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Abstract

This thesis presents the first comprehensive and systematic treatment of Maltese mor-
phology using machine learning techniques. Maltese is considered as a ‘mixed’ language,
reflected in the hybrid nature of the morphological system, which has elements of both
templatic systems typical of Semitic languages, and stem-based systems typical of Indo-
European ones. The research looked at three different aspects of computational morphol-
ogy, namely segmentation, relations and labelling.

The segmentation task first explored unsupervised techniques to learn potential stems
and affixes. The results were then used as the basis of the relations task, through the clus-
tering of words on the basis of their orthographic and semantic similarity. The clustering
technique was also unsupervised and used a metric to measure the disparity or similarity
of a group of words so as to improve the clusters. An evaluation of the clusters was carried
out using both experts and non-experts. The results of the non-expert group focused on
the quality of the clusters, whilst the analysis of the expert responses focused on the dif-
ferences between the concatenative and non-concatenative word clusters. Morphological
labelling of words was viewed as a classification problem and approached using super-
vised techniques. Initially, the research focused on the classification of verbal inflections,
resulting in a sequence of classifiers that represented different morphological properties.
Cascade classifiers were then built for the noun and adjective categories, and integrated
into a single classification system. The classification of grammatical category was also ex-
plored, questioning whether the morphological labels outputted by the different cascades
could be used to reinforce the classification of the grammatical category. A final evaluation
tested the full classification system on gold standard data from the MLRs corpus.

The research resulted in a morphological classification system for verbs, nouns and
adjectives. Although it has not yet achieved a sufficiently high accuracy, it provides the
foundations for a more complete morphological analyser with broader coverage. The scope
of the research was not merely a technological one, to create a morphological analyser, but
rather to investigate the hybridity of the morphological system in Maltese and how this

impacts the results of different techniques.
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Chapter 1

Introduction

1.1 The Maltese language

Maltese, the national language of the Maltese Islands, is considered as a ‘mixed’ language
with a stratum of Arabic, a Romance (Sicilian, Italian) superstratum and an English adstra-
tum. The Semitic influence is mainly evident in the basic grammatical structure, whilst the
non-Semitic aspect of the language is manifested in its lexis (see Brincat (2011) for a histor-
ical perspective, and Borg and Azzopardi-Alexander (1997) for a descriptive grammar of
Maltese). As a result of the historically different language family sources for its lexis, mor-
phology in Modern Maltese follows two systems: a root-and-pattern or templatic system
and a stem-and-affix system (Fabri, 2010; Fabri et al., 2014). The root-and-pattern system
is typical of Semitic languages, whereby inflectional and derivational forms are produced
through a pattern applied on a set of three or four consonants (also referred to as radicals)
in a specific sequence. For example, from the root vNZL one can produce the derivational

2" verbal form: ‘lower’) and nzul (nominal

forms nizel (1° verbal form: ‘descend’), nizzel (
form: ‘descent’). Through the island’s historical and cultural influences, Maltese borrowed
profusely from Romance (Sicilian and Italian in particular) as well as from English. Some of
the borrowing has been assimilated into this grammatical structure. For example, the word
namra “attraction’ is of Sicilian origin (‘innamuratu’) which has undergone the gemination
of the second consonant to become a verb — nammar ‘court, attract’. However, a num-
ber of loan words follow a purely concatenative morphology, with both inflectional and
derivational forms produced through affixation alone. Table 1.1 shows the non-perfective
(1pF) of verbs displaying these forms, gasam and gideb taking a root-based form, and accetta

and ezamina taking a stem-based form.



1.1 The Maltese language

Table 1.1 Root-based and stem-based morphology examples

gasam JQsm | gideb YGDB accéetta ezamina
‘break’ ‘lie’ ‘accept’ ‘ezamine’
1SG n-agsam n-igdeb n-accetta n-ezamina
256 t-agsam t-igdeb t-accetta t-ezamina
3SGM j-agsam j-igdeb j-accetta j-ezamina
3SGF t-agsam t-igdeb t-accetta t-ezamina
1PL n-aqsm-u n-igdb-u | n-accetta-w | n-ezamina-w
2PL t-agsm-u t-igdb-u | t-accetta-w | t-ezamina-w
3PL j-agsm-u j-igdb-u | j-accetta-w | j-ezamina-w

Since its inclusion as an official language of the European Union in 2004, there has
been a increased interest in the creation of computational linguistic tools which are ur-
gently required for tasks such as machine translation and parsing. A Maltese national
corpus (MLRS — Malta Language Resource Server) was built from various textual sources,
including newspaper articles and blogs, parliamentary debates, laws, literature and aca-
demic writings. It contains over 125 million tokens and is currently available online'. A
part-of-speech tagger was also developed (Gatt and Cépld, 2013) and the corpus was tagged
with part-of-speech category. The digitalisation of a Maltese-English dictionary is in its
final stages through an ongoing project, and will become available online’. However, com-
putational treatments of Maltese are somewhat lacking in many areas, and the lack of basic
tools makes it difficult to develop advanced NLP technologies for Maltese in the areas of
NL understanding and generation. Morphology is one such basic technology. Evidence
for this statement comes from a white paper published by the METANET consortium on
the digital status of Maltese (Rosner and Joachimsen, 2012), which concluded that the state
of language resources for Maltese is still lagging behind a number of major languages.

There are several linguistic studies that looked at different aspects of Maltese mor-
phology, such as verbal inflection and derivation (Fabri, 2009), the broken plural (Schembri,
2006), the verbal derivational system (Spagnol, 2011), the use of personal pronoun enclitics
(Camilleri, 2009), the use of gender in nouns (Farrugia, 2010) and verbal nouns (Ellul, 2015)

among others. Schembri’s work was used as the basis for a computational system that

'http://mlrs.research.um.edu.mt
?http://www.maltesedictionary.org.mt
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used a neural network to associate the singular with its respective broken plural (Farrugia,
2008). Dalli (2002) produced an initial lexicon for Maltese, and this was further developed
by Attard (2005). However, this lexicon did not materialise as an online resource. The anal-
ysis of the templatic verbs by Spagnol (2011) was used by Camilleri (2013), who created
a computational grammar for Maltese for the Resource Grammar Library (Ranta, 2011),
with a particular focus on inflectional verbal morphology. The grammar produced the full
paradigm of a verb on the basis of its root. Considering that a verb can have over 1,400
inflective forms, this resulted in a large lexicon of over 4 million words. Since the grammar
specifies the production rules to form the inflective wordforms, each word in the lexicon
contains its morphological information and its root. This resource is known as Gabra and
is available online®. Gabra allows users to query the database by searching for a specific
root or word, and displays all the inflective forms of an entry. Figure 1.1 shows part of the

entry for hareg ‘go out’.

800 /L1 MLRS: Maltese Language - | (5 hareg — Gabra x 4 Claudia

= C #f | [ mirs.research.um.edu.mt/resources/gabra/lexemes /view/5200a366e36f237975000e0a ’:’ © % =

$Apps [OPhD [l Teach € ML [CHEU -~ cDOWN [ PATCHWORK, NAGA the laughing heart Language Log @ KD  » [ Other Bookmarks
Gabra 7 n Advanced search Root search More ~ bil-Malti c

hareg

Part of speech

Verb | Word forms (Show all forms)

English gloss Indirect
take out Surface form Aspect Subject  Direct Object Object Polarity
go out
leave, resign Any 3] [ Any 4 [ any -
publish, issue, be published Arigt Perfective  P1Sg Positive
stand for election R
defray hrigtx Perfective P18g Negative
show
turn out hrigtli Perfective  P1Sg P18Sg Pasitive
break out arigtlix Perfective  P135g P18g Negative
emerge
add up hrigtlek Perfective  P18Sg P2 8g Positive
c:pmte out hrigtiekx Perfective  F18g P2 Sg Negative
oot  imEees
h-r-g hrigtlu Perfective  P1Sg P3SgMasc  Positive
Features . . .
common trans. intrans. hrigtlux Perfective ~ P1Sg P38gMasc  Negative
2
Source(s) hrigtiltha Perfective  P18g P3 Sg Fem Positive +

Spagnol2011, Falzon2013

Fig. 1.1 The Gabra online interface

Gabra is, to date, the best computational resource available in terms of morphological
information. Its main limitation is its focus on the root-and-pattern based morphology and

it is limited to the knowledge-base in its database. Although the grammar itself is available

*http://mlrs.research.um.edu.mt/resources/gabra/
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as open source, it is used only to generate all the wordforms of the encoded templates, and

is not intended to act as an actual morphological analyser.

1.1.1 Main aims and goals of this research

This research aimed to contribute further in the computational direction, providing further
digital resources for the Maltese language, focussing primarily in computational morphol-
ogy. A morphological analyser is one of the foundational tools for the computational
processing of a language, allowing further sophisticated processing tools to infer aspects
about the text being processed. To date, there was no morphological analyser for Maltese,
and the attempts in this direction dealt with only particular aspects of morphology. This
was the first systematic attempt to tackle Maltese morphology at a broader level, laying
the foundations for a future morphological processing system for Maltese.

The research also aimed to explore the hybridity of the language, and how this aspect
impacts the technological side of morphological processing. This study is the first of its
kind, with all previous work in computational morphology for Maltese focusing mainly on
the templatic (root-and-pattern) system. Where possible, we explored and evaluated how
the performance of the techniques implemented fared on the two morphological systems
and provided a discussion in the analysis of the results. The techniques implemented might
favour aspects of one system over the other, and through this analysis it was possible to
determine what worked best and for which system.

Finally, although the techniques built were only trained and tested on Maltese, the
actual framework could be applied to the computational analysis of morphology in any
language, thus contributing to the field of computational morphology in general.

In the following section (§1.2) we will give a brief overview of the properties of Maltese
morphology that this research dealt with, focusing on verbs, nouns and adjectives. §1.3
will then describe the challenges and prospects for computational morphology for Maltese.
An outline of the remainder of this thesis is provided in §1.4, together with a summary of

the main contributions of the research carried out.
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1.2 Morphological properties in the Maltese language

The main part-of-speech categories that this research dealt with were verbs, nouns and
adjectives. In this section we provide the reader with an overview of the morphological
properties of each of these categories. For a more complete review of Maltese morphology,
see Borg and Azzopardi-Alexander (1997); Grech (1980); Mifsud (1995a); Sutcliffe (1936).

In our work, no distinction was made between the concatenative (stem-and-affix) and
non-concatenative (templatic, root-and-pattern) systems. Since the aim of this work was
to create a single morphological system that would be able to treat Maltese morphology
systematically, the techniques created were applied to both systems in the same way. Sim-
ilarly, no distinction was made between inflective and derivatational morphological pro-
cesses. The techniques built were generally not expected to identify the type of word
formation or relation, but rather to identify the morphological properties of a word inde-
pendently from these aspects.

The hybridity and mixture of the two systems makes Maltese morphology an interest-
ing problem to explore from a computational perspective. Table 1.2 provides an example of
the difference between the two systems for the inflective and derivational morphological
processes. Unlike the initial example in table 1.1 shown previously, where some affixes
were common amongst the verbal inflections, the affixation for both the derivational and
inflectional processes in the following example differ for both the concatenative and non-

concatenative systems.

Table 1.2 Examples of inflection and derivation in the concatenative and non-concatenative
systems

Derivation Inflection

Concatenative
ezamina ‘examine’ ezaminatur ‘examiner’ | ezaminatr-ici, sg.f
ezaminatur-i, pl.

Non-concatenative
gideb ‘lie’ VDB giddieb ‘liar’ giddieb-a, sg.f.
giddib-in, pl.




1.2 Morphological properties in the Maltese language

1.2.1 The verb

The verb category is one of the morphologically richest in Maltese, with various morpho-
logical properties that feature in the work described in the rest of the thesis. Table 1.3
shows the inflectional paradigm of a non-concatenative verb, whilst table 1.4 shows the
paradigm of a concatenative verb. The verb agrees with the subject in terms of person (first,
second or third), number (singular or plural), and gender (masculine or feminine). In the
case of gender, it is only the third person singular that has gender assigned to it, with the
other forms being gender neutral. The verbs are inflected for tense/aspect (perfective vs

imperfective) and mood (imperative).

Table 1.3 The verbal inflections for the root vosm — gasam ‘break’

Subject Perfective Imperfective Imperative

1.sg. gsamt naqgsam -
2.sg. gsamt tagsam agsam
3.sg.m. qasam jagsam -
3.sg.f. qasmet tagsam -
1.pL gsamna nagsmu -
2.pl. gsamtu tagsmu agsmu
3.pl. qasmu jagsmu -

Table 1.4 The verbal inflections for the stem accetta ‘accept’

Subject Perfective Imperfective Imperative

1.sg. accettajt naccetta -

2.sg. accettajt taccetta accetta
3.sg.m.  accetta jaccetta -

3.sg.f. accettat taccetta -

1.pl. acCettajna  naccettaw -

2.pl. accettajtu  taccettaw accettaw
3.pl. accettaw jaccettaw -

Verbs in Maltese also take the direct and indirect pronouns (clitics), with table 1.5 pro-
viding some examples of such conjugations. A full paradigm can have over 400 forms.
Both the direct and indirect object contain information pertaining to the person, number

and gender.
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Table 1.5 Verbal inflections showing conjugations in different tenses using the direct and
indirect object

Direct Indirect

Subject Object Object Perfective Imperfective Imperative
1.sg. 2.sg. - gsamtek nagsmek -

3.sgm. 3.sgf - gasamha jagsamha -

2.pL 1.pl. - gsamtuna tagsmuna agsmuna
1.sg. - 2.sg. gsamtlek nagsamlek -

3.sgm. - 3.sg.f. gasmilha jagsmilha -

2.pL - 1.pl. gsamtulna tagsmulna agsmulna
2.sg. 3.sgm  l.sg. gsamthuli tagsamhuli agsamhuli
3.sgm. 3.sgf.  2.sg. gasamhielek jagsamhielek -

3.pL 3.pl 3.pl. gsamuhomlhom jagsmuhomlhom -

1.2.2 The noun

Nouns in Maltese can have several morphological properties, however, this discussion will
be limited to those properties that feature in our work. Maltese has simple and derived
nouns, with words such as bahar ‘sea’ being simple, and rgulija ‘manliness’ from ragel
‘man’ being derived. In the datasets used, there is no specific distinction between these
two types of nouns and both are treated in the same manner. As seen in a previous example,
nouns can also be derived from verbs — giddieb ‘liar’ from gideb ‘to lie’. Derivations could
also come from adjectives, such as bjuda ‘whiteness’ from abjad ‘white’.

For this category, the most prominent morphological properties in the data available
were gender (masculine, feminine and neutral), number (mainly singular and plural, with
some other properties such as collective, countable and singulative), diminutive and verbal
nouns. The words for some of these morphological properties are formed through different
processes — for example, the plural can be formed using either concatenative suffixation or
what is referred to as the broken plural, where the word is formed through change in the
internal structure of the word. The data used does not distinguish between concatenative
and broken plurals, but treats all the plural formations as a single class. In the case of
gender, nouns can either be exclusively masculine or feminine, or the feminine form can
be produced from the masculine. Table 1.6 provides a number of examples to demonstrate

some of the differences in each of the properties.
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Table 1.6 Examples of the morphological properties for the noun category

Gender Masculine Feminine
alfabet ‘alphabet’, sg.m (no feminine)
(no masculine) aljotta ‘fish soup’, sg.f.
tifel ‘boy’, sg.m. tifla ‘girl’, sg.f
Number Singular Plural Collective
aljotta “fish soup’, sg.f. aljotti, pl.
qassata ‘cheese cake’, sg.f. qassatat, pl.
omm ‘mother’, sg.f. ommijiet, pl.
bieb ‘door’, sg.m. bibien, pl.
tifel ‘boy’, sg.m. tfal (broken pl.)
barmil ‘bucket’, sg.m. bramel (broken pl.)
hobza ‘a loaf’, sg.f. hobziet (definitive pl.)  hobz ‘bread’
kelma ‘word’, sg.f. kelmiet (definitive pl.)  kliem ‘words’
kelmtejn (dual pl.)
Diminutive
xatt ‘shore’ xtajta ‘little shore’
dar ‘house’ dwejra ‘cottage’
Verbal Nouns

gabez ‘to jump’
ghallem ‘to teach’

gbiz ‘jumping’
taghlim ‘instruction’



1.3 Computational morphology for Maltese:
Challenges and prospects

1.2.3 The adjective

The main morphological properties dealt with in the present work for the adjectives are
gender (feminine, masculine), number (singular, plural) and agent (an adjective describing
that which is acted upon). The plural of an adjective is gender neutral. Although Maltese
does have the comparative form (e.g. sabih ‘nice, beautiful’, isbah ‘nicer’, l-isbah ‘nicest’),
the number of examples in our data was too small to be used, and therefore these were left

out.

Table 1.7 Examples of the morphological properties for the adjective category

Gender (Singular) Number (Plural)

Masculine Feminine

helu ‘sweet’ helwa helwin

kbir ‘great’ kbira kbar

hafif ‘light’ hafifa hfief

ohxon ‘gross, fat’ hoxna hoxnin

abjad ‘white’ bajda bojod

Agent
wahx ‘ogre, fear’ wahhaxi ‘frightening’
gerriem ‘one who gnaws’  gerriemi ‘that gnaws’
bennien ‘to cradle’ bennieni ‘rocking to sleep’

1.3 Computational morphology for Maltese:
Challenges and prospects

Computational morphology is a subfield of computational linguistics, mainly concerned
with the computational analysis of words in terms of their internal structure and the gram-
matical information that words or their constituents encode. A morphological analyser is
an important tool in natural language processing and is a stepping stone to other more
sophisticated tools such as spell checking and parsing. It is also crucial to many other
areas. For example, the treatment of morphologically rich languages is currently a focus
of work in machine translation; in natural language generation, having the ability to gen-
erate morphological forms is absolutely crucial to the production of coherent, fluent text.

Consider the following two phrase in Maltese:
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(1.1) fjura sabiha
flower.N.SG.F beautiful. Apy.SG.F

a beautiful flower

(1.2) fjura *sabih
flower.N.SG.F beautiful. Apj.Sc.M

a beautiful flower

The first example shows the correct grammatical agreement between the two words,
whilst the second examples shows incorrect agreement. If a spell checker is limited to a
list of Maltese words, it would not detect the error in the second example since its spelling
is correct. In order to detect such errors, the morphological information of words is re-
quired so that agreement between the noun and the adjective can be factored into the
process of spelling and grammar correction. The previous section described the various
morphological properties that Maltese verbs, nouns and adjectives have. Although these
were described in isolation, the syntactic structure of a sentence in Maltese must consider
these grammatical properties to ensure that the correct agreement is in place. A mor-
phological analyser is used by any computational tool that parses a language to extract
information. It can also aid in applications such as machine translation, improving the
matching and alignment between two languages. Thus a morphological analyser can be
seen as a foundational computation tool which will allow more sophisticated applications
to further process the language.

The primary challenge for Maltese morphology is finding a way of dealing with the
two morphological systems simultaneously. The hybridity of Maltese morphology makes
it interesting to study, not just from a computational or technological point of view, but
also as an exploration of how different techniques would fare on the different morpholog-
ical systems found in the language. Another challenge is the limited resources available.
During the initial stages of this project, the only resource available was the MLRs corpus.
Over the lifetime of this project, the part-of-speech tagger was developed and the corpus
annotated, the lexicon Gabra was published, and the digitalisation of a Maltese-English
dictionary is now in its final stages. The limitation in digital resources placed restrictions
on the type of techniques that could be explored. However, the more resources became
available and continued to improve over time, the more we could experiment with sophis-
ticated machine learning techniques to aid the creation of a morphological analyser for
Maltese.

From a computational perspective, this thesis attempts to examine all three aspects

of computational morphology: segmentation, relations and labelling (Hammarstrom and
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Borin, 2011). We approach the first two tasks using unsupervised techniques, starting off
from a wordlist extracted from the MLRs corpus and using various techniques to segment
and cluster morphologically related words together. The labelling task then shifts to su-
pervised techniques, using the Gabra and the dictionary datasets to model and test a mor-
phological classification system for Maltese. Although the research carried out focussed
solely on Maltese, the techniques used are language-independent, and could be applied to

other languages given the necessary resources.

1.4 OQutline and contributions of the thesis

The rest of the thesis is structured as follows. Chapter 2 provides an overview of related
work, exploring issues pertaining to morphology both from a language acquisition per-
spective, and a computational perspective. We analyse different techniques used for dif-
ferent languages and consider the treatment of computational morphology in Semitic lan-
guages as well. Chapter 3 delves into a number of unsupervised techniques aimed at auto-
matically segmenting words and clustering morphologically related words together. It also
discusses the results of an evaluation exercise carried out to assess the quality of the result-
ing clusters. Chapter 4 introduces morphological labelling as a classification problem, and
outlines a number of experiments done to model a morphological classification system for
verbs, nouns and adjectives, whilst chapter 5 looks at the classification of a word’s category
and the extent to which category classification, a task typically performed by a POS tagger,
could be performed out of context on the basis of morphological information, and if so, to
what extent such morphological labelling would help a POS tagger. An evaluation of the
resulting classification system was also carried out using expert linguists and discussed in
chapter 5. Chapter 6 concludes by providing a summary of the main contributions of this
thesis and outlines the future directions for this research.

The main contributions of this thesis are summarised as follows:

Segmentation We implemented a segmentation technique based on Keshava and Pitler
(2006) and Dasgupta and Ng (2007) that proposes potential segmentations for Maltese
words. However, since the technique works best for concatenative morphology, the
system is not restricted to a single segmentation hypothesis, but rather allows a
number of probable segmentations which can be discarded at a later stage by the
other tasks.

11
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Clustering We developed a clustering technique that considers both orthographic and
semantic similarity of words in an attempt to group together morphologically related
words. The technique builds on similar work by Baroni et al. (2002); Schone and
Jurafsky (2000, 2001), but proposes a way of measuring the disparity or similarity of
a group of words. The metric is then used as a means of improving clusters through

a merging and discarding process.

Gold standard dataset of clusters Atthe time of implementing the clustering technique,
there was no lexicon or data that could be used for evaluating the clusters. So an eval-
uation exercise was carried out that included both experts and non-experts, resulting
in manually checked clusters. This dataset could be used in future for further anal-
ysis and improvement on the clustering technique, and also from a psycholinguistic
point of view to analyse how Maltese native speakers treat derivational words in

terms of their conceptual view of related words.

Online Maltese dictionary In the effort to gather data with morphological labels, we
automatically extracted and processed a substantial part of a Maltese-English dictio-
nary. The data was essential for this project to consider nouns and adjectives. The
extracted data was also used by the dictionary project to further supplement their
data.

Morphological Classification System A system of classifiers for verbs, nouns and ad-
jectives was developed which segments words and classifies them both for their part-
of-speech category, as well as their morphological features. Although the accuracy
of the classification system is not exceptionally high for some of the features, the
system performs well overall and can easily be retrained on more, improved data as

this becomes available.

Gold standard dataset with morphological labels A small dataset was produced by
two linguistics experts to aid the evaluation of the classification system. This is the
first gold standard dataset available for Maltese morphology, and can become the

basis for a larger dataset in the future.

Apart from tangible results such as software applications and datasets, this work has
also addressed the issues of a hybrid morphological system throughout its timeline, of-
fering insight and discussions on how different techniques and ideas perform on the two

morphological systems. We did not seek to discard a technique because it does not work as
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well on one morphological system as it does on the other, but rather modified it in such a
way that it could still be useful for both systems. The main goal throughout remained that
of finding approaches which would work reasonably well on both morphological systems,
and if this did not happen, trying to understand why. At the end of the journey, this thesis
did not produce a final morphological analyser that can be used off the shelf. But it does
provide a solid foundation through which a final morphological analyser for Maltese is fea-
sible and well within reach, and with further improved datasets the classification system
can be retrained and packaged as a service for further language processing applications
for Maltese.

This thesis presents the first systematic computational treatment of Maltese morphol-
ogy using machine learning techniques. Whilst previous approaches were either rule-
based or restricted in their scope (for example, focussing only on one sub-system of Maltese

morphology), the present work does not restrict itself in this manner.
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Chapter 2

Computational Morphology

2.1 Introduction

This chapter provides a review of the state of the art in computational morphology. Com-
putational morphology systems provide the morphosyntacic analysis of words — their
output is used either directly by human users or other software systems, such as parsing,
grammar correction and other natural language processing tools. The primary focus of this
research is on the computational treatment of Maltese morphology. Whilst most studies
have been carried out from a linguistic perspective, only a handful attempt to deal with
aspects of Maltese morphology from a computational perspective (Attard, 2005; Camilleri,
2013; Cutajar, 1990; Dalli, 2002; Farrugia, 2008; Galea, 1996). Rather than being merely
a technical project with the sole aim of producing a morphological analyser for Maltese,
this research also looks at possible ways of automatically bootstrapping morphological
analysis for Maltese with the resources available at the different stages of this research.
This research unfolded as more resources for Maltese became available, exploring dif-
ferent techniques for different tasks in computational morphology. In terms of data sources
available for Maltese, the starting point was the MLRS corpus’, which contains a vast se-
lection of texts in Maltese covering several genres, such as law, literature, newspapers and
academia, with circa 120 million tokens. A part-of-speech tagger was developed and the
corpus was tagged (Gatt and Cépls, 2013) with basic category information. In parallel, a
lexicon of Maltese words, called Gabra?, was produced, primarily focusing on verbal in-

flections from a closed-set list of roots documented in Spagnol (2011). This lexicon groups

The corpus is accessible online after a free account registration through the Maltese Language Resource
Server website — http://mlrs.research.um.edu.mt/
*http://mlrs.research.um.edu.mt/resources/gabra
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morphologically related words under one lemma, and provides grammatical feature infor-
mation for each lexical entry and its related forms (Camilleri, 2013). An ongoing project is
currently in its final stages, and aims to produce a Maltese online dictionary’. Part of this
dictionary project included the automatic extraction of dictionary entries from a scanned
version of the Aquilina dictionary (Aquilina, 1987-1990). Apart from extracting the words
in the dictionary entries, it was also used to generate various wordforms through the in-
formation in each entry. This supplemented the Gabra lexicon with nouns and adjectives,
and is currently being manually checked to be completely integrated with the online lex-
icon. Our research began with an investigation of simple techniques, exploring ways in
which morphologically related words could be grouped together. As the work progressed,
we moved from segmentation and clustering of morphologically related words, towards
labelling morpheme segments. The backbone motivation throughout our work was to in-
vestigate ways in which a morphological analyser could be bootstrapped for a language
with a rich and hybrid morphology system such as that found in Maltese.

The literature review begins with a consideration of language acquisition in children.
Artificial Intelligence always looks at human behaviour and reasoning for inspiration, and
thus it is interesting for this research to look at how children learn that, for example,
walks and walked refer to the same action that occurs at different times. If a morpho-
logical analyser was already available for Maltese, this research could have investigated
further whether and how the discussed mental models could be replicated computation-
ally, and applied to Maltese. However, the focus remained on the actual production of
morphological information that can be derived from words.

Computational approaches to morphology tend to be either rule-based or data-driven.
The main focus of this research is on data-driven approaches and aims to explore different
techniques and analyse what works and what doesn’t in the case of Maltese morphol-
ogy. A short review is presented on standard rule-based approaches, providing a glimpse
of the most common techniques in morphological analysis, together with a short discus-
sion of their advantages and disadvantages. A more detailed review is then presented for
data-driven approaches, focusing on segmentation, clustering and morphological labelling
tasks. Each task has its specific challenges, and all are relevant for the computational treat-
ment of Maltese morphology.

For a standard and in-depth introduction to the vast field of morphology, see Haspel-
math and Sims (2010); Jensen (1990); Nida (1949); Spencer and Zwicky (2001) and others.

*http://www.dizzjunarjumalti.com
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2.2 Language acquisition

Children are able to learn a language in a natural way, just as they are able to learn how to
walk. Although language is a complex system, the seemingly effortless acquisition process
suggests that there is an innate capacity to learn a language which is part of the regular
developmental process of the brain. Chomsky (1965) labelled this mental capacity the
Language Acquisition Device (LAD), which enables children to construct a grammar and
generate phrases in the well-formed structure of a language. This innate capacity to learn
a language is seen as a biological property of the regular developmental process of the
brain. An opposite view is that language is learned through social interaction as a tool
for communication. Berko (1958) describes experiments using a set of plausible nonsense
words and asking young children to provide a morphological form such as the plural. One
of the results is that children are able to generalise acquired rules and apply them to words
that they have not encountered before. Berko argues that this is evidence that children
apply morphological rules to extend their vocabulary.

There is general agreement among linguists and psycholinguists that we have implicit
knowledge in acquiring a language. However opinions differ when it comes to describing
this knowledge — how does the mind store language (representation) in the mental lexicon,
and how does it access the mental lexicon (processing) when required by the speaker? Does
the mind store every word as an individual unit, or does it store morphemes? Similarly,
does the mind analyse a word before storing it, or does it leave each entry unanalysed? In
other words, when we want to use the word chairs, does our processor retrieve the word
chair and add the plural suffix -s to it, or does it simply retrieve chairs from our mental
lexicon? We briefly look into the different theories that have been debated to gain insight
on how our brain deals with morphological processes and whether this could be modelled
computationally.

Pinker and Prince (1988) state that language and cognition require rules and symbol-
manipulating processes which can generate the same performance as a human, discover-
ing their behaviours and perceptions, processing this information through the elementary
symbol-manipulating mechanisms out of which rules are composed. A rule-based sys-
tem requires a number of fundamental distinctions: (i) lexical items are unique, each an
idiosyncratic set of syntactic, semantic, morphological and phonological properties — so
words such as ring and wring are unique even though the sound sequence is phonologically
ambiguous; (ii) there is a distinction between a morphological category and its realisation

— morphemes can be syncretic and mark different categories, however a category is man-
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ifested through the words it represents; (iii) morphology describes the syntax of words
whilst phonology describes the predictable features of the sound structure. A rule-based
system can thus be seen as an organisation of these principles, feeding the information
from one component to the other. Generally, each word will have only one form for each
morphological category, and the effect is that when a general rule overlaps a specific rule,
the specific rule not only applies, but blocks the general rule from applying.

The connectionist model maps the cognitive and behavioural development model to
a computational model, namely artificial neural networks, that can be used to develop
and test different theories and model developmental change (Westermann and Mareschal,
2005). A neural net tries to approximately replicate the biological setup of the brain — a
web of neurons (processing units) connected through fibres (weighted paths) resulting in
some form of output. Rumelhart and McClelland (1986), proponents of the connection-
ist model, used neural networks to replicate the acquisition of English past tense verbs in
children, and simultaneously, strengthen the theory behind the connectionist model. The
foundation of this theory is that, although it is evident that some form of mental function
occurs to form the past tense, we do not explicitly create rules that produce these forma-
tions. Since the knowledge of word formation is implicit, it follows that there is some
form of association between the input and the output forms, without specific knowledge
of what the association consists of, and thus modelled through the implementation of a
neural network. The main issue reflected in the connectionist model is that perhaps the
concept of rules has no biological basis, and generalising new instances is based on anal-
ogy and similarity. In their experiments, Rumelhart and McClelland state that the learning
curve of their neural network is similar to the one found in children as they develop and
acquire correct use of the past tense in English.

The connectionist model has been strongly criticised, with various scholars proposing
other models. In particular, Pinker and Prince (1988) rebutted the connectionist model
on several points, arguing that the neural network model is limited in several aspects,
including: (i) it cannot represent certain words due to the structure used as input to the
neural net, (ii) it is limited in the number of ‘rules’ it can learn, and (iii) it learns associations
that are not found in any human language. Moreover, the model itself does not provide
any insight into morphological and phonological regularities, and the difference between
regular and irregular forms. And finally, according to Pinker and Prince, the model does
not accurately emulate acquisition in children, since the model’s predictions do not match
observed data from child language. In further work, Prasada and Pinker (1993) argue that

whilst the production of irregular verbs may be generalised by a neural network model,
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regular verbs should be dependent on production rules. Ling and Marinov (1993), and Ling
(1994) offer an alternative symbolic implementation that learns the past tense.

Although there have been several developments in the connectionist model (see Chris-
tiansen and Chater (1999); Elman (2005); Knight (1990); Li et al. (2004)), the debate on how
children develop morphological processes and learn word formations remains open. Wint-
ner (2010) provides a balanced overview of the computational models from both camps for
language acquisition, and identifies the aspects that must be present in models and argu-
ments if they are to be considered a plausible solution to the discussion. To begin with,
such systems must be trained and evaluated on dedicated corpora that truly reflect lan-
guage acquisition in children, such as the CHILDES corpus®. Ideally such systems should
also be evaluated on more than one language, and rigorously evaluated on real data. Com-
putational models should also focus on learning language from a set of strings, leaving
the task of inducing syntactic structure to future research. A plausible model must also
explicitly state the formal properties of the class of languages it generates and point out
that using unrestricted context-free languages is likely to over-generate. Models should
also include different biases that reflect psycholinguistic frameworks, such as item-based
learning and rote learning. With these various observations, Wintner proposed a way to
better compare and contrast computational models of language acquisition.

In providing a cognitive perspective on language acquisition, Kit (2003) questions what
is learnt first: the various cues used for discovering words or the words themselves? He
argues that cues are derived and not an innate ability that is within the child prior to the
learning process. Thus it is not possible for a child to learn cues without any experience
of knowing some words. This strengthens the idea that distributional information (repeti-
tion and co-occurring patterns) plays an important role in the lexical acquisition process.
(Kit, 2003, p. 36) states that the ‘successes in machine learning of a natural language
lexicon indicate that the distributional regularities in the data may play a funda-
mental role in human lexical acquisition, and it is essential to assume that human
infants have an innately endowed mechanism to utilise such statistical informa-
tion in language learning’. Although, the mechanisms in human and machine learning
are different, this is an interesting observation that supports the bias towards statistical
approaches in computational morphology learning.

Bybee (1995) proposes a network model for the storage and processing of morphology

based on child language development and cognitive organisational principles. The model

*CHILDES is the child language component containing child conversational interactions. It can be found

online: http://childes.psy.cmu.edu/
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takes type frequency into account, arguing that regular verbs have the highest type fre-
quency whilst irregular verbs have the highest token frequency. The model establishes
lexical connections between words, built on the basis of phonological and semantic infor-
mation. The stronger the lexical connection between a number of words, the stronger the
morphological relation is — a strong lexical connection between inflected verbs ending
with the suffix s will increase the likelihood that the suffix will be used when a new word
needs to be inflected, therefore making it more productive. In contrast, words with high to-
ken frequency have greater lexical autonomy reflected by weaker connections with other
items. Thus Bybee argues that high frequency items are learned individually and lower
frequency items are learned in relation to existing items through analogy. As learning
progresses, the lexical connections are reinforced and generalisations can emerge from
the network and fitted into schemas. The productivity of a schema is dependent on the
number of restrictions placed on it — e.g. the strung pattern cannot be fully productive
since it is a verb beginning in consonant clusters and ending in a velar and/or nasal, and
most verbs do not meet these conditions; on the other hand, a more generic schema like
-ed suffix for the past tense can be applied to more words and thus resulting in a higher
type frequency (and higher productivity). It is worth noting here that this model suggests
that rules and connections are not mutually exclusive, and that rules can be extracted after
statistical generalisations are computed.

Baayen (2007) discusses the balance between storage and computation in the mental
lexicon. Whereas the connectionist model is completely tilted to favour computational
approaches, Baayen brings forward experimental evidence that this is not the case, for
various reasons. Similarly, limiting storage only to irregular verbs, as done by the Pinker
model, is also not the case. There is evidence that storage is not limited to irregulars, and
that regular inflected verbs have ‘their own traces’ in memory. (Baayen, 2007, p.4) claims
that the idea that the past tense is derived in real time from the stem (either through con-
nectionism or through the application of a rule) is also wrong, citing various experiments
where subjects where asked to provide either the past or the present tense of a word ac-
cording to what they were shown. In these experiments, the direction of naming (past to
present or present to past) had no influence on the results. On the basis of various ex-
periments, Baayen states that an adequate metaphor for understanding the mental lexicon
is still not available. Whilst the connectionist model merges rules and representations,
making it neurologically implausible, the symbolic model’s divide between regular and ir-
regular processes is too simplistic. Baayen proposes that recent research in the design of

an algorithm replicating the structure and properties of the neocortex should be consid-
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ered and applied to morphological acquisition. This is still a network of neurons similar to
the connectionist model, but in which the neurons also have a hierarchical structure and
those in the higher hierarchy act as classifiers.

Although not directly related to language acquisition, in further work, Plag and Baayen
(2009) focus on derivational morphology and, in particular, the ordering of composite suf-
fixes, both from the perspective of analysis and that of generation. They propose that suffix
ordering should include selectional restrictions (affix properties, based on phonological,
morphological, syntactic and semantic factors) and processing constraints (limiting the
number of combinations of affixes) so as to have a hierarchy of suffixes which determines
the order in which these can be encountered. Complexity-based Ordering (CO) is a pro-
cessing constraint that limits the number of possible combinations of affixes. For example,
the suffixes -iz-ation commonly appear in that order but not as -ation-ize (e.g. human-iz-
ation). Notwithstanding, there are still cases where suffix ordering is easily ‘broken’ — for
example the suffix -al occurs both at the end of the composite, and also at the beginning
in sens-ation-al vs. conoli-al-iz-ation. Another problem is when the order of two suffixes
can be reversed, something referred to as the inside-outside problem, as in ‘happinessless’
vs. ‘hopelessness’. To identify the correct ordering, four ‘measures of separability’ are
used (productivity, token parsing ratio, type parsing ratio, boundary strength), resulting
in a ranking mechanism (CO rank) that provides an indication of which combination of
suffixes are most likely to occur in which order. The analysis of the hierarchical order
of suffixes indicates that suffixes occurring close to the stem are more likely not to occur
outside of other suffixes. Plag and Baayen also observe that the mean CO rank is corre-
lated to the productivity of a suffix. The higher its rank, the more productive the suffix is
(e.g. -ism). The mean CO rank is also used to judge the cost between storage and access
vs. decompositional cost in the mental lexicon. Interpreting the results of lexical decision
and word naming experiments Plag and Baayen show that storage has an advantage over
decomposition. They observe that storage requires less effort than decomposing complex
derived words.

The above discussion shows that, even at a psycholinguistic level, morphology can be
approached from different angles. The various proposals discussed above support their
claims through computational models in support of their arguments. This raises the ques-
tion of whether a computational model should try to mimic language acquisition develop-
ment in a child. The opposite might be the case, where the computational model should
be designed specifically to deal as best as possible with the described task, rather than

designing it to mimic the language model.
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2.3 Computational approaches to morphology

The task of a morphological analyser is to provide the morphological structure and anal-
ysis of any given word. A number of very successful, knowledge-based morphological
analysers are available for a number of languages, relying on manually designed heuris-
tics or rules that require linguistic expertise and are laborious to construct. Moreover, such
systems must be continuously updated to cope with language change through the emer-
gence of new words. Roark and Sproat (2007) provide an excellent general overview of
the main algorithms used in computational models of morphology and the general opera-
tions involved in describing regular morphological phenomena. This section will provide
a general overview of two main computational approaches to morphology: rule-based and
data-driven. Since we are mainly interested in the latter approach, the review for the rule-
based approaches will be relatively concise, mentioning the key techniques and providing
a general overview of what is available and why it works. The review for the data-driven
approaches is more detailed, highlighting the different approaches used, the type of tasks

that have been successfully attempted and the challenges that remain.

2.3.1 Rule-based approaches to morphological analysis

Initial attempts in computational morphology were rule-based, with implementations that
were language specific and restricted to describing limited aspects of alanguage. As the use
of computers and computational power increased, more interesting work in computational
morphology, both from a theoretical and a computational point of view, began to emerge.
Finite state transducers (FST) emerged at the forefront of rule-based techniques since with
the possible exception of reduplication (which may require further mechanisms), all mor-
phological phenomena can be expressed through finite-state devices, at the cost of having
duplication. Another advantage of FSTs is that they cater for a declarative approach, al-
lowing for a system to both analyse and generate morphological information through the
specification of grammar rules.

Chomsky and Halle (1968) specified a traditional phonological grammar using context-
sensitive rewrite rules. The rules converted abstract phonological representations into sur-
face forms through a series of intermediate representations. Johnson (1972) found that it
was possible to write phonological rewrite rules as regular expressions, thus showing the
viability of using FSTs. This idea was overlooked at the time, and rediscovered indepen-
dently by Kaplan and Kay (1981). However, FSTs were still not applied to morphological

analysis at this stage.
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Koskenniemi (1983) proposed a novel approach called Two-Level Morphology, which
uses a constraint-based model in which rules are applied in parallel and all constraints must
hold simultaneously. Rules are expressed as a pair of strings, and can refer to both lexical
and surface context at the same time. But rather than focusing on how one string can be
derived from another, the rules express mutual constraints on those strings. The system of-
fers a general language-independent model through which language-specific components
(lexicon and rules) could be specified. An actual compiler for two-level rules was not
available at the beginning, resulting in practitioners having to compile rules to finite-state
transducers manually, which was a highly laborious task.

Eventually compilers became available, including a popular implementation called PC-
KIMMO (Antworth, 1992). Karttunen and Beesley (2005) provide an overview of the histor-
ical development of FSTs and two-level morphology and note that, overall, the formalism
was difficult for linguists to master and that it was necessary for the compiler to check for
and eliminate conflicting rules. Nonetheless, this was one of the first rule-based systems
that could cater for morphologically complex languages, allowing for both generation and
analysis within the same grammar specification. The formalism eventually was included
as part of the Xerox tools, with the latest documentation by Beesley and Karttunen (2003).
Well-known morphological analysers based on FST technology are those by Beesley (1996)
for Arabic, Itai and Wintner (2008); Yona and Wintner (2005) for Hebrew, and Minnen et al.
(2001) for English. Roark and Sproat (2007) provide an excellent introduction to finite state
automata and transducers, as well as a detailed overview of the two-level morphology sys-
tem.

Rule-based approaches to computational morphology are popular and successful. How-
ever, the main drawback remains that expert knowledge is required to design and write
the rules, and continuous effort is needed to keep the knowledge base up to date with un-
seen words. This means that this approach is resource intensive and thus not viable for
all languages. Since Maltese became an official language of the European Union in 2004,
more resources have been made available. However, this has been a slow process and only
recently (more than 10 years later) have funds been allocated for a much-needed national
online dictionary”. This provides the incentive to work towards the bootstrapping of a

Maltese morphological analyser, which might eventually feed into a rule-based technique.

SThere are small scale online dictionaries for Maltese which are domain specific, e.g. financial terminol-
ogy
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2.3.2 Data-driven approaches to morphological analysis

The data-driven approach aims to learn the morphology of a language, or aspects of it,
through statistical observations from the data. Most data-driven approaches treat mor-
phological analysis purely from a computational/engineering perspective, with the main
concern being of the type of algorithms designed and the results achieved. Hardly any
of the computational literature in this area is based on linguistic theories. However it is
still interesting to note the differences and maybe as well the indirect similarities between
the computational approaches described below, and the way children learn. Data-driven
approaches use corpora, which means that words can be analysed in context. A child’s ac-
quisition context is much richer than just the words themselves and contains various cues
(visual, prosodic). The learning process occurs through numerous examples over time.
The acquisition process exhibits non-linear characteristics, as children acquire a rule, then
overgeneralise, and eventually revise and adjust the exceptions. What type of information
can be extracted from textual sources, and how such data could be used to increase what
can be learnt is also an interesting question for this work, especially since computational
resources available for Maltese are limited.

Comparing different techniques or different results is not always possible because the
authors often do not carry out an evaluation using the same training and testing data.
Sometimes the evaluation principles — for instance, what is considered a correct or incor-
rect segmentation — could differ from author to author. The main focus of this work is
to analyse the different approaches that have been taken and to apply the most promis-
ing approaches to morphology learning in a fusion system such as Maltese. For a more
complete literature review of unsupervised techniques for morphology learning, see also
Goldsmith (2010); Hammarstréom and Borin (2011).

2.3.2.1 Problem definition

The classical way a morphological analyser works is that, given a word, it produces a
labelled output. Most commonly, the word is segmented into morphemes and each mor-

pheme is labelled according to the information that it provides, as in the example below.

(2.1) n- approva -hom -lok
1.sG.sB- approve -3.PL.DO -2.SG.IO

‘T will approve them for you’

A number of intricate steps are required to produce a labelled form as an output. First,

a word is split into the smallest meaningful components — morphemes. This process is
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referred to as segmentation. The process of splitting a word into parts is not always
straightforward, since there can be morpho-phonological/orthographic alternations in the
stem, such as commerce — commercial). Sometimes, computational literature also looks at
the splitting of a word from an application-oriented point of view, where the stem is going
to be used in a specific end-task such as machine translation or information retrieval. In
such cases, it might be sufficient for an algorithm to produce a ‘partial’ stem, e.g. *commerci
-al, providing enough information for the application to carry out its task. This first stage
of a morphological analysis system takes a word and returns it split up, ideally in as close
an approximation as possible to its morphemes.

Once a word is segmented and the stem is identified, it is possible to group morpho-
logically related words together. The stem of a word provides a link to the lexeme that
the wordforms expresses and, through this, the word can be associated with other words
sharing the same stem, and by extension the concept. The process of pairing or clustering
of morphologically related words is of interest in a data-driven approach because it is pos-
sible to observe how words are transformed depending on the morphemes applied to the
stem. In contrast, a rule-based approach generally does not cluster words since the rules
implicitly cluster words by providing information for the generation and analysis of all the
transformations. In a data-driven approach, the transforms must be observed through the
data itself, and hence it is necessary to associate morphologically related words. In this sec-
ond stage, the system uses the stem of a word to find other words that are morphologically
related to it, thus resulting in a list of words.

The final step is that of labelling the morphemes, where each part is labelled according
to the morphosyntactic information that it conveys — grammatical meaning for the affixes,
and semantic meaning for the stem (some systems choose to associate the lemma of a
word). To learn actual labels (e.g. 35G), an algorithm must be given some labelled examples
(training data). A model is built upon these examples, and then tested on unseen data (test
data). By comparing the labelled output produced by the algorithm to the original test data,
it is possible to evaluate the algorithm with respect to how accurate the labelled output is.
This is referred to as supervised learning, since the algorithm is provided with examples
that can be used to create the model. When labelled data is not available, an algorithm
can output generic ‘classes’ rather than actual labels (e.g. ‘typel’), and all the morphemes
sharing that label should share a grammatical feature. This is referred to as unsupervised
learning, in which case the algorithm does not have any prior knowledge. The conversion

from generic labels to actual labels has to be carried out by a human expert.
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Most of the work reviewed below use unsupervised techniques for morphology learn-
ing, with particular focus on segmentation and some looking at clustering and labelling.
The latter task is usually attempted using semi- or supervised techniques. The remainder
of this section will analyse the works carried out and group these papers according to the
type of task and technique used. However, it is important to note that the three tasks need
not happen in sequence and are not fully dependent on each other. This is especially so in
clustering morphologically related words, where the segmentation task is a step that can be
bypassed and sometimes occurs as an indirect consequence of the clustering output, thus
resulting in an overlap between segmentation and clustering. Similarly, the labelling task
might depend on segmentation but does not require clustering of words. Again, labelling
might produce clusters indirectly, once the associated stem is identified.

Given the different tasks in computational morphology and the challenges that each
task represents, a yearly competition was held called Morpho Challenge. Each year the fo-
cus of the competition became more complex, starting from simply tackling segmentation
using unsupervised techniques, and moving on to semi-supervised systems to labelling
of morphemes. Since the Morpho Challenge provided training datasets for a number of
languages, as well as a baseline performance for the tasks concerned, most research in the
field refers to the challenge, and some researchers use the datasets to evaluate their algo-
rithms. In the following, we will first describe the Morpho Challenge, and then review
the different tasks identified above. We will end the section by looking at the relevant
work in Semitic languages that does not necessarily fit in with the three established tasks.
The computational treatment of morphology in Semitic languages is of particular interest,
since Maltese morphology has both root and pattern (i.e. non-concatenative) and stem-
based (i.e. concatenative) morphology. We will, therefore, take stock of the challenges
faced in computational morphology for Semitic languages and discuss whether such chal-

lenges are relevant to Maltese.

2.3.2.2 Morpho Challenge

The Morpho Challenge® is an evaluation challenge aimed at advancing machine learn-
ing and particularly unsupervised techniques that can be applied to multiple languages,
and intended to identify morphemes and the phenomena that occur in word construction.
Morpho Challenge editions were held in 2005, 2007, 2008, 2009 and 2010. Kurimo et al.
(2010) report on the editions held until 2009 and outline various open challenges. Apart

from evaluating word segmentation, the challenge also evaluated how different techniques

Shttp://research.ics.aalto.fi/events/morphochallenge/
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could be applied to the areas of information retrieval and statistical machine translation.
This review will not include the results from these two application-oriented tasks. How-
ever, one can get an immediate sense of the level of success in the segmentation task from
the observation that the overall results throughout the competition, in terms of the highest
F-measure, remained below 0.70 (English: 0.687; Finnish: 0.569; German: 0.628; Turkish:
0.621; Arabic Vowel: 0.632; Arabic non-Vowel: 0.608”). The majority of the techniques that
competed did not display a large disparity in the results. Disambiguating between different
alternative analysis of word segmentation and assigning labels to morphemes once the seg-
mentation has been carried out remained an important challenge to the improvement of the
results. In 2010 semi-supervised learning was introduced to tackle these challenges; how-
ever the results did not improve much for the segmentation task (English: 0.674; Finnish:
0.625; German: 0.508; Turkish: 0.653). The evaluation was carried out against the output
of a morphological analyser for each respective language and this output was considered
as a gold standard.

Several works reviewed below refer to the Morpho Challenge, especially in terms of
evaluation, and often compare their systems to the results published through this compe-
tition. However, direct comparison is not always fully possible or obvious. Sometimes it is
not clear whether an author would have simply used the datasets available on the Morpho
Challenge website®, or submitted their system to Morpho Challenge. The test sets used for
evaluation during Morpho Challenge are not publicly available.

Another issue relates to the actual evaluation metric used. Up until 2009, Morpho Chal-
lenge used standard F-Measure, Precision and Recall to compare results achieved by dif-
ferent techniques. In 2010, a new metric was introduced, referred to as EMMA, and more
attention was given to the problems encountered in the evaluation of such techniques.
The 2010 competition was evaluated using both the standard F-Measure and EMMA. The
figures above, and throughout this review, are generally F-Measure for the sake of compa-
rability (when possible).

Apart from Morpho Challenge, where comparable evaluation is possible due to the
setup of the task and resources used, comparing the results of the other work reviewed

can be a futile exercise. Whilst some evaluations use metrics such as F-measure and Ac-

7 Arabic orthography generally uses diacritics to mark short vowels, however these are commonly left out
in everyday use. The Morpho Challenge provided the same corpus with the vowels included, and without
the vowels.

8The Morpho Challenge website has a number of datasets available for several languages. It provides a
training set for training an algorithm or model, and a development set that is intended to be used during de-
velopment for parameter tweaking. It also provides datasets for semi-supervised learning with gold standard
segmentation and labelling.
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curacy, others assess their work on the basis of a more qualitative evaluation. Even when
metrics are used, factors such as type of corpora used and what is being learnt make the re-
sults difficult to compare side by side. The aspects of evaluation, and the different metrics
available and used will be discussed in further detail in §2.5.

Keeping in mind that the main aim of the competition is to facilitate other tasks (in-
formation retrieval, machine translation), Kurimo et al. (2010) raise a number of valid ob-
servations arising from the Morpho Challenge competitions: (i) No single algorithm was
able to perform equally well on all the tasks across the languages, (ii) segmentation is only
a small part of the process and finding meaning to the morphemes is a more crucial task,
(iii) words taken out of their context could result in ambiguous segmentations, and it is not
clear how to evaluate algorithms that return a high number of analyses per word, thus in-
flating recall. It is clear that although advances were made both in terms of techniques and
results over the various competitions, segmentation and labelling are not straightforward

tasks and a number of challenges are still relevant in this field.

2.3.2.3 Segmentation

Goldsmith (2001) is one of the focal works on the unsupervised learning of morphology,
interest in which reemerged in the late 90s. He proposes an unsupervised algorithm that
learns the morphology of a concatenative language by using Minimum Description Length
(MDL). The MDL algorithm seeks to describe a group of words using the most compact de-
scription possible (both in terms of length and in terms of physical memory space on a
computer), and at the same time having the most compact means of extracting that repre-
sentation. The model is composed of four parts: (i) a probability distribution is assigned
to the sample space from which the data is taken, (ii) the data is then compressed using
information-theoretic notions, (iii) the length of the description is calculated, (iv) the opti-
mal description is the one for which the sum of the length of the compressed data and the
length of the model itself is the smallest. The algorithm continues to iterate until it finds a
final optimal solution. The resulting description takes the shape of signatures, where each
signature represents a set of stems and a set of suffixes that can be combined together
— for example the set of stems {laugh, walk, jump} and the set of suffixes {ed,ing,s}. The
principal aim of the technique is to discover automatically the regularity of a language and
generalise it in the most efficient way. Once the signatures are proposed, signatures with
either only one stem or only one suffix are discarded and those words are then treated
as whole when the length of the description is calculated. Moreover, a stem can only be

represented in a single signature. Goldsmith also introduces a structure to describe more
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complex suffixes (e.g. work.ing.s). A number of heuristics are used to suggest at which
point a word should be split into stem and suffix. For instance, the suffixes in every sig-
nature are checked for their initial letter — if they all begin with the same letter, then it is
likely that the letter must be part of the stem.

The MDL technique achieves 82.9% accuracy on the manual evaluation of the first 1000
words. Suggested improvements include the possibility to specify the deletion of a char-
acter (e.g. the suffix set {NULL.<e>ed.<e>ing} would cater for grouping care, cared, caring
under one signature, through the deletion notation <e>). Goldsmith discusses how the sig-
nature cannot be mapped directly to a paradigm because in some cases the stems belong
to multiple classes (e.g. verbs and nouns both having the suffix -s). Some of the limitations
for MDL are that it does not cater for compounding and does not handle prefixes. He also
discusses the evaluation of the signatures at length, and questions the correctness of some
of the proposed segmentations. For example, the words abet, abetting, abetted resulted in
having the stem set {NULL.ting.ted}, when clearly there should be the facility to predict
that the t is doubled in such cases. Another example raises the difficulty in what should
exactly be considered as a stem — in the words abolish, abolition, should the stem be aboli-
or abol? Goldsmith decided that both analyses should be considered valid since this is not
a clear-cut case. Finally, in a rather controversial concluding point, Goldsmith states that
“knowledge of semantics and even grammar is unlikely to make the problem of morphology
discovery significantly easier.” Whilst it is true that the introduction of this information
might result in a more supervised technique, other research avenues used this type of in-
formation to improve the results of morphology learning. Work on MDL continued and
resulted in a reduction of signatures and thus a better representation of a language (Gold-
water and Johnson, 2004; Hu et al., 2005); however the principal technique and its aim
remained the same: that of representing the regularity of a language in the most efficient
way.

Creutz and Lagus (2002) take two different approaches to segmenting words into mor-
phemes, focusing in particular on languages with rich morphology, using an agglutinative
language such as Finnish. Their motivation behind segmentation is to “provide a vocabu-
lary of language units that is smaller and generalises better than the vocabulary consisting
of words as they appear in text.” The first technique combines recursive segmentation and
the minimum description length principle, very similar to the process described by Gold-
smith (2001), with the main difference being the approach to the segmentation of a word.
Goldsmith uses a predefined list of suffixes, whilst here the authors use a ‘search’ approach

which takes into account the number of times a morph has been encountered. The tech-
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nique also updates the model at regular intervals, resegmenting words if necessary. The
second technique uses sequential segmentation and maximum likelihood, which uses the
likelihood of the data given the model as a cost function. The first technique developed
into Morfessor-Baseline in future work, and became the baseline evaluation technique in
the Morpho Challenge competition against which all other participating techniques were
evaluated.

Creutz and Lagus (2004) describe an extended version of Morfessor which uses the gen-
erative probabilistic model to segment words into morphs, using a Hidden Markov Model
(HMM) to model morph sequences. A morph is assumed to belong to one of three cate-
gories - prefix, suffix or stem, and part of the procedure is to determine the categories of
each morph. Once a morph is assigned to a particular category, it can only appear in a
particular sequence — e.g. a suffix cannot appear before a stem. The technique starts with
a baseline segmentation model (Creutz and Lagus, 2002), and then initialises the proba-
bility distributions for each morph, assigning categories to each. At this point an interim
category ‘noise’ is used to hold morphs that initially cannot be considered prefixes, stems
or suffixes. Noise morphs tend to arise as a consequence of over-segmenting rare word
forms in the baseline word splitting. The next step looks at eliminating redundant morphs,
generally by splitting a morph into two existing morphs, taking the most probable split. Fi-
nally noise morphs are removed by being joined with adjacent morphs until a stem can be
formed. Through the process of mapping morphs to a category, the segmentation of words
is improved considerably over the baseline. Creutz and Lagus point out that the evalua-
tion of segmentation can yield different results according to the application for which the
segmentation is aimed — whilst morphological analysers might provide morpheme-based
segmentation, applications such as machine translation or speech recognition might leave
certain morphemes unsegmented to yield better results in the application itself. This fur-
ther intensifies the difficulty of the evaluation of segmentation results.

Morfessor is packaged into a suite of a full range of techniques (Creutz and Lagus,
2005, 2007) aimed at morphology learning and also used as the baseline for the Morpho
Challenge described above. In Virpioja et al. (2013), Morfessor was further developed, with
various computational improvements made to the group of algorithms; support for unicode
was also introduced. Morfessor remains the main technique that most other techniques
are evaluated against since it offers state of the art results for most languages included in
the Morpho Challenge.

Keshava and Pitler (2006) propose a simple and intuitive technique to segment words

using transitional probabilities. The approach uses a trie data structure that stores the
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words found in a corpus and their relative frequencies. A trie data structure is a type of
programming structure that can hold data in an efficient manner since strings with multi-
ple overlapping substrings are stored without excessive redundancies. A word boundary
is considered as a possibility on the basis of three simple premises: (i) that the stem ap-
pears as a valid word in the corpus, (ii) that at the point being considered as a boundary
the sequence from the root to that point has more or less the same frequency, indicating
the likelihood of a stem, and (iii) that at the point being considered as a boundary there
is evidence of the trie branching off into several substrings (which will in turn be consid-
ered as potential suffixes). The approach results in a number of potential affixes which
are scored according to how many times they have passed through these three conditions.
The top N affixes will then be used to segment words in the corpus. Keshava and Pitler
suggest that the algorithm is better suited for Indo-European languages with a concatena-
tive morphology. The main advantage of this work is the simplicity of quickly obtaining
a list of potential affixes, especially if one is considering a bootstrapping scenario where
possibly the list of affixes could be checked and corrected by a linguist. However, there
are a number of drawbacks to this technique. First, in calculating a word boundary, the
technique only considers those boundaries where the stem has been attested in the cor-
pus. This can be rather restrictive, especially if stem variation occurs in the formation of
related words. The technique also does not cater for composite suffixes since it considers
a single boundary at a time. Nonetheless, the technique remains simple and plausible for
bootstrapping purposes and considered advantageous.

Dasgupta and Ng (2007) extend the work by Keshava and Pitler and include ways of
detecting incorrect segmentations (e.g. ‘candid+ate’ vs. ‘candidate’) by relying on relative
corpus frequency and suffix level similarity. This is calculated as a ratio in terms of the fre-
quency of the word as a whole, and the frequency of the proposed stem. The segmentation
is considered to be possibly correct if the ratio is set to be below a certain threshold. Suffix
level similarity is motivated by the observation that if a stem takes a particular suffix, it
should also take morphologically similar suffixes. Another extension looks at inducing
orthographic rules and allomorphs, allowing the system to detect changes in morphemes
at boundaries, and again this is based on relative frequency. The segmentation strategy
taken by the authors is to generate all possible segmentations of a word using the induced
stems and affixes, and then applying a number of tests until only one candidate segmen-
tation remains. One of the tests described by Dasgupta and Ng is that when a number
of segmentations are left, the one/s with the least number of morphemes is then chosen.

This is then followed by a scoring heuristic that takes into account the ‘strength’ of the
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affixes and the stem. The authors do not justify the order of these tests; discarding a po-
tential segmentation due to the number of morphemes prior to checking their statistical
relevance might result in discarding a more correct segmentation where, say, a suffix is
correctly split into composite suffixes, thus being the reason for having more morphemes.
The system is evaluated on a corpus of English and Bengali, achieving F-Measures of 0.874
and 0.851, respectively. It is further evaluated on the English, Turkish and Finnish data
from the Morpho Challenge 2005, where it achieved F-Measures of 0.794, 0.662 and 0.652
respectively. The English results, in particular, demonstrate how evaluating the same sys-
tem on different datasets yields different results — here with an 8% drop in performance.
The authors do not attempt to explain the reasons behind such a drop, and merely com-
pare their technique against the other techniques in the Morpho Challenge competition.
Nonetheless, the system performs well overall, and either obtains similar results to the best
performing system, or better results, which is encouraging given the mostly simple and
straightforward techniques set in place to segment words.

The technique proposed in Chan (2006) learns a POS-associated, probabilistic repre-
sentation of regular morphology through the use of recursive Latent Dirichlet Allocation
(LDA) to generate the probabilistic model. The model is built on the basis of three matrices:
data, morphological probabilities and lexical probabilities. The system is limited to stem
and suffix concatenation, assumes that the segmentations of words and their suffixes are
already known and excludes rare suffixes. During the learning phase, the algorithm as-
signs a probability for a particular suffix belonging to a particular part-of-speech category.
In the final model, a suffix is assigned to the category where the probability is the highest,
and thus dismisses other possible assignments (e.g. -s is assigned to noun plural, and not to
a verb). The model is also limited in learning regular morphology and does not distinguish
between inflection and derivation. The final output of the system is a recursion tree with
each node representing a set of suffixes in their respective grouping, and representing an
abstract category. The evaluation is mainly focused on comparing the results with those
of Linguistica (Goldsmith, 2001), which is a strange choice since the aim of Linguistica is
to describe a language in its most minimal form as a way of arriving at the segmentation
of words. In contrast, Chan’s primary focus is deriving a form of paradigm, which does
not provide a straightforward comparison to Linguistica’s signatures. Although the author
claims to have achieved the better results, the comparison is not clearly defined and it is
not obvious which specific aspects of this approach provide the improvement.

Sirts and Goldwater (2013) proposed Adaptor Grammars (AGMorph), a nonparametric

Bayesian modelling framework for minimally supervised learning of morphological seg-
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mentation. The model learns latent tree structures over the input of a corpus of strings. In
an unsupervised way, the AG takes as input a grammar that is used to specify what the
structure of the tree can be. However the authors also introduce a small amount of labelled
data and a process to select the best grammar as a way to improve results, thus introduc-
ing a semi-supervised approach. This learning process is carried out for each language and
data set. The techniques are evaluated on English, Finnish, Turkish, German and Estonian,
and compared with Morfessor in terms of results. Overall the techniques perform well,
approximately in line with the results achieved by Morfessor.

Poon et al. (2009) propose a log-linear model for unsupervised morphological segmen-
tation which leverages overlapping features such as morphemes and their context. It in-
corporates an idea from Goldsmith by including exponential priors as a way of describing a
language in an efficient and compact manner. The morphological segmentation of a word
is viewed as a flat tree, and each leaf of the tree is a potential morpheme. Each leaf is also
associated with its n-gram context as a feature. The system is evaluated on two datasets.
One is the dataset used by Snyder and Barzilay (2008), which is evaluated on both Hebrew
and Arabic. It achieves 0.669 and 0.781 F-Measure, respectively (an increase from 0.63 and
0.72). The same system was also trained in a semi- and fully-supervised way by provid-
ing labelled data incrementally. F-Measure increases from 0.759 to 0.809 and from 0.852
to 0.90 for Hebrew and Arabic, respectively, by providing 25% to 100% labelled data. A
further evaluation is carried out for Arabic using the Arabic Penn Treebank dataset and
the results are compared to Morfessor-CatMAP (Creutz and Lagus, 2007), achieving an F-
Measure of 0.777 compared to Morfessor’s 0.749. The overall improvement of the results
is rather positive; however, since the evaluation is limited to two Semitic languages, it is
not clear whether this technique is more geared towards such languages and whether it
could be employed on other languages successfully. Also the authors do not discuss issues
pertaining to stem variation, especially since the focus is on the segmentation of the words
rather than linking a word to its lemma.

Building upon the idea of Poon et al. (2009), Narasimhan et al. (2015) also use a log-
linear model, and morpheme and word-level features to predict morphological chains. A
chain is a sequence of words that starts from the base word, and at each level through the
process of affixation a new word is derived as a morphological variant. For example, the
following is a morphological chain which the system attempts to derive: nation — national
— international — internationally. The system automatically produces a list of all possible
affixes on the basis of the base words present in the corpus. So from the word paints, the

suffixes -ints (stem pa), -ts (stem pain) and -s (stem paint) are derived. A review of the
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top 100 suffixes shows that 43 are correct. This is rather low in terms of accuracy, and
although such a technique would result in very high recall, its precision rate will probably
be low. The conditional probability of each derivational pair is calculated and the system
will recursively link words into a chain as shown in the example above. Each pair is also
allocated a number of features, including semantic similarity and affix correlation (words
which take the same set of affixes demonstrate a certain correlation between those affixes).
The log-linear model is then learnt in an unsupervised manner with all the data collected
automatically.

The authors report an improvement over Morfessor, AGMorph and the system pro-
posed by Lee et al. (2011) using English, Turkish and Arabic and achieving F-Measures
of 0.762, 0.612 and 0.799, respectively. The system does not handle stem variation since
the pairing of words is done on the basis of the same orthographic stem and therefore the
result for Arabic is rather surprising. This is probably due to the gold standard used in the
evaluation, where segmented words do not necessarily give the valid root of the word. An
example given by the authors is for the gold segmentation for yntZrwn, given as y-ntZr-
wn, even though ntZr is not a valid root. The error analysis for English and Turkish shows
that the predicted segmentation tends to under-segment, whilst it over-segments for Ara-
bic. This might support the intuition that an unsupervised system would require some
form of parameterised data on how to deal with a particular language. For example, what
level of segmentation a probabilistic technique could favour can be a language-specific pa-
rameter. This is highly intuitive when comparing languages such as English and Turkish,
with the latter having a highly agglutinative morphology. Unfortunately the authors do
not consider the use of semantic similarity as a way of finding related words where stem
variation occurs. Possibly one could foresee a system that would try to identify stem varia-
tion by giving more importance to the semantic similarity between words, whilst allowing
minimal orthographic change in the stem.

Lee et al. (2011) incorporate part-of-speech categories with the morphological segmen-
tation problem, arguing that the POS categories should reinforce potential segmentations
since certain affixes are associated more frequently with specific categories. Moreover, if
the POS categorisation also takes context into consideration, it could be used to determine
the correct segmentation of a word. The technique models morpho-syntactic decisions
jointly, with the intention of capturing linguistic phenomena such as agreement. The sys-
tem first generates a list of prefixes, stems and suffixes in a hierarchical manner, and then
proposes word types, their segmentations and their syntactic categories. An HMM model

is then used to generate tokens and the syntactic classes, followed by a first-order Markov
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chain which has the dependencies between adjacent segmentations to segment the tokens.
The system depends on a number of parameters, such as the number of POS tags possible
(here set to 5, which when increased, did not yield improvements). The number of prefixes
and suffixes is also limited to two, and the length of the stem cannot be shorter than that
of the affixes. Such restrictions might be language dependent. For instance, the last re-
striction would be detrimental in Maltese, where it is at times possible to find words which

have a longer suffix than the length of the stem itself, as shown in the following example:

(2.2) ksir -ni -hie -lhom
broke -1.PL.SB -3.F.SG.DO -3.PL.IO
‘We broke it for them’

The system is evaluated on Arabic and compared to the output of Morfessor and Poon
et al. (2009). Although the results obtained are an improvement over these two systems,
the training of the model was carried out on the full dataset. The norm is that a technique is
evaluated on held out data (or unseen data) which would not have been part of the training
data. This means that the results presented (F-Measure of 0.862 compared to Morfessor
0.749 and Poon 0.777) could be inflated due to this fact. This continues to highlight the
issue of comparability of different systems, even when the same dataset is used. Unless
an evaluation is carried out using the same portions of data in training and testing, it is
difficult to judge if one system is better than another.

Brychcin and Konopik (2015) build a language-independent high-precision stemmer
(HPS), using a combination of lexical and orthographic information, as well as probabili-
ties observed over the training data fed into the system. Words are initially clustered based
on their semantic similarity, using the Maximum Mutual Information algorithm, and on
their lexical similarity, calculated by using the longest common prefix normalised by the
length of the longest word. The clusters are then used by a maximum entropy classifier as
training data which calculates a number of probabilities, including suffix length, the prob-
ability of being an actual suffix and the probability of an n-gram standing before a suffix.
It also allows for a parameter 6 to set the aggressiveness of the stemmer, representing the
ratio between the length of the stem and the length of the word. HPS was evaluated on
a number of languages, including English, Czech, Slovak, Polish, Hungarian and Spanish,
and the maximum suffix length was set to three characters for all languages. It was also
evaluated against other stemmers, namely GRAS, YASS, Linguistica and a rule-based stem-
mer (Porter’s stemmer) and through different tasks, including information retrieval, which
is generally used to evaluate such tools. The evaluation concerning suffix removal was car-

ried out by comparing the results of the system with the words clustered according to the
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lemmas present in the tagged corpora. With Hungarian and Spanish, rule-based stemmers
preformed better than HPS, whilst with the remaining languages HPS performs better in
terms of F-Measure. However, one must note that rule-based stemmers for Slovak and
Czech were not available. HPS does achieve higher precision than the other techniques,
but with lower recall. Unfortunately this work does not take into consideration the tech-
nique used by Schone and Jurafsky (2001) (discussed below), which also uses semantic and
orthographic similarity to pair up morphologically related words, but uses different algo-
rithms; it was also shown to improve the results over Linguistica (Goldsmith, 2001), one

of the techniques evaluated.

Summary of segmentation results

The above review shows that segmentation is a challenging task and that there is no
one-size-fits-all solution. Most approaches take an unsupervised approach, aiming to of-
fer language-independent techniques, and finding stems and affixes through probabilistic
measures. Table 2.1 provides an overview of the results discussed above. Where available,
only the results for the segmentation of English words is provided since this was the lan-
guage of choice for the majority of the work reviewed. Results for other languages are

only included when English was not used (noted in the comments).

Table 2.1 Summary of results for the segmentation techniques reviewed
Type: ‘U’: Unsupervised; ‘LS’: Lightly Supervised; ‘S’: Supervised
Results: ‘A’: Accuracy; ‘F’: F-Measure

Citation Type Results Comments
Goldsmith (2001) U A: 82.9%

Creutz and Lagus (2002) U A:49.6%

Creutz and Lagus (2004) U F: 0.769

Virpioja et al. (2013) U F: 0.763

Keshava and Pitler (2006) U F: 0.809

Dasgupta and Ng (2007) U F:0.794 MorphoChallenge Data
Dasgupta and Ng (2007) U F:0.874  Other data
Sirts and Goldwater (2013) LS F: 0.778

Poon et al. (2009) U F:0.781  Arabic
Poon et al. (2009) S F:0.900 Arabic
Narasimhan et al. (2015) U F: 0.762

Lee et al. (2011) LS F: 0.862  Arabic
Brychcin and Konopik (2015) | LS F: 0.708
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The insights by Goldsmith (2001) provide an indication of the difficulties encountered
when analysing what is a correct segmentation. The problem is reduced when a gold stan-
dard is available for evaluation — still in this case, at some point, either a machine or a
person decided what is the correct segmentation for dubious cases. The segmentation task
in the Morpho Challenge competition is a very useful starting point since it provides a
gold standard for evaluation, and allows easy comparison across different systems. The
simplicity of techniques such as those proposed by Keshava and Pitler (2006) make it ideal
for bootstrapping a list of prefixes and suffixes for segmentation of words. However it is
clear that a list of affixes alone is not sufficient for the segmentation of words. We have
also begun to see some issues with the analysis of Arabic, and how the root-and-pattern
morphology requires different approaches when compared to the stem-based morphology
of Indo-European languages. The treatment of Semitic languages will be discussed in fur-
ther detail below in §2.4. The use of multi-lingual resources to map similar morphemes
from the same language family, as proposed by Snyder and Barzilay (2008), can be an in-
teresting experiment when considering the hybridity of Maltese — we could envisage such
an alignment using Maltese, Arabic, Italian and possibly English. However, it is evident
from the results that the techniques by Keshava and Pitler (2006) and by Dasgupta and
Ng (2007) obtain amongst the best results, using intuitive techniques which are ideal for a

bootstrapping scenario.

2.3.2.4 Clustering morphologically related words

Relying solely on the statistics of hypothesised stems and affixes creates several problems
and inaccuracies. Schone and Jurafsky (2000, 2001) use this argument to introduce the
notion of semantic knowledge through the application of the Latent Semantic Analysis
(LSA) algorithm. The technique is based on several sequential steps starting with potential
affixes being identified on the basis of shared orthographic properties. Words that share
the same stem are treated as potential variants (e.g. care with care-s; car with car-s; also
*car-es with car). The LSA is then used to find the semantic relationship between words
in a document through a matrix which denotes the frequency of the surrounding context
for particular words. Normalised cosine scores are then used to correlate the words which
are potentially related. At this stage of the algorithm, it emerges that cares and car are
not semantically related, and, therefore, that the pair *car-es and car should not be ranked
high.

Next, the technique looks at orthographic similarity based on the Minimum Edit Dis-

tance (MED) algorithm. MED is a way of quantifying how similar two strings are by com-
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puting the number of edits required to get from one string to another. The application
of MED to compare orthography allows for changes in the stems, accounting for poten-
tial stem variation in words. The semantic and orthographic similarity of words is used
to rank word pairs, with higher ranking indicating a more probable morphologically re-
lated pair of words. Potential signatures are then built and relations are extracted based
upon certain conditions. The technique is compared to Linguistica and the evaluation uses
CELEX’ as a dataset. This technique manages to improve the F-measure to 0.84 and the
authors conclude that semantic-based and frequency-based approaches could be used as
complementary techniques to find morphologically related words.

Yarowsky and Wicentowski (2000) propose a combination of alignment models with
the aim of pairing inflected words, covering both regular and irregular morphological pro-
cesses. The technique relies on (i) a list of part-of-speech tags, (ii) a list of suffixes that can
be used for each tag, and (iii) a list of lemmas. The proposed technique estimates a prob-
abilistic alignment between an inflected form and the lemma, which also results in the
extraction of the transformation process needed for the lemma to arrive to the inflected
form. For example, the lemma take requires the following transformations to arrive to took:
(i) stem change: ake — ook; and (ii) suffix: +e€ (the empty string). This process results in
a large table of lemmas, transforms (stem and suffix) and the resulting inflected words to-
gether with their part-of-speech tag. Lemmas are then aligned using different models, each
providing an individual score for each lemma and ranked according to a final consensus
choice. The alignment models are based on similarity in frequency distribution, context
similarity, weighted Levenshtein distance and morphological transformation probability.
The algorithm is trained and improved by iteratively bootstrapping the model of affixation
and stem change probabilities, and re-estimating the alignment over the four similarity
measures. At convergence, the model reaches an accuracy of 99.2% in pairing English
verbs (lemma, past tense) for the set of lemmas provided with the “VB’ part-of-speech tag.
Although the results are promising, Yarowsky and Wicentowski do not clearly specify how
the transformations observed can be generalised and applied to unseen words. The main
suggestion is that if an unseen word is lemmatized, and its part-of-speech is known, then
the table can be looked up to provide the transformation rule. The morphological analysis
provided in labelled examples seems to be mainly limited to the part-of-speech tags which
have been provided for the algorithm from the beginning. Therefore the high accuracy

reached is clearly due to the information provided, such as POS tags, suffixes and lemmas.

CELEX is a hand-tagged, morphologically analysed database of English, German and Dutch words. The
latest version is available at https://catalog.ldc.upenn.edu/LDC96L14
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Yarowsky and Wicentowski highlight that the suffix-focused transformational model used
is not sufficient for handling prefixes, infixes and reduplication, and that it is mainly suited
for Indo-European languages.

Baroni et al. (2002) propose a system that attempts to extract morphologically related
words without having any prior knowledge or annotation about the language. The system
is provided with raw text and returns a list of ranked pairs (structured/unstructured). Two
main techniques are used to extract this information: (i) orthographic similarity based on
the minimum edit distance algorithm, and (ii) semantic similarity based on mutual infor-
mation probability. Only word pairs that are in both lists are considered, so as to avoid
considering semantically similar words that are unrelated (e.g. blue, green), and ortho-
graphic words that are also unrelated (e.g. blue, glue). A final ranking is produced by
combining the scores of the weighted orthographic similarity and semantic similarity for
each pair. The main advantages of this technique are that it can deal with both concatena-
tive and non-concatenative morphological processes, and that it does not depend on the
distributional properties of words and their substrings, and therefore it is able to discover
rare morphological patterns. An evaluation of the top 1500 word pairs against the results
of the XEROX parsing tools yields a precision of 91%. A simple rule induction program
is used to extract various common morphological patterns found in the word pairs for a
qualitative assessment.

Can and Manandhar (2012) create a probabilistic hierarchical model to cluster mor-
phological paradigms on the basis of a word’s segmentation. However, the definition of
a paradigm here is closer to the idea of signatures described in Goldsmith (2001), where a
morphological clustering aims at gathering those stems that share the same suffixes. The
model uses stems and suffixes to combine words in the same clusters. However, it does not
consider prefixes, infixes and circumfixes. A hierarchical structure is learnt through infer-
ence, and allows for morphologically similar words to be located close to each other and
thus grouped in the same paradigm. Morphological similarity is defined as words having
at least one common morpheme, but there is no distinction made on the type of morpheme
— it can be either a stem or an affix. Segmentation is then carried out on the basis of the
tree. The authors claim that the training of the model had to be limited to 22K words due to
memory limitations, and if this could be increased, the results would improve. The system
was evaluated against the Morpho Challenge datasets for English and Turkish, reaching
an F-Measure of 0.58 and 0.38, respectively. The limitations for this type of model with a
language like Turkish result from its rich morphology and high agglutination, something

which the system is not set to cater for.
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Ahlberg et al. (2014) produce inflection tables by obtaining generalisations over a small
number of samples through a semi-supervised approach. The system takes a group of
words and assumes that the similar elements that are shared by the different forms can be
generalised over and are irrelevant for the inflection process. The focus is kept on where
the variation occurs in the strings, and a template is extracted reflecting the paradigm of
a set of inflectional word forms. Those having the same template can then be grouped
as having the same type of inflectional paradigm. The technique is applied to various lan-
guages, including Spanish and German. The resulting work is very much in the same spirit
of Camilleri (2013), who took a rule-based approach to inflectional paradigm generation.

de Roeck and Al-Fares (2000) cluster Arabic roots to improve information retrieval in
Arabic. The motivation behind this work is that traditional morphological analysers for
Arabic have a limited morphosyntactic coverage and that, in practice, there are several or-
thographic challenges. Unwritten short vowels and different regional spelling conventions
are among the main challenges mentioned. A two-stage algorithm is designed, first apply-
ing light stemming, followed by calculating a word pair similarity coefficient. Initially,
the similarity between pairs is seen as the factor of shared substrings and is based on n-
gram overlap. However, the authors observe that two words with minor differences in the
root consonants still had a high incidence of being clustered together since the similarity
overlap also covers affixes. In order to reduce this error, words were first lightly stemmed
by removing a small number of obvious affixes. Since this procedure does not remove all
affixes, all substrings were assigned a weight of 1, whilst potential affixes and substrings
containing weak consonants were assigned a weight of 0.5 and 0.25, respectively. These
weights were arrived at empirically. The pair-string similarity coefficient is then calculated
by taking these weights into consideration and by looking at the number of n-grams that
overlap between two words. The evaluation focuses on the percentage of correct clusters
— ie. the percentage of clusters that contain only morphologically unrelated words. It
does not look into whether a cluster is complete (contains all the word forms for a partic-
ular root). However, this might be due to the restricted dataset available and indeed, they
emphasise the need for the algorithm to scale up to larger corpora. On average, 91% of the
clusters produced are correct. Attard (2005) applied the same technique to Maltese, with
the aim of providing the basis for a Maltese lexicon. However, this was done using very

limited data and was not developed further.
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Summary of clustering results

Clustering of morphologically related words is evidently more successful when additional
information, such as part-of-speech category, is provided. Table 2.2 provides an overview
of the works reviewed above. For the clustering review, it is more difficult to make a
direct comparison between the different works for various reasons: (i) different datasets
were used; (ii) different languages (including German, Spanish, Finnish, and Arabic); (iii)
different metrics (F-Measure, Precision and Accuracy). Nonetheless, it is still interesting
to note the results obtained through unsupervised techniques proposed by Baroni et al.
(2002); Schone and Jurafsky (2000, 2001). This is an ideal option for the Maltese language
when considering the limited resources available. Using the MLRs corpus to extract se-
mantic relations between words would increase the amount of information available to a
system, with the aim of determining morphologically related words in an automatic and

unsupervised manner.

Table 2.2 Summary of results for clustering techniques reviewed
Type: ‘U’: Unsupervised; ‘LS’: Lightly Supervised; ‘S’: Supervised
Results: ‘A’: Accuracy; ‘F’: F-Measure; ‘P’: Precision

Citation Type Results Comments

Schone and Jurafsky (2000, 2001) | U F: 0.84

Yarowsky and Wicentowski (2000) | LS A: 99.2%

Baroni et al. (2002) U P:0.91

Can and Manandhar (2012) U F: 0.58 MorphoChallenge dataset
Ahlberg et al. (2014) LS A:96.4% German, Spanish, Finnish
de Roeck and Al-Fares (2000) LS A:91%  Arabic; Avg. on 5 datasets

2.3.2.5 Learning labels for morphemes

Van den Bosch and Daelemans (1999) use Memory-based Learning to learn morphological
labels on a Dutch corpus, reformulating the problem of labelling as a classification task.
A word is analysed letter by letter, with a window of 5 preceding and 5 following letters.
Thus a word is represented by as many instances as it has letters. This approach also takes
care of the ‘segmentation’ task through the windowing procedure, by learning labels when
morphemes are present in a particular window, and thus indirectly resulting in segmenting
the word into actual morphemes. Once the model is trained, unseen instances are classified

according to a distance between a new instance and the existing instances in the model.
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The distance metric used is a simple orthographic overlap, which practically results in
matching the presence of morphemes. A weighted function is then applied to calculate
the information gained and instances are labelled according to the closest match. The
evaluation is carried out using 10-fold cross validation on regular running text — it looks
at the different levels of success, including whether words were segmented correctly and
whether they were labelled correctly, with an accuracy rate of 64.6% on unseen words.
One of the limitations of the technique is that it can only return one segmentation for a
word. However, Van den Bosch and Daelemans point out that it is rare for a word to have
ambiguous segmentation in Dutch.

Clark (2002, 2007) also uses Memory-based learning, starting first by learning finite-
state transductions between pairs of uninflected and inflected words. The stochastic trans-
ducers are then used by the distance function to determine which stored instance is closest
to a new unseen instance, based on the conditional distribution of a set of possible out-
puts. The data used in this work is focused on specific word pairs, such as singular and
plural German nouns and Arabic singular and broken plural pairs. Thus the algorithm is
not specifically learning labels, but rather how to associate an inflected form with its base
form. Although the technique is more sophisticated than Van den Bosch and Daelemans
(1999), it is not directly comparable to this work since the data used and the formulation
of the machine learning task is substantially different.

Kohonen et al. (2010) extend Morfessor (described in §2.3.2.3, on page 28, Creutz and La-
gus (2002, 2004, 2005, 2007)) by introducing semi- and supervised approaches to the model
learning for segmentation. This is done by introducing a discriminative weighting scheme
that gives preference to the segmentations within the labelled data. The algorithm relies on
the bias given by its priors to guide the segmentation, which in turn is affected by a balance
between the priors and the model. The introduction of the discriminative weights means
that the segmentation will take a strong source of information from the labelled data as the
amount of segmentation that is preferred by the gold standard. The weights are optimised
on separate held out data. The best improvement over the Morfessor-baseline is a semi-
supervised approach where a partial amount of the training data is labelled and weights
are learnt as parameters for the level of segmentation allowed by the model. In fact, with
just a 100 instances of labelled segmentations, F-Measure improves from 0.61 to 0.65 for
English, and from 0.49 to 0.52 for Finnish, with a continued upward trend as more labelled
data is added. With a maximum of 10,000 instances in the training data, the F-Measure
reaches 0.73 and 0.60 for English and Finnish, respectively. This is the best performing

technique for the 2010 Morpho Challenge competition across all languages. However, the
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focus of Morfessor is mainly on segmentation of words rather than learning labels. In fur-
ther work, the mapping between segments and morpheme labels was extracted. Once the
words in the test data were segmented, the morphemes were assigned the most common
label or label sequence. This rather simple approach achieved an F-Measure of 0.77 for
English and 0.70 for Finnish in the labelling task.

Durrett and DeNero (2013) use the paradigms found in Wiktionary'?, a crowd-sourced
lexical resource that includes inflectional tables for many lexical items in several languages.
The technique first looks at rule extraction on the basis of the orthographic changes that
take place in the inflection tables. A log-linear model is then used to place a conditional
distribution over all valid rules. The model learnt is limited to a particular part-of-speech
at a given time, and evaluated on German nouns and Spanish verbs. The aim of the model
is to then predict or fill in inflection tables for unseen words. So, rather than learning labels
for words, the system learns to generate words on the basis of the paradigm and template
that would have been modelled. The reliance on edit distance might not be very success-
ful on a root-and-pattern system, where stem variation impacts the cost of the distance
function and, as a result, the extracted rules. Probably for such a system to be successfully
applied, the training data would have to be split into two, one to model the concatenative
morphological processes, and the other to model the root-and-pattern processes, just as it

was split to model particular part-of-speech categories.

Summary of labelling results

The task of morphological labelling of words is generally dependent on the resources avail-
able, since labelled datasets are required which can be used to train models and then test
them on unseen data. Interest in this type of task is not so high because generally, rule-
based approaches perform very well and several languages would already have morpho-
logical analysers in place.

Some of the techniques reviewed focus only on particular morphological aspects, such
as plural or past tense, thereby reducing the complexity of the learning problem. The work
by Kohonen et al. (2010) is the most exhaustive approach, with the added advantage of
utilising the Morpho Challenge datasets. However, in the following section we will review

more work carried out in morphological labelling in Semitic Languages.

http://en.wiktionary.org
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2.4 Approaches used in Semitic languages

Table 2.3 Summary of results for labelling techniques reviewed
Type: ‘U’: Unsupervised; 'LS’: Lightly Supervised; ‘S’: Supervised
Results: ‘A’: Accuracy; ‘F’: F-Measure

Citation Type Results
Van den Bosch and Daelemans (1999) | S A: 64.6%
Clark (2002, 2007) S A: 85.8%
Kohonen et al. (2010) S F: 0.77

Durrett and DeNero (2013) S A: 94.9%

2.4 Approaches used in Semitic languages

The Maltese language has a strong Arabic component, mainly evident in its grammatical
structure, with part of the morphological system being root-and-pattern. It is therefore
interesting to see the approaches taken for Semitic languages and the issues that these
approaches had to face in computational morphology. Wintner (2014) provides an excel-
lent overview of morphological processing in Semitic languages, identifying a number of
challenges. The high number of forms that are related to and derived from a root makes it
impractical for a lexicon-based approach and, given the complexity of Semitic languages,
it is very difficult to implement a morphological analyser to represent the morphological
and orthographic rules of the language. If such a grammar is available, it generally pro-
duces a number of analyses for a single word, so the results must be disambiguated. It
is thus difficult to find a single approach that provides an adequate solution to this chal-
lenge. Nonetheless, rule-based approaches have been attempted for a number of Semitic
languages, especially using finite-state transducers (see §2.3.1, page 21).

Kiraz (2000) and others extend the two-level morphology of Koskenniemi (1983) to in-
clude more than two levels, to allow the system to represent the non-concatenative mor-
phology in Semitic languages. Although Koskenniemi presented a generic morphological
system, it was primarily focused to deal with concatenative morphology. By including
multiple tiers of representation, the system allows for multiple lexical representations cor-
responding to the characteristics of non-concatenative morphology, in this case Semitic
languages. In a similar vein, Habash et al. (2005) also used a multitape approach for Mod-
ern Standard Arabic and spoken dialects, adding information to model the phonology and

the orthography, especially for dealing with the requirements of spoken dialects which are
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sparse in data and use inconsistent orthography. Amsalu and Gibbon (2006) also use FST
for Amharic.

The state of the art in Arabic morphological analysis is the Buckwalter Arabic Mor-
phological Analyser (BAMA) (Buckwalter, 2004) and more recently Standard Arabic Mor-
phological Analyser (SAMA) (Graff et al., 2004), described in Habash (2007); Habash et al.
(2012); Wintner (2014). Rather than representing the morphological, phonological and or-
thographic rules directly, the information is held as a database in a large-scale lexicon of
base forms, along with tables for prefixes, stems and suffixes, and a list of compatibility
rules which specify the combination of stems and affixes. An efficient engine implements
the rules as well as a the lexical lookup. During analysis, all possible splits of a word are ex-
plored. One of the main limitations of this analyser is that it cannot generate forms, unlike
FSTs, whose grammar specification results in both analysis and generation. BAMA/SAMA
is the official morphological analyser used by the Linguistic Data Consortium for the Penn
Arabic Treebank (Maamouri et al., 2004), a language resource used by most practitioners
interested in Arabic disambiguation and parsing.

Machine learning approaches to Semitic languages tend to be applied to part-of-speech
tagging, which, due to the complexity of the language, also contains morphosyntactic fea-
tures. For instance, the Penn Arabic Treebank has over 2,000 tags, whereas a tagset for
English would contain just over 50 tags. The techniques used for part-of-speech tagging
are ideal for languages such as Arabic, as they take context into consideration. How-
ever, due to the rich morphology, data sparseness has an impact on the statistical learning
process, and individual words could have several possible tags. Even the BAMA/SAMA
outputs multiple potential tags for a given word. Thus the main problem with Arabic mor-
phology is to disambiguate between the potential tags, and choose the correct one in the
actual context of the word.

Habash and Rambow (2005) take this approach by using an existing morphological
analyser to produce all potential tags for a word, and then applying classifiers (Support
Vector Machine) to choose the best tag. The classifiers are learnt for 10 specific morpho-
logical features, providing a confidence value for the different characteristics a feature
contains. It also uses Viterbi decoding, a technique which allows context to influence
the end result (in this case a two-word window prior to and after the current word being
analysed). Different approaches are tested as to how to select this analysis. The best ap-
proach is to take the product of the number of classifiers agreeing with the analysis by the
weighted agreement of the classification confidence measure of the value that agrees with

the analysis.
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2.4 Approaches used in Semitic languages

The best accuracy rates reported in this work for the individual feature classifiers are
always over 95%, with the lowest being 95.5% for the POS feature and the highest 99.9%
for the conjunction and particle features. The accuracy rate of the overall performance of
the system is at best 97.6%, the highest accuracy rate achieved over previous work. One of
the main disadvantages of this technique is that it is highly dependent on a morphological
analyser and a large collection of manually annotated words with morphological features.
In fact the same technique was applied to Egyptian Arabic once such resources became
available for the language (Habash et al., 2013). These systems were improved in terms
of performance, portability and robustness, and an online demo for Arabic and Egyptian
Arabic is available online (MADAMIRA Pasha et al. (2014)). Lembersky et al. (2014) use
a similar approach for morphological disambiguation in Hebrew, using a combination of
classifiers to rank the analysis produced by the MILA morphological analyser for Hebrew
(Itai and Wintner, 2008), but report lower accuracy rates (84%), primarily due to the size of
the training data.

Marsi et al. (2006) and, more recently, Van den Bosch et al. (2007) apply the Memory-
based Learning approach to Arabic (see §2.3.2.5, page 40 for Dutch in Van den Bosch and
Daelemans (1999)), integrating morphological analysis and part-of-speech tagging. The
algorithm here uses a slightly more complex distance function in order to learn which
instances in the model are the closest neighbours to a new unseen instance. This is de-
termined according to the similarity of the pairs based on their conditional probabilities
that their features belong to the same class. The k nearest neighbours are found, and a
new instance can be classified accordingly. This is a particularly advantageous approach
for Arabic, where a word has an average of 6.8 correct analyses, and finding k neighbours
allows the system to provide more than one analysis'!. The evaluation again uses a 10-fold
cross validation setup, and a further held out test set. The analysis of the results focuses
primarily on the portion of words in the held out test set that were not part of the training
set, and therefore completely unseen by the model. In this portion of the data, the system
achieves at best an F-Measure of 0.47, which is a fair result, given the complexity of the
task and the fact that the metrics take into consideration that the analyser must return all
the correct possible analyses of a word.

Stallard et al. (2012) compare unsupervised to supervised techniques for Levantine Ara-
bic applied to machine translation, showing that unsupervised techniques achieve similar
or better gains than supervised techniques. The unsupervised technique proposed uses

the segmentation process by Lee et al. (2011) discussed above, and then applies maximum

This was one of the drawbacks of the system described in Van den Bosch and Daelemans (1999).
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marginal decoding. Maximum marginal decoding takes the possible word segmentations,
marginalizing out the irrelevant detail and returns the segmentation that occurs most fre-
quently (Johnson and Goldwater, 2009). The segmentation output produces better F-Scores
than Poon et al. (2009) and Morfessor, as well as an improved result on the machine trans-
lation task.

Snyder and Barzilay (2008) use a hierarchical Bayesian model on multilingual data as
an approach to unsupervised morphology learning, by aligning morpheme patterns across
languages, using Hebrew, Arabic, Aramaic and English. The underlying assumption of
this work is that there is information related to morphological analysis that is present
in the structural commonality of the different languages, and what might be ambiguous
in one language, can be clearly marked in another language. A probabilistic model is
built on the basis of parallel aligned texts. For these experiments, the authors took the
Hebrew bible and its translations and aligned the texts using Giza++. The phrases that
occurred at least five times were kept, thus avoiding noisy translations. A monolingual
model was built for each language and used as the baseline for morphological segmenta-
tion. Moreover, a more sophisticated cross-language model was also built that included
character-to-character phonetic correspondences. The cross-language model performed
best, increasing F-Measure by 10% and 4% for the Hebrew/Arabic pair over the monolin-
gual model. The cross-language models without the phonetic correspondences performed
only slightly better than the monolingual model.

Due to the intrinsic differences in the problem of computational morphology between
Semitic and English/Romance languages, it is difficult to set a direct comparison in results.
Our interest is more in the types of approaches taken, and particularly, in seeing mor-
phological labelling as a classification problem. Modelling different classifiers for specific
morphological properties can be the appropriate approach for Maltese, since it allows the

flexibility to focus on those properties where data is available.

2.5 Evaluation

As we have already highlighted, evaluation can be quite problematic in this type of task.
To begin with, the task of what to consider a correct word segmentation can be disputed,

with several cases highlighted by Goldsmith

consider the pair abolition and abolish. The words are clearly related, and
abolition clearly has a suffix; but does it have the suffix -ion, -tion, or -ition,
and does abolish have the suffix -ish, or -sh? It is hard to say.
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(Goldsmith, 2001)

To counteract this difficulty, in the manual evaluation Goldsmith decided to have three
different categories of incorrect segmentations, which were classified as wrong (incorrect
analysis), failed to analyse (no analysis given), and spurious analysis (words not morpho-
logically complex, but analysed as containing a suffix). Of course, this discussion becomes
superfluous when using an already segmented dataset for training and testing, as is the
case in the Morpho Challenge competition. But it just goes on to highlight the problematic
views and decisions that have to be made when a segmented wordlist is not available. In
fact, Kurimo et al. (2010) also raise the issue of how to evaluate ambiguous segmentations
since words are usually analysed outside of their context. Since Morpho Challenge uses
the segmentation and labelling tasks as a foundation for other applications, such as infor-
mation retrieval and machine translation, they suggest that the segmentation and labelling
could be done in context so as to provide better results upstream to these applications.

In the case of Morpho Challenge and similar works where a morphological analyser is
available to segment and label the data, evaluations of techniques are generally carried out
on withheld data — the test dataset. This dataset would be segmented and labelled by the
standard tool for the language, and the technique can be measured for performance against
the output of the analyser. In this case, the evaluation is clear-cut, and the most used
metrics are accuracy, precision, recall and F-Measure. In order to explain each metric, we
will use true Positives to indicate positive examples classified as positive, falsePositives
as negative examples classified as positive, true N egatives are negative examples classified
as negative, and falseNegatives are positive examples classified as negative.

Accuracy is the percentage of correct classifications amongst all the tested instances.

true Positives + true N egatives

Accuracy =
Y allInstances

Precision measures the correctly classified instances from the instances predicted as

positive, as a measure of the quality of the predicted classification.

truePositives

Precision = — —
true Positives + falsePositives

Recall measures correctly classified instances from all the positive instances present in

the testing data, as a measure of quantity of instances being correctly classified.
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truePositives
Recall =

true Positives + falseN egatives

F-measure is a metric that uses precision and recall together with a weight . The role

of this weight is to assign relative importance to either precision or recall.

1+ a?) - (Precision - Recall)

Fa
(a% - Precision + Recall)

These metrics are used in evaluating several machine learning and natural language
processing techniques. The segmentation task in Morpho Challenge is evaluated by taking
a random number of word pairs that have at least one morpheme in common. Precision
is calculated as the portion of morpheme-sharing word pairs in the predicted sample in
common to the gold standard, and recall is calculated as the portion of morpheme-sharing
word pairs in the gold standard sample that is also present in the predicted output.

One of the main problems with this approach is that highlighted by Spiegler and Mon-
son (2010) since it artificially boosts recall when a technique provides several alternative
analyses to a word. Spiegler and Monson propose a new evaluation metric — Evaluation
Metric for Morphological Analysis (EMMA) — which uses a graph-based assignment algo-
rithm to match the predicted morphemes with those in the gold standard, with an emphasis
for unsupervised learning techniques since they do not have access to linguistically mo-
tivated morpheme labels. EMMA compares the predicted analyses with those in the gold
standard and measures the degree to which the predicted analyses approximate an isomor-
phism of the gold standard analyses. In order to deal with ambiguous words, EMMA also
expects the gold standard to contain a set of analyses for such words, and similarly expects
a set of words in the predicted analyses. Among its advantages, EMMA offers an evalua-
tion metric that specifically covers major morphological phenomena, also in terms of how
the segmentation task correlates to the natural language processing task. In 2010, Morpho
Challenge evaluated all the submitted techniques using both F-Measure and EMMA so as
to allow comparability to previous submission as well as to take stock of the challenges
raised in the evaluation task.

Machine learning tasks tend to also be evaluated using a N-fold cross validation system.
This is carried out by splitting the training data into N equal partitions (commonly 10, thus

referred to as 10-fold cross validation) and each partition is split into 90% as training data
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and 10% as testing data. The technique is iteratively trained and tested, each time adding
a fold to its training and testing data, measuring the correctness in prediction with the
increase of data as each fold is added. In the end, this is equivalent to using 90% as training
data and 10% as testing data, but with the exception of seeing the actual improvement as
the amount of data is increased. Accuracy, precision, recall and F-Measure are still used
as the evaluation metrics in each iteration, with the final results being the mean values of

these metrics.

2.6 Summary and proposed approach

This chapter looked at several aspects of morphology, starting from a short review of lan-
guage acquisition in children. Psycholinguistic views offer different models as to how
language is represented and processed in the mental lexicon, with a connectionist view
(Rumelhart and McClelland, 1986) versus a symbolic, rule-based view (Pinker and Prince,
1988). The different models rely on evidence from observations of language acquisition
in children, and then attempt to produce a computational model which reflects the same
learning process in children. Baayen (2007) proposed that there is a balance between stor-
age and computation and that the brain is more likely to use both aspects rather than one
model/system exclusively. The analysis of computational approaches to morphological
analysis looks at both rule-based as well as data-driven techniques. Rule-based systems
achieve very good results, but require strong linguistic knowledge which needs to be en-
coded, and tend not to generalise over new words. Data-driven techniques were split ac-
cording to task: segmentation, clustering and labelling. The majority of the segmentation
tasks relied on statistical techniques to determine stems and affixes such as Keshava and
Pitler (2006), Dasgupta and Ng (2007) and Creutz and Lagus (2005, 2007). A challenging
aspect for the segmentation task was also the evaluation of the proposed segments, dis-
cussed in detail by Goldsmith (2001) and also evident through the evaluation process of
the Morpho Challenge and other works.

Clustering of morphologically related word-pairs also relied on statistical techniques
but added further information to determine relations between words by looking at the or-
thographic and semantic similarity of words, such as the work described by Schone and
Jurafsky (2000, 2001) and Baroni et al. (2002). The approaches to the morphological la-
belling of word segments generally use machine learning techniques that build models
representative of labelled, training data. The models can then be employed on unseen

data and therefore the machinery learnt can generalise to new words. Machine learning
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approaches are also used in Semitic languages, but with the purpose of disambiguating
between possible parts-of-speech tags for a single word. Approaches such as Habash and
Rambow (2005) for Arabic, and Lembersky et al. (2014) for Hebrew employ classification
techniques so that the most appropriate tag can be selected.

This research sought to look at the three different tasks for computational morphology
in Maltese. The segmentation task was based on the techniques described by Keshava and
Pitler (2006) and Dasgupta and Ng (2007), whilst the clustering techniques were similarly
based on Schone and Jurafsky (2000, 2001) and Baroni et al. (2002). The labelling task took
the view of seeing morphological properties as possible features that can be modelled and
classified. So rather than using classification to disambiguate POS tags following (Habash
and Rambow (2005), Lembersky et al. (2014)), the classifiers learn the actual morphological
properties of words. The approaches taken for each of these three tasks and the results

achieved will be described in the following chapters.
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Chapter 3

Segmenting and Clustering
Morphologically Related Words

3.1 Introduction

The clustering of morphologically related words is an interesting problem which could pro-
vide information for the bootstrapping process of a morphological analyser for Maltese.
This chapter focuses on the experiments carried out in the segmentation and clustering of
morphologically related words in Maltese using unsupervised techniques. The approach
uses a variety of relatedness heuristics based on orthographic and semantic information,
combining ideas which have been used successfully in other languages to pair up morpho-
logically related words, and at the same time extending them to consider the clustering of
as many morphologically related words as possible.

One of the main research questions explored is whether the techniques employed per-
form differently on Romance-origin words than on Semitic-origin words. The hybridity
of the morphology in the Maltese language makes it ideal to investigate such a question.
An indirect benefit from this research is the provision of further information about the
historical origin (Semitic/root-based vs Romance/stem-based) of words, possibly using the
results to distinguish between the two sets of words.

The second goal of this work is to explore possible evaluation strategies to verify the
output of the clustering techniques. While developments in this field have often been aided
by the existence of gold-standard lexical resources (e.g. as used for the Morpho Challenge
evaluations), no such resources currently exist for Maltese. Indeed, the evaluation method
proposed here is intended to partially address this by adopting a crowd-sourcing evalua-

tion strategy. The evaluation uses both linguistic experts as well as non-experts, thereby
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also laying the grounds for the development of a future gold standard of morphologically
related word clusters.

The clustering technique relies on the segmentation of words to identify stems and use
them as an initial basis for relating words. Since linguistic tools, such as a lemmatiser or
segmenter, are not available for Maltese, the technique follows a similar process to that of
Keshava and Pitler (2006) and Dasgupta and Ng (2007), using transitional probabilities to
discover affixes in an unsupervised manner. Words are then segmented according to a list
of ranked affixes. However, since the purpose of the segmentation is as a stepping stone
towards the clustering of words, a certain level of uncertainty is allowed in the segmen-
tation results by allowing the system to suggest more than one possible segmentation.
We posit that a segmentation can be reinforced through other processes, so the correct
segmentation can be decided at a later stage.

The clustering of morphologically related words uses the output of the segmentation
process as the basis for grouping words together. Since stem variation is common in Mal-
tese, it is important to use semantic and orthographic similarity, similar to the techniques
used by Schone and Jurafsky (2000, 2001) and Baroni et al. (2002), as part of the heuristics to
discern which words should be grouped together, and which groups should be discarded.
A portion of the output clusters are evaluated through a crowd-sourcing approach using
native Maltese speakers as non-experts, and a smaller number of clusters is evaluated by
three linguists. A discussion is then presented on the basis of the results of the evaluation
in terms of the quality of the resulting clusters. Through the evaluation done by the expert
group, the evaluation also considers the differences in clusters of words of Semitic and of
Romance origin.

The rest of the chapter is structured as follows. First we discuss the segmentation tech-
nique in §3.2, describing the data, the technique of Dasgupta and Ng (2007); Keshava and
Pitler (2006) and the approach to the segmentation of words. The way clusters were formed
is described in §3.3, outlining the use of both orthographic and semantic similarity and how
clusters are ranked and merged together or discarded. The crowd-sourcing and expert eval-
uations are described in §3.4, with an in-depth analysis of the results given in §3.5. Apart
from the quantitative and qualitative analysis of the clusters, we also analyse and obtain
insight from the evaluation results pertaining to the questions on the hybrid morphology
of the Maltese language in §3.5.4. The majority of the techniques used for the segmenta-
tion and clustering of words were mainly applied on Anglo-Saxon and Romance languages.
Although such languages can contain non-concatenative morphological aspects, these are

not as prevalent as in Maltese. Comparing clusters of non-concatenative and concatena-
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tive morphologically related words side-by-side shows that although the techniques do
perform better overall on concatenative words, but both processes have their pitfalls and
the techniques can only serve as part of a bootstrapping process in languages where the

computational resources are few.

3.2 Segmentation

The segmentation of words is a preprocessing step in computational morphological anal-
ysis, whereby a word is split into a stem and affixes (Hammarstrom and Borin, 2011). The
identification of the stem is important to group morphologically related words together. It
is also possible to list all possible inflections of a stem, grouping words into paradigms and
then providing functional labels for each slot within the paradigm, since a segmenter or
lemmatiser for Maltese is currently not available. This research began by exploring pos-
sible ways of segmenting words automatically through unsupervised techniques, using
the Maltese Language Resource Server (MLRs) corpus’ (Gatt and Cépls, 2013) as a start-
ing point. By employing statistical techniques, a list of affixes was extracted and used as
the basis for the segmentation of words, which could in turn feed into the clustering of

morphologically related words.

3.2.1 Data preparation

The starting point for the segmentation process was the MLRs corpus, which at the time
contained over 120 million tokens. The corpus is a collection of texts from different on-
line sources and represents various genres, from academic and literary articles to blogs
and newspaper articles. A wordlist was extracted from the corpus, which included fre-
quency counts for each word. Since the corpus was opportunistically built from articles
and documents crawled through the Internet, the quality, especially in terms of orthog-
raphy, was not exceptionally high, with several mistakes in the texts. Another issue of
Maltese orthography is the spelling of loan words (especially from English). In an effort
to increase the quality, a section of the corpus was spell-checked manually in a separate
project. The emphasis of this task was to correct orthographic errors and to identify and
mark foreign words. Using the resulting database, these corrections were then propagated
to the rest of the corpus. Apart from these corrections, a further 123 rules were written

programmatically to make some further corrections, mainly aimed at eliminating incorrect

'http://mlrs.research.um.edu.mt
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words from the wordlist. Table 3.1 provides the statistics of the number of distinct word
types split into different categories according to the correction process. The corrections
resulting from the spell-checking project are marked as ‘SC’, whilst those resulting from
the rules written specifically for this work are marked as ‘RL’. The categories used are
indicative of the process applied. By applying the spell-checking corrections, a number
of words were marked as foreign (6), or had different corrections by different annotators
(9), so these words were discarded. Words which were corrected were included (B). The
remaining words were initially considered as ‘Maltese’ (A), and eliminated from this cat-
egory when a word matched a specific rule. For instance, a set of non-Maltese characters
were identified and if a word contained such a character it would be placed into category
7. Other simple rules, such as, those applied to words with triple or more letters, would
place words into category 5 (e.g.: “so0000” - multiple ‘0’s placed for over-emphasis). Some
of the rules were aimed at identifying possible errors but without a means of automatically
verifying whether these are actually errors or not. Depending on the rules, some words
were marked as possible errors but retained (category D), and some words were marked
as probable errors and ignored (marked as category 10).

Since the approach uses a completely unsupervised technique, it is important to re-
strict the wordlist to correctly spelled words. The more errors present in the wordlist, the
more these would be propagated in the results. By excluding known and probable errors,
function words, numbers, punctuation marks, proper nouns, determiners, foreign words
and those words with a token count of less than 10, the resulting wordlist used had 67,434
word types.
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Table 3.1 Corpus statistics indicating the number of word types and how these are cate-
gorised.

Description No. of Word Types | Percentage
Number of distinct word types 529,056 100%
(A) Marked as Maltese 111,870 21%
(B) Manually corrected (SC) 139,961 27%
(C) Rule corrected (RL) 196 0%
(D) Included — requiring manual checking (RL) 48,597 9%
Sub-total 300,624 57%
Having Token Count > 9 67,434 13%
Categories for discarded words: (43%)
(1) Function words 173 0%
(2) Proper nouns 93,492 18%
(3) Determiners 195 0%
(4) Punctuations 28 0%
(5) Rule marked errors (RL) 12,076 2%
(6) Marked as foreign (SC) 61,392 12%
(7) Foreign (RL — non-Maltese characters) 5,128 1%
(8) Rule marked foreign (RL) 64 0%
(9) Ambiguous corrections (SC) 49,947 9%
(10) Marked as ignore (RL) 5,937 1%
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3.2.2 Extracting affixes

The first step towards segmentation is identifying the most probable prefixes and suffixes
which can then be used to segment words. Keshava and Pitler (2006) proposed an un-
supervised technique that uses transitional probabilities to identify prefixes and suffixes
automatically from a list of words. Words are represented into a Trie data structure — a
type of programming structure which can hold data in an efficient manner since strings
with multiple overlapping substrings are stored without excessive redundancies. A Trie
has a symbolic root node which is used to access the data structure and the remaining
nodes, each representing a single character. Each node can have several children, with the
constraint that each child is unique (no two children can represent the same character).
For any node n, representing the character c, the children of n represent the attested sub-
sequent characters in the wordlist. Thus all words starting with ‘a’ will share this node.
A small sample is shown in fig. 3.1, showing how a number of word forms from the word
accetta ‘to accept” would be stored in the trie data structure and how a number of nodes
are shared among the different words. Each node also holds information about the token
count and whether it represents the end of a word (marked in a blue double-line in fig. 3.1).

The technique takes a word and iterates through every character, checking whether
this can be considered as a potential boundary between a stem and a suffix. In order to be
able to generalise the description, a word is represented as a A Bf, where uppercase A, B
represent single characters, the Greek letters a, f represent character sequences, with the
possible boundary being examined between A and B. Hence, a A is the potential stem, and
B/ the potential suffix. Table 3.2 shows how the word acéettajtx ‘I/You did not accept’ is
represented as a A Bf as the boundary check iterates through every character of the word.
The sequence B is given a score, reflecting the likelihood of it being a suffix, on the basis

that the following conditions are satisfied:

1. aA isitself a word type in the wordlist — In the Trie this would be true if A is a blue

double-lined node.

2. P(Ala) % 1 — The number of words starting with aA is approximately the same
as the number of words starting with a. Intuitively this test is again checking the

potential stem and that there is a low branching factor at this boundary.

3. P(flaA) < 1 — The number of words starting with a A is higher than the number of
words starting with a Af, indicating that substantial branching occurs at the point

in the word where the possible suffix begins.
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Fig. 3.1 An example of a Trie data structure for the dictionary entries: accetta, accettaw,
accettawx, accettajna, accettajt, accettajtx, accettat, accettati, accettata — some of the in-
flective forms of the word accetta ‘to accept’. The red node is the root node, the black
nodes intermediary nodes and traversing any path from the red node to any of the blue
double-lined nodes forms a word.
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Table 3.2 Iteration for the word accettajtx, the representation of « ABf, and the results of
the three tests.

Representation a | A|B|p Testl | Test2 | Test3
a-ccettajtx - | a | ¢ | ceftajtx | FALSE | TRUE | FALSE
ac-cettajtx a| C | C |ettajtx | FALSE | TRUE | FALSE
acc-ettajtx ac | ¢ | e | ttajtx FALSE | TRUE | FALSE
acce-ttajtx acc | e | t | tajtx FALSE | TRUE | FALSE
accet-tajtx acce | t | t | ajtx FALSE | TRUE | FALSE
accett-ajtx accet | t | a | jtx FALSE | TRUE | FALSE
accetta-jtx accett | a | j | tx TRUE | TRUE | TRUE
accettaj-tx accetta | j |t | X FALSE | FALSE | TRUE
accettajt-x accettaj | t | x | - TRUE | FALSE | TRUE

The technique uses these three tests to discover potential boundaries between stems
and suffixes. Table 3.2 provides an overview of how the word accettajtx was processed,
showing the results of the three tests. In this example, there is only one boundary where
all three tests give an affirmative answer - acéetta-jtx. However, it is also possible that mul-
tiple boundaries produce an affirmative result for a word. In this example, the boundary
accettajt-x could also be considered a good boundary. However, in this case it did not pass
the second test since there is substantial branching off at the j node, due to words such as
accettaj-na. This does not impact the technique negatively since the suffix x is encountered
several other times when the boundary check would pass all three tests.

For every boundary tested, the possible suffix Bf is scored according to the results of
the three tests: the score is incremented by 19 if all three tests pass, and decremented by 1
if any of the three tests fail. So in the example in table 3.2, the score for the substring -jtx
is incremented by 19, and the scores of all the other substring are decremented by 1. Each
possible suffix has a score associated with it and is updated every time it is encountered in
a word. The scores are not arbitrary, but are purposely selected to ensure that any string
B has a positive final score only if it passes the three tests at least 5% of the times it
was attested (—- = 0.05). 1 and 19 can be substituted with any numbers that satisfies

+19
(555 = 0.05). The scoring mechanism gives a system of ranking potential suffixes, with
the most likely suffixes having the highest scores.
This technique was implemented and applied to the MLRs wordlist, resulting in a large

list of potential suffixes ranked by their relative scores. A similar process was carried out
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to extract the prefixes. This was done using exactly the same technique but representing
and storing the words back-to-front, and processing them in reverse order. The technique
produced a list of prefixes and suffixes and their relative scores through which the affixes
are ranked. The higher the score, the more likely that a particular string is indeed an affix.
The list produced also contains strings which are not affixes, and therefore a decision must
be made to determine the cutoff point. The top 400 ranked suffixes and 200 ranked prefixes
were used to segment words. This represented approximately the top 10% of the potential
affixes. The cutoff was rather lenient in order to allow composite suffixes into the set, since
these are less frequent and therefore rank lower than more frequent suffixes. The technique
does not distinguish simple suffixes from composite affixes. Thus, in the example below,
both -ha and -hielha are processed as whole suffixes and no link is made between the

presence of -ha in both words.

(3.1) accetta -ha
accept.Perf.35gM -3SgF-Acc
he accepted her

(3.2) accetta -hie -lha
accept.Perf.35gM -3SgM-Acc -3SgF-Dat
he accepted it for her

3.2.3 Composite suffixes

The resulting suffix list included several composite suffixes. The ability to segment com-
posite suffixes could be beneficial as this would split a complex suffix into morphemes.
Some experiments were carried out, in a similar vein to the strategies used by Keshava
and Pitler (2006) and Dasgupta and Ng (2007), to analyse whether splitting composite suf-
fixes automatically is feasible.

Keshava and Pitler’s technique is rather simple and uses the ranked list of suffixes. It-
erating over the ranked list, when a suffix .S, can be decomposed into two better-ranked
suffixes .S; and S, S, is removed from the suffix list since it is represented by the two
composites §; and .S;. This means that the whole suffix xy is removed and only the com-
posite suffixes are kept as two separate suffixes so that, during the segmentation process,
the suffix xy is correctly presented as x + y. The limitation of this technique is that it only
considers a maximum of two composites within a suffix. This technique was applied to the
top 400 ranking suffixes in Maltese and resulted in the removal of 228 suffixes, leaving 172

suffixes. However, further analysis of the results showed that this technique is not very
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reliable for Maltese, as can be seen in table 3.3 below. From the 172 suffixes which made it
to the final list, only 60% were correct, with the rest which should have been segmented.
On the other hand, a number of suffixes removed from the list (segmented) were either
segmented at the wrong boundary (8%) or should have been left whole (23%). The overall
accuracy of the technique is rather low (52%) for Maltese and Keshava and Pitler do not
provide an analysis of the composite suffixes, so it is not possible to compare the results.

However, it is clear that this technique is not well suited for Maltese.

Table 3.3 An overview of the errors in the composite suffix procedure using the technique
based on Keshava and Pitler (2006)

Description Total | Percentage
Total Suffixes 400

Correct Output (Accuracy) 207 52%
Incorrect: 193 48%
— should have been split 68 17%
— split at the wrong boundary 32 8 %
— should have been left whole 93 23%
Final affix list: 172

— of which are correct 104 60%

One of the drawbacks of the technique above is that it only caters for one split in a
suffix. This restriction is not ideal since Maltese has several suffixes whichcan be split into
more than two parts (e.g -w-hom-x -PL.NoM-3PL.Acc-NEG). In this analysis, it is crucial
to balance between not segmenting at all and over-segmenting, either of which should
ideally be avoided. Another strategy for segmenting composite suffixes is that described
in Dasgupta and Ng (2007). A suffix af can be considered a composite of two suffixes
a and f if the inner part of the suffix («) is combined with a similar set of words as the
whole suffix (af). The similarity between the whole and the composite suffix is measured
by comparing the number of distinct words they combine with. Thus,

Similarity(af,a) = Pr(a | aﬁ) = ||WW//I|| (3.3)

where |W'| is the number of distinct words that combine with both af and « (thus taking

the intersection of the two sets of words), and |W | is the number of distinct words that
combine with @f. In Dasgupta and Ng, a composite is considered to be correct if the

similarity obtained is greater than 0.6. However, it is not clear whether this threshold is
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arbitrary or whether the value signifies some specific reasoning. Again, it is desirable to
be able to consider more that one segmentation in a composite suffix. Thus we extended
the principle to consider all possible segmentations, such that if we were considering suffix

apfy, then we would have

Pr(a | ap) «Pr(B | py) (3.4)

The way that the extension is implemented is that all possible splits are considered
and the similarity is worked out for each possibility. This means that given the suffix xyz,
the composites considered are x — yz, xy — z and x — y — z. The most probable split is
suggested as being the most likely segmentation of the composite suffix. In practice, this
extension did not really impact the results of the segmentation, since larger segments are
usually more probable than smaller segments. Different thresholds were tested since the
0.6 threshold used in Dasgupta and Ng (2007) resulted in only 5 composite suffixes. The

results are indicated in table 3.4 below.

Table 3.4 The accuracy in the segmentation of the top 400 ranked suffixes using different
thresholds, extending the technique of Dasgupta and Ng (2007).

Threshold 06| 05| 04| 03 0.2 ] 0.1]0.05
Correct suffixes 271 | 276 | 288 | 238 291 | 274 | 248
Accuracy 67.7% | 69% | 72% | 72% | 72.7% | 69% | 62%
Composite suffixes 5| 10| 32| 42 57 | 118 | 188
Correct composites 0 5 22 27 36 58 30
Correct composites 0% | 50% | 69% | 64% 63% | 49% | 42%

The extension over Keshava and Pitler is worth considering since it raised accuracy
from 52% to 72%, with the best threshold being at 0.4. Still, more than one fourth of the
suffixes were incorrectly segmented. However, the segmentation of suffixes into their
composites is not an essential task for clustering morphologically related words. It is more
important to identify the stem of a word correctly so that morphologically related words
can be grouped together. The importance of composite suffixes in relation to morphologi-
cal analysis is more important for the labelling task since each composite, when correctly
equivalent to a morpheme, can provide an important relation to the relative morphosyn-
tactic label of a word. The task of marking words with their morphosyntactic labels is

described later on in chapter 4.
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3.2.4 Segmenting words

The main focus of the segmentation task is to aid the morphological clustering of words.
The automatically identified affixes can be used to remove affixes from words so as to
identify the stem. Although considerable stem variation occurs in Maltese, it is somewhat
easier to cluster morphologically related words together on the basis of the stem rather
than the whole word. For instance, the pairing up of the words accettaha and accettahielha
would be simpler once the stem accetta is identified. In this way, the stem is acting as a
common denominator between different words, allowing for the possibility to group words
together on the basis of the shared orthography over the stem.

The segmentation process used the top 10% of the ranked suffixes and prefixes identified
previously. Since the affix list is automatically retrieved through a data-driven approach,
it contains some incorrect affixes. For example, consider the incorrectly identified suffix
-kament® in words such as politikament ‘politically’ and bazikament ‘basically’. The dif-
ference between these two examples is that the stem *politi is not in the wordlist, whilst
the stem bazi ‘basis’ is. For this reason, the suffix -kament ends up in the final suffix list
even though it is incorrect. If segmentation of words is restricted to where the stem is
identified as a valid word in the corpus, it avoids segmenting politi-kament incorrectly as
the stem politi is not found, allowing only the correct segmentation politika-ment. How-
ever, there is no precise way of predicting that bazika-ment is the correct segmentation
and bazi-kament is the incorrect one as both suffixes and both stems are valid according
to the data present. Bazika ‘basic.3SGF’ is an adjective derived from the noun bazi, with
the latter stem being the most frequent one.

Complications may also arise due to homographs in the wordlist. For instance, the stem
park is both a part of the verb meaning ‘to park’ and the noun meaning ‘public space’. Thus,
for ipparkja ‘he parked’, the method finds two potential segmentations: i-pparkja and ip-
park-ja. A more subtle cause is the presence of consonant gemination in Maltese as part
of the derivational process, for example verifika ‘verification’ — v-verifika ‘he verified’,
and, if it is preceded by a word ending in a consonant, it takes the epenthetic vowel i
(i.e. i-vverifika). This is only typical in loan verbs. Another problem is over-segmentation,
resulting in a stem that belongs to a different (homonymous) lexeme — e.g. spi¢éa ‘to finish’
is segmented as s-pi¢é-a, with the resulting incorrect stem picé ‘pitch’.

As these examples illustrate, the challenge in segmentation is not limited to how a

word should be split, but also to determine when a word should not be segmented. This

“The correct suffix -ment is also in the list and is ranked higher. -ment is equivalent to the adverbial suffix
-ally or -ment in English.
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also arises from the fact that the probabilistic method will tend to favour smaller numbers
of segments rather than multiple segments. In order not to be forced to chose a potentially
worse segmentation over another one, all possible valid segmentations are considered as
input to the clustering process.

A valid segmentation is one in which the affixes are in the top 10% of the ranked lists,
and the resulting stem is present in the wordlist. This strategy might leave words unseg-
mented, especially in cases where stem variation occurs. However this choice is justified
since the final aim is to cluster morphologically related words together. Each word was
therefore processed through the segmentation technique, and presented as a whole word
unsegmented together with any additional valid segmentations to the clustering technique

described below.

3.3 Clustering technique

The clustering of morphologically related words looked at automatic techniques through
which words could be grouped together on the basis of orthographic and semantic simi-
larities. The aim of this work was to produce word groupings (clusters) that are morpho-
logically related. Each cluster is headed by a word, which ideally, represents the overall
concept of the words found within the group, and is referred to as the head or head word of
a cluster. However, since this is an automatic process, it does not necessarily mean that it
captures the full conceptual meaning of a cluster, especially since no distinction was made
between inflectional and derivational words. Such words might end up in the same cluster

and the head word might not necessarily represent the concepts present in the cluster.

3.3.1 Segmentation-based clustering

Initially words were grouped together on the basis of common stems. Given a word W,
and all its possible segmentations seg, ... seg, (including the unsegmented word), we used
every stem s; from the segmentations as a cluster head and grouped together all words
incorporating that stem. Thus, from ivverifika and its possible segmentations i-vverifika
and iv-verifika, the system derives three clusters headed by each stem. Ivverifika is itself
a member of every cluster, together with any other word types that have these stems and
additional affixes (e.g. ivverifikajt ‘1 verified’). Table 3.5 shows the words clustered to-

gether with these three stems. All three clusters mainly included inflective forms of the

63



3.3 Clustering technique

verb vverifika, whilst the cluster for verifika included also some derivational forms (e.g.

verifikar, verbal noun; verifikaturi, noun).

Table 3.5 Initial clusters for the stems verifika, vverifika and ivverifika

Head word | Initial word clusters Size
verifika ivverifika, ivverifikajna, ivverifikajt, ivverifikar, ivverifikat, 18
ivverifikata, ivverifikaw, verifikar, verifikat, verifikata, verifikaturi,
verifikazzjoni, vverifika, vverifikajna, vverifikajt, vverifikat,
vverifikata, vverifikaw

vverifika ivverifika, ivverifikajna, ivverifikajt, ivverifikar, ivverifikat, 18
ivverifikata, ivverifikaw, jivverifika, jivverifikahom, jivverifikaw,
nivverifika, nivverifikaw, tivverifika, vverifikajna, vverifikajt,
vverifikat, vverifikata, vverifikaw

ivverifika ivverifikajna, ivverifikajt, ivverifikar, ivverifikat, ivverifikata, 12
ivverifikaw, jivverifika, jivverifikahom, jivverifikaw, nivverifika,
nivverifikaw, tivverifika

By allowing the system not to select one definite segmentation for a word, each word
can appear in more than one cluster. For instance, jivverifikaw was found with the clusters
headed by the words vverifika and ivverifika, but not the cluster verifika. This is because
the segmentation using the latter as a stem was not possible since the prefix jiv- was not
in the list of prefixes, whilst i- and ji- were. Table 3.6 shows the more problematic example
of the word spi¢éa ‘he finished’ being wrongly segmented as s-pi¢éa and s-pi¢é-a. The stem
picé (which is a possible spelling of “pitch/field pitch’) is a valid word but with a completely
different meaning from spi¢éa. However, the stem *pi¢ca is erroneous due to the presence
of noise in the wordlist.

This initial clustering technique produced 21,381 clusters; a number of words were
present in multiple clusters, and it was possible for a cluster to be a subset of a larger
cluster. The amount of clusters up to this stage was quite large when considering that the
starting point was a list of 67,434 words. However, over 10,000 clusters contained just two
words, and most of these small clusters were subsets of larger clusters. The largest cluster
contained 74 words and, overall, the clusters contained an average of 4 words.

Due to the large number of clusters, the question arose as to whether and how the qual-
ity of a cluster could be automatically determined, and how to select those clusters which
would best represent a group of morphologically related words. Ideally, clusters should

contain as many morphologically related words as possible. The first improvement to the
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Table 3.6 Initial clusters for the stems pic¢, pi¢éa and spicca

Head word | Initial word clusters Size
picc picca, spicca, spiccat 3
picca piccaw, spicca, spiccajna, spiccajniex, spiccajt, spiccajtu, 19

spiccalha, spiccalhom, spiccali, spiccalu, spiccat, spiccatilhom,
spiccatlu, spiccatx, spicéaw, spiccawh, spiccawlhom, spi¢cawlu,
spiccax

spicca jispicea, jispiccaha, jispiccalek, jispiccalha, jispiccalhom, 37
jispicealu, jispi¢caw, jispiccawh, jispiccawlhom, jispiccawlu,
jispi¢cax, nispicéa, nispicéaw, nispiccawh, nispi¢cax, spiccajna,
spic¢cajniex, spiccajt, spiccajtu, spiccalha, spiccalhom, spiccali,
spiccalu, spiccat, spiccatilhom, spi¢catlu, spi¢catx, spiccaw,
spiccawh, spiccawlhom, spiccawlu, spiccax, tispicéa, tispiccalhom,
tispiccalu, tispiccaw, tispiccax

clusters simply removed clusters which were proper subsets of larger clusters. However,

there were two main challenging problems which needed to be addressed in further detail:

Separate Clusters A number of different clusters contained an overlap of morpholog-
ically related words or there were separate clusters which were morphologically
related. Such clusters should be merged together into one cluster. E.g., table 3.5
shows the three initial clusters obtained from processing ivverifika. Ideally these
three clusters should be merged into a single cluster. This problem is more pressing
due to stem variation in Maltese words, resulting in several separate clusters. For
instance, for the verb seraq ‘to steal’, the words jisraq, seraq and serqu were all in-
dicated as stems and found in separate clusters due to stem variation. Such clusters

should be merged together into a more complete cluster.

Mixed Clusters A number of clusters contain unrelated words, e.g., the cluster for picé
seen in table 3.6. The choice was either to try and remove the unrelated word or
completely disregard such a cluster, especially if a large percentage of the words in

the cluster are unrelated words.

In order to improve the quality of the clusters, we introduced semantic and ortho-

graphic metrics to try and determine automatically whether words in a cluster were mor-

65



3.3 Clustering technique

phologically related or not. We also used these measures to compare clusters. This ap-
proach is similar to Schone and Jurafsky (2000, 2001) and Baroni et al. (2002). However,
rather than limiting the relatedness to a pair of words, we looked at whole clusters of

words.

3.3.2 Semantic and orthographic similarity

Latent Semantic Analysis (LSA) is a technique belonging to a much larger family of distri-
butional or vector-space methods (Turney and Pantel, 2010). It analyses the relationship
between words by comparing the context in which they appear. The more two words ap-
pear in similar contexts, the more semantically related they are. For example, the words
green and blue would be expected to be surrounded by similar words since they are both
colours. This is also plausible for morphologically related words, such as blue and bluish.
LSA creates a vector representing the surrounding words for each word present in the
corpus. It then gives the semantic similarity of two words by comparing the similarity of
their individual vectors. One of the main advantages of using an LSA as a vector-space
method is due to its matrix-algebraic characteristics, with the capacity to reduce very high-
dimensionality vectors by performing singular vector decomposition. In order to employ
an LSA as part of the clustering technique, we chose to use an open-source semantic space
library implemented by Jurgens and Stevens (2010).

The semantic space was created using the MLRS corpus with a stoplist consisting of
function words, punctuation and some misspelt word types. The resulting semantic space
was then used to compute the semantic similarity of word pairs. The LSA returns a value
between 0 and 1, where 1 is the limiting case of similarity, implying identity. In fact a value
of 1 usually occurs in assessing the similarity of a word with itself. The smaller the value,
the less semantic overlap there is between two words.

The purpose of applying semantic values between words is twofold. First, clusters with
a high number of unrelated words should be disregarded completely, especially if the words
are contained in other clusters. Second, clusters which might be morphologically related
but were clustered separately, especially due to stem variation, should be considered for
merging. For both cases, we devised a metric that measures a cluster’s semantic cohesive-
ness. The intuitive concept behind this metric is that the more semantically related the
words within a cluster are, the tighter or more ‘compact’ the cluster is. Although seman-
tic relatedness does not imply morphological relatedness, the clusters so far were formed
through the identification of potential stems. This limits the measuring of semantic relat-

edness of words to those which have a strong orthographic similarity between them, since
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this is guaranteed by the stem overlap. Semantic cohesiveness is calculated by taking the
standard deviation of the semantic relations between the stem heading a cluster and every
word in the cluster.

Let C, be a cluster headed by stem 5;, and let Sem, , be the semantic similarity between

s; and w; € C;. The cohesiveness, 6 is computed as:
1

oe = Z (Sem,,, — p)* (3.5)

where y is the mean pairwise semantic relatedness in C,. If a cluster contains seven words

w , then it will have seven similarity values (Sem Sem_ ) associated to each
1...7 Yy s;Wq

sy
word reflecting the semantic similarity between the stem 1and the word. The variance and
deviation of all the semantic values within one cluster is calculated and the deviation is
taken as an indicator of a cluster’s semantic cohesiveness. The intuition here is that, the
wider the dispersion within the cluster, the less cohesive it is, indicating a weaker similarity
between words. Using this metric, clusters such as those in table 3.5 generally score quite
high since the words are clearly related to each other. By comparison, the cluster for picé
has a lower score. This can be seen in table 3.7, showing the semantic cohesiveness oc, for

each of the example clusters illustrated previously.

Table 3.7 Values of the semantic cohesiveness o, for some of the initial clusters indicated

by the head word

Head word | o

verifika 0.1504
vverifika 0.1624
ivverifika | 0.2053

picc 0.0807
picca 0.1376
spicca 0.2359

Although the initial clusters were produced on the basis of a common stem, further im-
provements in the clusters needed to consider the orthographic similarity of words. The
Minimum Edit Distance (MED), also known as Levenshtein distance, is a standard cost func-
tion which, given two words w; and w;, returns the cost required to arrive from one word
to an other, calculated on the least possible number of character insertions, deletions and

substitutions. If each operation had a cost of 1, the distance between cat and cot is 1 through
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substitution. The technique employed a weighted implementation of MED provided in the
LingPipe library (Alias-i, 2008), which also allows for negative costs for insertion, deletion
and substitution operations, whilst providing a positive cost to the matching operation.
Rewarding matches over other operations is a favourable strategy, especially due to stem
variation. The negative score from the number of insertions, deletions and substitutions is
‘normalised’ by the number of matches that two words have. The costs used were set as
follows: match 4.0; insertion -6.0; deletion -6.0; substitution -12.0. Substitution in particu-
lar was weighted as the sum of the cost of the two operations (insertion and deletion) so as
to avoid the unwanted situation where the change of one single character would result in
a lower cost but resulting in a completely different meaning. For instance, if substitution
is given a lower cost, it will result in kiser ‘to break’ being closer to kiber ‘to grow’ than to

ikser ‘break.iMp’; however, with the proposed costs they would have the same distance.

3.3.3 Merging clusters

The initial clusters contained both overlap in terms of separate clusters with a number of
shared and related words as well as separate clusters with different words but morpho-
logically related. The semantic cohesiveness of a cluster can be used as a metric to assess
whether two clusters should be merged together. The merging of clusters was carried out
in two phases. The first phase iterated through the clusters, creating a ranked list of po-
tential cluster pairs. This avoided the problem of merging clusters iteratively in a random
order, which may result in C; being merged with C;, when a later cluster C;, would have
been a better candidate to merge with C,. The actual merging of clusters was done in a
second phase, which used the ranked list of candidate cluster pairs and checked the im-
provement in the semantic cohesiveness of the new potential cluster prior to merging two
clusters. In other words, two clusters were merged only if the semantic cohesiveness of
the new cluster is better than the two unmerged clusters.

To create the potential cluster pairs, all clusters were paired up and the semantic cohe-
siveness for each pair was calculated, providing the possibility to rank the pairs according
to the added value that merging two clusters would actually bring. For each candidate clus-
ters C; and C;, with stems s; and s, respectively, two clusters were considered for merging

as cluster C, taking stem s,, the ranking of C, was calculated as follows:

1. Semantic similarity SEM,, > a, where s, is the stem head for C,, s, is the stem

head for C s and a is a predetermined threshold. This means that the semantic simi-
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larity of the two stems must be above a certain threshold a, which was empirically

determined at 0.4.

2. Orthographic similarity Mep; >= f, where s, is the stem head for C,, s, is
the stem head for C, and f is a predetermined threshold. This means that the two
stems must share some orthographic similarity, and the threshold f was empirically

determined to be 0.

3. Improvement in the semantic cohesiveness (semImp) of the merged cluster C,,
where

SEMIMP = o — min(o¢,oc ). (3.6)
i J

The potential new cluster C, was considered better when its semantic cohesiveness
oC, is lower than the cohesion for either of the two original clusters. This would
indicate that there is an improvement in the new cluster, resulting in lower disper-

sion.

The technique required the consideration of all three values because the improvement
in semantic cohesiveness (semIMP) alone was not sufficient to reliably determine whether
two clusters should be merged. An ‘improvement’ in sEmIMP could be registered even
when non-related words are introduced through the merging of two clusters. This was
primarily due to the fact that some of the inflective variants of a word would have a rather
low semantic similarity value, so the overall improvement of the semantic cohesiveness
of a merged cluster cannot be considered in isolation. We combine all the three values

described above into a single weighted metric, referred to as Combined Value (ComVAL):

ComVar. = aSEM,; + fMED, + ySEMIMPC (3.7)

where the weights were empirically determined as « = 0.2, § = 0.2, and y = 0.6.

The first phase produced a list of cluster pairs which were ranked by their relative
CoMVAL. In the second phase, the program iterated through the ranked list to execute the
merging of clusters. Since the same cluster appears in the ranked list several times, clusters
which were merged were given an integer value to indicate their status. All clusters began
with a status of 0 indicating that no operation was so far carried out on that cluster. The

status of the two clusters being considered for merging was changed as follows:

1. Both clusters C; and G had a status of 0, indicating that so far neither has been
merged — the merging of the two clusters was carried out, and the individual clusters

were given a status of 1.
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2. Cluster C,; had a status of 0, whilst cluster C; had a status of 1, indicating that it
had already been merged to another cluster — In this case, the ComVAL ¢, Was cal-
culated, and if an improvement was registered (using the same threshold described
above), then the clusters were merged. However, the clusters would be given a status

of 2 to indicate that these clusters should not be merged any further.

3. Both clusters C; and C; had a status of 1, indicating that both clusters had already
been merged separately with other clusters. No further merging is considered so as

to avoid overly large clusters. The clusters were given the status 3.

The status of the clusters allows the monitoring of the merging process as this pro-
gresses automatically. The procedure reduced the number of clusters substantially, from
the initial 21,381 clusters, down to 4,524 clusters. Still, the number of clusters was too
large to evaluate manually. However, unlike the segmentation task which would require
linguistic expertise to evaluate, the clusters can be evaluated by native Maltese speakers
if they are given a reasonable idea of what is meant by morphologically related words.
The next section describes the evaluation that was carried out, its setup and discusses the

results both from a quantitative and qualitative perspective.

3.4 Evaluating clusters

Since there is no large-scale lexical resource against which to evaluate the clusters, it is
not possible to obtain an overall measure through a metric such as accuracy or f-measure.
It is also unfeasible to rely on human experts to evaluate all the resulting clusters. These
limitations have led to the development of two different evaluation scenarios in an attempt
to review the clusters from a quantitative and qualitative point of view.

The first evaluation focused on gathering feedback from experts (trained linguists) who
were familiar with the notions of morphologically related words. The second evaluation
focused on native Maltese speakers who do not necessarily have any linguistic knowledge
or background, but have an intuitive understanding of whether words are morphologically
related. A small pilot study was carried out before the second evaluation to ensure that
the instructions provided were clear and that there were no technical mishaps. The first
evaluation is referred to as the expert evaluation, whilst the second evaluation is referred
to as the non-expert evaluation.

The non-expert evaluation used crowd-sourcing, a technique that extracts information

by soliciting the participation of online users. There are several platforms available that
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also allow users to be paid for their participation, such as Amazon’s Mechanical Turk® or
Crowdflower®*. Such systems are becoming common for the evaluation of results in differ-
ent areas in computational linguistics and artificial intelligence. However, some of these
systems have certain geographical restrictions and usually require payment to participants.
Thus we developed our own online evaluation protocol, which was then advertised widely
among Maltese speakers. This was necessary as the number of Maltese speakers on ex-
isting platforms is likely to be very small, given that Maltese is a ‘small’ language (in the
sense that there are just over 400k native speakers in Malta).

The first main goal for the evaluation was to answer the question: how good are the
clusters that the system has produced? To address this question, participants were asked
to give a subjective rating of the quality of a cluster on a likert-type scale. However, the
quality of clusters could also be measured more objectively, as a function of the number
of morphologically unrelated words they contained. In an ideal scenario, when related
words are not found in the cluster, they could also be included to provide a more complete
cluster. The exercise of adding and removing words from the existing clusters also had an
indirect benefit — that of providing a gold standard dataset of related words. In order to
ensure that both aims were reached, each cluster was evaluated by at least three people so

that the agreement between participants could also be measured and analysed.

3.4.1 Pilot study

In order to test the setup of the crowd-sourcing system and the clarity of the instruc-
tions provided, a pilot study was carried out with 4 non-expert participants. The pilot
participants were asked to (i) watch the instructional video and read through the written
instructions, and comment if there were points that were not clear; (ii) provide feedback
on the functionality and ease of use of the website; (iii) spend around 10 minutes using the
system; and (iv) provide general feedback about the task and highlight any difficulties or
uncertainties that arose during the task. The aim of this exercise was to understand what
type of problems participants might encounter and whether the description of the task was
clear.

The main problem encountered by the pilot participants was that they were not sure
whether derivationally related words should be left within a cluster or not. This is espe-
cially the case for words that fall under the root and pattern morphological system and

different forms are found in the same cluster. For instance, a user was uncertain whether

*https://www.mturk.com/mturk/
*http://crowdflower.com/
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twassal ‘to deliver (a message)’ should be left under the cluster tasal ‘to arrive’. From a
computational perspective, and given that the type of techniques applied to cluster words
were unsupervised, it is not feasible to expect the system to distinguish automatically be-
tween inflection and derivational relations. Similarly, it is unrealistic to expect non-experts
to always distinguish correctly between inflection and derivation, making the evaluation
exercise more complex. In fact, to ensure that participants do not limit morphological re-
lations to only inflection, the instructions contained examples that include derivation (e.g.
stating that gera ‘he ran’ and girja ‘race’ are related to each other). As a result of the un-
certainty that arose during the pilot exercise, two test clusters were manually designed to
be used as an indication of a participant’s strategy in the removal of words from a cluster.
Table 3.8 shows the two clusters which included both derivational and unrelated words.
The unrelated words were purposely chosen due to their similar orthographic form to the
words in the cluster. The cluster kbirt ‘grow-1p.sG.PERF’ is from the root vKBR, and all
word formations follow a root-and-pattern morphology. The cluster abbuz ‘abuse’ follows

a concatenative morphology.

Table 3.8 Two test clusters introduced to assess a participant’s strategy in removing deriva-
tional words from a cluster

Head word | Inflections Derivations Unrelated

kbirt kiber, kbirna, jikber, tikbirx | kabbar, kburi, tkabbir, kiser

grow ikbar kobor broke

abbuz abbuza, abbuzat, jabbuza, abbuziv, abbuziva, akkuzat

abuse nabbuza, tabbuza, abbuzati, | abbuzar, abbuzivament, accuse
abbuzak abuzazzjoni

The pilot study also provided the option to mark a cluster for deletion, intended for
those clusters which were very large in size and contained several unrelated words. How-
ever none of the participants used this option and they preferred to correct a large cluster
and rate it negatively in terms of quality rather than to delete it completely. Therefore this
option was left out from the actual evaluation process to keep the interface and task as

simple as possible.

3.4.2 Participants

Three linguists with postgraduate training (one at Masters and two at PhD level) took part

in the expert evaluation. For the non-expert evaluation, the targeted participants were
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Maltese native speakers, who were mainly sourced from the student population at the
University of Malta, as well as through social media networks. In total, 248 people visited

the website, of which 106 chose to participate in the evaluation.

3.4.3 Materials and design

The clusters presented for the expert evaluation were purposely chosen to represent a mix-
ture of root-and-pattern and stem-and-affix morphology. The clusters were chosen on the
basis of their stems. For example, to cover the stem-and-affix morphology, all clusters
whose stem has prova ‘try’ as a substring were chosen. To cover root-and-pattern mor-
phology, those clusters which have stems containing the consonants h-s-1 (capturing the
root vhsL for fasel ‘to wash’) were included in the evaluation. Each search resulted in
more than one cluster, meaning that the same expert might evaluate the cluster for hasel
and nhaslu (VII.PERF.P3PL or VILIMP.P2PL). It also resulted in capturing stems with dif-
ferent meaning — for instance the cluster with the stem approva ‘approve’ was included
since prova is its substring. The approach of selecting the clusters for the expert group
reflected the overall observations of problems encountered in the segmentation and clus-
tering procedures. The goal of the expert evaluation was to have a dataset which could be
used in the future to correct or tweak the techniques used. A total of a 101 clusters were
chosen through this manual approach, 26 of which (randomly chosen) were evaluated by
all 3 experts so that the inter-annotator agreement between them could be measured. The
remaining 75 clusters were randomly allocated between the three experts. Experts were
also given the opportunity to give textual feedback/comments on each of the clusters.
The non-expert evaluation placed no limit on the number of clusters a participant could
evaluate. 300 clusters were randomly chosen, with the aim that every cluster would be
evaluated by least 3 participants so that inter-annotator agreement could be calculated.
Table 3.9 provides an overview of the size of the clusters. The majority of clusters are
rather small, with less than ten words in a cluster. This can be considered as an advantage

for the type of crowd-sourcing exercise since it is easier to check a smaller list of words.

3.4.4 Procedure

The evaluation was developed as a website® allowing participants to carry out the task from

any location over the Internet. The website provided a short introduction and a description

*http://mlrs.research.um.edu.mt/cmexperiment/intro.php
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Table 3.9 Average size of the clusters evaluated

Size Range | Expert | Non-expert
<10 39% (39) | 58% (173)
10 - 19 30% (31) | 26% (79)
20 - 29 14% (14) 10% (29)
31 - 40 6% (6) 3% (8)

> 40 11% (11) | 4% (11)
Total: 101 300
Max Size: 60 88

of the actual task. Since the idea of ‘related’ words could be rather subjective, a short 3-
minute video describing the task was produced, as well as written instructions. The home
page for the experiment is shown in fig. 3.2, showing the links to the video and the textual
instructions. Figure 3.3 shows the instructions page. The instructions showed a number
of examples to illustrate morphological relatedness (e.g. gera ‘he ran’ and grejna ‘we ran’),
distinguishing it from semantic relatedness (e.g. mexa ‘he walked’). Both the instructional
video and the textual instructions were in Maltese since the evaluation was aimed at native
speakers.

The main evaluation screen is shown in fig. 3.4. A cluster was presented to participants
as a list of words, with the stem of the cluster shown on the top of the list, marked in bold,
and stating that the list of words are related to it. This was done in case a cluster contained
a majority of unrelated words — in this way, the participant would know which words
should be removed and not rely solely on the majority of words. Participants were able to
remove words from a cluster, or replace them back in the word list if they changed their
mind (fig. 3.5, fig. 3.6). Participants also had to provide a quality rating for a cluster on
a likert-type scale, which ranged from tajjeb hafna “very good’ to hazin hafna ‘very bad’
(fig. 3.7). Participants also had the option to include additional related words which were
missing from the cluster (fig. 3.7). However, in the actual evaluation, participants barely
used this function and therefore the analysis below will not include this.

Participants in the non-expert evaluation were continuously exposed to clusters, se-
lected randomly from the pool of 300 clusters, until they would choose to stop, by pressing
the ‘stop’ button. A participant would never see the same cluster twice in one session since

the back-end system kept track of the responses by each participant. No registration was
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800 ¥y r‘EIInbnx (0 : 9) - claudiaborg = [ I-Morfologija fil-Malti - £ x \ Claudia
€ 9 C A [J mirs.research.um.edu.mt/cmexperiment/intro.php Q77| (@ @ =
i apps [ PhD [ Teach ©rML [JEU -.- CDOWN » [] Other Bookmarks

Esperiment dwar kliem relatat fil-Malti

Dan huwa esperiment dwar kliem relatat morfolodikament fil-Malti. Dan ix-xoghol jaghmel parti minn tezi li ged issir
fi hdan |-Istitut tal-Lingwistika fl-Universith ta' Malta, fejn qed inharsu lejn il-possibilta |i kliem relatat jingabru
flimkien b'mod awtomatiku (ez. kiser, ksirt, tiksruhom, tinkiser, ikissrulhom edd).

Istruzzjonijiet

Biex tara ftit x'ghandek taghmel, tista' jew tara filmat qasir dwar dan |-esperiment, jew inkella tagra |-istruzzjonijiet
pass pass:

Filmat: Qari:

Istruzzjonijlet

lkklikja hawn biex
tagra |-istruzzjonijiet

00:00  ol-esil] 3

Kompli
Meta thun lest/a tista' taghfas fug il-buttuna ‘Ibda’ biex tara |-ewwel grupp ta' kliem.

Ibda

Dwar xogholna

Dan |-ezeréizzju huwa importanti ghalina ghaliex b'hekk inkunu nistghu ndahhlu |-korrezzjonijiet i tkun ghamilt int
fil-program, u dan jerga" jitghallem (b'mod ahjar) kif ghandu jaghzel u jigbor il-kliem morfologikament relatat.

L-ghan ta' din it-tezi partikelari hu |i thares lejn il-morfelogija fil-Malti mill-aspett komputazzjonali - Qeghdin
nesperimentaw biex naraw Kif nistghu noholgu programmi li jitghalimu xi aspetti tal-morfologija b'mod awtomatiku.

Jekk tixtieq ikromm ruhek aggornat dwar dan ix-xoghol, tista' taghti |-email tieghek fl-afifar. B'hekk inkunu nistghu
nibaghtulek informazzjoni dwar rizultati li nkunu ksibna,

8'SUPERVIZJON

Fig. 3.2 The welcome page on the evaluation website
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Istruzzjonijiet

X'tip ta" kliem ged nipprovaw nigbru flimkien?

Qed nipprovaw nigbru flimkien kliem relatat marfelogikament b'mod awtomatiku (ez. kiser, ksirt, tiksruhom,
tinkiser, ikissrulhom edt). Ghal dan il-ghan hlogna softwer i jipprova jiddedudi b'mod awtomatiku il-mod kif dawn il-

kliem ghandhom jinghagdu fi gruppi. Ghalhekk hemm bzonn s-sehem tieghek biex ikollna opinjoni dwar l-andament
ta' dan il-program.

Importanti |i wiehed jifhem kif ghandu jinghaqgad il-kliem fi gruppl. Per ezempju, fil-grupp 1i ghandu x'jagsam mal-
kelma gera, nistghu nsibu §rejt, rew, dirja, edt. Biss, minkejja li mexa hija whkoll azzjoni tal-istess tip,
m'ghandniex insibuha fl-istess grupp ghax mhijiex tal-istess forma.

-
Bl-istess mod perezempju, m'ghandniex insibu I-kelmiet isfar u iswed fl-istess grupp. Minkejja li dawn huma t-
tnejm kuluri, ma jitgisux tal-istess forma. Fl-istess grupp mal-kelma isfar nistghu nsibu sfar, safrani, sfurija, edd.
Kif tahdem is-sistema?
F'dan l-ezertizzju ha tara lista ta' kliem |i dwarhom trid taghti I-fehma tieghek rigward il-grupp.
Merhibal
Grazzi talll ged tighu sehem Fdan |-esperiment. Fil-genb ghandek bsta ta' arrjonijiet || tista' tiehu
s
L4

Can hu I-grupo ta' kliem relatat ma” TKELLMUX I-Bwalith Lol-grups
anhel A Wineen it

Fig. 3.3 The webpage showing the instructions in textual format
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Merhbal

Grazzi talli ged tiehu sehem f'dan l-esperiment. Fil-genb ghandek lista ta’ azzjonijiet i tista' tiehu.

« Kif tidhol, ha tara lista ta® kliem li skond il-program taghna, huma relatati,

« Int trid taghti -opinjoni tieghek dwar jekk dan hux minnhu,

« Biex tnefhi I-kemiet li m'ghandhomx jkunu fdan il-grupp, aghfas fug il-vlegga hamra '---=>"' wara | tkun
aghzilt il-kelma i trid tnehhi, jew inkella tista' tikklikja darbtejn fug dik il-kelma (double-click).

= Jekk thun tixtieq terda’ drid kelma li tkun nefihejt gabel, tista® taghimel dan billi tikklikja fug il-vlegga |-hadra
‘we--=' jow tikklikja darbtejn, u l-kelma terga’ tmur lura mal-grupp t2° kliem || ghandu jibga' flimkien.

= Meta thun lest/a mill-ghatla tieghek, tista' tissejvja billi taghfas il-buttuna |-hadra "1ssejvia’.

« Jekk il-grupp ta' Kliem totalment ma jaghmilx sens (ez, ikollok 2ewd kelmiet biss: 'kelb, gattus') fejn huwa éar
Ii ma tistax taghqgad grupp, tista' tula [-buttuna I-hamra fassar - b'hekk tkun ged tghinna naghrfu wkoll dawk
il-gruppi ta* kliem li huma kompletament inkorretti.

Dan hu l-grupp ta' kliem relatat ma" JINDIKAW Il-kwalitd tal-grupp gabel
Nehhi I-kliem Ii fl-apinjoni tieghek mhumiex relatati. ma kkoregejtu kien:
Tajjeb hafna:
[cem relatas: |EM-IH- Tafjeh:
jindikaw Insemma:
indikaw fazin:
!nd!kawll Ttazin hafna:
indikawlna |
indikawlu Tigik Prnehhok xi kelma jow
jindika tejn | kieku 22id mal-
jindikalek grupp:
jindikalha |
jindikali 4
jindikalna
jindikalu
jindikawlek y .
jindikawlhom | Issejvja |
jindikawlina
jindikawlu
jindikawx il
jindikax
jissindikaw
nindikaw

Fig. 3.4 The evaluation webpage showing a cluster and the functionality available to a par-
ticipant. The instructions at the top can be toggled on and off, and provide the participant
with a short reminder of the task.
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required for participation, however the website did allow users to leave their email address
at their own discretion. The two test clusters were presented always in the same order —
the cluster abbuz was always the fourth cluster to be presented to a participant, and the
sixth cluster was always the test cluster kbirt. Apart from the clusters evaluated in a single
session, no other tracking mechanisms were used. So if the same person returned to the

evaluation page the next day, the system treated this as a new participant.

irrimedjat
irrimedjata
jirrimedja
jirrimedjaha
jirrimedjaw
nirrimedjaw

Fig. 3.5 Removal of words

Kliem relatati: h—‘ Kliem mhux rnln'latl

irrimedjat rrlmed]ata

irrimedjata _]II'I'IrT'IEd]EI
jirrimedjaha

nirrimedjaw
rimedjata
rrimedja

Fig. 3.6 Reinserting words in a cluster
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Il-kwalita tal-grupp
gabel ma kkoregejtu

kien:

Tajjeb hafna: O
Tajjeb: e
Insomma: O
Hazin: O
Hazin hafna: o

e
Tigik ffmohhok xi kelma
jew tnejn li kieku zzid
mal-grupp:

kelma

Fig. 3.7 Rating the quality of words

3.5 Analysis of results

In this section we analyse the responses received from the two evaluations carried out.
The expert evaluation received a total of 153 responses over a set of 101 clusters. The three
experts were allocated a fixed amount of clusters to evaluate, with 26 clusters common to
all three experts. The non-expert evaluation received a total of 2117 valid responses from
106 participants covering the 300 clusters and the additional two test clusters. However,
from the 106 participants, responses from six participants were discarded because they
did not carry out the task appropriately®, leaving a total of 100 participants covering 1848
responses over the 300 clusters and 135 responses over the two test clusters, summarised
in table 3.10.

3.5.1 Removal of words

One of the main objectives of the evaluation was to have participants remove unrelated
words from the clusters. From a quantitative perspective, analysing how many words
were actually removed from the clusters provides an insight into how well the clustering

technique preforms. Table 3.11 below divides the clusters into bins reflecting the amount

%As an example, one participant removed all words from every single cluster evaluated, and therefore
such results cannot be included in the evaluation. It is only in clear cases where the majority of clusters
were not properly evaluated that such responses were discarded. In cases of genuine errors, these were left
as part of the responses, which will be analysed through inter-annotator agreement between participants.
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Table 3.10 Summary of the responses received from the evaluation

Participants
Total Clusters
Number of Responses

Test Clusters

Cluster abbuz
Cluster kbirt

Avg. No. of Clusters per participant

No. of Responses on Test Clusters

Expert | Non-expert
3 100

101 300
153 1848

51 18

- 2

135

72

63

of words removed, and displays the percentage of the clusters used in the expert and non-

expert evaluations that fall into each bin. For example, experts did not remove any words

from 54% of clusters, whilst non-experts did not remove any words from 56% of the clusters.

Table 3.11 Number of words removed — Cluster bins and percentage of clusters in each bin

Words removed Expert | Non-expert
0 54% (82) | 56% (1025)
1 3% (5) 4% (79)
2 18% (28) | 15% (274)
3-4 10% (15) | 10% (189)
5-7 5% (7) | 7% (131)
8- 10 5% (8) 2% (44)
11 - 20 3% (4) 4% (66)
21 - 30 3% (4) 1% (18)
31 or more 0% (0) 1% (22)
Total evaluations 153 1848

The same data is shown in table 3.12, this time showing the percentage of words re-

moved from a cluster. This view is important to consider because removing 1 word from

a 6-word cluster gives a higher percentage than removing 1 word from a 20-word cluster.

The clearest observations from these results are related to the extremes. From the eval-

uations carried out there were just over half that had no words removed. This can be seen

as a positive indication given that the clusters were created fully automatically without any
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Table 3.12 Percentage of words removed — Cluster bins and percentage of clusters in each

bin

Words removed Expert | Non-expert
0% 54% (82) | 56% (1025)
1-5% 1% (2) 1% (14)
5-10% 5% (8) 4% (79)
10 - 15% 3% (4) 3% (60)
15 - 20% 6% (9) 4% (77)
20 - 40% 15% (24) | 16% (287)
40 - 60% 5% (7) | 7% (137)
60 — 80% 9% (14) | 1% (101)
over 80% 2% (3) 4% (68)
Total evaluations 153 1848

predetermined knowledge built into the technique. At the other end of the scale, there is
a very small percentage of evaluations where clusters had a rather large number of words
removed. In analysing the latter clusters, it was clear that these are the situations where
the technique fails. For example, for the cluster with the stem ittra ‘letter’, this contained
several unrelated words because ittra is either a substring in several other words or has
a very high orthographic similarity. Clustered together with ittra were tittraduci ‘trans-
late’, ittratat ‘treated’, ittardja ‘delayed’. These type of errors could be catered for in the
clustering technique by empirically adjusting the weights in the calculation of the seman-
tic cohesiveness of a cluster through the comVAL metric described above in eq. (3.7). For
such a scenario, a development or training dataset would be required so as to test different
parameters and decide according to the results what the best weighted balance would be
between the orthographic and semantic similarity of words.

The test clusters (table 3.8) provided an insight into the ‘attentiveness’ of participants
in the non-expert evaluation. From the 135 responses for the test clusters, 17 responses
did not remove any words in these clusters — 13 for the abbuz cluster, and 4 for the kbirt
cluster. This equates to 12% of the responses. Both clusters had a word which is completely
unrelated to the head word, and should have been removed. The cluster abbuz ‘abuse’ had
the word akkuzat ‘accused’, and the cluster kbirt ‘T grew’ had the word kiser ‘he broke’.
Both were specifically chosen for their orthographic similarity with the words in the clus-

ter, and similar to the type of errors that the automatic clustering technique could make.
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Table 3.13 Removal of words in the test clusters

abbuz cluster | kbirt cluster
Total responses 72 63
No word removal 13 (18%) 4 (6%)
Removing unrelated word only 42 (58%) 22 (35%)
Removing also derivational words 17 (24%) 37 (59%)

Further analysis of the test clusters and the words removed is provided in table 3.13,
where an interesting pattern of responses to the different clusters can be noticed. The
percentage of responses removing derivationally related words in the abbuz cluster was
24%, whilst in the kbirt cluster it was 59%. The difference is quite substantial and it might
indicate that the semantic concepts in stem-and-affix vs. root-and-pattern morphology
when it comes to derivationally related words is more distinct in the latter group. In other
words, considering the cluster for kbirt, the word kburi ‘proud’ is derived from the same
root VKBR. Nearly 60% of the responses removed this word and did not consider it as a
related word to kbirt. On the other hand, participants might have perceived derivationally
related words in the stem-and-affix morphology as semantically closer in meaning to the
head word. For the cluster abbuz, there was abbuzivament ‘abusively-Apv’, which was
only removed in 6 of the responses, and *abbuzazzjoni ‘abuse-NoUN’ which was purposely
formed using a common suffix -azzjoni to form a noun. However, this word is not attested
in the MLRs corpus and a Google search for *abbuzazzjoni does not return any results. Yet
only 17 (24%) responses removed this word, with the majority leaving it as part of the
cluster.

The difference in the treatment of derivationally related words coming from a root-
and-pattern morphology to a stem-and-affix morphology might also be a reflection that the
productivity in Maltese morphology is largely in the latter system, with a large number
of loan words coming from Anglo-Saxon or Romance origin. It also demonstrates how
highly productive the stem-and-affix morphology system in Maltese is, and how easily
native speakers accept new word formations which are plausible. The different treatment
of derivationally related words between the two morphological systems could be the basis
of an interesting study from a psycholinguistic perspective, though one that is beyond the

scope of this work.
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3.5.2 Quality ratings

The number and percentage of words removed cannot be taken as the sole measure of qual-
ity of the clusters produced. Users were asked to specifically rate the quality of a cluster,
and although this is a rather subjective opinion, the correlation between this judgement
and the number of words removed is calculated using Pearson’s correlation coefficient. A
perfect cluster would have no words removed and be given a high quality rating, whilst a
bad cluster would probably have several words removed and be given a very low quality
rating, thus providing a correlation between the two. Table 3.14 shows the ratings given
per evaluation and the Pearson’s correlation coefficient between the quality rating and the

average percentage of words removed.

Table 3.14 Quality ratings per evaluation, and the correlation between the quality rating
and the percentage of words removed from a cluster

Quality ratings | Experts | Non-expert
Very Good 22% (34) | 44% (810)
Good 35% (53) | 30% (546)
So-so 26% (40) | 15% (272)
Bad 13% (20) | 7% (128)
Very Bad 4% (6) 5% (92)

| Correlation: | 0.7837 | 0.8217 |

Similar to the removal of words, the majority of the evaluators provided a high rating
to the clusters, with over 70% of the evaluations given a good or very good rating. An in-
teresting observation over these results is that whilst non-expert participants gave a ‘very
good’ quality rating to a large number of clusters, the experts were less inclined to give
such a rating, showing a stronger preference for the ‘good’ rating instead. Experts were
expected to rate clusters not only on the words that were present in the cluster, but also
on the words that were omitted by the system. An expert’s judgement can be considered
as more objective especially due to the linguistic understanding of what morphologically
related words are. The correlations between the quality rating and the percentage of words
removed is high overall, indicating that indeed participants had a tendency to give a better

quality rating to a cluster when fewer words were removed.

33



3.5 Analysis of results

3.5.3 Inter-Annotator Agreement

Apart from qualitative and quantitative measures, we also considered whether there is
overall agreement between participants on the actual words removed. Agreement between
participants (often referred to as raters or coders in the literature) is referred to as Inter-
annotator agreement (IAA) and was calculated using Krippendorff’s Alpha-Reliability Co-
efficient (Artstein and Poesio, 2008; Krippendorff, 2011). Krippendorff’s alpha is a gen-
eralisation of several other reliability indices, and was chosen because it can be adapted
to multiple raters (unlike, say, Cohen’s Kappa). Mathematically, agreement is actually
calculated by evaluating the observed disagreement (D,) in relation to the expected dis-
agreement (D,) and subtracting this from 1, which would be full agreement. The basic
formula is:

=1 D, (3.8)
a = D .

e
The agreement over a cluster was calculated as follows. Let C be a cluster, consisting of
words w,, ..., w,. For every evaluator, we represented the cluster as a vector v of binary
values, so that v; = 1 if word w, was left in the cluster by the evaluator, and v, = 0 if it was
removed. The resulting matrix of vectors, representing the evaluators’ decisions for cluster
C, is then used to calculate the IAA using an implementation of Krippendorff’s alpha’ in
R®. The coefficient ranges between 0 and 1, with 1 indicating full agreement.

The IAA results are presented in table 3.15, providing an overview of the agreement
for the expert and non-expert groups. The IAA for the expert evaluation is carried out
over the 26 clusters evaluated in common by all the three experts’. The average agreement
achieved overall in the respective evaluations is at 0.908 for the expert group, and 0.598 for
the non-expert group. The highest and lowest agreements are also given, together with
the percentage of clusters spread into bins according to the range of IAA achieved.

The expert group had a very high average agreement of 0.908, with 84% of the clus-
ters having very high agreement between annotators — this can be expected since both
the task and the linguistic knowledge of morphologically related words are well known

to this group of participants. On the other hand, the average agreement of 0.598 for the

"The implementation used for Krippendorff’s alpha is part of the IRR library
http://rss.acs.unt.edu/Rdoc/library/irr/html/kripp.alpha.html.

®http://www.r-project.org/

Experts also evaluated a further 25 clusters each, so as to gain a broader coverage of evaluated clus-
ters, but these 75 clusters were only checked by one expert, and therefore inter-annotator agreement is not
applicable for these clusters.
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Table 3.15 Inter-Annotator Agreement

Description Experts | Non-expert Test
No. of Clusters 26 300 2
Avg. no. Evaluators 3 6.16 67.5
Avg. Agreement 0.908 0.598 0.4615
Lowest Agreement -0.0126 -0.166 0.425
Highest Agreement 1.0 1.0 0.498
Bins:

Negative 4% (1) 23% (68) 0
less than 0.20 0% (0) 7% (21) 0
0.21 - 0.40 0% (0) 7% (20) 0
0.41 - 0.60 7% (2) 5% (16) | 100% (2)
0.61 - 0.80 4% (1) 8% (24) 0
0.81 - 1.00 84% (22) |  50% (151) 0

non-expert group is much lower and again this is to be expected, given the gaps in lin-
guistic knowledge and expertise of the general Maltese native speaker. The agreement
between participants is however adequately high, especially when considering that 50% of
the clusters have a very high agreement (between 0.81 and 1).

The test clusters result in lower agreement mainly due to the difference in strategies
employed by participants as to whether derivationally related words should be removed
or not, discussed previously in §3.5.1. The low agreement here is to be expected since the
clusters were purposely designed to find different strategies used by participants.

In further analysis of the IAA, negative agreement is rather unusual — by definition,
Krippendorff’s alpha returns a value between 0 and 1. However, when we looked into
the particular clusters with negative agreement, the negative agreement always occurred
when only one participant would have removed a couple of words from the cluster, thus
creating a matrix were the value ‘0’ is seen only in one row e.g. two words removed by
the same expert e;, with an example of such a matrix shown in fig. 3.8.

Krippendorft’s alpha is calculated on the basis of the expected disagreement. When

the majority of the vectors contain only ‘1’s, and a single vector contains a couple of ‘0’s,
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w w,
e, 1 1 111111 1
e, 1 1 110011 1
e; 1 1 111111 1

Fig. 3.8 An evaluation matrix showing only two instances where an evaluator discarded a
couple of words.

Krippendorff’s alpha severely punishes this phenomenon since raters must show some
level of covariation in their agreement. This situation resulted in a negative alpha'.

Through this examination, we also noted quite a few instances where alpha was neg-
ative or very low due to outliers. This situation occurs when there is a general strong
agreement amongst the majority of participants, with one outlier providing a different
response from the other participants. Since on average each cluster in the non-expert
evaluation was evaluated by more than six participants, it was possible to recalculate IAA
excluding outliers. To do this, the pairwise agreement was calculated to identify which of
the evaluators in a cluster were actually outliers. If a third or less of the participants were
outliers, then the IAA was re-calculated without the outliers. If more than a third of the
evaluators were outliers, then all evaluators were included (as per the original IAA cal-
culation), meaning that there was overall considerable disagreement between participants
regarding which words should have been removed. In practice this meant that if six par-
ticipants evaluated a cluster, the number of outliers must be two or less for the responses
of the outliers to be discarded from the IAA calculations. Table 3.16 shows the IAA results
calculated after the responses of the outliers were discarded.

The agreement is substantially much higher than the previous IAA, primarily due to
cases where one or two participants removed different word/s from the rest of the group.
Due to the type of task, and the issues already highlighted with the removal of derivation-
ally related words, it is quite understandable that there were a number of outliers for most
of the evaluated clusters. The average IAA for the non-expert evaluation increased consid-
erably from 0.598 to 0.897 — reflecting that there was a large number of clusters where at

least four people agreed on the words that should be left in a cluster. The agreement in the

9See http://dfreelon.org/2009/12/14/from-the-mailbag-121409/ and Krippendorff (2004) for
further information.
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Table 3.16 Inter-Annotator Agreement excluding outliers

Description Experts | Non-expert Test
No. of Clusters 26 300 2
Avg. no. Evaluators 2.96 5.46 47.5
Avg. Agreement 0.948 0.897 | 0.7655
Lowest Agreement 0.42 -0.156 0.72
Highest Agreement 1.0 1.0 0.811
Bins:

Negative 0% (0) 2% (7) | 0% (0)
0.00 - 0.20 0% (0) 2% (7) | 0% (0)
0.21 - 0.40 0% (0) 2% (6) | 0% (0)
0.41 - 0.60 7% (2) 2% (5) | 0% (0)
0.61 - 0.80 4% (1) 9% (28) | 50% (1)
0.81 - 1.00 89% (23) |  82% (247) | 50% (1)

test clusters also increased, reflecting that there was some majority agreement between

participants about the contents of the two clusters.

3.5.4 Hybrid morphology and the clustering technique

One of the main questions that this research sought to discuss was whether the type of
techniques used were suitable for a language that has a hybrid morphological system in
which different (concatenative and non-concatenative) processes are at work in tandem.
To gain insight into this question, we analysed the clusters evaluated by the expert group,
which were purposely selected to be roughly balanced between the two processes. Ta-
ble 3.17 provides an overview of how the 101 clusters were divided between concatenative
(CON) and non-concatenative (NC) and the size bins for these clusters. Through this first
analysis it is possible to observe that concatenative clusters tend to be larger in size than
non-concatenative clusters. In principle, both processes should have similar-sized clusters
since for example the inflective process of verbal morphology would remain the same ir-
respective of whether the word has a stem or a root. However, due to the stem variation
occurring in the root-and-pattern process, the clustering of such inflective words would be

more challenging. This could be one of the reasons behind the difference in size of clusters.
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Table 3.17 The spread of clusters used in the expert evaluation divided between concate-
native and non-concatenative processes and the respective cluster size

Size NC CON
<10 53% (25) | 26% (14)
10-19 23% (11) | 37% (20)
20-29 13% (6) | 15% (8)
30-39 2% (1) | 9% (5)
> 40 9% (4) | 13% (7)
Total 47 53
Evaluated by all experts 13 13
Evaluated by one expert 34 40

The number and percentage of words removed was also analysed by distinguishing be-
tween the two types of processes. Table 3.18 shows the number and percentage of words
removed according to the two processes. The clusters belonging to the non-concatenative
process had a relatively larger percentage of words removed when compared to those of
the concatenative group. Only 45% of non-concatenative clusters had no words removed
compared to 61% of the concatenative clusters. However, the gap closes when considering
the percentage of clusters which had a third or more of their words removed, with 25%
for the non-concatenative and 20% for the concatenative group. However, the concate-
native group also had clusters which had more than 80% of their words removed. This
might indicate that although in general the clustering technique performs better for the
concatenative group, there might be certain aspects or situations that end up forming bad
clusters. This was observed for instance with the cluster formed for ittra ‘letter’, described
in §3.5.1. This cluster contained a number of morphologically unrelated words. However,
the evaluation exercise provides a set of clusters which have been corrected and improved,
and could be used as a development set to improve the clustering technique.

In terms of quality ratings between the two processes, a similar trend can be observed.
Table 3.19 provides the breakdown of the quality ratings for clusters split between the
two processes and the correlation of the quality to the percentage of words removed. The
non-concatenative clusters generally have lower quality ratings when compared to the

concatenative clusters. But both groups have a strong correlation between the percentage
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of words removed and the quality rating, clearly indicating that the perception of a cluster’s

quality is related to the percentage of words removed.

Table 3.18 Number of words removed per cluster bin in the expert evaluation split by con-
catenative and non-concatenative processes

Removal of words
By Quantity NC CON By Percentage NC CON
0 45% (33) | 61% (49) || 0% 45% (33) | 61% (49)
1 0% (0) 6% (5) 1-5% 1% (1) 1% (1)
2 34% (25) | 4% (3) | 5-10% 7% (5) | 4% (3)
3-4 8% (6) | 11% (9) || 10-20% 5% (4) | 11% (9)
5-7 7% (5) | 3%(2) || 20-30% 17% (12) | 4% (3)
8-10 4% (3) | 6% (5) || 30-40% 8% (6) | 4% (3)
11-20 1% (1) | 4% (3) | 40-60% 7% (5) | 3% (2)
21-30 0% (0) | 5% (4) | 60-80% 10% (7) | 9% (7)
31 or more 0% (0) 0% (0) || over 80% 0% (0) 4% (3)

Table 3.19 Quality of clusters split by concatenative and non-concatenative processes and
the correlation between the quality and the percentage of words removed

Quality NC CON
Very Good | 17% (12) | 28% (22)
Good 33% (24) | 36% (29)
So-s0 34% (25) | 18% (15)
Bad 12% (9) | 14% (11)
Very Bad 4% (3) 4% (3)

| Correlation: | 0.780 | 0.785 |

Clearly, there is a notable difference between the clustering of words from concatena-
tive and non-concatenative morphological processes. Both have their strengths and pit-
falls, but neither of the two processes excel or stand out over the other. One of the problems
with non-concatenative clusters was that of size. The initial clusters were formed on the
basis of the stems, and due to stem variation the non-concatenative clusters were rather
small. Although the merging process catered for clusters to be put together and form larger
clusters, the process was limited to a maximum of two merging operations. This might not

have been sufficient for the small-sized non-concatenative clusters. In fact, only 10% of the
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clusters contained 30 or more words when compared to 22% of the concatenative clusters.
A solution might be to consider the size of the clusters as part of the decision process in
merging clusters. If the clusters are of a particular small size, further merging could be
allowed. The threshold would have to be determined empirically through experiments,
possibly using the dataset obtained through the evaluation.

The problem of size with concatenative clusters was on the other side of the scale.
Although the majority of clusters were of reasonable size, it seemed as though the bigger
the cluster, the more non-related words were found. In order to explore this problem
further, one possibility would be to check whether there is a correlation between the size of
a cluster and the percentage of words removed from it. It is possible that the unsupervised
technique does not perform well on larger clusters, and if such a correlation exists, it would
be possible to set an empirically determined threshold for cluster size.

Given the results achieved, it is realistic to state that the unsupervised clustering tech-
nique could be further improved using the evaluated clusters as a development set to better
determine the thresholds in the metrics proposed above. This improvement would impact
both concatenative and non-concatenative clusters equally. In general, the clustering tech-
nique does work slightly better for the concatenative clusters, and this is surely due to the
clustering of words on the basis of their stems. This is reflected by the result that 61% of
the clusters had no words removed compared to 45% of the non-concatenative clusters.
However, a larger number of concatenative clusters had a large percentage of words re-
moved. Indeed, if the quality ratings were considered as an indicator of how the technique
performs on the non-concatenative vs the concatenative clusters, the judgement would be
so-so to good for the non-concatenative and good for the concatenative clusters. Thus the
performance is sufficiently close to render the technique as valid for a language with a

hybrid morphological system such as that found in Maltese.

3.6 Conclusion

This chapter described a fully unsupervised technique that segmented words and clustered
morphologically related words together. The segmentation process used transitional prob-
abilities to discover affixes automatically and proposed a ranked list of potential affixes.
The top ranked affixes were then used to propose word segmentations. Since the segmenta-
tion process was intended to aid the clustering technique, all possible valid segmentations
were taken into consideration. The clustering of words used the potential segmentations

as a point of departure to group words together. Further improvements to the clusters
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were then carried out through the inclusion of orthographic and semantic similarity of
words. A metric was devised to measure how related words in the same cluster were.
This was used as the basis for merging together related clusters and reduce the number
of clusters by nearly 80%, resulting in 4,524 clusters. Since no resources were available to
evaluate the clusters automatically, an evaluation exercise was set-up with two groups of
participants — experts and non-experts. The evaluation sought to assess the quality of the
clusters from various angles, and allowed participants to remove words from clusters and
rate clusters in terms of the perceived quality. Moreover, two test clusters were used to
analyse the strategies that participants used when it came to derivationally related words.
The responses were analysed for their inter-annotator agreement, which was found to be
quite high especially when outliers were discarded. The results of the evaluation also pro-
vided a dataset of clusters which could be used in future as a development set to fine-tune
the clustering technique. The response by the expert group was further analysed to de-
termine whether the techniques used were feasible to be applied on a hybrid language
such as Maltese. The resulting analysis revealed that although the techniques are better
suited for clusters of words following a concatenative process, their application on the
non-concatenative segment of the language still provided fairly reasonable results, and
that clusters in both categories would require further improvement.

Although clustering has a role in the morphological analysis of words, it is limited to
simply grouping such words together. The morphological meaning of each word still needs
to be determined. The segmentation process can contribute to identifying the morphemes
in words. However ultimately, labels are required to associate meaning to the morphemes
in words. In the following chapters the research deviates from the clustering task, and
focuses solely on the task of labelling, using supervised machine learning techniques to

learn classifiers for the different morphological aspects present in Maltese.
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Chapter 4

Morphological Labelling using

Supervised Techniques

4.1 Introduction

Having looked at the tasks of segmenting and clustering of morphologically related words
together, the natural direction is to now turn our attention to morphological labelling of
words. The segmentation task provided a list of possible segments that were used as the
foundation for the clustering task. The latter then used orthographic and semantic in-
formation to improve the clusters. Although a portion of the clusters were evaluated by
experts and non-experts, the clusters do not contain information on the actual type of
morphological relation that words have. This means that the clusters themselves are not
directly linked to the labelling task. The segmentation task provides the basis of split-
ting words into affixes; however different segmentation approaches will be used before
returning to the probabilistic segmentation model.

There are several possible approaches to learning morphological labels — this research
looks at morphological labelling as a classification problem. A classifier is a type of al-
gorithm that learns how labelled data (training data) is categorised, and generalises the
observations into a model or representation of this data. It then makes predictions on un-
seen instances based on the initial observations. The predictions are restricted to the set of
classes learned during the training phase, which in this case would be the resulting mor-
phological labels. This approach can be quite beneficial to morphology learning since it is
not practical to have a list of all words in a language and their morphological labels — and

for Maltese this type of data is limited. Moreover, a language evolves and new words come
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into use. A system that can generalise its current knowledge and apply it to new words is
a favourable characteristic for a morphological analyser.

The proposed morphological classification system deals with three primary part-of-
speech categories — verbs, nouns and adjectives. The initial focus is on verbal morphology
since this is the most complex and challenging in terms of its morphological properties. The
classification system consists of a series of classifiers, each representing a single morpho-
logical property, which are then executed in a cascading sequence and with each classifier
providing more information to the following classifiers. The classifiers in the verb cascade
sequence were trained on a dataset put together from Gabra!, an online lexicon focussing
on inflections of verbs of Arabic origin. The noun and adjective cascades used a dataset
taken from the ongoing dictionary project’. The individual classifiers were evaluated on
the training data using a 10-fold cross validation system during the development cycle.
Once the cascade sequence was in place, this was evaluated as a whole on unseen data.

The rest of the chapter is structured as follows. The first part of this chapter describes
the work carried out on the verb cascade. §4.2 defines morphological labelling as a classifi-
cation problem and what type of features will be used from a machine learning perspective.
It describes a number of experiments carried out to determine the best data representation
and describes some issues encountered in using the Gabra dataset. §4.3 then provides
analyses for different experiments carried out to find the best cascade sequence. A num-
ber of different representations were tested, described in §4.3.2, which aimed at analysing
whether it was possible to remove ambiguity in the data and therefore achieving better
performing classifiers. However, this resulted in classifiers that overfitted the data and
performed worse when applied to unseen data. A similar setup was carried out for the
noun and adjective cascades, using a dataset extracted from a Maltese-English dictionary.
This is described in §4.4, followed by a description of the experiments and the results in
§4.5. A final conclusion is presented in §4.6, outlining the results of the research, a way

forward for the classification system and future developments for the cascade system.

4.2 Morphological labelling as a classification problem

A morphological classification system takes a segmented word as its input, and classifies
it according to some features that the system would use to predict which class a word

should fall into. The term feature here refers to anything that can provide information

http://mlrs.research.um.edu.mt/resources/gabra/
?http://www.dizzjunarjumalti.com
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about a word’s morphological properties and resulting labels. So for instance, in Maltese,
words ending in the suffix -a tend to be feminine (e.g. sabiha is the feminine for sabih
‘beautiful’). Thus the suffix -a can be seen as a feature which allows the classifier to predict
that the word’s gender belongs to the feminine class. We refer to features such as affixes
as basic features because they form an integral part of the word itself. There are also more
complex features which can be used by the classification system. For example, once a word
such as sabiha has its gender classified as feminine, the classification system can infer that
the number of the word is singular. In this way, the classification of a word’s gender is
used to classify other morphological properties of a word. We refer to these as second-tier
features. The distinction between basic and second-tier features is that basic features are
the elements that can be extracted from a word (e.g. affixes), whilst second-tier features
are the morphological properties of the word (gender, number). All are equally seen as
features by the classification system, since the second-tier feature Gender can also be used
to classify another second-tier feature Number. To differentiate between the reference of
a morphological property in its linguistic sense and a second-tier feature, the latter are
written with an initial capital letter (Gender), whilst the former are written in the normal
way (gender).

In adopting a classification approach and seeing morphological analysis as a sum of
multiple morphological features, an analyser can be viewed as a cascade of classifiers,
where each classified feature provides information to the remaining classifiers in the cas-
cade. Figure 4.1 depicts an abstract view of this concept. This type of approach would be
valid only if there is indeed some form of dependency between second-tier features. If,
on the other hand, there is no dependency between second-tier features, then the cascade
would perform no better than a group of independent classifiers that use only the basic
features as input. Through the implementation of the cascade classifiers, we investigated
whether there is dependency in the different morphological properties in Maltese, and to
what extend this dependency is worth taking into account in a morphological analysis
system.

In summary, the research not only sought to learn a classification system to label words
with their morphological properties, but also to analyse the level of dependency between
the morphological properties. From a computational perspective, there are several tech-
niques that can be used as classifiers. The experiments carried out explored various tech-
niques, including decision trees, logistic regression and Naive Bayes. Decision trees and
logistic regression gave very similar results in terms of F-measure, with the difference that

decision trees ran much faster, whereas logistic regression sometimes suffered from being
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Fig. 4.1 An abstract system showing a cascade of classifiers each outputting a label and
feeding the information into the next classifier

stuck in local maxima points. Naive Bayes produced a slightly lower F-Measure than de-
cision trees but has the added advantage that it associates a probability to the predicted
classification. This is relevant in morphological analysis, especially in the cases of ambi-
guity when a word can have two different meanings. Actually, in inflection this is called
a syncretism, i.e., when one form occupies two or more cells in a paradigm. For example,
tikser VksRr ‘break’, can refer to both 2SG and 3SGF. A desirable feature of a morphological
analyser is that, in such cases, it provides both options as labels to a word, which can then

be disambiguated at a later stage when the context of the word is taken into account.

4.2.1 Data sources and preparation

A classifier requires labelled data in order to train a model which can then generalise and
predict labels for unseen instances. Labelled data can come in different formats and usu-
ally needs to be preprocessed before being fed into a learning algorithm. Table 4.1 shows
some random examples from the English dataset taken from the 2010 Morpho Challenge
competition®. The words in this dataset are segmented, parts are labelled and if more than
one analysis is available, they are given separated by commas. However, note that some of
the morphemes are left out entirely and replaced by labels. This is standard in the output

of a morphological analyser.

*http://research.ics.aalto.fi/events/morphochallenge2010/datasets.shtml
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Table 4.1 Examples of labelled data from the Morpho Challenge English dataset 2010 com-
petition

Word Segmentation and labelling

misunderstanding | mis_p understand_V +PCP1, misunderstanding_V
mathematician’s mathematics N ian_ s +GEN

overbalanced over_p balance_V +PAST

defeats defeat V +3SG, defeat V +PL

Morphologically labelled data for Maltese comes from two separate sources. The first is
the lexicon Gabra, which contains roots and lexemes and their inflections. The second is an
ongoing project which is creating an online Maltese-English dictionary* (referred to from
now on as the dictionary project or the dictionary data). The principal distinction between
the two datasets is that Gabra focuses on inflectional words, particularly verbs, whilst the
dictionary project focuses on derivationally related words. The dictionary project used a
scanned version of the Aquilina dictionary (Aquilina, 1987-1990) and developed a program
to extract the dictionary entries from the text version. Through this thesis, the program
was extended to extract also derivationally related words and their morphological proper-
ties. On the other hand, Gabra was based on the work of Spagnol (2011), which analysed
templatic verbs in Maltese and exhaustively categorised 1,932 roots and over 4,143 verbs.
Camilleri (2013) used the roots and their categories and created a grammar to generate all
the inflective forms for each root. The resulting wordforms, together with the morpholog-
ical information, are stored in a database as a lexicon and an online interface is available to
query the database. Due to the different content of the two resources, these were used at
different phases of the project. The Gabra collection was ideally placed for the initial ex-
periments in verbal morphology, whilst the dictionary data was essential for experiments
on the noun and adjective categories. The focus in this section is on the Gabra data and
how this was used in context of the experiments carried out in verbal morphology.

The Gabra database was primarily a collection of verbal inflections, with each word
having various morphological labels associated with it. Since Gabra was automatically

generated through the description of a grammar, there were cases of over-generation or

*http://www.dizzjunarjumalta.com
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errors in the word formations.” A snapshot of the database was taken in March 2014 and
used throughout this thesis. The data consisted of 1,928 roots, 10,471 lexemes and 4,773,039
wordforms.

The morphological properties available in the Gabra data were structured as follows.
The lexemes table contained the lemma, general part-of-speech category (shown in ta-
ble 4.2), the form, the radicals, and whether the entry is transitive, intransitive and di-
transtive. This information was then automatically associated to all the generated word-
forms from the lexeme. The wordforms contained further grammatical information: gen-
der, number, person, subject, perfective/imperfective (tense/aspect), imperative (mood),

direct object, indirect object and polarity.

Table 4.2 Distribution of the lexemes over their part-of-speech tags as classified in the
Gabra database

Lexemes
Total 10,471
Nouns 4,668
Verbs 4,746
Adjectives 251
Determiners 7
Prepositions 19
Adverbs 21
Pronouns 5
Proper nouns 13
No POS tag 724

Although table 4.2 shows a large number of lexemes for nouns, most of the wordforms
in the database belonged to the verb category, which accounted for over 99% of the word-
forms in the Gabra database. Therefore these data are being used solely to investigate the
verb category, especially since it is the richest category in terms of morphological proper-
ties.

Another important characteristic about Gabra is that the morphological information is
associated with a word as a whole rather than with the segmented word. This is shown in

fig. 4.2 which displays a screenshot of the online interface. Each word is listed and, to the

SThe Gabra collection continued to be updated and improved over time. However, for the purpose of this
research, a snapshot was taken in March 2014 and used throughout this thesis. Any reference to the status
of Gabra describes the status of this snapshot, and might no longer be relevant due to the improvements
carried out since then.
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Fig. 4.2 The Gabra online interface showing how the morphological features are displayed
online

side, a template of the morphological properties provides the information for each word.
It could be possible to reverse-engineer the rules used for the generation of the wordforms
and try to associate the labels to the separate morphemes, resulting in something similar to
the example given previously for English in table 4.1. However this would be a laborious
task that would reduplicate the effort carried out on the rule production. Instead, the aim
of this research is to inquire to what extent it is possible to learn all the morphological
features found in the Gabra dataset by extracting as many basic features as possible from
the word itself. Thus, the remainder of this section will mainly focus on the extraction of
basic features from words and the preparation necessary to port the Gabra data into the

necessary representation for the classification system.

4.2.2 Feature specification

The features and their possible values that were used by the classification system required
to be specified in advance. These must be fixed, and once a classifier is trained, it only

accepts data in the format and content that it recognises. This means that the specification

98



4.2 Morphological labelling as a classification problem

of the basic and second-tier features must be representative of both the training data and
possibly unseen future data. If, for instance, a new suffix -s were to appear in future mor-
phological formulations, and this was not part of the training data that was used to model
the classifiers, the system would not be able to classify that instance.

The starting point was the list of words themselves. The basic features are those charac-
teristics that can be extracted automatically from a word. On the basis of the data available
from Gabra, described in §4.2.1, the features that could be extracted automatically from a
word were its affixes and composite suffixes (the procedure is described further on in
§4.2.3), the consonant-vowel pattern of the word (CV-pattern-word) and the stem (CV-
pattern-stem) and whether a word has a geminate consonant or not. For instance, gem-
ination of the middle consonant of a triliteral verb produces a derived so-called 2nd form.
Thus, from the 1" form of the verb gasam ‘split/share’, the 2" form is produced through
the duplication of the middle consonant, deriving gassam ‘distribute’. The CV-pattern of
a word or stem was produced using a word-to-phoneme transcription method developed
by Borg et al. (2011) for a Maltese speech synthesiser. For example, the phonological tran-
scription of ksirtekx is [ksirtek[], which then produced the pattern ccvcevee. Together,
these formed the basic features which were extracted for every instance/word in both the
training and testing data put together from Gabra.

Gabra also contained morphological information for each word, such as person, num-
ber, direct object, tense, aspect, mood, etc. These are the second-tier features — the mor-
phological properties of a word that the classification system should be able to provide
information for. There were a number of second-tier features in Gabra and in order to
keep the list of features compact, the properties tense/aspect and mood were joined into
one single feature, abbreviated to T.A.M.. These three features are mutually exclusive,
and in the database by Camilleri (2013), they are listed under a single field. Thus, this deci-
sion was taken to retain consistency with Camilleri. The second-tier features found in the
database are listed in table 4.3, together with all their possible values. The null value was
used when the dataset does not contain particular information for a specific word. The
features marked in asterisks (frequency, not duplicate, transitive, intransitive and ditran-
sitive) were discarded for two reasons: (i) gaps in the values of the data, since the ‘null’

value does not make it fully clear whether it should be considered as false or not; (ii) the

%The choice of maintaining null as a feature value was due to the design of the Mongo database from
which the data was ported. In Mongo, for instance, a boolean field can be left null. This means that it is
neither true, nor false, but rather not known at that stage. When porting the data to MySQL all null values
were retained, and these were transferred to the representation of the datasets even if the value was at times
redundant.
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amount of positive examples was too small to be statistically significant for the feature to
be learnt. The radicals feature (referring to the root consonants of a word, such as Vksr for
kiser ‘break’) was not used as a second-tier feature because it is specific only to words of
Arabic origin. In Maltese, the role of the radicals in the morphological system is a matter
of some debate. For example, while evidence has been found that roots are implicated in
the mental representation of Maltese verbs (Ussishkin et al., 2015), readers of Maltese texts
exhibit far less sensitivity to the order of radicals than their counterparts in Arabic or He-
brew (Perea et al., 2012). Furthermore, template morphology is known to be unproductive
in Maltese (Hoberman and Aronoff, 2003). The psycholinguistic evidence corroborates a
view sometimes articulated in the theoretical and descriptive literature (Fabri, 2009), that
the root may play an important organisational role in the Maltese lexicon, but may be
less crucial to morphological processes than it is in other Semitic languages. For example,
many verbs in Maltese are now inflected on the basis of processes historically derived from
Romance (see Mifsud, 1995b).

Table 4.3 Second-tier features and their relative values in the Gabra database

Feature Values

Person 1, 2, 3, null

Gender M, F, null

Number Sg, PL, null

Form 0-9

Subject 1Sg, 2Sg, 3SgM, 3SgF, 1P], 2P], 3P], null
T.AM. Perf, Impf, Imp, null

Direct object
Indirect object

1Sg, 2Sg, 3SgM, 3SgF, 1P1, 2Pl 3PL, null
1Sg, 2Sg, 3SgM, 3SgF, 1P1, 2P1, 3Pl null

Polarity Pos, Neg, null

Verbtype strong, geminate, weak-final, weak-medial, weak-initial
POS* N,V

Frequency™ Common, null

Radicals™ various values

Not duplicate® | True / False / null

Transitive® True / False / null

Intransitive® True / False / null

Ditransitive* True / False / null

The features verbtype and form were retained even though they are highly specific to
the Gabra data. The form was retained as an experiment to analyse how well a classifier

would learn this feature on the basis of the CV-patterns of the word and the stem. Gen-
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erally, each form represents particular derivative patterns and it would be interesting to
see to what extent this feature could be learnt and generalised. The feature verbtype was
used as part of the segmentation process, described in §4.2.3 below, and also used for the
specification of the basic feature geminate. It was included in the second-tier feature list
to analyse if there is dependency on this feature in terms of morphological information,
and whether the feature itself could be modelled appropriately or not. The features per-
son, number and gender in verbs are represented as the single feature subject in Gabra.
All features are initially left in the data and some experiments are carried out with these
features to find the best representation possible.

A classifier was trained to learn each of the second-tier features that were included
in the classification system. The system as a whole used the individual classifiers as a
cascade, each producing the appropriate label and passing on the information learnt to
the following classifier. The labels were restricted to those identified in table 4.3 as the

expected output from the classification system.

4.2.3 Segmentation and composite suffixes

The primary basic feature that could be extracted from a word is its affixes. The segmen-
tation technique used for the clustering of morphologically related words (§3.2.4, page 62)
used transitional probabilities to calculate a ranked list of the most likely affixes. It then
looked at all possible valid segments using the top 10% ranked prefixes and suffixes, with
the clustering technique using all valid segmentations proposed. If the same list of affixes
were to be used to segment the words in Gabra, the first problem encountered would be
that the majority of generated wordforms contained in Gabra use affixes that were not in-
cluded in the list. Several wordforms in Gabra are not commonly used in everyday Maltese,
and therefore are not attested in the MLRs corpus. This is quite normal since no corpus will
cover the full range of a vocabulary and, furthermore, Zipf’s law predicts that a significant
proportion of words would be hapaxes or unseens. If the same affix list had to be used,
a large number of words in Gabra would remain unsegmented since their affixes, and in
particular the suffixes, would not be part of the list. Another possibility would be to use
semantic similarity to determine whether a word is related to its potential segmented stem,
in which case both words would need to be attested in the MLRs corpus for their similarity
to be calculated. The possibility to rerun the technique to discover affixes on the Gabra
wordlist was also considered. However, this would still result in a segmentation process
that would propose multiple valid ways of segmenting a word. Table 4.4 specifically shows

how this segmentation strategy would result in at least 4 different segmentations for the
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word tkissirtx ‘be broken-PERF.1|2.56.NEG’ (form V VksRr), when ideally the system pro-
poses only one definitive segmentation (marked in bold). A single segmentation for every

word was a requirement for the labelling task since the data is used to model a classifier.

Table 4.4 Previous segmentation strategy showing the valid segmentation options for the
word tkissirtx

tkissirtx | tkissirt-x

tkissir-tx
t-kissirt-x
t-kissir-tx

The advantage of the Gabra database was that the information of the lexeme and the
root were available in the database for each wordform. This means that it was possible
to easily extract the affixes through a simple rule-based system that detected which part
of the word is the stem. This approach was possible for the majority of the wordforms,
especially those that have a strong root (this was marked by the verbtype in the database).
Weak roots are those which have the consonants w or j as part of the root — for example
the root vHry produces hela ‘waste-PERF.3.SG’, hlejt ‘waste-PERF.1]2.5G” and hlew ‘waste-
PERF.3.PL’ Strong triliteral roots never have w or j as part of the root, and all the root
consonants are always present in the word formations.

The approach for the segmentation of the Gabra wordlist was therefore carried out on
the basis of the classification of its root. Words with strong roots were segmented through
a rule-based approach that looks at where in the word the radical consonants occur. It
also takes into account the possibility of gemination, where one of the radical consonants
is duplicated in the word formation process (e.g. kisser from Vksr ‘break’, duplication
occurs for the second consonant producing a form which intensifies the meaning of the
word kiser). In the case of words produced from roots with weak consonants, these are
left unsegmented. This allows a small amount of ‘noise’ in the training data, reflecting the
reality that the segmentation of unseen data is not always known.

Maltese morphology, especially verbal morphology, makes high use of concatenative

composite suffixes, for example:
ksir  -ni -hu -lek

break -Perr1PL -DO-3SGM -IO0-2SG
‘we broke it for you’
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Clearly, composite suffixes contain important morphological information. We posit
that segmenting composite suffixes and including them as part of the basic features would
provide added value to the classification as a whole. The question is to what extent the
classification system would be impacted by having the composite suffix broken down fur-
ther versus having only the suffix as a whole. From the above example, it is also possible
to note the order of suffixes and their positioning, generally as (i) subject, (ii) direct object,
(iii) indirect object and finally (iv) polarity (when applicable). The ordering of composite
suffixes is important in Maltese morphology. This is similar in concept to that proposed
by Plag and Baayen (2009) on English suffix ordering.

Two experiments were carried out to examine different representations of composite
suffixes in the dataset, with the aim to measure the added value that composite suffixes
provides to the classification system. However, a description of the technical setup of the
machine learning system will follow in §4.2.4, before proceeding to the analysis of these

experiments in §4.2.5 and further results in §4.3.

4.2.4 Machine learning algorithms and experiment setup

Having identified the data, the features that can be extracted (basic features) and learnt
(second-tier features), the focus turns to the different techniques that can be used. A clas-
sifier is an algorithm that builds a model of the distribution of features in training data and
their joint prediction of the class. A class is the value that a particular feature has. In this
case, most features have more than two classes (e.g. Gender can be classified as Feminine,
Masculine or Neutral). Once trained, new instances will be classified on the basis of the
learnt model. One of the most common classification problems is that of detecting spam
email — a classifier is given several examples of what is and what is not spam, builds a
model, and then decides whether a new email is spam or not. Some classification systems
continue to learn, by allowing users to provide feedback on the predictions that it makes
and modifying its model according to the feedback given. The tendency in machine learn-
ing is to try different techniques (possibly different parameters) to analyse the output of
the results and assess which technique fits the learning problem best. Below follows a
very short description of the techniques used in this work. A more complete overview of
machine learning techniques and classification systems can be found in various sources,
amongst them Hastie et al. (2009).

A decision tree specifies the sequence or process of how a decision is taken, using a
divide-and-conquer approach. The training process of a decision tree aims at finding the

best sequence of how the different attributes are tested and on what basis sub-decisions
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are taken, finally arriving to a final decision which results in the final classification of an
instance. The main advantage of a decision tree is that the output of the model is generally
easy to understand (depending on the size) and easy to implement as a sequence of I1F-
THEN-ELSE statements. One of the pitfalls of a decision tree is that it arrives to a single
classification without associating a probability to it. This might hinder the classification
of an instance where there is ambiguity. For example, tikser is both 2SG and 3SGF, but
a decision tree can only pick one label and cannot produce two labels with a likelihood
for each label. It also might create an overly complex tree that does not generalise well
over the training data, a problem known as overfitting — thus the model learnt is too
close to the training data and would have poor predictive performance on unseen data.
Random forest is an extension of the decision tree algorithm, by which a number of
trees are constructed during training, and it outputs the class predicted by the majority of
trees. This corrects for the overfitting problem of the decision tree, having a more ‘diverse’
classification possibility.

Logistic regression is a discriminative probabilistic classification model which aims
at finding the probability distribution that best represents the training data, resulting in the
classification which has the highest expected value. The main advantage of this technique
is that it provides a probability for each of the classes in a classifier. So in practical terms,
logistic regression would provide probability values for both labels 2SG and 3SGF for a word
like tikser. Its main disadvantage is that it is parameterised and must be set according to
the type of data it is trained on. This might not always be straightforward, and logistic
regression might also take more time to train, so tweaking the parameters could prove to
be time consuming.

Naive Bayes is a probabilistic classifier based on the premise that each feature con-
tributes independently to the classification of an instance. This particular aspect of Naive
Bayes is what makes it a very fast algorithm and it generally performs very well for a
number of classification problems. The independence assumption is also a drawback if the
likelihood with which a feature corresponds to a class in fact depends on one or more other
features. Again here, the classification has a probability associated to it, so it is possible to
check for cases of ambiguous classifications when the probability of two proposed classes
is close enough.

Support vector machine (SVM) is an algorithm that analyses the training data and
recognises patterns of every class in the data, making it a non-probabilistic technique. This
means that the prediction will always output a single classification. SVMs can be computa-

tionally intensive during training, and are dependent on the choice of the kernel used and
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its parameters (which is the part of the algorithm that does the pattern analysis). Some
kernels can overfit the training data, providing poor prediction performance. Another
issue is that the data should normally be linearly separable — meaning it should be possi-
ble to draw a hyperplane separating instances of different classes. That is something that
can only be discover by testing the data and different kernels. However, SVMs are quite
popular in machine learning classification problems since they allows the user to find the
appropriate kernel for the particular type of classification problem being learnt.

Finally, the Majority Class classifier is the simplest classification technique which
takes the majority class as its prediction value. So for example, if there are more instances
in the training data for singular than plural, then the prediction of any unseen instances
will always be singular. Of course, it is clear that this is an overly simplistic algorithm.
However it is used as a baseline for all the above algorithms. In other words, for an algo-
rithm’s performance to be considered as acceptable, its minimum requirement is to perform
better than the majority class algorithm.

Since the classification system took a cascade approach, a benchmarking system was
used as a result. Each classifier for the second-tier features could be learnt with only
the basic features. But as the cascade progressed, more second-tier features were added,
providing more information to the classifiers further down the line. The performance of
any second-tier feature classifier should be improved through the information provided by
the preceding second-tier feature classifiers. In the case that a classifier did not improve,
this meant that the classifier for that second-tier feature did not require input from other
second-tier feature classifiers to aid it with its classification. The floor benchmark is de-
fined as the performance of a second-tier feature classifier that uses only the basic features
as input. The ceiling benchmark is defined as the performance of a second-tier feature
classifier that uses the basic features and all other second-tier features as input. The floor
benchmark represents a classifier positioned at the beginning of the cascade, and the ceil-
ing benchmark represents the positioning of a classifier at the end of the cascade. These
benchmarks were used to investigate and derive the optimal sequence of the second-tier
feature classifiers in such a way that the resulting classification cascade maximises the
overall improvement of each classifier from the floor benchmark, bringing it as close as
possible to the ceiling benchmark.

The above machine learning techniques were all implemented through the weka data
mining software (Hall et al., 2009), available both through a graphical user interface and as
an open-source java library. The training and testing datasets were formatted according to

the specification expected by weka. One of the main advantages of using Weka is the stan-
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dard presentation of results between the different algorithms and the way all algorithms
can be evaluated. It provides accuracy for the overall classifier, as well as F-Measure for
every class (label) available’. It is also possible to use ten-fold cross validation or to test
a model on completely unseen data. The primary aim of this investigation was to deter-
mine the optimal sequence of cascade classifiers, and then to perform a final evaluation on
completely unseen data. The initial analyses of the classifiers’ performance described be-
low was measured using a 10-fold cross validation evaluation over the training data itself.
The final evaluation used completely unseen data. To ensure clarity, the latter is always la-
belled as UNSEEN in the remainder of the report to distinguish between the two. Generally,
the initial 10-fold cross validation performs better than the unseen because the evaluation
is using the same data used to model the classifier.

Initial experiments explored various algorithms described above, with a particular fo-
cus on decision trees, logistic regression and Naive Bayes. The latter performed best in
terms of speed, learning a model within a minute or two. Decision trees took slightly
longer to compute a model, usually under five minutes, and produced better results in
terms of accuracy and F-Measure over Naive Bayes. On the other hand, logistic regression
took the longest time, at times over 24 hours, and did not always converge to a solution.
Several experiments were carried out to tweak the parameters, resulting in some improve-
ments in execution time. However, when logistic regression did converge, the results were
very close to those obtained using decision trees. Therefore, the analyses below present
the results obtained using decision trees. An comparison of the different machine learn-
ing techniques is described later at the end of §4.3, where the performance of the different

techniques is discussed in more detail.

4.2.5 Data representation
4.2.5.1 Composite suffixes

A number of experiments were carried out to determine how best to represent the data,
how to choose the training and test instances from the 4.7 million wordforms, and the
representation of the split composite suffixes described in §4.2.3 above (page 101). The
representation of the split composite suffixes as part of the basic features had to have a
fixed number of placeholders to facilitate the computational processing of this data. Two

experiments were carried out in order to decide which type of representation would be

"In order to clearly distinguish between the two, unless otherwise specified, accuracy is expressed as a
percentage (e.g. 98% or just 98 in the plots of graph figures), whilst F-Measure is expressed as a decimal
between 0 and 1 (e.g. 0.98). This ensures consistency throughout the analysis of the results and figures.
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best. In each experiment, the last placeholder was used solely for the -x suffix which
always comes at the end of a word and represents the negation of a word. The first exper-
iment used a total of 5 placeholders, and the split composites were placed in order from
right to left, leaving the split composites close to each other (due to the last placeholder
being used by the negative). A second and more intuitive experiment used 4 placehold-
ers and the split composites were placed from left to right. The difference between the
two representations is best illustrated through an example, shown in table 4.5. The suffix

-t-lek-x usually denotes either -PERF1SG-25G-NEG or -PERF25G-2SG-NEG.

Table 4.5 An example of the different representation for a split composite suffix

-tlekx S1]S2 |S3|S4 | S5
Experiment 1 t |lek | x
Experiment 2 | t | lek x | NA

The automatic technique of segmenting composite suffixes was discussed in §3.2.3 and
shown to have an accuracy of 52%. Given the importance of composite suffixes in terms of
the morphological information they contain, it was important to have a more accurate seg-
mentation of suffixes. A small rule-based system was therefore implemented to segment
128 composite suffixes. A dataset was created by randomly selecting 30,000 words. These
instances were processed into two separate training sets with the different split composite
suffix representations shown above in table 4.5. Figure 4.3 shows the F-Measure obtained
by a decision tree in classifying different second-tier features using the different repre-
sentations. The majority of the second-tier features are better classified in the second

experiment, when 4 placeholders were used and composites were placed from left to right.
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Fig. 4.3 The results of two experiments with different composite suffix representation
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The following experiment aimed at assessing the importance of actually having the
split composite suffixes as part of the basic features. Two datasets of 30,000 wordforms
were used, but with a different distribution in terms of whether the segmentation of the

composite suffixes was known or not. The distribution is shown in table 4.6.

Table 4.6 Distribution of wordforms according to the segmentation of the composite suf-
fixes

Dataset name | Composite suffixes distribution

10K words not segmented, suffixes not known

30A-Split 10K words segmented, suffixes known, composite suffix not split
10K words segmented, suffixes known, composite suffix split
30B-Known 30K words segmented, suffixes known, composite suffix split

The rationale behind the two datasets was that 30B-Known represented the ideal sce-
nario where all suffixes could be segmented correctly into their composites. 30A-Split
represented a more realistic scenario, where the system does not have enough informa-
tion to segment all words or split suffixes into their composites. The F-Measure on the two
datasets is shown in fig. 4.4. As expected, having more composite suffixes within the data
improves the performance of the different second-tier feature classifiers, and practically
all classifiers performed better when the dataset consisted only of words where the split
of the composite suffixes was known. Given these results, the number of rules to seg-
ment suffixes was increased from 128 to 214, ensuring a better coverage of the different

morphological aspects contained in the composite suffixes.
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Fig. 4.4 F-Measure for two datasets having different different distribution in suffixes and
composite suffixes
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4.2.5.2 Feature distribution

The second-tier features obtained different results, and some features were seemingly eas-
ier to learn than others. In analysing the datasets and the results, it transpired that par-
ticular values of a second-tier feature were under-represented. This resulted in a skewed
model, favouring the better-represented classes. Generally, since the word formation in
Gabra is automatically generated, the distribution between the features and their values
was rather well represented. However, selecting a purely random dataset from 4.7 million
words does not necessarily bring forward the same distribution present in Gabra. Thus to
ensure a better representation of the morphological features present in Gabra, 200 lexemes
were randomly selected and the final representative dataset was created by extracting all
the wordforms of those lexemes, resulting in a dataset of 173,994 wordforms.

Further analysis of the selected wordforms showed some errors in the automatic gen-
eration of some of the words related to the imperative (mood under T.A.M.). Although dif-
ferent productions were included in terms of morphological information, the actual words
produced were always the same. This means that the data contained, for example, ofirog
for both ImP2SG and IMP2SG-1SG, when the correct word for the latter production should

be ohrogni. Further examples produced from Aareg ‘go out’ are shown in table 4.7.

Table 4.7 Some examples of the imperative for VHRg - hareg ‘go out’ as found in the Gabra
database

Database word | Subject | DirObj | IndObj | Correct word
ohrog P2Sg | null null ohrog

ohrog P2Sg | P1Sg | null ohrogni
ohrog P2Sg | null P1Sg | ohrogli
ohorgu P3Pl null null ohorgu
ohorgu P3Pl P1Sg | null ohorguni
ohorgu P3Pl null P1Sg | ohorguli

From a machine learning perspective, this type of error impacts the learning of the di-
rect object and indirect object due to the lack of the appropriate pronominal suffixes. The
most practical short-term solution for this dataset was to use only those wordforms in the
imperative that had both the direct object and indirect object set as null. This meant that
from the original 173,994 wordforms, the training dataset was reduced to 151,382 word-
forms. The number of wordforms which were segmented was 126,306 (83%) and 75,937

(50%) had their composite suffixes split.
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A separate unseen dataset was put together to test the different classifiers learnt. For
this purpose, 20,000 wordforms were selected randomly with one restriction — wordforms
chosen must not be present in the training dataset. A slight adjustment was done to all
wordforms in the imperative, whereby the direct and indirect object fields were set to null,

reflecting the imperative in the training dataset.

4.3 Experiments and results

A series of experiments were carried out to decide the order of the second-tier feature
classifiers such that the cascade classification system would obtain the best results possible.
The system uses the morphological information learnt from previous classifiers to feed
into the following classifiers. This section discusses the approach adopted to select the
sequence of the classifiers for the cascade and the results obtained on the unseen dataset.
Some further experiments are also described in which some second-tier features which are
highly co-dependent are merged together as a single feature, investigating whether it is
possible to improve the prediction of such features when merged.

The order in which features were classified also reflects the dependencies between the
second-tier features. Some of the basic features were also more relevant to classify certain
second-tier features than others. The results reported below cover the most interesting

aspects and the overall results achieved by the classification system for the verb category.

4.3.1 The optimal cascade sequence

An optimal cascade of classifiers provides a sequence through which the best possible re-
sults are obtained by the individual classifiers as well as collectively. Two approaches were
used to find the ideal sequence that seeks to maximise the collective performance of the
classifiers. The first used information gain to assess which features provided added value to
the classification of other features. The second approach used the floor and ceiling bench-
marks of every feature to find the best sequence that maximises the overall improvement,
bringing the performance of every classifiers as close as possible to the ceiling benchmark.

Information gain is a score that ranks the most predictive features for a particular clas-
sifier. This provided insight as to which features give most information in order to best
classify a second-tier feature. Table 4.8 shows the information gain for each of the second-
tier features (polarity, indirect object, direct object, number, T.A.M., gender, person, verb

type, form) when each one is predicted from a combination of the basic features and each
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of the second-tier features. The last column (labelled Cont.) provides the horizontal sum
of the information gained per feature. The two features that are most useful in the over-
all classification of the second-tier features are the suffix and the cv-pattern of the word,
followed by the prefix and the composite suffixes. The columns look at the individual
second-tier features and provide an overview of which features best contribute to its clas-
sification. For instance, the classifier for the second-tier feature direct object receives most
information gain from the suffix, s1, s2, cv-pattern word and indirect object. The last rows
show the total information gain per second-tier feature (Total IG), which is then split to
show the information gain from basic features (Basic IG) and from second-tier features
(2™T IG). These last two rows provide particularly interesting insights into which of the
second-tier features depend mostly on other second-tier features. This becomes more ev-
ident when comparing across features. For instance, the feature polarity gains most of
its information from the basic features when compared with other features — in fact, it
has the lowest sum for the information gained from second-tier features. On the other
hand, the second-tier feature which has the highest gain from other second-tier features
is gender, gaining most from the features number and person. This type of analysis indi-
cates that a feature like polarity can be classified early in the cascade, whilst a feature like
gender should come later. However, the information gain on its own was not sufficient to
determine the actual sequence the classifiers should be in. It simply provided a ratio of the
amount of information that a classifier gained from the different features.

The second approach was more systematic, through a series of extensive experiments.
For each second-tier feature, we built two classifiers: (i) using only the basic features,
referred to as the floor benchmark; (ii) using all basic and second-tier features, referred to as
the ceiling benchmark. One classifier represented the lowest expected performance and the
other represented the highest expected performance® of a second-tier feature classifier. The
experiments evolved in an iterative approach, at each stage analysing which of the second-
tier classifiers was closest in performance to the ceiling benchmark. When a classifier was
identified, it was placed into the cascade. The remaining second-tier classifiers were then
retrained for further analysis, this time including any second-tier features already placed
in the cascade. This process was repeated until all second-tier classifiers were placed in

the cascade.

8The ceiling classifier might not represent the best performance necessarily. Imagine a scenario where
a feature actually interferes with the classification of another feature, thus our approach would result in a
worse ceiling classifier. However it was evident from the analysis of the information gain that if there was
such a case within the second-tier features, the difference would be rather insignificant.
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Table 4.8 Attribute selection using information gain ratio for the second-tier features

Feature | POL | IND | DIR | NUM | TAM | GEN | PER | VER | FORM | Cont.

Prefix 0.00 | 0.00 | 0.00 | 0.10 | 0.63 | 0.26 | 0.43 | 0.42 0.40 | 2.23
Suffix 084 | 246 | 2.04 | 0.80 | 0.44 | 049 | 0.41 | 0.51 0.11 | 8.09

S1 0.08 | 044 | 0.78 | 046 | 0.23 | 0.24 | 0.14 | 0.12 0.01 | 2.50
S2 0.09 | 0.90 | 0.56 | 0.26 | 0.12 | 0.17 | 0.04 | 0.11 0.01 | 2.27
S3 0.02 | 039 | 0.10 | 0.23 | 0.09 | 0.13 | 0.04 | 0.11 0.01 1.12
S4 0.50 | 0.05 | 0.01 | 0.16 | 0.03 | 0.07 | 0.00 | 0.10 0.01 | 0.94

CVWord | 0.71 | 1.73 | 1.22 | 0.40 | 0.37 | 0.26 | 0.24 | 0.56 | 0.97 | 6.47
CVStem | 0.00 | 0.00 | 0.01 | 0.20 | 0.08 | 0.11 | 0.07 | 0.73 | 1.16 | 2.35
Geml 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 0.05 | 0.06
Gem?2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 0.26 | 0.39

POL - 0.00 | 0.00 | 0.01 0.01 | 0.00 | 0.01 | 0.00 0.01 | 0.03
IND 0.00 - 0.26 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 0.00 | 0.27
DIR 0.00 | 0.26 - 0.01 0.01 | 0.00 | 0.00 | 0.00 0.00 | 0.28
NUM 0.01 | 0.00 | 0.01 - 0.01 | 0.29 | 0.03 | 0.00 0.01 | 0.34
TAM 0.01 | 0.01 | 0.01 | 0.01 - 0.00 | 0.01 | 0.00 0.01 | 0.05
GEN 0.00 | 0.00 | 0.00 | 0.29 | 0.00 - 0.47 | 0.00 0.00 | 0.77
PER 0.01 | 0.00 | 0.00 | 0.03 | 0.01 | 0.47 - 0.00 0.01 | 0.52
VER 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 - 0.10 | 0.10
FORM 0.01 | 0.00 | 0.00 | 0.01 0.01 | 0.00 | 0.01 | 0.10 - 0.13

Total IG | 2.28 | 6.25 | 5.01 | 296 | 2.03 | 2.50 | 1.89 | 2.88 3.12
BasicIG | 2.25 | 598 | 4.73 | 2.62 198 | 1.73 | 1.37 | 2.78 2.99
2"TIG | 0.03 |0.27 | 0.28 | 0.34 | 0.05 | 0.77 | 0.52 | 0.10 0.13
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Polarity was the first second-tier feature classifier to be placed in the cascade. This was
also evident from the information gain analysis, since this feature depended solely on the
basic features. Table 4.9 shows the process explained above which was carried out to decide
which second-tier feature should be placed in the cascade. The analysis was based on the
improvement achieved by the retrained classifiers, which now used the basic features and
the output of the Polarity classifier. The classifier which achieves the closest F-Measure to
its ceiling is the one for the indirect object feature. The process was again repeated with
the classifiers retrained using the basic features and the output of the Polarity and Indirect
Object classifiers, with the aim of finding the next feature according to the best possible

F-Measure improvement.

Table 4.9 Analysis of F-Measure difference between the ceiling benchmark and the re-
trained classifier which included the basic features and the polarity second-tier feature.

2"Tier Features | Ceiling | Basic+Pol | Difference
Num 0.978 0.950 0.028
Gen 0.983 0.879 0.104
Tam 0.993 0.959 0.034
Ver 0.963 0.928 0.035
Ind 0.939 0.922 0.016
Dir 0.957 0.933 0.024
Per 0.866 0.747 0.119
Form 0.909 0.866 0.043

All the second-tier features were processed as detailed above with the exception of
verbtype and form. These two features are very particular to the Gabra dataset and spe-
cific to words formed from the root (implying Semitic origin). If the classification system
were applied to a generic corpus such as the MLRs, there would be a large percentage of
words that would not require the output of these two classifiers. With the data available,
it was not possible to know whether the presence of these classifiers earlier in the cascade
would negatively impact the classification of words of Romance or English origin. In a
practical setting, these two classifiers could either be retrained and include a representa-
tive number of Romance and English-originating examples so as to offer a better coverage
of Maltese, or else be left out entirely from the classification system. Both features do
not offer information pertaining to the inflectional morphological properties of a word —
which is mainly what the Gabra data represents — but rather the structural pattern that

would be used in the production of derivationally related words. Although the experi-
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ments were never designed to focus only on inflection, the limitation came from the type
of data available through Gabra. However, since this particular data has the two features
at its disposal, it was interesting to analyse to what extent such features are classifiable.
These two features were therefore placed at the end of the cascade so as not to impact the

other second-tier classifiers in any way.

1 [ |
5 Fl
= —e— Floor
n 09| i
S —=— Ceiling
E, —e— Actual
=~ 0.8 :

O(@

o\ ‘b' .é @\ @\ 'Q\ e&\ Q}lg\
R SR RS R Y

Fig. 4.5 The resulting cascade sequence, comparing the performance of each classifier to
its Floor and Ceiling benchmarks.

The above analysis provided the resulting optimal cascade sequence as follows: Po-
larity, Indirect Object, Direct Object, T.A.M., Number, Gender, Person, Verbtype
and Form. Figure 4.5 shows the performance of each classifier when it was actually in-
cluded in the cascade classification system, and comparing the F-Measure with its floor
and ceiling benchmarks. Each of the classifiers include the basic features and any preced-
ing second-tier feature classifiers in the cascade. For the most part, the performance of
the classifiers is very close to the ceiling, the only exception being the feature gender. The
choice between classifying gender or person first is quite a close call, with both features
achieving close-to-ceiling performance if the other feature is classified first. Gender wins
the ‘race’ by about 0.005 difference in improvement if it is classified first. Figure 4.6 shows
how the two features perform as more second-tier features are added to the cascade. In
fact the only ‘spike’ in the curves is when either feature is included in the cascade. This
shows that apart from the dependency on the basic features, Gender and Person are largely
dependent on each other as second-tier features.

Additionally, fig. 4.5 above also shows those second-tier features that are highly de-
pendent on information gained from other second-tier features. This was evident from the
wider gap in performance between the floor and the ceiling benchmarks, notably for the
features T.A.M., Gender, Person, Verbtype and Form. Other features such as Polarity and
Indirect Object were more dependent on the basic features alone, demonstrating a closer

gap between the floor and the ceiling benchmarks. For the most part this matched the anal-
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Fig. 4.6 Improvement curve of the Gender and Person features as more features are included
in the cascade, with both reaching the ceiling benchmark when either feature is added first

ysis on the information gain ratio between the basic features and second-tier features, with
the exception of Verbtype and Form. The information gain ratio for both these two features
showed practically a full dependence on basic features, whilst in practice the classifier for
either feature improved mostly when they are left to the end of the cascade. Figure 4.7
shows the performance curve for the Form classifier as it is trained using more second-tier
features, with the final spike when all other features were included, hence reaching its
ceiling benchmark.

The results justify the ‘experimental’ approach taken in determining the sequence of
the cascade classifiers, rather than simply relying on the information gain ratio alone.
By actually training a number of different classifiers and analysing their performance at
different points of the cascade, it was possible to find the sequence which maximises the
overall performance of the cascade classification system.

The remaining issue was that of circular dependancy of second-tier features, particu-
larly between person and gender. The following part describes some modifications to the
dataset and a series of experiments to analyse whether it would be possible to obtain im-
provements in the performance of the classifiers by merging together specific second-tier

features.
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Fig. 4.7 The performance of the Form classifier as different second-tier features were in-
cluded in the cascade

4.3.2 Merging second-tier features

Some of the second-tier features were clearly dependent on others to produce good results.
This was evident from both the information gain ratio in table 4.8 as well as in the results
obtained from the various classifiers produced in deciding the cascade sequence. The most
obvious circular dependency was between gender and person, with each reaching the ceil-
ing benchmark only if the other was introduced into the cascade (as shown in fig. 4.6
above). The information gain ratio table provided an overview of the main dependency
as well — mainly between the direct and indirect object; number and gender; and gender
and person. The dependency between direct and indirect object was relatively small, and
in fact the gap between the floor and ceiling benchmarks for these two features is of 0.03
(direct object) and 0.02 (indirect object). This means that which one is classified first will
not have a significant impact on the performance of the cascade. However, the difference
between the floor and ceiling benchmarks was far more substantial for gender (0.10) and
person (0.12). The dependency could also point towards those morphological properties
which contain ambiguity. For instance tikser is ambiguous in both gender and person, be-
ing either 2SG or 3SGF. In an ideal scenario, a morphological analyser would present both
analyses and rely on a parser which uses context to determine the correct analysis of the

word.
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A possible approach to eliminate ambiguity in the dataset was to flatten the data when
more than one possible analyses is available for a wordform. In practical terms, whenever
the dataset contained more than one entry for the same wordform, the different second-
tier features were merged into a single value. In this case, the entry for tikser would be
labelled as 2|3.SG.NULL|F. The limitation of this flattened representation is that it might not
be clear that the second person is neutral (null), and the third person is feminine, and that
second person feminine is incorrect. To counteract this problem, second-tier features can
be merged before the data is flattened. In this case, if the features person and gender are
merged, then flattened, the analysis for tikser would be 2NuLL|3FEM.sG. The removal of
ambiguity could result in an improved overall performance for the classification system,
something which was worth investigating. The following modifications were made to the

original dataset and each classifier was retrained with the modified dataset.

Flattened Dataset When more that one entry exists for a particular word, all entries are
flattened into one instance. This means that tikser would have the following values

for person: ‘2|3’, gender: ‘null|f’, number: ‘sg’. We refer to this dataset as Flat.

Merging Two Features This process merged two features together before flattening the
data. We experimented with merging person and gender (PerGen), number and
gender (NumGen), and number and person (NumPer). The analyses then looked
at which pairing of features could remove ambiguity and minimise the potentially

negative impact of feature dependency.

Merging Three Features Here the features person, gender and number are combined
as a whole feature. Since the Gabra data contained only verbs, this refered to the
Subject of the word.

The experiments with these five datasets followed the exact same process carried out
with the original dataset. For the sake of clarity, the original dataset is hereafter referred
to as the Regular dataset. For each dataset a number of experiments were carried out to
determine the optimal cascade sequence. Since the differences in the resulting sequences
were minor and primarily due to the merging of features together, the presentation of
results will use the same sequence as the second-tier classifiers with the regular dataset.
In fact, the Flat cascade resulted in exactly the same sequence as the Regular cascade.
However for the merged datasets, each cascade resulted in the feature-pair being inserted
into the cascade at the very end. This hints at a certain level of complexity in learning

merged features.
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Beginning with the Flat dataset, fig. 4.8 shows the floor and ceiling benchmarks for the
second-tier feature classifiers, as well as the performance of the actual modelled cascade
itself. Simply by comparing the floor benchmarks of the Regular versus the Flat classifiers,
shown in fig. 4.9, it is possible to see that by flattening out the data, the classifiers learnt
perform better overall even just by using only the basic features. fig. 4.9 shows the floor
benchmarks for the Regular versus the Flat cascade. Notably, the difference in F-Measure
for the Person classifier is of 0.128. The disparity between the ceiling benchmarks for the
Regular and the Flat datasets is more or less the same as the floor benchmarks, with the
only difference for the Person classifier which differs by 0.085. The two ceiling benchmarks
are shown in fig. 4.10. The interpretation of these results is that, given the technique and
the data used, the classifiers for most of the second-tier features can be improved, but the
maximum improvement (ceiling) is somehow capped at a point where it is not possible
for a machine to automatically learn beyond it, at least with the features used here. This
indicated that the improvement of the classifiers through flattening the data was minimal,

mainly limited to the Person feature, and to a much lesser extent the Gender feature.
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Fig. 4.8 The resulting Flat (F) cascade sequence, comparing the performance of each clas-
sifier to its Floor and Ceiling benchmarks
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Fig. 4.9 Comparison of the Floor benchmarks for the Regular (R) and Flat (F) datasets
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Fig. 4.10 Comparison of the Ceiling benchmarks for the Regular (R) and Flat (F) datasets

Figure 4.11 compares the classifiers learnt for the regular and the flat datasets. All
classifiers have very similar performance, apart from Gender and Person classifiers. These

classifiers improve by 0.073 and 0.078 respectively after the data is flattened.
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Fig. 4.11 Comparing the classifiers learnt for the regular and flat datasets.

A similar analysis was carried out with feature-pairs being first merged before the data
was flattened to remove any ambiguity and co-dependency of features. Figure 4.12 shows
all the different classifiers learnt from the various datasets (NumPer, PerGen, NumGen and
Subject) as well as the regular and flattened classifiers shown in previous figures. To enable
better comparison throughout the different datasets and models, the merged features have
been separated in the presentation of the results. However, note that when features are
merged, the value given on the individual features is that obtained by the single merged
feature (hence, they have the same values). So for instance the subject plot in fig. 4.12 has
the same value for Person, Gender and Number. Table 4.10 shows the actual F-Measure
values for each of the classifiers, indicating in bold those features which are merged before

being flattened.
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Fig. 4.12 Comparison of the classifiers learnt from the different training datasets.

Table 4.10 F-Measure of the classifiers learnt on the basis of the training datasets; numbers
in bold indicate merged features.

Model | Regular | Flat | NumGen | NumPer | PerGen | Sub
Pol 0.976 | 0.976 0.975 0.975 0.975 0.975
Ind 0.922 | 0.921 0.922 0.921 0.921 0.921
Dir 0.949 | 0.953 0.956 0.957 0.957 0.956
Tam 0.963 | 0.955 0.952 0.953 0.952 0.953
Num 0.971 0.971 0.974 0.937 0.972 | 0.888
Gen 0.892 | 0.965 0.974 0.948 0.913 | 0.888
Per 0.861 0.939 0.918 0.937 0.913 | 0.888
Ver 0.946 0.953 0.939 0.939 0.939 0.939
Form 0.909 | 0.905 0.905 0.905 0.905 0.905
Average 0.932 0.949 0.946 0.941 0.939 0.924

The performance of most classifiers remained the same as before when comparing the
regular and flattened classifiers. The classifiers that are of particular interest here are those
for the three features which have been merged in various configurations before being flat-
tened — Gender, Number and Person. The classifier for the Number feature performed best
when it is merged with Gender, achieving a slightly better F-Measure then when it is not
merged, the difference being of 0.003. It performed worse when merged with Person, as
seen in the NumPer and Subject classifiers, with a disparity of 0.037 and 0.086 respectively.
On the other hand, Gender and Person both performed better when merged. The Gender
classifier performed best when merged with Number, but the performance was very close
to when it was simply flattened without merging with other features. The lowest per-

formance for the Gender classifier was with the Regular and Subject datasets. Similarly
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the Person classifier performed best when the data was simply flattened, or when it was
merged with the feature Number.

The difference in the performance of the classifiers between the flattened dataset and
the different merged datasets was generally minimal and too close to argue that merging

any of the features provides an added advantage to the classification system.

4.3.3 Classifying unseen data

All the analyses presented so far were based on the evaluation of the classifiers using the
training data itself through a ten-fold cross validation system. The following analyses
focus on testing the classifiers on completely unseen data. This dataset consisted of 20,000
wordforms randomly selected from the Gabra database which were not present in the
training dataset. It was processed in exactly the same way as the training dataset, creating
several datasets for the Regular, Flat, NumGen, NumPer, PerGen and Subject varieties.

The evaluation of the cascade classification system on unseen data could be approached
in several ways. One was to look at the performance of each classifier in isolation, using
the values of previous second-tier features from the dataset. In practice this meant that
to evaluate the Direct Object classifier, the system would use the values for Polarity and
Indirect Object as specified in the dataset, thus using the correct values. Another way was
to evaluate the cascade executed in full as a whole sequence of classifiers, taking the results
outputted by each classifier and feeding the values to the following classifier. This meant
that incorrect classifications resulting from previous classifiers are propagated down the
cascade. This could influence the performance of the following classifiers negatively. The
latter approach mirrors a more realistic scenario as to how such a type of classification
system would be used in practice. Thus the following evaluation looks at the unseen data
applied to the cascade as a whole, with the resulting error propagation down the cascade.
Specifically, if the feature Polarity of an instance was incorrectly classified, the incorrect
information remained so throughout classification cascade. Due to the implementation
and setup of evaluation, the results on the unseen data were calculated using Accuracy
(percentage of correct classifications) only. This allows a more transparent view of the
nature of error propagation. The figures below provide the accuracy of the learnt classifiers
(labelled ‘Modelled’) as described in the previous section versus the performance of the
cascade itself as a whole on the unseen data (labelled ‘Unseen’).

The cascade classifier for the Regular dataset is shown in fig. 4.13. The Modelled plot
shows the accuracy achieved by each classifier when it is learnt and evaluated using 10-fold

cross validation. The Unseen plot shows the evaluation of the classifiers on the unseen data
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with the values predicted by each classifier propagated to the following classifiers. The two
plots are compared since they provide an indication of the impact that incorrect classifi-
cations have on the cascade. The largest drop in accuracy occured for the features T.A.M.,
Person, Verbtype and Form. The Verbtype and Form features are very particular, signifi-
cant only to verbs of Arabic origin. As explained in §4.2.2 (page 100), their inclusion in the
cascade was more of an experiment to analyse whether these two features could be learnt
and included in the morphological classification system. In particular, Verbtype does not
provide morphological information but is rather a classification of the type of radicals that
a word has (strong, geminate, weak-final, etc.). The feature Form provides some morpho-
logical information related to the pattern for a word’s formation. The gap in the results
between the Modelled and Unseen evaluations showed that these two particular features
were more difficult to learn, achieving an accuracy of 81% and 72% for Verbtype and Form
respectively. However, these results are rather adequate when considering the type of ba-
sic features available to learn these features — for instance, if the radicals were encoded
as part of the basic features, both Verbtype and Form would have achieved better results.
However, the radicals are only relevant to the Semitic aspect of the Maltese language, and

could have a negative impact on the classification of Romance origin verbs.
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Fig. 4.13 Comparison of the Modelled classifiers against the performance of the same clas-
sifiers on Unseen data for the Regular dataset

The results of the unseen evaluation reconfirm the previous observations about the
difficulties to learn the Person feature. One of the reasons for the drop in accuracy when
compared to other classifiers was that this feature is highly dependent on the previous
classifier Gender. Thus any errors in the classification of Gender would negatively impact
the Person classification. The accuracy for Gender is at 85%, meaning that 15% of the

instances were incorrectly classified. The drop in accuracy for the Person feature from the
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modelled to the unseen is of 17%, which might indicate that it is at least a partial effect of
the inaccuracy in the Gender classification.

Finally, the drop in accuracy for the T.A.M. feature probably resulted from the problem
described in §4.2.5.2 (page 109). The Gabra database contained errors in the word forma-
tion of the imperative form. As a result, a large number of wordforms were discarded
from the training dataset (21,140 words were removed, leaving only 604 words or less than
0.003% of the training data). However, the selection of 20,000 unseen instances for the
evaluation resulted in a much higher percentage of the imperative form, with 2,584 words
(0.129%). The discrepancy between the training and unseen datasets, even simply in terms
of the proportion of imperative instances that were observed when building the models,
was probably the primary reason for the drop in performance. The remaining second-
tier features perform reasonably well, with less than 6% difference between the Modelled
evaluation and the Unseen evaluation of the actual feature as predicted by the cascade.

The performance of the cascade system learnt and evaluated on the Flat data overall
produced similar results to the Regular cascade in terms of drops of performance for the
features T.A.M., Verbtype and Form. Figure 4.14 shows the performance of the cascade
system as modelled on the Flat training dataset, and its evaluation on the unseen dataset.
Here, a substantial drop in performance can be observed for the Gender and Person fea-
tures, with a 17% and 35% drop respectively. This was rather surprising since the idea
behind creating a Flat dataset was to remove ambiguity from instances which could be
classified as say both second and third person. There can be two reasons for this large
drop in performance. First, the evaluation does not take into account partially correct pre-
dictions. This means that if an instance was labelled as ‘2|3’ for the Person feature, and the
predicted value was ‘2, this is considered completely incorrect. The second reason might
be that by removing the ambiguity completely from the training data, the classifier were
less capable of generalising over unseen data, thus ended up with classifiers that overfitted
the training data. This is a common problem in machine learning, and the possibility of
comparing the performance of the classifiers trained on different representations of the
same data allows the analysis to take the overfitting problem into consideration.

When comparing the cascade systems learnt on the Regular and Flat datasets, it is in-
teresting to note that although in the modelled cascades the Flat outperformed the Regular
cascade for the Gender and Person features, the evaluation on the unseen data gives the op-
posite result. Figure 4.15 shows the two cascades. This further strengthens the probability
that the cascades modelled on the Flat dataset overfitted the training data.
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Fig. 4.14 Comparison of the Modelled classifiers against the performance of the same clas-
sifiers on Unseen data for the Flat dataset
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Fig. 4.15 Comparison of the Modelled classifiers against their performance on the Unseen
data for the Regular (R) and Flat (F) datasets.

A similar analysis was carried out for the remaining datasets, where either two fea-
tures were merged (Person-Gender, Number-Person, Number-Gender), or the three fea-
tures merged into one (Subject). Figures 4.16 to 4.19 compare the Modelled classifiers with
their performance on the Unseen data for the PerGen, NumPer, NumGen and Subject cas-
cades respectively. The performance of these cascades was very similar to that of the Flat
cascade, with the only difference where the features were merged. Figure 4.20 then com-
pares all the cascades, showing that the Regular cascade classifiers performed best overall
on unseen data.

The performance of the different merged features was always slightly worse than when
they were left as individual feature classifiers. For instance, in comparing the PerGen clas-
sifier against the Flat classifier, the merged feature PerGen achieved a very similar accuracy
to the Person classifier in the Flat cascade but a much lower accuracy for Gender, which

performs much better in the Flat cascade. This indicated that merging features together
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Fig. 4.16 Comparison of the Modelled classifier against the performance of the same clas-
sifiers on Unseen data for the PersonGender dataset
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Fig. 4.17 Comparison of the Modelled classifier against the performance of the same clas-
sifiers on Unseen data for the Number-Person dataset
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Fig. 4.18 Comparison of the Modelled classifier against the performance of the same clas-
sifiers on Unseen data for the Number-Gender dataset

adds complexity to the learning of classifiers and negatively impacting the prediction on

unseen data.
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Fig. 4.19 Comparison of the Modelled classifier against the performance of the same clas-
sifiers on Unseen data for the Subject dataset
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Fig. 4.20 Comparison of all the cascade classifiers on the unseen data
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From the above analyses it is clear that the Regular cascade performed best in terms of
predicting labels on unseen data. We identified various reasons for this result. In remov-
ing the ambiguity in the Flat dataset, the resulting classifier overfitted the training data,
limiting the generalisation over unseen data and resulted in a larger number of incorrectly
classify instances when compared to the Regular cascade. The evaluation was also limited
since it did not consider partially correct predictions, but only those which match the full
label. In the following section we analyse in more depth the performance of the classifi-
cation system as a cascade, focusing solely on the Regular and the Flat cascades since the

other cascades generally perform worse than these two.

4.3.4 Performance evaluation of the Cascade Classification System

In order to assess the actual performance of the Regular and Flat cascades, we compare
the classification of the unseen data versus a baseline classification. One approach was to
use the Majority Class algorithm, which statistically takes the majority class and simply
classifies all instances according to this class. This comparison would be rather simplistic,
of course, and would not truly reflect the complexity of the data. Whilst certain features
had several values/classes, other features had only two, with the data being split in ap-
proximately half. For instance the feature Polarity had positive and negative as values,
with the data split practically into half and half — with the Majority Class classifier, the
accuracy for Polarity was around the 50% mark, with all instances classified according to
the label that had slightly more instances in the training dataset.

Another approach was to classify each feature using only the basic features — this
eliminates the idea of a cascade classification system, and treats all second-tier features as
though they are being classified in parallel. This is equivalent to the Floor benchmark used
before in §4.3.1 (page 111), where the Floor and the Ceiling benchmarks for all second-
tier features were used to determine the sequence of the cascade. The same classifiers
used for the Floor benchmark analysis were used to classify the unseen datasets so as
to compare the performance of the Floor benchmark to the results obtained by the full
cascade classification system on the same data. Figures 4.21 and 4.22 compare the results
of the cascade with those achieved by the Floor Classifiers and the Majority Class classifier
on the unseen data for the Regular and the Flat cascades respectively.

As expected, the Majority Class classifier performed poorly for both the Regular and
Flat cascades. However the difference in performance between the actual cascade classi-
fication system and the Floor benchmark was close to nil. The idea of having a cascade

classification system was that each of the second-tier features would provide information
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Fig. 4.21 Comparison of the Regular cascade against the Floor and Majority Class classifiers
on the unseen data
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Fig. 4.22 Comparison of the Flat cascade against the Floor and Majority Class classifiers on
the unseen data

to the following features in the cascade sequence. Thus hypothetically speaking, the per-
formance of the cascade should be better than that of the Floor classifier. It is important to
emphasise here that the Floor classifiers were trained using only the basic set of features,
whilst the cascade classifiers were trained using also any preceding second-tier features in
the cascade. Although this added information to the classifier, it might also add complexity
to the learning task, making it difficult for the classifiers to perform better with the added
information. A more detailed look into error propagation was required to understand fur-
ther this performance. Error propagation occurred when an incorrect prediction was made
by a classifier, impacting the performance of any following classifiers in the cascade.

The accuracy on unseen data presented so far looked at each classifier individually, so
an instance could have a correct prediction by one classifier, and an incorrect prediction by
an other. In the following analysis, we were interested in identifying the following factors.

First, the actual accuracy throughout the cascade where an instance is predicted correctly
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by all classifiers. This means that once an instance received an incorrect prediction, it
remained flagged as incorrect irrespective of the classifications received by the following
classifiers. This is referred to as ‘Only Correct’. Second, the accuracy of the classifiers, if
at every classifier, the incorrect instances were removed from the pool of instances, and
only the correct instances were classified further. This is referred to as ‘absolute accuracy’.
Figures 4.23 and 4.24 show this analysis for the regular and flat cascades respectively.
The analyses show that by the end of the Regular and the Flat cascades, only 43% and
35% of unseen instances were classified correctly throughout by the respective cascades.
However, if Verbtype and Form were not considered, the accuracy goes up to 58% and 48%
respectively — a rather positive result especially for the Regular cascade. The largest drop
in performance for this cascade was for in the T.A.M. classifier, and this was probably due
to the anomaly in the data with respect to the imperative. This indicates that the results

might improve if the classifiers were retrained once the data is corrected.
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Fig. 4.23 Comparison of the Regular cascade and the percentage of classifications that were
correctly predicted throughout the cascade (only correct) and the accuracy considering
only correct predictions from the previous classifier (absolute accuracy).

Another factor to consider when analysing the performance of the cascade against
the Floor benchmark, which used only the basic set of features, is the actual quality of the
basic features which were extracted automatically. Primarily, the identification of the stem
and affixes in general had a rather high level of correctness because the radical consonants
were used in this process. This, in turn, meant that the identification of the affixes was also
correct on the whole. The good quality of the basic set of features might have resulted in
them being sufficient for the classification of all the second-tier features. The unseen data
that the classification system was tested on also has the same good quality basic features,
and a high level of homogeneity since the training and test instances were taken from the

same database and preprocessed in the same way. This might not be the case when using
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Fig. 4.24 Comparison of the Flat cascade and the percentage of classifications that were
correctly predicted throughout the cascade (only correct) and the accuracy considering
only correct predictions from the previous classifier (absolute accuracy).

a more realistic data, such as text from the MLRS corpus. A small scale evaluation on text

taken from the corpus is described further on in §5.3.

4.3.5 Comparison of different machine learning techniques

The experiments and analyses described above used Decision Trees since this was gener-
ally the best performing technique in the experiments carried out initially. The purpose
was primarily to explore the best way to carry out labelling, so the specific machine learn-
ing technique was a secondary consideration. The following analysis compares different
techniques, previously described in §4.2.4 (page 103) using the same cascade sequence and
datasets for the Regular and the Flat cascades. These are shown in figs. 4.25 and 4.26 re-
spectively.

Decision Trees remained one of the best performing techniques, slightly surpassed by
Random Forests — this is a reasonable result since Random Forests use decision trees as
its basis. Random Forests are also known to have the capacity to find a well-fitting model
to many datasets, though with the disadvantage that the properties of the optimal model
are not completely transparent. This is of course because they rely on multiple Decision
Trees. The Majority class classifier, which was already used to compare the results against a
baseline, had the lowest performance for all the classifiers. The remaining two techniques,
SVMs and Naive Bayes, perform quire closely to Decision Trees and Random Forests, but
on average the performance was slightly lower. One of the main advantages of using Deci-
sion Trees as the preferred technique was that the produced tree can be easily transformed

into a set of rules reflecting the paths being executed to arrive to a classification. On the
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other hand, a technique like Naive Bayes classifier not only provides a prediction, but also
associates a probability to all the possible classes. This is particularly useful for wordforms
which belong to more than one class, e.g. second and third person. Whereas a decision
tree would predict only one class, Naive Bayes would associate a probability to each class
and therefore a final system could take into consideration all classes with a probability

above a certain threshold.
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Fig. 4.25 Comparison of Decision Trees, Naive Bayes, Random Forests, SVMs and Majority
Class on the Regular cascade.

100 [

30| || —e— Decision Tree
> .
% —=— Naive Bayes
§ 60 |- || —e—RandomForest
Q —— SVM
< 40 :

0 —— MajorClass
20 B | | | | | | ]

Fig. 4.26 Comparison of Decision Trees, Naive Bayes, Random Forests, SVMs and Majority
Class on the Flat dataset.
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4.4 Classifying nouns and adjectives

The experiments described so far focused on the classification of verbs and resulted in
a cascade system that specifically targets the features of verbal morphology in Maltese.
This principle can be extended to other categories, in particular nouns and adjectives. In
this section we describe preliminary experiments carried out on the noun and adjective
categories, followed by §4.5 which provides an overview and analyses of the results.

The main limitation of the Gabra database was that it mainly consisted of inflectional
verbal wordforms. Therefore, it was necessary to exploit other possible resources to obtain
labelled data for other categories. The two other main part-of-speech categories that have
non-trivial morphological properties, and to which the principle of a cascade classifica-
tion system could be applied to, are the noun and adjective categories. The experiments
maintained the same principle as before — i.e., seeing morphological labelling as a classi-
fication problem, whereby a category has a number of features which can be learnt and
modelled, and each classifier provides further information to subsequent classifiers. The
same strategy was applied: (i) defining the second-tier features that are ‘classifiable’; (ii)
finding the optimal sequence of the classifiers; (iii) learning the classifiers on training data;
(iv) evaluating the classifiers on unseen data. The experiments carried out in the noun and
adjective categories did not require the same level of detail as was done initially for the
verbs. For instance, the experiments done to determine the representation and effective-
ness of composite suffixes was not repeated since ideally the basic set of features should
remain the same for all types of categories. However, a similar analysis was carried out to
determine whether the cascade classifiers provided an added benefit to the morphological
labelling process.

The dataset used for these two categories was specifically extracted from a digital scan
of the Aquilina dictionary (Aquilina, 1987-1990). This meant that, unlike Gabra, which
provided a very well structured and labelled dataset, the data for the nouns and adjectives
had to be extracted and preprocessed to generate the necessary wordforms and their re-
spective labels. However, some of the dictionary entries were not adequately extracted
or processed, so the data contained noise to some degree. The data was also restricted to
the morphological information that is normally found in a dictionary, with some inflec-
tional features specified but with a main focus on derivation. So the data contained several
gaps and certain morphological properties were not adequately covered or not present at
all. Notwithstanding the difficulties in the extraction process, the dictionary data pro-

vided the best resource in terms of having a collection of nouns and adjectives and their
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respective grammatical information. The exercise was an essential part to move towards
a complete morphological analyser, which could always be improved as more data and

resources become available for Maltese.

4.4.1 Dictionary data extraction

The first task was to identify and exploit possible data sources that could easily be turned
into labelled data. Farrugia (2010) collected a list of nouns and their gender, mainly com-
piled from the Maltese-English dictionary (Aquilina, 1987-1990). Another compilation
from the same dictionary was carried out in Ellul (2015), this time documenting verbal
nouns. It is worth noting that these works were primarily focused on specific linguistic
features of Maltese, and that the collections were created manually from a hard copy of
the dictionary. However, both collections were very narrow in their focus, and the ar-
rangement and cataloguing of the data was particular to the work in question. Another
possible resource was the Maltese-English dictionary itself. In parallel with this research,
various efforts to digitalise the dictionary were made, and an ongoing project (referred to
as the dictionary project) aims at creating an online dictionary using Aquilina as a starting
point. Within the dictionary project, a program to automatically extract some aspects of
the dictionary was created. This extracted the head word, some basic grammatical infor-
mation about the head word and etymological information of various dictionary entries.
Although the output could provide an initial starting point, all of the derivational informa-
tion within a dictionary entry was not being extracted, so the data within the dictionary
was being under utilised. Figure 4.27 shows an example of a dictionary entry, showing
what was being extracted in italics, and what was further required for this work in bold.
In analysing the data sources available, the following were taken into consideration:
(i) the amount of work required to transform the data into a useable dataset for the exper-
iments, and (ii) the coverage of the data. The collection from Ellul did require some effort
to transform into a dataset, and much less was required for the collection from Farrugia.
However both were very limited in the coverage of information — the latter was restricted
to gender analysis of nouns, and the former to verbal nouns. The dictionary extraction
required more work, but its coverage was much broader and better represented the type of
data required for a morphological system. Extending the dictionary extractor would not
only result in a dataset for this research, but also feed back into the dictionary project, thus
also contributing beyond this research. The dictionary extraction was deemed to be the

best overall approach to obtain the required dataset.
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ABBUZ [Mamo], n.m. (pl. ~i) 1. Abuse, unjust or corrupt practice (naqtghu dawn
l- ~ i, let’s put an end to these abuses). 2. (leg.) Misuse, abuse; - ta’ I-awtorita,
abuse of power (use of undue authority); - tal-fiducja, abuse of confidence, breach
of trust; - tal-patria potestas, abuse of paternal rights; - tal-poter, abuse/misuse of
power. -IV, am. (f. - iva, pl. - ivi) Abusive. ~ IVAMENT, adv. Abusively. [id.]
~ |A, v.i. (imperf. + a, pp. ~ at, vn. ~ ar) 1. To abuse, to make bad use of
(minn) s.th.; to take unfair advantage of (bi) S.o., to presume upon, assume that
one can take advantage of s.o. in asking favours (qed t~a mit-tjubija ta’
missierek, you are abusing your father’s generosity; ma rridx min j-a bija, I do
not want anyone to take advantage of me; se n-a bik, imma nixtieqek tghinni, I
am presuming on your good nature to ask for your assistance). 2. To dare, have
the necessary courage to (ma n~ax nghidlu, I dare not tell him). [ Sic./It.
abbus-ujo; -ivu; -ivamente; Sic. -ari]

Fig. 4.27 A dictionary entry — the text in italic shows what was extracted by the initial
program and the text in bold shows further extraction required for this research.

The extractor is built using regular expressions and parsed the dictionary text files
which were taken from scanned images and converted to text files through OCR soft-
ware. Each line in the text file represented a dictionary entry, and these were treated
as strings, matching parts of the entries according to the constraints of the regular ex-
pressions. Extending this program meant designing further expressions and including a
reasoning component to the program to transform the wordforms. In fig. 4.27 above, note
how certain information, although present within the entry, must be processed further in
order to obtain the wordforms. For instance in order to extract and form the word ab-
buzi, the program must process the information available in the text (pl. ~i). Once the
regular expressions captured this information, the reasoning component processed it and
transformed it into the necessary wordform, associating with it the relevant grammatical
information. Table 4.11 shows the list of words extracted and transformed from the sample
entry above.

The extended extractor was able to capture most of the derived words within an entry.
However, it was not a foolproof system and there were some errors in the extraction pro-
cess or difficulties within the reasoning component. Some morphological aspects were not

captured at all. Figure 4.28 shows that the noun kamra ‘room’ can take a pronoun suffix
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Table 4.11 A sample list of words and their features extracted through the program. The
words in bold were extracted through the work carried out for this thesis.

Stem Word Suffix | Cat | Gen | Num | Type
abbuz abbuz noun | masc | sg

abbuz abbuzi i noun pl

abbuziv | abbuziv adj masc | sg

abbuziv | abbuziva iva adj femm | sg

abbuziv | abbuzivi ivi adj pl

abbuz | abbuzivament | ivament | adv

abbuz abbuza a verb intrans.
abbuz abbuzat at verb pastpart.
abbuz abbuzar ar noun verbal

and becomes kamarti ‘my room’, kamartek ‘your room’ — however due to the formatting
of the entry, it was difficult to extract this information automatically. Another aspect re-
lates to OCR errors, where for instance the tilde sign (~) is converted into a dash sign, so
it was not always clear when the headword should be inserted or not. Some of these prob-
lems were actually present in the dictionary itself as typesetting errors, and where possible
the regular expressions took these errors into consideration. It is clear that although this
resource was exploited as best as possible, more work would be required to extract further
information from the dictionary and to reduce the errors from the extraction and reasoning

process.

KAMRA [Sol 284r], n.f. (pl. [Vass] kmamar) 1. Room, chamber; ~ tal-banju,
bathroom; il- ~ I-baxxa, (joc.) water closet, loo; ~ tal-bejt, attic, box-room;
tal-genb/laterali, side-room; ~ ta’ l-imbarazz, lumber room; ~ tal-hasil,
washing-room; ~ tal-loghob, gaming-room; ~ tan-nar, the place, gen. a room,
away from the inhabited area where fireworks are made; ~ tal-pranzu/ta’ l-ikel,
dining room; ~ tas-sodda, bedroom; il- ~ tieghi, tieghek, ec¢./kamarti,
kamartek, ecc¢., my, your, etc. private room.

Fig. 4.28 An example of morphological information that is not captured by the extractor,
shown in bold.
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The extended extractor produced a wordlist of 63,540 words together with their main
category and other morphological features, similar to the sample list shown in table 4.11
above. Table 4.12 shows the number of words extracted for the different part-of-speech
categories. The adverb category does not have any particular morphological features such
as gender and number and the quantity extracted was rather low when compared to other
categories, representing around 1% of all words extracted. For this reason, adverbs were
not included in this analysis and in further experiments. The noun category was the most
represented one, with 63% of the words extracted in this category, followed by adjectives
and verbs. A number of entries did not have a category clearly associated to them or it

could not be correctly extracted, thus these words are ignored.

Table 4.12 Number of words extracted from the dictionary per grammatical category

Category No. of Words | Percentage
Nouns 39,678 63%
Adverbs 636 1%
Adjectives 10,731 17%
Verbs 8,465 13%
Category not captured 4,030 6%
Total 63,450

4.4.2 Examining morphological properties

In order to know which morphological properties could be used as second-tier features
for the extracted words, an analysis was carried out for each part-of-speech category. Ta-
ble 4.13 provides an overview of this analysis. For each part-of-speech, the table lists the
morphological property together with a list of values attested for that property, and the
number of words having those values.

One of the primary observations of the extraction and reasoning process was the diffi-
culty in finding consistency throughout the dictionary entries, which might have resulted
in some processing errors. For instance, for the adjective category there is the value ‘inv’
under both gender and other. The reason for this is that the extraction process would have
captured the string ‘inv’ at a different/unexpected location within the text. So for 13 en-
tries it was not automatically clear whether the ‘inv’ string related to gender or whether
it was a different marker in the text. Similarly the value ‘c’ under other, where it was not

always clear whether this was referring to the collective or counted. Again, under nouns,
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there is countable under number, and pl.counted under other. The two sets are distinct,
and were left distinct because of how they were actually marked in the dictionary. These
are all considered as minor issues, since generally the number of words falling in these
peculiar values were small and mostly insignificant.

The most represented properties and values for the noun category were gender (femi-
nine, masculine and blank — only the singular forms are marked for gender, hence a large
number of nouns marked as blank), number (mainly singular and plural) and verbal nouns.
For adjectives the main properties were gender (feminine, masculine, invariable and blank),
number (singular and plural) and other (mainly ‘agent’). For verbs the main information
available was related to the type of verb, whether it was transitive, intransitive or past par-
ticiple. The number of imperfective words was rather small because the transformational
rules specified in the dictionary were not always clear and consistent, so this information

was ignored.

4.4.3 Extracting basic features

Through the extraction and reasoning components, the majority of words had affixes di-
rectly associated with them since the dictionary entries specified how a word is trans-
formed to obtain another word. However, a large number of words did not have such
information associated with them (25,809 (40%) words). There were also a number of cases
where the identified stem/affix was not correct. This was particularly common for entries
where the dictionary would mark the stem boundary as required by the stemming pro-
cess for the derivational word transforms, but this would result in an error for a particular
inflectional transform. An example of such a case is shown in fig. 4.29. The vertical bar in-
dicates where the word should be segmented for the entry acéceler|atur, resulting in the stem
acceler-. However, the transformation for the plural — (pl. ~i) — would use the stem and
incorrectly produce *acéeleri instead of using the whole headword and producing acceler-
aturi. For most such entries it was not possible to automatically correct the extraction of
this information. Ideally such words would be cross-checked with another resource such
as the MLRs corpus to check if the word is attested. Further improvements to the reason-
ing component could also attempt to deal with such errors by creating a set of processing
rules that could post-process such error-prone word transforms in an automatic manner.
However, these errors were left as part of the dataset used in the experiments described
below.

The affixes were identified through the stem and the transformational processes given

in a dictionary entry. However for this dataset, suffixes were not split into further compos-
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Table 4.13 Analysis of the different features and their respective values for the words ex-
tracted from the dictionary

Feature ‘ Value Nouns Adj | Verbs
Totals | 39,678 | 10,731 8,465
Gender femm 9,414 | 2,943 3
masc 10,146 3,494 8
inv 63 1,074
neuter 38
blank 20,055 3,182 8,454
Number sg 19,794 | 7,623 8
pl 13,980 3,068 8
singulative 1,501
collective 239 1
countable 351
blank 3,813 39 8,449
Diminutive | true 622 70
false 39,056 | 10,661 8,465
Other pl. counted 305
“c” 20 23
inv 63 13
mimat 164
exclamation 1
agent 1,980
compar 38
blank 39,125 8,677 8,465
Verbal true 5,388
false 34,290 | 10,731 8,465
Type imperf. 25
trans. 2,716
intrans. 2,245
past partic. 3,462
blank 39,678 | 10,731 17
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ite suffixes. The rationale behind this decision was that, unlike the Gabra dataset where all
the inflective forms were given for a word, the dictionary mainly lists derivationally related
entries. Leaving the suffix whole would still provide sufficient information to distinguish

the morphological properties of the words in the dataset.

ACCELER|ATUR [ESI], n.m. (pl. ~i) (mech.) Accelerator. ~AZZJONI, n.f. (pl.
~jiet) Acceleration. ~ |A, v.t. & i. (imperf. +a, pp. ~at, vn. ~ar) To accelerate. [It.
acceler-atore; -azione; -are]

Fig. 4.29 Dictionary entry for a¢éeleratur

The extractor also identified the radicals when an entry had the root information avail-
able. In Gabra, the radicals were used both in the stemming of words, and in the geminate
identification which was used as part of the basic set of features. Within the dictionary
data, the only category of interest which had the first consonant geminated was the verbal
noun. Gemination was also found under several verb entries in the dictionary, however
this was not used as part of the dataset.

The Consonant-Vowel patterns (CV patterns) were extracted for both the whole words
and the stems identified through the extraction process. The CV pattern was obtained
by first extracting a word’s phonetic transcription using a word-to-phoneme transcription
method for Maltese developed by Borg et al. (2011). The phonetic transcription was then
changed into a CV pattern reflecting the occurrence of consonants and vowels in a string.
This was the same process as described previously in §4.2.2 (page 98).

The datasets were divided into two: 90% of the words were randomly selected and used
as training data, with the remaining 10% left as unseen data to be used for the final eval-
uation of the classification cascade system. Again, the training dataset was used during
the development cycle to evaluate the classifiers and determine the sequence of the cas-
cades, using a 10-fold cross validation system. The unseen datasets was only used in the
final evaluation, and the results using this dataset were labelled as ‘Unseen’. The adjec-
tives dataset consisted of 9,658 instances in the training dataset and 1,073 instances in the
unseen dataset. The nouns dataset consisted of 35,710 instances in the training dataset and

3,968 instances in the unseen dataset.

139



4.5 Experiments and results

4.5 Experiments and results

Similar to the experiments carried out for the verb category, the first set of experiments
focused on determining the optimal cascade sequence for the noun and adjective categories
separately. Again, decision trees and information gain analyses were used for the initial
experiments, using only the training datasets. Once the cascades were defined, they were
tested on the unseen data to analyse the actual performance of the cascade and to see
whether error propagation had an impact on these two cascades.

One of the main differences between these experiments and those carried out for the
verbs was that Gabra had information related to several morphological properties within
its labels, and this resulted in 9 second-tier features in the verb cascade. With the infor-
mation gathered from the dictionary, both the nouns and the adjectives had 3 second-tier
features. For the noun category, these were Gender, Number and Verbal nouns (verbal for
short). For adjectives these were Gender, Number and Other. The feature Other for the
adjectives was a categorical feature with miscellaneous values, most of them of a morpho-
semantic nature, with the main one, ‘agent’ indicating an agentive noun. Although there
were other values in the extracted datasets, their frequencies were too small to be statis-
tically relevant and classifiable. For example, this was the case for the diminutive with
only 622 instances out of 39,678 nouns, and 70 instances out of 10,731 adjectives — in both
datasets this was less than 1%. It was clear that a Majority Class classifier would classify
all instances as ‘not diminutive’, and would achieve a very high accuracy rate but such a

result would be very misleading.

4.5.1 The optimal cascade sequence

The initial experiments aimed at finding the best sequence for the second-tier features to
be learned, maximising the benefit to subsequent classifiers. Again, we used the Floor
and Ceiling benchmarks to determine which second-tier feature should be placed next in
the cascade. The Floor classifiers used only the basic set of features as their input, whilst
the Ceiling classifiers used both the basic set of features as well as all the other second-
tier features. Tables 4.14 and 4.15 provide an overview of the process in determining the
sequence of the adjectives and noun cascades respectively. At each stage, the feature with
the smallest difference to the ceiling performance was selected to be the next classifier in
the cascade. The remaining features are then modelled and tested with the basic features

and any additional second-tier features that were in the cascade. This process was repeated
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according to how many second-tier features there were. In both the nouns and adjectives
cascades there were 3 second-tier features so this process was quite brief.

The resulting sequence of the adjectives cascade was Other, Number and Gender. In
the case of the noun category, the sequence was Number, Verbal and Gender. The analysis
of the nouns cascade showed that both Verbal and Gender are highly dependent on the
feature Number, and in both cases the F-Measure improved considerably once the cascade
included the feature Number. In the case of the adjectives cascade, the second-tier features
seemed to be rather independent of each other, as is evidenced from the Floor benchmark
for each feature. All features here were already very close to the Ceiling benchmark, and

the improvement obtained through the cascade was rather minimal.

Table 4.14 Adjectives cascade sequence selection

1°" Classifier | Ceiling | Basic Features | Difference
Number 0.989 0.945 -0.044
Gender 0.861 0.812 -0.049
Other 0.856 0.851 -0.005
2" Classifier | Ceiling Basic+Other

Number 0.989 0.958 -0.031
Gender 0.861 0.826 -0.035
Other 0.856

3" Classifier | Ceiling | Basic+OthNum

Number 0.989

Gender 0.861 0.861 0
Other 0.856
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Table 4.15 Nouns cascade sequence selection

1* Classifier | Ceiling | Basic Features | Difference
Number 0.917 0.821 -0.096
Gender 0.946 0.814 -0.132
Verbal 0.998 0.802 -0.196
2" Classifier | Ceiling Basic+Num

Number 0.917

Gender 0.946 0.935 -0.011
Verbal 0.998 0.998 0
3" Classifier | Ceiling | Basic+NumVer

Number 0.917

Gender 0.946 0.946 0
Verbal 0.998

This can also be seen in figs. 4.30 and 4.31 for the adjective and noun cascades respec-
tively. The Floor and Ceiling benchmarks provide a band in which the performance of the
actual classifiers should be in. The performance presented in these figures used a 10-fold

cross validation on the training data itself.
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Fig. 4.30 The resulting Modelled adjective cascade sequence, compared the performance of
each classifier to its Floor and Ceiling benchmarks
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Fig. 4.31 The resulting Modelled noun cascade sequence, compared the performance of
each classifier to its Floor and Ceiling benchmarks

4.5.2 Classifying unseen data

The resulting adjective and noun cascades were tested on unseen data, which includes
the error propagation along the cascade as incorrectly classified instances are passed on
to subsequent classifiers. Figures 4.32 and 4.33 show the performance of the Adjective
and Noun cascades on unseen data, in comparison with the performance of the individual
classifiers when modelled with the training data.

The overall performance for both cascades was promising. The interesting result was
that in both cascades the feature Number performed practically as well as the performance
of the actual model. For the noun cascade, this was particularly important since it is the
first feature to be classified and the other two features, Verbal and Gender, depend on the
Number feature. However, the impact of error propagation is evident on the nouns cascade.
The accuracy for the feature Number in the nouns cascade is at 83%, meaning that nearly
17% of the instances were incorrectly classified. The drop in performance of the subsequent
features increments, with a 10% difference in the Verbal feature and a 15% drop in the
Gender feature. The adjective cascade overall performed better, with the highest drop in
accuracy of 7% for the gender feature. This was close to the drop in performance registered
in the verbs cascade, where there was a 5% drop in accuracy between the modelled and the
unseen results for the Gender feature. All the features in the adjectives cascade also had
less dependency on other second-tier features, and therefore the drop in performance was

considered as normal when the cascade is applied to unseen data.
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Fig. 4.32 Comparison of the performance of the Adjectives cascade between the modelled
classifiers and the execution of the cascade on unseen data.
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Fig. 4.33 Comparison of the performance of the Nouns cascade between the modelled
classifiers and the execution of the cascade on unseen data.

4.6 Conclusion

This chapter discussed the view of morphological labelling as a classification problem. The
labelling task was approached using supervised techniques and began by first exploring
verbal inflections by exploiting the Gabra database. A classification system was proposed
whereby morphological properties were seen as machine learning features. Each feature
was modelled by a classifier and placed in a particular sequence such that any dependency
between morphological properties would be catered for by the cascade. A number of ex-
periments were carried out to analyse the best data representation and the sequence of the
cascade. The experiments also investigated whether merging of features and flattening the
data would reduce ambiguity. However it was shown that these different datasets created

classifiers which overfit the data, and when the cascades were executed on unseen data
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the Regular cascade performed best overall, which indicated that the classifiers learnt on
the regular dataset allowed for better generalisation of the classification task. The analy-
ses of the Regular cascade also revealed that nearly 60% of the unseen data was classified
correctly throughout the cascade when discarding the last two classifiers, Verbtype and
Form, which are only relative to verbs of Semitic origin.

The experiments then moved on to create Adjective and Noun cascades, following the
same structure used in the Verb cascade. The dataset for these two cascades was obtained
through an extractor which was extended purposefully for this research so as to gather
more instances for the datasets. The two cascades performed very well on unseen data.

One of the main limitations of the research described above in this chapter was the
evaluation of unseen data. The evaluation followed the traditional approach in machine
learning, which is to have a certain amount of data that is excluded entirely from the
training data and kept as a held out dataset. However, this did not reflect a truly realistic
scenario, whereby if such a classification system were to be used on real data, that data
would be similar to the MLRs corpus. To address this, a small scale evaluation was carried
out using the MLRs corpus and described in §5.3.

The research described in this chapter focused on the individual cascades according to
the relative part-of-speech. However in chapter 5, we describe how these three cascades
were integrated into a single classification system which also includes the classification of
the category.

The individual cascades offer modularity and, in future, as more and improved data be-
come available, the classifiers could be retrained and their performance further improved.
Improvement in the dictionary extractor could also result in better quality datasets. The
inclusion of more second-tier features in the cascades is also possible as more labelled data
becomes available, especially increasing coverage for particular morphological properties
in the noun and adjective categories. Experiments can extend the work done for composite
suffixes, especially to consider splitting suffixes into composites automatically, and apply

composite suffixes to the noun and adjective cascades.
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Chapter 5

Towards a complete Morphological

Classification System

5.1 Introduction

The previous chapter described the task of morphological labelling as a classification prob-
lem. The morphological properties for verbs, nouns and adjectives were identified accord-
ing to the labelled data available. A feature classifier was modelled for each of the prop-
erties where enough data was available. A number of experiments were carried out to
determine the ideal sequence of a category cascade, resulting in three separate cascades
for each of the parts-of-speech dealt with. An evaluation on unseen data was carried out
for each cascade, together with an analysis of the results.

Having viewed each of the part-of-speech categories separately, we now turn our atten-
tion towards a more complete view of what a morphological classification system should
be like. So far, the individual cascades assume that the part-of-speech category is known.
The task of categorising a word’s part-of-speech is usually done by a part-of-speech tagger,
which looks both at the word itself and its context to determine its category. Although a
part-of-speech tagger is available for Maltese' (Gatt and Cépld, 2013), and achieves a very
high accuracy, this research looked into the categorisation of words using the same ma-
chine learning techniques used so far. But rather than simply looking at the category task

in isolation, as a step prior to morphological labelling, it also sought to analyse whether

The POS tagger in question achieves ca. 97% accuracy and was used in the development of the “Korpus
Malti v. 3.0 2016, which is now available on MLRS. The tagger is kernel-based, and was developed by
training Maltese models on hand-tagged data using the open source SVMTool (for SVMTool see Giménez
and Marquez (2012) http://www.cs.upc.edu/ nlp/SVMTool/SVMTool.v1.4.pdf).
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the morphological information of a word could feed back into a word’s category classifica-
tion, thus acting as a reinforcement mechanism to the category classification. Ultimately,
the idea is not to propose a revisionist view of POS tagging as a task that should be carried
out of context, but to identify the extent to which the basic features and the second-tier
morphological features can contribute to the task of category identification, before con-
text is also factored in. In principle, the idea is similar to Habash and Rambow (2005) and
Lembersky et al. (2014) who incorporated part-of-speech and morphological labelling into
a single system. This idea led to a proposed architecture that integrated category classifi-
cation within it as a means of determining which cascade output should be chosen as the
predicted output. Again, the category classifiers were then tested on unseen data.

The evaluations carried out in this research always focused on a 10-fold cross validation
system during the development cycle of a classifier or cascade, and a final evaluation on
unseen data. This is always the normal setting in machine learning. However, in moving
closer towards a final morphological classification system, it was also important to eval-
uate the full system on more realistic data. A subset of the MLRs corpus was manually
annotated during the development and training of the part-of-speech tagger for Maltese
referred to above. This subset was first used to evaluate the category classifiers to analyse
the performance of the category classifiers on more realistic data. A further evaluation
selected 200 random words from this subset, and these were manually annotated by two
linguists with their morphological properties. These Gold Standard annotations were then
compared to the morphological labels outputted by the final classification system. The
evaluation sought to analyse the strengths and weaknesses of the system, and what im-
provements would be necessary to arrive closer to a morphological classification system
that could be used in a practical and realistic setting, such as that of providing morpholog-
ical labelling to the MLRS corpus.

The rest of this chapter is structured as follows. §5.2 provides an initial overview of
an abstract system architecture and describes the experiments carried out for the category
classifiers, with the aim to integrate the classifiers into the architecture as a whole. The
final Gold Standard evaluation of the full architecture is then described in §5.3, with a final

conclusion in §5.5.

5.2 Category classification

In viewing morphological labelling as a classification problem, the various part-of-speech

categories could be seen as separate data streams through which particular information
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flows according to its properties. Although category classification is normally done by a
part-of-speech tagger, the following experiments looked into category classification with
two principal aims. The first was to explore the possibility of creating an integrated archi-
tecture that takes a word, extracts its basic features, classifies its category, and processes
it accordingly to extract its morphological information. The second was to determine to
what extent would it be possible to classify parts-of-speech using the same technique that
was used in the cascade classifiers.

The advantage of the cascade system used so far was that it is a modular system, and in-
dividual classifiers can be retrained in the future as improved data becomes available with-
out necessarily having to modify the whole cascade. The modularity aspect was extended
to the design of the architecture — fig. 5.1 shows an abstract view of the architecture. A
word was first segmented and its basic features were extracted. It was first classified for the
part-of-speech category using only the basic features. Irrespective of the word’s resulting
category, a word was passed through the three different cascades, each of which provided
the predicted labels according to the different classifiers. A final augmented category clas-
sifier took all this additional information, and reclassified the word into its part-of-speech
category. The idea behind this final category classifier was that the output of the cascades
might help reinforce the category classification.

There are, of course, some drawbacks to the proposed system, especially in terms of
the category classification. Part-of-speech taggers generally use context to label a word,
calculating, for example, the probability that a determiner is generally followed by a noun.
Here the classification was based solely on the word’s basic features — its affixes and stem,
CV-pattern and geminate features. These are not the usual type of features that a part-of-
speech tagger might take into consideration. For instance, in English, words ending in -ly
are generally classified as adverbs. However, using such features alone is not the norm,
and generally the syntactic structure that words appear in provides more insight into their
category classification. In developing a category classifier that was based on the basic set
of features alone, it was possible to compare its performance to a regular part-of-speech
tagger which is available for Maltese. The category classifier which used only the basic
features is referred to as the Basic Category classifier. A second category classifier was
also developed, augmented with the information outputted by the different cascades. This
meant that apart from the basic features, it also used the proposed morphological labels to
aid its category classification. This is referred to as the Augmented Category classifier. The
Augmented classifier was of particular interest to determine whether the morphological

labels could be used to reaffirm a category classification of a word and, if necessary, to
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5.2 Category classification

modify the hypothesis about the category of a word. In a possible final system, it would be
possible for both of these category classifiers at either end of the architecture to be replaced
by a part-of-speech tagger that takes context into consideration. However, the experiments
were limited to the same type of classifiers used so far on the cascades and which were
reliant on the identification of the basic features of a word. The output of a part-of-speech
tagger was then used to evaluate the category classifiers within the proposed system.

The proposed approach of combining part-of-speech tagging with the process of mor-
phological analysis is similar in concept to that of Habash and Rambow (2005); Habash
et al. (2013); Lembersky et al. (2014) described in §2.4 (page 43), where combining the two
tasks provided better results in Semitic languages. The most challenging issue in part-
of-speech tagging in Semitic languages is the large number of tags that is necessary for
disambiguation. The Maltese tagger currently has 43 tags®. It could be that a future devel-
opment of the Maltese part-of-speech tagger would result in a richer tagset; however it is
unlikely to have the same complexity as present in, for instance, Arabic. Although there
are these differences between Maltese and other Semitic languages, it is still worth fol-
lowing similar approaches to see whether morphological information could help category
classification in Maltese. The proposed architecture is one way whereby morphological
information could be integrated with part-of-speech tagging.

A final aim of setting up the proposed architecture, which included the category and
cascade classifiers, was to evaluate the system as a whole on real data from the MLRs cor-
pus, reflecting a possible ‘working-scenario’ for the proposed morphological classification
system. For this purpose, a selection of the MLRs corpus which was manually tagged during
the training of the part-of-speech tagger was used as the gold standard data for evaluating
the system as a whole. This selection consisted of 10,410 word types with the part-of-
speech tag being limited to nouns®, verbs and adjectives. Other tags/words were ignored.
This specific selection of the manually tagged corpus is referred to as the gold standard

corpus.

5.2.1 Experiment setup

The category classification of a word could be approached in two possible ways: either
building a ‘singular’ classifier which outputs the category (noun, adjective, verb), or build-

ing three separate ‘one-vs-all’ classifiers for each category which would output true or

“See http://mlrs.research.um.edu.mt/index.php?page=34 for a list of tags. Login credentials
might be required but registering for an account to access the MLRS corpus is free.
3Proper nouns were excluded since our training data never included such nouns
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false (noun vs. all, adjective vs. all, verb vs. all). The two different approaches could possi-
bly yield different results, especially for the adjective category where the data was smaller
in quantity. Whilst the initial basic category classifier could take both types of classifiers,
the augmented classifier could not be directly modelled as a singular classifier due to dif-
ferent information configurations resulting from the different cascades. For example, the
information related to polarity is found only in the verb cascade. The only way to have a
singular augmented classifier would be to modify the output of the three cascades in such
a way as to have it presented in a streamlined fashion. However this approach might un-
necessarily complicate the data representation and make the interpretation of results less
transparent. It might also result in excessive null-valued features for several classifiers.
Therefore the augmented classifier at the end of the architecture was actually composed
of three classifiers, each represented a one-vs-all approach for the respective category.
The proposed architecture introduces a probabilistic aspect in selecting a prediction.
This made the Naive Bayes machine learning technique more suitable for this type of setup.
Naive Bayes provides a probability associated with each label produced and this facilitates
the choice between competing sub-instances. It also allows the system to choose the clas-
sification with the highest probability from the output of the three one-vs-all classifiers in
the augmented category classification. Since the comparison of the different algorithms
described in section 4.3.5 (page 130) did not find substantial differences in results between
Decision Trees and Naive Bayes, the shift to using Naive Bayes for this analysis was not

expected to have severe consequences.

5.2.2 Dataset preparation

The primary data sources used in training and testing the cascades so far were Gabra for
the verb cascade and the dictionary for the noun and adjective cascades. However, the
dictionary also contained a number of verbs that could also be included in the training
data for the category classifiers. This inclusion could provide better category classification
results since the verbs in Gabra focused primarily on inflective wordforms and words of
Semitic origin. On the other hand, the dictionary also covers Romance or Anglo-Saxon
origin verbs, as well as derivationally related words, thus providing better coverage to deal
with the MLRs corpus. Using both sources of verbs, and training the category classifiers
on all of the data, however, could result in an unbalanced dataset that would not reflect a
realistic ratio of words/part-of-speech found in a corpus. Although the only comparison
possible is on word types, the analysis provided in table 5.1 shows the distribution of verbs,

nouns and adjectives from the sources Gabra, the dictionary and the two added together
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compared to the distribution found in the gold standard corpus from the MLRs corpus. A
proper analysis of the categories in the corpus would ideally be done on the basis of the
word tokens rather than word types. If both the dictionary and Gabra were used together,

it could result in an unbalanced dataset made up predominantly of verbs.

Table 5.1 An analysis of the distribution between verbs, nouns and adjectives in different
data sources, compared to the gold standard taken from the MLRs corpus

Gabra | Dictionary | Gabra+Dict | Gold Std.
Verbs (100%) 171,278 | (15%) 8,465 | (78%) 179,743 | (50%) 5,237
Nouns — | (67%) 39,678 | (17%) 39,678 | (40%) 4,136
Adjectives — | (18%) 10,731 | (5%) 10,731 | (10%) 1,037
Total 171,278 58,874 230,152 10,410

In order to consider the different data distributions and the potential impact on the
category classifiers, several tests were carried out using the training data but with different
proportions of verbs and a different combination of sources (either Gabra verbs only, or
Gabra and dictionary verbs combined). The results of these experiments indicate that the
category classifiers produce the best results when trained on all the available data, i.e., all
the verbs in both Gabra and the dictionary, even though this results in over 78% of the
data being verbs. The results below refer to this data configuration where all Gabra and
dictionary data is combined as a single dataset, unless otherwise specified. This dataset
consisted of 230,152 instances, 204,288 of which form the training set and 25,864 were

held-out as an unseen test set.

5.2.3 Category classification results

The basic category classification was carried out using only the basic features of a word.
The different classifiers were trained using the training dataset, then tested on an unseen
dataset, with the results shown below in fig. 5.2. The individual classifiers (one-vs-all) for
each category performed better overall than a singular classifier which outputs a category
classification. The drop in performance was mainly due to the adjective category, pre-
sumably because this category had the smallest number of instances in the dataset. The
classifier type one-vs-all for the adjectives performed reasonably well, similar to the other
two classifiers. Overall, the approach of category classification using one-vs-all classifiers

provided better results. In this scenario, an instance is classified by the three different
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one-vs-all classifiers, and the classification with the highest probability is chosen as the

predicted class.
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Fig. 5.2 Results for the basic category classification, showing the three individual ‘one-vs-
all’ classifiers in comparison to a singular category classifier, tested on unseen data

The augmented category classification was set up as three individual one-vs-all classi-
fiers, each at the end of the relative cascade, each using the basic features and the output
of the relative cascade as input to predict a true or false classification. Each one-vs-all clas-
sifier was placed as final classifier for its respective cascade; for example, the verb-vs-all
classifier placed at the end of the verb cascade and outputted a binary classification. When
a word was processed by the whole architecture, it was classified by all cascades, and the
final classification and cascade output was determined according to the highest probabil-
ity from all the augmented one-vs-all classifiers. Figure 5.3 compares the accuracy of the
one-vs-all basic classifiers to the augmented ones. An improvement is registered for the

verb and adjective classifications, and practically no difference for the noun classification.
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Fig. 5.3 Results of the three individual one-vs-all classifiers as Basic classifiers and as Aug-
mented Classifiers on unseen data
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The improvement of the augmented category classifiers over the basic category classi-
fiers shows that, at least for the verb and adjective categories, the category classification
is reinforced through a word’s morphological labelling. It is possible that as the nouns
cascade would be improved through more data and better representation of the category’s
morphological features, so would the category classification improve. Considering that
the category classification is not using context and uses the basic features extracted from a
word as its ground data, the overall results are positive. Of course, the analysis must take
into consideration that the classifiers are being used in an ‘artificial lab’ setting — the test-
ing was carried out on data that, although unseen, was similar to the training data since it

came from the same source.

5.3 Gold standard evaluation

The classification system so far was evaluated on a component-by-component basis. Each
evaluation focused solely on the classification of a particular section of the system, and
using similar test data that, although unseen, was extracted from the same source as the
training data. Of course, this was done in addition to the evaluation inherent in the cross-
validation setup used in the initial experiments in each case. However, this had several
implications such as, for instance, the set of basic features extracted from the words shared
similar features between the training and the unseen datasets.

Evaluating the system as a whole on realistic data is an important aspect of a final eval-
uation, as it provides vital insights on the applicability of the current system of classifiers
applied to data such as the MLRs corpus. Thus, the remaining part of this chapter focuses on
the evaluation of the classification system using a small selection of words from the MLRs
corpus that was manually annotated during the development and training of the part-of-
speech tagger for Maltese. This subset of the corpus is referred to as the GoLD STANDARD
corpus.

The first part of the gold standard evaluation looked again at the category classifiers.
However, this time the evaluation used the gold standard corpus. This was processed by
the full classification system and the output of the basic and augmented classifiers were
compared to the part-of-speech tag in the corpus. The second part of the gold standard
evaluation took 200 random words from this selection, and these were annotated with their
morphological properties by two linguists. These annotations were then used to compare

the output of the classification system.
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One of the main challenges in carrying out an evaluation on data such as that found in
the MLRs corpus is that of handling ‘noisy’ data. Most of the data sources used contained a
large number of Maltese words with Semitic or Romance origin. Gabra was a large database
of words, a significant subset of which, especially among the verbs, was automatically
generated via rule-based methods, whilst the dictionary contains a diverse selection of
both Semitic and Romance origin words. However, naturally-occurring Maltese text is
likely to be very noisy. For example, the use of English spelling interspersed with Maltese
has become more common, as attested by the following examples taken randomly from

the MLRS corpus.

(5.1) Dan it-tip ta’ divertiment kien iservi ta’ relax ghall-familja
This the-type of entertainment was serve of relax for-the-family

This type of entertainment served as relaxation for the family.

(5.2) Intervisti  live ma’ kittieba ewlenin fil-Kavallier ta’ San Gakbu.
Interviews live with authors primary in-the-Cavaliier of St. James.

Live interviews with prominent authors at St. James Cavallier.

(5.3) It-tkabbir  fis-settur tax-shipping  internazzjonali wassal ghal
The growth in-the-sector of-the-shipping international brought for
domanda akbar.
demand greater.

Growth in the international shipping sector brought greater demand.

Although English words are becoming more common in everyday use in Maltese, the
presence of such words in our training datasets is minimal, if at all. Therefore the classifiers
have not been exposed to such data, and it is difficult to predict what the performance will
be on such words. This evaluation aims at providing a better insight into what would be
required in the future to ensure that the morphological classifiers are sufficiently broad to
deal with the hybridity of the Maltese language and its evolution.

Finally, the evaluation must also look at the classification system as a whole in terms
of its technical architecture and the choices made. The abstract architecture described
in fig. 5.1 (page 149) provides a point of departure. This was slightly modified to handle
the pre-processing of words to extract their basic features. In the process of evaluating
the morphological classification system as a whole, the system was employed in a more
realistic scenario of processing words from a corpus that were unknown and all possible

features must be extracted.
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5.3.1 Extracting basic features

The extraction of basic features was an important and integral part of the whole classifi-
cation system and the classifiers were dependent upon the identification of basic features.
The system was limited to the list of features specified during the training phase of the
classifiers — affixes and composite suffixes, CV-patterns of the word as a whole, and the
stem, and whether there is gemination in the word or not.

One of the aspects that required consideration was segmentation. This task was partic-
ularly important to the system as a whole since the extraction of the basic features relied
primarily on the segmentation of a word. Two approaches have been used so far. The first
one was used in the clustering experiments and applied transitional probabilities to iden-
tify and rank possible affixes. The top ranked affixes were then used to segment a word.
The second approach used the radical consonants within the Gabra database to identify
the stem of the word and the resulting affixes. The extraction of dictionary entries also
produced a list of affixes since these were marked through vertical bars which separated
the stem from the affix. Due to the nature of the different experiments, the affixes pro-
duced through Gabra and the dictionary project were more accurate and offered better
coverage than the affixes discovered through transitional probabilities. Another aspect to
consider was that all the classifiers were trained using the list of affixes in Gabra and in
the dictionary.

The segmentation process adopted in the final system was similar to that used in the
clustering technique (§3.2.4, page 62), which segmented words according to the matching
of the affixes. This meant that a word could have more than one possible segmentation.
Similar to the clustering approach, the morphological classification system used all sug-
gested segmentations, together with the whole word unsegmented. The representation of
a single word resulted in multiple sub-instances of the same word with different segmen-
tations. The sub-instances were seen as ‘competing’ in the classification process, and the
classification with the highest probability would be the one selected as the proposed clas-
sification, and indirectly selecting the proposed segmentation. Each of these sub-instances
had a different set of basic features according to its identification of the stem and affixes.

The extraction of the CV-pattern for both the stem and the whole word was carried out
using the third-party word-to-phoneme transcriber tool developed by Borg et al. (2011).
The phonemes were then translated into consonant and vowel patterns. The identification
of the geminate feature in the classification experiments was based on the radical conso-
nants as a means to decide whether a word has one of its radicals duplicated. However,

the radical consonants for the words in the MLRs corpus are not marked. The segmenta-
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tion process provides multiple potential segmentations, and different segmentations could
have potentially been used to determine whether the geminate feature is present or not,
especially for the initial geminate case. However this could not be reliably determined and
was therefore left out for this evaluation. Regardless, the impact of the geminate feature

on the classification would have been rather minimal.

5.3.2 Choosing the best classification

The representation of a word resulted in a number of different sub-instances due to the use
of all possible legal segmentations. This meant that if the segmentation process proposed
three possible valid segmentations, plus the word itself unsegmented, the classification
system represented the word as four different instances. In order to predict the possible
classification of a word, all sub-instances were processed by the classification system and
each instance was passed through the whole of the cascade irrespective of its category clas-
sification. The prediction of the correct instance was then considered as a function which
would choose the best instance according to some performance-based criterion. This al-
lowed flexibility in determining and experimenting with different possible functions to
select the best prediction for a given word, and we refer to this as the prediction function.
The classification system used Naive Bayes classifiers since they provided both the pre-
dicted class and the associated probability for the respective prediction. When an instance
was processed by the classification system as a whole, it resulted in a predicted class for
each of the second-tier features and the category classifiers, as well as their associated
probability value. The prediction function used the classifiers’ probability values to de-
termine which would be the best instance to select, and indirectly it would also choose a
segmentation to represent the given word. The idea behind this approach was one which
allowed flexibility in the choice of the final classification of a word, whereby the results of
the classifiers would also be influencing the choice of the segmentation. This was an intu-
itive choice and posits that a correct segmentation would yield a better classification of the
second-tier features and would result in higher probabilities than incorrect segmentations.

In order to determine what the ideal prediction function should be, an experiment was
set up using the same datasets used for the training of the augmented category classifiers
(described in section 5.2.2 page 151) as development datasets to test different prediction
functions. The prediction functions were tested on the basis of the accuracy achieved
in the augmented category classification — this meant that a prediction was considered

correct if the final category classification matched the category of the word in the dataset.
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Three main prediction functions were tested. The first function (BAsic) simply chose
the instance with the highest probability in the augmented category classification. Al-
though this seemed to rely solely on the category classification, this classifier used all the
second tier features for the relative cascade as part of its input. Therefore the whole cas-
cade would be providing information indirectly to the final category classification and to
the resulting probability of the classification itself. The second function (sHIFT) chose the
instance with the highest increase in probability between the basic category classification
and the augmented category classification. The idea behind this function was that the in-
crease in probability demonstrates an improvement obtained in the classification through
the cascade, which might indicate that the second-tier features and the final category clas-
sifications were more likely to be correct. The last function (INFOGAIN) chose a prediction
based on the probabilities throughout the cascade, using a weighted function to consider
the importance that a second-tier feature provided to the cascade according to its infor-
mation gain ratio. This function was not as intuitive as the first two functions; however it
considered the results of all the cascade classifiers directly.

The best prediction function was the Basic function which picked the instance that had
the highest augmented category probability. This function achieved an accuracy of 55%
overall. The other two functions performed very poorly in comparison, with the sHIFT
function having an accuracy of 28%, and the INFOGAIN function an accuracy of 20%. The
gap in performance between the Basic and the other two functions might indicate that if
the full cascade has to be considered in choosing a prediction, a more complex and com-
prehensive function would be required to appropriately consider the intricacies that each
classifier might be providing to the final prediction of an instance. With the Basic pre-
diction function in place, the classification system processed a word representing it as
different possible instances. The system then used the prediction function to choose the
best possible from the sub-instances according to some set parameters. The advantage of
such a modular set up is that in future it could be possible to train a prediction function

through a more representative development set.

5.3.3 Data preparation for manual annotation

The selection of 200 random words from the gold standard corpus that was annotated by
linguists was limited to adjectives, nouns and verbs. Although 200 words was not a large
number of words, it was sufficient to provide initial insight into the required improvements
to the classification system and into how the system would fare when applied to the data in

the MLRs corpus. This could then act as the basis of future work to transform this research
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into a more practical and final morphological classification system that could be integrated
into existing tools for Maltese.

The extracted words were placed in a spreadsheet with instructions on how to carry
out the task. The annotators were asked to (i) segment a word into prefixes, stem and suf-
fixes (composite suffixes could also be split further but this task was optional); (ii) give the
part-of-speech category of a word; (iii) fill in the morphological information of a word ac-
cording to the chosen category. Figure 5.4 shows what the annotators were presented with,
showing a list of words on the left hand side, with place where to list the prefixes, stem and
suffixes, and the values for the morphological properties which had their input restricted
according to their respective feature values. The figure shows a drop-down menu display-
ing the accepted input for the Indirect Object feature. Since the drop-down menu enforces
selection once clicked, the option ‘blank’ was provided in case the annotator clicked on it
by mistake. The “?’ value was provided for when the annotator wanted to use a tag that
was not part of the given options, or if the tag was not known. The value ‘null’ allowed
annotators to state that this feature was not relevant for a particular word. These three
options were present in all features, with the remaining values specified according to the

feature in question.
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Fig. 5.4 The spreadsheet given to annotators showing the selection for the Indirect Object
feature.

The instructions also specified that if a word was ambiguous and had more than one

possible tag, this should be indicated by duplicating the row for that particular word and
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the different morphological information would then be entered on the second row (or more
rows if and as required).

The manual annotation was carried out by two linguists knowledgeable in tasks such
as annotation and correction of Maltese texts. Both annotators filled in the spreadsheet
for the whole set of words, providing the possibility to compare responses and agreement.
The analysis of the results, discussed further below, compared the tags provided by the
annotators to those provided by the classification system for the different morphological

properties.

5.4 Analysis of results

This section describes the results of the evaluation carried out using the gold standard cor-
pus (a selection of the MLRs corpus that was manually annotated with part-of-speech tags
during the development and training phase of the Maltese part-of-speech tagger). These
part-of-speech tags will be referred to as the gold standard tags (abbreviated to GS Tags
where necessary). The first part of the results focuses solely on the category classifica-
tion and compares the output of the classification system with the tags found in the gold
standard corpus (§5.4.1). The second part of the results focuses on the evaluation carried
out for the cascade classifiers (§5.4.2). The two are analysed independently for a number
of reasons. First, the primary interest of this research was in morphological analysis, and
thus the actual results of the cascades. For this evaluation it was necessary to rely on hu-
man experts to provide tagged data since this was not available. Second, the introduction
of category classifiers into the architecture served as a means to exemplify the possible
architecture, as a whole, and as an exploration to see how much context mattered in part-

of-speech tagging.

5.4.1 Results for the category classifiers

The analysis of the category classifiers looked at their performance in classifying the gold
standard corpus. This evaluation took the 10,410 word types and their categories as anno-
tated in the corpus, and processed them through the full architecture setup. First, words
were segmented, and those words with multiple segmentations were represented as multi-
ple sub-instances. Each sub-instance was passed through the full architecture, irrespective
of its known part-of-speech label. This evaluation was limited to the basic and augmented

category classification results since the only tags available for these words were the part-
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of-speech tags. Table 5.2 shows the average precision, recall, F-measure and accuracy ob-
tained by the basic and augmented category classifiers. Overall, the average performance
of the category classification deteriorates when augmented with morphological informa-
tion. However, fig. 5.5 shows the F-Measure for each category separately, where it is pos-
sible to see that the verb category classifier improved when morphological information is

included as part of the features.

Table 5.2 Metrics for the category classifiers on the gold standard data

Classifiers: | Basic | Augmented
Precision 0.6398 0.5294
Recall 0.5866 0.5540
F-Measure | 0.5706 0.5313
Accuracy | 66.91% 64.07%

The verb category has the largest dataset which probably explains why only this cate-
gory classifier improved through the cascade classification. On the other hand, the other
category classifiers were all negatively impacted, with the basic classifiers performing bet-
ter than the augmented classifiers. The adjective classifier also achieved a rather low F-
Measure. The performance of both the adjective and noun classifiers can be attributed to
the lack of data, especially by the lack of certain features in the training data, which might
have been present in the gold standard. In comparison, the verb dataset included a large
number of inflections and was further supplemented through words extracted from the

dictionary, making the training data more diverse and with broad coverage.
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Fig. 5.5 F-Measure for the basic and augmented classifiers on the gold standard data

From the perspective of category classification, it was clear that the proposed archi-

tecture was a feasible one. Although the current part-of-speech tagger obtains far better
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accuracy, with enough training data this type of architecture reinforced the classification
of the part-of-speech classification, in particular the verb category. The modularity of the
system would allow the classifiers to be replaced by a part-of-speech tagger, thus intro-
ducing context into the features used to classify words. Improvements to the dictionary
extractor could also yield more data for the noun and adjective categories, and the classi-

fiers retrained with new data so as to improve the accuracy for these two categories.

5.4.2 Results for the three cascades

The analysis for the results of the three cascades focused on the manual annotation of 200
randomly selected words from the gold standard corpus. These words were annotated by
two experts, who provided the segmentation, category classification, and morphological
information according to the category classification. The words also had the gold stan-
dard part-of-speech tag provided through the manual annotation of the corpus, however,
this was not provided to the annotators. Since the manual part-of-speech annotation was
done in context, it was considered as the correct tag. The two experts had only a wordlist
at their disposal, without any context, making the annotation task possibly more chal-
lenging or ambiguous. The experts were asked to provide multiple classifications in case
of ambiguity. However, both experts provided a single annotation for each word. There
was some difference when comparing the part-of-speech tags with those provided by the
two experts. Table 5.3 shows the number of instances per category according to the gold
standard part-of-speech tag, and the tags given by the two experts and the classification
system. Table 5.4 then shows the Precision, Recall, F-Measure and Accuracy obtained by
the classification system, where the results are compared to the labels by expert 1, expert

2, their average, and the gold standard part-of-speech tag.

Table 5.3 Comparison of the category classification: frequency of category tags as per the
GS tag, the tags by the two experts, and the augmented classification given by the system

Category GS Tag | Expl | Exp2 | System
VERBS 94 83 86 146
NOUNS 78 81 78 49
AD]J 28 33 33 5
Not Known - 3 3 -

The results of the system on the subset of 200 words were also compared to the original

results described above in table 5.2. The overall accuracy for the augmented category clas-
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Table 5.4 Performance of the augmented category classifier versus the tags by the two
experts and the GS tag

Expert 1 | Expert 2 | Average | GS tag
Precision 0.5102 0.4988 0.5045 | 0.5411
Recall 0.5200 0.5150 0.5175 | 0.5500
F-Measure 0.4618 0.4575 0.4597 | 0.5045
Accuracy 65.75% 63.40% 64.57% | 65.25%

sification remained the same at around 65%. Although the main interest in this evaluation
was the classification of the morphological features, analysing the category classification
results demonstrated that the annotation task might still be prone to errors. The following
analyses looked at the individual categories and compared the results of the second-tier
classification to the tags provided by the experts. The data was divided into categories ac-
cording to the gold standard tags, especially since there were some discrepancies between
the category classification by the experts. The data was collated into a single spreadsheet
and manually analysed to extract the Precision, Recall, F-Measure and Accuracy for the
different cascades and classifiers. Since F-Measure and Accuracy are sometimes plotted
together in the same graphs, both are presented as decimals ranging from 0.0 to 1.0 so as

to enable better visual comparison of the two metrics.

5.4.2.1 The verb cascade

The verb cascade consisted of nine classifiers for the second-tier features that contain mor-
phological information. From the set of 200 randomly selected words, 94 were verbs. The
following analysis looked at the labels predicted by the classification system for these 94
words and compared them to the labels provided by the two experts. The analysis here
ignored what category the classification system predicted for these instances, and simply
focused on the correctness of the cascade of second-tier feature classifiers. The rationale
behind this approach in analysing the results is that it would be possible for the system to
obtain the part-of-speech category from the tagger and as a result pass it through the cor-
rect cascade immediately. Therefore the analysis looks at all the 94 instances, and compares
the output of the verb cascade for the sub-instance that obtained the highest augmented
category probability. From the 94 verbs, the classification system predicted 79 of them to
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be verbs. The system still provided the output of the verb cascade on the remaining 15
instances. Thus the labels for the second-tier features were analysed as though the part-
of-speech category was known in advance and a word was immediately passed through
the correct cascade.

In analysing the results, a discrepancy in the data was noted. Specifically, the Gender
classifier, as originally trained, included the values “invariable” and “neuter”. However,
these values turned out to be extremely rare in the training data. By contrast, the an-
notators did use these values occasionally in their annotation exercise, giving rise to the
possibility that the classifier’s performance might be affected by a bias introduced during
training. In order to provide a more balanced analysis, the results of this classifier are pre-
sented twice — once with the values of invariable and neuter taken into consideration, and
an alternative analysis considering the invariable and neuter tag as equivalent to blank
tags. This meant that if an expert classified an instance as neuter, and the system classi-
fied it as blank, in the alternative analysis this was considered as correct. However, if an
expert classified an instance as neuter, and the system classified it as masculine, then this
was considered incorrect in the alternative analysis. The alternative analysis is marked
as Gender-Alt and simply represents the same classifier as Gender, but providing a fairer
analysis of results according to the data that was present during the training of the classi-
fiers.

The average Precision, Recall, F-Measure and Accuracy for the verb cascade is shown
in fig. 5.6. This was the average obtained from analysing the classifications against both
experts. Figures 5.7 and 5.8 show the results for expert 1 and 2 respectively. Looking in
detail into these results, overall Precision tends to be slightly higher than Recall, especially
for the classifications compared to those of Expert 2. This indicates that when instances are
classified as a particular class, the classification tends to be correct, resulting in a higher
quality of the classification. However, there are several ‘misses’ in the classifications, so not
all instances of a particular class are being captured accordingly. The higher Precision is
also reflected by a higher level of Accuracy, which looks only at the percentage of correctly
classified instances.

The figures also show the difference in the analysis of the Gender classifier taking neu-
tral and invariable into consideration, and the alternative analysis which considered these
two values as blank. As predicted, Gender-Alt provides a better performance, more in line
with the remainder of the cascade. The first three features in the cascade — Polarity, Indi-
rect Object and Direct Object — perform best for all the metrics considered. It was always

evident, even when carrying out the initial experiments to determine the sequence of the
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Fig. 5.6 The average Precision, Recall, F-Measure and Accuracy of the second-tier classifiers
for the verb cascade evaluated according to the labels provided by the two experts.

cascade, that these three second-tier features were easier to classify and were not reliant
on other second-tier features. The drop in performance for the T.A.M. classifier (tense,
aspect, mood) can be expected since this was also observed in previous analysis, especially
because of the problems with the representation of the imperative in the training data.
Similarly, the classifiers for Person, Verbtype and Form did not have a very high perfor-
mance when they were tested, so the level in performance on the gold standard data is very
adequate when taking into consideration the type of data that the classification system is

being tested with.
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Fig. 5.7 The average Precision, Recall, F-Measure and Accuracy of the second-tier classifiers
for the verb cascade evaluated according to the labels provided by Expert 1.

The results of the classification cascade on the gold standard data were also compared

to the previous accuracy analysis carried out on unseen data for the verb cascade (§4.3.3,
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Fig. 5.8 The Precision, Recall, F-Measure and Accuracy of the second-tier classifiers for the
verb cascade evaluated according to the labels provided by Expert 2.

page 121). Figure 5.9 shows the average accuracy the system obtained on the gold standard
data versus the previous accuracy obtained when testing the classifiers on held out data.
This analysis shows the impact on the performance of the classifiers from different data.
The unseen dataset, although different from the training data, was still of the same ‘shape’
— the segmentation of words were known, the distribution of instances in the different
classes was more or less similar to that found in the training data — such aspects aid the
classifiers to achieve better results. The higher previous accuracy indicates that it could
be possible to achieve better results in most classifiers. On the one hand, it could indicate
that the training data for the classifiers did not cover the necessary breadth for the verbs
found in the MLRs corpus. This could be particularly true since the majority of verbs in the
training set were from Gabra, which had a very high percentage of verbs that followed a
root-and-pattern morphology. Whilst the verbs found in the MLRs corpus might be much
more diverse and mixed, representing the different facets of the hybrid morphology system
in Maltese. On the other hand, it could also indicate that the segmentation and the process
to select and predict a sub-instance need to be improved further for the classifiers to obtain

better results.

5.4.2.2 The noun cascade

The noun cascade consisted of three classifiers for the second-tier features, and from the
set of 200 words, 78 were categorised as nouns. The analysis below looked at the labels
predicted by the classification system for these 78 words, and compared them to the labels

provided by the two experts, irrespective of the category proposed by the classification
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Fig. 5.9 The average Accuracy of the second-tier classifiers for the verb cascade compared
to the previous accuracy of the classifiers on unseen data from the regular dataset.

system. Figure 5.10 shows the average Precision, Recall, F-Measure and Accuracy for the

predicted classifications when compared to the labels provided by the experts.
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Fig. 5.10 The average Precision, Recall, F-Measure and Accuracy of the second-tier classi-
fiers for the noun cascade evaluated according to the labels provided by the two experts.

Figure 5.10 shows the average Precision, Recall, F-Measure and Accuracy for the noun
cascade, comparing the predicted labels by the classification system to the labels provided
by the two experts. The performance of the number classifier was quite high. However, the
performance of the verbal classifier for the noun cascade was particularly low. This was
because the classification misses most of the verbal predictions. The difficulty in classifying
this feature becomes more apparent when analysing the level of disagreement between
the two experts. From the 78 nouns, 15 were marked as verbal by both experts and 43

were marked as not verbal, with a remaining 20 where the experts disagree in terms of
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classification. This constitutes 25% of the words where the experts did not agree whether
a word should be classified as verbal or not.

Figure 5.11 compares the average accuracy of classifiers on the gold standard data to the
previous results obtained by the cascade on the unseen data. The only discrepancy between
the two evaluations was for the Verbal classifier. The Number and Gender classifiers both
achieve very similar accuracy on the MLRs data and the unseen data. This was a positive
result, indicating that the Number and Gender classifiers were trained with enough data

to handle a more generic source like the MLRs corpus.
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Fig. 5.11 The average Accuracy of the second-tier classifiers for the noun cascade compared
to the previous accuracy of the classifiers on unseen dataset.

5.4.2.3 The adjective cascade

The adjective cascade analysis was based on a small number of words and from the 200
words, 28 were adjectives. Similarly to the previous cascades, this analysis compared the
predictions of the classification system for these 28 words to the labels provided by the
two experts. Figure 5.12 shows the average Precision, Recall, F-Measure and Accuracy for
the predicted classifications when compared to the labels of the two experts.

The high accuracy of the Other classifier (which mainly represents the feature Agent)
was primarily due to a large number of instances being marked as blank by both the Experts
and the system. In fact, the system proposed only two instances predicted as agent and
both experts did not provide any labels to any of the words, thus resulting in such a high
accuracy. The Number and Gender classifiers perform adequately given the data sparsity
for this category. Figure 5.13 compares the average accuracy of the cascade applied with
the gold standard data to the accuracy of the cascade classifiers applied to unseen data
that was used to evaluate the classifiers. The resulting observations for the Number and

Gender classifiers were similar to previous analysis above.
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Fig. 5.12 The average Precision, Recall, F-Measure and Accuracy of the second-tier classi-
fiers for the adjective cascade evaluated according to the labels provided by the two experts.
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Fig. 5.13 The average Accuracy of the second-tier classifiers for the adjective cascade com-
pared to the previous accuracy of the classifiers on unseen dataset.

5.5 Conclusion

This chapter shifted the focus from the individual cascade classifiers described in chapter 4
to a broader view by proposing how these cascades could be integrated into an architecture
as a full morphological classification system. As a result, the first step was to introduce
category classification to determine which of the cascades should be used to classify a
word. However, the design of the architecture and the experiments went a step further,
and questioned whether the output from the cascades could also be used to reinforce the
classification of a word’s category. This resulted in a system where category classification
was carried out both in the beginning, before the cascades, as well as at the very end, after

all the cascades were executed. The results were promising, showing that for the category
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which had most representative data, the verb category, the morphological information did
improve the accuracy in classifying words of this category.

Another important factor described in this chapter was the evaluation of the system on
the basis of gold standard data, both where the category classification is concerned (avail-
able from the manual POS-tagged MLRs data) and where the segmentation and labelling is
concerned (done for the purposes of this study). The purpose behind this evaluation was to
get an indication of what the performance of the different classifiers would be if the system
were to be applied to a corpus such as the MmLRs. The evaluation used a portion of the cor-
pus which was manually tagged with part-of-speech during the development and training
of the Maltese part-of-speech tagger. These tags were considered to be the gold standard
category classifications, and these were compared to the category classification outputted
by the system. The system achieved an overall accuracy of 55%; however this was at 75%
for the verbs category. The results clearly indicated that more data would required in the
noun and adjective categories to improve accuracy further.

A final evaluation took a subset of 200 randomly selected words to evaluate the output
of the actual cascades. Two experts annotated these words with morphological informa-
tion and provided a segmentation and category analysis. This was the first set of words
to be manually annotated with morphological information in Maltese. Although the set of
words is limited in size, it was sufficient to highlight the various aspects and pitfalls of the
system. First, the segmentation technique and the prediction function must be improved.
The segmentation currently provides a number of possible segmentations for a word, re-
sulting in a word being represented by a number of different instances. The prediction
function then selects the best performing instance. Although both offer adequate solu-
tions with the current data available, these techniques need to be refined to increase the
accuracy of the system as a whole. Second, the data sparseness in the adjectives category
and, to a lesser extent, the nouns and verbs category impacts the accuracy levels and more
data is required to improve the classification results.

Notwithstanding the above, the general results are positive, since it was expected that
the classification system would not have the same level of accuracy on the MLRrs data as
when it was tested on unseen data from the same source as the training data. The MLRsS
corpus contains a different coverage of the Maltese language than the data used for the
training of the classifiers. However, the results demonstrate the viability of the approach
taken and show what is required to obtain further improvements to bring the morpholog-

ical classification system to a higher degree of accuracy.
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Chapter 6

Conclusion

6.1 Introduction

This thesis presented the first comprehensive and systematic treatment of Maltese mor-
phology using machine learning techniques. Previous approaches were either rule-based,
or restricted in their scope, focusing only on one sub-system of Maltese morphology. The
research looked at three different aspects of computational morphology — segmentation,
relations and labelling. It also sought to look into whether the techniques could be equally
applied to the different morphological processes in Maltese. As noted at the outset, in chap-
ter 1, one of the challenges of dealing with Maltese morphology in a unified manner is the
hybrid nature of the morphological system, which has elements of both templatic systems
typical of Semitic languages, and stem-based systems typical of Indo-European ones. Al-
though the focus of this work was to deal with the hybridity aspect, the techniques used
were language-independent. In concluding this work, we will first give a summary of the

main contributions and techniques used, before turning to the limitations and future work.

6.2 Summary and main conclusions

The segmentation techniques used both a rule-based and an unsupervised approach. The
unsupervised approach, which was exploited in the clustering and segmentation of mor-
phologically related words, implemented a technique which used transitional probabilities,
based on Dasgupta and Ng (2007); Keshava and Pitler (2006), and produced a list of ranked
affixes. The affixes were then used to propose various possible word segmentations. The
rule-based approaches were based on heuristics pertaining to the particular data that was

segmented. The lexicon Gabra was segmented using the radical consonants found within

171



6.2 Summary and main conclusions

its database, whilst the words extracted from the dictionary were segmented according to
the positioning of the vertical bar in a head word. Although these techniques gave bet-
ter and more definite results in segmenting a word, they were restricted to the specific
wordlists in the respective datasets. However, the final approach to segmentation in the
proposed classification system combined different aspects of the two systems. The process
proposed potential word segmentations using the same strategy as the unsupervised ap-
proach, but utilised the list of affixes obtained from Gabra and the dictionary, since these
were more likely to be accurate. One of the main difficulties with the segmentation task
was that since there is no lemmatizer or stemmer for Maltese, the resulting segmenta-
tions could not be evaluated directly. This meant that the choices made were based on
the general observations over the resulting data. Having an unsupervised approach to
segmentation which proposed multiple possible segmentations to the following tasks was
ideal in this scenario, and the word segments were indirectly evaluated through the results
of the clustering and labelling tasks.

The clustering task also used an unsupervised approach, with the aim of grouping
morphologically related words together. The segmentations obtained through the unsu-
pervised approach were used, and initial clusters built on the basis of common stems. To
improve the initial clusters, semantic and orthographic similarity were introduced through
a combined metric that measured the proximity of words in a cluster, an idea similar to
that of Baroni et al. (2002); Schone and Jurafsky (2000, 2001). This resulted in an 80% re-
duction in the number of clusters. A random sample of clusters were evaluated through
crowd-sourcing by native Maltese speakers as the non-expert group, and an additional se-
lection of clusters were evaluated by three linguists as the expert group. The non-expert
evaluation sought to gather a general sense of the quality of the clusters and how suc-
cessful the technique was in putting together only related words. The expert evaluation
also looked at this aspect, but went a step further to analyse how the techniques used
fared on the concatenative versus the non-concatenative aspects of Maltese morphology.
The results demonstrated the difficulty of finding a one-size-fits-all solution. The overall
quality of the evaluated cluster was quite adequate, and more than half of the clusters had
no words removed and a very small percentage of clusters had several words removed.
The quality ratings also reflected this perception, with over 70% of the clusters rated good
or very good in the non-expert group. The inter-annotator agreement was rather high,
which meant that there was a general agreement on which words should be removed from
a cluster. This is an important aspect since in future the evaluated clusters could be used

for developmental purposes to improve the clustering algorithm. The comparison between
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the concatenative and non-concatenative clusters also revealed that the techniques gener-
ally fared better on the former type of morphological process, but could still be applied to
the latter with a little less success.

The labelling task took a supervised approach, and viewed morphological labelling as
a classification task. Each morphological property was seen as a machine learning feature
that could be classified according to a set of possible values. The first experiments exploited
the data from the lexicon Gabra, and was mainly focused on inflective verbs of Semitic
origin. This was later broadened to nouns and adjectives after the inclusion of the data
from the dictionary project. For each of the categories, a number of experiments were
carried out to determine the optimal sequence of the feature classifiers. Each cascade was
then evaluated using unseen data which was put aside from the same source as the training
data. One of the most positive results was that the verb cascade classified 60% of the unseen
instances correctly throughout until the Person classifier (i.e. leaving out the Verbtype and
Form classifiers from the cascade).

Once the cascades were in place, it was possible to define a full morphological classifi-
cation system, which introduced category classification as a means of determining which
cascade output should be chosen as the predicted output. For the cascades to be integrated
into the proposed system, category classifiers were developed, with a basic category clas-
sifier at the beginning of the cascades, and an augmented category classifier at the end of
each cascade. Although category classification was already available for Maltese through
the part-of-speech tagger, the purpose of these classifiers was to examine to what extent
morphological information helps to determine the category (which also sheds light on the
potential contribution of the morphological labelling task to POS tagging in context).

A final evaluation was carried out using gold standard data. The purpose of the evalu-
ation was to have an indication of how the system would perform on the data such as the
MLRs corpus. In the case of the category classifiers, the gold standard evaluation used a
portion of the MLRS corpus that was manually tagged during the development and train-
ing of the part-of-speech tagger. Two hundred words were then annotated by experts for
their morphological properties and these were used to evaluate the actual cascades. As
expected, the performance of the cascade classifiers overall was lower than their perfor-
mance on the unseen data, bar a couple of exceptions, due to the nature of the words found
in the MLRs corpus. However, such an evaluation is always important since one of the end
goals of a morphological analyser would be to process the corpus.

All the techniques used were language-independent, and therefore, could be applied to

other languages as well. However, the design of a cascade classification system is better
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suited for morphologically rich languages. The segmentation and clustering techniques
require only a corpus to obtain a frequency list, making them ideal for bootstrapping mor-
phological resources for low-resourced languages. The labelling techniques require actual
labelled data to train and test the classifiers built.

6.2.1 Principal challenges and themes

The hybridity of the Maltese language and its morphology remained an important theme
throughout the research. In segmentation, one of the main advantages of the morpho-
logical system in Maltese is that the inflectional processes are mainly produced through
concatenative affixation, even when stem variation occurs. The difficulty was more in the
identification of the actual stem when it came to the segmentation process. Since there was
no segmenter tool for Maltese against which the segmentation accuracy can be measured,
it was difficult to truly measure its success as a technique on the concatenative versus non-
concatenative words in an appropriate way. Since the unsupervised clustering task relied
heavily on the preceding segmentation task, the lower quality in the non-concatenative
clusters could have been partially due to the segmentation. However, it was difficult to
measure this concretely with the data and tools available at the time.

The classification cascades did not distinguish either between the concatenative and
non-concatenative systems in the language. However, in the case of the verb dataset, this
primarily came from the root-and-pattern based processes (non-concatenative), namely
the Gabra database. The noun and adjective cascades had a more varied data represen-
tation, since the dictionary data contained words from both morphological systems. The
performance of the classification system generally remained quite close to the model when
evaluated on the MLRs corpus. However, the analysis did not go as far as to check the per-

centage of the balance between the two processes within the data used.

6.3 Future work

The research presented in the preceding chapters opens up several avenues for future work.
The importance of the segmentation task was highlighted both through the clustering and
the labelling tasks, as a foundational and essential task whose accuracy will impact any fol-
lowing tasks. The various segmentation techniques attempted in this research were limited
to the specific task served or the nature of the data being segmented. Further development

could look at log-linear models to segment words, such as those proposed by Narasimhan
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et al. (2015); Poon et al. (2009), to find the best possible segmentation. Such a system could
now be augmented with information on the possible affixes which have been extracted
from Gabra and the dictionary data, thus using a semi-supervised approach with a mix of
rule-based (affix information clearly encoded with the system) and unsupervised (deciding
whether a potential stem is correct on the basis of a pre-trained model) approaches. This
type of approach would be ideal to arrive at a useable segmenter for Maltese, since it is
difficult to achieve a highly accurate segmenter using only unsupervised techniques. An-
other view of the segmentation task would be to attempt the techniques on the phonetic
transcription rather than the orthographic representation of words.

The clustering techniques could be fine-tuned, especially in the definition of the metric
which was used to determine how good a cluster is. The metric, based on orthographic and
semantic similarity, was defined without the use of a development set to test the metric
and the different weights used. The refinement of this metric could yield a better clustering
technique. The clustering technique could also be applied to the Gabra and the dictionary
data, where the idea of paradigms and word families are quite well defined within the data
itself. The evaluation of the clusters, in particular through the test clusters, revealed that
native Maltese speakers treat derivationally related words in a different way. As described
in §3.5.1 (page 81), participants removed certain derivationally related words from the test
clusters, but not others. This seems to indicate that there are different conceptual con-
nections in the mental lexicon for derivationally related words. Through Gabra and the
dictionary data, it would be possible to put together clusters that could explore this fur-
ther, and analyse if there are particular derivational morphological processes that draw
the conceptual line between the original word and the derived word, thus no longer be-
ing considered related at all. Such a study would take a psycholinguistic perspective to
Maltese morphology.

Similar to the development of the part-of-speech tagger, a final morphological analyser
could be implemented in a more incremental approach. Creating a cycle between improv-
ing the data, retraining the classifiers, evaluating and finding systematic errors where the
classifiers do not perform well, and again improving the data for these errors. In the short
term, we plan to retrain the classifiers on the data that has been manually checked and
corrected from the dictionary project. This should yield improvements in the classifiers,
especially for the noun and adjective cascades. These two cascades also require further
data to gain a broader representation of their morphological properties. Future research
could easily use the same experimental setup used in this research to determine how new

features should be classified in the cascade. Experiments in the verb cascade should anal-
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6.4 Final conclusion

yse whether introducing Romance-origin verbs and their inflections would be detrimental
to the performance of the classifiers, and if so, why? The verb data can be supplemented
by extracting the Romance verbs from the dictionary data, and extending the grammar
by Camilleri (2013) to generate all the inflective forms as was done with the root-based
system. This would increase the coverage for the verbal morphology further, allowing the
classifiers to factor in conjugations where stem variation occurs and where it does not.
Once the data is more balanced between the two morphological systems, a further ex-
periment that this work did not directly look into is whether words can be automatically
classified according to their origin or morphological process that they follow. If this were
possible, apart from the initial category classifier, a future morphological classification
system would also classify a word’s processing path — stem-and-affix or root-and-pattern.
This would be very beneficial should it turn out to be the case that the classifiers’ perfor-

mance degrades if trained on words with mixed morphology systems.

6.4 Final conclusion

This research set out to explore the morphological analysis for Maltese from a computa-
tional perspective. Since previous approaches were either rule-based, or limited to partic-
ular sub-systems of Maltese morphology, the possible directions available to this research
were quite broad. We chose to attempt solutions for the three main aspects in compu-
tational morphology: segmentation, relations and labelling. The end result is a morpho-
logical classification system for verbs, nouns and adjectives. Although it might not yet
have achieved a sufficiently high accuracy, it certainly provides the foundations for a more
complete morphological analyser, with broader coverage. Furthermore, the research also
focussed on using language-independent techniques, opening up the possibility of further
exploration on datasets from other languages. This could result in further refinement of
the techniques themselves and identifying the characteristics of different morphological
systems that determine how well certain techniques perform. The scope of the research
was not merely a technological one, to create a morphological analyser, but rather to in-
vestigate the hybridity of the morphological system in Maltese and how this impacts the
results of different techniques. The insights yielded by the techniques used here were
intended both as a case study of how computational tools can contribute to morphologi-
cal research and as an exploration into the practical consequences of harnessing machine

learning techniques towards the development of fundamental NLP tools for Maltese.
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