
Evolutionary Algorithms for Globally

Optimised Multipath Routing

Noel Farrugia

Department of Communications and Computer

Engineering

University of Malta

January 2020

Supervised by

Prof Ing Victor Buttigieg and Prof Johann A. Briffa

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Copyright Notice

1. Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with regulations

held by the Library of the University of Malta. Details may be obtained from

the Librarian. This page must form part of any such copies made. Further

copies (by any process) made in accordance with such instructions may only

be made with permission (in writing) of the Author.

2. Ownership of the right over any original intellectual property, which may be

contained in or derived from this thesis, is vested in the University of Malta

and may not be made available for use by third parties without the written

permission of the University, which will prescribe the terms and conditions

of any such agreement.

i

Acknowledgements

This paragraph has been the easiest one I had to write, by far. I was lucky enough

to be surrounded by amazing human beings that have made this 4 year journey not

only bearable, but fun. I would like to thank my two supervisors; Prof Ing Victor

Buttigieg and Prof Johann A. Briffa for their immense support and motivation

throughout the entire duration of this PhD. Their guidance, advice and discussions

we shared over the years, have changed the way I do research and the way I look

at life in general. For this, I will be forever grateful. I must express my heartfelt

gratitude to my life partner Marija Magro and two great people I have the honour

to call them my friends, Karl Casha and Jasmine Spiteri. I am not going to lie,

doing a PhD has been much harder than I thought; however, the knowledge and

comfort of having a close knit group of friends that I can truly rely on, made the

road much easier than it would have been otherwise. I would also like to thank

my sister for proof reading this thesis while she was busy doing her own. Finally, I

would like to thank my parents for their financial support, without which, I would

not be where I am today.

The research work disclosed in this publication is partially funded by the ENDEAV-

OUR Scholarships Scheme (Group B).

This research has been carried out using computational facilities procured through

the European Regional Development Fund, Project ERDF-076 ‘Refurbishing the

Signal Processing Laboratory within the Department of CCE’, University of Malta.

ii

12th December, 2019

FACULTY/INSTITUTE/CENTRE/SCHOOL______________________

DECLARATION OF AUTHENTICITY FOR DOCTORAL STUDENTS

SƚƵdenƚ͛Ɛ CŽde ͺͺͺͺͺͺͺͺͺͺͺͺ

SƚƵdenƚ͛Ɛ Name Θ SƵƌname ͺͺ_______________________

Course __

Title of Dissertation/Thesis

__

__

(a) Authenticity of Thesis/Dissertation

I hereby declare that I am the legitimate author of this Thesis/Dissertation and that it is my original work.

No portion of this work has been submitted in support of an application for another degree or

qualification of this or any other university or institution of higher education.

I hold the University of Malta harmless against any third party claims with regard to copyright violation,

breach of confidentiality, defamation and any other third party right infringement.

(b) Research Code of Practice and Ethics Review Procedure

I declaƌe ƚhaƚ I haǀe abided bǇ ƚhe UniǀeƌƐiƚǇ͛Ɛ Code of Practice and Research Ethics Review Procedures.

ප As a Ph.D. student, as per Regulation 49 of the Doctor of Philosophy Degree Regulations, I accept that

my thesis be made publicly available on the University of Malta Institutional Repository.

ප As a Doctor of Sacred Theology student, as per Regulation 17 of the Doctor of Sacred Theology

Regulations, I accept that my thesis be made publicly available on the University of Malta Institutional

Repository.

ප As a Doctor of Music student, as per Regulation 26 of the Doctor of Music Degree Course Regulations,

I accept that my dissertation be made publicly available on the University of Malta Institutional

Repository.

ප As a Professional Doctorate student, as per Regulation 55 of the Professional Doctorate Degree Course

Regulations, I accept that my dissertation be made publicly available on the University of Malta

Institutional Repository.

______________________ ______________________ ______________

Signature of Student Name in Full (in Caps) Date

23592M

Noel Farrugia

NOEL FARRUGIA

Doctor of Philosophy

Evolutionary Algorithms for Globally Optimised Multipath Routing

of ICT

x

30/01/2020

iii

Abstract

With the ever increasing rise of traffic generated on the Internet, the efficiency

with which a network operates has become of great importance. The use of a

distributed network architecture and single path routing algorithms limits the level

of efficiency a network is able to sustain. To tackle this problem, a set of novel,

globally optimal, multipath capable routing algorithms are proposed. The routing

algorithms are designed to increase the total network flow routed over a given

network, while giving preference to lower delay paths. Two routing algorithm

frameworks are proposed in this work; one using Linear Programming (LP) and

the other using a Multi-Objective Evolutionary Algorithm (MOEA). Compared to

Evolutionary Algorithms (EAs), which are inherently sub-optimal, the LP routing

algorithm is guaranteed to find a solution with the maximum load a network is able

to handle without exceeding the link’s capacity. However, LP solvers are unable

to concurrently optimise for more than one objective. On the other hand, EAs

are able to handle multiple, possibly non-linear objectives, and generate multiple

viable solutions from a single run. Even though EAs are inherently sub-optimal,

the EAs designed here manage to satisfy, on average, 98% of the demand found by

the optimal LP generated solution.

All routing algorithms designed in this work make use of Per-Packet multipath

because of its increased flexibility when compared to its Per-Flow multipath coun-

terpart. It is well known that connection oriented protocols, such as TCP, suffer

from severe performance degradation when used in conjunction with a Per-Packet

multipath routing solution. This problem is solved by adding a custom scheduler

to the Multipath TCP (MPTCP) protocol. Using the modified MPTCP protocol,

TCP flows are able to reach a satisfaction rate of 100%, with very high probability

even when that flow is transmitted over multiple paths. The combination of the

modified MPTCP protocol and the designed routing algorithm(s) led to a network

that is able to handle more load without sacrificing delay, when compared to OSPF

under all the conditions tested in this work using network simulations.

iv

Table Of Contents

1 Introduction 1

1.1 Aims and Objectives . 5

1.2 List of Contributions . 5

1.3 List of Publications . 6

1.4 Structure . 6

2 Literature Review 7

2.1 Multi-Commodity Flow Problem 7

2.2 Traffic Engineering using Software Defined Networks 9

2.3 Heuristic algorithms . 12

2.4 Single vs Multi Objective problems 14

2.4.1 Multi-Objective Evolutionary Algorithms 16

3 Globally Optimal Multipath Routing 17

3.1 Notation . 18

3.2 Path Constrained Maximum Flow Minimum Cost 19

3.3 Evolutionary Based Routing Algorithm Framework 21

3.3.1 Chromosome Representation 23

3.3.2 Initial Population Generation 24

3.3.3 Crossover . 25

3.3.4 Mutation . 25

3.3.5 Constraint Handling . 26

3.3.6 Excess Removal Algorithm 27

3.4 MOEA-I . 27

3.4.1 Objectives . 27

3.4.2 Mutation . 30

3.5 MOEA-II . 31

3.5.1 Objectives . 31

3.5.2 Mutation . 32

3.6 The role of SDN in the deployment of a globally optimised solution 32

v

3.7 Path Selection Algorithms . 33

3.8 Complexity Analysis . 35

3.8.1 MOEA . 35

3.8.2 LP . 39

3.8.3 Complexity comparison: MOEA vs LP 41

4 Protocol Design and Implementation Issues 42

4.1 Per-Packet Multipath . 42

4.1.1 Split at Switch (PPFS) . 43

4.1.2 Split at Source (MPTCP) 45

4.2 Linear Programming Solver . 48

4.3 Evolutionary Algorithm . 48

4.4 Network Simulator . 49

5 Results 52

5.1 Setup . 52

5.1.1 Network Topology . 52

5.1.2 Flow Setup . 54

5.1.3 Path Setup . 56

5.2 MOEA Parameter Choice . 59

5.2.1 Number of Generations . 60

5.2.2 Population size . 62

5.3 Performance Analysis . 63

5.3.1 MOEA vs LP . 63

5.3.2 Promised vs Actual Network Performance 65

5.3.3 The Advantage of Having Multiple Solutions 67

5.3.4 Hybrid Routing Algorithm 71

5.3.5 Effect of Path Selection Algorithm on Network Performance 75

6 Conclusion 78

6.1 Limitations and Future Work . 80

A GÉANT Network Link Delays 88

vi

List of Figures

1.1 Diamond Network used to demonstrate the performance difference

between Per-Flow vs Per-Packet multipath. 3

3.1 Chromosome representation example 24

3.2 Crossover example . 25

3.3 Time taken for the LP algorithm to find a solution to the PC-MFMC

problem as the number of variables is increased, grouped by the

network load. 40

4.1 Proposed MPTCP framework . 47

5.1 2017 GÉANT network topology . 53

5.2 Percentage of the total allocated network flow as a fraction of the

total requested network flow . 55

5.3 Percentage of the Allocated Data Rate when using the PC-MFMC

algorithm when compared to the unconstrained Maximum Flow prob-

lem, with varying k. 58

5.4 Mean Euclidean distance between successive Pareto Fronts. 61

5.5 The ratio between non-dominated and dominated solutions for every

generation. 62

5.6 Plot illustrating the Percentage of demand achieved by the EA al-

gorithms when compared to the optimal solution to the PC-MFMC

problem solved using LP. 64

5.7 Boxplot showing the distribution of the flow’s satisfaction rate. . . . 66

5.8 MOEA-I Orthogonal Pareto Front Projection 68

5.9 Network Performance of the MOEA-I and PC-MFMC generated so-

lutions when using TCP. 70

5.10 Mean Euclidean distance between successive Pareto Fronts compar-

ing the hybrid and non-hybrid versions of the EA. 72

5.11 MOEA-II vs Hybrid Pareto Front 73

vii

5.12 Network Performance comparison between MOEA-II and the Hybrid

algorithm . 74

5.13 KSP vs KSREDP network performance comparison 76

viii

List of Tables

3.1 Time complexity of each objective 38

4.1 Partial routing table with split flow 44

5.1 Network Load Configuration . 54

5.2 MOEA parameters . 60

A.1 2017 GÉANT Network Link Delays 89

ix

List of Acronyms

AAA Alienated Ant Algorithm.

ACO Ant Colony Optimisation.

CA Considering Acknowledgements.

CBR Constant Bit Rate.

DEAP Distributed Evolutionary Algorithms in Python.

EA Evolutionary Algorithm.

ECMP Equal Cost Multipath Routing.

ED Edge Disjoint.

GLPK GNU Linear Programming Kit.

GMPLS Generalised MPLS.

GOMR Globally Optimal Multipath Routing.

GPU Graphical Processing Unit.

HD High Definition.

ILP Integer Linear Programming.

IP Internet Protocol.

ISP Internet Service Provider.

KSEDP k-Shortest Edge Disjoint Path.

KSP k-Shortest Path.

x

KSREDP k-Shortest Relaxed Edge Disjoint Path.

LP Linear Programming.

MCFP Multicommodity Flow Problem.

MIP Mixed-Integer Program.

MMAS Max-Min Ant System.

MMFMC Multicommodity Maximum-Flow Minimum-Cost.

MOEA Multi-Objective Evolutionary Algorithm.

MPLS Multi-Protocol Label Switching.

MPTCP Multi-Path TCP.

NCA Not Considering Acknowledgements.

NSGA Nondominated Sorting Genetic Algorithm.

OSPF Open Shortest Path First.

PC-MFMC Path Constrained Maximum-Flow Minimum-Cost.

PPFS Per-Packet Flow Splitting.

PSNR Peak Signal-to-Noise Ratio.

QoS Quality of Service.

RTT Round Trip Time.

SDN Software Defined Network.

SOEA Single-Objective Evolutionary Algorithm.

TCP Transmission Control Protocol.

TE Traffic Engineering.

TS Tabu Search.

UDP User Datagram Protocol.

xi

UHD Ultra High Definition.

VM Virtual Machine.

xii

Glossary of Symbols

C The chromosome.

di ∈ V Flow fi’s destination node.

δi Flow fi’s requested data rate.

E The set of links.

e The link e = (u, v) ∈ E, where u ∈ V and v ∈ V are the links source and

destination nodes, respectively.

ǫ The number of links in a given graph G, i.e. |E|.

ē The reverse link of e, ē = (v, u).

γe The cost of link e ∈ E.

λe The capacity of link e ∈ E.

F The set of flows.

fi ∈ F The ith flow in set F .

G Loop-free directed graph representing the network topology.

Gi Sequence of genes related to flow fi.

gi,j ∈ R≥0 The data rate flow fi transmits on path pi,j, where R≥0 represents all

the positive real numbers, including zero.

α(gi,j) The TCP ACK data rate for gi,j.

ki The number of paths flow fi is allowed to transmit on, where ki ≤ k.

k The maximum number of paths a flow is allowed to take.

xiii

µ The fraction of flows modified by a single mutation operation.

P = {P1, P2, . . . , Pn} The set of all paths used by all flows.

P The population size of the evolutionary algorithm.

Pi The set of paths related to flow fi.

P̃i ⊆ Pi The set of paths flow fi is allowed to use during mutation.

pi,j ∈ Pi The jth path for flow fi.

φ(pi,j) The cost of path pi,j ∈ Pi.

riu,v Data rate transmitted by flow fi over link (u, v) ∈ E.

si ∈ V Flow fi’s source node.

T The total network flow allocated by the Maximum Flow portion of the PC-

MFMC problem.

θ Total number of paths given by θ =
∑n

i=1 |Pi|.

U(a, b) A uniform random number generator, generating real values between [a, b).

V The set of nodes.

ω The evolutionary algorithm’s crossover probability.

ψ The evolutionary algorithm’s mutation probability.

χ The number of generations the evolutionary algorithm runs for.

z ∈ U(0, 1) The random number generated from a uniform distribution between 0

and 1.

xiv

Chapter 1

Introduction

Our daily lives have become dependent on the Internet, putting ever increasing

pressure on network operators to keep up with the demand. From the time the

first computer networks were being designed and tested in the late 1960s, the

reliance and expandability of the largest network on Earth grew rapidly with each

passing year. This rapid and unprecedented growth has seen yearly increase in the

traffic transported over the Internet, with researchers and the industry focusing

on finding methods to increase the network’s capacity while keeping costs at bay.

Nowadays, the majority (80%) of the network traffic is video data [1]. Video

takes such a large proportion of the traffic generated due to the ease by which an

end user can consume as well as generate video data. The transmission of video

streams, especially live transmissions, presents network architects with two main,

but conflicting challenges; how to reduce the size of the transmitted video while

retaining or even improving the video quality over previous versions. The arrival

of the Internet also broke the bounds defined by country borders as users are now

able to consume data that has been generated from every corner of the globe with a

single click. Additionally, the concept of the cloud has become the norm and users

have come to expect the ability to access their data and services from anywhere at

any time. To hold such promises, cloud providers require two main components.

First, reliable data centers with enough capacity to store whatever the users upload

to the cloud. Second, data centers installed in strategic locations throughout the

globe to make accessing the data as efficient and responsive as possible. Such

environments create two types of networks; inter data center networks and the

network connecting the data centers together. As the name implies, the inter

data center network refers to the network that connects machines located on the

same premises together. Inter data center networks are usually owned by a single

company; thereby, creating an environment where the network topology can be

1

Introduction

designed specifically for data center networks with the aim of increasing network

efficiency and capacity. On the contrary, the network used to connect the data

centers together usually travels through different countries and continents with

the topology being dictated by geography and the financial cost incurred to build

and maintain such a network. Due to the imposed restrictions on the network

topology design and available link capacity, the latter network’s efficiency is highly

dependent on the routing algorithm’s ability to use all of the available network

resources. The design of such a routing algorithm is the main contribution of this

thesis.

One of the major inefficiencies in current networks is caused by the use of single path

routing algorithms. Open Shortest Path First (OSPF), one of the most commonly

used routing algorithm, falls into this category and transmits all the packets from

a source-destination pair over the shortest path. The definition of what represents

the shortest path varies from network to network and is based on what the network

operator seeks to minimise. Hop-count, path delay, financial cost to use a given

link or a combination of multiple link properties are examples of such path length

metrics. The use of single path routing algorithms, such as OSPF, are sub-optimal

in terms of network efficiency due to their inability to make use of all of the available

network resources. Using all of the available network resources requires a multipath-

capable routing algorithm [2, 3]. Multipath-capable routing algorithms are able to

transmit a flow over numerous paths and are categorised into two classes: Per-Flow

and Per-Packet. In this work we define a flow to be the sequence of packets that

are travelling between the same source and destination node pair (same Internet

Protocol (IP) address pairs), where the packets are transmitted/received by a single

application (same port number pairs). Multiple flows can exist between the same

source/destination pair. A Per-Flow multipath routing algorithm allows flows to be

routed over different paths; however, all packets related to the same flow must travel

on the same path. On the other hand, a Per-Packet multipath routing algorithm

allows packets originating from the same flow to take different paths. A Per-Packet

algorithm is able to divide the network resources down to the packet level; whereas

a Per-Flow algorithm is only capable of going down at the flow level. For this

reason, a Per-Packet algorithm will always outperform or match the performance

of a Per-Flow algorithm in terms of network resource usage. To better explain

this, take the simple network topology shown in Figure 1.1 as an example, where

all the links connecting the switches are assumed to have a capacity x and the links

connecting the terminals to the switches have a capacity≥ 2x. Using this setup, one

can easily see that using Per-Flow multipath a flow can either take the path (A →

B → D) or (A → C → D), but not both. This means that the flow can use at most

2

Introduction

Switch C

Switch B

Switch DSwitch ASource Destination

Figure 1.1: Diamond Network used to demonstrate the performance difference between Per-
Flow vs Per-Packet multipath.

x capacity units. On the other hand, Per-Packet multipath allows the flow to split

the packets over the two paths; thereby, giving the flow access to twice the capacity

units (2x) of a Per-Flow multipath solution. Even though the potential benefits

offered by Per-Packet multipath are clear, to the best of the author’s knowledge,

only Per-Flow multipath is used in practice. The main reason behind this lies in the

negative effects a Per-Packet multipath solution exhibits when used over connection

oriented protocols, such as Transmission Control Protocol (TCP). One of the most

commonly used Per-Flow multipath solutions is Equal Cost Multipath Routing

(ECMP) [4]. ECMP forwards packets related to the same flow over the same path

(identical to OSPF); however, different flows are allowed to travel over different

paths that have the same cost as the shortest path. ECMP determines which path

a flow takes based on a hash value calculated using fields from the packet header.

Although ECMP may offer better performance than OSPF [5], it is still limited

as it is unable to load balance between links of different cost. In addition, as load

balancing is based on the random hash values of a flow’s packet headers, flows may

still experience congestion if ECMP assigns two heavy flows over the same path.

From this summary it is clear that multipath routing is a key component to reach

maximal network efficiency. However, careful consideration of the setup where

multipath will be deployed needs to be taken into consideration as Liu et al. [6]

states that deploying multipath solutions in dense network topologies or lightly

loaded networks might have a detrimental effect on the network’s performance.

As stated earlier, a multipath-capable routing algorithm is required to make use of

all of the available network resources [2, 3]. However, in addition to being multipath

capable, a routing algorithm must also be globally optimal in order to reach max-

imum efficiency [7]. A Globally Optimal Multipath Routing (GOMR) algorithm

avoids congestion by ensuring that no link is used beyond capacity for a given flow

3

Introduction

set, by taking into account all the flows that are currently using the network. To

do this, a GOMR takes into account all the flows that are currently using the net-

work, which is what makes the algorithm globally optimal. The problem of routing

commodities (in our case flows) on a network without exceeding link capacity is

very similar to the well known Multicommodity Flow Problem (MCFP) [8], which

falls under the umbrella of Traffic Engineering (TE). TE relates to any optimi-

sation methods used to improve the performance and/or efficiency of a computer

network. Solving the MCFP requires up to date information on both the flows that

are currently using the network, and network topology information. The current

distributed network architecture is unable to provide such information in an effi-

cient and timely manner. A centralised network architecture is required to allow the

deployment of such a routing solution. The Software Defined Network (SDN) [9]

architecture moves the distributed control plane to a logically centralised server,

referred to as the network controller. This control plane centralisation gives the

network controller access to up to date information on both the flows and topology

of the network; thereby, allowing the deployment of a routing algorithm that is

based on the MCFP.

Linear Programming (LP) is one of the most common optimisation tools used to

solve the MCFP. The advantages of using an LP solver is that the optimal solution

is always found, assuming that such a solution exists. Obviously, what represents

an optimal solution is based on how the MCFP formulation is defined. LP solvers

have well known limitations that have to be overcome in order to achieve our goal

of designing a multipath routing algorithm. Most relevant to this work are the facts

that LP solvers are unable to handle multi-objective problems, output more than

one solution, and limit the MCFP formulation to be built from linear components

only. LP’s inability to handle multiple objectives means that the solution provided

will always be biased towards a single objective. The limitation of having access to

only linear formulations hampers the ability for the objectives to accurately reflect

the system being modelled.

To overcome said limitations, this work presents a routing algorithm that solves

the MCFP based on Evolutionary Algorithms (EAs). Compared to LP, EAs are

capable of solving problems having multiple objectives, able to work with both

linear and non-linear formulations and a single run of the algorithm provides an

array of different viable solutions to choose from based on the current situation.

EAs are a class of optimisers that emulate nature’s evolutionary process to find valid

solutions for the given problem. EAs build on the concept of natural selection and

work on the premise of survival of the fittest to always improve on the previously

found solutions by allowing the good solutions to mate and have offspring, while

4

Introduction Aims and Objectives

killing off the bad solutions. However, EAs are known to be sub-optimal; meaning

that the pool of solutions generated by an EA is not guaranteed to include the

optimal solution, if such a solution exists. Having said this, the LP provided

solution can be used by the EA to improve the solutions generated by the EA

and combine the advantages of the two algorithms. However, combining these two

algorithms comes at the cost of increased computational complexity as both the

LP and EA algorithm have to be run.

1.1 Aims and Objectives

The aim of this research is to develop a globally optimal, multipath capable, rout-

ing algorithm using the SDN architecture, intended to increase the traffic load a

network is able to sustain. The following is a list of objectives tackled during this

thesis:

• Survey the literature to establish the current state of the art research be-

ing carried out in the area of computer network routing algorithms and the

methods used to find such routing solutions.

• Develop a routing algorithm using EAs to overcome the limitations offered

by LP.

• Develop a system whereby TCP applications can benefit from Per-Packet

multipath algorithms.

• Develop a software environment where the developed routing algorithms can

be tested.

• Design and develop a switch on said software that can handle Per-Packet

multipath at any split ratio without running into scalability issues.

• Analyse the performance results of the developed routing algorithms and

designed protocols.

• Compare the network performance of the designed routing algorithms be-

tween themselves and OSPF.

1.2 List of Contributions

• The design of a Per-Packet flow splitting switch, tested using network simu-

lations, capable of handling any split ratio without facing scalability issues.

5

Introduction List of Publications

• Modifications to the Multi-Path TCP (MPTCP) protocol to allow TCP ap-

plications to benefit from Per-Packet multipath routing solutions.

• Design of a novel EA framework to generate a multi-objective, globally opti-

mal, multipath capable, routing algorithm.

• Modifications to the Path Constrained Maximum-Flow Minimum-Cost (PC-

MFMC) formulation to include TCP acknowledgement flows.

1.3 List of Publications

• N. Farrugia, V. Buttigieg, and J. A. Briffa, “A Globally Optimised Multi-

path Routing Algorithm Using SDN”, in 21st Conference on Innovation in

Clouds, Internet and Networks and Workshops (ICIN), Paris, France, Feb.

2018, pp. 1–8. doi: 10.1109/ICIN.2018.8401633

• N. Farrugia, J. A. Briffa, and V. Buttigieg, “An Evolutionary Multipath

Routing Algorithm using SDN”, in 2018 9th International Conference on the

Network of the Future (NOF), Nov. 2018, pp. 1–8. doi: 10.1109/NOF.2018.

8597865

• N. Farrugia, J. A. Briffa, and V. Buttigieg, “Solving the Multi-Commodity

Flow Problem using a Multi-Objective Genetic Algorithm”, in 2019 IEEE

Congress on Evolutionary Computation (CEC), Jun. 2019, pp. 2816–2823.

doi: 10.1109/CEC.2019.8790160

• N. Farrugia, V. Buttigieg, and J. A. Briffa, “Multi-Stream TCP: Leveraging

the Performance of a Per-Packet Multipath Routing Algorithm When Us-

ing TCP and SDN”, in 2019 44th Conference on Local Computer Networks

(LCN), Oct. 2019

1.4 Structure

This thesis is organised as follows. Chapter 2 outlines the most impactful research

in the area of TE using SDN, followed by a review of multi-objective solvers, with

focus on nature inspired work. Chapter 3 delves into the workings of the devel-

oped, multi-objective evolutionary routing algorithms. Chapter 4 outlines the work

required to implement the proposed solutions on a network simulation framework.

Chapter 5 presents the results of this work. Finally, Chapter 6 concludes this work

by summarising the achievements of this work, drawing conclusions from the results

achieved, as well as list additional work to further improve the proposed system.

6

https://doi.org/10.1109/ICIN.2018.8401633
https://doi.org/10.1109/NOF.2018.8597865
https://doi.org/10.1109/NOF.2018.8597865
https://doi.org/10.1109/CEC.2019.8790160

Chapter 2

Literature Review

This chapter starts by describing the MCFP and its close relationship with the area

of TE. A summary of two of the seminal works that deployed such a TE solution

using SDN, follows. This summary highlights the challenges and the design of

alternate algorithms the researchers had to develop to overcome the limitations

imposed by LP. Following this, a review on works that use nature inspired routing

algorithms to increase network efficiency is given. As one can easily assume, rarely

is the case where a routing algorithm is to be optimised for a single objective. As LP

is unable to solve multi-objective problems, alternative solvers have to be found

that are capable of handling multiple objectives. An overview of the available

multi-objective solvers is given, with a section highlighting the most commonly

used multi-objective EA frameworks.

2.1 Multi-Commodity Flow Problem

The MCFP [13] is at the fulcrum of the majority of TE related works due to the

close proximity of both problems’ objectives. The MCFP deals with the routing of

commodities over a network, without exceeding any of the network link capacities.

The optimisation objectives and constraints that make up the MCFP formulation

varies based on the environment the MCFP will be used in. To have a better

understanding of how various works in the literature tackled TE by modifying the

MCFP to fit their environment, an explanation of the basic MCFP formulation is

given next.

Let G = (V,E) be a loop-free directed graph representing the network topology,

where V and E are the set of nodes and links respectively. Each link is represented

by e = (u, v) ∈ E where u, v ∈ V are the link’s source and destination node,

respectively. The capacity and cost of each link e ∈ E is represented by λe and γe

7

Literature Review Multi-Commodity Flow Problem

respectively. Let F = {f1, f2, . . . , fn} be the set of n flows, with si ∈ V and di ∈ V

representing the source and destination nodes for flow fi ∈ F , respectively. Let

δi represent the data rate requested by flow fi ∈ F and the decision variable riu,v

represent the data rate flow fi ∈ F transmits over link (u, v) ∈ E. Using the above

notation, the MCFP is defined as follows:

min
riu,v

n∑

i=1

∑

(u,v)∈E

γu,v r
i
u,v, (2.1)

such that,

n∑

i=1

riu,v ≤ λu,v ∀(u, v) ∈ E, (2.2)

riu,v ≥ 0 ∀(u, v) ∈ E, i = 1, . . . , n, (2.3)

∑

v:(u,v)∈E

riu,v −
∑

v:(v,u)∈E

riv,u =







δi u = si

−δi u = di

0 otherwise

∀i, u. (2.4)

The capacity constraint (2.2) ensures that no link is used beyond its capacity,

while (2.3) ensures that no negative flow is assigned. The flow conservation con-

straint (2.4) ensures that all the data transmitted from the source node si is re-

ceived in full by the destination node di and no data is lost at the relay nodes. The

MCFP formulation given above is linear because no restriction is set on the number

of paths a flow may take [14]. If a constraint is added to the above formulation,

such that a flow may only use a single path, the problem becomes the unsplittable

MCFP that is NP-hard [14].

As can be deduced from the definition of the MCFP, working out a routing solution

requires up to date knowledge on both the network topology and flows that are

currently traversing the network. Gaining access to this information using the

traditional network architecture with a distributed control plane is very difficult to

do in an efficient and scalable manner. Works such as [14–17] that use the MCFP

as a foundation for a routing algorithm design, assume that a central router with

all the required information exists. SDNs [9] are a relatively new type of network

architecture that centralises the control plane, allowing such routing solutions to

be deployed and tested on actual networks.

8

Literature Review Traffic Engineering using Software Defined Networks

2.2 Traffic Engineering using Software Defined

Networks

Akyildiz et al. [18] presents a survey outlining TE research using SDN, and grouped

such solutions into four different categories: Flow Management, Fault Tolerance,

Topology Update, and Traffic Analysis. Flow Management deals with the handling

of how new flows entering the network are routed to avoid network congestion. In

other words, Flow Management is the routing algorithm installed at the network

controller. Fault Tolerance is a branch of TE research dealing with the ability of

the network to recover from a network device or link failure in the shortest amount

of time, ideally without impacting the traffic already travelling over the network.

Carrier grade networks have a stringent requirement where network stability must

be regained after only 50ms. In the case of failures in an SDN network, the

communication overhead required between the network controller and the SDN

switches to restore stability might be too long. Having the controller calculate

alternative paths at the time failure occurs is known as the reactive approach.

An alternative to the reactive approach is the proactive approach. In a proactive

approach, the network controller installs an alternate path on the switches to avoid

the communication overhead in case of a network failure. The proactive approach

minimises the time required for a network to regain stability; however, this comes at

the cost of increasing the number of rules to be installed on the network switches.

Topology Update is an area of research focused on how to best implement rule

changes to ensure rule forwarding consistency at either the packet or flow level.

In this context, rule forwarding consistency means that a flow or packet will only

follow one pre-determined path. Last but not least, Traffic Analysis encompasses

all the work related to the gathering and collection of network statistics.

Two of the most influential works, that managed to successfully implement a MCFP

based TE solution using SDN, are the works done by Google and Microsoft with

their B4 [19] and SWAN [7] network architectures, respectively. Since both the

B4 and SWAN networks are used in a production environment, they each have

components of their solutions’ design that fall under each TE category defined

in [18]. This literature review will focus on the routing (Flow Management) aspect

of the two mentioned works as it is the class of TE that the work carried out in this

thesis falls under. Particular attention is given to these two contributions as they

work on the premise that all network hardware is SDN capable and the network

controller has the means to control the applications using the network, which is

identical to the setup assumed in this thesis. Both [7] and [19] agree that the

status quo of networking is inefficient due to the lack of flow management, where

9

Literature Review Traffic Engineering using Software Defined Networks

an application can start transmission at any time and at any data rate. This lack

of flow management results in the network to experience network load fluctuations

with intermittent peaks of very high network use. To avoid congestion with such

an oscillating network load, the network is designed to handle the highest network

load which leaves most of the network’s resources under utilised for the remainder

of the time where the network load is not at its peak. To mitigate the problem

described above, SDN is used to control the applications’ transmission schedule

and rate to maximise the network’s efficiency. Applications using the network

have inherently different requirements and demands. Due to the large number

of application categories that may use the network, it is impossible to design a

routing algorithm that handles the requirement of each application independently.

This is why [7] and [19] put applications with similar requirements into the same

group. Both [7] and [19] sort applications into three distinct groups with similar

classification methods. Using the group names given in [7], applications are divided

into three groups, listed below in order of decreasing priority:

Interactive Applications directly related with a user’s request that are highly

sensitive to delay and packet loss.

Elastic Applications that are not as critical as Interactive traffic; however, they

still have a time limit by which they need to complete their transmission.

Background Applications that have no set or very long deadlines, usually related

to maintenance or provisioning services. This application category usually

has the largest bandwidth requirements, but, applications in this category

are able to handle pauses in transmission and adapt their transmission rate.

Both [7] and [19] use a routing algorithm based on the max-min fair allocation,

albeit with some differences in their approach on how to solve such a problem. A

max-min fair solution is defined as the solution that maximises utilisation in a way

that no flow can be allocated additional resources without penalising the fair share

of applications [19].

SWAN [7] routes interactive traffic using standard routing algorithms, such as

OSPF, without interference from the network controller due to the application’s

sensitivity to delay. The two remaining traffic groups are routed using a routing

algorithm based on the MCFP with the objective of maximising throughput while

preferring shorter paths. The MCFP is solved using LP separately for each appli-

cation priority class, routing high priority applications first, followed by the next

lower priority class of applications. In this manner, high priority applications have

a higher probability of being routed over the best paths. Further details on the

10

Literature Review Traffic Engineering using Software Defined Networks

implementation and how max-min fairness is achieved can be found in [7]. The

routing solution generated from the MCFP, does not take into account the num-

ber of rules a switch is capable of handling. This constraint has been omitted as

it converts the problem to an Integer Linear Programming (ILP) one, drastically

increasing the problem’s complexity. A heuristic algorithm is used to modify the

solution generated by LP such that the routing solution is able to be deployed on

the network without exceeding any of the switches’ routing table capacity.

Similarly, Jain et al. [19] replaces the LP based optimal solution routing algorithm

with a custom designed, greedy based algorithm, as finding the solution using an

LP solver is not fast enough and faces scalability problems. Before explaining how

the greedy routing algorithm works, the necessary terminology defined in [19] is

given first. A flow group, is the grouping of applications that have the same source,

destination and Quality of Service (QoS) requirements. A tunnel represents a path

as a sequence of network sites. Finally, a tunnel group represents the amount of

traffic to transmit on each tunnel from a given flow group. The designed greedy

algorithm works as follows. First, allocate the fair share of data rate to all flow

groups on their preferred tunnel. A flow’s fair share is an arbitrary scale developed

in [19] and is a function of the flow’s priority. The flow group’s preferred tunnel is

taken to be the shortest path in terms of aggregate latency. Following this data rate

allocation process, any tunnels that use links that are at their maximum capacity

are frozen, i.e. cannot be used for further data allocation. This process is repeated

until either all flow groups are satisfied or no more viable tunnels exist for the

given flow groups. Compared to the LP optimal solution, the described algorithm

allocates at least 99% of the bandwidth compared to the optimal solution, achieves

similar fairness and generates a routing solution 25 times faster than LP.

Multipath routing is an essential component to use all the available network re-

sources efficiently [2, 3], which is why both routing solutions given in [7, 19] make

use of such technology. The greedy algorithm developed in [19], generates split

ratios that may not be achievable in practice due to the underlying SDN switch

hardware capabilities. Adding a constraint to the problem formulation specifying

the split ratios supported by the underlying switches would be equivalent of solving

an ILP problem. To resolve this, a second algorithm referred to as Tunnel Group

Quantisation is developed that modifies these ratios in multiples of 0.5 such that

they can be implemented on actual SDN hardware. Details of said algorithm can

be found in [19]. The need for the Tunnel Group Quantisation algorithm may have

been avoided if the authors added the capability to split flows at any given ratio

to their already custom designed switches. The routing solution generated in [19]

still falls under the category of a Per-Flow multipath solution because the routing

11

Literature Review Heuristic algorithms

algorithm works at the flow group level. Flows from a flow group are divided on

different paths based on the result of the Tunnel Group Quantisation algorithm.

Combining SDN and multipath technology, the B4 network is able to average 70%

link utilisation over long time periods, equivalent to more than double the network

efficiency of a standard distributed network. On a similar note, SWAN is able to

carry 60% more data than an equivalent network using current distributed network

design principles.

The works in [7, 19] serve to show that under certain conditions, a well designed

SDN network is able to improve the efficiency of a network by a large margin when

compared to the distributed architecture. For further information on TE research

using the SDN architecture, including a brief historical background of TE that

predates SDN, the reader is referred to the full survey by Akyildiz et al. [18].

2.3 Heuristic algorithms

Heuristic algorithms are a class of algorithms developed to solve problems for which

either no method that finds the optimal solution exists, or the time taken to find

such a solution is too long for the algorithm to be practical. Both routing solutions

used by SWAN [7] and B4 [19] networks resorted to some sort of heuristic algorithms

to either overcome LP imposed limitations or generate an approximate solution in

a reasonable time frame. Several well known heuristic algorithms such as the

Ant Colony Optimisation (ACO) [20], Alienated Ant Algorithm (AAA) [21], and

EA [22] have been used in literature to solve TE related problems. ACO algorithms

are a class of optimisers primarily designed to find the shortest paths within a

graph and take on inspiration from the behaviour of ants [20]. Contrary to the

ants’ behaviour in the ACO algorithm, ants under the AAA follow the path with

the lowest pheromone trail. Also nature inspired, EAs are a class of optimisers

that excel at solving multi-objective problems by mimicking nature’s evolution

process. In addition to solving TE problems, EAs have been successfully used to

solve network design [23] and network migration [24] problems. A summary of

works using heuristic, nature inspired algorithms to solve MCFP based TE related

problems follows.

Masri et al. [14] tries to solve the MCFP with the additional constraint of flows

having to use a single path, and multiple sources are able to supply the same

information. Finding a solution to such a problem is NP-hard, which led to the

authors’ use of the ACO algorithm. Due to their setup, the simulated ants start

at the destination node and move towards one of the multiple viable source nodes.

12

Literature Review Heuristic algorithms

The ACO is set to minimise both the time required to satisfy all the requests and

the network cost. The performance of the developed ACO routing algorithm is

compared with the lower bound for the first objective (minimise request completion

time), where the solutions found by the ACO trail very closely to the optimum value

when the number of messages to be transmitted are relatively low. As the number

of messages starts to increase, the gap between the ACO provided solutions and

the lower bound increase. The lack of network simulation results makes it difficult

to gauge the performance improvement of such a system over standard routing

systems, such as OSPF. Stefano et al. [21] chose the AAA as the basis on which

to develop the Adaptive Alienated Ant Algorithm for SDN (A4SDN) architecture.

The A4SDN architecture is designed to improve the network performance measured

in terms of throughput, delay and packet loss. The AAA is used instead of the

ACO algorithm as the ant’s behaviour in the former algorithm allows ants to explore

unused paths. This leads to the generation of solutions with better load balancing

performance as the ants do not converge over a single path. Additionally, AAA has

a faster rate of convergence than the ACO algorithm. Compared to the extended

Dijkstra algorithm, which calculates the link weights dynamically based on the

link’s usage, the A4SDN architecture managed to decrease packet loss by 11% and

increase the total network throughput by 16%.

Similar to the A4SDN [21] architecture, Yu et al. [25] used the information available

at the SDN network controller to shift congested traffic to lightly loaded links. The

main objective of the work by Yu et al. is to improve the quality of video streams

transmitted over a computer network by shifting them over to less congested links.

All video streams entering the network are routed over the shortest path using

the Bellman-Ford algorithm. At specific time intervals, the SDN controller queries

the switches to gather link usage statistics to determine whether there are links

that are currently, or soon to be, congested. Upon sensing link congestion, an

EA based routing algorithm is used to find alternative paths for videos that are

currently transmitted over congested link(s). The EA is designed to minimise

the path cost, where the path cost depends on both the path’s aggregate delay

and remaining capacity. Each chromosome in the EA represents a path as a list

of sequential network switches. The first and last gene in a chromosome remain

unchanged during the course of the evolution as those elements represent the source

and destination node, respectively. The length of each chromosome, and each gene’s

value are generated at random. This generation method leads to the creation of a

number of unfeasible solutions as a path may contain duplicate switches. It is to be

noted that to avoid the generation of unfeasible solutions, the authors could have

used path discovery algorithms to find paths with the randomly determined length.

13

Literature Review Single vs Multi Objective problems

Having said this, the availability of only feasible paths in the initial population may

limit the effectiveness of the searching capability of the EA. Therefore, making the

proposed change needs to be thoroughly tested to ensure that it does not have a

negative impact on the EA’s performance. Using a relatively simple EA to move

video streams to less congested links reduced the packet loss rate by approximately

20% and improved the Peak Signal-to-Noise Ratio (PSNR) by nearly 100%, when

compared to the Bellman-Ford algorithm.

The work by El-Alfy et al. in [15–17] developed an EA routing algorithm aimed

at minimising the routing and load balancing costs, designed to work on Multi-

Protocol Label Switching (MPLS)/Generalised MPLS (GMPLS) networks using

identical constraints as those defined by the MCFP. The routing cost objective is

designed to favour transmission over paths with low cost, while the load balancing

objective aims to minimise the use of heavily used links. El-Alfy et al. opted for

a three dimensional chromosome with each gene being a two dimensional matrix.

Each gene is a representation of the traffic generated on each link by a given

flow. To contain the problem, paths longer than four hops are excluded from

the search space and a flow is only allowed transmission over a maximum of two

paths. Two different LP based methods are used to generate the initial population,

where both methods vary the link capacity and cost, up to a specified minimum

threshold to get multiple solutions from running the same LP formulation. The first

method separates the two objectives into two separate LP formulations and fills

half of the population with solutions gathered when optimising one objective and

the remaining half when optimising for the other objective. The second method

combines the two objectives into a single objective by using the weighted sum

method. The fact that the initial population is generated with the help of LP, and

the lack of results presented where the EA is initialised from a random population,

puts into question the ability of the developed EA to search the entire search space

and approximate the optimal Pareto Front. Additionally, as admitted to by the

authors, the three dimensional chromosome design is not very efficient in terms of

space required to represent a routing solution.

2.4 Single vs Multi Objective problems

This section is aimed at clarifying the difference between a true multi-objective

solver and the methods that exist which convert a multi-objective problem into

a single-objective problem to be able to use single-objective solvers such as LP.

A multi-objective problem is a problem that has multiple objectives to be opti-

mised for, with usually conflicting interest. Using car purchasing as an analogy,

14

Literature Review Single vs Multi Objective problems

an ideal car would be inexpensive, and comfortable. However, these objectives are

usually at odds with each other where improving one objective comes at the cost

of compromising some other objective. Using the car analogy mentioned earlier, a

cheap car is not comfortable, while a comfortable car is not cheap. When dealing

with a multi-objective problem, no single optimal solution exists that maximises

all of the given objectives. Instead, a multi-objective problem has multiple valid

optimal solutions where each solution performs better in one objective, but worse

in another. The collection of these optimal solutions is referred to as the Pareto

Front [22].

Having said this, a single solution to a given problem is required most of the time

irrespective of the number of objectives. The difference between a true multi-

objective solver or a converted one boils down to the time where the user inflicts

his opinion on the importance of the objectives. As will be explained next, solving a

multi-objective problem using a single-objective solver requires the user to prioritise

the objectives before the solver even starts to try and find a solution. Two methods

commonly used to solve a multi-objective problem using single objective tools such

as LP are the following. The first method is the weighted sum method, where

the objectives are combined together with a weight assigned to each objective [22].

The weight to assign each objective needs to be set before running the optimisation

algorithm. Choosing the weights to assign to each objective is subjective and non

trivial [22], mainly due to the fact that this weight preference is given without

any knowledge of the consequences of such values. As a single-objective solver is

used, only a single solution will be given. One may argue that in order to have

an approximation of the Pareto Front, one may achieve this by modifying the

weights and re-running the algorithm. However, such method does not guarantee

coverage of the entire search space and may leave gaps in the generated Pareto

Front [26]. Another solution is to solve the objectives in order of priority referred

to as the Lexicographic Approach [27]. The disadvantage of such a solution is that

only one solution is generated, with the objective priority given before running the

optimiser. Having said this, the above methods are useful when the user knows a

priori the objectives’ priority or objective weights. Pulling this off requires a very

deep understanding of the problem being solved.

It is important to clarify that the decision of which solution to use is a totally

separate and independent problem as to the one that deals with the search and

approximation of the Pareto Front [27]. The job of a multi-objective solver is to ap-

proximate the Pareto Front without any preferences given to any of the objectives.

It is after this step that the user is then faced with a number of viable solutions

of different compromise levels where a decision of which solution to pick is to be

15

Literature Review Single vs Multi Objective problems

taken. The advantage here compared to the single objective alternative is that an

approximation of the optimal Pareto Front is available to help you make a more in-

formed decision. Multi-Objective Evolutionary Algorithms (MOEAs) are the ideal

algorithms to generate an approximation of the Pareto Front in a single run due

to their population based approach [28]. Konak et al. [29] states that 90% of the

work that required a solution to a multi-objective optimisation problem chose a

true multi-objective solver. From those 90%, a staggering 70% of them opted to

use an EAs as their algorithm of choice. A major advantage offered by a MOEA is

that the algorithm designer does not need to assign any priorities or weights to the

objectives [29]. Additionally, compared to EAs, stochastic optimisation techniques

such as the ACO may get stuck at a good approximation with no guarantee of

finding the optimal trade off [27].

2.4.1 Multi-Objective Evolutionary Algorithms

When choosing to develop an optimisation algorithm based on MOEA, one is faced

with a plethora of different MOEA frameworks to choose from [29]. The caveat be-

ing that most frameworks have been designed and tweaked to solve one particular

problem or one particular class of problems. However, a few MOEA frameworks

stand out from the rest as they have been successfully used in literature to solve

a number of different problems in different research areas thanks to their versa-

tility and adaptability. One such MOEA framework, that has been cited more

than 15 000 times, is the Nondominated Sorting Genetic Algorithm (NSGA) II [30]

developed by Kalyanmoy Deb in 2002. NSGA-II is an MOEA framework that

evolved from NSGA-I [31]. Compared to NSGA-I, the NSGA-II algorithm reduces

the computational complexity required to compute the non-dominated sorting, uses

elitism, and removes the need to set a sharing parameter used to ensure a diverse

population. Elitist EAs keep the best found solutions in between generations re-

sulting in an EA with better performance and a faster convergence rate than their

non-elitist counterparts. Recently, a newer version, the NSGA-III [32, 33] has been

published. The NSGA-III algorithm is designed to solve many-objectives problems

and requires an estimation of the Pareto Front, which is a problem within itself.

Many-objectives problems usually refer to problems with three or more objectives,

while multi-objective problems usually refer to problems with two or three objec-

tives [26]. Another well known MOEA framework is the SPEA2 [34] algorithm.

The performance of both the SPEA2 and NSGA-II algorithm is very similar; how-

ever, the SPEA2 requires an additional parameter, the archive size, when compared

to the NSGA-II algorithm [34].

16

Chapter 3

Globally Optimal Multipath

Routing

During the literature review carried out and summarised in Chapter 2, the need for

a multi-objective, multipath capable, globally optimal routing algorithm surfaced.

The ability for a globally optimal, multipath capable routing algorithm to increase

network efficiency has been made abundantly clear in previous chapters. What may

not be so clearly defined is the need and advantages offered by a multi-objective

routing algorithm. The main benefit of having a multi-objective algorithm is the

fact that no weights or priorities need to be given to the objectives a priori, allowing

the algorithm to explore the Pareto Front unhindered in all directions. EAs are a

class of optimisers that excel in such a scenario mainly thanks to their population

approach that allows them to output a number of different viable solutions from

a single run of the algorithm. Having a true multi-objective algorithm gives the

network operator the full picture of the objective values and the compromise be-

tween them before taking a decision on which solution to pick. For example, it may

be too expensive to reach the maximum network throughput, pushing a network

operator to decide against such a solution. Due to the time constraints imposed

on a routing algorithm to generate a valid routing solution, it has to be operated

without any human intervention. Therefore, an algorithm has to be developed that

selects a solution from all those generated by an EA. Developing such an algorithm

depends heavily on the network’s use case and is beyond the scope of this work.

The alternative of using a multi-objective solver is to combine multiple objectives

into a single objective to use a single objective solver such as LP. Using such a

method requires the need for preference or priority to be given to the objectives

without having the knowledge of the shape of the Pareto Front. In addition, the

use of an EA allows the routing algorithm designer to use both integer variables

17

GOMR Notation

and non-linear expressions without affecting the algorithm’s running time, as is the

case with an LP solver.

One of the fundamental objectives for a routing algorithm is to maximise the

network load carried over the network. A second, often conflicting, objective being

to minimise the delay experienced by flows due to its direct relationship with QoS.

Therefore, the objectives of the designed routing algorithms are set to maximise

the network flow while preferring paths with low delay values. To contain the

problem, all of the routing algorithms mentioned here assume a static flow set.

The assumption of a static flow set is one of the main limitations of this research;

however, methods of how to update the developed EAs to handle a dynamic flow

set are given in Section 6.1. The routing algorithms presented in this work are

designed with the assumption that they are going to be used solely by TCP flows.

Two reasons are behind this decision. First, TCP is one of most used transport

layer protocol along with User Datagram Protocol (UDP). Second, solutions that

work with the TCP protocol are guaranteed to work with UDP; however, the

opposite is not true.

3.1 Notation

As in Section 2.1, let G = (V,E) be a loop-free directed graph representing the

network topology, where V and E are the set of nodes and links respectively. Each

link is represented by e = (u, v) ∈ E where u, v ∈ V are the link’s source and

destination node, respectively. Let ē = (v, u) ∈ E represent the reverse of link

e = (u, v) ∈ E. The capacity and cost of each link e ∈ E is represented by λe

and γe, respectively. The link cost value depends on what one seeks to minimise,

and can take a myriad of other values, such as the actual financial cost to use a

given link. In this work, the cost of a link is set equal to the link’s delay value.

Such a link cost definition is used as we seek the minimisation of a flow’s delay.

Let F = {f1, f2, . . . , fn} be the set of n flows, with si ∈ V and di ∈ V representing

the source and destination nodes for flow fi ∈ F , respectively. Let δi represent

the data rate requested by flow fi ∈ F . A path is defined as the set of links that

connect a sequence of distinct nodes from the flow’s source to the destination. Let

k represent the maximum number of paths a flow is allowed to take, with the actual

number of paths flow fi is allowed to take equal to ki, where ki ≤ k. We define

Pi = {pi,1, pi,2, . . . , pi,ki} as the set of paths related to flow fi and gi,j ∈ R≥0 as the

data rate flow fi transmits on path pi,j. The aggregate delay value of path pi,j,

18

GOMR Path Constrained Maximum Flow Minimum Cost

denoted by φ(pi,j), is calculated using

φ(pi,j) =
∑

e∈pi,j

γe. (3.1)

Let pi,min represent the path with the lowest delay from the set Pi, given by

pi,min = argminpi,j∈Pi
φ(pi,j). (3.2)

Finally, let α(gi,j) represent the TCP acknowledgement flow generated when flow

fi transmits at a data rate of gi,j on path pi,j.

3.2 Path Constrained Maximum Flow Minimum

Cost

The MCFP is only concerned with minimising the network cost because of the flow

conservation constraint that states that all flows must be allocated the data rate

they requested in full. This behaviour is not desired because if there is not enough

capacity in the network to fully satisfy all the flows, no solution to the MCFP exists.

Using LP, one cannot optimise for the two objectives highlighted earlier; network

flow maximisation and flow delay minimisation, at the same time. To overcome

this limitation, the objectives are separated and solved in succession. The pair of

problems that aim to maximise the network flow and minimise the cost are termed

as the Multicommodity Maximum-Flow Minimum-Cost (MMFMC) problem [35].

For more information on the MMFMC problem, the reader is referred to [35]. In

this work, we make use of the PC-MFMC problem which sets a limit on the paths a

flow is allowed to travel on. The reason behind this limitation is to exercise control

on the set of paths a flow may use. Having such control is important as this allows

us to manage the algorithm’s complexity by varying the number of paths each

flow is allowed to use accordingly. If the algorithm’s complexity is of no concern,

the flows may be given access to all the paths that exist between a source and

destination.

As will be explained in more detail in the next section, the EA is designed in such a

way that a flow is allowed to travel on a given set of paths. Therefore, the solution

to the PC-MFMC using LP serves to compare the quality of the solutions generated

by the EAs when both problems have the same setup.

19

GOMR Path Constrained Maximum Flow Minimum Cost

The Maximum Flow problem is solved first and is given by

max
gi,j

n∑

i=1

ki∑

j=1

gi,j, (3.3)

such that

gi,j ≥ 0 ∀ i, j, (3.4)

ki∑

j=1

gi,j ≤ δi ∀ i, (3.5)

∑

i,j:e∈pi,j

gi,j +
∑

i,j:ē∈pi,j

α(gi,j) ≤ λe ∀ e. (3.6)

Constraint (3.4) ensures that no negative data rate is assigned. Constraint (3.5)

makes sure that no flow is allocated more data rate than what it requested. Con-

straint (3.6) guarantees that no link is used beyond its capacity, including the

acknowledgement flows generated by TCP. Let T represent the total network flow

allocated to the network by the Maximum Flow solution in (3.3), given by

T =
n∑

i=1

ki∑

j=1

gi,j. (3.7)

The minimum cost solution is then formulated as

min
gi,j

n∑

i=1

ki∑

j=1

gi,jφ(pi,j), (3.8)

such that constraints (3.4), (3.5), (3.6), and

n∑

i=1

ki∑

j=1

gi,j = T (3.9)

are met. Constraint (3.9) guarantees that the Minimum Cost solution allocates the

same total network flow to that found by the Maximum Flow solution. In [35], the

Minimum Cost solution is set to allocate the same total network flow to that found

by the Maximum Flow solution by restricting flows to transmit at the data rate

allocated by the Maximum Flow solution. In other words, the Minimum Cost solu-

tion by Szymanski [35] does not have constraint (3.9) and replaces constraint (3.5)

with
ki∑

j=1

gi,j = Di ∀ i, (3.10)

20

GOMR Evolutionary Based Routing Algorithm Framework

where Di represents the data rate allocated to flow fi by the Maximum Flow solu-

tion in (3.3). Compared to the formulations used in [35], the ones presented here

do not restrict the Minimum Cost solution to use the flow assignment used by the

Maximum Flow solution. This gives the Minimum Cost solution the freedom to

adjust a flow’s allocated data rate in search for a lower cost solution, as long as the

same data rate found by the Maximum Flow solution is kept. Additionally, the

link capacity constraint formulations are updated to take into account the TCP

acknowledgement flows generated.

3.3 Evolutionary Based Routing Algorithm Frame-

work

The EA based routing algorithm presented in this work evolved with the addition

of new protocols and scenarios where this algorithm is being used. The MOEA-I

algorithm described in Section 3.4 is the final iteration of the EA where the use

of standard TCP flows is assumed. Subsequent to the design and publication of

the MOEA-I algorithm, the MPTCP protocol is modified to enable TCP flows

to benefit from a Per-Packet multipath routing solution. The modified MPTCP

protocol affected which variables the flow’s delay value is calculated on, requiring

changes to the delay related objectives. Therefore, a second version coined MOEA-

II is designed for use with the MPTCP protocol explained in Section 4.1.2. The

assumption of using MPTCP allowed the MOEA-II algorithm to meet its require-

ments with just two objectives, compared to the three objectives required by the

MOEA-I algorithm.

Both algorithms (MOEA-I and MOEA-II) share the same EA framework described

in this section and differ only in their objectives and mutation operator implemen-

tations. The objectives and mutation operators used by the MOEA-I and MOEA-II

algorithms are given in Sections 3.4 and 3.5, respectively. Both routing algorithms

are presented in this work as they cater for two different scenarios and instil an

appreciation on the work involved when designing an EA based routing algorithm.

To avoid any bias between objectives, all objectives are normalised to fit within

the range [0, 1].

Let P , χ, ω and ψ represent the population size, number of generations, crossover

probability and mutation probability, respectively. The pseudocode for a basic EA

using NSGA-II is given in Algorithm 1 to better understand how all the operators

described in this section are used to make an EA. The NSGA-II algorithm is used

to select solutions that make up the current population using the solutions found in

21

GOMR Evolutionary Based Routing Algorithm Framework

Algorithm 1 Pseudocode for an Evolutionary Algorithm

P = Population Size
χ = Number of Generations
ω = Crossover Probability
ψ = Mutation Probability

population = GenerateInitialPopulation(P)
for ∈ 1, 2, . . . , χ do

offspring = TournamentSelection(population, P)
for ci ∈ offspring, i = 1, 3, 5, . . . ,P do

z = random(0, 1)
if z < ω then

Crossover(ci, ci+1)
end if

end for
for ci ∈ offspring do

z = random(0, 1)
if z < ψ then

Mutate(ci)
end if

end for
CalculatePopulationFitness(offspring)
population = NSGA-II([population + offspring], P)

end for

22

GOMR Evolutionary Based Routing Algorithm Framework

the generated offspring and the previous population. By taking into consideration

both the generated offspring and the previous population, the NSGA-II algorithm is

able to preserve the best solutions found in the previous generation, which is what

makes it an elitist EA. The NSGA-II algorithm starts by sorting the solutions

into a number of non-dominated fronts. The first non-dominated front is filled by

solutions that are not dominated by any solution from the set of solutions found.

The second non-dominated front is filled by solutions that are only dominated by

the solutions in the first non-dominated front. This procedure is carried out until

all solutions are assigned to a non-dominated front. Once all solutions are assigned

to a non-dominated front, the new population is generated by fitting as much non-

dominated fronts as possible without exceeding P . In instances where adding the

solutions that make up the non-dominated front would exceed P , the solutions that

are in the least crowded region of that front are chosen. This selection method is

used to preserve the diversity in the chosen population.

The TournamentSelection function is used to select a pair of chromosomes at ran-

dom to perform crossover. The TournamentSelection as used in Algorithm 1 takes

a list of individuals and the number of individuals to select as parameters and

returns the list of chosen individuals. The TournamentSelection function works

by randomly choosing two chromosomes from the population and adds the best

one to the list of chosen individuals. This process is repeated until the number of

individuals is met. The choice of which chromosome to retain is made based on

dominance. The chromosome that is not dominated by the other is kept. In the

instance where the two chromosomes are on the same non-dominated front, the

chromosome that is in a less crowded area is chosen. For further reading on the

NSGA-II function, the TournamentSelection and MOEAs in general, the reader is

referred to [22].

3.3.1 Chromosome Representation

The design of the chromosome is the foundation to any EA as it represents the

way a solution is formulated. The chromosome C is defined as the sequence C =

(G1, G2, . . . , Gn) where Gi = (gi,1, gi,2, . . . , gi,ki) is the sequence of genes related

to flow fi. Each element gi,j ∈ R≥0 represents the data rate that flow fi is to

transmit on path pi,j. The chromosome has been designed to be able to accurately

represent a routing solution while incorporating the flow conservation constraint in

such design, and scale independently of the underlying network topology. The flow

conservation constraint states that all flow transmitted from a source node must

be received in full to the destination nodes, with no loss in the relay nodes. As

each gene in the chromosome represents the data rate to transmit on a path, as

23

GOMR Evolutionary Based Routing Algorithm Framework

0

1 9

8

3

2 6

7

4 5

30/1

30/1

5Mbps/1ms 30/1

30/5

30/1

10/1

30/5

30/5

30/1

30/1

Flow 1 Path 1: 5 Mbps

Flow 1 Path 2: 5 Mbps

Flow 2 Path 1: 5 Mbps

Flow 2 Path 2: 15 Mbps

Figure 3.1: Butterfly network used to explain the chromosome representation of a network.
Flows 1 and 2 are transmitting at a data rate of 10Mbps and 20Mbps respectively. Each flow is
allowed to transmit on two paths, as shown by the green and yellow path markers [11].

long as the path starts from the source and ends at the destination node, then the

flow conservation constraint will always be satisfied. Compared to the chromosome

design proposed by El-Alfy et al. in [15–17], the size of the chromosome developed in

this work is independent of the network size. The size of the designed chromosome

is dependent only on the number of flows to route and the set paths each flow is

able to use.

Using the set up shown in Figure 3.1 as an example, where Flow 1 is transmitting at

10Mbps, Flow 2 is transmitting at 20Mbps and both have k = 2, the chromosome

representation is equal to C = ((5, 5), (5, 15)).

3.3.2 Initial Population Generation

The initial population is generated using the following procedure. For each flow

fi, the number of paths the flow is allowed to use, ν, is randomly selected using a

uniform integer random number from the range ν ∈ {0, 1, 2, . . . , ki}. Subsequently,

ν paths are chosen at random from the set Pi. The fraction of data rate the flow is

to transmit compared to its requested data rate δi is randomly determined using

δ̂i = δi × z, (3.11)

24

GOMR Evolutionary Based Routing Algorithm Framework

Ca Cb

(Ga
1, G

a
2, G3a) (Gb

1, G
b
2, G

b
3)

((2, 10), (1, 5), (2, 3)) ((1, 3), (7, 1), (3, 2))

?
((2, 10), (7, 1), (2, 3)) ((1, 3), (1, 5), (3, 2))

Figure 3.2: Crossover example where the genes related to Flow 2 are swapped to generate a
new routing solution.

where z ∈ U(0, 1). U(0, 1) represents a random source uniformly distributed be-

tween 0 and 1. For each of the chosen paths pi,j, the smallest link capacity along

that path is calculated by

ρ(pi,j) = min
e∈pi,j

λe, (3.12)

and the corresponding gene is set to gi,j = min(ρ(pi,j), δ̂i). Genes for paths that

were not in the chosen subset are set to zero. This population initialisation method

may create solutions that break the constraints defined by the MCFP. In such

instances, the chromosome is repaired using the methods described in Section 3.3.5.

3.3.3 Crossover

The crossover operator is used to generate new offspring (routing solutions) by

mating two chromosomes together, referred to as the parent chromosomes, to

generate two new offspring solutions. Two parent chromosomes, Ca and Cb, are

selected using dominance based tournament selection [22]. For every crossover

operation, a mixing ratio z ∈ U(0, 1) is chosen. Each gene in the sequence

(Ga
1, G

a
2, . . . , G

a
n) is swapped with its corresponding sequence (Gb

1, G
b
2, . . . , G

b
n) with

probability z ∈ U(0, 1). A random mixing ratio is used to allow the possibility of

an offspring to inherit most of the genes from a single parent. Figure 3.2 shows an

example of a crossover operation where the genes related to Flow 2 are swapped

to create two new routing solutions.

3.3.4 Mutation

While the crossover operator generates new routing solutions by combining chro-

mosomes together, it does not modify any of the flow’s data rate assignments as

this task is left to the mutation operator. The mutation operator works on a single

chromosome, modifying the gene sequences related to a fraction µ of flows, chosen

at random, within that chromosome. For every gene sequence Gi that is selected

for mutation, the mutation operation selects a subset P̃i ⊆ Pi of paths which flow

fi is allowed to use. Once P̃i is chosen, the paths are considered in random order,

transmitting as much data as possible until the flow’s requested data rate is met

25

GOMR Evolutionary Based Routing Algorithm Framework

or all paths are used. This data rate assignment does not exceed any link capac-

ity and takes into account all of the other flow data rate assignments. The two

MOEAs designed here employ different methods as to how the subset P̃i is chosen;

therefore, the explanation is given in their respective sections.

3.3.5 Constraint Handling

The chromosome’s design already ensures that a number of constraints are met.

Two additional constraints that are not implicitly satisfied remain and are:

The flow over-provision constraint Ensures that a flow is not allocated more

data rate than requested.

The link capacity constraint Ensures that no link is allocated more data rate

than its capacity.

Chromosomes are first checked for over-provisioned flows, followed by a check for

over-capacity links. The order is important because it is pointless to fix over-

capacity links when over-provisioned flows may still be present in a given solution.

After a crossover operation is performed, the two newly generated solutions are

checked against the link capacity constraint. The crossover operation does not

modify the flows’ data rate assignment; therefore, there is no need to validate

the flows’ over-provision constraint. The mutation operation does not require any

validations because the current network usage is taken into account when assigning

data rate on paths, and no flow is assigned more data rate than requested. Finally,

the method used to initialise the first population requires that each chromosome is

checked for both the flow over-provision and link capacity constraints.

Flow Over-Provision Constraint

Flow fi is said to be over provisioned when its allocated data rate exceeds that

requested, i.e.
ki∑

j=1

gi,j > δi. (3.13)

If excess flow is present, the excess removal algorithm described in Section 3.3.6 is

used to remove the excess in an unbiased way from the genes in Gi.

Link Over-Provision Constraint

For the network to perform in accordance to the data rates allocated by the routing

algorithm, no link must be allocated more data rate than its capacity as this will

26

GOMR MOEA-I

cause network congestion. A link e ∈ E is said to exceed capacity if

∑

i,j:e∈pi,j

gi,j +
∑

i,j:ē∈pi,j

α(gi,j) > λe ∀ e. (3.14)

For every link found to be over capacity, the excess removal algorithm described

in Section 3.3.6 is used to remove the excess in an unbiased way from the genes

in the set {gi,j : e ∈ pi,j}. Since the excess removal operation affects a whole

path, links other than the one that triggered the operation may be affected. This

means that the order in which links are considered will have an effect on the final

solution obtained. To reduce bias, links are considered and repaired in a random

order. For the same reason, the link usage values calculated by (3.14) have to be

recalculated after every excess removal operation. This process is terminated when

no over-capacity links remain.

3.3.6 Excess Removal Algorithm

The excess removal algorithm is used to remove a known excess amount from a set

of values while being as fair as possible in relation to the amount to remove from

each element in the given set. Let G = {g1, g2, . . . , gκ} represent the sequence of κ

genes, determined by the flow over-provision constraint or link capacity constraint,

from which we need to remove an excess value of τ . That is, we want to determine

an updated sequence of genes G′ = {g′1, g
′
2, . . . , g

′
κ} such that 0 ≤ g′i ≤ gi, i ∈

{1, 2, . . . , κ} and
∑κ

i=1 gi − g′i = τ . Let ξi represent the amount to remove from

gene gi, such that g′i = gi−ξi. We randomly determine each ξi with the constraints

imposed by G, τ , and previously determined ξj, j < i:

0 ≤ ξi ≤ gi (3.15)

τ −
i−1∑

j=1

ξj −
κ∑

j=i+1

gj ≤ ξi ≤ τ −
i−1∑

j=1

ξj (3.16)

Each ξi is chosen uniformly at random within a range satisfying both constraints.

To avoid introducing a bias in the evolutionary algorithm, the genes in G are

considered in a random order.

3.4 MOEA-I

3.4.1 Objectives

The fitness of a given routing solution is based on three objectives: the maximi-

sation of the total network flow, the maximisation of the proportion of flows with

27

GOMR MOEA-I

minimum delay and the minimisation of the total number of flow splits, represented

by O1, O2, and O3, respectively.

Total Network Flow Objective

One of the fundamental requirements of a globally optimal routing algorithm is to

maximise the total network data rate, as this has a direct impact on the network

efficiency and flow satisfaction rate. The total network flow objective is given by

O1 =
n∑

i=1

ki∑

j=1

gi,j. (3.17)

We normalise this objective by dividing it with the total requested data rate across

all flows,
∑n

i=1 δi.

Proportion of Flows with Minimum Delay

Another key requirement of a routing algorithm is to favour transmission on paths

with lower delay values. The PC-MFMC solves this problem by minimising the

total network cost, where the total network cost is the summation of the costs of all

links. The cost of a link is equal to the multiplication of the data rate transmitted

on that link with its delay. This objective works well when used in the PC-MFMC

problem, because the Minimum Cost problem is solved after the Maximum Flow.

This is important because the solution to the Maximum Flow problem instructs

the Minimum Cost problem on the total network flow that must be routed when

generating a routing solution. Without such constraint on the total network flow

transmission, the Minimum Cost solution would not transmit anything, as the low-

est possible cost value is zero. Because of this undesirable property, the Minimum

Cost objective as defined by the PC-MFMC problem is unsuited for optimisers

where the network flow is not fixed. If such an objective were to be used in an EA,

it would steer the EA to favour solutions with no transmission, in direct conflict

with the Total Network Flow objective. We overcome this problem with an objec-

tive that is independent of the allocated data rate for each flow, and instead reflects

the proportion of the data that is transmitted on the path with lowest delay.

The proportion of flows with minimum delay objective is given by

O2 =
n∑

i=1

Di, (3.18)

28

GOMR MOEA-I

where

Di =







0 ηi = 0,

1
ηi

∑ki
j=1

gi,j
φ(pi,j)−φ(pi,min)+1

otherwise,
(3.19)

ηi =

ki∑

j=1

gi,j. (3.20)

Observe that ηi is the allocated data rate for flow fi. For flow fi, a value Di = 1

signifies that all of the allocated data rate is transmitted over the path with the

lowest delay value, whereas a value of Di = 0 represents no transmission. This

objective is normalised by dividing it with the number of flows n.

Flow Splits

A final requirement of our routing algorithm is to minimise the number of flow

splits. A flow transmitted on a single path is said to have no flow splits, a flow

transmitted on two paths is said to have one split etc. This is important for two rea-

sons. First, flow splits have a significant effect on the performance of TCP flows [10].

Second, fewer paths require less entries in the routers’ network tables, which are

a limited and expensive resource. In the first version of this algorithm [10], dis-

couraging the use of multipath was achieved by minimising the total number of

paths used. The path usage minimisation objective has been replaced as it does

not quantify the number of flows that are split, and similar to the minimise cost

objective mentioned previously, its lowest value of zero represents no transmission.

Taking all of this into account, the new objective aims to reduce the number of

flow splits and is given by

O3 =
n∑

i=1

ω(ψi − 1) +

∑n

i=1 (ψi − ω(ψi))

1 +
∑n

i=1(ki − 1)
, (3.21)

where

ψi =

ki∑

j=1

ω(gi,j), (3.22)

ω(x) =







1 x > 0,

0 otherwise
. (3.23)

Observe that ψi represents the number of paths used by flow fi. The first term

of (3.21) is an integer value representing the number of flows that are being trans-

mitted on two or more paths. This term is a direct indication of how many flows

29

GOMR MOEA-I

are being split, and serves to steer the MOEA towards minimising the number of

flows that are split. The second term of (3.21) is the normalised total number of

flow splits, with a value in the range [0, 1). This term allows the MOEA to distin-

guish between solutions that have an identical number of flows that are split, by

taking into account the total number of splits for a given solution. This gives the

MOEA the ability to favour solutions with lower total flow splits. We normalise

this objective by dividing it by 1 + n.

3.4.2 Mutation

MOEA-I employs three different path selection mechanisms. The method chosen

to mutate each gene sequence Gi selected for mutation is selected at random, with

equal probability, from the three methods explained next.

Minimise Number of Paths

This method attempts to reduce the number of paths used by a flow, by randomly

choosing a number of paths ν ∈ {0, 1, . . . , ki}, with probability Pr{ν} given by

Pr{ν} =
ki + 1− ν
∑ki+1

i=1 i
, (3.24)

that diminishes linearly with increasing ν. These ν paths are chosen uniformly at

random from Pi to form P̃i.

Minimise Delay

This method attempts to minimise the flow’s delay by favouring transmissions on

paths with lower aggregate delay value. For a given flow fi, the probability of

including path pi,j in P̃i is given by

Pr{pi,j} = 0.95
φ(pi,min)

φ(pi,j)
. (3.25)

In this manner, the path with the smallest cost has a 95% chance of being selected

and included in P̃i. Paths with higher cost have a diminishing probability of being

selected, with a linear relationship to the ratio of costs. The probability of choosing

the path with the lowest delay is not set at 100% so as to allow this mutation

operator to generate a solution where the path with the lowest aggregate delay

value is not used.

30

GOMR MOEA-II

Maximise Flow

The objective of this method is to transmit as much of the flow’s requested data

rate as possible over all available paths; thus, P̃i = Pi.

3.5 MOEA-II

3.5.1 Objectives

The fitness of a given routing solution is based on two objectives: the maximisation

of the total network flow, and the minimisation of the application’s estimated mean

end-to-end delay, represented by O1, and (O4), respectively.

Total Network Flow Objective

The total network flow objective used by MOEA-II is identical to the one used by

MOEA-I and is given in (3.17).

Estimated Mean End-To-End Delay

When using MPTCP, the mean delay experienced by the application is affected

by both the path delay values as well as the data rate transmitted on each path.

An application’s end-to-end delay is defined as the time taken from when the

transmitting application sends a byte of data, to when the receiving application

receives that same byte of data. Modelling the interaction between the packets to

calculate the mean end-to-end delay is not trivial. Due to the complexity involved

in modelling the actual mean end-to-end delay value, an approximation of the

application’s end-to-end delay measurement is used. In order to determine what is

a good approximation of such a metric, a simple custom developed network model

is used. The model consists of a simple network with two nodes and a variable

number of links connecting the nodes together. To analyse what had the biggest

influence on an application’s mean end-to-end delay, the number of links, link delay

values and fraction of data rate to transmit on each link was varied, taking note

of the application’s mean end-to-end each time a variable was modified. Using

such a simple model it was discovered that the average end-to-end delay tends to

be very close to the largest path delay value, from the set of paths used. The

development of an accurate model of the mean end-to-end delay is an area worth

investing time into as it gives the EA a more accurate model of reality. Having an

accurate representation of the objectives gives the EA the ability to differentiate

between solutions with higher accuracy, which leads to the better generation of

solutions by the EA. The aim of this objective is to minimise the transmission rate

31

GOMR The role of SDN in the deployment of a globally optimised solution

on paths with large delay values from the set of paths associated with each flow,

ergo reducing the application’s delay and is given by

O4 =
n∑

i=1

Fi, (3.26)

where

Fi =

∑ki
j=1 gi,j

∑n

i=1

∑ki
j=1 gi,j

×max(φ(P̂i)). (3.27)

Fi represents the metric value for flow fi and the set P̂i ⊆ Pi includes all the paths

pi,j, where gi,j > 0. Fi is normalised with respect to the total flow rate that is

allocated for that given solution such that the final metric value is independent

of the solution’s total network flow value. Note that this objective is non-linear

because the flow’s delay value is conditionally based on which paths the flow is

currently using; thus, it cannot be used with an LP solver. This objective is

normalised by dividing it with the cost of the path with the largest delay from the

set of all paths.

3.5.2 Mutation

MOEA-II employs two methods of selecting the path set P̃i on which mutation will

be performed, and are described next.

Minimise the Maximum Path Delay

This method attempts to minimise the probability of including paths with high

delay values from the set of paths a flow is allowed to transmit on. For a given flow

fi, all paths with
φ(pi,min)

φ(pi,j)
≥ z are included in P̃i, where z ∈ U(0, 1). Paths with

higher delay have a diminishing probability of being selected as this has a direct

impact on the flow’s end-to-end delay performance.

Maximise Flow

The objective of this method is to transmit as much of the flow’s requested data

rate as possible over all available paths; thus, P̃i = Pi.

3.6 The role of SDN in the deployment of a glob-

ally optimised solution

Both of the LP and EA algorithms described here require up-to-date network in-

formation to be capable of generating a valid routing solution. The information

32

GOMR Path Selection Algorithms

required includes the network topology, link properties, and all flows currently us-

ing the network. Only when all this information is available and accurate can the

developed routing algorithms have all the necessary information to generate a rout-

ing solution. This information is what gives the routing algorithm the ability to

optimise a solution at a global level. All of the routing solutions in [14–17] either

have, or assume the existence of such network information. Similar to this thesis,

the scope of the work in [14–17] is not in the deployment of such routing solutions,

but rather the design of the routing algorithm. Although such works do not directly

mention the use of SDN, as is the case here, an assumption is made whereby there

exists a central router with access to accurate and up-to-date network information,

which is essentially the key philosophy behind the design of SDN networks. The

works presented in [7, 19] take it one step further and together with the design of

a GOMR algorithm, highlight the steps taken to actually implement and deploy

their given solution on an SDN network.

Having said this, there are deployment challenges to overcome when it comes time

to deploy the designed routing solutions. The first hurdle to overcome, that is the

result of having a centralised controller, is the additional delay used by the terminal

or switch to communicate with the network controller before transmission has even

started. The works in [7, 19] overcome this limitation by routing delay sensitive

traffic using standard routing algorithms, such as OSPF, without interference from

the controller. Another issue that arises from the central approach is the problem

where if the controller fails, the whole network goes down. Having a single point

of failure is a major weakness that has to be overcome. Research is being carried

out on how to solve this issue, with solutions already being proposed. A summary

of such solutions can be found in [18]. Going over the deployment issues faced by

SDN is beyond the scope of this work. The aim of this section has been to give

the reader the peace of mind that the network architecture assumed to exist in this

work is based on solid research with evidence given that such solutions have been

deployed and proven to work on deployed networks.

3.7 Path Selection Algorithms

All of the routing algorithms proposed in this work rely on an external algorithm

to supply them with a set of paths that each flow is allowed to use. The only

requirement set by the routing algorithms on the path discovery methods is the

supply of loop free paths. One of the objectives sought after by all of the routing

algorithms used here is the minimisation of delay. Therefore, an obvious choice

for a path selection algorithm is the k-Shortest Path (KSP). The KSP algorithm

33

GOMR Path Selection Algorithms

returns the first k paths with the lowest aggregate delay value. The KSP algorithm

used here is a variation on Yen’s KSP algorithm [36], where all the paths with an

equivalent cost to the kth path are chosen at random such that a flow will always

have at most k paths. This method is used so as to have a fixed limit on the

maximum number of paths a flow is allowed to use. Having control over the number

of paths is important as it has a direct effect on the routing algorithm’s complexity

performance. One shortcoming of the KSP algorithm is the lack of link diversity

when used on a highly inter-connected network topology, as most of the selected

paths will share a large number of links between them. A path set sharing a large

number of links is limited in the amount of data that can be transmitted over that

particular path set. This is because the amount of data transmitted on a single

path, reduces the capacity of all the paths that share a common link, limiting the

data rate that can be transmitted over the entire path set. A path set sharing a

large number of links is also problematic at the global routing solution level, not

just at the flow level described previously. The reason being that if a given link,

that is used by the majority of the paths in a given flow’s path set, is used to near

capacity by other flows, the routing algorithm does not have any alternative paths

where to route the given flow. In such cases, the routing algorithm can decide

to either share the link capacity between flows, or allocate data rate to only a

single flow. To increase the link diversity between a given path set and overcome

the said problem, the k-Shortest Edge Disjoint Path (KSEDP) [37] algorithm was

considered.

Contrary to the KSP algorithm, the paths returned by the KSEDP algorithm

do not share any edges. Paths using the same nodes are allowed. The KSEDP

algorithm may be too restrictive in situations where a node has a single connection

to another node; therefore, we opted to use a relaxed version of the KSEDP termed

the k-Shortest Relaxed Edge Disjoint Path (KSREDP) algorithm. The difference

between the KSEDP algorithm and the KSREDP algorithm developed here is that

the KSREDP algorithm allows initial path segments that are the only means of

communication between a source and destination pair to be shared by multiple

paths. To determine which set of links to freeze, i.e. can be used by multiple paths,

the shortest path is traversed from the source to the destination. If the node under

consideration has a single outgoing link, the link is frozen and traversal continues

to the next node. If the node under consideration has multiple outgoing links,

traversal stops. The same procedure is repeated starting from the destination to

the source node but considering incoming links instead of outgoing. Once the set

of frozen links has been found, the KSP algorithm is run with k = 1 to find the

shortest path between a source and destination. All the non-frozen links that make

34

GOMR Complexity Analysis

up the found path are marked as used and will be ignored by the path selection

algorithm. The KSP algorithm is run again with k = 1 to find the next relaxed

edge disjoint path, and the non-frozen links marked as used. The above steps

are repeated until either k paths are found, or no other paths that connect the

source to the destination exist. Similar to the KSP algorithm, all the paths with

an equivalent cost to the kth path are chosen at random such that a flow will always

have at most k paths.

The implementation of the KSP and KSREDP path selection mechanisms described

in this section are based on the algorithm developed by Szcześniak [38]. All of the

path selection algorithms have their metric set equal to the link’s delay value. In

other words, the shortest path is equal to the path with the lowest aggregate delay

value.

3.8 Complexity Analysis

3.8.1 MOEA

This section considers the time complexity of the MOEA-I and II algorithms using

big O notation [39]. The complexity analysis of functions that are used by other

functions, such as the excess removal, link constraint, and flow constraint functions

are analysed first. Let ǫ represent the number of links in a given graph, where ei ∈ E

represent the ith link. Let P = {P1, P2, . . . , Pn} represent the set of all paths used

by all the flows and θ represent the total number of paths as given by

θ =
n∑

i=1

|Pi|, (3.28)

where |Pi| = ki represents the cardinality of the set Pi. Note that θ is equivalent

to the length of the chromosome.

Excess Removal

The complexity of the excess removal function described in Section 3.3.6 is linear

with the number of values the algorithm needs to remove the excess from.

Flow Over-Provision Constraint

The flow over-provision constraint function ensures that no flow is allocated more

data rate than what it had requested. To verify that no flow in a chromosome breaks

this constraint, the algorithm is required to go over and check each flow separately.

The chromosome is designed to store that data rate at a path level; therefore,

35

GOMR Complexity Analysis

calculating the allocated data rate for a given flow requires O(k) operations, where

k is the maximum number of paths a flow is allowed to use. Removing excess

data rate using the excess removal algorithm analysed in Section 3.8.1 requires an

additional operation of O(k), bringing the total complexity to O(2k). Assuming

the worst case where each flow has excess data rate, the total complexity for the

flow over-provision constraint becomes equal to O(2kn), where n is the number of

flows. Dropping constants, the complexity is reduced to O(nk).

Link Over-Provision Constraint

The link over-provision constraint verifies that no link is used beyond its capacity.

To calculate the load passing on each link the network connectivity matrix is used.

The network connectivity matrix is a binary matrix used to represent the network

topology in terms of which links are used by each path. The Network Connectivity

Matrix (M) is given by (3.29), where cell mi,j is set to 1 if link ei ∈ E is used by

path pj ∈ P, 0 otherwise.

M =









m1,1 m2,1 · · · mǫ,1

m1,2 m2,2 · · · mǫ,2

...
...

. . .
...

m1,θ m2,θ · · · mǫ,θ









(3.29)

Calculating the load on each link involves multiplying the chromosome by the net-

work connectivity matrix as shown in (3.30). The Hadamard product, represented

by the ◦ operator, of the two matrices as given by (3.30) updates the network

connectivity matrix to contain actual data rate values as given by a chromosome

solution, referred to as the Actual Network Matrix (A).

A =









g1,1 g1,1 · · · g1,1

g1,2 g1,2 · · · g1,2
...

...
. . .

...

gn,kn gn,kn · · · gn,kn









︸ ︷︷ ︸

ǫ columns

◦M =









m1,1g1,1 m2,1g1,1 · · · mǫ,1g1,1

m1,2g1,2 m2,2g1,2 · · · mǫ,2g1,2
...

...
. . .

...

m1,θgn,kn m2,θgn,kn · · · mǫ,θgn,kn









(3.30)

The complexity to carry out said matrix operation is equal to O(θǫ). Calculat-

ing the data rate carried over a given link becomes a matter of adding the link’s

respective column at a complexity of O(θ).

The link over-provision constraint function starts by generating the A matrix at

O(θǫ). Each link is checked until one that exceeds capacity is found. Assuming

the worst case, this requires O(ǫ) iterations to go over each link, O(θ) iterations

36

GOMR Complexity Analysis

to calculate the data rate passing through that link and O(θ) to fix it using the

algorithm analysed in Section 3.8.1. Note that once a link has been repaired,

this process is restarted, with matrix A having to be recalculated as the repair

operation may affect other links. Assuming the worst possible case where all the

links have to be repaired, the total complexity of the algorithm becomes equal to

O(ǫ(θǫ+θǫ+θ)). If we reduce it to its most dominant function and drop constants,

the complexity becomes O(θǫ2).

Initial Population Generation

Each chromosome is generated by assigning data on each path for every flow

present. This requires a loop over all the paths for all the flows, resulting in

a complexity of O(θ). Once a chromosome has been generated, it needs to be

checked to make sure that it does not violate the flow or link capacity constraint.

The complexity to generate an entire population at random is O(P(θ+ θǫ2 +nk)),

where P is the population size. If we reduce it to its most dominant function, we

are left with O(Pθǫ2 + Pnk).

Crossover

The Crossover function takes two chromosomes and swaps their flow’s entry at

random to generate two new offspring chromosomes. In this case, the worst case

scenario assumes that all flow entries are swapped with each other. A swap op-

eration is assumed to be of constant time O(1) and is therefore dropped with the

constants. This crossover does not alter the flow data rate assignment; therefore,

chromosomes generated by this operation only need to be checked for link con-

straint violation. The complexity of the crossover operator is equal to O(n+ θǫ2).

Mutation

In contrast with the crossover function, the mutation operator only works on a

fraction µ of the flows on a single chromosome. The mutation operation can be

further split into two sub-functions: the path filter function and the flow data

rate assignment. Various different path filter functions are designed in this work,

since each function works by filtering a flow’s path set, their complexity is at most

O(k). The flow data rate assignment assigns as much data as possible on the

path set returned from the path filter function without exceeding any of the link

capacities. To calculate the current link capacity usage, the A matrix is generated

at a complexity of O(θǫ) as explained in Section 3.8.1. Data rate is then assigned

to the k paths of the mutated flow in random order. The complexity of the data

rate allocation function is equal to O(θǫ + k). This brings the total complexity of

37

GOMR Complexity Analysis

Table 3.1: Time complexity of each objective

Objective Complexity

Total Network Flow (O1) O(θ)
Proportion of Flows with Minimum Delay (O2) O(nk)
Flow Splits (O3) O(θ)
Estimated Mean End-To-End Delay (O4) O(θ)

the mutation operator equal to O(µn(θǫ + k)), assuming constants are dropped.

Due to the link capacity consideration included in the mutation operator and the

fact that at most the flow’s requested data rate is assigned, chromosomes that have

been mutated do not require any further validation checks.

Chromosome Fitness Evaluation

Before the NSGA-II algorithm can choose which solutions to keep and which solu-

tions to remove, each newly generated chromosome must be evaluated based on the

objectives. An explanation of how the complexity of each objective is determined

is given next, with the results summarised in Table 3.1.

Total Network Flow is simply the summation of the chromosome values O(θ).

Proportion of Flows with Minimum Delay needs to find the path with the

lowest delay value from the flow’s path set and then calculate the metric for that

flow. Calculating the metric for the entire chromosome comes at O(nk) with con-

stants dropped.

Flow Splits counts the number of flows that are using multiple paths, as well as

the total number of paths used by a flow. This can be accomplished by looping

over the chromosome once at the cost of O(θ).

Estimated Mean End-To-End Delay is rather simple in concept as it chooses

the path with the largest delay value from the set of paths being used by a flow.

This comes at a complexity of θ as one pass over the entire chromosome is enough.

Since this metric value is normalised by the network flow, an additional O(θ) is

required for the total network flow calculation. This bring the complexity equal to

O(2θ), which becomes equal to O(θ) with constants dropped.

NSGA-II Selection

The NSGA-II selection algorithm has a complexity of O(MP2), where M is the

number of objectives and P is the population size, respectively [30].

38

GOMR Complexity Analysis

Complexity of the Entire Algorithm

The complexity for the TournamentSelection function is set to be equal to O(P),

since the sorting of the population is included in the NSGA-II algorithm described

in Section 3.8.1. Recall that χ represents the number of generations, ω the crossover

probability, and ψ the mutation probability. In the below expressions, the order

in which functions appear is the same as that given in Algorithm 1 in Section 3.3.

The full complexity for MOEA-I is given by

O(P(θǫ2+nk)+χ(P+ω(n+θǫ2)+ψ(µn(θǫ+k))+Pθ+Pθ+Pnk+3P2)). (3.31)

Assuming the worst case scenario where ω = ψ = µ = 1 and dropping constants

brings the complexity equal to

O(P(θǫ2 + nk) + χ(θǫ2 + nθǫ+ Pθ + Pnk + P2)). (3.32)

Using the same procedure, the full complexity for MOEA-II is equal to

O(P(θǫ2 + nk) + χ(θǫ2 + nθǫ+ nk + Pθ + P2)). (3.33)

From the above analysis, the developed EA that uses the NSGA-II algorithm scales

quadratically with the population size and the number of links in the topology and

linearly with the total number of paths. Note that no time has been dedicated to the

optimisation of the algorithms used by the EA such as the flow and link constraint

functions, meaning that there may exist other, more efficient implementations that

carry out the same job.

3.8.2 LP

The GNU Linear Programming Kit (GLPK) library does not provide information

on the complexity and scalability of the algorithms used to solve LP formulations.

Therefore, empirical evidence is used instead to determine the scalability of the

developed LP routing algorithm that solves the PC-MFMC problem. Figure 3.3

shows the time taken by the LP solver to find a solution to the PC-MFMC problem

as the number of variables increases, grouped by the network load. Using curve

fitting, it is clear that in general, the LP solver used in this work scales quadratically

with the number of variables. Note that there are particular instances where the

time required to find a solution is more than double the time required by solutions

with the same number of variables. The reason behind these outlier values needs

to be investigated further. To the best of the author’s knowledge, the most recent

work on how to solve LP problems efficiently is the one by Cohen et al. [40], which

39

GOMR Complexity Analysis

0 1000 2000 3000 4000 5000 6000 7000
Number of Variables

0

5000

10000

15000

20000

25000

30000

D
ur

at
io

n
(m

s)

x2

Low
x2

Med
x2

High

Figure 3.3: Time taken for the LP algorithm to find a solution to the PC-MFMC problem as
the number of variables is increased, grouped by the network load. x2 plot refers to the degree 2
polynomial generated when fitting a curve to the generated data points.

40

GOMR Complexity Analysis

still scales quadratically with the number of variables.

3.8.3 Complexity comparison: MOEA vs LP

The LP’s complexity scales quadratically with the number of variables. In the

case of the PC-MFMC problem, the number of variables is equivalent to the total

number of paths in a given solution. The number of paths in a given solution

is equivalent to the chromosome size (θ). On the other hand, the developed EA

scales quadratically with the number of links in a topology and the population

size chosen. However, assuming the EA is used over a fixed topology and constant

population size, the EA scales linearly with the chromosome size which is better

than LP. Keep in mind that the MOEA-II algorithm is using non-linear objectives

which if used by the LP solver would drastically increase it’s complexity.

41

Chapter 4

Protocol Design and

Implementation Issues

This chapter highlights the necessary work required in order to generate and sim-

ulate the routing solutions of both the EA and LP routing algorithms described in

Chapter 3. First, the two different methods used to implement Per-Packet mul-

tipath are given. A description of the LP solver and the EA framework used are

given next. A summary of the available network simulation/emulation frameworks

and the reasons behind the selection of the Ns3 simulation framework is given

next. This chapter concludes by providing detailed information on how the net-

work simulations are set up to enable easy replication of the results presented in

this thesis.

4.1 Per-Packet Multipath

Splitting a flow over multiple paths can be accomplished either at the source, or

by the network switch. The advantage of splitting a flow at the switch level is that

no additional protocol headers will be required; however, such method is known

to negatively interfere with TCPs performance and requires modification to the

underlying SDN hardware. TCP is a transport layer protocol designed for stream

oriented reliable communication between two devices over a network. TCP has

been designed with the assumption that packets follow the same path. Because

of this assumption, splitting a TCP stream over multiple paths negatively affects

the stream’s performance. The reason being that when using multiple paths for

transmission, packets may be received out of order due to the different properties

of each path. In such a case, TCP mistakenly treats this out of order reception as

a sign of network congestion and reduces the transmission rate. More information

42

Protocol Design and Implementation Issues Per-Packet Multipath

on this topic can be found in [41, 42] with simulation results presented in [12].

Alternatively, splitting the flow at the source, with the help of the modified MPTCP

transport layer protocol, does not require any modifications to the SDN hardware

and allows TCP applications to benefit from the increased performance Per-Packet

multipath is able to offer. However, using the MPTCP will have a marginal impact

on the transmission efficiency due to the additional MPTCP header required to be

appended to each packet before transmission.

Section 4.1.1 explains the novel Per-Packet Flow Splitting (PPFS) method devel-

oped in this work that outperforms the current OpenFlow [43] method of flow

splitting in terms of splitting accuracy and scalability. Section 4.1.2 explains the

required modifications for MPTCP to work seamlessly with the developed routing

algorithms.

4.1.1 Split at Switch (PPFS)

OpenFlow [43], one of the most widely used SDN southbound interface protocol,

implements flow splitting with the use of groups and hash-based splitting [44].

An SDN southbound protocol is the protocol used for communication between

the network controller and the SDN switches. Groups are sufficient for coarse,

equal traffic splitting but will quickly run into scalability issues when faced with

unequal, fine grained traffic split ratios. OpenFlow switches support unequal flow

splitting by means of hash-based splitting [44, 45]. To achieve the desired flow

split ratios while using hash-based splitting, entries are added in the routing table

until the split ratio is met. For example, transmitting 90% of a flow’s packet on

one path, and the remaining 10% on another requires a total of ten entries. It is

clear that this method does not scale well with respect to the number of entries

required as the split ratios become more intricate. Because of these limitations,

Tuncer et al. [45] developed a traffic splitting mechanism based on IP addresses.

In their work, Tuncer et al. [45] developed a system using IP masks to group a

range of IP addresses together in order to enable unequal Per-Flow multipath load

balancing. However, the split ratio accuracy of their developed system depends

on the IP address distribution. The routing algorithms developed in this work

have no constraints on the split ratio granularity; therefore, a system that enables

the deployment of a Per-Packet multipath solution while remaining scalable is

required to test out the routing solutions provided by the routing algorithms. The

developed, stochastic based flow splitting algorithm residing on the network switch

is explained next [5].

43

Protocol Design and Implementation Issues Per-Packet Multipath

Table 4.1: Partial routing table with split flow

Entry Number Flow Cumulative Split Ratio Port Number

0 Flow A

0.3 1

0.45 2

1 3

1 Flow B
0.1 1

1 3

PPFS Algorithm

Additional information is required to be stored with each routing table entry at the

SDN switch to add the required information to achieve the desired flow splitting

ratio instructed by the routing algorithm. For each flow entry installed on the

switch, a list of the output port numbers and their respective cumulative split

ratios is appended. Upon packet reception, the switch will match the flow using

the packet’s headers, generate a uniform random number in the range [0− 1), and

select which port to forward this packet on based on this number. The forwarding

port is selected such that the corresponding cumulative split ratio is the first value

greater than the generated random number.

Consider as an example the partial routing table shown in Table 4.1, with two flows,

A and B. In this example, the switch is set up to forward 30% of Flow A’s packets

through port 1, 15% of Flow A’s packets through port 2, and the remaining 55%

of Flow A’s packets through port 3. Similarly, the switch needs to forward 10%

of Flow B’s packets through port 1 and the residual 90% over port 3. When the

switch receives a packet from Flow A it generates a random number, for example

0.4, and forwards the packet based on this value; in this case, port 2.

Using the OpenFlow hash-based method of splitting a flow, the proposed PPFS

method requires 80% fewer rules to implement the splitting required by Flow B,

shown in Table 4.1. As the split ratios become more intricate, our technique scales

much better than hash-based splitting as it depends only on the number of paths

a flow is split to rather than the split ratio. For more details about unequal hash-

based splitting, the reader is referred to [44].

In addition to the negative effect on TCP traffic when used in conjunction with a

Per-Packet routing algorithm, the other disadvantage of the proposed PPFS system

is the modifications required to both the OpenFlow protocol and switch firmware.

An alternative method of deploying a Per-Packet multipath routing solution on a

network without any modifications to the SDN hardware is by splitting the flow at

44

Protocol Design and Implementation Issues Per-Packet Multipath

the source.

4.1.2 Split at Source (MPTCP)

The major barrier faced by the PPFS flow splitting method described in Sec-

tion 4.1.1 is the performance penalty suffered by TCP flows. Since TCP is the

main transport protocol used to date, a system that negatively effects TCP will

not find much use in the real world. TCP is a stream oriented transport layer

protocol designed for applications seeking a reliable connection between two de-

vices over a computer network. TCP assumes that all packets travel over the same

path and builds the congestion control algorithms based on this assumption. This

central assumption is broken when a flow’s packets are transmitted over multiple

paths. Transmitting packets over different paths, with different properties, may

lead to packets being received out of order. TCP mistakenly treats this as a sign

of congestion and reduces the transmission rate.

To pave the way for deploying the routing algorithms developed here, the network

performance issues faced by TCP must be resolved first. This problem is overcome

by using a modified version of the MPTCP protocol. An overview of the MPTCP

protocol, and the methods employed in literature to overcome problems similar to

the ones faced here are given next, that will serve as background information to

the MPTCP protocol modifications proposed in this work.

MPTCP Protocol Description

MPTCP [46] is a transport layer protocol that aggregates multiple TCP sub-flows

to improve the flow’s data rate and/or reliability. MPTCP being a transport layer

protocol, does not have the ability to control the path taken by each created TCP

sub-flow. Therefore, MPTCP has been originally targeted, and found its first

major practical use case in multi-homed devices. Apple first deployed MPTCP

with iOS 7 to increase the reliability of the Siri voice assistant [47]. In this case,

MPTCP is used to create two connections, one over WiFi and another over LTE for

a seamless handover in the event a user loses WiFi connection. The lack of path

selection knowledge requires MPTCP to implement a shared congestion control

mechanism between all the TCP sub-flows such that multiple MPTCP sub-flows

do not starve a single TCP connection from resources if they happen to share a

bottleneck link [46].

The availability of SDN allows the routing algorithm to gain the intelligence re-

quired to distinguish between different MPTCP sub-flows and thus avoid routing

them over the same path. Zannettou et al. [48] does just this by exploiting SDN to

45

Protocol Design and Implementation Issues Per-Packet Multipath

route MPTCP sub-flows over different paths. However, previous to the work done

by Zannettou et al. in [48], the Linux kernel implementation of MPTCP is only

able to create one sub-flow for a pair of IP addresses. This limitation has been

addressed and fixed by Zannettou et al. [48] and added to version 0.9 of the Linux

kernel MPTCP implementation. This change allows MPTCP to open more than

one sub-flow for a pair of IP addresses. The scheduler that ships as standard with

MPTCP is the minRtt scheduler. As the name suggests, the minRtt scheduler

transmits all the packets on the path with the lowest Round Trip Time (RTT).

Such a scheduler does not work well with the routing algorithms developed here,

as the routing solution dictates the amount of data rate to transmit on each path.

Therefore, a new stochastic scheduler has to be added to MPTCP.

MPTCP Proposed Modifications

All routing algorithms used in this work are globally optimal because they take into

consideration all of the flows using the network when generating a solution. Because

the routing algorithms are assumed to be globally optimal, multiple MPTCP sub-

flows are never routed over the same path, and congestion caused by over using links

is also handled by the routing algorithm; therefore, the shared congestion control

provided by MPTCP is unnecessary and is ignored. A custom, stochastic scheduler

is added to MPTCP to distribute a flow’s packets based on the information provided

by the routing algorithm. Any congestion that may arise due to the dynamic nature

of a computer network and the stochastic nature of the scheduler are handled by

the underlying TCP sub-flow congestion control mechanism.

The proposed MPTCP framework model is shown in Figure 4.1, which outlines

the steps taken in sequence by a flow before starting data transmission over the

network. The MPTCP protocol sits in between the TCP and the application

layer, and is assumed to have direct communication with the network controller to

exchange information with the routing algorithm. On receiving a flow transmission

request from an application, the routing algorithm generates a routing solution

and informs the MPTCP layer on the number of connections to open and the

data rate to transmit on each one. Next, the network controller and MPTCP

protocol negotiate the port numbers to use for each connection. This port number

negotiation is required as it allows switches to identify which path a packet must

follow. In other words, there is a one-to-one relationship between a path and the

port numbers used. The distribution of packets between the different paths is

handled using a stochastic scheduler, similar to that used by the PPFS algorithm.

The stochastic scheduler distributes packets across the different paths based on the

data rates the routing algorithm allocates on each path. A stochastic scheduler is

46

Protocol Design and Implementation Issues Per-Packet Multipath

Application Data

Transmitter

Application

MPTCP

...

TCP

TCP

Control Data

Receiver

Application

MPTCP

...

TCP

TCP

Network Controller

Routing
Algorithm1

2 2

4

3 5

4

2

Figure 4.1: The proposed MPTCP framework. The numbers represents the sequence of events,
in order, when an application has data to transmit.[12]

47

Protocol Design and Implementation Issues Linear Programming Solver

used because of its implementation simplicity and ability to handle any arbitrary

split ratio without running into scalability issues.

To summarise, the only change done to the MPTCP protocol is the addition of a

stochastic scheduler that is capable of distributing packets based on the distribution

set by the routing algorithm. The 64-bit packet identifier appended by MPTCP

to every transmitted packet is kept as this is required to deliver packets to the

application in the same order as that transmitted. The ordered delivery of packets

is one of the promises made by TCP to the application, which is a promise that

MPTCP needs to honour as well. In the text that follows, MPTCP refers to the

MPTCP with the modification proposed in this section.

4.2 Linear Programming Solver

The solutions to the LP formulations are found using the GLPK [49] library ac-

cessed through the LEMON’s [50] library interface. LEMON’s GLPK interface

has been updated to run the glp exact function after running the glp simplex

function to improve numerical stability. The use of the glp exact is required as

otherwise, flows may be allocated very small negative data rates, even though a

constraint is set where solutions are only allowed to use positive numbers. The

glp exact function is similar to glp simplex but uses exact arithmetic. Since

computations that use exact arithmetic are very time consuming, the GLPK man-

ual suggests to first run the glp simplex function to find an optimal basis and

then call the glp exact function. Following this procedure reduces the number of

simplex iterations that have to be carried out using exact arithmetic, improving

the running time of the algorithm.

4.3 Evolutionary Algorithm

The MOEA designed here is implemented using the Distributed Evolutionary Algo-

rithms in Python (DEAP) v1.3 [51] library. The DEAP library has been chosen due

to its wide use in the EA community and the use of the Python programming lan-

guage. Preference is made to frameworks using the Python programming language

due to its ease of development, which minimises the time required to develop and

test out a solution when compared to other languages, such as C++. This comes

at the cost of the algorithm’s running time, as Python is known to be much slower

than its compiled alternatives, such as C++. This is a known limitation of this

work, with steps required to overcome such a problem highlighted in Section 6.1.

48

Protocol Design and Implementation Issues Network Simulator

4.4 Network Simulator

To test out the performance of the developed routing algorithms, the routing so-

lutions generated by such algorithms have to be tested on a network to gauge

their actual performance. Ideally, the proposed systems are tested on an actual

network; however, financial and time limitations made such an option unfeasible.

Therefore, we opted to choose the second best option and verify the validity of the

routing solutions using network simulations. When choosing a network simulator

the following criteria were set:

• Be under active development. This is required as the simulation environment

would be constantly updated with new protocols and bug fixes to maintain

stability and accuracy in the provided results.

• Have good, detailed documentation.

• Flexible enough to allow the development of custom protocols or devices.

• Ideally available free of charge and open source. Open source is important as

it removes any restriction set by the vendor and gives the user the freedom

to modify any part of the simulation framework as he sees fit.

• Run on the Linux Operating System, as it is the operating system used by

the servers where simulations will be run on.

Three network simulators met all of the requirements set out above: Mininet [52],

OMNeT++ [53], and Ns3 [54]. Mininet [52] is a network emulator that is the

tool most often used to produce results with works dealing with SDN. Owing to

the fact that Mininet is an emulator, the size and scale of the network that it

can handle is limited by the underlying hardware. Additionally, the timing results

provided by an emulator are not as accurate as those provided by a simulator as

they are affected by the other processes running on the same machine. The main

advantage of an emulator is the accurate model of the hardware being emulated

which makes it easier to transition from a virtual to an actual network. A more

thorough description of Mininet’s performance limitation can be found in [55].

Both OMNeT++ and Ns3 are discrete event simulators, meaning that they rely

on a simulation generated clock leading to much more accurate timing results.

Since both OMNeT++ and Ns3 are simulators, Ns3 is used in this thesis due

to its popularity with the networks community and the author’s familiarity with

the framework. Network simulations are carried out using the Network Simulator

version 3.29 (Ns3).

Custom devices are developed to replicate the required functionality of an SDN

49

Protocol Design and Implementation Issues Network Simulator

switch and the PPFS switch described in Section 4.1.1. All switches are assumed

to have unlimited buffers to eliminate the effect of packet loss caused by buffer

overflow. Although this is unrealistic, this assumption simplifies the analysis of

the network performance results. The random numbers required by the MPTCP

module and the PPFS switches are generated using Ns3’s own Uniform Random

Number generator. All flows are assumed to transmit at a Constant Bit Rate

(CBR) with a data packet size of 590 bytes including all the necessary headers

with each TCP acknowledgement packet being 54 bytes long. Methods of how to

shape bursty traffic to have a profile similar to a CBR exist, with Szymanski [35]

presenting one such method. Using the above packet sizes, and the assumption that

TCP transmits an acknowledgement packet for every two data packets received [56],

TCP’s acknowledgement rate, α(gi,j), is given by

α(gi,j) = 0.0458× gi,j. (4.1)

The NewReno TCP congestion control mechanism is used [57]. With the exception

of OSPF, applications transmit at the rate assigned by the routing algorithm, not

that requested. Data rate transmission modification is possible as SDN allows

for the bi-directional communication between the routing algorithm hosted on the

network controller and the application. OSPF lacks such functionality; thus, OSPF

results are generated by setting the flows to transmit at their requested data rate.

Two examples of rate adapting applications are file transfer and video streaming

applications. For each TCP connection/sub-flow created by the MPTCP protocol,

the TCP transmit and receive buffer size is automatically adjusted such that it

is large enough to support transmitting at the data rate assigned by the routing

algorithm on that given path. The buffer size in bytes is calculated using the

bandwidth delay product [56] as given by

Buffer Size = min

(
gi,j × RTT

8
, 4096

)

, (4.2)

where RTT is given in seconds and gi,j is in bits per second. A minimum buffer size

of 4096 bytes is set to match the value used by the TCP implementation in the

Linux kernel. Under all scenarios presented here, the routing tables are populated

before packet transmission starts, eliminating the routing protocol overhead.

Due to the lack of a proper, Ns3 native, MPTCP protocol implementation, the TCP

sub-flow generator, and scheduler were developed as these two blocks are enough

to test the performance of the updated MPTCP protocol. The TCP sub-flow

generator is the module that creates a number of TCP sessions, where the number

of sessions to open, and which port numbers to use on each session is specified by the

50

Protocol Design and Implementation Issues Network Simulator

routing algorithm. The developed MPTCP stochastic scheduler distributes packets

between the different TCP sessions (each TCP session is equivalent to a path) using

a method similar to that used by the PPFS algorithm, where the split ratios are

given by the routing algorithm. The MPTCP shared congestion control mechanism

is not implemented because the use of a globally optimal routing algorithm makes

this congestion control mechanism redundant. We do not see any reason why the

shared congestion control used by MPTCP should negatively impact performance,

with time being the only reason it was not implemented. Ns3 has the ability to use

protocol algorithms found on a machine’s kernel; however, modifying the MPTCP

kernel implementation has been deemed too time consuming for this project, since

simpler alternatives were available. To reduce development time further, MPTCP

receiver applications are assumed to have infinite receiver buffers to avoid the need

to implement MPTCP’s acknowledgement mechanism to recover from packet losses

caused by receiver buffer overflow. Note that packets lost during transmission

are handled by the underlying TCP sub-flows and are handled by our developed

MPTCP model.

51

Chapter 5

Results

This chapter presents the results of the algorithms designed in this work and draws

conclusions based on the presented results. The routing algorithms developed here

are compared with each other, highlighting the advantages and disadvantages of

each. The generated routing solutions are validated using network simulations

lasting 120 simulation time seconds. Choosing EA parameters, such as crossover

probability, population size and number of generations is highly subjective and

depends on the problem at hand. Therefore, an in-depth explanation of the deci-

sions taken that led to the chosen EA parameters is given. For ease of replication,

detailed information on the setup used in this work is given at the beginning of

the chapter. Additionally, all of the source code and results will be made publicly

accessible at the time of publishing.

5.1 Setup

5.1.1 Network Topology

A model based on the 2017 GÉANT network topology shown in Figure 5.1 is

used to test out the performance of the developed routing algorithms. The 2017

GÉANT network topology is chosen as it models an actual network topology and

has multiple paths available between a given source and destination node pair,

especially in the core of the network. Such a feature is important to this work

as it allows us to test the multipath capability of our routing algorithms. The

actual link capacities have been scaled down from Gbps to Mbps to allow us to

simulate conditions that require the use of multipath routing with a reasonable

number of flows. Instead of reducing the link capacities to Mbps, we could have

used flows transmitting at Gpbs levels; however, the standard TCP that ships with

52

Results Setup

Figure 5.1: 2017 GÉANT network topology, adapted from [58]. Copyright 2017 GÉANT, all
rights reserved. Used with permission. The modified capacity of the red, light blue, and dark
blue links are equal to 30Mbps, 60Mbps, and 120Mbps, respectively. The actual capacity of the
red, light blue, and dark blue links are equal to 1–9Gbps, multiples of 10Gbps, and multiples of
100Gbps, respectively [58].

53

Results Setup

Table 5.1: Network Load Configuration

Network Load
Data Rate (Mbps)

Mean Std. Deviation

Low 5 0.25
High 25 2.5

Ns3 is unable to reach gigabit speeds without modification. Therefore; instead of

modifying TCP to reach gigabit speeds, we took the decision to scale down the

network link capacities and scale the flow data rates accordingly. The modified,

scaled down, link capacities are equal to 30Mbps, 60Mbps, and 120Mbps for the

red, light blue, and dark blue links, respectively. The actual delay values of the

GÉANT network topology were not readily available at the time of development;

therefore, the delay attribute of each link is set in proportion to the geographical

distance between the cities where the GÉANT Points of Presence corresponding

to the two nodes are located [59]. The link with the shortest physical distance

is set to have an arbitrary delay value of 1ms. This value is used as a reference

when calculating the delay values for the remaining links. To ensure repeatability,

the link delay values used in this work are given in Appendix A. Symmetrical,

bi-directional links are assumed in this work. Figure 5.1 only shows the network

switches and their connections. When setting up network simulations, terminals are

created and attached to switches based on whether that switch is a flow’s source or

destination node. In the case where multiple flows start or end at the same switch,

only one terminal is created. The links connecting the switches with the terminals

are set to have a capacity of 10 000Mbps and a delay of 1ms. An absurdly high

capacity is given to such links to ensure that they are never the cause of network

congestion as this would skew the network simulation results.

5.1.2 Flow Setup

Three network loads are used in this work: Low, Medium and High. With the

exception of the high network load, that goes up to 150 flows, the number of

flows ranges from 50 to 300 in steps of 50. Five flow sets are generated for each

network load. The flow data rate is generated using a normal distribution with

the mean and standard deviation for the low and high network load setup given in

Table 5.1. The flow data rate values for the low and high network load setup are

made to represent High Definition (HD) and Ultra High Definition (UHD) video

transmission, respectively. The medium load setup has an equal number of flows

having a low and high network load profile. Under all scenarios considered here,

the flow’s source and destination nodes are selected randomly with the selection

54

Results Setup

50 100 150 200 250 300
Number of Flows

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f A

llo
ca

te
d

vs
 R

eq
ue

st
ed

 N
et

w
or

k
Fl

ow

High
Med
Low
KSP
PC-MFMC-1
KSREDP

Figure 5.2: Plot illustrating the percentage of the total allocated network flow as a fraction of
the total requested network flow for all the 5 flow sets. The total allocated network flow value is
found by solving the PC-MFMC using LP and k = 5. PC-MFMC-1 represents the solution found
by LP when only the shortest path is available and is used to represent the maximum attainable
network flow by OSPF.

probability directly proportional to the node’s total outgoing or incoming capacity,

respectively. A flow is not allowed to have identical source and destination nodes.

The high network load scenario only goes up to 150 flows, because even at this

stage, network capacity is already exceeded with only 70% of the total requested

flow rate being allocated, as shown by Figure 5.2. Figure 5.2 shows the percentage

of the total allocated network flow as a fraction of the total requested network

flow. As shown by the results in Figure 5.2, increasing the number of flows to

values higher than what is used here is unnecessary, as the network’s capacity has

already been exceeded. Increasing the network load any further would result in the

LP solution to the PC-MFMC problem to contain a large number of unassigned

flows. The PC-MFMC-1 results are generated by solving the PC-MFMC problem

with k = 1. The PC-MFMC-1 results are included as they represent the highest

attainable network flow that can be achieved if a single path routing algorithm,

such as OSPF is used. The results presented in Figure 5.2 are generated with k = 5.

The reason for choosing k = 5 is explained in Section 5.1.3. Only solutions to the

55

Results Setup

PC-MFMC problem using LP are shown in Figure 5.2 because of LP’s optimality

guarantee. Solving the PC-MFMC problem using LP guarantees that there exists

no solution with higher allocated network flow than the solution returned by LP.

Note that the above statement does not imply that the routing solution returned

by the LP solver is the only solution capable of reaching the given network flow,

but rather, that no solution exists with a higher allocated network flow.

In this work we simplify the problem by using a static flow set, meaning that no

flows enter or exit the network for the duration of the simulation. This is a known

limitation of this work, with the steps required to overcome such a limitation

highlighted in Section 6.1. In the results that follow, Goodput is defined as the rate

at which an application is able to generate or consume data. Delay is defined as the

time taken from when the transmitting application sends a byte of data, to when

the receiving application receives that same byte of data. Any time used waiting

to deliver a block of data to the application in its correct order is included in the

delay measurements. This setup is used to accurately represent the performance

of an application using the protocols under test.

5.1.3 Path Setup

The EA chromosome is designed at the path level granularity, which requires a path

selection algorithm to hand over the paths to the EA. Two different path selection

algorithms are proposed here; the KSP and KSREDP, explained in Section 3.7.

Both algorithms take the k value as a parameter, which represents the maximum

number of paths a flow is allowed to take. The selection of the k value needs to

strike a balance between the flow’s path selection variety and the algorithm’s com-

plexity. Obviously, the more paths a flow is allowed to take, the more different

network resources can be used which may lead to solutions with a higher network

performance. On the other hand, increasing k has an effect on the algorithm’s run-

ning time, as explained in the Complexity Analysis Section 3.8.1. Therefore, when

selecting the k value, a compromise needs to be reached between the algorithm’s

running time and path variety. To take an informed decision on the k value, the

unconstrained Maximum Flow problem is used with the optimal solution compared

with the PC-MFMC problem with various k values. Let S ∈ E and T ∈ E repre-

sent all the incoming links to node si and all the outgoing links to node di where

si and di are flow fi’s source and destination nodes, respectively. The formulation

for the unconstrained Maximum Flow is defined as follows:

max
riu,v

n∑

i=1

∑

(u,v)∈E

riu,v, (5.1)

56

Results Setup

such that

n∑

i=1

riu,v ≤ λu,v ∀(u, v) ∈ E, (5.2)

riu,v ≥ 0 ∀(u, v) ∈ E, i, (5.3)

∑

v:(u,v)∈E

riu,v −
∑

v:(v,u)∈E

riv,u =







δ̂i u = si

−δ̂i u = di

0 otherwise

∀i, u, (5.4)

∑

(u,v)∈S

riu,v = 0, (5.5)

∑

(u,v)∈T

riu,v = 0, (5.6)

0 ≤ δ̂i ≤ δi. (5.7)

The constraints (5.5) and (5.6) are set to eliminate the possibility of loops. All

the remaining constraints are similar to those used by the MCFP described in

Section 2.1. The main difference between the MCFP and the unconstrained Max-

imum Flow being that a flow can be assigned a lower data rate value than what it

requested as set by constraint (5.7).

The k values are incrementally increased from 1 up to 25. Figure 5.3 shows the

total network flow allocated by the PC-MFMC problem when varying k for both

of the path selection algorithms proposed here as a fraction compared to the un-

constrained Maximum Flow problem. Figure 5.3 is only showing the solutions for

the largest number of flows available for a given network load. This means 300

flows for the low and medium network load and 150 flows for the high network

load. Again, only solutions to the PC-MFMC problem solved using LP are given

in this figure because of LP’s optimality guarantee. Note that the allocated data

rate percentage does not reach 100% even when k = 25 because the unconstrained

Maximum Flow solution uses links that are not present in the set of 25 paths avail-

able to a given flow. From the results in Figure 5.3, it is evident that the KSREDP

algorithm finds solutions that are closer to the network’s capacity with a lower k

value when compared to the KSP algorithm. Under both path selection algorithms

chosen here, marginal improvement is reported when k is larger than 5. Seeing

such results, we opt to use a k value of 5 as it has the capability to allocate more

than 90% of the maximum network capacity under all network load conditions.

57

Results Setup

0 5 10 15 20 25

80

85

90

95

100
Pe

rc
en

ta
ge

 o
f A

llo
ca

te
d

vs
 M

ax
im

um
 D

at
a

R
at

e

Low
Med
High

(a) Path Selection Algorithm: Ksp

0 5 10 15 20 25

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Pe
rc

en
ta

ge
 o

f A
llo

ca
te

d
vs

 M
ax

im
um

 D
at

a
R

at
e

Low
Med
High

(b) Path Selection Algorithm: KSREDP

Figure 5.3: Percentage of the Allocated Data Rate when using the PC-MFMC algorithm when
compared to the unconstrained Maximum Flow problem, with varying k. All five flow sets for a
given network load and the highest number of flows for a given network load are used; 300 Flows
for the Low and Medium network flow, and 150 flows for the High network load.

58

Results MOEA Parameter Choice

5.2 MOEA Parameter Choice

It is important to appreciate that finding the optimal MOEA parameter values

is itself a multi-objective optimisation problem, and is heavily dependant on the

algorithm’s use case. Although several tests were carried out to ensure that the

values chosen work well for a wide number of cases, as is demonstrated by the

results presented in this chapter, we do not state that these are the optimal values.

Choosing EA parameter values is a long and arduous process due to the multi-

objective nature of such a problem. The EA parameter values must be chosen so

as to strike a balance between the rate of convergence and the even coverage of

the optimal Pareto Front. On the one hand, the improvement between generations

should not be very small as this would require a very large number of generations

before reaching a good enough approximation of the true Pareto Front. And on the

other, there should not be a huge jump between the current and previous popula-

tion as this may go over solutions that are on the true Pareto Front. In addition,

it is also important that the solutions found by the EA, are evenly spread over the

entire Pareto Front. Having a number of solutions either grouped in a relatively

small area, or heavily biased to one objective, signifies that the EA is not exploring

all areas equally. This results in the generated results to be biased towards an

area/objective, which is undesirable when using a true multi-objective solver. The

ideal set of EA parameters needs to offer a steady and gradual improvement with

each generation until a satisfactory Pareto Front is generated. The EA parameter

values are highly dependent on the design and function of the designed EA oper-

ators, such as crossover and mutation. Due to the large variety of such operators,

only recommendations on what values to use exist, with a high crossover probability

and a low mutation probability being the norm. In our case, the chosen crossover

probability of 0.9 is a typical value used for the NSGA-II algorithm [30] that has

been found to work well in our setup. The mutation probability and mutation

fraction µ values have been chosen empirically by observing the evolution from a

number of different generated solutions. As explained earlier, the values that show

the best balance between the aggressiveness of the algorithm in searching for a new

solution and the number of generations required by the EA to converge have been

chosen. The MOEA parameters used to generate the results presented here are

given in Table 5.2.

When choosing the parameter values for an EA, a holistic approach must be taken

and no decision should be based solely on the information given by a graph that

represents the progress of a single parameter value. The figures that will be shown

in the following sections, serve only as an indicator on the correctness of a particular

59

Results MOEA Parameter Choice

Table 5.2: MOEA parameters

Parameter Value

Population Size (P) 800
Number of Generations (χ) 400
Crossover Probability (ω) 0.9
Mutation Probability (ψ) 0.2
Fraction of flows to be mutated (µ) 0.2

parameter value. During the EA parameter selection process, the effect on the EA’s

evolution progress when changing a single parameter value has been thoroughly

analysed and tested before taking the final decision.

5.2.1 Number of Generations

A good metric to use to determine whether the EA has converged to a set of

solutions is to observe the progress between successive generations. An EA is said

to converge when there is little to no improvement in the quality of the solutions

being generated by the EA. Such a metric will highlight whether the EA has been

stopped pre-maturely or whether the number of generations can be reduced without

heavily impacting the final output of the algorithm. The metric used in this work

to quantify the progress between successive Pareto Fronts is the mean Euclidean

distance. The mean Euclidean distance MA,B between the set of solutions on the

Pareto Front in generations A and B, respectively SA and SB, is calculated as

follows

MA,B =
1

|SA|

∑

a∈SA

min
b∈SB

d(a, b), (5.8)

where d(a, b) is the Euclidean distance between a and b. a and b are tuples of the

normalised objectives for the algorithm used. Figure 5.4 shows the mean Euclidean

distance between successive Pareto Fronts for a randomly chosen flow set. Similar

conclusions can be made from all of the other flow sets used here. From Figure 5.4

it can be observed that both EAs presented here tend to stabilise after approxi-

mately 250 generations. Seeing such results, we have decided to set the number of

generations to 400 to allow for some fluctuation in the number of generations the

EA requires to stabilise.

60

Results MOEA Parameter Choice

0 50 100 150 200 250 300 350 400
Generation Number

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
E

uc
lid

ea
n

D
is

ta
nc

e
be

tw
ee

n
su

cc
es

si
ve

 P
ar

et
o

Fr
on

ts

MOEA-I
MOEA-II

Figure 5.4: Mean Euclidean distance between successive Pareto Fronts

61

Results MOEA Parameter Choice

0 50 100 150 200 250 300 350 400
Generation Number

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f N
on

 D
om

in
at

ed
 V

s
D

om
in

at
ed

 S
ol

ut
io

ns MOEA-I
MOEA-II

Figure 5.5: The ratio between non-dominated and dominated solutions for every generation.

5.2.2 Population size

Selecting an EA’s population size is very dependent on the problem at hand, and

as such, there are no rules on how big or small an EA’s population should be.

Deb [22] presents a graph suggesting the minimum population size based on the

number of objectives and the proportion of non-dominated solutions in the initial

population. However, such a graph must only be used as a reference and one should

adjust the population size accordingly as deemed fit. The number of solutions in

an EA’s population should be large enough to allow the EA to explore different

regions of the Pareto Front, but not unnecessarily large that the running time of

the algorithm is compromised. One measure that helps to determine whether the

population size is large enough or not is the ratio between the number of non-

dominated and dominated solutions. Ideally, the population should not be made

entirely of non-dominated solutions, especially at the early stages of the evolution

as dominated solutions provide the necessary diversity that allows the algorithm

to better explore solutions in all directions. Figure 5.5 shows the ratio between

the number of dominated and non-dominated solutions for every generation for a

given flow set, chosen at random. Observe that as the evolution progresses, the

number of non-dominated solutions also increases, but only reaches a probability

62

Results Performance Analysis

of one at the final stages of the evolution, if it ever reaches such a value. Having a

graph with a profile similar to the one shown in Figure 5.5, is a good indicator that

the chosen population size is sufficient as it still has enough space to store some

dominated solutions. Note that in the case of the MOEA-II, for the particular flow

set seen here, the ratio of Non-Dominated vs Dominated solutions reaches one at

the very last stages of the evolution. Such behaviour should not be the sole reason

that the population size is increased, as the shown behaviour may be due to the

convergence of the EA. In such cases, increasing the population size further would

not improve the EA’s performance any further, but rather increase the algorithm’s

running time.

5.3 Performance Analysis

5.3.1 MOEA vs LP

One of the key questions to answer when designing an EA, is to determine how close

the generated solutions are to the optimal, under various conditions. The solution

to the PC-MFMC problem using LP returns the maximum demand the network

is able to handle for a particular flow set. To compare the quality of the solutions

found by the algorithms used here, the solution with the highest network flow found

by the EA is compared with that found by LP, for all the flow sets and network

loads used here. Figure 5.6 shows the percentage of demand the EA managed

to satisfy when compared to the LP solution. From the results, we can observe

that both EA routing algorithms match the solutions found by LP very closely,

for a lightly loaded network. As the network load and number of flows increase,

the difference between the EAs satisfied demand and the optimal, deviate slightly.

The EA found solutions deviate by at most 7% and 8% when using the KSP and

KSREDP path selection algorithms, respectively. These results show that even

though EAs are inherently sub-optimal, the EAs designed here manage to satisfy,

on average 98% of the demand found by the optimal LP generated solution.

63

Results Performance Analysis

50 100 150 200 250 300
Number of Flows

94

95

96

97

98

99

100
%

 o
f N

et
w

or
k

flo
w

 m
et

 c
om

pa
re

d
to

 o
pt

im
al

Low
Med
High
MOEA-I
MOEA-II

(a) Path Selection Algorithm: KSP

50 100 150 200 250 300
Number of Flows

93

94

95

96

97

98

99

100

%
 o

f N
et

w
or

k
flo

w
 m

et
 c

om
pa

re
d

to
 o

pt
im

al

Low
Med
High
MOEA-I
MOEA-II

(b) Path Selection Algorithm: KSREDP

Figure 5.6: Plot illustrating the Percentage of demand achieved by the EA algorithms when
compared to the optimal solution to the PC-MFMC problem solved using LP. The solution with
the largest network flow found by the EAs is used.

64

Results Performance Analysis

5.3.2 Promised vs Actual Network Performance

The main hypothesis this research is based on revolves around the assumption that

using a globally optimal routing solution leads to an increase in network efficiency.

A globally optimal routing solution should be devoid of congestion; therefore, one

comes to expect that when deploying such a routing solution on a network, the net-

work performance should closely match the performance guaranteed by the routing

algorithm. To measure how close the actual network performance is compared to

the routing solution, the flow satisfaction metric is used. A flow’s satisfaction rate

represents the fraction of goodput received when compared to the goodput allo-

cated by the routing algorithm. For example, a flow that is allocated 10Mbps by

the routing algorithm, and receives 10Mbps, is said to have 100% satisfaction rate.

On the other hand, if the flow receives only 5Mbps, the flow satisfaction rate drops

to 50%. Figure 5.7 is a boxplot showing the distribution of the flow’s satisfaction

rate for all the flows in a given flow set. The tighter the distribution and the closer

it is to 100%, the closer the actual network performance is to the one given by the

routing solution.

It is well known that TCP and a Per-Packet multipath routing solution should

not be used together. It comes as no surprise that when using standard TCP and

PPFS, the network performance is nowhere near that promised by the routing al-

gorithm. This can be verified by looking at the columns in Figure 5.7 that use

the PPFS method to deploy Per-Packet multipath. What may not be so obvious

is the impact the inclusion of acknowledgement flows have on the flow satisfac-

tion rate. Comparing the flow satisfaction rate distribution between the setup

when considering acknowledgement rates and when not, the negative effects of ig-

noring acknowledgements on the flow’s satisfaction rates becomes clear. Ignoring

the acknowledgement flows leaves the network open to congestion as soon as the

acknowledgement flows start. Since acknowledgement flows were not taken into

consideration when generating the routing solution, not enough capacity may have

been left in the network links to route the additional traffic. Therefore, as soon

as the acknowledgement flows start transmitting, some links may be used beyond

their capacity, causing network congestion. Figure 5.7 also shows that the modifi-

cations done to the MPTCP protocol allow TCP consumer applications to benefit

from the advantages offered by a Per-Packet multipath routing algorithm with the

vast majority of flows having 100% flow satisfaction rate. Even though only one

particular flow set is shown in Figure 5.7, similar conclusions and distributions were

seen under a different flow set. Therefore, we have no reason to believe that the

results and conclusions drawn in this section fail to apply under different scenarios

than the ones considered here.

65

Results Performance Analysis

M
O

E
A-

II
 C

A
- P

PF
S

M
O

E
A-

II
 N

C
A

- P
PF

S

LP
 C

A
- P

PF
S

LP
 N

C
A

- P
PF

S

M
O

E
A-

II
 C

A
- M

PT
C

P

M
O

E
A-

II
 N

C
A

- M
PT

C
P

LP
 C

A
- M

PT
C

P

LP
 N

C
A

- M
PT

C
P

40

50

60

70

80

90

100

Fl
ow

 S
at

is
fa

ct
io

n
R

at
e

(%
)

Figure 5.7: Boxplot showing the distribution of the flow’s satisfaction rate. EA: Evolutionary
Algorithm, LP: Linear Programming, CA: Considering Acknowledgements, NCA: Not Consider-
ing Acknowledgements.

66

Results Performance Analysis

5.3.3 The Advantage of Having Multiple Solutions

As we have seen from Figure 5.7, using TCP and a Per-Packet multipath routing

algorithm leads to an overall lower flow satisfaction rate when compared to its

MPTCP counterpart. In this section, we assume that only the standard TCP

protocol is available. This setup is specifically chosen to demonstrate the advantage

of having multiple valid solutions to choose from when using an EA, compared to

having only a single solution, as is the case when using an LP solver. Because

only TCP is assumed to be available, solutions that only use Per-Flow multipath,

i.e. solutions where no flow is split over multiple paths, are preferred. Modifying

the PC-MFMC problem to restrict a flow to only use a single path from the set

of paths available to said flow, drastically increases the problem’s complexity as it

now becomes NP-hard [14]. In this section, the MOEA-I algorithm is used because

of its flow splits minimisation objective, that steers the EA to prefer Per-Flow

over Per-Packet multipath solutions. From the multiple solutions generated by

the algorithm, the solution offering the highest network flow, without resorting to

Per-Packet multipath is chosen. An EA generated solution with zero flow splits is

classified as a Per-Flow multipath solution because even though all the flows are

travelling over a single path, different flows from the same source-destination pair

are allowed to take different paths.

Figure 5.8 shows orthogonal projections of the Pareto Front generated by the

MOEA-I algorithm with the LP found solutions overlaid on the same plot for

comparison purposes. Figure 5.8 is generated using the third flow set of the high,

150 flows network load when using the KSREDP path selection algorithm. This

particular flow set is chosen because the LP solution has the largest number of flow

splits compared to all the others. Such a gap makes for easier network performance

comparison between the two algorithms. The PC-MFMC-1 results are generated

by solving the PC-MFMC problem with k = 1. If multiple paths with the same

cost exists, one is chosen at random. The PC-MFMC-1 results are included as

they represent the highest attainable network flow that can be achieved if a sin-

gle path routing algorithm, such as OSPF is used. Note that the total network

flow allocated by PC-MFMC-1 is an upper bound and does not mean that a net-

work running OSPF will reach the same level of network performance as given by

the PC-MFMC-1 solution, assuming the same flow set. The main reason behind

the performance difference between PC-MFMC-1 and an actual network running

OSPF is that PC-MFMC-1 is globally optimal while OSPF is not. In other words,

when generating a routing solution using PC-MFMC-1, all flows using the network

are taken into consideration to avoid any link capacity overload. Such a constraint

may result in flows being assigned no data rate at all, which is why the Proportion

67

Results Performance Analysis

0 5 10 15 20 25
Total Flow Splits (3)

2200

2300

2400

2500

2600

2700
To

ta
l N

et
w

or
k

Fl
ow

 (
1)

MOEA-I
PC-MFMC
PC-MFMC-1
MF
MF NS

(a)

90 100 110 120 130 140 150
Proportion of flows with Minimum Delay (2)

2200

2300

2400

2500

2600

2700

To
ta

l N
et

w
or

k
Fl

ow
 (

1)

MOEA-I
PC-MFMC
PC-MFMC-1
MF
MF NS

(b)

Figure 5.8: Orthogonal projections of the Pareto front for the MOEA-I algorithm together
with the LP solutions. The red (MF) and the purple (MF NS) circles mark the solutions with
maximum network flow, and maximum network flow with no flow splits, respectively. PC-MFMC-
1 represents the solution found by LP when only the shortest path is available and is used to
represent the maximum attainable network flow by OSPF.

68

Results Performance Analysis

of Flows with Minimum Delay objective value is not equal to its maximum value

under the PC-MFMC-1 scenario. On the contrary, a network using the OSPF rout-

ing algorithm does not have the means to control the traffic entering the network,

meaning that all flows transmit at their requested data rate. The avoidance of net-

work congestion when using an OSPF like routing algorithm is the responsibility

of transport layer protocols such as TCP.

Looking at the Total Flow Splits objective value for the PC-MFMC found solution

in Figure 5.8(a), it is evident that LP resorted to the use of Per-Packet multipath to

reach the maximum network flow for the given path set. Again, using Figure 5.8(a)

for reference, it is abundantly clear that the solution with no flow splits has a much

lower Total Network Flow than its PC-MFMC counterpart. Therefore, one expects

that the PC-MFMC solution would have the best network performance. However,

this is not the case as can be observed by looking at Figure 5.9. Figure 5.9(a) shows

the distribution of the flow’s received Goodput. Comparing the EA and PC-MFMC

solutions, in terms of goodput, both of their profiles are very similar with the EA

having a higher number of flows that are allocated some data rate, as well as having

a higher probability that a flow receives a goodput rate of at least 10Mbps. The

high number of flows allocated some data rate given by the EA solution is thanks

to the the inherent design property of the Proportion of Flows with Minimum

Delay objective with solutions that have unassigned flows scoring lower than their

counterparts. On the other hand, the LP solution has a higher number of flows

receiving a goodput larger than 15Mbps. Both solutions have a similar number

of flows that are receiving a goodput of at least 23Mbps. Analysing this figure

we can see that OSPF is the only solution where all of the flows are receiving

something. However, this comes at the cost of the overall network performance

as evidenced by the steep decline in the number of flows receiving at least at a

rate of 10Mbps, when compared to the two other presented solutions. Such poor

performance with respect to OSPF is caused by its inability to use multipath and

the network congestion caused when a link is used beyond its capacity.

Clear signs of congestion when using OSPF are evident in Figure 5.9(b). Fig-

ure 5.9(b) shows the distribution of the mean flow’s delay at the application level.

The advantage of the EA solution over the PC-MFMC is even more pronounced

in Figure 5.9(b), where the EA algorithm’s solution has a better delay profile and

a lower maximum delay value when compared to both the PC-MFMC and OSPF

solutions. Such a result bears more weight when considering the fact that the EA’s

routing solution has a larger number of flows that are using the network at any one

time.

69

Results Performance Analysis

0510152025
Mean Received Goodput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

PC-MFMC (2145.92Mbps)
MOEA-I (MF NS) (2223.41Mbps)
OSPF (1683.33Mbps)

(a) Probability that a flow achieves at least a given average Received Goodput in Mbps, in simulation. The actual
total network flow achieved by each algorithm is shown in parentheses.

0 50 100 150 200 250 300
Mean App Received Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

PC-MFMC (47.23ms)
MOEA-I (MF NS) (31.23ms)
OSPF (85.73ms)

(b) Probability that an application experiences at most a given average delay, in simulation. The mean application
delay achieved by each algorithm is shown in parentheses.

Figure 5.9: Network Performance of the MOEA-I and PC-MFMC generated solutions when
using TCP.

70

Results Performance Analysis

The setup used here, together with the presented results, demonstrate the advan-

tage of having multiple solutions generated by a true multi-objective solver, such

as an EA, even though one loses the optimality guarantee.

5.3.4 Hybrid Routing Algorithm

So far we have compared the EA and LP routing solutions against each other,

highlighting the strength and weaknesses of both. In this section we merge the

two algorithms (EA and LP) to create a single Hybrid routing algorithm. The

MOEA-II will be used as the foundation for the Hybrid routing algorithm; however,

the techniques used here can be easily transferred to any population based EA

algorithm. The Hybrid algorithm is a minor modification over the standard MOEA-

II algorithm. The only modification to the MOEA-II algorithm is the addition of

the LP optimal solution to the initial population. Note that the population size

remains equal to 800 including the LP optimal solution. The advantages of such

a Hybrid algorithm are twofold. First, the final population generated by the EA

routing algorithm is guaranteed to have a solution with the highest data rate the

network is able to handle, thanks to the elitist nature of the NSGA-II algorithm.

Second, the number of generations required by the EA to converge is reduced, as

can be seen from Figure 5.10. In Figure 5.10, the Hybrid algorithm reports a mean

euclidean distance of zero for the first few generations because the PC-MFMC

solution dominates all of the generated solutions. Therefore, the Pareto Front is

only made up of a single point (the PC-MFMC solution), which results in a zero

mean euclidean distance. The obvious downside of such a Hybrid algorithm is that

both the LP and EA algorithms have to be run. Figure 5.11 shows the generated

Pareto Front of both the standard MOEA-II and Hybrid algorithms. Figure 5.11

is using the third flow set, for the 150 flow, high network load when using the KSP

path selection mechanism. This particular flow set has been chosen because of its

gap in the network flow allocated between the PC-MFMC optimal solution and the

solutions found by the MOEA-II algorithm. From Figure 5.11 it can be observed

that the Hybrid algorithm found a number of solutions that dominate those of

the standard MOEA-II algorithm. However, the final Pareto Front of the Hybrid

algorithm is much tighter than the one found by the MOEA-II. This is not ideal,

as it shows that the Hybrid algorithm is not looking into all directions equally,

but rather leaning towards more network flow oriented solutions. The Hybrid

algorithm was developed and tested during the last stages of this research work;

therefore, there was not enough time left to identify the cause of such constricted

Pareto Front. To try and identify the cause of such a problem, one may start

by looking at the entire evolution of the algorithm to determine at which stages

71

Results Performance Analysis

0 50 100 150 200 250 300 350 400
Generation Number

0.00

0.01

0.02

0.03

0.04

0.05
M

ea
n

E
uc

lid
ea

n
D

is
ta

nc
e

be
tw

ee
n

Pa
re

to
 F

ro
nt

s

MOEA-II
Hybrid

Figure 5.10: Mean Euclidean distance between successive Pareto Fronts comparing the hybrid
and non-hybrid versions of the EA.

the Pareto Front starts to close up. If this behaviour is noticed even at the early

generations, the insertion of the optimal in the first generation might be too early.

Having an optimal solution in the initial population might require tweaks to the

EA parameters to either increase or decrease the aggressiveness of the mutation

operator. Having said this, the Hybrid algorithm still managed to achieve what it

was originally set out to do.

The network performance of the solutions marked in Figure 5.11 are given in Fig-

ure 5.12. As expected, the Hybrid MF solution has the overall better network

goodput performance when compared to all of the other points chosen here. OSPF

has the worst overall performance both in terms of goodput and mean application

delay, even though all the flows are receiving some flow. Note that OSPF’s delay

performance is kept in check thanks to the TCP congestion control mechanism

that tries to avoid network congestion. Observe that the MOEA-II (MF) solution

has an overall better delay performance when compared to the Hybrid (MF) solu-

tion. This means that even though MOEA-II’s Estimated Mean End-to-End Delay

objective is an approximation, it correlates well with the actual delay performance.

72

Results Performance Analysis

16 18 20 22 24
Estimated Mean End-To-End Delay (4)

1600

1800

2000

2200

2400

To
ta

l N
et

w
or

k
Fl

ow
 (

1)

MOEA-II
Hybrid
PC-MFMC-1
MOEA-II (MF)
Hybrid (MF)

Figure 5.11: MOEA-II represents the Pareto Front generated by MOEA-II when the population
is generated entirely at random. Hybrid represents the Pareto Front generated by MOEA-II when
the LP solution is added in the initial population. PC-MFMC-1 represents the solution found
by LP when only the shortest path is available and is used to represent the maximum attainable
network flow by OSPF. MF marks the Maximum network Flow point for a given population.

73

Results Performance Analysis

0510152025
Mean Received Goodput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

Hybrid (MF) (2274.64Mbps)
MOEA-II (MF) (2172.29Mbps)
OSPF (1683.33Mbps)

(a) Probability that a flow achieves at least a given average Received Goodput in Mbps, in simulation. The total
received Goodput achieved by each algorithm is shown in parentheses.

0 50 100 150 200 250 300
Mean App Received Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Hybrid (MF) (25.48ms)
MOEA-II (MF) (25.33ms)
OSPF (85.73ms)

(b) Probability that a flow experiences at most a given average end-to-end delay at the application layer, in
simulation. The mean application delay achieved by each algorithm is shown in parentheses.

Figure 5.12: Network Performance comparison between the MOEA-II and Hybrid algorithm.
MF refers to the solution with the highest network flow value.

74

Results Performance Analysis

5.3.5 Effect of Path Selection Algorithm on Network Per-

formance

The method used to retrieve the set of paths a flow is allowed to use affects the final

routing solution and therefore the network performance. As we have seen in the

results presented in Section 5.1.3, both the k value and the path selection algorithm

have an effect on the amount of data rate a routing solution is able to carry over a

given, fixed, network topology. In this section we back up the statements made in

Section 3.7 by providing network simulation results. As explained in Section 3.7,

the KSP algorithm is suited for applications that prioritise delay over throughput,

while the opposite is true for the KSREDP algorithm.

The KSREDP algorithm is preferred by throughput oriented flows as it has been

designed to increase link diversity. As the number of different links available to a

flow increases, so does the probability of assigning higher capacity due to the fact

that the paths do not have overlapping links. Having said this, using the KSREDP

algorithm for a flow is not guaranteed to return better performance than the KSP

as this is highly dependent on the network topology and flow set. On the other

hand, when using the KSP algorithm, it is guaranteed that the shortest k paths are

made available to a flow. This means that paths chosen by the KSP algorithm will

always outperform or at least match the paths returned by the KSREDP algorithm,

in terms of delay. However, the paths returned by the KSREDP algorithm are not

guaranteed to always outperform the paths returned by the KSP algorithm, in

terms of network capacity.

The network topology used in this work is highly inter-connected; therefore, there

is a good chance that the paths found by the KSREDP path selection mecha-

nism do not share a large number of links. This link variation brought forward

by the KSREDP algorithm allows the routing algorithm to find solutions with a

higher amount of total allocated data rate when compared to their KSP alternative.

However, the higher network capacity offered by the KSREDP algorithm comes at

the cost of worse delay performance when compared to the KSP algorithm. The

network simulation results shown in Figure 5.13, confirm such statements. The

network performance results shown in Figure 5.13 only use routing solutions to the

PC-MFMC using an LP solver. Only LP solutions are used here due to LP’s op-

timality guarantee, such that any performance difference will be solely attributed

to the different path selection methods used. The probabilities in Figure 5.13(b)

do not add up to one as unassigned flows are set with a delay value of infinity.

Setting unassigned flows with a delay value of 0ms would result in such flows to be

perceived as having a very good delay performance, which is not the case; there-

75

Results Performance Analysis

0510152025
Mean Received Goodput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

KSP (2192.50Mbps)
KSREDP (2371.78Mbps)

(a) Probability that a flow achieves at least a given average Received Goodput in Mbps, in simulation. The total
received Goodput achieved by each algorithm is shown in parentheses.

0 20 40 60 80 100 120
Mean App Received Delay (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ili

ty

KSP (20.84ms)
KSREDP (29.95ms)

(b) Probability that a flow experiences at most a given average end-to-end delay at the application layer, in
simulation. The mean application delay achieved by each algorithm is shown in parentheses.

Figure 5.13: Network performance comparison between the KSP and KSREDP path selection
algorithms. Figure generated using the High network load flow set 5 with 150 flows.

76

Results Performance Analysis

fore, we have opted to set unassigned flows with a delay value equal to infinity.

Based on the results shown in Figure 5.13, flows that prefer throughput over delay

will be better off using the KSREDP path selection algorithm as it increases their

likelihood of being allocated more data rate. On the other hand, flows that require

the best delay performance should opt to use the KSP algorithm. The scale of the

performance difference between the two path selection algorithms relies heavily on

the network topology. Developing and testing a solution where each flow gets to

choose its own path selection mechanism based on its priorities is an area worth

looking into further.

77

Chapter 6

Conclusion

The aim of this research has been to increase the efficiency of already deployed

computer networks by developing a globally optimal, multipath capable routing

algorithm for SDN networks. After conducting a thorough literature review on the

subject, it became apparent that although multipath routing algorithms already

exist, there is a lack of a routing algorithm capable of finding a routing solution

for multiple objectives at once. Therefore, a novel routing algorithm framework

using EAs is designed. The designed routing algorithm is both globally optimal,

and Per-Packet multipath capable, to ensure the best use of the available network

resources. A globally optimal routing algorithm is an algorithm that takes into

account all the flows currently using the network when generating a solution. Such

a routing algorithm is used in this work as it avoids network congestion caused

by over-used network links thanks to its global network knowledge. Gaining such

global knowledge when using a distributed architecture is nearly impossible to

do efficiently, which is why we opted to use the SDN network architecture instead.

The SDN architecture is a relatively new architecture that centralises the network’s

control plane into a single entity. This control plane centralisation gives the network

controller all the information required for the deployment of a globally optimal

routing algorithm and is the main reason behind our decision to use SDNs.

Current SDN switches are unable to handle any set of flow split ratios without run-

ning into scalability problems. Therefore, modifications are proposed that enable

an SDN switch to handle any flow split ratio in a scalable fashion and allow the

testing of the developed routing algorithm on a simulated network. While split-

ting a flow at the packet level is a solution that works well with connection-less

protocols, such as UDP, connection oriented protocols, such as TCP are negatively

impacted by the use of a Per-Packet multipath solution. An alternate solution

of deploying Per-Packet has been proposed based on the MPTCP protocol. The

78

Conclusion

MPTCP protocol is modified to include a stochastic scheduler capable of splitting

a flow in the ratios instructed by the routing algorithm. The use of a globally

optimal routing algorithm voided the need for MPTCP’s shared congestion con-

trol algorithm, and is not implemented in this work. The combined use of the

updated MPTCP protocol, and the inclusion of the TCP acknowledgement flows

when generating a routing solution, guarantee, with a very high probability, that

a flow reaches the data rate assigned to it by the routing algorithm. Such a claim

is backed up with results generated using network simulations.

EAs are known to be sub-optimal; however, the EAs proposed here find solutions

that are just 2% off the optimal flow solution found using LP for all the scenarios

considered here. The main advantage of a multi-objective solver is the provision

of a number of different viable solutions with different compromises on each of

the objectives. The advantages of such a feature have been used in a setup where

only standard TCP is assumed to be available. The ability to choose a solution

from a Pareto Front resulted in the chosen solution to have better overall goodput

and delay performance when compared to the optimal solution found by LP. The

LP formulations could not be updated to cater for such a scenario (use Per-Flow

multipath exclusively), without making the problem an NP-hard one. Finally, a

Hybrid algorithm is proposed that combines the multi-objective nature of EAs

with the optimality guarantee of LP. The Hybrid algorithm works by inserting the

LP optimal solution in the EA’s initial population. Since an elitist EA is used

here, the LP optimal solution is guaranteed to be present in the final population.

Additionally, the presence of the LP solution in the EA’s population increases its

convergence rate reducing the number of generations required. Under all conditions

considered in this work, all of the developed routing algorithms outperform OSPF

under network simulation conditions. This performance advantage is thanks to

the routing algorithm’s ability to use Per-Packet multipath, and the ability of the

modified MPTCP protocol that allows TCP applications to reach the data rate

assigned to them by the routing algorithm.

To summarise, this work presents a MOEA framework for generating globally opti-

mal, Per-Packet multipath, routing solutions. The EA framework developed here

can be used by future researchers that have to solve a similar problem to the one

tackled here. Obviously, the objectives may differ than the ones used here and will

therefore have to be modified based on the problem that needs to be solved. Al-

though positive results have been demonstrated, limitations on the presented work

exists and will be tackled in the next section.

79

Conclusion Limitations and Future Work

6.1 Limitations and Future Work

The major limitation surrounding this work is the lack of testing on an actual

network. In order to overcome such a limitation, three main issues have to be

tackled and overcome. First, the MOEA algorithm has been written in Python and

runs on a single thread. Python was chosen because of it’s reduced development

time which fits well with this project’s priorities which were focused more towards

the algorithm’s network performance rather than its deployability. However, using

Python resulted in an unacceptably long running time for the MOEA-II algorithm

to finish. This makes the deployment of the MOEA-II algorithm on an actual

network unfeasible. Therefore, implementing the algorithm in a more efficient

language, such as C++, and parallelising the EA are the first steps that must

be taken if such an algorithm is to be tested on an actual network. Developing

the EA to work on Graphical Processing Unit (GPU) processing is an avenue

worth investigating due to their high number of processor count. Second, a third

objective needs to be added to the MOEA-II that minimises the number of routing

table changes required to deploy the new routing solution when given the current

solution that the network is currently running. This objective is important as it

reduces the number of rules that have to be installed on the network, increasing

the network’s stability. Careful consideration has to be taken when designing such

an objective to ensure that the algorithm is still exploring solutions that require

a large number of rule changes. This property is important as there might be

instances where the network efficiency would be heavily impacted if only a small

number of rule changes are allowed. To help avoid such scenarios, the solution

to the PC-MFMC may be inserted in the initial population, as is done in the

Hybrid algorithm. Third, the updates done to the MPTCP protocol in Ns3 have

to be added to the Linux Kernel’s implementation. Once these tasks have been

completed, the MOEA-II routing algorithm will be able to handle a dynamic flow

set and make it ready for testing on a real SDN network.

To date, all the network simulations assume switches are equipped with an infinite

buffer size. Network simulations with finite buffers will provide a closer to reality

depiction of the performance gap between the devised MOEA algorithm and the

OSPF solution. We conjecture that with the use of finite buffers, the gap between

OSPF and the developed system will increase due to the packet drops caused by

buffer overflow in times of network congestion. The reason being that TCP treats

a packet drop as a sign of congestion and immediately reduces the transmission

rate. In the current setup, due to infinite buffers, TCP is allowed to adjust to the

ever increasing RTT.

80

Conclusion Limitations and Future Work

Although no design decision has been made on the basis of the network topology

being used here, the fact remains that the systems developed here have been thor-

oughly tested on a single network topology. Every effort has been made to ensure

that the routing algorithm’s design is independent of the topology it is deployed on,

tests on other network topologies are required to confirm this statement. Having

said this, the chosen topology used in this work has enough complexity in terms

of number of nodes, links and paths between source-destination pairs that gives us

enough confidence that the solutions proposed here will work on other topologies

without any modifications.

As can be observed from the results presented in this work, the path selection

algorithm has an effect on the network performance. A path selection algorithm

tailored for each flow’s requirements will reduce the EA’s running time as paths

that do not meet the flow’s criteria are pruned, resulting in a smaller chromosome

size and consequently, a reduced search space.

During the design stages of new objectives, minor changes to the mutation operator

have been carried out to reflect the changes in the objectives. This was done in

an effort to increase the EA’s convergence rate and improve the quality of the

generated solutions. Designing a mutation operator that is independent of the

objectives being used increases the versatility of the proposed EA framework as it

decouples the objectives from the mutation operators. However, the design of such

a mutation operator is not trivial, as the number of generations required by the

algorithm to converge must not be heavily impacted because of the addition of a

more generic mutation operator.

81

References

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2016–2021”,

Cisco Public White Paper, Jun. 2017.

[2] S. K. Singh, T. Das, and A. Jukan, “A Survey on Internet Multipath Routing

and Provisioning”, IEEE Communications Surveys Tutorials, vol. 17, no. 4,

pp. 2157–2175, 2015, issn: 1553-877X. doi: 10.1109/COMST.2015.2460222.

[3] S. Habib, J. Qadir, A. Ali, D. Habib, M. Li, and A. Sathiaseelan, “The Past,

Present, and Future of Transport-Layer Multipath”, arXiv:1601.06043 [cs],

Jan. 2016, arXiv: 1601.06043. (visited on 12/10/2016).

[4] C. E. Hopps, “Analysis of an equal-cost multi-path algorithm”, RFC 2992,

Nov. 2000.

[5] N. Farrugia, V. Buttigieg, and J. A. Briffa, “A Globally Optimised Multi-

path Routing Algorithm Using SDN”, in 21st Conference on Innovation in

Clouds, Internet and Networks and Workshops (ICIN), Paris, France, Feb.

2018, pp. 1–8. doi: 10.1109/ICIN.2018.8401633.

[6] X. Liu, S. Mohanraj, M. Pioro, and D. Medhi, “Multipath Routing from a

Traffic Engineering Perspective: How Beneficial Is It?”, in 2014 IEEE 22nd

International Conference on Network Protocols, IEEE, Oct. 2014, pp. 143–

154, isbn: 978-1-4799-6204-4. doi: 10.1109/ICNP.2014.34.

[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and

R. Wattenhofer, “Achieving High Utilization with Software-Driven WAN”,

SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 15–26, Aug. 2013,

issn: 0146-4833. doi: 10.1145/2534169.2486012.

[8] W. Dai, J. Zhang, and X. Sun, “On solving multi-commodity flow problems:

An experimental evaluation”, Chinese Journal of Aeronautics, vol. 30, no. 4,

pp. 1481–1492, Aug. 2017, issn: 10009361. doi: 10.1016/j.cja.2017.05.

012.

[9] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Sur-

vey”, Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, issn:

0018-9219. doi: 10.1109/JPROC.2014.2371999.

82

https://doi.org/10.1109/COMST.2015.2460222
https://doi.org/10.1109/ICIN.2018.8401633
https://doi.org/10.1109/ICNP.2014.34
https://doi.org/10.1145/2534169.2486012
https://doi.org/10.1016/j.cja.2017.05.012
https://doi.org/10.1016/j.cja.2017.05.012
https://doi.org/10.1109/JPROC.2014.2371999

[10] N. Farrugia, J. A. Briffa, and V. Buttigieg, “An Evolutionary Multipath

Routing Algorithm using SDN”, in 2018 9th International Conference on the

Network of the Future (NOF), Nov. 2018, pp. 1–8. doi: 10.1109/NOF.2018.

8597865.

[11] ——, “Solving the Multi-Commodity Flow Problem using a Multi-Objective

Genetic Algorithm”, in 2019 IEEE Congress on Evolutionary Computation

(CEC), Jun. 2019, pp. 2816–2823. doi: 10.1109/CEC.2019.8790160.

[12] N. Farrugia, V. Buttigieg, and J. A. Briffa, “Multi-Stream TCP: Leveraging

the Performance of a Per-Packet Multipath Routing Algorithm When Us-

ing TCP and SDN”, in 2019 44th Conference on Local Computer Networks

(LCN), Oct. 2019.

[13] W. Dai, X. Sun, and S. Wandelt, “Finding Feasible Solutions for Multi-

Commodity Flow Problems”, in 2016 35th Chinese Control Conference (CCC),

IEEE, Jul. 2016, pp. 2878–2883, isbn: 978-988-15639-1-0. doi: 10.1109/

ChiCC.2016.7553801.

[14] H. Masri, S. Krichen, and A. Guitouni, “An ant colony optimization meta-

heuristic for solving bi-objective multi-sources multicommodity communica-

tion flow problem”, in 2011 4th Joint IFIP Wireless and Mobile Networking

Conference (WMNC 2011), Oct. 2011, pp. 1–8. doi: 10.1109/WMNC.2011.

6097256.

[15] E. M. El-Alfy, S. Z. Selim, and S. N. Mujahid, “Solving the minimum-cost

constrained multipath routing with load balancing in MPLS networks using

an evolutionary method”, in 2007 IEEE Congress on Evolutionary Compu-

tation, Sep. 2007, pp. 4433–4438. doi: 10.1109/CEC.2007.4425051.

[16] E. M. El-Alfy, “Flow-based path selection for Internet traffic engineering with

NSGA-II”, in 2010 17th International Conference on Telecommunications,

Apr. 2010, pp. 621–627. doi: 10.1109/ICTEL.2010.5478839.

[17] E.-S. M. El-Alfy, S. N. Mujahid, and S. Z. Selim, “A Pareto-based hybrid

multiobjective evolutionary approach for constrained multipath traffic engi-

neering optimization in MPLS/GMPLS networks”, Journal of Network and

Computer Applications, vol. 36, no. 4, pp. 1196–1207, 2013, issn: 1084-8045.

doi: https://doi.org/10.1016/j.jnca.2013.02.008.

[18] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic

engineering in SDN-OpenFlow networks”, Computer Networks, vol. 71, pp. 1–

30, Oct. 2014, issn: 13891286. doi: 10.1016/j.comnet.2014.06.002.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.

Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4:

Experience with a Globally-Deployed Software Defined WAN”, in Proceedings

of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13,

83

https://doi.org/10.1109/NOF.2018.8597865
https://doi.org/10.1109/NOF.2018.8597865
https://doi.org/10.1109/CEC.2019.8790160
https://doi.org/10.1109/ChiCC.2016.7553801
https://doi.org/10.1109/ChiCC.2016.7553801
https://doi.org/10.1109/WMNC.2011.6097256
https://doi.org/10.1109/WMNC.2011.6097256
https://doi.org/10.1109/CEC.2007.4425051
https://doi.org/10.1109/ICTEL.2010.5478839
https://doi.org/https://doi.org/10.1016/j.jnca.2013.02.008
https://doi.org/10.1016/j.comnet.2014.06.002

New York, NY, USA: ACM, 2013, pp. 3–14, isbn: 978-1-4503-2056-6. doi:

10.1145/2486001.2486019.

[20] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA, USA:

Bradford Company, 2004, isbn: 0262042193.

[21] A. D. Stefano, G. Cammarata, G. Morana, and D. Zito, “A4SDN - Adaptive

Alienated Ant Algorithm for Software-Defined Networking”, in 2015 10th

International Conference on P2P, Parallel, Grid, Cloud and Internet Com-

puting (3PGCIC), Nov. 2015, pp. 344–350, isbn: 978-1-4673-9473-4. doi:

10.1109/3PGCIC.2015.120.

[22] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New

York, NY, USA: John Wiley & Sons, Inc., 2001, isbn: 9780470743614.

[23] M. P. Kleeman, B. A. Seibert, G. B. Lamont, K. M. Hopkinson, and S. R. Gra-

ham, “Solving Multicommodity Capacitated Network Design Problems Using

Multiobjective Evolutionary Algorithms”, IEEE Transactions on Evolution-

ary Computation, vol. 16, no. 4, pp. 449–471, Aug. 2012, issn: 1941-0026.

doi: 10.1109/TEVC.2011.2125968.

[24] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, and H. Zhang, “Incremental De-

ployment for Traffic Engineering in Hybrid SDN Network”, in 2015 IEEE

34th International Performance Computing and Communications Conference

(IPCCC), Dec. 2015, pp. 1–8. doi: 10.1109/PCCC.2015.7410320.

[25] Y.-S. Yu and C.-H. Ke, “Genetic algorithm-based routing method for en-

hanced video delivery over software defined networks”, International Journal

of Communication Systems, vol. 31, no. 1, e3391, Jan. 2018, issn: 10745351.

doi: 10.1002/dac.3391.

[26] M. T. M. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimiza-

tion: fundamentals and evolutionary methods”, Natural Computing, vol. 17,

no. 3, pp. 585–609, Sep. 2018, issn: 1572-9796. doi: 10.1007/s11047-018-

9685-y.

[27] E. A. K. Mishra, E. Y. Mohapatra, and E. A. K. Mishra, “Multi-Objective Ge-

netic Algorithm: A Comprehensive Survey”, International Journal of Emerg-

ing Technology and Advanced Engineering, vol. 3, no. 2, pp. 81–90, Feb. 2013.

[28] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, “Mul-

tiobjective evolutionary algorithms: A survey of the state of the art”, Swarm

and Evolutionary Computation, vol. 1, no. 1, pp. 32–49, 2011, issn: 2210-

6502. doi: https://doi.org/10.1016/j.swevo.2011.03.001.

[29] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization us-

ing genetic algorithms: A tutorial”, Reliability Engineering & System Safety,

vol. 91, no. 9, pp. 992–1007, 2006, Special Issue - Genetic Algorithms and

84

https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1109/3PGCIC.2015.120
https://doi.org/10.1109/TEVC.2011.2125968
https://doi.org/10.1109/PCCC.2015.7410320
https://doi.org/10.1002/dac.3391
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/https://doi.org/10.1016/j.swevo.2011.03.001

Reliability, issn: 0951-8320. doi: https://doi.org/10.1016/j.ress.

2005.11.018.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multi-

objective Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002, issn: 1089-778X. doi:

10.1109/4235.996017.

[31] N. Srinivas and K. Deb, “Muiltiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms”, Evol. Comput., vol. 2, no. 3, pp. 221–248,

Sep. 1994, issn: 1063-6560. doi: 10.1162/evco.1994.2.3.221.

[32] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algo-

rithm Using Reference-Point-Based Nondominated Sorting Approach, Part I:

Solving Problems With Box Constraints”, IEEE Transactions on Evolution-

ary Computation, vol. 18, no. 4, pp. 577–601, Aug. 2014, issn: 1941-0026.

doi: 10.1109/TEVC.2013.2281535.

[33] H. Jain and K. Deb, “An Evolutionary Many-Objective Optimization Algo-

rithm Using Reference-Point Based Nondominated Sorting Approach, Part

II: Handling Constraints and Extending to an Adaptive Approach”, IEEE

Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 602–622, Aug.

2014, issn: 1941-0026. doi: 10.1109/TEVC.2013.2281534.

[34] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength

Pareto evolutionary algorithm”, TIK-report, vol. 103, 2001.

[35] T. H. Szymanski, “Max-Flow Min-Cost Routing in a Future-Internet with

Improved QoS Guarantees”, IEEE Transactions on Communications, vol. 61,

no. 4, pp. 1485–1497, Apr. 2013, issn: 0090-6778. doi: 10.1109/TCOMM.2013.

020713.110882.

[36] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network”, Manage-

ment Science, vol. 17, no. 11, pp. 712–716, 1971. doi: 10.1287/mnsc.17.

11.712.

[37] T. Eilam-Tzoreff, “The disjoint shortest paths problem”, Discrete Applied

Mathematics, vol. 85, no. 2, pp. 113–138, 1998, issn: 0166-218X. doi: https:

//doi.org/10.1016/S0166-218X(97)00121-2.

[38] Szcześniak, Irek, Yen k-shortest paths, (2019, Sep 26). [Online]. Available:

https://github.com/iszczesniak/yen (visited on 09/26/2019).

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. MIT press, 2009.

[40] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the current

matrix multiplication time”, CoRR, vol. abs/1810.07896, 2018. arXiv: 1810.

07896. [Online]. Available: http://arxiv.org/abs/1810.07896.

85

https://doi.org/https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1109/4235.996017
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TCOMM.2013.020713.110882
https://doi.org/10.1109/TCOMM.2013.020713.110882
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/https://doi.org/10.1016/S0166-218X(97)00121-2
https://github.com/iszczesniak/yen
https://arxiv.org/abs/1810.07896
https://arxiv.org/abs/1810.07896
http://arxiv.org/abs/1810.07896

[41] M. Li, A. Lukyanenko, Z. Ou, A. Ylä-Jääski, S. Tarkoma, M. Coudron, and

S. Secci, “Multipath Transmission for the Internet: A Survey”, IEEE Com-

munications Surveys Tutorials, vol. 18, no. 4, pp. 2887–2925, 2016, issn:

1553-877X. doi: 10.1109/COMST.2016.2586112.

[42] M. Laor and L. Gendel, “The Effect of Packet Reordering in a Backbone Link

on Application Throughput”, IEEE Network, vol. 16, no. 5, pp. 28–36, Sep.

2002, issn: 0890-8044. doi: 10.1109/MNET.2002.1035115.

[43] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Cam-

pus Networks”, SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–

74, Mar. 2008, issn: 0146-4833. doi: 10.1145/1355734.1355746.

[44] P. Medagliani, J. Leguay, M. Abdullah, M. Leconte, and S. Paris, “Global

Optimization for Hash-Based Splitting”, in 2016 IEEE Global Communica-

tions Conference (GLOBECOM), Dec. 2016, pp. 1–6. doi: 10.1109/GLOCOM.

2016.7841861.

[45] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Flexible Traffic

Splitting in OpenFlow Networks”, IEEE Transactions on Network and Ser-

vice Management, vol. 13, no. 3, pp. 407–420, Sep. 2016, issn: 1932-4537.

doi: 10.1109/TNSM.2016.2580666.

[46] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural

guidelines for multipath TCP development”, Tech. Rep. 6182, Mar. 2011,

(2017, Sep 13). [Online]. Available: https : / / tools . ietf . org / html /

rfc6182.

[47] O. Bonaventure and S. Seo, Multipath TCP Deployments, (2019, Dec 11),

2016. [Online]. Available: https://www.ietfjournal.org/multipath-

tcp-deployments/ (visited on 12/11/2019).

[48] S. Zannettou, M. Sirivianos, and F. Papadopoulos, “Exploiting Path Diver-

sity in Datacenters Using MPTCP-aware SDN”, in 2016 IEEE Symposium

on Computers and Communication (ISCC), Jun. 2016, pp. 539–546. doi:

10.1109/ISCC.2016.7543794.

[49] GLPK - (GNU Linear Programming Kit), (2017, Mar 04). [Online]. Available:

https://www.gnu.org/software/glpk/ (visited on 03/04/2017).

[50] LEMON Graph Library, (2017, Mar 04). [Online]. Available: http://lemon.

cs.elte.hu/trac/lemon (visited on 03/04/2017).

[51] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,

“DEAP: Evolutionary Algorithms Made Easy”, Journal of Machine Learning

Research, vol. 13, pp. 2171–2175, Jul. 2012.

[52] Mininet, (2019, Nov 11). [Online]. Available: http://mininet.org/ (visited

on 11/11/2019).

86

https://doi.org/10.1109/COMST.2016.2586112
https://doi.org/10.1109/MNET.2002.1035115
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/GLOCOM.2016.7841861
https://doi.org/10.1109/GLOCOM.2016.7841861
https://doi.org/10.1109/TNSM.2016.2580666
https://tools.ietf.org/html/rfc6182
https://tools.ietf.org/html/rfc6182
https://www.ietfjournal.org/multipath-tcp-deployments/
https://www.ietfjournal.org/multipath-tcp-deployments/
https://doi.org/10.1109/ISCC.2016.7543794
https://www.gnu.org/software/glpk/
http://lemon.cs.elte.hu/trac/lemon
http://lemon.cs.elte.hu/trac/lemon
http://mininet.org/

[53] Omnet++ discrete event simulator, (2020, Jan 05). [Online]. Available: https:

//omnetpp.org (visited on 01/05/2020).

[54] Ns-3, (2017, Mar 04). [Online]. Available: https://www.nsnam.org/ (visited

on 03/04/2017).

[55] E. Jo, D. Pan, J. Liu, and L. Butler, “A Simulation and Emulation Study

of SDN-based Multipath Routing for Fat-Tree Data Center Networks”, in

Proceedings of the Winter Simulation Conference 2014, Dec. 2014, pp. 3072–

3083. doi: 10.1109/WSC.2014.7020145.

[56] B. A. Forouzan, Data Communications and Networking, 5th ed. McGraw-

Hill, 2013, isbn: 978-0-07-337622-6.

[57] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno Modifica-

tion to TCP’s Fast Recovery Algorithm”, Tech. Rep. 6582, Apr. 2012, (2020,

Jan 23). [Online]. Available: https://tools.ietf.org/html/rfc6582.

[58] GÉANT Topology Map, (2017, Mar 08). [Online]. Available: https://www.

geant.org/Resources/Documents/GEANT_topology_map_jan2017.pdf

(visited on 03/08/2017).

[59] GÉANT Connectivity Map, (2018, Jul 07). [Online]. Available: http://map.

geant.org (visited on 07/07/2018).

87

https://omnetpp.org
https://omnetpp.org
https://www.nsnam.org/
https://doi.org/10.1109/WSC.2014.7020145
https://tools.ietf.org/html/rfc6582
https://www.geant.org/Resources/Documents/GEANT_topology_map_jan2017.pdf
https://www.geant.org/Resources/Documents/GEANT_topology_map_jan2017.pdf
http://map.geant.org
http://map.geant.org

Appendix A

GÉANT Network Link Delays

88

GÉANT Network Link Delays

Table A.1: 2017 GÉANT Network Link Delays

Node 1 Node 2 Delay (ms) Node 1 Node 2 Delay (ms)

IS UK 34.4 IT AT 11.4
IS DK 38.3 IT MT 21.0
IE UK 8.50 IT GR 26.7
IS UK 34.4 CZ PL 5.70
UK PT 28.9 CZ HU 8.10
UK IL 64.9 AT GR 23.4
UK CY 58.7 AT SK 1.00
UK BE 5.80 AT RO 15.6
UK FR (upper) 6.30 AT HU 3.90
PT ES 9.20 AT BG 14.9
ES FR (upper) 19.2 AT HR 4.90
ES FR (lower) 14.9 AT SI 5.10
FR (upper) CH 7.50 SI HR 2.10
NL DK 11.3 HR HU 5.50
NL DE (upper) 6.70 SK HU 2.90
NL LU 5.40 ME HU 10.3
NL BE 3.20 HU RO 11.7
LU DE (lower) 3.40 HU BG 11.5
FR (lower) CH 6.00 HU TR 19.5
FR (lower) IT 7.10 HU RS 5.80
NO DK 8.80 PL LT 9.80
NO SE 7.60 PL BY 13.3
DK SE 9.50 PL UA 17.6
DK DE (upper) 5.30 EE LV 5.10
SE FI 7.20 LV LT 4.20
CH DE (lower) 8.60 MK BG 3.20
CH IT 4.60 BG RO 5.40
DE (lower) DE (upper) 7.20 RO MD 6.50
DE (lower) PL 11.4 DE (lower) AT 10.9
DE (lower) CY 47.3 DE (lower) TR 34.1
DE (lower) CZ 7.50 DE (lower) IL 53.6
DE (lower) HU 14.8 DE (upper) EE 20.3
DE (lower) NL 6.60

89

	Introduction
	Aims and Objectives
	List of Contributions
	List of Publications
	Structure

	Literature Review
	Multi-Commodity Flow Problem
	Traffic Engineering using Software Defined Networks
	Heuristic algorithms
	Single vs Multi Objective problems
	Multi-Objective Evolutionary Algorithms

	Globally Optimal Multipath Routing
	Notation
	Path Constrained Maximum Flow Minimum Cost
	Evolutionary Based Routing Algorithm Framework
	Chromosome Representation
	Initial Population Generation
	Crossover
	Mutation
	Constraint Handling
	Excess Removal Algorithm

	MOEA-I
	Objectives
	Mutation

	MOEA-II
	Objectives
	Mutation

	The role of SDN in the deployment of a globally optimised solution
	Path Selection Algorithms
	Complexity Analysis
	MOEA
	LP
	Complexity comparison: MOEA vs LP

	Protocol Design and Implementation Issues
	Per-Packet Multipath
	Split at Switch (PPFS)
	Split at Source (MPTCP)

	Linear Programming Solver
	Evolutionary Algorithm
	Network Simulator

	Results
	Setup
	Network Topology
	Flow Setup
	Path Setup

	MOEA Parameter Choice
	Number of Generations
	Population size

	Performance Analysis
	MOEA vs LP
	Promised vs Actual Network Performance
	The Advantage of Having Multiple Solutions
	Hybrid Routing Algorithm
	Effect of Path Selection Algorithm on Network Performance

	Conclusion
	Limitations and Future Work

	GÉANT Network Link Delays

