Gaussian VE automatic thresholding

method is applied. An investigation of the performance
in change detection is done using greyscale images, the
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V channel in HSV images and pre-processed images cor-
rected for uneven illumination. In general, the best re-
sults with minimum noise were obtained using greyscale
images as shown in Fig. 10.

(a) greyscale (b) HSV (c) corrected

Fig. 10 Resulting change maps from SSIM applied to the
(a) greyscale images (b) V channel in HSV images and (c)
pre-processed images, corrected for uneven illumination

7 Decision-level fusion

Considering the complementary advantages of the im-
plemented PBCD methods, the generated CMs from

image differencing (CMdiff ), PCA (CMPCA) and SSIM
(CMSSIM ) are fused into a single CM using decision-
level fusion methods.

7.1 PCA-weighted sum

The PCA-based fusion algorithm is illustrated in Fig.
11. PCA is applied and the resulting components Ci

are used as weights multiplied to each of the CMs. A
summation of these weighted terms generates the fused

CM using:

CMPCA = CMD ·C0+CMPCA ·C1+CMSSIM ·C2 (7)

As shown in Fig. 12, the PCA approach generates
few noise pixels while retaining the actual changes, in
this case those belonging to the crack.

7.2 Majority Voting

In the majority voting algorithm, the three different
CMs; CMD, CMPCA and CMssim cast a unit vote

Fig. 11 Diagram of change map fusion by PCA

Fig. 12 Change map fusion by PCA

and if at least two of the CMs register a change, then
the corresponding pixel in the fused CM is assigned ‘1’
(change), otherwise ‘0’ (no change). Similar to the pre-

vious method, this fusion approach generates only a few
noise pixels while retaining the actual changes.

8 Change Map Analysis

At this point, the fused CM may still contain ‘nui-
sance change’ areas that should not be considered as

‘changes’. Hence, the CM analysis process illustrated
in Fig. 14 is developed.
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Fig. 13 Change map fusion by majority voting

8.1 Specular highlights filtering

Fusion between the inverse specular highlight mask im-
age SpecH(x, y) and the final CMMV (x, y) is done through

an AND operation defined by:

CMfiltered(x, y) = CMMV (x, y) ∧ SpecH(x, y) (8)

8.2 Morphological operations

The filtered fused CMfiltered(x, y) may contain some
small ‘change areas’ coming from image noise and mi-
nor registration errors. Here, a morphological closing

operation which uses dilation and erosion sequentially,
is applied to the fused CM. This joins any change seg-
ments by filling gaps, such as in ‘crack changes’ while

at the same time ignores the ‘noise changes’.

8.3 Connected components labelling

Next, connected components labelling with 8-connectivity

is used to identify and group neighbouring pixels into
‘change components’.

8.4 Dimension Filtering

The components are now filtered by their size. A ‘change
component’ is only retained if its width and/or height
satisfies the corresponding thresholds TW , TH . Using

the GDAL library [12], the orthophoto raster scale is
obtained and using the simple proportion principle, the
physical dimensions of the segment’s field of view (FoV)

are calculated. Using the configurable parameter dmin

representing the minimum dimension for a detected change

together with the corresponding image dimension and
FoV , the thresholds are calculated using:

TW =
dmin × IW
FoVW

TH =
dmin × IH
FoVH

(9)

If a candidate ‘change component’ has a width larger

than TW and/or a height larger than TH then the com-
ponent is confirmed as a ‘change component’.

8.5 Binary Comparison

A further analysis is done to reduce false changes due
to reflections, shadows and parallax errors. The images
consist of a white background and darker areas where

cracks, marks etc. appear. First the images are inverted,
then the bounding rectangle of each ‘change candidate’
is masked out of both the reference and survey images
using the corresponding area in the CM as a mask. The

difference in number of pixels is divided by the total
number of mask pixels.

Considering the same example, the difference ratios
observed in Fig. 15 corresponding to the ‘change candi-

dates’ in Fig. 16, whose image patches are displayed in
Fig. 17 . This shows that the difference ratio for com-
ponent ‘0’ which is the ‘actual change’, is much larger

than for the others. Thus a threshold is empirically set
to filter out the ‘false changes’. If the ratio is higher
than a threshold, this is considered as a ‘change’, oth-

erwise ignored such that in this case for example, only
‘change candidate 0’ is considered as a change.

9 Performance Evaluation

To demonstrate the effectiveness of the proposed change
detection module, a set of experiments were conducted
by simulating different changes such as cracks and other
markings on the walls. In addition, some markings were

also made on the images during post-processing, using
a graphical editing software.

For each test scenario, the changed areas are manu-
ally marked with a red dot. The change detection out-

put marked with green boxes and indices, is analysed
and manually compared to the corresponding reference-
survey image pair. An actual ‘change component’ is

marked as a true positive (TP). Each actual ‘change
component’ that is not detected by the algorithm is
added to the false negative (FN) list. On the other hand,

an area which is falsely detected as a change as it does
not correspond to any of the actual changes, is noted
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Fig. 14 Change map analysis process

Fig. 15 Difference ratios of ‘change candidates’

Fig. 16 Change candidates

as a false positive (FP). To quantitatively evaluate the

performance of the change detection algorithm, the fol-
lowing metrics are used.

9.1 Evaluation Metrics

The recall is calculated using the true positive rate
(TPR), implying the system’s ability to find the changes.
The precision is calculated using the positive detection

rate (PDR) implying the system’s ability to identify
only the actual changes. The F1−score is also calcu-
lated to find an optimal blend of both.

TPR(Recall) =
TP

TP + FN
× 100%

PDR(Precision) =
TP

TP + FP
× 100%

F1−score = 2× Precision×Recall
Precision+Recall

× 100%

(10)

(a) R0 (b) S0

(c) R1 (d) S1

(e) R2 (f) S2

(g) R3 (h) S3

Fig. 17 Change candidates (a)-(b) reference and survey
patch ‘0 (c)-(d) reference and survey patch ‘1’ (e)-(f) refer-
ence and survey patch ‘2’ (g)-(h) reference and survey patch
‘3’

9.2 Quantitative Analysis

The quantitative results recorded in Table 1 show that

the decision-level fusion by PCA generated a higher pre-
cision rate. As the threshold of the final binary compar-
ison was increased from 0.1 to 0.2, the precision value
increased from 83.0% to 94.5%. When the majority vot-

ing approach was used, a precision of 78.8% and 93%
was achieved at the same thresholds of 0.1 and 0.2 in
the final comparison stage. This implies that, the PCA

approach distinguished better between actual and nui-
sance changes.
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However, it is also important to evaluate the effec-
tiveness of the algorithm with respect to its ability to
find all the data points of interest, in this case the iden-
tified changes. This is given by the recall rate, which

had higher values of 83.71% and 81.11% for the ma-
jority voting approach with binary comparison stage
threshold values of 0.1 and 0.2 respectively. This im-

plies that the majority voting approach could identify
more actual changes with fewer misses.

It is beneficial if the algorithm can correctly classify
the changes, to avoid false alarms, however, it is impor-

tant that changes due to defects on the tunnel lining
are not missed. Hence, a trade-off between precision
and recall is essential. This is found by analysing the
F1−score which combines both metrics. As observed in

the Table 1, the fusion using a majority voting approach
achieved a better general performance with respect to
the F1−score.

Table 1 Quantitative results from the change detection algo-
rithm using different decision-level fusion methods (majority
voting and PCA) and different threshold values for the binary
comparison in the change component analysis stage

Fusion TH TP FP FN TPR PDR F1-
Method % % score %

MV 0.1 149 40 29 83.7 78.8 81.0
MV 0.2 146 11 34 81.1 93.0 86.7
PCA 0.1 137 28 39 77.8 83.0 80.4
PCA 0.2 103 6 73 58.5 94.5 72.3

9.3 Qualitative Analysis

Further to the quantitative results, a qualitative analy-
sis was made on different scenarios with ‘crack changes’,

other defects and also ‘nuisance changes’ caused by
varying light conditions and shadows.

In the example presented in Fig. 18, both of the fu-
sion approaches identified the actual changes correctly.

However, the majority voting approach gave a more
confined bounding box around the ‘crack change’ la-
belled ‘1’.

Using the reference and survey images in Fig. 19,
the change detection algorithm using majority voting

correctly identified both of the ‘crack changes’, how-
ever the connectivity and binary comparison stages fol-
lowing the PCA method incorrectly identified this as a

‘nuisance change’ and thus discarded it.

In Fig. 20, another ‘defect’ was simulated on the
wall. In this case, both methods correctly identified the

change. The final example in Fig. 21 only exhibits ‘nui-
sance changes’ with respect to the light. Both CMs show
white pixels in different areas in the image, implying
possible change due to specular highlights, shadows and

light changes. However, the CM analysis stage ignored
most of these regions except for the small shadow area
at the bottom of the image when using PCA-based fu-

sion, generating a ‘false change’.

Considering both the quantitative and qualitative
results, the final implementation of the proposed solu-
tion uses the majority voting approach for the decision-
level fusion and a threshold of 0.2 for the final binary

comparison stage.

10 Conclusion and Future Work

Periodic tunnel structural inspections are a necessity.

Inspections are predominantly performed through vi-
sual observations which involve looking for structural
defects and making sketches for civil engineers to as-

sess them and in turn suggest the required maintenance
and/or repairs. Associated with this, there are several
drawbacks including personnel exposure to hazardous
conditions and outcome subjectivity that is highly de-

pendent on human intervention which may lead to inac-
curacies or misinterpretations. Considering this, a tun-
nel inspection solution to monitor for changes on tunnel

linings was proposed. This work advances the state of
the art by contributing to the fields of machine vision
applications and structural inspections. An automatic

image data acquisition integrated on a robotic platform
is used to capture tunnel wall images. To alleviate the
effects of different light conditions on change detection,
pre-processing stages were also implemented. These in-

clude a shading correction to adjust uneven illumina-
tion and highlights localisation to reduce false changes
due to flash light reflections. Subsequently, a change de-

tection algorithm was developed through a combination
of different bi-temporal pixel-based fusion methods and
decision-level fusion of change maps. The proposed so-
lution aids structural health monitoring and provides a

better means of tunnel surface documentation.
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