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Abstract

The formulation of General Relativity revolutionised the principles to understand
the mechanics of gravitation. Under this viewpoint, gravity was no longer a force
as postulated by Newton but a manifestation of curvature of the unification of
space and time, spacetime. Despite its success, General Relativity started to be
incompatible with observations as it required the introduction of dark matter and
dark energy. Furthermore, General Relativity is a classical theory and is not renor-
malisable. Modifications to General Relativity have therefore been proposed. In
this work, an alternative proposal, known as Teleparallel gravity, is investigated.
This formulation reintroduces gravity as a force by replacing curvature of space-
time through torsion. Furthermore, the theory can reproduce the field equations
of General Relativity, referred to as Teleparallel Equivalent of General Relativity,
and hence can be deemed as an alternative description of gravitation. Through-
out this work, various teleparallel gravity models are studied under different top-
ics: (i) stability of the Friedmann-Lemâıtre-Robertson-Walker geometry through
homogeneous and isotropic perturbations, (ii) reconstruction of the gravitational
Lagrangian, (iii) gravitational waves, and (iv) large scale structure. It is shown
that this formulation is capable of accounting for the accelerating universe with-
out invoking dark energy, while also being stable under homogeneous perturbations,
hosting various expansion histories, agreeing with the observed predictions of grav-
itational waves, while also being able to correctly generate the observed large scale
structure.
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Chapter 1

Introduction

The major technological advancements since the end of the 20th century paved the

way for more precise measurements about different aspects of the vast universe,

hailing the term “the era of precision cosmology”. Thanks to these advances, more

observational resources are available to probe towards a more fundamental under-

standing of the forces of nature, primarily that of gravity. The critical understanding

of how the fundamental force of gravity works has been investigated throughout the

ages, with major breakthroughs such as those by Galileo Galilei regarding free fall

and Kepler in his laws of motion of planetary bodies [1]. However, there had not

yet been a fully consistent mathematical formulation of gravity.

This was until Isaac Newton in 1686, who, in his famous publication Philosophiae

naturalis principia mathematica, had formulated the first mathematical treatment of

gravity acting as an inverse square law force, now referred to as Newtonian gravity

[2]. Newton’s theory of gravitation proved to be quite a successful theory as it

managed to derive Kepler’s laws of motion, while also leading to the discovery of

Neptune [1, 3]. However, the theory was far from perfect. Observations of the

perihelion of Mercury showed that Newton’s gravitational theory was insufficient to

correctly account for its observed precession, questioning its validity. This problem

persisted until Einstein completely revolutionised the notion of gravity [4].
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Albert Einstein reformulated gravity as simply being a manifestation of curvature

of spacetime, a unification of space and time, caused by the mass (or equivalently,

energy) of objects. Therefore, gravity was no longer a force but a realisation of

actual spacetime deformation. The success of Einstein’s theory of gravity, General

Relativity (GR), was prominent even shortly after its publication in 1915 [5], due

to its success of predicting Mercury’s perihelion precession, as well as correctly

predicting the deflection angle of light according to the gravitational field of the Sun.

Furthermore, the theory had long predicted the existence of ripples of spacetime.

These ripples are waves propagating throughout this spacetime medium caused by

gravity, adequately named gravitational waves (GWs) [6, 7]. However, due to their

extremely weak strength, it took almost a century since their postulated existence

to be first observed by the Laser Interferometer Gravitational-Wave Observatory

(LIGO) in 2015 [8].

Following seminal works by Friedmann [9] and Lemâıtre [10], and later on by Robert-

son [11–13] and Walker [14], a geometry describing the expansion of a homoge-

neous and isotropic universe referred to as the Friedmann-Lemâıtre-Robert-Walker

(FLRW) metric, the idea of an expanding non-static universe started being pro-

posed, an idea which Einstein initially refused to accept, since he instead opted for

a static universe [15]. However, the first measurements of Hubble in Ref. [16], and

much later through a compilation of measurements between the Supernova Cos-

mology Project and High-z Supernova Search Team [17], have shown not only the

existence of cosmological expansion but also of its accelerated expansion. The latter

observation proved to be a substantial problem for GR since such an acceleration

can only be generated by some fluid which constitutes negative pressure, a fluid

referred to as dark energy.

This was not the only problem. GR predicts that stars orbiting around the centre of

a galaxy (its galactic centre) have an orbital speed which decreases with distance, in

a similar way to that predicted by Newtonian gravity. However, observations carried
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out by Rubin, Thonnard and Ford [18,19] had shown that this was not the case. In

fact, the velocity turned out to approach a constant value. These velocity-distance

profiles, known as galactic rotation curves, could only be described by requiring the

galaxy mass to be much larger. However, this is not observed, leaving this missing

mass to be termed as dark matter.

Issues with GR do not stop there. GR is a classical theory and hence the the-

ory breaks down for high energies (short distances). This requires quantisation,

a property which is impossible to carry out in GR because the theory is non-

renormalisable [20,21].

Going back to the dark energy problem, this unknown fluid exhibiting negative

pressure has raised important questions regarding its possible source and nature,

which are properties that have not been yet answered. Various proposals have been

considered to describe these two properties, a few of which are discussed below.

One of the first proposals was originally considered by Einstein himself (albeit for a

different purpose), the (in)famous cosmological constant Λ (a brief historical account

is given in Refs. [22, 23]). Einstein considered the cosmological constant only to

maintain a static universe, an idea that was abandoned after Hubble’s discovery [15].

Despite this initial consideration by Einstein, this cosmological constant has instead

taken a pivotal role to not only describe the universe’s accelerated expansion (in

contrast to a static one) but also the observed anisotropies in the Cosmic Microwave

Background (CMB).

In its most basic form, the cosmological constant acts as a source of “repulsive”

gravity, a fluid having a constant negative pressure p and energy density ρ satisfying

a perfect fluid equation of state ρ = −p [24]. In absence of other sources, the

cosmological constant causes the universe to expand at an accelerating, exponential

rate.
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Despite its success, the cosmological constant still suffers from several conceptual

problems. The first major problem, known as the fine-tuning problem, is centred

around its very small value. Due to its unknown physical nature, various possible

physical mechanisms have been proposed to account for its smallness but to no avail.

Some of these different proposed mechanisms are summarised below:

1. Vacuum energy: A possible source for Λ is that it represents vacuum energy.

However, the theoretical prediction of such energy is extraordinarily larger

than the one observed by the cosmological constant, with a difference of about

10120 orders of magnitude in GeV4 units [15, 23,25–27].1

2. Anthropic Principle: Anthropic arguments have been proposed as a means

to set bounds on the cosmological constant to justify its observed small value.

This principle mainly falls under three different versions [15,23,25]:

(a) Very Weak: In the weakest version, the existence of humankind is

treated as an experimental data point. Such an argument would explain

why the half-life of protons is much larger than the lifetime of humankind.

(b) Weak: The fundamental constants appear to be as they are within spe-

cific regions in the universe with different sub-universe regions exhibiting

different fundamental constants. This is due to this region of space al-

lowing for the existence of life.

(c) Strong: The strong anthropic principle treats the fundamental constants

of nature to be what they are observed to be because otherwise, there

would be no existence of life to make such measurements in the first place.

Thus, everything revolves on the basis of the existence of humankind.

From these anthropic principles, especially from the weak version, different

mechanisms have been proposed in order to set bounds on the magnitude

of the cosmological constant. However, they have been mostly unsuccessful

1A more detailed account of vacuum energy through quantum mechanics is provided in Ref. [28].
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in that regard. For a more detailed review on these mechanisms, see Refs.

[23,25,27,29,30].

3. Nature of source: The cosmological constant may be described to originate

from two possible sources, either gravitational through modification of the

gravitational interaction, or due to some unknown fluid source (or possibly,

a combination of both) [20, 23, 24, 27, 31–34]. This also brings forth a second

fundamental question of whether the behaviour of dark energy is constant

with time, which poses the question whether the same source for dark energy

is responsible for both the late time acceleration and the early inflationary

phase.

A second problem is known as the coincidence problem, which questions why the

observed density magnitudes of matter (including dark matter) and dark energy

are roughly of the same order at present times despite their different evolutionary

mechanisms [20,27,34].

Lastly, recent local and cosmological observations have posed serious tension regard-

ing the role of the cosmological constant, commonly referred to as the H0 tension,

where H0 represents the present value of the Hubble parameter. Based on the

Planck 2018 CMB data, GR with the presence of a cosmological constant and cold

dark matter (CDM) (referred to as the ΛCDM model), an observed value of H0 =

(67.4± 0.5) km s−1 Mpc−1 [35] is obtained, whereas local measurements using Super-

novae Type Ia (SNe Ia) data and Cepheids have resulted in a continuous deviation

from the CMB value, with the latest value being H0 = (74.03± 1.42) km s−1 Mpc−1,

meaning a deviation of 4.4σ [36–40].

In light of these observations and problems, one therefore questions the validity of

dark energy being sourced by a cosmological constant and hence one should instead

consider other possible alternatives. As previously mentioned, the source of dark

energy can either be stemming from some matter field or is an artefact of gravitation.
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Starting with the former, one alternative is to consider dark energy to be sourced

by some scalar field Q. Such an approach can be developed in various different and

distinct ways; here, only the model known as quintessence is discussed. For other

considerations such as phantom, tachyonic and k-essence, see Refs. [23,24,26,27,33]

and references therein.

Quintessence defines a dark energy fluid source having energy density ρ and pressure

p in the form

ρ =
1

2
Q̇2 + V (Q), p =

1

2
Q̇2 − V (Q), (1.1)

where V (φ) represents the potential of the scalar field. Through this formulation,

the dark energy fluid becomes dynamical in nature with different values of the scalar

field at different epochs leading to different behaviours throughout the cosmological

history. For quintessence to achieve a cosmological constant-like state, the kinetic

energy must be sufficiently smaller than the potential energy i.e. 1
2
Q̇2 � V (Q)

[26,30,34].

As a means to tackle the fine-tuning and coincidence problems, a special class of

scalar field potentials known as tracker solutions are considered. The role of such

models is to construct an evolutionary behaviour which, independent of initial condi-

tions, their final resulting state is always a quasi-cosmological constant [26,30,34,41].

In this way, the coincidence problem would be effectively resolved. However, the

model still needs to be fine-tuned in order to obtain such features and the relatively

small value of the cosmological constant. Quintessence also suffers from other fun-

damental questions, including the fundamental role of the scalar field, whether the

field couples to other matter components or with gravity, why must it necessarily

dominate now, and why must the field be necessarily homogeneous [20,42].

A second proposal revolves around the possible unification of dark energy and dark

matter through a single fluid which behaves as dark matter in high density regimes,
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and as dark energy in low density regimes. This approach could resolve the coin-

cidence problem [20]. Alternatively, one may also consider an interaction between

dark matter and dark energy, a proposal which may resolve the present H0 ten-

sion [43,44].

The next instance, which investigates dark energy as a manifestation of gravitation,

will be the main focus of this work. For instance, introducing more curvature in-

variants in the action may provide a more natural mechanism to explain the given

observations, where certain terms become more dominant during earlier epochs (re-

sponsible for inflation and CMB) while others become more dominant at later times

(responsible for the observed acceleration) [21, 31,32].

Overall, for any modification of gravitation to be viable, the theory must agree with

the different observations and limits: [20,27]

1. Recover Newtonian gravity in the weak-field limit;

2. Be able to reproduce galactic dynamics;

3. Correctly predict the formation of large scale structure;

4. Be able to predict the cosmological dynamics (CMB, accelerated expansion,

and so forth).

Most modified theories considered in literature end up being severely constrained

in the weak-field regime, leading to difficulties in obtaining feasible models which

reconcile both local and cosmological observations. Furthermore, extensions beyond

GR usually involve higher order field equations which are more difficult to solve

both analytically as well as numerically. Nonetheless, an enormous amount of work

has been carried out in this field with the aim of reconciling all of the above given

criteria.
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Throughout this work, an alternative viewpoint in describing the mechanics of grav-

ity is explored. Instead of gravity being described through the manifestation of cur-

vature of spacetime (without torsional effects), this notion is now reversed. Space-

time is now twisted (i.e. has non-zero torsion) but does not manifest any curva-

ture effects. After all, there is no fundamental principle which requires spacetime

to be strictly curved without any torsion. This approach is known as teleparallel

gravity, one which had originally been considered by Einstein as means to unify

gravitation and electromagnetism [45, 46]. Following other seminal works, notably

by Møller [47–49], Pellegrini and Plebanski [50], and Cho [51] (a more detailed his-

torical account is given in Ref. [52]), it has been shown that describing the effects of

gravity through torsion is equivalent to GR at the level of equations of motion, and

hence this theory is referred to as the Teleparallel Equivalent of General Relativity

(TEGR). Thus, in essence, most problems encountered in GR are transferred to its

teleparallel equivalent.

Nonetheless, the theories are not exactly equivalent as they differ at the level of

the gravitational action, despite being equivalent at the level of the field equations.

Moreover, gravity is now a gauge theory. Thus, gravity is again being considered

a force, not a geometric effect. This can be explained through the motion of free

falling particles. In GR, the particles move along a geometric trajectory of curved

space (called geodesics) while in teleparallel gravity, the motion of particles moves

according to force equations similar to electromagnetism. This leads to an impor-

tant consequence in the notion of universality (also known as Weak Equivalence

Principle, WEP) which states that inertial effects are locally indistinguishable from

gravity (or in simpler terms, the inertial mass is equivalent to the gravitational

mass). In GR (and other curvature extensions), university is important since if it is

violated, particles will no longer move along a geodesic, leading to a breakdown of

the theory. On the other hand, teleparallel theories do not need to satisfy this re-

quirement. Teleparallel gravity allows for a separation between the effects of inertia

and gravitation, a property which curvature based theories lack [21,52,53].
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The role of universality puts forth further consequences in explaining the energy of

the gravitational field. If universality holds, the energy of gravity cannot be localised

as one cannot distinguish between inertia and gravitation (in other words, there

always exists a point where the effect of gravity is locally absent) [54–56]. Therefore,

GR and other curvature based theories cannot locally define the magnitude of the

energy of the gravitational field. On the other hand, since universality is not a

requirement in teleparallel theory, this energy can be better defined through a gauge

gravitational current [21,52,53].

Therefore, even at the level of the Einstein field equations of GR, teleparallel gravity

appears to provide a better approach in handling certain phenomenological issues

encountered in GR. Nonetheless, extensions of the theory still need be explored to

account for the effects of dark energy and dark matter.

Throughout this work, different extensions of teleparallel gravity shall be explored,

these being f(T ) gravity, f(T,B) gravity, f(T, TG) gravity and f(T, T ) gravity,

where B, TG and T represent the boundary term, the Teleparallel Equivalent Gauss-

Bonnet (TEGB) scalar and the trace of the energy-momentum tensor respectively.

These theories, as well as their curvature analogues, have been examined in great de-

tail in literature, both in local and cosmological applications. The work is presented

as follows.

In Chapter 2, a brief introduction about the notion of spacetime, curvature and

torsion is presented, together with the necessary ingredients to construct the math-

ematical formulation of GR and TEGR as well as the teleparallel extensions explored

throughout this work. A short overview about the homogeneous and isotropic FLRW

universe is also presented.

Chapter 3 discusses the notion of stability against homogeneous and isotropic per-

turbations of the FLRW universe in the context of f(T ) gravity. This determines

whether the FLRW cosmology remains a viable background description of the uni-
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verse throughout its expansion history notably during late times. For the two consid-

ered viable f(T ) models, it will be shown that these satisfy the stability requirement

and hence are deemed stable.

Throughout Chapters 4 and 5, the reconstruction procedure is presented and applied

for various cosmological behaviours in f(T, TG) gravity. This method allows for

the investigation of whether such teleparallel theory of gravity is able to reproduce

specific cosmological histories without invoking any cosmological constant while also

being able to recover vacuum solutions (such as Minkowski space). Throughout

Chapter 4, simple models, namely power law scale factor, de Sitter phase and ΛCDM

cosmology are investigated, whereas in Chapter 5, the so called bouncing cosmologies

are explored. The latter offer a possible alternative to the Big Bang and inflation

scenario to relieve some of the issues encountered in both formulations. Furthermore,

these also offer a possible description of the future final state of the universe. Overall,

it is observed that under certain conditions, the investigated models can describe

the different cosmological behaviours while recovering the vacuum solutions.

The gravitational wave properties for f(T ), f(T,B) and f(T, TG) gravity in the

weak-field regime are then investigated in Chapter 6. For each model, the propa-

gation speed and polarisation states of the gravitational waves are explored. It is

found that f(T ) and f(T, TG) gravity exhibit similar features to GR (two tensor po-

larisations propagating at the speed of light) while f(T,B) gravity exhibits an extra

massive (propagating at sub-light speeds) scalar mode similar to that encountered

in f(R) gravity.

The formation of large scale structure is then investigated in Chapter 7 under f(T, T )

gravity. A brief description of cosmological perturbation theory is presented together

with the scalar-vector-tensor (SVT) decomposition of the background FLRW metric.

Through the use of scalar perturbations, the growth of structure under sub-horizon

regimes is explored. Despite the fact that the considered models are able to match

with the observed accelerated expansion, these do not match with the observed

10
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structure formation at different sub-horizon scales.

A final summary of the results together with possible future work is presented in

Chapter 8. Throughout this work, the reduced Planck unit system 8πG = c = ~ = 1

shall be used.
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Chapter 2

Curvature, Torsion and the

FLRW Universe

2.1 Notion of Spacetime: Curvature, Torsion and

Metricity

The first step in understanding gravity through geometry is to define a mathematical

object representing spacetime which describes the effects of gravitation through

its curvature and torsion. A simple consideration is through what is known as a

manifold, a surface which locally appears flat (i.e. the geometry appears as Rn for

some dimension n) [57]. This manifold encompasses all the relevant information

regarding time and space, however it does not define how these are related. This is

achieved through the metric tensor gµν , defined as

ds2 = gµνdx
µdxν , (2.1)
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where ds2 represents the line element, a measure of distance between any two points,

and dxµ are the differentials of the coordinates [58].2 The metric tensor, besides

describing the geometry of spacetime, provides a notion of past, present and future

(hence causality), and replaces the role of the gravitational potential [57]. The

term tensor stems from objects defined by the same name, generally represented by

T µ1. . .µm
ν1. . . νn , which have the property to transform covariantly under a coordinate

transformation, meaning that there is no preferred coordinate system [1, 57, 58].

Another property of the metric tensor is that it is non-degenerate, meaning an

inverse gµν can be defined, leading to the property

gµνgµρ = δνρ , (2.2)

where δνρ represents the Kronecker delta.

Another important property, which shall prove useful in describing teleparallelism,

is the distinction between global and local spacetime. In the former, global refers to

the spacetime under the influence of gravitation. On the other hand, local spacetime

refers to when the effects of gravity are absent (namely representing the spacetime

of Special Relativity). In the latter, the metric tensor is the Minkowski metric

ηab = diag(−1, 1, 1, 1). A link between these two spacetimes is achieved through

tetrads (or veirbeins), denoted by eaµ, via the relation [52,57]

gµν = ηabe
a
µe
b
ν . (2.3)

Here, the Latin indices correspond to the local spacetime (governed by the Minkowski

metric) while Greek indices correspond to the global spacetime (governed by the

metric tensor). These tetrads obey the simple relations

eaµe
ν
a = δνµ, eaµe

µ
b = δab . (2.4)

2Here, Einstein’s summation convention is used, where repeated indices are summed over. In
this example, ds2 =

∑
µ, ν

gµνdxµdxν .
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Furthermore, these can be used to exchange between local and global indices, as

shown in the following examples

eaµV
µ = V a, eaµVa = Vµ. (2.5)

Similar relations hold for the inverse tetrad e µ
a .

The next step is to generalise the concept of a derivative for tensors. Although

the notion of partial derivatives is well defined, it does not transform as a tensor,

making it susceptible to a change of coordinates. In order to preserve covariance,

a more general differential operator which transforms as a tensor is defined. This

new derivative is called the covariant derivative. Due to the distinction between

the local and global spacetime, two variants of the derivative are defined. For the

local spacetime, the covariant derivative (denoted by D) for a given arbitrary tensor

Aa1...ak
b1...bl

is defined to be [52]

DσAa1...ak
b1...bl

= ∂σA
a1...ak

b1...bl
+ ωa1

cσA
ca2...ak

b1...bl
+ . . . + ωakcσA

a1...ak−1c
b1...bl

− ωcb1σA
a1...ak

cb2...bl
− . . . − ωcblσA

a1...ak
b1...bl−1c

,

(2.6)

where ωabµ are called spin connections whose role is to represent the inertial effects

of the tetrad frame. The spin connection has the further property that it is anti-

symmetric in the first two indices (ωabµ = −ωbaµ) and it can be expressed in the

form [52,59]

ωabµ = −Λ c
b ∂µΛa

c, (2.7)

where Λ c
b represents the local Lorentz matrix. On the other hand, for the global

spacetime, the covariant derivative (denoted by ∇) for a given arbitrary tensor

Aµ1...µk
ν1...νl

is defined to be [1, 57,58]
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∇σA
µ1...µk

ν1...νl
= ∂σA

µ1...µk
ν1...νl

+ Γµ1

λσA
λµ2...µk

ν1. . . νl
+ . . . + ΓµkλσA

µ1...µk−1λ
ν1...νl

− Γλν1σ
Aµ1...µk

λν2...νl
− . . . − ΓλνlσA

µ1...µk
ν1...νl−1λ

,

(2.8)

where Γρνσ are called connection coefficients.

These connection coefficients, while introduced as means to preserve covariance of

the covariant derivative, also describe the geometrical properties of spacetime [57].

In fact, the connection is said to describe the motion of free falling particles while

the metric determines the causal structure [20,21].

To distinguish between the possible different geometries, the Riemann tensor, torsion

tensor and metric compatibility are defined, all of which are dependent on the form

of the connection. Starting off from the Riemann tensor, which is defined to be

[1, 57, 58,60,61]

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (2.9)

it provides a notion of curvature. This can be interpreted as a measurement of the

orientation difference once a vector is parallel transported3 around a closed curve, as

shown in Fig. 2.1a. Therefore, a connection is considered flat (absent of curvature)

when Rρ
σµν = 0.

The torsion tensor is defined as

T ρµν = Γρνµ − Γρµν (2.10)

and provides a measure of the non-closure of parallelograms, as vectors are parallel

transported [60]. This feature is illustrated in Fig. 2.1b. Thus, a connection is said

to be torsionless if T ρµν = 0 [57,60].

3Parallel transport is the process by which a vector preserves its (parallel) orientation as it is
being transported along a curve [57,58,61].
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Lastly, metricity provides a measure of the length variation of the vector as it is being

parallel transported between two point. In other words, it determines whether the

norm of the vector is preserved along the path [60, 61]. This property is illustrated

in Fig. 2.1c. A metric which preserves lengths is said to be metric compatible and

obeys the property ∇µgνρ = 0.

In the context of GR, the connection is assumed to be torsionless and obeys metric

compatibility, meaning spacetime is fully described through curvature. This yields

a unique connection, called the Levi-Civita connection, which is purely expressed in

A B

CDVA,i VA→B

VB→CVC→D

VA,f

(a) Effects of curvature

A B

CD
E

(b) Effects of torsion

A

B

(c) Effects of non-metricity

Figure 2.1: Representation of the possible different geometrical effects through the
choice of the connection. In (a), the effects of curvature are presented. By taking an
initial vector VA,i at A which is then parallel transported around the loop ABCDA,
the vector ends up in a different final orientation VA,f caused by the curvature of
spacetime. (b) represents torsion. Take a vector which is parallel transported along
the path AB followed by BC. Now, starting again from A, parallel transport by taking a
parallel path to BC, AD, followed by DE which is parallel to AB. The final point E does
not coincide with C leading to the non-closure of the parallelogram. This difference
accounts to torsion. Finally, (c) represents non-metricity. As the vector is being
parallel transported from A to B, the magnitude of the vector changes. Illustrations
based on Refs. [57, 58,60].
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terms of the metric tensor [57]

Γµνσ =
1

2
gµα (∂νgασ + ∂σgαν − ∂αgνσ) . (2.11)

This intrinsic relationship shows that once a metric is defined, the geometry, curva-

ture and motion of particles is straightforwardly determined.

Teleparallel gravity however demands the connection to be flat and that metric com-

patibility holds, leaving torsion as the remaining non-zero quantity. A connection

with these properties is the Weitzenböck connection given to be

Γ̂ρνµ ≡ e ρ
a ∂µe

a
ν + e ρ

a ω
a
bµe

b
ν . (2.12)

Before progressing further, it is also useful to define the contorsion tensor, which

computes the difference between the torsional and curvature parts of the connection

[52]

Kµ
αβ = Γ̂µαβ − Γµαβ. (2.13)

It can be shown that this can also be expressed in terms of torsion tensors to be

Kλ
µν =

1

2

(
T λ
µ ν + T λ

ν µ − T λµν
)
. (2.14)

2.2 The Gravitational Action

The relationship between curvature (gravity) and mass (energy) is described through

a set of field equations. Through the notion of an action of some Lagrangian density

and the use of the principle of least action, these field equations can be derived, an

approach first devised by Hilbert [62]. The Lagrangian is a scalar, and as gravity

is described through a manifestation of curvature, this scalar must be constructed

from the Riemann tensor as this encodes this property. As for GR, this is given
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by the Ricci scalar R = Rµ
µ, where Rµν = Rα

µαν is the Ricci tensor. To introduce

the contributions from matter, the matter Lagrangian, Lm, which encodes all the

information regarding the matter fields, is added to the total Lagrangian. In this

way, the complete gravitational and matter action takes the form

S =
1

2

∫
d4x
√
−g R +

∫
d4x
√
−gLm, (2.15)

where g represents the metric determinant. As the metric tensor encodes all the

information regarding gravitation, it represents the dynamical variable of the system

[57]. Taking variations with respect to the fundamental field yields the Einstein field

equations [1, 54, 57]

Gµν := Rµν −
1

2
gµνR = 8πGΘµν , (2.16)

where Gµν is the Einstein tensor and Θµν := − 2√
−g

δ(
√
−gLm)
δgµν

is the stress-energy

tensor. For the purpose of this work, and as means to account for the vast collection

of particles present throughout the universe, a perfect fluid is considered to describe

their corresponding overall macroscopic features. The stress-energy tensor for a

perfect fluid takes the form [54,56,57,63]

Θµν = (ρ+ p)uµuν + pgµν , (2.17)

where ρ represents the energy density, p represents the isotropic pressure (meaning

that the pressure in each spatial direction is equal) and uµ represents the rest frame

fluid velocity, which is taken to be uµ = (1, 0, 0, 0). This sets the metric tensor

component to be g00 = −1 [56, 57]. Thus, the perfect fluid does not exhibit any

shear forces, anisotropies or viscosity effects.

Following the argumentations of GR, a similar thought process is repeated from a

teleparallel approach. In this case, the fundamental gravitational variable is the

tetrad replacing the role of the metric. Next, instead of the Ricci scalar, a new
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torsional scalar quantity is constructed, namely the torsion scalar [52]

T ≡ S µν
ρ T ρµν =

1

4
T ρµνTρµν +

1

2
T ρµνTνµρ − T ρ

ρµ T νµν , (2.18)

where S µν
ρ represents the superpotential

S µν
ρ =

1

2

(
Kµν

ρ + δµρT
αν
α − δνρTαµα

)
. (2.19)

This replaces gravity to be expressed through torsion rather than curvature. This

way, the TEGR gravitational action is given to be

S =
1

2

∫
d4x e T + Sm, (2.20)

which yields the field equations [52]

e−1∂ν (eS µν
a ) +

1

4
e µ
a T − T bνaS

νµ
b + ωbaνS

νµ
b =

1

2
Θ µ
a . (2.21)

Here, Sm =
∫
d4x
√
−gLm represents the matter action. Observe that the equiv-

alence between TEGR and GR arises from the relationship between the curvature

based quantities (Riemann tensor) and the torsional ones (torsion tensor), obtained

by combining the definition of the Riemann tensor Eq.(2.9) with that being given by

the contorsion tensor Eq.(2.13). As shown in Ref. [52], this reduces the teleparallel

field equations to those of GR.

This link between curvature and torsion leads to an intrinsic relationship between

the Ricci and torsion scalars,

R = −T − 2

e
∂µ
(
eT νµν

)
= −T +B, (2.22)

where B is called the boundary term. This contribution is absent between the GR

and TEGR Lagrangians, which is not surprising as this yields a total derivative.
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In other words, at the level of the action, B can be set to vanish at the boundary

leading to the equivalence even at the level of the Lagrangian [52, 64]. It is this

contribution which distinguishes between the non-equivalence from the curvature

and teleparallel extensions, f(R) and f(T ) gravity respectively.

2.2.1 f(T ) Gravity

The first trivial generalisation of the TEGR Lagrangian involves taking a general

function of the torsion scalar, f(T ), yielding the torsional analogue of the GR cur-

vature extension f(R) gravity. By considering the gravitational action

S =
1

2

∫
d4x e f(T ) + Sm, (2.23)

the f(T ) gravity field equations turn out to be [59]

1

4
e µ
a f + fT

[
e−1∂ν (eS µν

a )− T bνaS
νµ
b + ωbaνS

νµ
b

]
+ fTTS

µν
a ∂νT =

1

2
Θ µ
a . (2.24)

These equations can be expressed in a more familiar form by expressing them in

terms of global indices, which results in

fTGµν +
1

2
gµν (f − TfT )− 2S α

ν µ∂αfT = Θµν . (2.25)

Evidently, the field equations are distinct from those encountered in f(R) gravity as

f(R) = f(−T +B) 6= f(T ). In fact, f(R) gravity is a subclass of f(T,B) gravity as

shall be shown shortly. Moreover, the equations are second order in the tetrad field,

in contrast to the fourth order equations obtained in f(R) gravity. This difference

allows for simpler computations of physical systems [21,59,64].
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An important point is the issue of local Lorentz invariance of this theory, a topic

which has been investigated in numerous works (see Ref. [21] and references therein).

Formally, f(T ) gravity was stated to be one which breaks such invariance, sourced

from the fact that the torsion scalar is not locally Lorentz invariant. At the level of

TEGR, this is not an issue as the field equations still obey local Lorentz invariance.

In the case of f(T ) gravity however, the equations would no longer be locally Lorentz

invariant [59, 64]. This caused the theory to be frame dependent, leading to the

so called good and bad tetrads, with the former yielding the correct equations of

motion, and the others yielding inconsistency issues [65].

This issue arises depending on how the theory is formulated. If the absolute par-

allelism condition is imposed, meaning setting the spin connection to be strictly

zero a priori, this forces a specific vierbein frame choice, leading to the apparent

breakdown of local Lorentz invariance. However, by relaxing this constraint and in-

troducing the spin connection in the field equations as given in Eq.(2.24), this issue

is resolved as the field equations now become local Lorentz invariant [59,66,67].

Following the covariant approach in Ref. [59], for a given tetrad, the spin connection

which gives rise to the correct field equations can be obtained as follows. Generally,

the torsion tensor is a function of both the tetrad and the spin connection, and hence

represents a source of gravitation and inertia. However, here torsion is constructed

to act as a source of only gravitation, meaning there exists a special form of the

spin connection where the effects of inertia are eliminated. In other words, in the

absence of gravitation i.e. G→ 0, the torsion tensor must vanish. From Eqs.(2.10)

and (2.12), the spin connection turns out to be given in the form

ωabµ = Γabµ − e ν
b ∂µe

a
ν

∣∣
G→0

. (2.26)
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2.2.2 f(T,B) Gravity

As mentioned in the previous section, f(T ) gravity is not equivalent to f(R) gravity

due to the boundary term difference between the two quantities. It is then natural

to include a more general gravitational Lagrangian to be dependent on both the

torsion and boundary scalars, namely f(T,B) gravity, first considered in Ref. [68].

In other words, the theory is constructed from the gravitational action

S =
1

2

∫
d4x e f(T,B) + Sm, (2.27)

which yields the field equations [68]

e µ
a �fB − e ν

a ∇µ∇νfB +
1

2
e µ
a (BfB − f) + 2S νµ

a ∂ν (fB + fT )

+ 2e−1∂ν (eS νµ
a ) fT − 2TανaS

µν
α fT = −Θ µ

a , (2.28)

where � ≡ ∇µ∇µ is d’Alembert’s operator. These can also be expressed in a purely

spacetime indexed form to be

−fTGµν+(gµν�−∇µ∇ν) fB+
1

2
gµν (BfB + TfT − f)+2S α

ν µ∂α (fT + fB) = −Θµν ,

(2.29)

Evidently, one can recover the f(R) field equations in the limit f(T,B) = f(−T +

B) = f(R) by identifying fB → fR and fT → −fR. Naturally, all analyses carried

out in the context of f(R) gravity are therefore recovered. For more general La-

grangians, f(T,B) gravity theory has been investigated in various works, for instance

in reconstruction of different cosmological behaviours [69–71], stability of homoge-

neous and isotropic cosmological solutions [69,70] and gravitational waves [72]. The

latter is explored in further detail in Chapter 6.

It is also remarked that the field equations Eq.(2.28) were derived under the absolute

teleparallelism condition and hence are not expressed in a covariant form as those
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found in f(T ) gravity. For this reason, the issue of local Lorentz invariance remarked

in Ref. [68] may be resolved once the spin connection is included. Nonetheless, the

issue of local Lorentz invariance can be circumvented as long as an appropriate

tetrad frame satisfying ωabµ = 0 is chosen. As mentioned in Ref. [68], local Lorentz

invariance is recovered in the special case when f(T,B) = f(R), as expected.

2.2.3 f(T, TG) Gravity

Up to this point, the source of curvature which describes the effects of gravity

(and hence yields the field equations) is described by the Ricci scalar. However,

this is not the only scalar quantity capable of quantifying curvature. In fact, there

exists two other alternatives which stem from the Riemann tensor, the Kretschmann

scalar RαβγδR
αβγδ and another from the Ricci tensor RµνR

µν . However, these two

quantities on their own introduce terms which are fourth order in the metric in

the field equations, compared to the second order behaviour found in GR. In other

words, the system requires more degrees of freedom than GR, as it requires more

information regarding the behaviour of the higher order derivatives of the metric [73].

In 1971, Lovelock [74] formulated a particular combination of quadratic curvature

terms, which eliminate this undesired fourth order effect, leaving the field equations

to be second order. This combination is known as the Gauss-Bonnet invariant,

defined to be

G = R2 − 4RµνR
µν +RαβγδR

αβγδ. (2.30)

Despite this attractive feature, this term does not contribute to the field equations

in 4-dimensions, as it becomes a total derivative unless higher order dimensions are

considered [73]. For this reason, two possible alternatives to maintain the Gauss-

Bonnet term contributions in the field equations have been considered: (i) either it

is coupled to some scalar field, or (ii) a general function f(G) is considered [73,75].

In either case, the equations are no longer second order and hence the theory still
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contains more degrees of freedom than GR.

Focusing on the latter case, this model has been extensively investigated under both

local and cosmological regimes. In the former, the Newtonian limit is effectively

unchanged, leaving the theory to be compatible with Solar System constraints [31].

From a cosmological viewpoint, these models are capable of describing an accel-

erating cosmology, as well as generate transitions from deceleration to accelera-

tion [31,73,76,77].

Motivated by these features, the construction of a teleparallel equivalent of this

scalar has been investigated. Indeed, this is achieved in Ref. [78]. In a similar notion

that the relation between the Ricci scalar and the torsion scalar differ by a boundary

contribution, the curvature Gauss-Bonnet scalar and its teleparallel equivalent, TG,

also differ by a boundary term BG, i.e.

G = TG +BG. (2.31)

The formal expression of TG is given by [78]

TG =
[
Kα

γβK
γλ
ρK

µ
εσK

εν
ϕ − 2Kαλ

βK
µ
γρK

γ
εσK

εν
ϕ + 2Kαλ

βK
µ
γρK

γν
εK

ε
σϕ

+2Kαλ
βK

µ
γρ

(
Kγν

σ,ϕ + ωγθϕK
θν
σ + ωνθϕK

γθ
σ − ω

θ
σϕK

γν
θ

)]
δβρσϕαλµν . (2.32)

Here, commas denote partial differentiation with respect to the index, Kγν
σ,ϕ :=

∂ϕK
γν
σ. Therefore, one can then consider an arbitrary functional dependence on

the torsion and the TEGB scalars, say f(T, TG), to act as the gravitational source.

Equivalently, this infers a gravitational (and matter) action of the form

S =
1

2

∫
d4x e f(T, TG) + Sm. (2.33)
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which yields the f(T, TG) field equations [78]

2
(
H [ac]b +H [ba]c −H [cb]a

)
,c

+ 2
(
H [ac]b +H [ba]c −H [cb]a

)
Cd

dc

+
(
2H [ac]d +Hdca

)
Cb

cd + 4H [db]cC
a

(dc) +
(
T acd + 2ωa[cd]

)
Hcdb

− hab + (f − TfT − TGfTG) ηab = Θab, (2.34)

where

Habc = fT
(
ηacKbd

d −Kbca
)

+ fTG

[
εcprtKqf

t

(
2εadkfK

bk
pK

d
qr + εqdkfK

ak
pK

bd
r

+εabkfK
k
dpK

d
qr

)
+ εcprtεabkdK

fd
p

(
Kk

fr,t −
1

2
Kk

fqC
q
tr + ωkqtK

q
fr + ωqfrK

k
qt

)
+εcprtεakdfK

df
p

(
Kb

kr,t −
1

2
Kb

kqC
q
tr + ωbqtK

q
kr + ωqkrK

b
qt

)]
+ εcprtεakdf

[(
fTGK

bk
pK

df
r

)
,t

+
1

2
fTGC

q
ptK

bk
qK

df
r −

1

2
fTGC

q
ptK

bk
rK

df
q

+fTG

(
ωbqpK

qk
r + ωkqpK

bq
r

)
Kdf

t + fTG

(
ωdqpK

qf
t + ωfqpK

dq
t

)
Kbk

r

]
, (2.35)

hab = fT ε
a
kcdε

bpqdKk
fpK

fc
q, (2.36)

Cc
ab = e µ

a e
ν
b

(
∂νe

c
µ − ∂µecν

)
. (2.37)

Similar to its curvature counterpart, this theory of gravity has proven to be successful

in describing an early (inflation) and late time acceleration without invoking dark

energy [79,80]. Moreover, the specific model f(T, TG) = −T+α
√
T 2 + βTG, where α

and β are constants, has been investigated in further detail using dynamical systems

where a viable cosmology can be realised [81].

2.2.4 f(T, T ) Gravity

The next teleparallel extension considers a matter-gravitational coupling through

an arbitrary function comprising of the torsion scalar and the trace of the stress-

energy tensor T , a model first considered in Ref. [82]. Matter coupling theories
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(see Ref. [83] for a review on the topic) have been extensively studied in literature,

most notably in their curvature analogue, where these exhibit features different from

the behaviours discussed so far. Introducing such coupling generalises the possible

interaction between gravitation and matter, possibly providing further insight about

dark matter and dark energy without introducing new exotic forms of matter.

In the curvature formulation, these theories cause the motion of particles to be non-

geodesic and hence lead to the presence of an extra force [84–87]. Furthermore,

the energy-momentum tensor is no longer covariantly conserved [85–88]. However,

these two issues can be resolved by appropriate choices of the Lagrangian even for

non-trivial choices which do not reduce to GR [85,89–91].

In order to obtain the corresponding field equations, in contrast to the previous

teleparallel models, the form of the matter Lagrangian is required. As discussed in

detail in [84], the form of the matter Lagrangian for a perfect fluid is not unique.

For instance, both Lm = p and Lm = −ρ give rise to the same stress-energy tensor.

However, it has been argued that the most natural choice is Lm = p as this preserves

the covariance of the field equations. This choice also appears in Refs. [82,86,88,92]

amongst others. For this reason, this form shall be considered.

Going back to the teleparallel gravity extension of interest, f(T, T ) gravity, the field

equations are

1

4
e ρ
a f + fT

[
e−1∂σ (eS ρσ

a )− T bνaS
νρ
b + ωbaνS

νρ
b

]
+ S ρσ

a ∂σfT +
fT
2

(Θ ρ
a + pe ρ

a ) =
1

2
Θ ρ
a , (2.38)

which in spacetime indices take the form of

fTGµν +
gµν
2

(f − TfT ) + 2S σ
νµ ∂σfT + fT (Θµν + pgµν) = Θµν . (2.39)

From this expression, the non-conservation of the stress-energy tensor becomes evi-
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dent as, instead, one obtains

∇µΘµν =
fT

1− fT

[
(Θµν + pgµν) ∂µ ln fT + gµν∂µ

(
p+
T
2

)]
(2.40)

unless specific model ansatzes are chosen [93–95]. Similar to the curvature analogue,

f(T, T ) gravity has been investigated under different regimes, including as a possible

viable alternative in explaining the early and late time cosmology [82] along with

their stability [93,94,96], to match with the observational constraints given by SNe Ia

data on the expansion rate [95] and their ability to reconstruct various cosmological

histories [97, 98].

2.3 The FLRW Geometry

Having all necessary ingredients to generate the equations of motion defined, the fi-

nal step is to construct a geometry (hence a tetrad and a metric) which describes the

basic key features of the universe. Two assumptions are sufficient, it being homo-

geneous and isotropic on sufficiently large scales. This is known as the cosmological

principle, a property which is in agreement with observations [58,99,100]. For small

scales, presence of inhomogeneity and anisotropy is indeed observed (for example

large scale structure and CMB) [56, 99, 101] and hence the following is not directly

applicable. These features are investigated in Chapter 7.

A cosmological metric describing these two properties is achieved through the FLRW

metric

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2.41)

where a(t) is the scale factor describing the expansion of space, normalised to be

a(t0) = 1 at present times t0, and k is the spatial curvature of the geometry which

can be flat (k = 0), open (k = −1) or closed (k = 1). According to Planck 2018

data [35], the universe is observed to be flat, and hence only the case k = 0 shall
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be considered throughout this work. Here, the FLRW metric can be expressed in a

simpler Cartesian form,

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
. (2.42)

Next, a tetrad which yields this metric is considered. As the tetrad is not unique, the

choice of tetrad must be accompanied by an appropriate spin connection such that

the field equations are consistent. For instance, a tetrad which realises a vanishing

spin connection is the diagonal tetrad eaµ = Diag(1, a, a, a). For other possible

choices, the appropriate spin connection is then computed as shown in Refs. [59,67].

Equipped with the FLRW metric and the perfect fluid description (which is con-

formal with the cosmological principle assumptions) allows for the generation of

the resulting field equations. Starting with GR, the equations (called Friedmann

equations) are given to be

3H2 = ρ, (2.43)

2Ḣ + 3H2 = −p, (2.44)

where H ≡ ȧ/a is the Hubble parameter, which describes the expansion rate of

the universe. Here, overdots represent derivatives with respect to time. Using

the Friedmann equations, or through the conservation of the stress-energy tensor

∇µΘµν = 0, the continuity equation for the perfect fluid is obtained, [58,100,101]

ρ̇+ 3H (ρ+ p) = 0. (2.45)

The perfect fluid can be expressed in terms of various matter constituents present

in the universe (such as baryons, photons and neutrinos) each satisfying their own

continuity equation. A simple parametrisation for the different models is to assume

a special equation of state relation of the form p = ωρ, where ω is called the equation

of state (EoS) parameter whose value determines the nature of the fluid (e.g. dust
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ω = 0, radiation ω = 1
3

and a cosmological constant ω = −1). From the continuity

equation, assuming the EoS is a constant reveals the general relation

ρ ∝ a−3(1+ω). (2.46)

In this way, the Friedmann equation takes a more simple form

H2 = H0
2
∑
i

Ωi,0a
−3(1+ωi), (2.47)

where Ωi := ρi
3H2 represent the fluid density parameters for each fluid i. Zero sub-

scripts denote that the parameters are evaluated using present time values, a con-

vention which shall be used throughout this work. Finally, the deceleration param-

eter [56, 99,100]

q := −aä
ȧ2

= −1− Ḣ

H2
(2.48)

determines whether the universe is in a decelerating phase (q > 0), transitioning

phase (q = 0), or accelerating phase (q < 0). This shall prove useful to constrain

models which are capable of explaining the present time observed acceleration q0 < 0.
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Chapter 3

Stability of the FLRW Metric in

Torsional Gravity

Study of the background FLRW universe cosmology has been pivotal to the investi-

gation of various phenomena observed in nature, ranging from the earliest of times

to present times. Although there have been major developments in constructing the

evolution of this background cosmology, it could still be insufficient to describe all

observables. While a gravitational model might be able to account for the late time

cosmic acceleration, it might not agree with Solar System tests or CMB spectrum

data.

Cosmological stability can serve as another useful tool to analyse the behaviour of

the gravitational theory under study. However, the term ‘stability’ can take various

meanings, forms and approaches. In this chapter, one particular type of stability

shall be investigated in detail. A brief overview of the various forms of stability is

provided.

The first type of stability arises from the study of dynamical systems, where the

evolution of a set of variables is studied to determine the paths which the system

has undertaken. Encountered in many forms in classical mechanics (for instance,
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the simple pendulum [102]), dynamic systems allow for the investigation of a sys-

tem of differential equations without the requirement for the system to be solved

exactly. Through what are known as critical points, the behaviour of the system is

investigated through a phase-space. Stability here refers to the type of behaviours

these critical points exhibit, which are classified into three categories: attractors,

repellers and saddle points. As the name implies, attractors are points which at-

tract the system towards the critical point, while repellers are points which repel

the system away from the critical point. Saddle points are neither attractors nor

repellers. For certain trajectories, the system approaches the saddle point but for

others, the system moves away from the saddle critical point state.

In the context of cosmology, the dynamical systems approach offers a strong and yet

simple tool in examining the cosmological dynamics of a specific gravitational model

independent of initial conditions (see Ref. [103] for a detailed review on the topic).

As the critical points represent cosmological behaviours while the stability analysis

determines the nature of the critical point, a cosmological history can be examined

without the requirement of any initial conditions. This turns out to be very useful,

especially for theories which invoke higher order terms such as f(R) and f(R,G)

theories as the complexity of the field equations make them difficult to extract any

analytical (or even numerical) cosmological behaviours [90, 104–109]. Furthermore,

this approach can be useful in the study of anisotropic metrics as means to inves-

tigate which models lead to an isotropic universe at late times. In other words,

isotropisation of the anisotropy cosmology behaves as a late-time attractor (see, for

instance, Refs. [110–112]).

Based on the observed cosmological history, it is postulated that the universe passes

through a sequence of phases in the order of inflation, radiation and matter domina-

tion epochs onward to an accelerating universe (which is potentially asymptotically

de Sitter). As discussed in Ref. [113], the inflationary epoch is expected to be unsta-

ble, and matter and radiation epochs to be saddle points. As it is unknown what the
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final stage of the universe is going to be, the stability of the acceleration phase is left

open. However, if the universe is indeed approaching a final accelerated stage, then

this should be an attractor [105]. Models can then be constrained by demanding

that these phases are realised.

The second type of stability, which will be investigated in greater detail, deals with

small perturbations of the background cosmology. This can be approached in two

distinct ways. The first is through perturbations of the background cosmology pa-

rameters, primarily the scale factor and matter energy density components, while

the second through a more general perturbation of the metric tensor. In the former,

perturbations are taken to be homogeneous while in the latter they are inhomoge-

neous and anisotropic.

The case of homogeneous perturbations, which will be the main topic of this chapter,

deals with small perturbations which are only time dependent. Their role is to

investigate whether the initial background cosmology retains its behaviour with

time, basically questioning the validity of the background cosmological solution at

various times. If these perturbations do grow large, this means that the initial

assumption of the background cosmology is insufficient to correctly describe the

universe during times where these perturbations become significant.

Inhomogeneous and anisotropic perturbations provide a richer picture of the uni-

verse as will be discussed in further detail in Chapter 7. These include the CMB

spectrum, growth structure and gravitational waves amongst others. In the case of

this type of perturbation, stability determines whether these perturbations grow or

decay with time, and are thus generally different from the homogeneous ones. For

instance, consider an Einstein static universe in GR. Under homogeneous pertur-

bations, the model is never stable, which infers either a gravitational collapse or

an expansion (towards an attractor solution of a de Sitter form). However, inho-

mogeneous perturbations can be stable, provided ∂ρ
∂p
> 1√

5
. In other words, while

the homogeneous perturbation deviates from the Einstein static behaviour, the in-
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homogeneous perturbations do not grow as they are damped by the background

evolution [114]. A similar behaviour is observed in the f(R) case as illustrated in

Ref. [115]. Inhomogeneous instability has also been investigated in the case of f(T )

gravity [116] and f(T, T ) gravity [82] where classes of functions have been shown to

be viable.

Although these two types of perturbations are distinctively different, there are in-

stances in which the stability conditions can indeed coincide. For instance, this is

observed for a de Sitter phase in Refs. [117, 118] in the case of f(R) gravity and

Refs. [75, 119] in the case of f(G) gravity. Thus, homogeneous stability can prove

as a simple way to examine the stability of the theory without giving a detailed

account of the resulting phenomenology from an inhomogeneous point of view.

3.1 Homogeneous Perturbations

The study of homogeneous perturbations will be presented in the context of f(T )

gravity in a flat FLRW metric background. Although these types of perturbations

have been previously considered in Refs. [120,121] (and in the extension to f(T,B)

gravity in Ref. [69]), only specific cosmological behaviours were investigated, while

here, a broader class of gravitational models are investigated. Furthermore, it will

be shown that the perturbation parameters take a simple analytical form in the

case of f(T ) gravity. For this chapter, the functional form of f(T ) is assumed

to take f(T ) = T + F (T ) for some function F (T ). In the absence of the latter

function, TEGR is obtained. With this in mind, the F (T ) contribution represents

the deviation from TEGR and hence acts as a gravitational source for dark energy.
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For a spatially flat FLRW metric Eq.(2.42), the torsion scalar takes the simple form

T = −6H2 with modified Friedmann equations [21]

F − T − 2TFT = 2ρ, (3.1)

Ḣ = − ρ+ p

2(1 + FT + 2TFTT )
. (3.2)

It can be easily observed that Eq.(3.2) is valid provided that the denominator is

non-zero. This yields the simple constraint F (T ) 6= −T + c1

√
−T + c2, where c1,2

are integration constants.

The c1 term takes the role of a boundary contribution as this does not give rise to

any cosmological dynamics [122–126]. For this reason, this term will be ignored and

will not be included in the work that follows. On the other hand, c2 plays a role of

a cosmological constant. Overall, the gravitational action will only consist of this

contribution, meaning that the resulting cosmology would be de Sitter throughout

the whole universe’s history. Given the clear evidence of other epochs, this gravita-

tional action is clearly not suitable to describe the overall expansion history [127].

Thus, this condition will not be satisfied for any physically motivated cosmological

behaviour.

As for the matter component, this obeys the usual continuity equation Eq.(2.45),

sourced by ordinary matter and radiation, with the F (T ) contribution taking the

role of dark energy. Furthermore, the fluid components are assumed to be non-

interacting, and hence individually satisfy their associated continuity equations

ρ̇M + 3HρM = 0 =⇒ ρM = ρM,0a
−3, (3.3)

ρ̇R + 4HρR = 0 =⇒ ρR = ρR,0a
−4, (3.4)

where the subscripts ‘M’ and ‘R’ represent the matter and radiation components

respectively. As stated previously, the F (T ) contribution acts as a source for dark
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energy as some sort of exotic fluid, which has energy density and pressure [21]

ρT ≡ TFT −
F

2
, (3.5)

pT ≡ −ρT + 2Ḣ(FT + 2TFTT ). (3.6)

Consequently, an associated equation of state can be defined for this exotic fluid

ωT ≡
pT
ρT

= −1− 4Ḣ
FT + 2TFTT
F − 2TFT

. (3.7)

For instance, if a standard cosmological constant-like behaviour is desired, one needs

to set ωT = −1, which is satisfied when fT + 2TfTT = 0, leading to F (T ) = c3,

a cosmological constant. Therefore, the model simply reduces to standard TEGR

with a cosmological constant as expected.

With this reformulation, the modified Friedmann equations Eqs.(3.1) and (3.2) can

be recast in a more familiar form associated to the Friedmann equations obtained

in GR

− T = 2(ρ+ ρT ), (3.8)

2Ḣ = −(ρ+ p+ ρT + pT ). (3.9)

Trivially, it can easily be realised that this gravitational exotic fluid also obeys the

standard continuity equation

ρ̇T + 3H(1 + ωT )ρT = 0. (3.10)

As the equation of state parameter is not necessarily constant, a relation for its

density evolution is not recovered in general, unless specific configurations are con-

sidered (see, for instance, Ref. [128]).
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In the case of f(T ) gravity, the deceleration parameter Eq.(2.48) takes the form

q = −1− 3

2T

F − T − 2TFT
1 + FT + 2TFTT

+
1

2

ΩR

1 + FT + 2TFTT
, (3.11)

where the Friedmann equations Eqs.(3.1) and (3.2) have been used. Observe that

in the limit when the radiation density is negligible, the deceleration parameter can

be fully expressed in terms of the torsion scalar.

The next step is to derive the evolution equations for homogeneous perturbations

and hence determine the stability of the cosmology for a given F (T ) function. Such

perturbations are obtained by taking the background solutions and perturbing them

about some small parameter. For instance, the perturbation about the scale factor

is [120,129–134]

a(t)→ a(t) [1 + δa(t)] , (3.12)

where a(t) now represents the background evolution which obeys Eqs.(3.1) and (3.2),

while δa(t) represents the homogeneous perturbation. In order for said perturbation

to be small, it is required that |δa| � 1. Hence, the Friedmann equations will be

evaluated by order of δa. If this perturbation grows with time, then the cosmology

will be considered to be unstable.

Observe that since the torsion scalar is expressed purely in terms of the Hubble

parameter, it is more convenient to consider its perturbation and obtain its evolution

instead. Based on the perturbation regime for the scale factor Eq.(3.12), one can

assume that the Hubble parameter will take a similar form [69,75,117,118,121]

H(t)→ H(t) [1 + δ(t)] , (3.13)

with an associated perturbation δ(t) satisfying |δ| � 1. Indeed, it is trivial to show

that these parametrisations are directly related. Starting from the definition of the
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Hubble parameter, based on Eq.(3.12) and the fact that |δa| � 1, one finds

H̄(t) =
ȧ(t) [1 + δa(t)] + a(t)δ̇a(t)

a(t) [1 + δa(t)]
= H(t) + δ̇a(t), (3.14)

which leads to the simple relation δ̇a = Hδ. Here, H̄ represents the Hubble pa-

rameter describing the background and the first order homogeneous and isotropic

correction evolution.

Lastly, the matter and radiation density perturbations are also defined

ρM(t)→ ρM(t) [1 + δM(t)] , ρR(t)→ ρR(t) [1 + δR(t)] , (3.15)

where δM and δR represent the matter and radiation perturbations respectively,

which satisfy the condition |δM,R| � 1. Naturally, the background evolution does

not determine the evolution of the perturbation of the matter components. As such,

these are instead sourced by the background perturbations, meaning that δ ∼ δM,R.

With these assumptions, from the Friedmann and continuity equations Eqs.(3.1),

(3.3) and (3.4), the perturbation relations are given to be

−T (1 + FT + 2TFTT )δ = (ρMδM + ρRδR) , (3.16)

δ̇M + 3Hδ = 0, (3.17)

δ̇R + 4Hδ = 0. (3.18)

From the matter and radiation perturbation relations, it easily results that the latter

perturbations are simply related by

δM =
3

4
δR. (3.19)

This relationship is expected as in this formulation no matter interaction is assumed.
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Taking Eq.(3.19) in mind, Eq.(3.16) can be expressed as

−T (1 + FT + 2TFTT )δ =

(
ρM +

4

3
ρR

)
δM = −2(1 + FT + 2TFTT )ḢδM,

=⇒ Tδ = 2ḢδM. (3.20)

Here, Eq.(3.2) has been used. Therefore, a direct relation between the Hubble and

matter perturbation has been obtained, which can be used to solve for the evolution.

For instance, from Eq.(3.17), one finds

0 = δ̇M −
Ḣ

H
δM =⇒ δM = kH, (3.21)

for some constant k, which implies the Hubble perturbation is simply given to be

δ = − Ḣ

3H
k. (3.22)

The constant k can be obtained by evaluating the expressions at some time, which

is taken to be the present time to normalise it to observed present values. As the

value of k appears in both the matter and Hubble perturbations, this sets a rela-

tionship between the presents values of these quantities. Starting from the matter

perturbation relation Eq.(3.21), k is given to be

k =
δM,0

H0

, (3.23)

while from the Hubble perturbation, Eq.(3.22) is

k = −3δ0
H0

Ḣ(t0)
. (3.24)

Together, these equations relate the present values through

δM,0 = −3δ0
H0

2

Ḣ(t0)
, (3.25)
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which is expected as seen from Eq.(3.20).

Having obtained the evolution of the perturbation parameters, the next step would

be to determine the stability of the parameters based on the particular F (T ) model.

As seen from the resulting expressions, the perturbations are entirely dependent on

the Hubble parameter and hence must decrease with time in order to retain stability.

Modifications of the gravitational Lagrangian through F (T ) affects the growth of

this parameter as seen from the background Friedmann equations and hence the

choice of F (T ) is crucial to determine which models are stable. The choice of this

F (T ) function is tackled under two distinct ways. Furthermore, for the purpose of

this work, the models considered are those that are able to realise the late time

acceleration.

Firstly, following Ref. [135], a set of possible viable F (T ) functions have been

considered to be alternative choices to ΛCDM through analysis of various cos-

mological parameters. In particular, two viable models will be investigated in

detail, the power law model F (T ) = α(−T )n [136] and the exponential model

F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
[122], for which technical details are explored in

their relevant sections. Here, α, p 6= 0 and n are constants.

Another second viable approach is to consider specific cosmological evolutions a

priori, those which are not determined according to an F (T ) model choice. As

will be discussed in the following section, this choice restricts uniquely the F (T )

Lagrangian which does not necessarily correspond to the latter two models.

Before examining said stability, observe that the exotic fluid can also be studied

to see how its perturbation evolves with time. In spirit of the construction of the

homogeneous perturbation for the matter components Eqs.(3.15), the exotic fluid is

parametrised as

ρT → ρT [1 + δT (t)] , (3.26)

with δT (t) representing its perturbation. From the definition of its energy density
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Eq.(3.5), the latter is related to the Hubble perturbation as

δT =
2T (FT + 2TFTT )

2TFT − F
δ =

T (1 + ωT )

2Ḣ
δ = (1 + ωT )δM, (3.27)

where Eqs.(3.2), (3.7) and (3.20) have been used to obtain the final expression in

terms of δM. Furthermore, using Eq.(3.21), the perturbation can be renormalised to

its present value to be
δT (t)

δT,0
=

1 + ωT (t)

1 + ωT,0

H(t)

H0

. (3.28)

Therefore, the choice of F (T ) determines ωT and the evolution for the Hubble pa-

rameter, which consequently yields the growth history of the perturbation. Observe

that for a cosmological constant, i.e. in the case when ωT = −1, the perturba-

tion is zero, which is expected as due to its repulsive nature, the fluid can never

overdense [137–139].

3.2 Specific Choices of Scale Factor

Choosing a scale factor a priori allows an easy determination of the Hubble pa-

rameter, which facilitates the study of stability. However, this approach comes at a

price. The choice of scale factor determines the Hubble parameter, and hence the

torsion scalar’s evolution, uniquely. However, the Friedmann equations in Eqs.(3.1)

and (3.2) imply that only a specific choice of the F (T ) Lagrangian satisfies the

equations, essentially setting a constraint on the model. This approach is the basis

of reconstruction, which will be explored in further detail in Chapter 4. For the

purpose of this section, the resulting F (T ) function and resulting stability will be

considered.

The choice of scale factor can be arbitrarily set, even though it should be chosen

with physical motivation. Two models are thus explored, (i) power-law scale factors

a(t) ∝ tn for some constant n, and (ii) de Sitter behaviour a(t) ∝ eHt where the
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Hubble parameter becomes a (positive) constant.

The power-law behaviour is a simple yet rich model with various applications in

different aspects of cosmology. When a certain fluid with EoS ω starts to dominate

the cosmic expansion, the scale factor takes the approximate form a(t) ∝ t
2

3(1+ω)

provided ω 6= 1. This implies that for fluids with EoS ω < −1
3
, an accelerating

universe is achieved which corresponds to n < 0 or n > 1. Use of such models to

describe the accelerating universe appear in Refs. [140–142] and references therein.

The use of power-law scale factors also appears in the context of inflation (known

as power-law inflation) which has been considered as a simple model that resolves

the so called horizon and flatness problems.4 Inflation is realised only for n > 1,

for which the corresponding inflaton potential takes an exponential form [146,147].

However, the model suffers from issues. The resulting scalar and tensor spectral in-

dices become constant, with values that do not match with observable data [148–150]

(this was ruled out by 2013 Planck data [151] as well as recent Planck data [152]),

unless deviations from a standard inflaton potential are considered (for instance,

k-essence [153]). Furthermore, standard power-law inflation lacks an exit mecha-

nism as it becomes an everlasting accelerated expansion, requiring the need of other

factors to exit the inflationary phase. Such considerations appear in, for instance,

Ref. [153].

Towards the beginning of the universe, a power-law scale factor can also be used to

construct a bounce known as a superbounce, where the scale factor is modified to be

a(t) ∝ (−t+ tc)
2
c2 , where tc represents the crunch time (the time when the universe

collapses) and c >
√

6 [154,155]. Originally considered in [156], superbounce models

are used to construct a universe which collapses and rebirths through a Big Bang

without a singularity (a scale factor for which the minimal value is non-zero – see

4The horizon problem discusses how photons which could not have been in casual contact still
have the same uniform temperature at the time of decoupling. The flatness problem requires
the universe to be extremely fine tuned at early times to obtain the observed flat universe today
[143–145].
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also [157] for further details).

Lastly, in the special case when n = 1, a linear scale factor is obtained which

represents a coasting cosmology. This special case has appeared in various sources as

it does not suffer from the horizon problem, does not constrain the matter parameter

and hence cures the flatness problem, gives an age estimate (in the absence of a

cosmological constant) which agrees with the estimated age of old clusters, and can

also tackle the cosmological constant problem [158–160]. Furthermore, this simple

model agrees with SNe Ia data [140,161].

On the other hand, de Sitter cosmology has been a recurring feature of multiple

studies appearing in both the early and the late-time universe. Characterised by an

exponential scale factor, this corresponds to a period dominated by a cosmological

constant-like fluid. In the case of inflation, for instance, a de Sitter expansion is com-

mon based on the assumption that inflation is driven by a scalar field, causing the

exponential expansion [143, 162, 163]. This leads to the observed scalar-dominated

power spectrum supported by Planck 2018 data [152], while also resolving the hori-

zon problem. At late times, a dark energy fluid with an EoS close to that of a

cosmological constant, leads to another accelerating domination period in de Sitter

phase. Indeed, in the context of GR with a cosmological constant, this corresponds

to the final asymptotic state of the universe. Current observational data also seems

to infer a present dark energy component having ω ' −1 [35], leaving the de Sitter

cosmology to be a possible asymptotic future universe state.

3.2.1 Power-law Model

Starting with the power-law scale factor a(t) ∝ tn, the Hubble parameter becomes

H = n
t
. The perturbation parameters are thus simply given to be

δ ∝ t−1, δM =
4

3
δR ∝ t−1, (3.29)
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which indicate stability at late times. For this behaviour, the torsion scalar turns

out to be T = −6n2

t2
. This yields a relation between time and the torsion scalar,

which infers a direct relationship between the torsion scalar and the scale factor.

Indeed, this is achieved through

t

t0
=

(
T

T0

)− 1
2

=⇒ a(t) =

(
T

T0

)−n
2

. (3.30)

Using the Friedmann equation Eq.(3.1), an ordinary second order differential equa-

tion for F (T ) is obtained,

F − T − 2TFT = −T0

[
ΩM,0

(
T

T0

) 3n
2

+ ΩR,0

(
T

T0

)2n
]
, (3.31)

the solution for which is dependent on the choice of n. For n 6= 1
3
, 1

4
, the solution is

F (T ) = −T +
ΩM,0T0

3n− 1

(
T

T0

) 3n
2

+
ΩR,0T0

4n− 1

(
T

T0

)2n

, (3.32)

which leads for the exotic fluid perturbation to evolve as

δT =
3nΩM,0

(
t0
t

)3n
+ 4nΩR,0

(
t0
t

)4n − 2
(
t0
t

)2

ΩM,0

(
t0
t

)3n
+ ΩR,0

(
t0
t

)4n −
(
t0
t

)2

k

3t
. (3.33)

Irrespective of value of n, the first term approaches a constant value with increasing

time and hence the perturbation decays with time in the order of t−1, leading towards

stability. When n = 1
3
, the F (T ) function takes the form

F (T ) = −T +
1

2
ΩM,0T0

√
T

T0

ln

(
T

T0

)
+ 3ΩR,0T0

(
T

T0

)2/3

, (3.34)

with associated exotic fluid perturbation evolution

δT =
3ΩM,0 + 4ΩR,0

(
t0
t

) 1
3 − 6 t0

t

ΩM,0 + ΩR,0

(
t0
t

) 1
3 − t0

t

k

9t
. (3.35)
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At late times, δT ≈ k
3t

and hence is also stable. Lastly, when n = 1
4
, one finds

F (T ) = −T − 4ΩM,0T0

(
T

T0

)3/8

+
1

2
ΩR,0T0

√
T

T0

ln

(
T

T0

)
, (3.36)

which yields an exotic fluid perturbation evolution in the form

δT =
3ΩM,0 + 4ΩR,0

(
t0
t

) 1
4 − 8

(
t0
t

) 5
4

ΩM,0 + ΩR,0

(
t0
t

) 1
4 −

(
t0
t

) 5
4

k

12t
. (3.37)

Similar to the previous scenario, at late times δT ≈ k
4t

, which is once again stable.

Therefore, this shows that power-law evolution is stable at late times for any choice of

n. As a closing note, the reconstructed F (T ) solution for power-law behaviours also

appear in Refs. [69, 128, 154, 164, 165]. Furthermore, a power-law behaviour results

from a Noether symmetry consideration with the previously obtained reconstructed

F (T ) solutions as shown in Refs. [166–172].

3.2.2 de Sitter Behaviour

For the case of de Sitter cosmology, the Hubble parameter achieves a constant (pos-

itive) value, leading to the behaviour

δ = 0, δM =
4

3
δR = constant. (3.38)

An interesting behaviour is observed, as the Hubble perturbation becomes identically

zero (the scale factor perturbation δa in this case becomes constant). This suggests

that once the universe enters a de Sitter phase, the background cosmology remains

intact without any perturbation corrections. This feature is expected as dynamical

system analysis shows that the de Sitter cosmology, in the case of f(T ) gravity,

is a future attractor, meaning that the universe approaches a de Sitter phase and

remains in that phase indefinitely.
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To obtain the resulting function, note that the torsion scalar is a constant which,

contrary to the previous case, does not exhibit a functional relationship between

cosmic time t and T . From the Friedmann equations Eqs.(3.1) and (3.2), one obtains

F − T − 2TFT = 2
[
ρM,0e

−3Ht + ρR,0e
−4Ht

]
, (3.39)

0 =
ρM,0e

−3Ht + 4
3
ρR,0e

−4Ht

1 + FT + 2TFTT
, (3.40)

which is only satisfied under the condition that ρM,0 = ρR,0 = 0. This is reasonable

as during those times, the contribution from both matter and radiation is negligible

compared to the dark energy component, as these decay exponentially with time.

Therefore, this leaves us with F − T − 2TFT = 0. This can be investigated in two

ways, either as a differential equation or as an algebriac equation for the torsion

scalar (and hence the Hubble parameter). Naturally, standard ΛCDM is recovered

if F (T ) = 2Λ but other functional forms can also be considered [69,173,174].

As anticipated, for this type of behaviour, the exotic fluid behaviour becomes that

of a cosmological constant ωT = −1 (which agrees with the result obtained in [128])

which sets δT = 0 confirming its stability. However, this behaviour is now achieved

for models which are not necessarily standard ΛCDM.

3.3 Specific Choices of the F (T ) Function

In this section, the power-law and exponential F (T ) functions will be examined in

detail, as they act as a viable alternative to ΛCDM. Furthermore, since the major

interest is at late times, the effect of radiation is practically negligible (supported

by Planck data, which indicates a value of ΩR,0 ∼ 10−5 [35]). Thus, the radiation

density will not be considered in the background and perturbation equations.
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To make realistic choices of the model parameters of each model, Planck data shall

be used to serve as restrictions to the parameters. Firstly, acceleration is observed

at present times which implies q0 < 0. Actually, according to recent Planck data,

q0 ∼ −0.5 [35].

A secondary constraint can be achieved by demanding the exotic fluid EoS be close

to that observed. Although the physical nature of the EoS is unknown, as discussed

in Chapter 1, various forms describing its EoS nature have been considered; whether

it originates from ΛCDM, has some other constant value or whether it is dynamical

(for instance, linear evolution EoS dark energy parameter models like Chevallier-

Polarski-Linder (CPL) [175, 176]). For a constant value, one finds the constraint

ωT = −1.03± 0.03 suggesting a phantom nature. Restricting the fluid to have a

non-phantom nature, the constraint then becomes ωT,0 < −0.95 [35]. Both values

will be used to constrain the respective model.

To obtain numerical simulations of the models, the present value of the matter den-

sity ΩM,0 = 0.315± 0.007 and the Hubble parameterH0 = (67.4± 0.5) km s−1 Mpc−1

[35] shall be used. Furthermore, these will also serve to help constrain the parame-

ters together with the previous conditions.

3.3.1 Power-law Model Stability

Starting with the power-law ansatz model F (T ) = α(−T )n, the Friedmann equation

(Eq. 3.1) becomes

α(2n− 1)
(−T )n

T0

+
T

T0

=
ΩM,0

a(t)3
, (3.41)

where the value of α can be found by evaluating the expression at current times to

give

α =
(ΩM,0 − 1) (−T0)1−n

1− 2n
. (3.42)
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Trivially, this relation does not hold for n = 1
2

as this leads to the boundary contri-

bution. Using this value of α, the equation can be recast into a simpler form

T

T0

+ (ΩM,0 − 1)

(
T

T0

)n
=

ΩM,0

a(t)3
. (3.43)

For this model, the exotic fluid EoS Eq.(3.7) takes the form

wT =
(n− 1)

1 + n(ΩM,0 − 1)
(
T
T0

)n−1 . (3.44)

At present times, the EoS parameter has a magnitude of

wT,0 = −
[
1 +

n

1− n
ΩM,0

]−1

. (3.45)

From this expression, standard behaviours can be extracted. For n = 1, ωT,0 = 0,

meaning it behaves as a dust fluid which is expected as this model reduces to a

rescaling of TEGR, which is not of importance. A cosmological constant is otherwise

achieved for n = 0 as the F (T ) function reduces to a cosmological constant. A

singularity appears for n? ≡ (1 − ΩM)−1, but its physical significance will not be

explored. However, it is observed that for n > n?, ωT,0 < −n? while for n < n?,

ωT,0 > −n?. From present values, this means that ωT,0 ≶ −10
7
≈ −1.43. Thus,

models which realise the observational constraint are for values of n < n? ≈ 1.43.

On the other hand, the deceleration parameter Eq.(2.48) for this model takes the

form of

q(t) =

1− (2n− 3)(ΩM,0 − 1)

(
T

T0

)n−1

2 + 2n(ΩM,0 − 1)

(
T

T0

)n−1 , (3.46)

which when evaluated at present times yields

q0 =
1− (2n− 3)(ΩM,0 − 1)

2 + 2n(ΩM,0 − 1)
. (3.47)
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Acceleration is obtained when

n <
3ΩM,0 − 2

2ΩM,0 − 2
or n >

1

1− ΩM,0

, (3.48)

which, using observed values, yields n / 0.79 or n ' 1.43. As the value of n = 0

yields standard ΛCDM behaviour, other values will be considered. Following the

EoS discussion, values n / 0.79 have been chosen for consideration. To simplify

the necessary numerical computations to obtain the desired evolutions, the power-

law index values considered are taken to be negative integers, namely n = −1

(wT,0 ≈ −1.18) and n = −2 (wT,0 = −1.25).

The models are first analysed for their background behaviour features to verify that

the above claims are satisfied. Furthermore, this will allow for an insight of what

happens to the cosmological parameters and the EoS of the exotic fluid throughout

time. In what follows, the initial condition a (10−5 Gyr) = 10−4 was used, as it

describes a time at the matter-radiation equality [35]

aeq. =
Ωr,0

ΩM,0

∼ 10−4. (3.49)

After this time, the universe starts to become matter dominated, satisfying the claim

that the radiation component becomes negligible in the equations. In the plots that

follow, ΛCDM is represented by the solid curve, n = −1 is dotted and n = −2 is

dashed.

Fig. 3.1 illustrates the expansion history of the power-law model in comparison

with ΛCDM. The behaviour is practically identical at early times but deviates at

late times due to differences in the exotic fluid behaviour with n = −2 yielding a

greater accelerated expansion. The reason for this becomes apparent through the

EoS behaviour shown in Fig. 3.2.
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Figure 3.1: The evolution of the scale factor a(t) with cosmic time for the model
F (T ) = α (−T )n for n = 0, −1 and −2. For early and current times, the scale factor
for each model is almost identical. However, during later times, the n = −1 and
n = −2 models start to deviate from the ΛCDM model yielding a faster accelerated
expansion.

Figure 3.2: The evolutionary behaviour of the exotic fluid’s EoS parameter wT (t)
with cosmic time for the model F (T ) = α (−T )n for n = 0, −1 and −2. As expected,
n = 0 leads the ΛCDM behaviour with ωT = −1 at all times. On the other hand, the
n = −1 and n = −2 models describe a varying EoS parameter, which is phantom in
nature, starting at n − 1 at t = 0 and approaches −1 during late times, meaning it
approaches the behaviour of a cosmological constant.
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The evolutionary behaviour of the exotic fluid shows that its EoS is not constant,

leading to a dynamical energy model. Overall, the general behaviour of the model

depends on the choice of n which starts at a value of ωT (0) = n − 1 initially and

approaches ωT → −1 at late times, meaning that it behaves as a cosmological

constant at late times. However, the phantom-divide line (the ω = −1 barrier) is

never crossed, and hence does not behave as a quintom (a fluid which behaves both

as a phantom and as a non-phantom fluid throughout the cosmological history). In

fact, the fluid is phantom in nature. As suggested from the scale factor evolution,

n = −2 leads to a faster accelerated expansion as the EoS is smaller than n = −1

and ΛCDM.

Discussions about the accelerated expansion are further supported by the deceler-

ation parameter illustrated in Fig. 3.3, which clearly indicates that n = −1 and

n = −2 lead to a faster accelerated expansion compared to ΛCDM. Furthermore,

since in each case the exotic fluid approaches a cosmological constant behaviour, the

deceleration parameter approaches q → −1 at late times. As expected, the absence

of the exotic fluid at early times also confirms the initial value of q(0) = 0.5. Each

model transitions from deceleration to acceleration at practically the same time, at

a value of around t ≈ 8 Gyr.

Fig. 3.4 illustrates the behaviour of the matter and exotic fluid density parameters

with time. At early times, the matter density approaches a value of 1 while the

exotic fluid approaches zero. The opposite is observed at late times. This reflects

the domination epochs of each fluid, corresponding to the observed behaviour in

Fig. 3.1. One notes that the matter-exotic fluid equality occurs at different times,

with the n = −1 and −2 models at approximately the same time of t ≈ 12 Gyr (for

ΛCDM, this is t ≈ 10 Gyr). This shift occurs due to the different dynamical nature

of the exotic fluid.

With the background evolution analysed, the perturbation parameters are now anal-

ysed. Starting with the Hubble perturbation δ illustrated in Fig. 3.5, it is evident
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Figure 3.3: The deceleration parameter q(t) for the model F (T ) = α (−T )n for
n = 0, −1, −2. All models mimic the behaviour of the ΛCDM model, with each
model transitioning from a decelerated to an accelerated expansion at approximately
the same time (t ≈ 8 Gyr), however with different acceleration rates with n = −2 being
the fastest accelerated expansion. Due to the nature of the exotic fluid, each model
starts with q(0) = 0.5 and ends with q → −1 as the fluid approaches a cosmological
constant behaviour as shown in Fig. 3.2.

Figure 3.4: Density parameter evolution for matter and the exotic fluid with cosmic
time for the model F (T ) = α (−T )n for n = 0, −1, −2. The models exhibit similar
behaviour, however with differences. The most notable difference is how the matter-
exotic fluid equality occurs at different stages, with the power-law model occurring at
a later time. Overall, the early stages of the universe is dominated by matter while
the exotic fluid dominates at late times, conforming with the scale factor behaviour
observed in Fig. 3.1.
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that the model is stable for all choices of n as the perturbation parameters decays

with time. The fact that the parameter decays to zero means that the late time

universe (which is now asymptotically approaching a de Sitter phase) is asymp-

totically approaching a perfectly homogeneous and isotropic universe. This also

agrees with the attractor behaviour observed from a dynamical system approach

analysis [177–179].

Figs. 3.6 and 3.7 indicate the behaviour of the matter and exotic fluid perturbations

respectively. For the former, the perturbation decays with time but, in contrary to

the Hubble perturbation, this approaches a non-zero constant value. Such behaviour

is expected as this illustrates structure formation throughout the universe timeline.

The fact that it approaches a constant value shows that structure stops to form at

late times, which is expected as the accelerated expansion does not allow for more

structure to form. The behaviour for the exotic fluid perturbation, on the other

hand, is slightly different. As the ΛCDM result shows, the perturbation is strictly

Figure 3.5: The Hubble perturbation parameter δ(t) evolution with cosmic time for
the model F (T ) = α (−T )n for n = 0, −1 and −2. Here, the ratio δ/δ0 is plotted to
examine the behaviour. As the ratio is shown to decay with time, it means that the
model is stable. The n = −1 and n = −2 models mimic the ΛCDM behaviour, with
the only difference being an earlier decay rate.
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Figure 3.6: Matter perturbation δM(t) evolution with cosmic time for the model
F (T ) = α (−T )n for n = 0, −1 and −2. The models all exhibit a similar behaviour
in which the parameters decay with time leading to stability, while approaching a
constant value at later times, indicating the structure formation throughout the uni-
verse’s history. The only difference is the limiting value of δM/δM,0 for each model.
For ΛCDM, the limiting value is 0.837, for n = −1 it is 0.915 and for n = −2 it is
0.942.

Figure 3.7: The exotic fluid perturbation parameter δT (t) evolution with cosmic time
for the model F (T ) = α (−T )n for n = 0, −1 and −2. Similarly to the matter pertur-
bation Fig. 3.6, the n = −1 (dotted) and n = −2 (dashed) model perturbations decay
with time, however it approaches a zero value at late times. This is expected as the
fluid approaches a cosmological constant, one which by definition cannot overdense,
and hence has a constant perturbation value of zero (solid). Due to their phantom
nature, however, a non-zero perturbation value is observed at earlier times.
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zero, illustrating the repulsive nature of the cosmological constant. For n = −1

and n = −2, however, its phantom property allows for an initial non-zero value

clustering, which decays as it approaches a cosmological constant behaviour at late

times, as expected. Nonetheless, the solution is stable.

3.3.2 Exponential Model Stability

For the exponential model, a procedure and analysis similar to that carried out for

the power-law F (T ) ansatz shall be explored. The Friedmann equation Eq.(3.1) for

this model takes the form of

T

T0

− α

{
1−

(
1 + p

√
T

T0

)
exp

[
−p
√
T

T0

]}
=

ΩM,0

a(t)3
, (3.50)

where α can once more be obtained by evaluating the expression at current times

α =
1− ΩM,0

1− (1 + p) e−p
. (3.51)

Substituting the value of α back into the Friedmann equation yields

T

T0

+
(ΩM,0 − 1)

1− (1 + p) e−p

{
1−

(
1 + p

√
T

T0

)
exp

[
−p
√
T

T0

]}
=

ΩM,0

a(t)3
. (3.52)

For the exponential model, the exotic fluid EoS parameter takes the form of

wT = −
[
2− p2x2e−px

1− (1 + px) e−px

] [
2 +

(ΩM,0 − 1)

1− (1 + p) e−p
p2e−px

]−1

, (3.53)

where x =
√

T
T0

, which when evaluated at current times (x = 1) yields

wT,0 = −
{

1 +
ΩM,0p

2e−p

2 [1− (1 + p) e−p]− p2e−p

}−1

. (3.54)

54



Chapter 3: Stability of the FLRW Metric in Torsional Gravity

To determine which values of p are to be considered to realise the desired cosmology,

the behaviour of ωT,0 with p is analysed. A singularity arises when

2
[
1− (1 + p) e−p

]
+ (ΩM,0 − 1) p2e−p = 0, (3.55)

which cannot be solved analytically as it is a transcendental equation. Nonetheless,

a numerical value is obtained using observational data, yielding p? ≈ −1.18. Then,

it is observed that for p > p?, ωT > −1 while p < p?, ωT <
1

ΩM,0−1
≈ −1.43. Based

on these considerations, it is more suited to choose values for p > p?. The constraint

can be restricted further to p > 0 since for values between p? < p ≤ 0, the EoS is

non-negative and hence does not compare with observations.

Next, the deceleration parameter is found to be

q = −1 +
3

x2

x2 [1− (1 + p)e−p] + (ΩM,0 − 1) [1− (1 + px) e−px]

2 [1− (1 + p)e−p] + (ΩM,0 − 1)p2e−px
, (3.56)

which when evaluated at present times is reduced to

q0 = −1 +
3ΩM,0 [1− (1 + p)e−p]

2 [1− (1 + p)e−p] + (ΩM,0 − 1)p2e−p
. (3.57)

Similar to the previous instance, determining a general relation between p and ΩM,0

which gives rise to an accelerating behaviour is not analytically possible due to the

presence of the exponential functions. Nonetheless, a numerical bound is obtained,

yielding p < −1.18 or p > 0.68. From the EoS discussion, since p > 0 is favoured,

values of p > 0.68 shall be considered. Two values are taken, being p = 2 (ωT ≈

−0.80) and p = 5 (ωT ≈ −0.97).

With the models defined, the background behaviour shall be the first to be analysed,

followed by the model stability. Once again, the initial condition a (10−5 Gyr) = 10−4

was used while in the plots, ΛCDM is represented by the solid curve, p = 2 as dotted

and p = 5 as dashed.
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Fig. 3.8 represents the expansion history with cosmic time for the models compared

with ΛCDM. As the EoS of the exotic fluid lies in a quintessence state5 as shown

in Fig. 3.9, this causes a slower accelerated expansion than ΛCDM at late times.

For the p = 5 model however, this is practically indistinguishable in this regard.

At early times, the evolutionary behaviours for both p model values are practically

identical.

The EoS of the exotic fluid is explored in further detail. This is illustrated in Fig. 3.9.

It is evident that the p = 5 closely mimics the ΛCDM behaviour with an almost

constant value ωT ∼ −1. On the other hand, the p = 2 model deviates from such

behaviour at present times. Both models exhibit an early and late time cosmological

constant behaviour.

Figure 3.8: The evolution of the scale factor a(t) with cosmic time for the model

F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and 5, compared to the ΛCDM model. The

overall behaviour of the models mimics that of ΛCDM, albeit at slower rates, most
notably that for p = 2. p = 5 yields a behaviour which is practically indistinguishable
from ΛCDM.

5Quintessence here is used in the context of having an equation of state ω > −1 and not the
scalar field model presented in Chapter 1. See, for instance, Ref. [81] where this definition has
been used.
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Figure 3.9: EoS behaviour of the exotic fluid for the model

F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and p = 5 in comparison with the ΛCDM

model. Here, the models exhibit a quintessence behaviour, at which they peak at
some maximum value at a certain stage during the evolution. At early and late times,
both models approach a cosmological constant behaviour. Observe that the p = 5
model closely mimics that of ΛCDM as the value is almost constant (ωT ∼ −1).

The previous claims are further supported by the evolution of the deceleration pa-

rameter illustrated in Fig. 3.10. Clearly, the p = 2 model exhibits a slower ac-

celerated expansion at late times, while the p = 5 closely mimics the ΛCDM be-

haviour. Nonetheless, the standard features where the models start at q(0) = 0.5

and approach q → −1 at late times are retained. Furthermore, the transition from

deceleration to acceleration all happen at approximately the same time (t ≈ 8 Gyr).

The density parameters for matter and the exotic fluid are shown in Fig. 3.11. In this

case, the quintessence behaviour of the exotic fluid causes the matter-exotic fluid

equality to occur at an earlier time compared to ΛCDM (although for the p = 5

model this shift is negligible). The standard behaviour of matter being dominant at

early times and the exotic fluid to dominate at late times is retained.
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Figure 3.10: The evolution of the deceleration parameter q(t) with cosmic time

for the model F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and 5, compared to the

ΛCDM model. The overall behaviour of the models mimics that of ΛCDM, albeit at
slower rates, most notably that for p = 2. p = 5 yields a behaviour which is practically
indistinguishable from ΛCDM. The initial drop results from computational limitations
towards the initial condition.

Figure 3.11: Density parameter evolution for the matter and exotic fluids with

cosmic time for the model F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and p = 5

compared to the ΛCDM model is shown. Overall, the models exhibit similar behaviour
with p = 5 closely mimicking ΛCDM. However, due to the quintessence nature of the
exotic fluid, the matter-exotic fluid equality occurs at an earlier stage. Nonetheless,
the early domination by matter and exotic fluid domination at late times is retained.

58



Chapter 3: Stability of the FLRW Metric in Torsional Gravity

Moving towards the stability behaviour of the model, the Hubble perturbation is

first presented, as shown in Fig. 3.12. Clearly, the perturbations decay with time

and hence the solution is stable. Similar to the power-law model, the Hubble per-

turbation decays to a zero value, indicating the attractor behaviour associated with

de Sitter cosmologies found in f(T ) models [178].

Once again, the matter perturbation Fig. 3.13 yields stability as the parameter

decays with time while approaching a constant value indicating structure formation.

From the models considered, p = 2 takes the longest time to approach this constant

value, which is an indicator that structure continued to form for a longer time

compared to p = 5 and ΛCDM. This is expected as the accelerated expansion is

slower, allowing for more structure to form during the universe’s lifetime.

Contrary to the power-law model, however, lies in the exotic fluid behaviour shown

in Fig. 3.14. The exponential model starts and approaches a value of zero at late

Figure 3.12: Hubble parameter perturbation evolution for the exponential model

F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and 5 compared to ΛCDM. Each model

mimics the behaviour obtained in ΛCDM, albeit with slight value differences at early
times and present times. Regardless, the perturbations decay to zero indicating sta-
bility.
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Figure 3.13: Evolution of the matter perturbation with cosmic time for the model

F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and 5 compared to the ΛCDM model. Sta-

bility for each model is retained, as the evolution decays with time until it approaches
a constant value. This asympototic limiting value varies from model to model, in
which it is 0.837 for ΛCDM, 0.686 for p = 2, and 0.817 for p = 5.

Figure 3.14: Exotic fluid perturbation evolution with cosmic time for the model

F (T ) = αT0

(
1− exp

[
−p
√

T
T0

])
for p = 2 and p = 5, compared to the ΛCDM model.

Here, the exponential model deviates from the ΛCDM behaviour during intermediate
times due to the quintessence nature of the fluid. However, at early and late times,
the perturbation approaches a zero value which is expected since during those times,
the fluid closely mimics a cosmological constant.
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times, as expected by the behaviour of the EoS. However, the quintessence behaviour

during intermediate times indicate a non-zero value in the perturbation parameter,

leading to possible formations of overdense regions. Stability for both models is,

nonetheless, retained.

3.4 Discussion

The FLRW background in an f(T ) gravity theory was examined and studied under

homogeneous perturbations to determine whether the cosmological behaviour for

the given Lagrangian is deemed stable. Study of stability determines whether the

solution retains that behaviour throughout its time, and hence serves as means to in-

vestigate whether the description is valid throughout the universe history. For f(T )

gravity, the matter homogeneous perturbation and Hubble perturbation parameters,

which are the main results of this chapter, evolve as given in Eqs.(3.21) and (3.22).

As both quantities are solely dependent on the Hubble parameter, stability is deter-

mined depending on its evolution. Furthermore, the exotic fluid component which

is associated from the TEGR Lagrangian deviation was also obtained as listed in

Eq.(3.27).

Initially, stability was investigated for specific ansatz choices of scale factor, the

power-law and de Sitter models, which have a diverse number of applications in

cosmology. In both instances, the resulting evolution is stable but with minor dif-

ferences. In the power-law model, each perturbation parameter decays inversely

with time while in the de Sitter case, the Hubble and exotic fluid perturbations are

identically zero, while the matter and radiation perturbations result in a constant.

For the former, this implies that the solution remains stable and ‘attracted’ towards

the solution with time while in the latter, as the Hubble perturbation is identically

zero, means that the solution remains indefinitely at that point. The matter and ra-

diation perturbation differences refer to the growth of such perturbations, in which
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power-law models realise a growth, whereas during the de Sitter phases growth stops

as the perturbation remains constant.

Next, specific f(T ) ansatzes are chosen to examine their resulting cosmological his-

tories and features together with their associated stability analysis. Two viable

ansatz models were chosen, the power-law model F (T ) = α(−T )n and the expo-

nential model F (T ) = αT0

(
1− exp

[
1− p

√
T
T0

])
. Since both models have a free

parameter n and p respectively, these parameters have been restricted through the

use of Planck data by demanding an exotic fluid EoS close to that observed ωT ∼ 1

which also yields an accelerated expansion today.

Starting with the power-law model, these restrictions have set the value of n to be

n = −1 and n = −2, which yield a behaviour close to ΛCDM especially towards

late times as the exotic fluid approaches a cosmological constant behaviour during

these periods. For this model, the exotic fluid is strictly phantom in nature. In

each case, the resulting solution is stable as each parameter decays with increasing

time and also retains the feature that matter perturbations do grow throughout the

universe’s timeline. However, as the exotic fluid is not a cosmological constant, an

initial non-zero value of the density parameter δT is observed. Overall, the n = −1

model mimics the ΛCDM behaviour better.

Next, for the exponential model, the parameters p = 2 and p = 5 were chosen to

satisfy the observational constraints. Contrary to the power-law model, the exotic

fluid now behaves as a quintessence fluid, attributing to a slower acceleration as

evident by the comparisons of Figs.3.3 and 3.10. At late times, however, the fluid

approaches a cosmological constant linking a close behaviour to ΛCDM. Due to this

behaviour, the exotic fluid perturbation is non-zero at early and present times, and

approaches a zero value at late times. Both models exhibit stability against Hubble

and matter perturbations, with the latter persisting at late times.
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All in all, the p = 5 exponential model exhibits the closest behaviour to ΛCDM in

terms of evolution and nature, making it a viable candidate to study for cosmology.

Nonetheless, it is worth noting that the model still has to obey other observational

criteria as well (for example, Big Bang Nucleosynthesis bounds are satisfied for

this model [180]). Despite the power-law model not being as favourable as the

exponential model (at least for the parameters considered), it can still be a viable

model as discussed in Ref. [181], where it has been shown to be in agreement with

CMB observations. The requirement of stability can therefore help restrict the

possible Lagrangian models in hope of realising a more complete picture for the

description of the universe.
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Reconstruction in f (T, TG)

Theories of Gravity

The ongoing research to find a gravitational model which is able to completely

describe the universe is still an open problem. From a phenomenological point of

view, it is questionable whether the basis of the theory, the form and behaviour

of matter, or the gravitational Lagrangian sector are of the correct form to match

with observations. Up to this point, this question is tackled under the viewpoint

of teleparallel gravity with an associated gravitational Lagrangian, coupled with

(perfect) matter components. As seen in the previous chapter, the choice of the

Lagrangian is important to check whether the model is cosmologically stable.

In particular, two distinct approaches were investigated. One approach, which has

been carried out in Section 3.3, assumes a given Lagrangian ansatz which, accord-

ing to its form, determines the resulting cosmology. Although viable models can

be constructed, as seen by the power-law and exponential f(T ) models, there is

no method which hints a specific form of this Lagrangian. At best, these models

are constrained from theoretical considerations and observational data, leaving the

possible f(T ) Lagrangian form clouded by numerous models with no clear sign of

its true form [77,182].
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This shortcoming is avoided in the second approach. Given a specific evolutionary

ansatz (being power-law cosmology and de Sitter evolution in Section 3.2), these evo-

lutions are only valid in the f(T ) theory, provided that the field equations give rise

to the solution. This is only possible through a restriction in the f(T ) Lagrangian,

a method known as reconstruction.

Reconstruction serves as a way to conform with observations by constructing a La-

grangian (or dark energy model) which directly yields the desired behaviour provided

by observations. Using SNe Ia data as an example, a relation between redshift z and

the Hubble parameter can be constructed. From this correspondence, the quantities

which give rise to the considered Lagrangian could then be expressed purely in terms

of either variable, reducing the field equations into a set of differential equations

which, in principle, can then be solved to yield the required Lagrangian [183–187].

Otherwise, as seen in the previous chapter, it can be used to examine the Lagrangian

behaviour during specific periods, determining whether the model under study is ca-

pable of generating the cosmological behaviours [188–192]. This can be investigated

throughout various epochs including early times (for example, inflation through re-

construction of the inflaton potential [193,194]), transition periods [195], domination

periods, or late time acceleration periods (for instance, de Sitter phases).

Solving these differential equations, however, is not always possible. Taking for

instance f(R) gravity, the resulting equations are fourth order, leading to a complex

system of equations which can be difficult to solve analytically. This becomes even

more exhaustive if higher order corrections are included. In the case of f(T ) gravity,

however, this becomes relatively simpler as it is a second order theory [128]. For

cases where analytical expressions are not possible, numerical computations can be

considered, with boundary conditions set either from local solar system tests or from

cosmological sources [182].

In cases where a solution is indeed found, this does not make the model necessarily

viable. Although it will generate the desired behaviour, it must still pass through
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other observational tests, both local and cosmological [196]. Furthermore, the recon-

structed solution can result in complicated expressions which would not be suitable

for use [188] and can also suffer from instabilities. Nonetheless, it may well still be

a step closer towards a more formal expression of the gravitational Lagrangian.

For the work presented in this chapter, the reconstruction technique shall be ap-

plied to the teleparallel Gauss-Bonnet extension, f(T, TG) gravity in the context of

a spatially flat FLRW metric. Contrary to what is found in f(T ) gravity, the intro-

duction of the Gauss-Bonnet term will introduce an increased difficulty to solve the

Friedmann equations, as these become partial differential equations (PDEs) instead

of ordinary differential equations (ODEs). Therefore, particular ansatz choices shall

be considered as means to simplify the problem. Furthermore, in this work, the

metric signature is reversed, leading to the expressions of the torsion scalar and

TEGB term to be

T = 6H2, TG = 24H2(H2 + Ḣ). (4.1)

It is observed that for this particular spacetime, the TEGB term matches identi-

cally with the curvature based Gauss-Bonnet term, G. Therefore, any uncoupled

f(G) Lagrangian is equivalent to an uncoupled f(TG) Lagrangian leaving a sense of

equivalence between the two theories, and allowing for a comparison between the

reconstructed solutions obtained from either formulation. However, this is not true

for more general spacetimes due to the boundary term contribution [197].

The resulting modified Friedmann equations for the spatially flat FLRW spacetime

in f(T, TG) gravity are [79]

f − 2TfT − TGfTG + 24H3ḟTG = 2ρ, (4.2)

−ḢfT −HḟT + 2H
(

2Ḣ −H2
)
ḟTG + 4H2f̈TG = −1

2
(ρ+ p) . (4.3)

For the reconstruction technique, it is sufficient to consider the first equation Eq.(4.2).
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The work concerning reconstruction shall be applied as follows. Firstly, the model

ansatz and cosmological models considered shall be presented and discussed, to-

gether with a constraint to reduce the number of viable Lagrangians. Afterwards,

the resulting Lagrangian models are reconstructed together with their viability con-

straints.

4.1 f (T, TG) Ansatz and Cosmological Models

As previously discussed, the introduction of TG in the Lagrangian results into a

more complicated system to solve. Ansatz choices for the Lagrangian are therefore

considered to simplify the problem. Motivated by the ansatz models which have

been considered in literature, such as those in f(R,G) gravity in Refs. [198,199] and

those which appear in f(T, TG) gravity in Refs. [80,200], the following are considered

(i) f(T, TG) = g(T ) + h(TG), (iv) f(T, TG) = −T + TGg(T ),

(ii) f(T, TG) = Tg(TG), (v) f(T, TG) = −T + µT βTG
γ.

(iii) f(T, TG) = TGg(T ),

The first model is a separable additive type, one of the simplest forms that can be

considered for reconstruction which can realise various well known Lagrangians. For

instance, if g(T ) = −T , the h(TG) contribution takes the role of the deviation from

TEGR (and hence of dark energy). On the other hand, an arbitrary choice of g and

h may lead to a different formulation from TEGR. In the case of reconstruction, a

further remark about this model is observed. From the Friedmann equation Eq.(4.2),

the additive model takes the form of

h+ g − 2TgT − TGhTG + 24H3ṪGhTGTG = T0Ωω,0a
−3(1+ω). (4.4)
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Given a specific cosmology a = a(t), the T and TG functions can be expressed in

terms of t. Suppose that these relations are invertible, i.e. t = t(T ) and t = t(TG).

The left-hand side (LHS) of this equation infers that it could be separated as an

expression solely in T and another in TG. However, the right-hand side (RHS) can

now be expressed in either variable, a choice between whether the matter is sourced

by the torsion scalar or the TEGB scalar. Since in the TEGR limit matter is sourced

by the torsion scalar, without loss of generality, this will be assumed to be the case in

the following work. Nonetheless, the choice for the TEGB scalar can be considered

instead.6 Now that the equation can be fully separated, each T and TG contribution

becomes equal to a constant, say λ, yielding the relations

g − 2TgT − T0Ωω,0a(T )−3(1+ω) = −h+ TGhTG − 24H(TG)3ṪG(TG)hTGTG = λ. (4.5)

Evidently, g(T ) = λ = −h(TG) is a solution. However, this implies that λ does

not appear in the overall gravitational f(T, TG) Lagrangian and hence the source of

this λ can be neglected. Thus, the resulting system of ODEs for an additive model

results in

g − 2TgT = T0Ωω,0a(T )−3(1+ω), (4.6)

h− TGhTG + 24H(TG)3ṪG(TG)hTGTG = 0. (4.7)

Models (ii) and (iii) represent rescaling solutions for T and TG respectively. In

the former model, for g(TG) = α+ h(TG) where α is some constant, yields a TEGR

rescaling with h(TG) acting as the source of deviation from TEGR. However, for non-

trivial forms of g(TG), this could realise non-trivial functions which in turn realise

the observed gravitational behaviour. In the case of model (iii), this will naturally

realise a non-trivial behaviour, as TEGR cannot be constructed. However, model

(iv) accounts for this difference by the introduction of a TEGR contribution in the

6This consideration has also been applied in f(R,G) gravity [198, 199] and in f(T,B) gravity
[69].
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gravitational Lagrangian, leaving the TGg(T ) contribution to act as the deviation

from TEGR. Nonetheless, the similarity between the last two models yields an in-

teresting result. Taking both ansatz models in the Friedmann equation Eq.(4.2),

the resulting Lagrangians are related through

Model (iv) f(T, TG) = −T − 3TG
4T

+ Solution of Model (iii). (4.8)

Thus, although the models are fundamentally different, obtaining the solution for

model (iii) automatically yields the resulting behaviour of model (iv). Thus, only

the solutions for model (iii) will be listed.

Lastly, a power-law model with a TEGR contribution is considered. In this case,

the ΛCDM model can be achieved in the event that β = γ = 0. Furthermore,

the f(T ) power-law model considered in Chapter 3 can also be recovered in the

case when γ = 0. More generally, this functional form also appears in the study

of Noether symmetry in the absence of the TEGR contribution with the constraint

that β = 1− γ which yields scale factor power-law solutions a(t) ∝ t2γ+1, as well as

oscillatory a(t) ∝ tan t and hyperbolic forms a(t) ∝ tanh t for γ = 1 [80,200].

With the ansatz models defined, the cosmological behaviours considered for recon-

struction shall be the following (a) power-law cosmology, (b) expanding de Sitter

phase and (c) ΛCDM behaviour. A glimpse about the resulting reconstructed La-

grangian in the case of f(T ) gravity for the first two models has been derived in

Chapter 3. Here, the results for the first two models will now be extended with the

TG contribution for the various model ansatz considered. Nonetheless, the previously

obtained results will be recovered in the additive case model when h(TG)→ 0.

The interesting application is the reconstruction for ΛCDM, to determine whether

f(T, TG) gravity can produce the ΛCDM cosmology. As shown in Chapter 3, f(T )

gravity yields ΛCDM if it is precisely ΛCDM (at least for the case of dust, generali-

sations will be discussed further on). Thus, it proves to be an interesting alternative
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if f(T, TG) is able to generate alternative models which yield the ΛCDM cosmology.

Given the diverse number of gravitational Lagrangian which could be constructed,

it is as important to distinguish between those which could be physically viable for

use in other areas. A simple consideration is to recover the vacuum solutions (for

instance, Minkowski and Schwarzchild), meaning that in the absence of matter, both

T and TG would be null. Examination of the Friedmann equations implies a simple

Lagrangian constraint, being f(0, 0) = 0.7 Therefore, those which do not obey this

constraint will be deemed to be non-viable.

In what follows, for simplicity, the boundary
√
T term and Gauss-Bonnet contribu-

tions which appear in the reconstructed solutions will not be listed.

4.2 Power-law Reconstruction

The reconstruction of the Lagrangian is first applied to power-law models, i.e. those

of the form a(t) ∝ tα where α 6= 0 is some constant. The case for α = 0 corresponds

to a static universe which is not considered here. For this type of cosmology, T and

TG take the following forms,

T = 6
α2

t2
, TG = 24

α3

t4
(α− 1) =

2

3

(
1− 1

α

)
T 2, (4.9)

which implies that each component (including the scale factor) can be expressed in

any of the scalars. An interesting behaviour is observed for α = 1 as this sets the

TEGB term to be identically zero. For these cases, any function of TG would become

constant and hence the reconstruction technique for this type of cosmology shall be

treated separately. This particular value of α is of major interest as it corresponds

7The f(T, TG) vacuum constraint considered here appears in constructing a viable Minkowski
model as discussed in Ref. [201]. For f(T ) gravity, a similar condition appears in the context
of Schwarzchild solutions being f(T = 0) = 0 [202] while a detailed account regarding vacuum
solutions for f(R) theories of gravity is given in Ref. [203] where a similar result arises, being
f(R = 0) = 0.
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to a coasting cosmology discussed in Chapter 3.

4.2.1 The Case α 6= 1

Starting with α 6= 1, the results are shown in Table 4.1. The solutions clearly

indicate that the choice of the EoS parameter of the perfect fluid greatly influences

the form of the solution as seen in the additive model and the TG rescaling model.

Furthermore, the relationship between α, γ and β in the power-law ansatz model

determines whether the power-law contribution in the Lagrangian is present (i.e.

whether µ is zero or non-zero). Note that the Gauss-Bonnet solution in the additive

case matches that obtained from other sources [199,204–208].

In these cases, the vacuum condition is satisfied, depending on parameter restrictions

of the given model as illustrated in Table 4.2. Starting with the additive case, an

interesting behaviour is observed if both the g(T ) and h(TG) solutions are required

to exist. For the α(1 + ω) > 0 and α < 1 case, this sets α < 0 and ω < −1 or

0 < α < 1 and ω > −1. This means that for phantom fluids, α < 0, resulting in

an accelerating cosmology, a property which is normally attributed to such fluids.

On the other hand, non-phantom fluids lead to 0 < α < 1, which corresponds to a

decelerating universe. This is interesting as quintessence with EoS −1 < ω < −1
3

is normally associated with an accelerating behaviour but here, it still generates a

decelerating phase.

On the other hand, when 1 − 3α(1 + ω) = 0 and α < 1, one finds the following.

For 0 < α < 1, the EoS ω > −2
3
. Similar to the previous scenario, it means that a

decelerating universe can still be generated for fluids normally associated with an

accelerating behaviour
(
−2

3
< ω < −1

3

)
. On the other hand, for α < 0, ω < −1.

This is again the expected behaviour, where phantom fluids generate an accelerating

cosmology.
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f(T, TG) = g(T ) + h(TG)

1− 3α(1 + ω) 6= 0 g(T ) = Ωw,0T0

1−3α(1+ω)

(
T0

T

)− 3α(1+ω)
2

1− 3α(1 + ω) = 0 g(T ) = −1
2
Ωw,0T

√
T0

T
ln
(
T0

T

)
In either case, h(TG) = c1TG

1−α
4 .

f(T, TG) = Tg(TG)

g(TG) = c2T
m+

G + c3T
m−
G − 2(α−1)Ωw,0

3[6α2w2+(13α2−11α)w+7α2−11α+4]

(
TG
TG,0

) 3α(1+ω)−2
2

provided the

denominator of the final term is non-zero. No solution has been obtained when the
latter is zero except for the homogeneous solution.

f(T, TG) = TGg(T )

4− 3α(1 + ω) 6= 0 g(T ) = 3Ωw,0
2[4−3α(1+w)]

(
T
T0

) 3α(1+ω)
2

4− 3α(1 + ω) = 0 g(T ) = 3Ωw,0
4T0

ln
(
T0

T

)
f(T, TG) = −T + µT βTG

γ

For the µ term to contribute, the conditions β+2γ = 1, 2 = 3(1+ω)α and γ 6= α−1
3α−1

must be satisfied. If the µ term does not contribute to the field equations, then
2 = 3(1 + ω)α with (α + γ − 1)(2β + γ − 1) + 3(γ − 1)γ = 0.

Table 4.1: Summary of the model f(T, TG) Lagrangians which reproduce a power-
law cosmological solution a(t) ∝ tα with α 6= 0 or 1. The solutions are dependent on
the type of fluid considered. In the special case of a power-law ansatz model, it is
also dependent on the relationship of the model parameters. Here, the variable m± :=
1
8

(
3− α±

√
α2 − 22α+ 25

)
was defined, and c1,2,3 represent integration constants.

In the Tg(TG) rescaling, all contributions are allowed to coexist while obeying the

vacuum condition when −3 < α < 7 and 3α(1 + ω) > 1. Here, the observed be-

haviour is the following. For −3 < α < 0, the EoS is always phantom, leading to

the expected accelerating behaviour of phantom fluids. For 0 < α < 1, the EoS will

always obey the constraint ω > −2
3
. Thus, depending on the choice of α, fluids with

EoS −2
3
< ω < −1

3
can still generate a deceleration. Lastly, for α > 1, another inter-

esting situation arises. Any ω > −2
3

satisfies the vacuum constraint, meaning that
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f(T, TG) = g(T ) + h(TG)

1− 3α(1 + ω) 6= 0 α(1 + ω) > 0
1− 3α(1 + ω) = 0 Always

h(TG) α < 1

f(T, TG) = Tg(TG)

m+ term α < 7
m− term −3 < α < 7

Fluid term 3α(1 + ω) > 1

f(T, TG) = TGg(T )

4− 3α(1 + ω) 6= 0 4 + 3α(1 + ω) > 0
4− 3α(1 + ω) = 0 Always

f(T, TG) = −T + µT βTG
γ

Always

Table 4.2: Summary of the f(T, TG) models which satisfy the vacuum constraint for
the power-law cosmological solution a(t) ∝ tα with α 6= 0 or 1.

fluids which are not normally associated with an accelerating cosmology
(
ω > −1

3

)
can be used to realise this behaviour.

For the TGg(T ) rescaling scenario, this satisfies the vacuum constraint only in the

presence of other matter fluid components. In the first instance, this is only possi-

ble for 4 + 3α(1 + ω) > 0, which brings the following implications. When α < 0,

depending on the choice of α, it is possible to consider EoSs normally associated

with deceleration while still yielding an accelerating universe. In this case, phantom

fluids trivially satisfy the constraint. For cases when 0 < α < 1, every ω > −7
3

satis-

fies the constraint meaning the existence of both phantom and non-phantom fluids

associated with an accelerating cosmology, which yield a decelerating behaviour in

this model. Lastly, in the case when α > 1, every EoS ω ≥ −1 satisfies the con-

straint, inferring the possibility of fluids associated with non-accelerating behaviour
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(
ω ≥ −1

3

)
to generate acceleration.

In the second instance when 3α(1 +ω) = 4, the following is obtained. When α < 0,

ω < −1 while for 0 < α < 1, ω > 1
3
. These are expected behaviours in terms of

cosmological acceleration/deceleration. For the case when α > 1, −1 < ω < 1
3
.

This leads to another interesting behaviour as for −1
3
≤ ω < 1

3
, an accelerating cos-

mology results despite these EoSs resulting into a constant velocity or decelerating

behaviours.

Lastly, the power-law model always satisfies the constraint. Here, for α < 0, ω < −1,

when 0 < α < 1, ω > −1
3
, and for α > 1, −1 < α < −1

3
. All cases result into

expected behaviours for the resulting ranges of the EoS.

4.2.2 The Case α = 1

Moving towards the coasting cosmology case, the results are presented in Table 4.3,

which clearly exhibits a distinction from the α 6= 1 case. Here, the first model be-

haves as a g(T ) function with a cosmological constant (as h(TG) becomes constant)

while the second model reduces to a TEGR rescaling (provided g(0) 6= 0). Interest-

ingly, the third model reduces to a vanishing Lagrangian, and hence cannot yield

any cosmological dynamics while the fourth model reduces to TEGR. Lastly, the

power-law model reduces to either TEGR or its corresponding rescaled version.

With these simplifications in mind, the possible reconstructed solutions are the

following. In the additive case, new solutions appear in the forms of η1 and η2 while

the solution which describes the matter content remains unchanged. In the Tg(TG)

rescaling case, solutions only appear for a stiff fluid (ω = 1) and for ω = −1
3
. For

the TGg(T ) rescaling, a solution is obtained provided ω = −1
3

with no apparent

constraint on g(T ). Lastly, in the power-law ansatz model case, a solution exists

only for ω = −1
3

with the β parameter taking different restrictions depending on the
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magnitude of γ.

For the given existence conditions, the models satisfy the vacuum criterion in the

following instances: model (i) for TGgTG |TG→0 = 0 and in the presence of fluids

ω > −1, (ii) g(0) must be finite, (iv) for TGg(T )|T, TG→0 = 0 and (v) is always

satisfied. Note that here, the additive and Tg(TG) solutions infer the existence of

other fluids, which can generate a constant velocity expansion besides ω = −1
3
, a

non-phantom fluid usually associated with such a coasting cosmology.

f(T, TG) = g(T ) + h(TG)

g(T ) = −η1 − 8η2T 2

9
+


Ωω,0T0

(
T
T0

) 3
2 (ω+1)

1−3(ω+1)
, for ω 6= −2

3

−1
2
Ωω,0T0

√
T
T0

ln
(
T
T0

)
, for ω = −2

3

f(T, TG) = Tg(TG)

ω = 1
g + TGgTG |TG→0 = 0,

gTG + 2TGgTGTG |TG→0 = −Ω1,0t04

48
.

ω = −1
3

g + TGgTG |TG→0 = −Ω− 1
3
,0,

gTG + 2TGgTGTG |TG→0 = 0.

f(T, TG) = TGg(T )

No solution.

f(T, TG) = −T + TGg(T )

g(T ) is unconstrained and ω = −1
3
.

f(T, TG) = −T + µT βTG
γ

ω = −1
3

For γ > 0, β is unconstrained while for γ = 0, β = 1.

Table 4.3: Summary of the model f(T, TG) Lagrangians which reproduce a linear
coasting cosmology a(t) ∝ t. Contrary to the general power law case, models (iii)
and (iv) are distinct as the TG term does not contribute in this limit. Furthermore,
a fluid with EoS ω = −1

3 is mostly required to have any physical solutions which is
expected for such coasting cosmologies. Here, the variables η1 := h−TGhTG |TG→0 and
η2 := TGhTGTG |TG→0 were defined.
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4.3 de Sitter Reconstruction

During a de Sitter phase, the Hubble parameter approaches a constant value, say

H = HdS, which results in T = 6HdS
2 and TG = 24HdS

4 to become constant. In this

case, the Friedmann equation Eq.(4.2) takes the form

f − 2TfT − TGfTG = T0Ωω,0e
−3(1+ω)HdSt. (4.10)

As the LHS is time-independent, the only source of matter which can satisfy the

equation is one which behaves as a cosmological constant ω = −1. In other words,

the resulting equation to solve is

f − 2TfT − TGfTG = T0ΩΛ,0. (4.11)

This equation can be treated in two ways. The first is as a PDE, which can be

solved analytically to give

f(T, TG) = T0ΩΛ,0 +
√
T g

(
TG√
T

)
, (4.12)

where g is some arbitrary function, leading to an infinite class of solutions which

describe the de Sitter cosmology. However, if the vacuum condition must be satisfied,

only a subset of these solutions will result to be viable, as the function g must satisfy

the constraint

T0ΩΛ,0 = −
√
T g

(
TG√
T

)
|T, TG→0 . (4.13)

For example, the function g = −T0ΩΛ,0

(
3TG
2
√
T

)− 1
3

satisfies this constraint. How-

ever, here, a cosmological constant fluid has been assumed to be present in the

universe. If the gravitational Lagrangian is to replace this source, then the system

must be solved in the absence of this fluid. This alters the vacuum condition to be
√
Tg
(
TG√
T

)
|T, TG→0 = 0. For instance, the model g ∝ TG

2

T
satisfies this constraint but
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not the previous one, meaning that de Sitter cosmologies can be generated without

the requirement of a cosmological constant source. Observe that the Lagrangians

f ∝ e
T

12HdS
2 and f ∝ e

TG
24HdS

4 which appear in Refs. [69,204] also satisfy the PDE but

not the vacuum constraint as both models reduce to a non-zero constant.

A secondary approach is to treat Eq.(4.11) as an algebraic expression for the Hubble

parameter HdS. Given a function f(T, TG), the LHS yields an expression in terms of

the Hubble parameter which, in principle, can be solved to yield a value during de

Sitter times. Taking TEGR as a first example, this results in HdS = H0

√
ΩΛ,0 ≡

√
Λ
3

with Λ representing the standard cosmological constant which appears in ΛCDM. As

previously discussed, the gravitational Lagrangian is constructed to act as a source

for the de Sitter phase without introducing a cosmological constant fluid, meaning

the RHS will be set to zero. This shall be presented through some model examples.

In the case of f(T ) gravity, taking the power-law model f(T ) = −T + αT β, for

parameters α and β 6=
{

1
2
, 1
}

, the Hubble parameter adopts the value of

HdS =
[
6β−1α(2β − 1)

] 1
2(1−β) . (4.14)

The vacuum condition is satisfied provided that β > 0 and since an expanding

universe is observed, this constrains α < 0 for 0 < β < 1
2

and α > 0 for β > 1
2
. If the

parameter choices considered in Ref. [178] are chosen, this model yields a de Sitter

attractor with the same resulting Hubble value, as shown in Eq.(4.14). A similar

analysis can be carried out for other f(T ) Lagrangian forms.

However, this approach does not always yield a Hubble value. For instance, the

model f(T, TG) = −T + µ
√
T 2 + ηTG for constants µ and η yields the constraint

µ = −
√

3
√

2η + 3

η − 3
. (4.15)
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Despite this, it does impose a constraint when the model generates a de Sitter

behaviour. Furthermore for this model ansatz, the vacuum constraint is trivially

satisfied. Note that the parameter constraints also arise from a dynamical stability

approach as shown in Ref. [81].

4.4 Reconstruction of ΛCDM Cosmology

In this section, the reconstruction of ΛCDM cosmology is considered, in the presence

of matter and a cosmological constant-like fluid. Thus, the effects of radiation is

neglected for simplicity. Such a cosmology is realised for

T

T0

= ΩM,0a
−3 + (1− ΩM,0) , (4.16)

which generates the analytical scale factor solution

a(t) =

(
ΩM,0

1− ΩM,0

)1/3

sinh2/3

(
3
√

1− ΩM,0

2
H0t

)
. (4.17)

From Eq.(4.16), the scale factor can be analytically expressed in terms of the torsion

scalar

a3 =
T0ΩM,0

T − T0 (1− ΩM,0)
. (4.18)

On the other hand, the TEGB term is related to the torsion scalar through

TG = (1− ΩM,0)T0T −
T 2

3
, (4.19)

which can be inverted to yield an expression for T = T (TG). The aim here is to

determine whether an f(T, TG) Lagrangian is capable of reproducing the ΛCDM

expansion history (not the ΛCDM model Lagrangian) without invoking any dark

fluid or the addition of any cosmological constant, while also satisfying the vac-

uum condition. For the model ansatz considered, the resulting functional forms are
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summarised in Table 4.4.

Overall, the derived functions are fairly complicated due to the introduction of the

hypergeometric functions except for the power-law model, which is able to gener-

ate simple solutions. Despite these apparent complicated results, the solutions do

simplify to simple forms in the special case of dust. For instance, the additive g(T )

function reduces to the standard ΛCDM result g(T ) = −T − ΩΛ,0T0, as shown in

Refs. [121,128]. In the TG rescaling model, the Lagrangian takes the simple form

f(T, TG) = (2T − ΩΛ,0T0)
3TG
8T 2

. (4.20)

However, the Tg(TG) model case does not yield any analytical solutions that describe

the matter sector. For the power-law model, no solutions are derived for an equation

of state different from ordinary (dust) matter. In this case, the resulting solutions

are the standard ΛCDM Lagrangian and the non-trivial solution having β = −2 and

γ = 1. For a general EoS, the g(T ) function derived in the additive case matches

with those found in Refs. [69,128].

However, none of the reconstructed solutions satisfy the vacuum condition in the

presence of matter fluids. For the additive model, g(0) 6= 0 and h(0) = 0 while g(0) =

0 in vacuum satisfying the condition. In the second model, the homogeneous solution

satisfies the constraint. The third model TGg(T ) always diverges, and in the absence

of fluids, the Lagrangian becomes null, making it impossible to satisfy the constraint.

The extended model with a TEGR contribution −T + TGg(T ) either suffers from

divergences (in the presence of matter fluids), or reduces to a non-zero constant (in

vacuum), and hence cannot host vacuum solutions either. A similar result emerges

in the power-law case and hence, the condition is never satisfied. Therefore, only the

first two models can satisfy the constraint while describing a ΛCDM cosmology, at

the expense that the universe is an empty state solely dominated by some effective

fluid arising from the TEGB contribution. Given the presence of matter in the
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universe, questions arise regarding the validity of such solutions.

f(T, TG) = g(T ) + h(TG)

g(x) = T0Ωω,0

(
ΩM,0

ΩΛ(x−1)

)−(1+ω) [
2F1

(
1, ω + 1

2
; 1

2
;x
)

+ x 2F1

(
1, ω + 3

2
; 3

2
;x
)]

h(y) = c1(1− 3y)2/3
[
(40y + 24)

√
1− y + 5

√
6 2F1

(
1
2
, 2

3
; 5

3
; 3y−1

2

)
(y2 − 1)

]
f(T, TG) = Tg(TG)

Only the homogeneous solution is found, having a power series solution g(y) =
∞∑
n=0

any
n where the coefficients an obey the recurrence relation

(2 + 7n− 6n2) an + (20n2 + 13n− 9) an+1 − (n+ 2)(24n+ 11)an+2

+3(n+ 3)(4n+ 5)an+3 − 2(n+ 2)(n+ 4)an+4 = 0,
having initial conditions a0 = 3(a2− a3), a1 = 0 with a2,3 acting as the constants of
integration.

f(T, TG) = TGg(T )

ω 6= n ∈ Z+ g(T ) = 3Ωw,0T0

8T 2

(
ΩM,0T0

T−ΩΛT0

)−(1+ω) [
1 + 1+ω

1−ω 2F1

(
1, 2; 2− ω; ΩΛT0

T

)]
ω = n ∈ Z+

g(T ) = −3
4
T0Ωω,0 (T0ΩM,0)−(1+ω) {(1+ω

ω−1

)
lnT [−T0ΩΛ]ω−1

+
1+ω∑
k=0

k 6=ω−1

(
1+ω
k

)
Tω−k−1

ω−k−1
[−T0ΩΛ]k

}

f(T, TG) = −T + µT βTG
γ

ω = 0 {β, γ} = {0, 0}, {−2, 1}
ω 6= 0 No solutions

Table 4.4: Summary of the reconstructed f(T, TG) Lagrangians, which reproduce
an exact ΛCDM model. In the second model, an analytical solution describing the

matter content could not be derived. In this table, x = T
ΩΛT0

, y =
√

1− 4TG
3ΩΛ

2T0
2 , c1

is an integration constant and 2F1(a, b; c;x) is Gauss’s hypergeometric function.
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4.5 Discussion

In this chapter, the resourceful tool of reconstruction has been considered in the con-

text of a general gravitational Lagrangian that is dependent on the torsion scalar

and the TEGB contribution to yield desired cosmological histories in terms of an-

alytical functions. Due to the introduction of a higher-order contribution, it is not

always possible to produce a general analytical solution for the Lagrangian, and

hence specific ansatz are chosen. In particular, the power-law, the de Sitter and

ΛCDM behaviours have been considered for reconstruction. As means to restrict

the possible physical Lagrangian, a further constraint was set, being that the model

is capable of exhibiting vacuum solutions (for instance, Minkowski) for which the

sufficient condition turns out to be f(0, 0) = 0.

Starting with power-law solutions, the special case of a coasting cosmology had to

be investigated separately since in these cases, TG is exactly zero. Overall, as the

summarised results in Table 4.3 show, one finds that models can be constructed to

satisfy the vacuum constraint even for fluids not normally associated with a coasting

cosmology (those being ω = −1
3
). For the remaining instances, as shown in Table 4.1,

a reconstructed Lagrangian can also be constructed. In this case, vacuum conditions

depend on the model considered, where in certain instances, further restrictions on

the parameters α and ω are required, as summarised in Table 4.2. These restrictions

also pose an interesting behaviour in terms of the resulting cosmological dynamics.

Fluids which are not normally associated with, say, a decelerating universe can still

possibly result in such a cosmology.

De Sitter cosmology has also been investigated. In this case, a fluid can only con-

tribute if it behaves as a cosmological constant. Since the aim of this modified

theory of gravity is to sway away from the introduction of such a constant, de Sitter

solutions have been constructed in its absence. The resulting equation Eq.(4.11)

with ΩΛ,0 = 0 can be viewed either as a PDE or as an algebraic equation. In the
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former, the resulting models exhibit de Sitter behaviour naturally, albeit at the ex-

pense of not inferring a de Sitter Hubble value. As for the latter, depending on the

form of the chosen Lagrangian, it infers either a constraint on the parameters which

generate a de Sitter cosmology or infers a specific Hubble parameter value. In both

cases, the vacuum constraint can be satisfied.

Lastly, the f(T, TG) Lagrangian was investigated to see whether it is capable of

reproducing an exact ΛCDM cosmology without invoking a cosmological constant.

As shown in Table 4.4, although the models do not contain an explicit cosmological

constant dependence, none of the solutions satisfy the vacuum constraint except

for the additive and the Tg(TG) rescaling models in an empty universe. However,

this consideration is unrealistic when based on observational criteria, leaving the

reconstructed f(T, TG) models incapable of hosting vacuum solutions. Despite this

issue, the models also suffer from complicated Lagrangian forms arising from the

resulting hypergeometric functions (with the exception of the power-law model).

However, this only appears when expressed for an arbitrary choice of EoS as taking

specific fluid choices (for example, ordinary pressureless matter) can simplify the

Lagrangian significantly, making the models viable for use in other fields.

Therefore, f(T, TG) gravity has been shown to be able to realise various cosmological

solutions while also being capable of recovering vacuum solutions. Nonetheless, the

reconstructed solutions are by no means necessarily viable models as they are still

required to be tested against observations.
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Reconstructing f (T, TG)

Lagrangian for Bounce

Cosmologies

A physical description of the very early time cosmology is still not well understood.

Although a major leap towards a better understanding has been achieved through

the formulation of inflation, this is by no means necessarily correct. Amongst the var-

ious issues encountered in inflation (see Refs. [145,209–213] and references therein),

one finds two major problems: the singularity problem, and the so-called trans-

Planckian problem.

Starting with the former, this is better understood from the Penrose-Hawking sin-

gularity theorems [214,215]. Roughly speaking, these state that, given the GR field

equations and certain constraints in the stress-energy momentum sector, there exists

a time before inflation where a singularity arises, namely the Big Bang singularity.

This singularity represents a point at which the equations break down, and nothing

can be inferred of what happens past the singularity [209, 213, 216]. Although, in

general, the singularity theorems do not exactly describe the nature of the singu-

larity, here the Big Bang singularity corresponds to a diverging Ricci scalar R due
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to the vanishing scale factor (and hence divergent H). This breakdown is expected

from a GR viewpoint as it is a classical theory and hence not UV complete, mean-

ing that GR is not applicable at very high energy scales. Thus, the application of

the Einstein field equations throughout such high curvature regimes is no longer

applicable [216].

The second issue refers to the origin of the relevant scales which generate the inho-

mogeneous and anisotropic structures observed today. Given that inflation lasted

long enough to resolve the horizon and flatness issues, the relevant modes which

generate the observed structures must originate from a time in which the physical

scale is smaller than a Planck length, a distance in which GR breaks down due to its

classical nature. Therefore, inflation becomes dependent on the unknown behaviour

of modes originating from such scales [210,213].

Because of these two issues, amongst others, have therefore put into question the

validity of the standard inflationary model. In fact, the observed large scale structure

and CMB spectra were not originally considered from an inflationary viewpoint [217–

220]. Here, inflation formulated a decade later, only provided a physical mechanism

which generates these spectra. Therefore, other alternatives to inflation are to be

considered, as long as they are still capable of reproducing these observations while

also resolving the problems encountered in inflation. This is the role of what are

called bouncing cosmologies.

A bouncing cosmology is one which primarily tackles the two previously mentioned

issues. This is made possible through replacing the Big Bang singularity by some

preceding contracting phase, followed by an expanding (possibly later inflationary)

phase. To avoid the singularity, the scale factor decreases to some non-zero value,

with the resulting universe volume being sufficiently large where the ensuing physics

does not break down. This therefore resolves the singularity problem. Note that

if the bounce occurs at some time t = tB, it is characterised by H(t < tB) < 0,

H(tB) = 0 and H(t > tB) > 0 [212,221,222]. Introducing a contraction phase allows
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for all relevant scales to not originate from sub-Planckian scales as the Hubble

horizon ends up being sufficiently large for all modes of interest, hence resolving the

trans-Planckian problem [145,210,213].

Despite this attractive feature of a bouncing cosmology, they are by no means per-

fect. Here, some of these issues are highlighted whereas further details are given in

Refs. [211–213]. If the universe is fairly anisotropic during the contracting phase,

these can still remain fairly dominant as they grow with scale factor as a−6. In turn,

this leaves the early universe to be anisotropic instead of homogeneous, which is not

observed. To account for this, the presence of fluids with EoS ω � 1 are required

to exist in order to maintain the homogeneity condition. Bouncing cosmologies

may also suffer from instabilities with perturbations growing sufficiently large, thus

affecting the different spectra by not being compatible with observations.

In what follows, different types of bouncing behaviours are discussed, namely (a)

symmetric bounce, (b) oscillatory bounce (cyclic/ekpyrotic), (c) superbounce, (d)

critical bounce, and (e) future (past) singularities, primarily those of Type I–IV.

The physical interpretation and application for each model shall be explored in

further detail in their corresponding sections.

To this end, the method of reconstruction presented in the previous chapter has

proven to be a powerful tool to help construct gravitational Lagrangians based

on a given cosmological expansion history. It is therefore natural to consider this

approach for the bouncing cosmologies in question, as it will prove useful to be

able to determine whether such models can be constructed in the realm of modified

gravity. In what follows, f(T, TG) gravity shall be considered. As discussed in the

previous chapter, solving for a general f(T, TG) Lagrangian proves to be intractable,

and hence specific ansatz are chosen, namely those considered previously, being

(i) f(T, TG) = g(T ) + h(TG), (iv) f(T, TG) = −T + TGg(T ),

(ii) f(T, TG) = Tg(TG), (v) f(T, TG) = −T + µT βTG
γ.
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(iii) f(T, TG) = TGg(T ),

For simplicity, the boundary
√
T and Gauss-Bonnet contributions are again not

listed, and models deemed as viable are those which are capable of generating vac-

uum solutions, i.e. satisfy the constraint f(0, 0) = 0.

5.1 Symmetric Bounce

Originally considered in Ref. [223], a symmetric bounce model describes an expo-

nential scale factor of the form

a(t) = A exp

(
α
t2

t∗
2

)
, (5.1)

where t∗ is some arbitrary time, A > 0 and α > 0 are constants. This model yields

a Hubble parameter of the form

H =
2αt

t∗
2
, (5.2)

which implies a bounce located at t = 0 asH < 0 for t < 0, H = 0 at t = 0 andH > 0

for t > 0. As discussed in Ref. [155], this type of bounce cannot fully describe the

universe behaviour near the bounce. Any primordial modes cannot occur before the

bounce point, since the Hubble parameter decreases as it approaches the bouncing

time. On the other hand, if any primordial modes did occur, the Hubble horizon

decreases after the bouncing point, meaning that no modes re-enter the horizon.

Therefore, this model needs to be used in conjunction with other models or transition

periods to give a more complete picture. For instance, an ekpyrotic behaviour was

considered in Ref. [211], while the bounce together with a late-time acceleration

phase was considered in Ref. [224].
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In this case, T and TG are given by

T = 6H2 =
24α2t2

t∗
4

, TG =
8α

t∗
2
T +

2T 2

3
, (5.3)

where the scale factor can be solely expressed in terms of the torsion scalar T

a(T ) = A exp

(
Tt∗

2

24α

)
= A exp

(
α
T

T∗

)
, (5.4)

where T∗ ≡ T (t = t∗) = 24α2/t∗
2. To simplify the reconstruction analysis for the

sake of simplicity, the scale factor is set to unity at some arbitrary time t0 > 0, i.e.

a(t0) = 1. This yields the relation

t0
2 = −t∗

2

α
lnA. (5.5)

Since α is positive, the equation yields real values for the time t0 if and only if

0 < A < 1, which will be assumed in the following expressions.

Table 5.1 illustrates the reconstructed solutions for the considered f(T, TG) ansatz.

It is observed that the Tg(TG) model only yields analytical solutions for the homo-

geneous solution, as it could not be derived for the particular solution. From the

Green’s function and Wronskian method [225], the resulting particular solution is

derived from the integral

gpart.(y) = −Ωω,0T0t∗
2A−3(1+ω)

3456α

y∫
e−(4+3ω)s

√
s(1 + 4s)

[g2(y)g1(s)− g1(y)g2(s)] ds, (5.6)

which could not be analytically computed. Of interest is the power-law ansatz

model case, where the choice and presence of fluids greatly influences the existence

of solutions. In the case of vacuum, the power-law modification allows for the

symmetric bounce to occur. If the fluids exist, then they behave as a cosmological

constant, which not only restricts the choice of the power-law indices β and γ, but

also the Hubble rate factor α and the value of the cosmological constant ΩΛ,0.
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For the reconstructed solutions obtained, the vacuum condition is only satisfied for

the additive and Tg(TG) models in the absence of fluids. In the remaining models,

the Lagrangian either diverges or reduces to a non-zero constant, and hence does

not satisfy the viability condition. Since the condition only becomes satisfied in

the absence of fluids, viable symmetric bounce models are only realised due to the

presence of modified gravity.

f(T, TG) = g(T ) + h(TG)

g(x) = T0Ωω,0A
−3(1+ω)

[√
π x erf (x) + e−x

2
]
,

h(y) = c1e
y
[
−√y(y + 1) + y (2y + 1)F

(√
y
)]

f(T, TG) = Tg(TG)

Only the homogeneous solutions are found, being:

g1(y) = c2

[
2 (8y2 + 14y − 3) +

√
π
y

(16y3 + 36y2 + 3) erf
(√

y
)
ey
]
, and

g2(y) = c3
ey√
y

(16y3 + 36y2 + 3) .

An analytical form of the particular solution is not obtained.

f(T, TG) = TGg(T )

g(x) =
3Ωω,0A

−3(1+ω)x0
4

8T0

[
1− x2

x4
e−x

2 − Ei (−x2)

]

f(T, TG) = −T + µT βTG
γ

In vacuum β = −1, γ = 1 and µ = −3
4

ω = −1 β = −3, γ = 2 provided that α = 2t∗2

7
, µ = − 9

20
and ΩΛ,0T0 = 128µ

7
.

Table 5.1: The f(T, TG) reconstructed Lagrangian that reproduces the symmetric
bounce model is obtained. The following variables and functions have been defined

and used: x :=

√
T (1+ω)t∗2

8α , y := 1
4

(
−1 +

√
1 + TGt∗4

24α2

)
, F (z) is the Dawson integral,

which is defined as F (z) = e−z
2
z∫
0

ep
2
dp, Ei(z) is the exponential integral function

Ei(z) = −
∞∫
−z

e−r

r dr, and erf(z) = 2√
π

∫ z
0 e
−s2 ds is the error function. Furthermore,

c1,2,3 are constants of integration.
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5.2 Oscillatory Bouncing Model

The second bouncing model considered is one with an oscillatory behaviour having

the form

a(t) = A sin2

(
B
t

t∗

)
, (5.7)

where t∗ is some reference time which, for simplicity, is taken to be positive, and A

and B are real positive dimensionless constants. Such a model represents the be-

haviour of what is commonly referred to as a cyclic universe, originally proposed by

Tolman in Ref. [226] (further details on cyclic universes is available in Ref. [209]).

This proposal introduces the concept where the universe exhibits a sequence of

continuous contractions and expansions, thus leading to a new insight towards the

beginning of the universe [227]. Oscillatory scale factors allow for a simple construc-

tion of said behaviour, as discussed, for instance, in Refs. [227–230]. Furthermore,

there exists a special class of cyclic cosmologies, known as conformally cyclic uni-

verses (see for example Ref. [228]) where whilst the universe has a cyclic behaviour,

the overall expansion is monotonically increasing.

However, the choice of the scale factor may suffer from singularities. As the uni-

verse is continuously expanding and contracting, implying a continuous crunch and

rebirth, these points might correspond to a Big Crunch and a Big Bang respectively.

These two behaviours represent a singularity since, when the scale factor approaches

a zero value, the Hubble parameter diverges. This problem could be circumvented

through various mechanisms such as Loop Quantum Cosmology (LQC) [229], matter

couplings [228], or by demanding the scale factor to not approach a zero value.

The features of the considered scale factor are examined further. It is useful to

determine its associated Hubble parameter, which takes the form of

H =
2B

t∗
cot

(
B
t

t∗

)
. (5.8)
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The scale factor is zero for times tmin = nπt∗
B

with |H(tmin)| → ∞ and reaches

a maximum size of A at times tmax = (2n+1)πt∗
2B

where H(tmax) = 0. Here, n is an

integer. For times tmin < t < tmax, the Hubble parameter is positive and approaching

zero as t → tmax whilst for tmax < t < tmin, the Hubble parameter decreases and

becomes singular while approaching negative infinity as t → tmin. Therefore, when

the scale factor approaches its minimal size as t → tmin, the universe experiences

a Big Crunch, which then rebirths into a Big Bang, both being a singularity (as

a(tmin) = 0 and |H(tmin)| → ∞). This behaviour can be associated with that of

a superbounce. On the other hand, at maximal size, the universe experiences a

bounce called a cosmological turnaround, as the Hubble parameter transitions from

positive to a negative value as t1 → tmax → t2 (t1 < tmax < t2). This represents

a period where the universe stops expanding post-Big Bang, and starts to contract

towards a Big Crunch [221].

For this cyclic model, the torsion and TEGB scalars take the form of

T =
24B2

t∗
2

cot2

(
B
t

t∗

)
, TG = 4T

(
T

12
− 2B2

t∗
2

)
, (5.9)

where they are directly related through

T =
12B2

t∗
2

(
1−

√
1 +

TGt∗
4

48B4

)
. (5.10)

In this way, the scale factor can be expressed purely in terms of the torsion scalar

a(T ) = A

(
1 +

Tt∗
2

24B2

)−1

. (5.11)

For simplicity, assume that the Big Bang singularity occurs at a time tmin = 0.

Then, at some time tmin < t0 < tmax, the scale factor is unity, which leads to the

condition
1

A
= sin2

(
B
t0
t∗

)
. (5.12)
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This solution yields real values only when A > 1 (the case A = 1 would imply that

t0 = tmax hence not satisfying the assumption). Therefore, the present time would

lie at t0 = t∗
B

sin−1
(

1
A

)
. In this way, the present time parameters Ωω,0, T0 and TG,0

can be defined and may represent current values.

Table 5.2 illustrates the reconstructed solutions for the various f(T, TG) ansatz con-

sidered for the oscillatory model. Of note is the Tg(TG) rescaling model, where a

lack of closed forms for the homogeneous solution result. Furthermore, only one of

the homogeneous solutions is obtained, and the particular solution could not be de-

rived. On the other hand, the TGg(T ) model solution depends on the EoS parameter

value. Similar to the symmetric bounce case, the power-law model yields a solution

in vacuum with the same {β, γ, µ} parameter choices. Contrary to the symmetric

bounce model, however, is the absence of solutions for non-vacuum considerations.

This means that an oscillatory behaviour is only generated in the absence of matter

fluids.

The viability condition is thus only satisfied for the additive and the Tg(TG) models,

only in the absence of matter fluids similar to the symmetric bounce case. This is due

to divergences or non-zero finite limits of the resulting Lagrangian in the remaining

models and cases. Thus, the oscillatory model given in the form of Eq.(5.7) is only

generated in the first two ansatz models, provided that matter fluids are absent.

5.3 Superbounce

As mentioned in Chapter 3, a superbounce model takes a power-law solution of the

form a(t) ∝ (−t+ tc)
2/c2 , where tc represents the crunch time and c >

√
6. However,

a simple transformation of the coordinate system allows for a shifting of the crunch

time to any arbitrary time, which for simplicity is taken to occur at zero. Thus,

the scale factor reduces to the standard simple power-law model a(t) ∝ tα with
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α := 2
c2

. Therefore, the reconstructed solutions obtained in Table 4.1 will apply, but

with the constraint that 0 < α < 1
3
. Although this constraint does not affect the

reconstructed solutions themselves, the vacuum condition constraints can be further

simplified.

f(T, TG) = g(T ) + h(TG)

g(x) = T0Ωω,0A
−3(1+ω)

{
1

5
x3

2F1

(
5

2
,−3ω;

7

2
;x

)
− x2

2F1

(
3

2
,−3ω;

5

2
;x

)
+ 3x 2F1

(
1

2
,−3ω;

3

2
;x

)
+ 2F1

(
−1

2
,−3ω;

1

2
;x

)}
h(y) =

[
(8− 3y)

√
y − 6y(y − 1) tan−1 (

√
y)
]
c1

f(T, TG) = Tg(TG)

Only one homogeneous solution is obtained, which has a power-series solution of

the form g(x) =
∞∑
n=0

an
(
x
2

)n
, where the coefficients an obey the recurrence relation

2(n−1)2an+nan−2+(n−5)(2n−1)an−1 = 4n(n+1)an+1, with a−2,−1 = 0. Particular
solutions describing the matter source are not analytically solvable.

f(T, TG) = TGg(T )

For n ∈ Z, n ≥ −1:

w 6= n
3

g(x) = − ξω
6ωx3 (1+x)1+3ω

{
x [1 + 3ω + x(3ω − 1)] 2F1

(
1, 1; 1− 3ω;− 1

x

)
−(1 + x) [1 + x(3ω + 5)] 2F1

(
1, 2; 1− 3ω;− 1

x

)
− 6ωx3

1+3ω

}
w = n

3
g(x) = ξn

3

(n+3
2

)
lnx+

n+3∑
k=0
k 6=2

(
n+3
k

)
xk−2

k−2



f(T, TG) = −T + µT βTG
γ

In vacuum β = −1, γ = 1 and µ = −3
4

Table 5.2: Summary of the reconstructed f(T, TG) Lagrangians which repro-
duce the oscillatory bounce model. Here, the following variables and functions

have been defined and used: x := − Tt∗2

24B2 , y := 2

(
1−

√
1 + TGt∗4

48B4

)
, ξω :=

−3
4

[
t∗2

24B2

]2
T0Ωω,0A

−3(1+ω) and c1 is an integration constant.
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In the additive case, the condition simply reduces to ω > −1 for 1− 3α(1 + ω) 6= 0

whilst the second case 1− 3α(1 +ω) = 0 always satisfies the vacuum condition. For

the Tg(TG) rescaling model, the homogeneous solutions always satisfy the constraint,

while the fluid component that satisfies the condition is 3α(1+ω) > 1 (in these cases,

ω > 0). On the other hand, the TEGB rescaling model requires the same constraint

4 + 3α(1 + ω) > 0, as the other case remains trivially satisfied. Here, every value

of ω > −5 satisfies the constraint. Lastly, the power-law model always satisfies the

viability condition.

5.4 Matter Bounce

The bouncing model referred to as a matter bounce originates from LQC theory,

where the scale factor evolves in a form

a(t) = A

(
3

2
ρcrt

2 + 1

)1/3

, (5.13)

where ρcr is a critical density, a value which originates from LQC theory, and A > 0

is a dimensionless constant. This scale factor solution stems from the resulting

Friedmann equation constructed from LQC theory

H2 =
ρ

3

(
1− ρ

ρcr

)
, (5.14)

where ρ is some fluid energy density. If this is taken to be pressureless dust, the

above scale factor solution Eq.(5.13) is obtained. In this case, the Hubble parameter

takes the simple form of

H =
2tρcr

2 + 3t2ρcr

, (5.15)

from which it can easily be observed that a non-singular bounce is generated at a

time t = 0, the time at which the universe reaches its minimal size as H(t < 0) < 0,

H(t = 0) = 0 andH(t > 0) > 0 [231,232]. This type of bouncing cosmology has been
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studied as a means to investigate the early stages of the universe. In particular, dust

has been considered due to its ability to generate a scale-invariant power spectrum

arising from the matter contraction and expansion phases whilst not suffering from

any singularities. However, for a perfect dust fluid, the scale-invariant spectrum

is actually a problem, as observations indicate a slight red tilt8. Furthermore, for

dust, the tensor-scalar ratio is much larger than what is observed [234,235]. However,

small deviations from dust [211, 232] or introduction of other scalar fields [223] can

address this problem.

For the given matter bounce scale factor Eq.(5.13), the teleparallel scalars are given

to be

T = 6

(
2tρcr

2 + 3t2ρcr

)2

, TG = −4T 2

3
+ 2Tρcr

(
1 +

√
1− T

ρcr

)
, (5.16)

which allows the scale factor to be expressed in terms of T , as

a(T ) = A

[
2ρcr

T

(
1−

√
1− T

ρcr

)]1/3

. (5.17)

Assuming that there exists a time t0 > 0 when a(t0) = 1, yields the relation

t0
2 =

2

3ρcr

(
1

A3
− 1

)
. (5.18)

Since ρcr > 0, this equation holds provided that A < 1, which will be assumed from

here thereon. This allows for the definition of the present quantities of the density

parameters and the teleparallel scalars at this time. Furthermore, note that the TG

and T relation can be inverted to yield

8For a given power spectrum P (k) ∝ kn, where n is some real number, the spectrum is said to
be red tilted if n < 0 and blue tilted if n > 0, otherwise it is invariant for n = 0. As observations
indicate a scalar spectral index of ns = 0.9649± 0.0042, the matter power spectrum P (k) ∝ kns−1

is red tilted [152,233].
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T =
3ρcr

16
+

√
ξ

2
− 1

32

√
96TG

(
9ρcr√
ξ
− 8

)
+ 27ρcr

2

(
ρcr√
ξ

+ 4

)
− 256ξ,

ξ :=
9ρcr

2

64
+
z

8
+

16TG
2 − 9ρcr

2TG
2z

− TG,

z3 := −512TG
3 + 1161ρcr

2TG
2 + 9

√
3

√
−3072ρcr

2TG
5 + 4523ρcr

4TG
4 + 192ρcr

6TG
3,

(5.19)

which will prove to be useful to describe the Tg(TG) solution.

For the f(T, TG) ansatz being considered, a matter bounce cosmology can be realised

as shown in Table 5.3. In the additive and TGg(T ) model, the solution takes different

forms depending on the EoS of the fluid. For the additive solution, the dust case

agrees with the f(T ) reconstructed solutions obtained in Refs. [234,236,237]. For the

Tg(TG) model, only the homogeneous solutions are obtained, which are nonetheless

inexpressible in terms of known functions. In this case, the coefficients an satisfy

the recurrence relation

4an−10(147n2 − 3170n+ 16608) + 2an−9(14407− 2783n+ 126n2)

− an−8(1317n2 − 23757n+ 104888)− an−7(792n2 − 13671n+ 55822)

+ an−6(828n2 − 11964n+ 42043) + an−5(864n2 − 10905n+ 32555)

− 2an−4

(
15n2 − 235n+ 763

)
− an−3(360n2 − 2917n+ 5484)

− 3an−2

(
32n2 − 148n+ 159

)
+ 9(n− 1) [an−1(4n− 9) + 3ann] = 0, (5.20)

with a−10 = . . . = a−1 = 0. Although a general analytical solution was not found,

two solutions are still generated, as shown by the solution of the first few terms

a2 =
a1 − 3a0

6
, a3 = 0, a4 =

15a0 − 769a1

648
, a5 =

1851a0 + 1706a1

2430
, . . . , (5.21)

where a0,1 act as the arbitrary constants. Similar to the previous bouncing models,
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the power-law solution only exists in vacuum for specific parameter choices.

The reconstructed solutions which can be deemed as viable are only the additive

and Tg(TG) Lagrangians only in the absence of matter fluids, since the remaining

models do not satisfy the vacuum constraint. This leaves these two models to be

the only two ways to generate a matter bounce.

f(T, TG) = g(T ) + h(TG)

ω 6= 0 g(x) = Ωω,0T0

2ω
A−3(1+ω)x

[
(1 + ω) 2F1

(
−1

2
, ω; 1

2
; x−2

x

)
−
(
x
2

)ω]
ω = 0 g(x) =

ΩM,0T0

2A3 x
[
1 +

√
2−x
x

arcsin
√
x(2− x)

]
No analytical solution found for h(TG).

f(T, TG) = Tg(TG)

Only the homogeneous solutions can be derived, which take a power-series solution

of the form g(x) =
∞∑
n=0

an(x − 1)n, with the coefficients an satisfying the recurring

relation given in Eq.(5.20). As the the g function is to be expressed in terms of TG,
the x = x(T ) variable can be expressed in terms of TG through the use of Eq.(5.19).
No analytical results have been found for the particular solution.

f(T, TG) = TGg(T )

ω 6= 0
g(x) = 1

16
ξωx

ω

[
2

(ω−1)x
+ 1

ω
+ 4

(
x
x−2

)−ω 2F1(2−ω,−ω;3−ω; 2
2−x)

(ω−2)(x−2)2

− 1
ω

(
x
x−2

)−ω
2F1

(
−ω,−ω; 1− ω; 2

2−x

)]
ω = 0 g(x) = − ξ0

8

[
1

(x−2)2 + 1
x

+ ln
√

2−x
x

]

f(T, TG) = −T + µT βTG
γ

In vacuum β = −1, γ = 1 and µ = −3
4

Table 5.3: Reconstruction of the f(T, TG) Lagrangian for the matter bounce cos-
mological model. For the above solutions, the following variables and functions have

been defined: x := 1 +
√

1− T
ρcr

and ξω := − 3T0
ρcr

2 Ωω,02−(2+ω)A−3(1+ω).
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5.5 Type I–IV Past (Future) Singularities

The final bouncing model involves taking a power-law Hubble parameter ansatz in

the form of

H = f0(t− ts)α, (5.22)

where f0 > 0, α is a real number and ts is some reference time, which as will be

seen, will correspond to the singularity (bouncing) time. For cases when t < ts,

this corresponds to a future type singularity, while for ts < t, it yields a past

singularity. In the former case, the Hubble parameter could instead be expressed as

H = f0(ts− t)α. The parameter α is then chosen to be α 6= 0, 1 as these correspond

to the de Sitter and superbounce scenarios respectively. Integrating for the scale

factor yields the solution

a(t) = A exp

[
f0

α + 1
(t− ts)α+1

]
, (5.23)

where A > 0 is a dimensionless constant which corresponds to the scale factor at

the bouncing time i.e. A = a(ts). In this case, the torsion and TEGB scalars are

given by

T = 6f0
2(t− ts)2α, TG = 4T

[
T

6
+ f0α

(
T

6f0
2

)α−1
2α

]
, (5.24)

which allows the scale factor to be solely expressed in terms of the torsion scalar to

be

a(T ) = A exp

[
f0

α + 1

(
T

6f0
2

)α+1
2α

]
. (5.25)

In order to keep the cosmological parameters real, the parameter α can be conve-

niently chosen as9

α =
2n+ 1

2m+ 1
, (5.26)

9A similar consideration appears, for instance, in Refs. [238–240].
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where n, m ∈ Z. In this way, for times t < ts, both the scale factor and Hubble

parameter (and their corresponding derivatives) yield real values. Naturally, for

times t > ts, all quantities are always real and well defined.

Depending on the choice of the parameter α, various types of bouncing cosmologies

can be constructed, which are primarily classified as follows:10

1. Type I singularity: The first type corresponds to models where at a fi-

nite time, the scale factor a(ts) → ∞ with ρ, |p| → ∞ as t → ts caus-

ing the so called Big Rip singularity (alternatively, this can be defined as

a(ts), H(ts)→∞). In this model, the universe experiences an accelerated

expansion which causes a dissociation of gravitationally bound structures.

This kind of model is usually associated with a phantom type cosmology,

as such fluids are able to generate such a singularity [247]. However, this type

of singularity can be avoided through the use of fluids having a dynamical

behaviour [248, 249]. Furthermore, close to the singularity, quantum effects

might become more dominant and an account for these effects might prevent

this singularity [242, 243, 250]. An extension of the Big Rip model is the so

called Little Rip, where the scale factor and density are not singular but grow

with time (equivalently, H(t) → ∞ as t → ∞), while still causing a disso-

ciation of structure [251]. In the instance that the density increases up to a

bounded limit (equivalently, H approaches a constant value as t → ∞), the

singularity is called a Pseudo Rip [252]. This still causes a dissolution of struc-

tures whilst asymptotically approaching a de Sitter behaviour provided that

Ḣ → 0 [33,252,253]. Observe that the Little Rip and Pseudo Rip models are

not Type I singularities.

2. Type II singularity: Known also as sudden singularities, these occur when

scale factor and density are finite at t→ ts but the pressure diverges (or equiva-

lently ä(ts)→ −∞) [254]. Here, the universe experiences a strong acceleration

10For a general overview of the discussed singularities, see Refs. [207,221,241–246].
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as it approaches the singularity which is stable against inhomogeneous pertur-

bations, irrespective of the universe’s spatial geometry [255]. Furthermore,

this type of singularity can prevent a closed universe from re-collapsing [256],

and may conform with cosmological observations [257, 258]. Despite the ex-

istence of the singularity however, this may not present a final state of the

universe [257, 259]. A special class of Type II singularity is referred to as the

Big Brake singularity where the universe exhibits a deceleration phase (instead

of acceleration) which causes the scale factor evolution to stop at the singu-

larity. This is characterised by a finite scale factor a(ts) < ∞ with ȧ(ts) = 0

and ä(ts) → −∞ [260]. These models can arise from tachyon models where

after a quasi-de Sitter phase, the universe enters a decelerating Big Brake

phase [261, 262]. As discussed in [263], the Big Brake is not the final fate of

the universe as after this contraction phase, a Big Crunch ensues.

3. Type III singularity: This singularity exhibits a similar behaviour to a Big

Rip singularity while having the scale factor become finite at the singularity

(an alternative definition requires the first and higher derivatives of the scale

factor to diverge at this singularity [245, 264]). This type of singularity (also

referred to as Big Freeze singularity, first formulated in Ref. [265]) has been

studied as a model for inflation as it provides a decreasing comoving horizon

close to the singularity [264], and can conform with observations, provided

the existence of a non-zero dark matter contribution [266]. However, quantum

effects for times close to the singularity may prevent its formation [243,266].

4. Type IV singularity: This type of singularity (first introduced in Ref. [243])

yields a finite value for the scale factor, density and pressure at the singularity

but higher order derivatives of the Hubble parameter diverge i.e. H(n)(ts)→∞

for some n ≥ 2. Contrary to previous models, the universe continues to

evolve smoothly past the singularity, avoiding the need of quantum corrections

[238, 240]. When applied during inflationary epochs, the Type IV singularity
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can end that epoch, leading to a graceful exit mechanism [239]. However, this

model suffers from issues including: (i) primordial modes which grow after

horizon crossing and (ii) a scalar power spectrum which is not invariant and

may be very red tilted, deviating from observed values (this may be addressed

through quantum considerations) [240,246].

Based on these classifications, the α domain values which generate the described

singularity models are as follows: (i) Type I for α < −1, with a Little Rip for

α > 0. However, a Pseudo Rip is not possible; (ii) Type II for the range of values

0 < α < 1. Furthermore, it is observed that a Big Brake sudden singularity cannot

be constructed; (iii) Type III for −1 < α < 0, and (iv) Type IV for the remaining

values α > 1.

Before reconstructing for the Lagrangian, an instant of time 0 < ts < t0 at which

a(t0) = 1 is first chosen to exist with the aim of simplifying the calculations. Here,

this means that ts acts as a past singularity. The time occurs when

t0 = ts +

[
−α + 1

f0

lnA

] 1
α+1

. (5.27)

A simple constraint to satisfy the assumption that 0 < ts < t0 is to consider

(α + 1) lnA < 0, which imposes the constraints 0 < A < 1 for α > −1 (mean-

ing Types II–IV) and A > 1 for α < −1 (meaning for Type I), for which this shall

be assumed in what follows.

The resulting reconstructed solutions for arbitrary α are summarised in Table 5.4.

As shown, the h(TG) function in the additive model and the rescaling Tg(TG) model

were not obtained, which arises due to the invertibility issues arising from the torsion

and TEGB scalars relation Eq.(5.24). With the exception of the power-law model,

the solutions are expressed in terms of the confluent hypergeometric function of the

first kind 1F1(a; b;x), which is always defined provided b ≤ 0 is not an integer. For

the considered form for α, the additive solution is always defined while the rescaled
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f(T, TG) = g(T ) + h(TG)

g(T ) = Ωω,0T0A
−3(1+ω)

1F1

(
− α
α+1

; 1
α+1

;−3f0(1+ω)
α+1

(
T

6f0
2

)α+1
2α

)
No analytical solution found for h(TG).

f(T, TG) = Tg(TG)

No analytical solution obtained.

f(T, TG) = TGg(T )

1−3α
α+1
6= N g(T ) = 3Ωω,0T0A−3(1+ω)

8T 2 1F1

(
− 4α
α+1

; 1−3α
α+1

;−3f0(1+ω)
α+1

(
T

6f0
2

)α+1
2α

)
α = 1

3
g(x) = 3Ωω,0T0A−3(1+ω)(1+ω)

128f0
3x

[xEi (−x) + e−x]

α = 3 g(y) = 9Ωω,0T0A−3(1+ω)(1+ω)3

2048f0y3

[
y3

2
Ei (−y) + e−y

(
1− y

2
+ y2

16

)]
1−3α
α+1

= N ≤ −4 No general solution is derived.

f(T, TG) = −T + µT βTG
γ

In vacuum β = −1, γ = 1 and µ = −3
4

Table 5.4: The reconstructed f(T, TG) Lagrangian which is able to describe a Type
I–IV (past) singularity. Due to the lack of invertibility between T and TG, analytical

solutions for h(TG) and Tg(TG) could not be obtained. x ≡ T 2(1+ω)

16f0
3 , y ≡

(
3T 2(1+ω)3

256f0

) 1
3

and N ≤ 0 being a negative integer have been defined for simplicity. Here, 1F1(a; b;x)

is the confluent hypergeometric function of the first kind and Ei(z) ≡ −
∞∫
−z

e−r

r dr is

the exponential integral function.

solution TGg(T ) is not defined for specific values of α when 1−3α
α+1

= N for some

negative integer N ≤ 0. This yields a specific value of α = 1
3

for Type II, α = 3 for

Type IV and the remaining values in Type I. This case results in solutions expressed

in terms of the exponential integral function. Despite a general solution for the Type

I cases is not derived, an analytical solution can be derived for specific values. Lastly,

for the power law case, a simple solution arises only in the absence of matter fluids.
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Based on the obtained solutions, the vacuum condition is satisfied in the following

instances. For the additive case, it appears that this is satisfied only for −1 < α < 0

with ω > −1 (Type III with non-phantom fluid). For the TGg(T ) rescaling model,

this appears to hold for the same latter constraint11 while for the −T +TGg(T ) case,

this depends on the existence of fluids. If these exist, then the condition is satisfied

for Type III with non-phantom fluids.Otherwise, in the absence of matter fluids, this

is satisfied for α < 0 or α > 1 (Types I, III and IV). This constraint also appears

for the power law model. Therefore, overall it is observed that for the model ansatz

considered

1. Type II singularities do not satisfy the vacuum constraint;

2. Type III singularities equipped with a non-phantom fluid satisfy the constraint;

3. Type I and IV singularities can only appear in an empty universe.

5.6 Discussion

Bouncing cosmological models prove to be a useful mechanism to tackle the initial

singularity problem, as well as provide an insight towards the possible final fate of

the universe. Various bouncing cosmologies have been discussed throughout this

chapter, each having their own applicability to various scenarios, with some being

more applicable than others in certain regimes. Here, f(T, TG) gravity has been

investigated in context of whether it is capable of reproducing such cosmological

scenarios through the use of reconstruction. Given the large number of possible

reconstructed Lagrangian solutions, similar to Chapter 4, the models are constrained

by investigating whether the reconstructed solution is capable of hosting vacuum

solutions by obeying the constraint f(0, 0) = 0.

11Although a general solution is not derived for α < −1, the solutions appear to diverge.

102



Chapter 5: Reconstructing f(T, TG) Lagrangian for Bounce Cosmologies

The first bounce model considered is the symmetric bounce, which can be used to

replace the initial Big Bang singularity albeit together with the introduction of other

mechanisms (to avoid issues with primordial perturbation modes). For the model

ansatzes considered, the reconstructed solutions obtained are summarised in Table

5.1 where only the additive and Tg(TG) models are capable of satisfying the vacuum

constraint, although only in the absence of matter fluids.

Next, an oscillatory cyclic bouncing model has been investigated, which experiences

a series of expansions and contractions which realise two distinct bounces, one at

minimal size, which corresponds to a Big Crunch/Big Bang singularity, and another

at maximal size, which describes a cosmological turnaround. The resulting recon-

structed solutions are listed in Table 5.2. Similar to the symmetric bounce model,

the vacuum condition is only satisfied for the first two reconstructed models in the

absence of matter.

The superbounce model was then investigated; a model which describes a universe

rebirth without reducing the universe to a zero size. Given the simple nature of

the scale factor to be that of a power-law model with an exponent constrained to

be 0 < 2
c2

< 1
3
, the same results obtained in Chapter 4 are retained, with the

only difference being that some of the vacuum condition constraints are simplified.

Overall, a superbounce behaviour can be generated whilst obeying said condition.

An important investigated model was the matter bounce scenario, a model origi-

nating from LQC. Similar to the superbounce scenario, the universe experiences a

rebirth, however the Hubble parameter does not diverge at the bounce point making

it free from singularities. However, it can suffer from a large tensor-scalar ratio that

does not conform with observations. From the obtained reconstructed Lagrangians

summarised in Table 5.3, a similar behaviour to the first two bouncing models is

obtained, where the vacuum condition is only satisfied for the additive and Tg(TG)

rescaling model in the absence of matter fluids.
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Lastly, the past (future) singularities of Type I–IV as well as the Little Rip singular-

ity have been investigated. These type of singularities have been studied extensively

in various areas of research, ranging from the early universe to the final fate of the

universe. The reconstructed Lagrangians for each ansatz were found and listed in

Table 5.4, for which it is observed that the Type II singularity never satisfied the

vacuum constraint. Type I and IV only appear in an empty universe, and Type III

appears in a universe filled with non-phantom matter, making it the only model ca-

pable of describing the presence of matter contributions while satisfying the vacuum

constraint.

Overall, f(T, TG) gravity proposes a possible viable alternative to describe various

models of a bouncing cosmology. However, it has been shown that the vacuum

constraint poses to be a significant restriction, as most models are only valid in the

absence of matter fluids. In fact, only the superbounce and Type III singularity are

capable of hosting a non-empty universe. Thus, this serves as a significant constraint

towards constructing a more concise description of the mechanics of gravity.
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Chapter 6

Gravitational Waves in Modified

Teleparallel Theories

Newtonian gravity, despite its first initial success, has been plagued by the concept

of action at a distance. With the introduction of GR, Einstein realised a year after

the publication of his theory in 1916 [6] (and later in 1918 [7]), that gravity, similar

to electromagnetism, propagates as transverse waves at the speed of light while

having two distinct polarisations. These waves, adequately named gravitational

waves, resolved the problem which plagued Newtonian gravity.

Despite this successful resolution, it was straightforwardly concluded that if these

waves did exist, their strength would be too small to detect. This was in fact true

as it took over many years until an indirect measurement and existence of GWs was

imposed. The discovery of the binary system PSR B1913+16 by Hulse and Taylor in

1974 changed history [267]. Since the prediction of GWs, it was theorised that a pair

of massive rotating bodies would emit gravitational radiation causing an energy loss

in the system and hence causing an orbital decay [268]. Observation of the Hulse-

Taylor binary indeed showed the presence of such decay at a rate which matches the

one predicted by GR [269], a statement which holds true until today [270,271].
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Nonetheless, there had been continuous research in hopes of a direct detection of a

GW (see, for instance, Ref. [272] for a detailed account). It took exactly 100 years

from the formulation of GR for the first ever detection of a GW. The detection by

LIGO in 2015 [8] opened the realm of GW astronomy. Further observations joined

by other collaborations such as Virgo, verified the existence on the two polarisation

states, as well as imposed constraints on the propagating speed. Starting with the

former, results show that the GWs exhibit a polarisation behaviour as predicted

by GR disfavouring the existence of other polarisation states [273]. In the case of

propagation speed, observations infer that the waves travel at light speed [274,275].

However, these only represent the first steps toward a full thorough understanding

of the properties of GWs. In fact, a more thorough analysis is necessary to fully

determine whether there exist more GW polarisations. In fact, the LIGO detectors

have been designed to be co-aligned, meaning that they would not be sensitive

to more polarisations besides the predicted modes [276, 277]. As the main goal

was to detect any GWs, this alignment permitted to maximise the signal to noise

ratio. Even with the introduction of Virgo, this is insufficient to detect all possible

polarisation states. In fact, as there is a possible number of six distinct polarisations,

in principle, at least six detectors are necessary to uniquely distinguish between the

polarisations. Construction of other detectors such as Kamioka Gravitational Wave

Detector (KAGRA) and LIGO-India will help constrain such polarisations [276].

Existence of GWs have stronger implications and importance in the realm of cos-

mology. Their existence may imply the possible existence of the so called stochastic

GW background, which is a background of gravitational waves sourced by countless

independent systems and processes in a random (stochastic) manner. The source

for this background could be either astrophysical or cosmological [278–280]. From

the former, this could infer further information regarding the astrophysical processes

beyond the CMB whereas cosmological sources could originate from the Big Bang
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or inflation.12

In this chapter, the existence and polarisations of GWs in teleparallel theories of

gravity are investigated. The GWs in TEGR had been well established since 1983 by

Müller-Hoissen and Nitschin [281] (and more recently by Obukhov and Pereira [282])

confirming their existence, as well as exhibiting the same polarisations as those in

GR, as expected. Later, modifications to TEGR have been investigated. Most

notably, in the first trivial modification of f(T ) gravity, it has been shown that the

same polarisations in GR result in a linearised, weak-field, gravity limit [283]. For

a more general cosmological FLRW background, the speed of the waves has been

confirmed to remain at light speed, unaffected by the f(T ) Lagrangian, although

the amplitude of the waves is indeed altered [284,285]. Other teleparallel extensions

have also been investigated, notably f(T µνρTµνρ, T
µνρTρνµ, T

µ
µρT

νρ
ν ) and its sub-case

New General Relativity

f(T µνρTµνρ, T
µνρTρνµ, T

µ
µρT

νρ
ν ) = a1T

µνρTµνρ + a2T
µνρTρνµ + a3T

µ
µρT

νρ
ν , (6.1)

with a1,2,3 being coupling constants, where it has been shown that despite the fact

that these waves travel at light speed, other polarisations besides the tensor ones

might arise for certain configurations [286, 287]. Lastly, f(T,B) gravity has been

analysed in [72] where it has been shown that an extra polarisation mode propa-

gating at a speed different than that of light arises with properties similar to those

encountered in f(R) gravity.

In light of the given observational results, the speed of the waves can therefore im-

pose strong constraints on the models, ultimately confirming (or debunking) their

viability with future detectors, hopefully imposing stronger constraints on the polar-

isation states. This chapter shall be organised as follows. An introduction regarding

12Regarding further implications and possible future detections of this background see Refs.
[278–280] and references therein. The details concerning these features will not be explored as
they lie beyond the scope of this work.
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the mathematical tools necessary to extract the existence and behaviour of the GWs

is first presented, followed by the GW analysis in f(T ) gravity. This shall be de-

rived under two major fronts, the metric and tetrad approaches. A higher order

perturbation analysis is then explored. Next, the GWs in f(T,B) gravity are then

explored under a Minkowski and a cosmological constant background, wherein the

latter’s effect shall be explored. Finally, the GWs in f(T, TG) gravity are analysed,

followed by a discussion of the results.

6.1 Linearised Gravity Approach

Linearised gravity offers a relatively simple way to examine the GW features which

arise depending on the gravitational model. Otherwise referred to as the weak-field

approximation, the gravitational strength is assumed to be weak, meaning that the

metric is expressed as Minkowski space at a background level plus a small correction,

hµν . In other words, the metric tensor can be expanded as a series of n corrections

gµν = ηµν + h(1)
µν + h(2)

µν + . . . +O
(
h(n)
µν

)
, (6.2)

where each perturbation satisfies |h(n)
µν | � |h(n−1)

µν | � . . . � |h(1)
µν | � 1 and h(i)h(j) ∼

h(i+j).13 This weak-field limit is an understandable approximation in the given

context. As the GW carries both energy and momentum, it is difficult to solve the

non-linear equations exactly, and hence this limit proposes a simpler alternative.

Furthermore, the gravitational radiation is expected to be small and the weak-field

limit provides a more direct understanding of the GW behaviour in the absence of

other sources [1].

13An alternative description is to consider the perturbations to be expressed as h
(n)
µν = εnH

(n)
µν

where |ε| � 1 andH
(n)
µν is some function. Then the nth order is defined by comparing the coefficients

of εn. This trivially gives rise to the order relation property h(i)h(j) ∼ h(i+j). See, for instance
Ref. [55] for further details.
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A similar application of the weak-field approximation can be considered for the

tetrad fields, which in this case is crucial as it serves as the basis fundamental

variable of the theory. In a similar notion to the metric, the tetrad is expanded in

terms of a background value γ
(0)a
µ plus some small corrections, namely

eaµ = γ(0)a
µ + γ(1)a

µ + γ(2)a
µ + . . . +O

(
γ(n)a
µ

)
, (6.3)

with |γ(n)a
µ | � |γ(n−1)a

µ | � . . . � |γ(1)a
µ | � 1 and γ

(i)a
µ γ

(j)a
µ ∼ γ

(i+j)a
µ . As the tetrads

construct the metric through Eq.(2.3), the perturbed quantities are interlinked. As

an illustration, up to second order, the relations are

ηµν = ηabγ
(0)a
µ γ(0)b

ν , (6.4)

h(1)
µν = ηab

(
γ(0)a
µ γ(1)b

ν + γ(1)a
µ γ(0)b

ν

)
, (6.5)

h(2)
µν = ηab

(
γ(0)a
µ γ(2)b

ν + γ(1)a
µ γ(1)b

ν + γ(2)a
µ γ(0)b

ν

)
. (6.6)

To analyse the perturbed field equations, it is also necessary to investigate the

order behaviour of the tetrad determinant. Only the zeroth order of the tetrad

determinant is presented as it suffices for the following analysis. As the tetrad and

metric determinants are related through the relation g = −e2, it is trivial to show

that e(0) = ±1.

The next step is to extract the order behaviour of the gravitational components

which gives rise to the gravitational action. As all relevant quantities in telepar-

allelism are constructed from the torsion tensor, this is considered first. For the

work which follows, the first order tetrad expansion suffices for the relevant analy-

sis. Nonetheless, this could easily be generalised for higher order behaviours. From

Eq.(2.10), up to first order, this becomes

T aµν = ∂µγ
(0)a
ν − ∂νγ(0)a

µ + ωabµγ
(0)b
ν − ωabνγ(0)b

µ

+ ∂µγ
(1)a
ν − ∂νγ(1)a

µ + ωabµγ
(1)b
ν − ωabνγ(1)b

µ . (6.7)
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As the purely inertial spin connection does not represent any source of gravitation,

ωabµ represents a zeroth order quantity. As discussed in Chapter 2, the spin connec-

tion can be obtained by demanding the torsion tensor to be zero in the absence of a

gravitational field, namely in the limit G→ 0. In this regime, only the zeroth order

contributions remain, as higher order terms are gravitationally sourced, meaning

eaµ
∣∣
G→0

= γ
(0)a
µ . Thus, in this purely inertial frame, Eq.(6.7) reveals the condition

T aµν
∣∣
G→0

= ∂µγ
(0)a
ν − ∂νγ(0)a

µ + ωabµγ
(0)b
ν − ωabνγ(0)b

µ = 0, (6.8)

which shows that the torsion tensor is a first order quantity given by

T aµν = ∂µγ
(1)a
ν − ∂νγ(1)a

µ + ωabµγ
(1)b
ν − ωabνγ(1)b

µ . (6.9)

This derivation is also consistent with the derived expression for the spin connection

Eq.(2.26), namely

ωabµ = Γabµ − e ν
b ∂µe

a
ν

∣∣
G→0

. (6.10)

In the inertial limit, the metric tensor reduces to the Minkowski background metric,

leading to the Levi-Civita connection to be zero. Therefore, only the last term

remains, leaving the spin connection to be expressed as

ωabµ = −γ(0)ν
b ∂µγ

(0)a
ν . (6.11)

Substituting in the derived condition Eq.(6.8) reveals the consistency of the result.

The form of the spin connection is expected. Recall that the purely inertial spin

connection is defined as Eq.(2.7)

ωabµ = −Λ c
b ∂µΛa

c, (6.12)

with Λ c
d representing a Lorentz matrix. This is of precisely the same form obtained

in Eq.(6.11), which leads to the direct association of the tetrads to be exactly the
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Lorentz matrices. In fact, the determinant of Lorentz matrices are indeed ±1, which

agrees with the result obtained previously, and the expression for ηµν is precisely the

Lorentz transformation property of the Minkowski metric. Such tetrads are called

trivial tetrads (or trivial frames) [52].14

As the torsion tensor is first order, since both the contorsion and superpotential

tensors are linearly dependent on the latter, these consequently contribute at least

at first order. Ultimately, the torsion scalar is therefore at least second order in

perturbations. On the other hand, the boundary term is first order. These results

combined show that the Ricci scalar is at least of first order, a result which can also

be obtained from direct computation of perturbations of the metric tensor. Indeed,

the Ricci scalar at first order is given to be

R(1) = ∂ρ∂νh
(1)ρν −�h(1), (6.13)

where h(1) = h
(1)µ

µ represents the trace. It is remarked that from here onwards,

indices are raised and lowered with respect to the Minkowski (background) metric.

At this level, the d’Alembert operator reduces to � = ∂µ∂
µ. Expanding in terms of

tetrads yields

R(1) = 2ηab
[
∂µ∂ν

(
γ(0)a
µ γ(1)b

ν

)
− ηµν�

(
γ(0)a
µ γ(1)b

ν

)]
. (6.14)

On the other hand, expanding the boundary term at first order yields

B(1) = −2
(
∇µT νµν

)(1)
= −2ηµρ∂ρ

(
γ(0)ν
a T

(1)a
µν

)
, (6.15)

Expanding using the torsion tensor definition Eq.(6.9) and the spin connection

14The derived expressions for the zeroth order condition Eq. (6.8) and the properties of the
background tetrad can be observed in Ref. [52] Eqs.(2.3), (2.5) and (2.12).
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Eq.(6.11) together with the relation

γ
(0)γ
b = ηcbη

αγγ(0)c
α (6.16)

obtained from inverting Eq.(6.4) yields the Ricci scalar result. This affirms the

consistency of the linearisation claims. Note that the Ricci and Riemann tensors

are also of at least first order as both are zero at a background level.

Having the orders of the relevant gravitational-based quantities defined, the next

step would be to extract the perturbed field equations. In order to do this, the

behaviour of the Lagrangian function is first investigated. As both T and B are null

at a background level and the weak-field limit is being considered, it is reasonable

to assume that the function is Taylor expandable about those background values,

i.e.

f(T,B) = f(0, 0) + fT (0, 0)T + fB(0, 0)B +
1

2
fTT (0, 0)T 2

+
1

2
fBB(0, 0)B2 + fTB(0, 0)TB + . . . . (6.17)

With this assumption in mind, the Minkowski spacetime is expected to be recovered

in the absence of a gravitational field. In this way, similar to the vacuum constraint

considered in the f(T, TG) reconstruction (see Chapter 4), a necessary requirement

is f(0, 0) = 0 as otherwise it would represent a cosmological constant. As will be

shown, this is also recovered as a constraint from the perturbed equations. Next,

the coefficient of fT (0, 0) 6= 0 as this represents the TEGR contribution (or the

effective Newtonian gravitational constant, see for instance [127,288] – this shall be

investigated in further detail in Chapter 7).

With this consideration in mind, while also having all the relevant quantities defined

in terms of expansion order, the GWs can now be investigated. Before doing so, the

role of the stress-energy tensor is first addressed. The main aim of this chapter is to

investigate the existence of any wave solutions together with their associated physical
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behaviour. To do so, it is sufficient to investigate such properties far away from the

source of such waves. In other words, one can set the stress-energy to zero (i.e. in

vacuum). However, any physical observation will not be able to detect any GWs of

this sort as their wave amplitude would be extremely weak and hence would need to

be detected from stronger astrophysical sources [55]. In such cases, the contribution

of the stress-energy has to be included (see, for instance, Refs. [1, 55–57]).

6.2 Gravitational Waves in f (T ) gravity

The first investigation is the resulting GWs, which arise in the simplest telepar-

allel extension of gravity, namely that of f(T ) gravity. Originally investigated in

Ref. [283], the resulting GW modes were extracted using the spacetime indexed form

of the equations Eq.(2.25) through a combination of linearisation of the metric tensor

and the tetrads. In what follows, the same procedure shall be followed. However, in

contrast to Ref. [283], the zeroth order contribution of the tetrad will not be strictly

set to be the Kronecker delta (which sets the spin connection to zero), but will be

left arbitrary. This way, the background tetrad is not necessarily constrained, thus

allowing for the investigation even in the presence of non-zero spin connections.

Besides this ‘metric’ investigation, the GWs shall be also analysed from a pure tetrad

perspective, an approach originally considered in an absolute parallelism setting in

Refs. [281,282]. However, only the final perturbed field equations are given, whereas

here the perturbed tetrad field shall be solved explicitly based on the results obtained

from the metric approach.

Lastly, higher order perturbations shall be examined in order to investigate whether

deviations from GR arise. Such higher order corrections to the metric are of great

importance as these reveal crucial information about the GW, for instance about

gravitational radiation.
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6.2.1 Metric Approach

Starting off with the metric approach introduced in Ref. [283], the spacetime indexed

equations Eq.(2.25), which are listed below for the sake of convenience,

fTGµν +
1

2
gµν (f − TfT )− 2S α

ν µ∂αfT = 0, (6.18)

shall be perturbed up to first order. The resulting system of equations order by

order results in

ηµνf(0) = 0, (6.19)

fT (0)G(1)
µν = 0, (6.20)

where the zeroth order equation justifies the absence of a cosmological constant in

the theory while the second shows that the same expression encountered in GR is

recovered provided fT (0) 6= 0. This is a clear indication that the resulting GW

modes shall be identical to those obtained in GR. Therefore, from here onwards,

the GW solutions shall be extracted following the techniques used in GR (see, for

instance, Refs. [1,55–58]). Rewriting the equations in terms of the first order metric

perturbation h
(1)
µν results into

∂σ∂νh
σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν − ηµν∂σ∂ρhσρ + ηµν�h = 0. (6.21)

To simplify the expression, the trace-reversed perturbed metric h̄µν defined as15

h̄µν ≡ hµν −
1

2
ηµνh, (6.22)

is introduced which simplifies the equations to

∂σ∂ν h̄
σ
µ + ∂σ∂µh̄

σ
ν −�h̄µν − ηµν∂σ∂ρh̄σρ = 0. (6.23)

15The term trace-reversed stems from the fact that h̄ = h̄µµ = −h.
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Solving the equations of motion is relatively complicated in the given form. However,

this can be circumvented by choosing another coordinate system which eliminates

some of the terms to reduce it to a simpler equation. This can be addressed through

coordinate (gauge) transformations [1,54,55,289]. For the given weak field, one can

consider the coordinate transformation

x′µ = xµ + ξµ (xα) , (6.24)

where primes shall denote the new coordinate system and ξµ(x) is an infinitesimal

function of position which is of the order of the perturbation (i.e. ξ ∼ h). In this

way, the trace-reversed perturbed metric in the new coordinate system is given to

be

h̄′µν = h̄µν − 2∂(µξν) + ηµν∂ρξ
ρ. (6.25)

As the equations are derived from components of the Riemann tensor, application

of this change of coordinates shows that the field equations are gauge invariant as

R′αβγρ = Rαβγρ leaving the system unchanged. Thus, any solution h̄µν implies that

h̄′µν is also a solution for any arbitrary choice of the function ξµ. Thus, the latter

can be chosen in a way that the equations for h̄′µν are expressed in a simpler form.

One such suitable choice is the Lorenz gauge ∂µh̄′µν = 0 which eliminates the gauge

freedom of the metric equations. This can be achieved by demanding

�ξµ = ∂µh̄µν . (6.26)

This reduces the equations to simply that of a plane wave �h̄µν = 0. So far, this

leaves six dynamical degrees of freedom out of a possible ten from the perturbed

metric. However, there is still some residual gauge freedom left. For the Lorenz

gauge condition, one can introduce another coordinate transformation ζµ satisfying

�ζµ = 0 which leaves the Lorenz condition unchanged. This allows for another
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gauge fixing. For the trace-reversed perturbed metric, the trace transforms as

h̄′ = h̄+ 2∂ρζ
ρ. (6.27)

From this, one imposes the transverse-traceless (TT) gauge by demanding the co-

ordinate transformation to also obey

2∂ρζ
ρ = −h̄, (6.28)

which sets h̄′ = 0 leading to the perturbed metric to be traceless (as h̄ = −h).

Transverse here is realised by �ζµ = 0 as this implies that h0µ = 0 and ∂ih
ij = 0

meaning the metric is purely spatial. As shown in Refs. [1, 54, 55, 57, 289], this TT

gauge can always be imposed in the case of vacuum as one can always find a function

ζρ satisfying those constraints. With these gauge fixing conditions, the number of

degrees of freedom decrease the current six to only two, while the wave equation can

be simply expressed in terms of metric perturbation hµν as

�hµν = 0. (6.29)

Assuming a plane wave solution, the solution in Fourier space is given to be

hµν = Aµν exp(ikσx
σ), (6.30)

where kσ is some wavevector such that kσk
σ = 0 and Aµν are amplitude coefficients.

The wavevector signifies that the wave is null, meaning the wave is propagating

at the speed of light. On the other hand, the transverse-traceless gauge condition

imposes the following constraints on the amplitude coefficients, kνAµν = 0, A0ν = 0

and Aii = 0. If, without loss of generality, the wave is assumed to be propagating in

the z-direction, the Lorenz gauge implies the condition A3i = 0 which simplifies the

traceless condition to A11 = −A22, leaving A21 as the other remaining undetermined
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coefficient. Overall, this means that the perturbed metric tensor takes the form of

hµν =


0 0 0 0

0 A11 exp(ikσx
σ) A12 exp(ikσx

σ) 0

0 A12 exp(ikσx
σ) −A11 exp(ikσx

σ) 0

0 0 0 0

 =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (6.31)

where the definitions h+ := A11 exp(ikσx
σ) and h× := A12 exp(ikσx

σ) have been

introduced. These are the two propagating degrees of freedom of GR (and equiva-

lently, TEGR) as well as for f(T ) gravity.

The next step would be to investigate the physical behaviour of these waves. One

may first consider the effect of the waves on free particles to see whether the passage

of the wave causes a change in behaviour. Starting from a free particle initially at

rest with an initial four-velocity Uµ = (1, 0, 0, 0) (which means the particle is slowly

moving), the geodesic equation for the particle

dUµ

dτ
+ ΓµαβU

αUβ = 0, (6.32)

reduces to dUµ

dτ
+ Γµ00 = 0. In the TT gauge, the metric perturbation solution

Eq.(6.31) reveals that Γµ00 = 0 meaning that dUµ

dτ
= 0, or equivalently that the

particle will remain stationary and hence does not feel any effects of the passing

wave [56,57]. Observe that despite the fact that the particles in teleparallel gravity

do not travel along geodesics but instead according to force equations given to be

dUµ

dτ
+ Γ̂µαβU

αUβ = Kµ
αβU

αUβ, (6.33)

the relative motion is equivalent due to the relation Eq.(2.13) Kµ
αβ = Γ̂µαβ − Γµαβ

which relates the two particle motion equations [52].

As free particles do not infer any information regarding the behaviour of the wave,

another alternative would be to investigate the relative motion of freely falling neigh-
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bouring particles. This is achieved by observing the relative motion of their respec-

tive geodesics, namely through the geodesic deviation formula [57]

Aµ ≡ Uρ∇ρ (Uσ∇σS
µ) = Rµ

νρσU
νUρSσ (6.34)

where Aµ represents the relative acceleration between geodesics and Sσ represents

the separation vector, a measure of the relative distance between geodesics. As

before, despite the fact that particles do not follow geodesics in teleparallel based

theories, the resulting deviation between particles following their respective force

equation turns out to be identical. This was also shown in Ref. [290]. Consequently,

this approach should be in principle applicable to any teleparallel extension con-

sidered in this work. Back on the implications of the geodesic deviation formula,

the Riemann tensor is a first order quantity in the linearisation procedure, meaning

the particles are to be expressed in terms of their behaviour at a Minkowski level.

Assuming once more the particles to be slowly moving [57,277]

S̈i = −Ri
0j0S

j, (6.35)

where Ai = S̈i with dots representing coordinate time derivatives.16 The remaining

Riemann tensor components Ri
0j0 (which amount to a total of 6 independent com-

ponents and is referred to as the electric part of the Riemann tensor) is the quantity

which contains all the relevant information regarding the polarisations. In the TT

gauge, this Riemann tensor component turns out to be

Ri0j0 = −1

2
∂2
t h̄ij, (6.36)

which in turn yields the following equations of motion for the separation vector

S̈1 =
1

2
ḧ× S

2 +
1

2
ḧ+S

1, (6.37)

16In the slow moving particle limit, the proper time τ is identical to the coordinate time t.
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S̈2 =
1

2
ḧ× S

1 − 1

2
ḧ+S

2, (6.38)

S̈3 = 0. (6.39)

To determine the resulting behaviour, each mode is investigated separately.

In the absence of the h× polarisation, the particles will oscillate in a form of a ‘+’

while in the absence of the h+ polarisation, this expands in and contracts in the

shape of a ‘×’. Hence, the polarisations are referred to as the plus and cross tensor

polarisations [63]. The term tensor shall be explained further shortly. For an initial

stationary ring configuration, this oscillating behaviour is illustrated in Fig. 6.1. As

these modes are invariant under rotations of 180◦, this means the graviton, i.e. the

particle responsible for such a wave, is a massless spin-2 particle.

In more general theories of gravity however, the existence of other possible polari-

sations might arise as will be seen in the case of f(T,B) gravity. There have been

various approaches to try and identify all possible polarisations which can be gen-

y

x

Tensor +

y

x

Tensor ×

Figure 6.1: The effect of the tensor + and × polarisations for the GWs in predicted
in f(T ) gravity on a ring of slowly moving test particles. Here, the wave is propagating
along the z-direction causing distortions along the x and y directions. The latter occurs
as a function of time. Taking h+,× ∼ cos(ωt), with ω representing the frequency, the
ring distorts as a function of time as: solid (ωt = 0, π), dashed

(
ωt = π

2

)
and dotted(

ωt = 3π
2

)
. Illustration based off Refs. [63, 277,291].

119



Chapter 6: Gravitational Waves in Modified Teleparallel Theories

erated which, as shall be seen, ultimately depend on the values of the electric part

of the Riemann tensor. In what follows, two main approaches are discussed.

The first and by far most commonly used method is the so called Newman-Penrose

(NP) formalism [292] with further developments on the work by Eardley et al. [293].

A brief overview of the NP formalism shall be presented. For further details on the

method, one can refer to Refs. [63,294,295]. As seen in the GW analysis, the waves

are plane waves, which are null and are functions of the retarded time u = t− z and

advanced time v = t + z for waves propagating along the z-direction. A null basis

is then constructed with basis vectors17

lµ = (1, 0, 0, 1), nµ =
1

2
(1, 0, 0,−1), (6.40)

mµ =
1√
2

(0, 1, i, 0), m̄µ =
1√
2

(0, 1,−i, 0). (6.41)

In this way, one can construct a null basis tetrad e µ
a = (lµ, nµ,mµ, m̄µ) which

constructs the metric through the standard tetrad relations. Assuming that the

waves are almost null, it can be shown that through symmetry properties of the

Riemann tensor together with the Bianchi identities reveal that the only non-zero

components of the Riemann tensor are of the form

Rnpnq ≡ Rrpsqn
rns, (p, q are indices which run over l,m and m̄) (6.42)

leaving a total of six non-vanishing components of the Riemann tensor. These are

denoted by

Ψ2 ≡ −
1

6
Rnlnl, Ψ3 ≡ −

1

2
Rnlnm̄, (6.43)

Ψ4 ≡ −Rnm̄nm̄, Φ22 ≡ −Rnmnm̄, (6.44)

where Ψ3,4 are complex and hence adding up to a total of six polarisations. It can

17The coefficients are not uniquely defined as seen between the works presented in Refs. [63,294,
295]. This is not important as it will not alter the final results.
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be shown that Ψ4 corresponds to spin-2 behaviour (tensor), Ψ3 to spin-1 (vector)

while Ψ2 and Φ22 are spin-0 (scalar). Observe that Rnpnq corresponds to, precisely,

components of the electric part of the Riemann tensor, which means that the latter

can be expressed in terms of the NP quantities to be

Ri0j0 =


−<Ψ4 − Φ22 =Ψ4 −2

√
2<Ψ3

=Ψ4 <Ψ4 − Φ22 −2
√

2=Ψ3

−2
√

2<Ψ3 −2
√

2=Ψ3 −6Ψ2

 , (6.45)

where < and = represent the real and imaginary parts respectively. Plugging into

the geodesic deviation formula Eq.(6.35) gives rise to the two tensor polarisations

illustrated in Fig. 6.1 and the two vector and two scalar polarisations shown in

Fig. 6.2. Here, the plus tensor mode corresponds to <Ψ4 while the cross tensor

mode corresponds to =Ψ4. On the other hand, the real and imaginary part of

Ψ3 correspond to the vector-x and y polarisations respectively while Φ22 yields the

breathing (b) mode and Ψ2 the longitudinal (l) mode.

Despite the success of the NP formalism as a method to identify the various types

of GW polarisations, it does suffer from issues. The approach is only valid for

waves travelling at the speed of light, and hence, for theories which do predict more

polarisation modes but propagate at a different speed cannot be identified using

the NP approach. This is observed, for instance, in f(R) gravity. It is known

that besides the standard tensor polarisations, a scalar polarisation state which

exhibits a mixture of both the breathing and longitudinal modes does exist(see

Refs. [296–298] amongst others) but there had been debate whether this represents

two distinct polarisations or one. Following the NP approach as shown in Refs.

[294, 299], as Φ22 6= 0 and Ψ2 6= 0, this would infer that both scalar modes exist

and are independent of one another. However, as discussed in Ref. [300], this is not

true as the state exists only as a mixture of the two. A similar argument is given in

Ref. [301].
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Figure 6.2: The effect of scalar (breathing and longitudinal) and vector polarisations
(vector-x and y) for a GW propagating in the z-direction, which may arise in modified
theories of gravity. As the distortions are a function of time due to the GW dependence
h ∼ cos(ωt), with ω representing the frequency, the initial particle ring configuration
distorts with time as: solid (ωt = 0, π), dashed

(
ωt = π

2

)
and dotted

(
ωt = 3π

2

)
.

Illustration based off Refs. [63, 277,291].

The second alternative would then be to take the electric component of the Riemann

tensor and use the result from the NP formalism as a foundation to identify the

components which give rise to all six different polarisations without invoking a null

plane wave condition. This has been considered in Refs. [291, 301] where, for a

wave propagating in the z-direction, the electric part of the Riemann tensor can be
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expressed as

Ri0j0 =


AL + A+ A× AVx

A× AL − A+ AVy

AVx AVy AB

 , (6.46)

where A+,× realise the plus and cross tensor polarisations, AVx,y the vector x and y

polarisations, and AL and AB the longitudinal and breathing scalar modes respec-

tively. A similar identification was proposed in Ref. [277] but instead of the Riemann

tensor, the decomposition is applied to the perturbed metric h
(1)
µν where the spatial

part is decomposed in the same fashion. In this way, the non-zero components of

the Riemann tensor infer the type of mode without imposing any constraint on the

wave speed, meaning that this would not impose any constraint on the number of

modes as mixed states can then be constructed. Since in the work which follows

non-null waves are found, the NP formalism shall not be considered to investigate

the resulting polarisation states.

6.2.2 Tetrad Approach

The metric approach gives a clear indication that there are no further GW modes

in f(T ) gravity. Motivated by the results obtained, in what follows, the same result

is derived in tetrad formulation.

Starting from the f(T ) field equations Eq.(2.24),

1

4
e µ
a f + fT

[
e−1∂ν (eS µν

a )− T bνaS
νµ
b + ωbaνS

νµ
b

]
+ fTTS

µν
a ∂νT = 0, (6.47)

expanding order by order yields

γ(0)ρ
a f(0) = 0, (6.48)

fT (0)
[
∂νS

(1)µν
a + ωbaνS

(1)νµ
b

]
= 0. (6.49)
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As before, the first condition implies that no cosmological constant is present, while

the second expression yields the GW behaviour provided that fT (0) 6= 0. In a purely

local indexed form, the expression changes to

∂cS
(1)abc + S(1)cbdωacd + S(1)acdωbcd + S(1)abcωdcd = 0, (6.50)

which shall prove useful in discussing the behaviour of f(T, TG) gravity later on.

Eq.(6.49) is an extension of the result which appears in Ref. [282] with the spin

dependent term appearing in the expression. The next step would be to solve for

the perturbed tetrad. However, it turns out that this is not possible for an arbitrary

spin connection due to the introduction of the background tetrad, the form of which

is unknown even if relevant gauge constraints are imposed. For this reason, this

shall not be investigated in further detail.

If one instead chooses the proper frame of reference (i.e. ωabµ = 0), then Eq.(6.49)

simplifies significantly. Note that in this proper frame, a zero spin connection implies

that the Lorentz matrices (or alternatively the background tetrad) are constant [52].

Nonetheless, this still turns out to be insufficient as the resulting equations of motion

are generally difficult to solve. This is where the metric approach result comes into

play. Based on the previous analysis, it is expected that the gauge conditions used

to eliminate the extra degrees of freedom in the metric are still applicable. In other

words, the traceless condition

h
(1)µ

µ = 2ηµνηabγ
(0)a
µ γ(1)b

ν = 0 (6.51)

and the Lorenz gauge condition

0 = ∂µh(1)
µν = ∂bγ

(1)b
ν + ηab

[
γ(1)a
µ ∂µγ(0)b

ν + γ(1)b
ν ∂µγ(0)a

µ + γ(1)b
ν ∂µγ(0)a

µ

]
(6.52)

can be used to simplify the field equations. In fact, these conditions allow for the
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field equations to be purely expressed in terms of the perturbed tetrad variable as

ηµαηdf�γ
(1)f
α −�γ(1)µ

d = 0, (6.53)

where the relation γ
(1)ν
b = −γ(0)ν

a γ
(1)a
µ γ

(0)µ
b which arises from the identity property

of tetrads has been used.

For the sake of simplicity, the case when γ
(0)a
µ = δaµ is considered, one which trivially

satisfies the absolute teleparallelism constraint. With this formulation, the field

equations can be solely expressed in terms of γ
(1)a
µ to give rise to the following

system of equations

A0
0 : �γ(1)0

0 = 0, (6.54)

A0
i = −Ai0 : �

(
γ

(1)0
i − γ(1)i

0

)
= 0, (6.55)

Aij (i 6= j) : �
(
γ

(1)j
i + γ

(1)i
j

)
= 0, (6.56)

Aim (i = m) : �γ(1)i
i = 0, (6.57)

where the indices i, j = {1, 2, 3}. Next, the transverse gauge condition is introduced

which imposes the constraints γ
(1)0
0 = 0 and γ

(1)i
0 = γ

(1)0
i , essentially eliminating the

first two equations. Together with the traceless and Lorenz gauge conditions, the

final set of equations left to solve are

Traceless condition: γ
(1)i
i = 0, (6.58)

Lorenz gauge condition: ∂j

(
γ

(1)j
i + γ

(1)i
j

)
= 0, (6.59)

Aij (i 6= j) : �
(
γ

(1)j
i + γ

(1)i
j

)
= 0, (6.60)

Aim (i = m) : �γ(1)i
i = 0. (6.61)

Without loss of generality, the GW shall be assumed to propagate in the z-direction.
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Solving in Fourier space, the solutions are

γ
(1)i
i = Ai

i exp(ikµx
µ), (i fixed index), (6.62)

γ
(1)j
i + γ

(1)i
j = Bi

j exp(ikµx
µ), i 6= j, (6.63)

where kµ is a wavevector such that kµk
µ = 0 (which again confirms that the plane

wave is propagating at the speed of light), and Ai
i and Bi

j are amplitude coefficients

such that A1
1 = −A2

2, A3
3 = 0 and B1

3 = B2
3 = 0, which arise from the traceless

and Lorenz gauge conditions. This leaves A1
1, B1

3, B2
3 and B1

2 as the undetermined

coefficients, resulting in the perturbed tetrad adopting the final form of

γ(1)a
µ =


0 γ

(1)1
0 γ

(1)2
0 γ

(1)3
0

γ
(1)1
0 A1

1 exp(ikµx
µ) γ

(1)2
1 γ

(1)3
1

γ
(1)2
0 B1

2 exp(ipµx
µ)− γ(1)2

1 −A1
1 exp(ikµx

µ) γ
(1)3
2

γ
(1)3
0 −γ(1)3

1 −γ(1)3
2 0

 . (6.64)

Note that there are six undetermined tetrad components as they are not constrained

by the equations. However, these are not physical degrees of freedom, as they do

not appear in the perturbed metric Eq.(6.5), which in this case takes the form of

h(1)
µν =


0 0 0 0

0 2A1
1 exp(ikµx

µ) B1
2 exp(ikµx

µ) 0

0 B1
2 exp(ikµx

µ) −2A1
1 exp(ikµx

µ) 0

0 0 0 0

 . (6.65)

Thus, these correspond to the Lorentz freedom of the tetrad.

Comparing with the solution obtained from the metric approach Eq.(6.31), the +

and × polarizations are clearly obtained after defining h+ := 2A1
1 exp(ikµx

µ) and

h× := B1
2 exp(ikµx

µ). This confirms the result obtained from the metric approach.

In other words, it is entirely possible to solve the teleparallel form of the field equa-
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tions through tetrads and obtain the GWs by appropriate choice of gauge conditions

while not losing any information about the tetrad. This tetrad approach could be

especially useful in theories where it is not possible apply a metric-like approach.

6.2.3 Higher Order Perturbations

Taking the linearised equations up to first order revealed no deviations from GR

on a Minkowski background. Here, higher order perturbations are investigated to

determine whether deviations from GR appear. Despite the small magnitudes of

these higher order perturbations, these contain important information regarding

the GWs. Following the metric approach Sec. 6.2.1, the second and third order

perturbation equations take the simple form of

G(2)
µν = 0, (6.66)

G(3)
µν =

2fTT (0)

fT (0)
S(1)α
ν µ∂αT

(2). (6.67)

Clearly, the second order equation coincides with the one which arises from GR.

This equation is important as this accounts for the gravitational radiation of a GW.

To illustrate this, one can separate the G
(2)
µν perturbation in two parts, terms which

are linearly proportional to h
(2)
µν and those quadratic in h

(1)
µν . This leads to

G(2)
µν

[
h(2)
]

= −G(2)
µν

[
h(1)h(1)

]
≡ tµν , (6.68)

where tµν ≡ −G(2)
µν

(
h(1)h(1)

)
has been defined. This term represents the pseudo

energy-momentum tensor for the GWs. In fact, this term satisfies a local conserva-

tion law ∂µt
µν = 0. However, this is not an actual stress-energy tensor for various

reasons. ‘Pseudo’ here refers to the fact that it is not an actual tensor as it is not

invariant under gauge transformations [57]. Furthermore, there is no way to define

the local energy-momentum of gravity by virtue of the equivalence principle [54–56].
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However, one can instead define a macroscopic value for the energy of the field in

a specified coordinate system by averaging over a finite volume that is much larger

than the wavelength of the GW. In the TT gauge, this results in the expression

tµν ∼ 〈∂µhρσ∂νhρσ〉 . (6.69)

This formula has been used as means to quantify the energy loss of a system such

as the Hulse-Taylor binary system, which predicted the orbital decay rate (origi-

nally derived in Ref. [268]) which has remained to be in continuous agreement with

observations [270,271]. As discussed in Ref. [302], this effect implies that the energy-

momentum of a GW is not a first order effect but a non-linear one. This follows

from the fact that there is no linear stress-energy pseudo-tensor (in fact, the least

order term appearing in the pseudo-tensor is of second order [1]). In Ref. [303], an

exact form of h
(2)
µν is derived.

Moving on to the third order perturbation equation, it is evident that a clear de-

viation from GR is present due to a new contribution arising from the fTT term

coefficient, unless the latter is zero, in which case the equation gets reduced to

that constructed from GR. However, no physical conclusion could be drawn, as the

system has not been solved (and this would be relatively difficult to do due to non-

linearities in the equations of motion). These higher order contributions represent

corrections to the gravitational radiation obtained at second order. In the case of

GR, these have been analysed up to any order in Ref. [304] and references therein.

6.3 Gravitational Waves in f (T,B) gravity

Following the GW analysis carried out in the case of f(T ) gravity, the extension

which includes a functional dependence on the boundary term scalar is investigated,

namely f(T,B) gravity. The inclusion of this scalar shall introduce the presence of a
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new mode, which is expected, since f(R) gravity, which exhibits three gravitational

modes, is a sub-class of the theory. Gravitational waves in f(T,B) gravity have

been investigated in Ref. [72] where the former statement turned out to be correct.

However, in what follows, a minor modification in the coefficients is found, while the

full polarisation of the waves shall be carried out in detail. Furthermore, the GWs

shall be investigated under two distinct regimes; first in a Minkowskian background

and second in the presence of a cosmological constant. The latter regime has not

yet been investigated in literature.

6.3.1 GWs in the Absence of a Cosmological Constant

Metric Approach

Following the approach applied to the f(T ) case Sec. 6.2.1, the zeroth and first

order equations for the spacetime indexed form of the f(T,B) gravity field equations

Eq.(2.29) given to be

− fTGµν + (gµν�−∇µ∇ν) fB +
1

2
gµν (BfB + TfT − f) + 2S α

ν µ∂α (fT + fB) = 0,

(6.70)

are

ηµνf(0, 0) = 0, (6.71)

−fT (0, 0)G(1)
µν + fBB(0, 0) (ηµν�− ∂µ∂ν)R(1) = 0, (6.72)

where the result R(1) = B(1) has been used, which shall be useful in simplifying the

forthcoming equations. Once more, the zeroth order equation confirms the absence

of a cosmological constant. As mentioned previously, as f(R) gravity is a sub-case of

f(T,B) gravity, new modes are expected to appear. In fact, the resulting first order

equation Eq.(6.72) is strikingly similar to that found in f(R) gravity, with the only
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discrepancies being the different coefficients [20, 296–301, 305–307].18 Motivated by

this, the same procedure shall be followed, a method which has also been used in

deriving the result obtained in Ref. [72].

First, the trace of Eq.(6.72) is considered which yields the relation

fT (0, 0)R(1) + 3fBB(0, 0)�R(1) = 0. (6.73)

This is of the same form as the Klein-Gordon equation of a scalar field (in this case

R(1)) of effective mass m, (�−m2)R(1) = 0, which allows for an identification of

the effective mass m to be

m2 ≡ − fT (0, 0)

3fBB(0, 0)
. (6.74)

In the |m2| → ∞ limit (for instance f(T,B) = f(T ) is one example), the equa-

tion reduces to the constraint R(1) = 0, the same as found in standard GR. Thus,

Eq. (6.72) reduces to that encountered in f(T ) gravity yielding the same GW mode

behaviour. In cases when the mass is finite, this yields a plane-wave solution for the

Ricci scalar, which in Fourier space can be expressed as

R(1) = B exp (ipµx
µ) , (6.75)

for some amplitude B and wavevector pµ which satisfies the condition pµp
µ = −m2.

This implies a wave which, as dictated by the wavevector constraint, does not travel

at the speed of light. Instead, it travels at some group velocity v [20,296–298,306,308]

v =

√
ω2 −m2

ω
, (6.76)

with frequency ω. Therefore, there exists a class of f(T,B) functions which imply

the existence of a new scalar mode.

18Indeed, the f(R) limit is recovered when f(T,B) = f(−T + B) which sets fT → −fR and
fBB → fRR, leading to the same expression encountered in f(R) gravity.
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Next, the perturbed metric tensor is found. Similar to the f(T ) case, a new per-

turbed tensor quantity shall be introduced to simplify the equations. In this case,

one convenient choice is

h(1)
µν = h̄(1)

µν −
1

2
h̄(1)ηµν −

1

3m2
ηµνR

(1), (6.77)

where once again h̄(1) represents the trace of h̄
(1)
µν . Note that contrary to the f(T )

case, this tensor is not trace-reversed unless the scalar mode vanishes. Thanks to

this newly defined perturbed tensor, Eq.(6.72) takes a much simpler form

∂ρ∂ν h̄
(1)
ρµ + ∂ρ∂µh̄

(1)
νρ − ηµν∂ρ∂αh̄(1)

ρα −�h̄(1)
µν = 0. (6.78)

To simplify the equations further, the transverse-traceless gauge (∂µh̄
(1)
µν = 0, h̄(1) = 0

and h̄
(1)
0µ = 0) is considered. The applicability of whether such gauge freedom is

permitted has been of discussion in the context of f(R) gravity. According to

Ref. [299], one can set either transversality or tracelessness but not both at the same

time. However, it was shown later in Ref. [308] that both conditions can indeed be

set as also remarked in Ref. [300]. Thus, in a similar analogy, such gauge conditions

are then allowed to be imposed, which reduce the field equations to �h̄(1)
µν = 0, which

reveals a null plane-wave solution

h̄(1)
µν = Aµν exp (ikρx

ρ) , (6.79)

with kρ representing the null four-wavevector kρk
ρ = 0 and Aµν are the amplitude

coefficients. Due to the gauge fixing, the latter satisfy kµAµν = 0, Aµµ = 0 and

A0ν = 0. Assuming the wave to be propagating in the z-direction sets A11 = −A22

and A12 = A21 as the undetermined coefficients whereas the remaining unlisted

coefficients are zero. Combining the results obtained from the scalar mode Eq.(6.75),
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the full solution for the perturbed metric h
(1)
µν is found to be

h(1)
µν = Aµν exp (ikρx

ρ)− 1

3m2
ηµνB exp (ipρx

ρ) . (6.80)

To finally determine the polarisations of these GWs, one should again resort to

the use of the geodesic deviation formula, where as discussed in in Sec. 6.2.1, it

is sufficient to determine and compare the resulting non-zero components of the

electric part of the Riemann tensor. In Fourier space, this turns out to be

Ri0j0 =
1

2
k0

2h̄ij −
1

6m2

[
δijp0

2 − pipj
]
R(1)

=


1
2
k0

2h̄11 − 1
6m2p0

2R(1) 1
2
k0

2h̄12 0

1
2
k0

2h̄12 −1
2
k0

2h̄11 − 1
6m2p0

2R(1) 0

0 0 −R(1)

 , (6.81)

where the condition pµp
µ = −m2 has been applied. Comparing with Eq.(6.46) re-

veals h̄11 and h̄12 correspond to the massless + and × polarisations respectively,

while the scalar mode appears in the breathing and longitudinal components and

hence exists as a mixture of both modes. Note that similar to the f(R) case, appli-

cation of the NP formulation would infer that these two scalar modes are distinct

from one another (Φ22 6= 0 and Ψ2 6= 0), leaving a total of four polarisations instead

of three. However, as the wave is propagating at a different speed from that of light,

this formulation does not apply and the scalar mode exists only as a mixture of

both scalar polarisations [300, 301, 307]. Nonetheless, in the absence of this mode

(|m2| → ∞), only the tensor modes remain, which is in agreement with the NP

formulation as expected since these waves are null.
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Tetrad Solutions for GWs in f(T,B) gravity

So far, f(T,B) gravity revealed the existence of an extra massive scalar GW mode

besides the two massless tensor + and × polarisations, obtained through a metric

approach. In the following, the latter results shall be obtained through a tetrad for-

mulation. Based on the tetrad approach used in f(T ) gravity, although introducing

the spin connection keeps a sense of generality, it does not allow for finding general

solutions. Despite this difficulty, in the proper frame, the system simplifies consid-

erably, especially when the choice of having the background tetrad as the Kronecker

delta is considered. This shall be assumed in the following. The resulting perturbed

field equations arising from Eq.(2.28), which are again listed for simplicity

e µ
a �fB − e ν

a ∇µ∇νfB +
1

2
e µ
a (BfB − f) + 2S νµ

a ∂ν (fB + fT )

+ 2e−1∂ν (eS νµ
a ) fT − 2TανaS

µν
α fT = 0, (6.82)

yield

δµaf(0, 0) = 0, (6.83)

∂νS
(1)νµ
a +

fBB(0, 0)

2fT (0, 0)

[
δµa�B

(1) − δνa∂µ∂νB(1)
]

= 0. (6.84)

Here, the consistency of an absence of a cosmological constant in the gravitational

Lagrangian is retained from the zeroth order equation Eq.(6.83), while the first order

equation Eq.(6.84) clearly shows the effect of the boundary term on the equations.

This shows a clear deviation from TEGR and f(T ) gravity unless fBB(0, 0) = 0. In

the latter, this results in the two massless + and × polarisations, agreeing with the

metric and tetrad approach results.

As shown in the f(T ) case (Sec. 6.2.2), solving the first order equation is not,

in general, possible unless the use of gauge conditions obtained from the metric

approach are used. In the avenue that fBB(0, 0) 6= 0, the metric approach showed
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the existence of a massive scalar mode arising from B(1), which led to the transverse-

traceless gauge conditions ∂µh̄
(1)
µν = 0 and h̄(1) = 0 with h̄

(1)
µν as defined in Eq.(6.77).

Expressing in terms of tetrads, the traceless condition h̄(1) = 0 becomes

δνb γ
(1)b
ν =

2fBB(0, 0)B(1)

fT (0, 0)
, (6.85)

and the Lorenz gauge condition ∂µh̄
(1)
µν = 0 takes the form of

ηab
(
∂aγ(1)b

ν + δbν∂
µγ(1)a

µ

)
=
fBB(0, 0)∂νB

(1)

fT (0, 0)
. (6.86)

These conditions allow for the field equations to simplify to

Aµa ≡ ηµαηab�γ
(1)b
α + δµb δ

ρ
a�γ

(1)b
ρ − δµa

fBB(0, 0)�B(1)

fT (0, 0)
= 0, (6.87)

which yields the following system of plane-wave equations:

A0
0 : �

(
γ

(1)0
0 − fBB(0, 0)B(1)

2fT (0, 0)

)
= 0, (6.88)

A0
i = −Ai0 : �

(
γ

(1)0
i − γ(1)i

0

)
= 0, (6.89)

Aij (i 6= j) : �
(
γ

(1)j
i + γ

(1)i
j

)
= 0, (6.90)

Aim (i = m) : �

(
γ

(1)i
i − fBB(0, 0)B(1)

2fT (0, 0)

)
= 0. (6.91)

From the transverse gauge constraint, one obtains that γ
(1)0
0 = fBB(0,0)B(1)

2fT (0,0)
and

γ
(1)0
i = γ

(1)i
0 . Therefore, only the final two equations remain which, in Fourier space,

yield

γ
(1)i
i = Ci

i exp(ikµx
µ) +

fBB(0, 0)B(1)

2fT (0, 0)
, i fixed index, (6.92)

γ
(1)j
i + γ

(1)i
j = Di

j exp(ikµx
µ), i 6= j, (6.93)

for amplitude coefficients Ci
i and Di

j and wavevector such that kµk
µ = 0, i.e. they
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are propagating at the speed of light. Assuming that the waves propagate along the

z-direction, the amplitude coefficients satisfy the constraints C3
3 = D1

3 = D2
3 = 0

and C1
1 = −C2

2, which leads to the perturbed first order tetrad to take the form of

γ
(1)a
µ =



fBB(0,0)B(1)

2fT (0,0)
γ

(1)1
0 γ

(1)2
0 γ

(1)3
0

γ
(1)1
0 C1

1 exp(ikµx
µ) + fBB(0,0)B(1)

2fT (0,0)
γ

(1)2
1 γ

(1)3
1

γ
(1)2
0 D1

2 exp(ikµx
µ)− γ(1)2

1 −C1
1 exp(ikµx

µ) + fBB(0,0)B(1)

2fT (0,0)
γ

(1)3
2

γ
(1)3
0 −γ(1)3

1 −γ(1)3
2

fBB(0,0)B(1)

2fT (0,0)

 .

(6.94)

Once more, there are six undetermined components not constrained by the equa-

tions which correspond to the Lorentz symmetry degrees of freedom leaving three

undetermined coefficients, being C1
1, D1

2 and B(1), acting as the GWs. In fact,

computing the perturbed metric tensor reveals

h(1)
µν =


−fBB(0,0)B(1)

fT (0,0)
0 0 0

0 h+ + fBB(0,0)B(1)

fT (0,0)
h× 0

0 h× −h+ + fBB(0,0)B(1)

fT (0,0)
0

0 0 0 fBB(0,0)B(1)

fT (0,0)

 , (6.95)

which is precisely the solution found in Eq.(6.80) after exchanging B(1) = R(1) with

the identification h+ := 2C1
1 exp(ikµx

µ) and h× := D1
2 exp(ikµx

µ).

6.3.2 Effect of a Cosmological Constant in f(T,B) gravity

On a Minkowski background, the GWs arising from an f(T,B) gravity model have

indicated the presence of three modes with the tensor modes travelling at the speed

of light and the scalar mode travelling at a different speed. Still within the linearised

gravity regime, the effect of a cosmological constant to the background Minkowski

geometry shall now be investigated. The introduction of this constant does not alter

the GW polarisation behaviour but its presence causes an effect in the amplitude

and phase of these waves, which occurs as the background geometry is no longer
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Minkowski spacetime. Due to the change in the background geometry, the linearised

approach must be slightly revised to include the effects of the cosmological constant.

For the purpose of this work, the linearisation procedure presented in Refs. [309–311]

shall be followed.

Denoting Λ as the cosmological constant, effects of this quantity in both the back-

ground and perturbed level require an order expansion at each level of perturbation

about Λ. This is necessary in order to introduce Λ into the background geometry

as it is no longer Minkowski, and also to introduce the effect of the cosmological

constant onto the GWs. As the cosmological constant is constrained observationally

to be a very small quantity, one can follow this linearisation procedure where

gµν = h(0)
µν + h(1)

µν +O
(
h(2)
µν

)
, (6.96)

where
∣∣∣h(2)
µν

∣∣∣� ∣∣∣h(1)
µν

∣∣∣� 1 represents the overall metric perturbation, in which each

perturbation is expanded in orders of Λ to be

h(0)
µν = ηµν + Λh(0,Λ)

µν +O
(
Λ2
)
, (6.97)

h(1)
µν = h(1,GW)

µν + Λh(1,Λ)
µν +O

(
Λ2
)
. (6.98)

Here, the superscripts define the type of order, (0,Λ) represents the first Λ depen-

dence on the background metric, (1,GW) represents the GW contribution indepen-

dent of the cosmological constant while (1,Λ) represents the latter correction to the

GWs. This notation shall be assumed in what follows.

In a similar fashion, a comparable expansion is considered for the tetrads, namely

eaµ = ē(0)a
µ + ē(1)a

µ +O
(
ē(2)a
µ

)
, (6.99)
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where
∣∣∣ē(2)a
µ

∣∣∣� ∣∣∣ē(1)a
µ

∣∣∣� 1, and

ē(0)a
µ = γ(0)a

µ + Λγ(0,Λ)a
µ +O(Λ2), (6.100)

ē(1)a
µ = γ(1,GW)a

µ + Λγ(1,Λ)a
µ +O(Λ2). (6.101)

Overall, the metric perturbations can therefore be expressed in terms of tetrad

perturbations through the relations

ηµν = ηabγ
(0)a
µ γ(0)b

ν , (6.102)

h(0,Λ)
µν = ηab

(
γ(0)a
µ γ(0,Λ)b

ν + γ(0,Λ)a
µ γ(0)b

ν

)
, (6.103)

h(1,GW)
µν = ηab

(
γ(0)a
µ γ(1,GW)b

ν + γ(1,GW)a
µ γ(0)b

ν

)
, (6.104)

h(1)GWΛ
µν = ηab

(
γ(0)a
µ γ(1,Λ)b

ν + γ(0,Λ)a
µ γ(1,GW)b

ν + γ(1,GW)a
µ γ(0,Λ)b

ν + γ(1,Λ)a
µ γ(0)b

ν

)
. (6.105)

The next step is to revisit and examine the order behaviour of the relevant gravita-

tional quantities. Starting with the definition of the torsion tensor Eq.(2.10) up to

first order in both perturbation and Λ yields

T aµν = ∂µγ
(0)a
ν − ∂νγ(0)a

µ + ωabµγ
(0)b
ν − ωabµγ(0)b

µ

+ ∂µγ
(0,Λ)a
ν − ∂νγ(0,Λ)a

µ + ωabµγ
(0,Λ)b
ν − ωabµγ(0,Λ)b

µ

+ ∂µγ
(1,GW)a
ν − ∂νγ(1,GW)a

µ + ωabµγ
(1,GW)b
ν − ωabµγ(1,GW)b

µ

+ ∂µγ
(1,Λ)a
ν − ∂νγ(1,Λ)a

µ + ωabµγ
(1,Λ)b
ν − ωabµγ(1,Λ)b

µ . (6.106)

Using the fact that in the G → 0 limit the torsion tensor should be zero (as this

reduces to Minkowski space), the previously obtained condition Eq.(6.8) is once

more obtained. In other words, this shows that at a background level, the torsion

tensor is of Λ order while it exhibits GW contributions at both zeroth and first order

Λ contributions. Consequently, the same applies for the boundary term. For the

torsion scalar, it is second order in Λ at a background level and has a GW correction
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at first Λ order. Therefore, the torsion scalar is expressed as

T = T (0,Λ2) + T (1,Λ) +O
(
T (2)

)
, (6.107)

with only T (1,Λ) being relevant to the forthcoming analysis.

With all relevant quantities having their order defined, the final step requires a

method to deal with orders of the gravitational Lagrangian f(T,B). For simplicity,

assume that the function can be expanded about T = B = 0, namely

f(T,B) = f(0, 0) + fT (0, 0)T + fB(0, 0)B +
1

2
fTT (0, 0)T 2

+
1

2
fBB(0, 0)B2 + fTB(0, 0)TB + . . . . (6.108)

Due to the cosmological constant background contribution, f(0, 0) represents the

latter, and is hence treated to be at least of first Λ order. The remaining Tay-

lor coefficients, however, will depend on the functional limit, as they may contain

terms proportional to Λ. To illustrate this, consider the following examples where

f1(T,B) = T + ΛTeB and f2(T,B) = T + αTeB + 2Λ for some constant |α| � |Λ|.

Then

f
(0,Λ)
1T = f1T (0, 0) + f1TB(0, 0)B(0,Λ) = 1 + Λ + ΛB(0,Λ) = Λ +O

(
Λ2
)
, (6.109)

f
(0,Λ)
2T = f2T (0, 0) + f2TB(0, 0)B(0,Λ) = 1 + α + αB(0,Λ) = αB(0,Λ) +O

(
Λ2
)
.

(6.110)

As the examples illustrate, f1T contributes at first Λ order while f2T does not. On

the other hand, the f1TB term becomes second order while f2TB yields a first order

contribution. In order to distinguish between these two cases, Taylor coefficients

denoted by a superscript Λ, i.e. fΛ
(n)(0, 0) where n represents the various possible

combination of derivatives, will represent the explicit Λ dependency of the Taylor

coefficient. On the other hand, those without the superscript shall represent the Λ
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independent contribution.

The perturbed ordered equations can now be examined in detail. Starting from the

spacetime indexed form of the equations Eq.(2.29), at zeroth order, the Minkowski

background is identically zero while at first Λ order yields

fT (0, 0)G(0,Λ)
µν +

1

2
ηµνf(0, 0) = 0. (6.111)

This describes the cosmological constant dependent background metric solution,

which evidently depends on the coefficients f(0, 0) and fT (0, 0). Essentially, this

modifies the de Sitter metric solution, which can be easily derived following [310].

To illustrate this, an effective cosmological constant

Λ̃ ≡ f(0, 0)

2fT (0, 0)
(6.112)

is defined. Then, Eq.(6.111) is reduced to a GR-like form G
(0,Λ)
µν + Λ̃ηµν = 0 which is

the one given in Refs. [309–311]. Indeed, the background value of the Ricci scalar at

first order in Λ, which is obtained after taking the trace, reveals R(0,Λ) = 4Λ̃, which

is precisely the value in GR in the presence of a cosmological constant.

Moving towards the first order perturbation, expanding in orders of Λ, the following

equations are derived:

− fT (0, 0)G(1,GW) + fBB(0, 0)
(
ηµν�

(0) − ∂µ∂ν
)
B(1,GW) = 0, (6.113)

− fTB(0, 0)B(1,GW)G(0,Λ)
µν −

[
fTB(0, 0)B(0,Λ) + fΛ

T (0, 0)
]
G(1,GW)
µν − fT (0, 0)G(1,Λ)

µν

+
1

2
ηµν
[
fBB(0, 0)B(0,Λ) + fΛ

B(0, 0)
]
B(1,GW) − 1

2
h(1,GW)
µν f(0, 0)

+ 2 [fTB(0, 0) + fBB(0, 0)]S(0,Λ)α
ν µ∂αB

(1,GW)

+
(
ηµν�

(0) − ∂µ∂ν
) (
fTB(0, 0)T (1,Λ) + fBB(0, 0)B(1,Λ) + fBBB(0, 0)B(0,Λ)B(1,GW)

)
+ fBB(0, 0)

(
h(0,Λ)
µν �

(0) + ηµν�
(0,Λ) −∇(0,Λ)

µ ∂ν
)
B(1,GW) = 0, (6.114)
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where �(0) ≡ ηµν∂µ∂ν . The f(T,B) GW equation Eq.(6.72) is recovered as seen

from Eq.(6.113), confirming the consistency of the result. Eq.(6.114) then describes

the effect of the cosmological constant to the GWs. However, this turns out to

be intractable to solve for the following reasons. Here, the goal is to solve the

unknown components which appear in G
(1,Λ)
µν , T (1,Λ) and B(1,Λ). However, as T (1,Λ)

and B(1,Λ) are not expressed solely in terms of metric perturbations, this results into

a complicated system of equations in terms of tetrads. A viable alternative would

be to express the combination of these two quantities in terms of R(1,Λ). Alas, the

presence of the fTB and fBB coefficients make this non-viable, therefore making the

system generally very difficult to solve.

Nonetheless, in the simple f(T,B) = f(T ) limit, the Λ dependent order solution

Eq.(6.114) reduces massively to

fΛ
T (0)G(1,GW)

µν + fT (0)G(1,Λ)
µν +

1

2
h(1,GW)
µν f(0) = 0. (6.115)

In this limit, Eq.(6.72) reduces to the constraint G
(1,GW)
µν = 0 (in the same way as

shown in the f(T ) analysis (Sec. 6.2.1) and hence leads to the massless + and ×

polarisations), leading to a further simplification to

G(1,Λ)
µν + Λ̃h(1,GW)

µν = 0, (6.116)

where the effective cosmological constant definition Eq.(6.112) has been used. This

equation is precisely the one found in GR in Refs. [309–311]19 albeit having a different

cosmological constant, meaning that the same procedure can be followed to obtain

the resulting effect of Λ onto the GWs.

Without going into the mathematical details, this equation implies that no extra

polarisation modes besides the massless tensor modes exist. However, the latter

19This is apparent after applying the corresponding gauge choices to yield the simplified expres-

sion �h(1,Λ)
µν + 2Λh

(1,GW)
µν = 0.
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modes are affected, causing a time varying amplitude and phase dependent on the

cosmological constant. Despite this effect, this contribution is very small due to

the small nature of Λ and hence such an observation would be very difficult to

detect [309–313].

In conclusion, contrary to the background GW solutions which turn out to be identi-

cal to those of GR, a change in the background causes deviations from GR. Including

the cosmological constant causes the choice of the f(T ) function to infer an effec-

tive cosmological constant, which could be different from that defined in standard

GR with a cosmological constant. This choice is important as it affects the GW

behaviour. Such behaviour is also observed in an FLRW setting, where it has been

shown that despite the fact that tensor modes travel at the speed of light, their

amplitude is still dependent on the f(T ) function [284,285].

6.4 Gravitational Waves in f (T, TG) gravity

The final gravitational model investigated for GWs is the one which includes the

TEGB extension, TG. To investigate the existence and behaviour of such waves,

first order perturbations in the tetrad are sufficient for the analysis. Recall that the

definition of the TEGB scalar Eq.(2.32) is given to be

TG =
[
Kα

γβK
γλ
ρK

µ
εσK

εν
ϕ − 2Kαλ

βK
µ
γρK

γ
εσK

εν
ϕ + 2Kαλ

βK
µ
γρK

γν
εK

ε
σϕ

+2Kαλ
βK

µ
γρ

(
Kγν

σ,ϕ + ωγθϕK
θν
σ + ωνθϕK

γθ
σ − ω

θ
σϕK

γν
θ

)]
δβρσϕαλµν . (6.117)

As shown previously, since the contorsion tensor is, at least, a first order contribution

in the linearised gravity regime, this implies that the TG scalar is of at least third

order. Next, the field equations for f(T, TG) gravity Eq.(2.34),

2
(
H [ac]b +H [ba]c −H [cb]a

)
,c

+ 2
(
H [ac]b +H [ba]c −H [cb]a

)
Cd

dc
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+
(
2H [ac]d +Hdca

)
Cb

cd + 4H [db]cC
a

(dc) +
(
T acd + 2ωa[cd]

)
Hcdb

− hab + (f − TfT − TGfTG) ηab = 0, (6.118)

are expanded and solved order by order. Similar to the previous considerations,

the f(T, TG) Lagrangian can be Taylor expanded about T = TG = 0 since the

background values of each scalar is null. With this in mind, one finds that the field

equations up to first order can be simply reduced to

ηabf(0, 0) = 0, (6.119)

2
(
H(1)[ac]b +H(1)[ba]c −H(1)[cb]a

)
,c

+ 2
(
H(1)[ac]b +H(1)[ba]c −H(1)[cb]a

)
C

(0)d
dc

+
(
2H(1)[ac]d +H(1)dca

)
C

(0)b
cd + 4H(1)[db]cC

(0) a
(dc) + 2ωa[cd]H

(1)cdb = 0, (6.120)

where

H(1)abc = fT (0, 0)
(
ηacK

(1)bd
d −K

(1)bca
)
. (6.121)

The zeroth order equation clearly indicates that no cosmological constant is present

in the theory, maintaining consistency with the linearised gravity approach. From

the definition of the coefficients Cc
ab Eq.(2.37) and the resulting form of the spin

connection Eq.(6.11), it is straightforward to show that

C
(0)c

ab = 2ωc[ba]. (6.122)

Combining this result with Eq.(6.121) into the first order field equation Eq.(6.120),

the equations simplify considerably to

fT (0, 0)
[
∂cS

(1)abc + S(1)cbdωacd + S(1)acdωbcd + S(1)abcωdcd
]

= 0, (6.123)

where the definition of the superpotential Eq.(2.19) has been used.

As fT (0, 0) 6= 0 (otherwise one does not recover TEGR as a limit and no GWs

result), the first order equation reduces to the same equation obtained in the context
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of f(T ) gravity Eq.(6.50). This is expected since the TEGB term is a higher order

contribution, and thus it has no effect at lower perturbation orders. This leaves the

behaviour of the GWs, at least at a Minkowski background level, identical to that

obtained in f(T ) gravity. However, the given result does not completely define the

GW speed of propagation.

In the case of curvature, the introduction of higher order invariants together with

(non)-minimal couplings of a scalar field has been extensively investigated in lit-

erature. As shown in Ref. [314], for a Minkowski background, the speed of the

waves in a general Horndeski theory (which encompasses a large class of gravita-

tional models) indicate the existence of extra non-tensor polarisations which do not

necessarily propagate at the speed of light, whereas the tensor modes propagate

at said speed. However, in a presence of a FLRW background, the waves do not

necessarily propagate at the speed of light. Due to recent GW observations, this

imposes strong constraints on the model, thus reducing it to that of a conformal

coupling Lgrav =
√
−gf(φ)R, where φ is some scalar field [315–319]. It would there-

fore be of interest to investigate whether a similar behaviour arises in the teleparallel

approach, as means to constrain the viability of f(T, TG) gravity theory.

6.5 Discussion

This chapter has seen the in-depth investigation of the existence and nature of the

GWs in modified teleparallel theories of gravity, namely f(T ), f(T,B) and f(T, TG)

gravity, using a linearised gravity approach. The results are summarised in Table 6.1.

This linearisation procedure has been performed under two viewpoints. The first

is the metric approach, where the spacetime indexed forms of the field equations

have been used. In this way, the resulting quantity to solve is the perturbed metric.

The second approach deals with the equations expressed purely in terms of tetrads,

where the resulting GWs are generated from solving the tetrad rather than the
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Teleparallel Model Polarisations Speed of Wave

f(T ) Tensor +, × c
f(T,B) Tensor +, × c

Scalar mixed b and l state < c
f(T, TG) Tensor +, × c

Table 6.1: A summary of the different possible polarisations of the GWs arising in
f(T ), f(T,B) and f(T, TG) gravity derived using a linearised gravity procedure within
a Minkowski background. Only f(T,B) gravity exhibits an extra massive scalar mode,
which only exists if the effective mass defined in Eq.(6.74) satisfies |m2| <∞.

metric. Despite the fact that the metric approach appears to be overall simpler to

solve, especially since it does not invoke any constraint on the spin connection, it

does not reveal any possible properties of the tetrad. Nonetheless, solving with the

tetrad still revealed to retain the same physical results obtained from the metric

formulation albeit only in a preferred frame setting as the equations are not solved

for an arbitrary background tetrad and spin connection.

Starting with f(T ) theory, the theory does not predict any further modes besides

those of GR gravitational as shown in Ref. [283]. However, when a cosmological

constant is introduced, although the resulting behaviour is effectively equivalent to

that of GR with a cosmological constant, the choice of the f(T ) function affects

the effective cosmological constant Λ̃ strength defined in Eq.(6.112), thus deviating

from standard behaviour. Nonetheless, as the deviation from GR is expected to be

small, fT (0) ' 1 meaning Λ̃ would not differ by much from Λ, resulting in an effect

which is practically negligible for the GWs. Interestingly, a clear deviation from

GR is observed for higher-order perturbations. While second order perturbations

are identical to GR, meaning that the gravitational energy radiation behaves in

the same way, third order perturbations differ from GR due to the presence of the

fTT (0) contribution. It is unknown what effects this will induce unless the relevant

equations are solved.

Next, in the case of f(T,B) gravity, an extra polarisation mode arises, which is scalar
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in nature and exhibits a mix between the longitudinal and breathing polarisation

states. The existence of this mode is entirely dependent on the effective mass term,

meaning one can find sub-cases where this mode does not appear. Furthermore,

the results from f(R) gravity are recovered as expected, since this is a sub-case of

f(T,B) gravity. The effect of a cosmological constant has also been considered for

this model, in which the complicated expression Eq.(6.114) results. This expression

could not be solved in general, but it is expected that the cosmological constant

affects the modes as indicative from the f(T ) gravity sub-case.

In the final teleparallel extension which includes the TEGB scalar, f(T, TG) gravity,

it is observed that the first order perturbation is identical to that obtained in f(T )

gravity, or equivalently, that in GR. In other words, no extra polarisations other

than the tensor polarisations exist. Such behaviour is expected as the Gauss-Bonnet

teleparallel invariant is a higher order quantity and hence should contribute at higher

order corrections.

Overall, f(T,B) is found to be the only model which may exhibit extra polarisations.

With the current observations, it appears that the GWs travel at the speed of light

and exhibit two polarisations, which would put tight constraints on the form of

the f(T,B) Lagrangian. Furthermore, these observations should also be tested in

a more general background, such as an FLRW one, as the GW speed might be

different from that obtained using a linearised approach, as observed in curvature

based theories. This would then impose tighter constrains especially in the f(T, TG)

model if it exhibits similar behaviour to its curvature counterpart.
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Growth of Structure in f (T, T )

Gravity

Based on the considerations discussed in Chapter 2, the background geometry of the

universe so far has been taken to be described by the spatially flat FLRW cosmology.

This geometry is based on the assumption that the universe obeys the cosmological

principle, meaning that it is homogeneous and isotropic. Supported by observations

from the distribution of structure at large scales, and due to the very isotropic nature

of the CMB temperature, the basis for considering such a cosmology is well founded.

However, small temperature fluctuations in the CMB and formation of overdense

regions are clear indicators of deviations of these two assumptions, meaning that

the FLRW geometry is insufficient to fully describe the universe’s features. Fur-

thermore, from a more basic conceptual perspective, even if the overall universe

appears to obey the cosmological principle, it is not necessarily implied that this is

the case [320]. For instance, the very early and the late future states of the universe

may not be strictly isotropic and homogeneous [321, 322]. To further expand the

concept of introducing anisotropy and inhomogeneity in the cosmological metric,

two viewpoints are discussed.
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The first is to consider a completely alternative metric to the FLRW one, such

as the Lemâıtre-Tolman-Bondi (isotropic and inhomogeneous) and Bianchi type

(anisotropic and homogeneous) metrics20. In doing so, this allows a more detailed

investigation of the background geometry dynamics (for instance through dynamical

systems), and of the various possible states the universe may experience, some of

which may not be clearly evident from a strict FLRW geometry.

In order for these non-FLRW metrics to be viable, they must be able to recover

the observed homogeneity and isotropy at specific epochs. This is possible through

isotropisation of the parameters. Taking Bianchi metrics as an example, these can

become isotropised at late times although not all of them exhibit stable behaviour.

Another application arises during inflation, where a pre-inflationary universe could

be anisotropic but becomes isotropised through inflation (or through some other

mechanism). These alternative metrics also affect the CMB spectrum [321,322].

The second consideration, which will be the main focus of this chapter, involves ex-

tending the weak-field approximation used in Chapter 6 by replacing the background

Minkowski metric by the FLRW metric. This approach, more commonly known as

cosmological perturbation theory, was first introduced by Lifshitz in 1946 [323].

Here, the inhomogeneous and anisotropic structure is assumed to be generated by

small perturbations of the FLRW metric. It is these perturbations which yield the

observed CMB anisotropy and large scale structure. Despite being a very successful

technique, the approach does suffer from limitations, as it is not applicable when

the perturbations become more pronounced (for instance, the matter overdensi-

ties at later times become significantly more dominant) while leaving the linearised

regime [324].

Throughout this chapter, the large scale structure formation of CDM overdense

regions shall be explored in the context of f(T, T ) gravity. This serves as an ex-

20See, for instance, Refs. [321,322] for an extended review on the applications of the mentioned
(and other) metrics.
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tension of the investigations carried out in Refs. [127, 325–327] in the case of f(T )

gravity. For this model, it has been shown that structure forms similarly to that

described by GR, except for a redefined Newtonian gravitational constant. Fur-

thermore, in its curvature analogue f(R, T ) gravity, it was found that the growth

becomes strongly scale dependent, contrary to what is encountered in GR and f(T )

gravity [328]. Thus, this chapter shall investigate whether f(T, T ) gravity exhibits

the same features.

The chapter is subdivided as follows. A brief introduction on cosmological pertur-

bation theory is first presented, where gauge invariance and the SVT decomposition

are explored. Next, through a focus on the scalar perturbations, the CDM growth

equation for sub-horizon scales is derived and examined under distinct regimes. The

resulting growth behaviour is then explored for two f(T, T ) models derived on the

assumption that the stress-energy tensor is covariantly conserved. A final discussion

of the results is then given.

7.1 Cosmological Perturbations

Throughout this section, a brief overview of the necessary key ingredients to perform

cosmological perturbations is presented. Effectively, this approach is an extension of

the weak field approximation used in the context of GWs given in Chapter 6. Here,

the main difference lies in the treatment of the background metric to represent

the background cosmology, namely the FLRW metric, and the perturbed metric

which will contain all the relevant information regarding the inhomogeneous and

anisotropic aspect of the universe. In other words, the metric tensor is expressed

simply as

gµν = ḡµν + hµν , (7.1)
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with ḡµν representing the FLRW metric and hµν the small inhomogeneous and

anisotropic correction to the background spacetime, which satisfies |hµν | � |gµν .

In this way, any higher order corrections shall be ignored in what follows.

As the background evolution is relatively straightforward to compute, the focus here

lies in the form of the perturbation. The most general cosmologically perturbed

FLRW metric, firstly introduced by Lifshitz, takes the form of [57, 61, 100, 144, 324,

329,330]

ds2 = (1 + 2φ)dt2 − 2a(t)Bidx
idt− a2(t)[(1− 2ψ)δij + 2Eij]dx

idxj, (7.2)

where φ and ψ are scalar functions (named lapse and spatial curvature respectively),

Bi is a vector function also known as the shift vector, and Eij is a symmetric and

traceless tensor function referred to as the shear tensor [331]. Contrary to the scale

factor, these functions (which correspond to 10 unknowns as expected from the

metric) are dependent on both space and time, confirming their inhomogeneous and

anisotropic nature. Furthermore, their magnitudes are small to conform with the

linear perturbation scheme.

However, the metric tensor has not yet been expressed in a convenient form. Par-

ticularly, the vector and tensor functions can be expressed in terms of more basic

components. Thanks to Helmholtz’s theorem [332], this states that any vector field

can be decomposed in terms of a gradient of a scalar field and a divergenceless vector

field uniquely (provided certain conditions are satisfied), meaning that the vector

function Bi can be expressed as

Bi = ∂iB + Si, (7.3)

with B being the scalar component and Si being the vector component satisfying

∂iSi = 0. In a similar analogy, the tensor function Eij can be decomposed in terms
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of scalar, vector and tensor components according to

Eij = ∂〈i∂j〉E + 2∂(iFj) + χij, (7.4)

with E being the scalar component, Fi representing a divergenceless vector field and

χij being a symmetric traceless divergenceless tensor. Here, the angled brackets are

defined as,

∂〈i∂j〉E :=

(
∂i∂j −

1

3
δij∂

2

)
E. (7.5)

Thanks to Helmholtz’s theorem, the metric can now be purely expressed in terms of

SVT components. Observe that the number of degrees of freedom still remains 10,

amounting to four scalars, four vectors and two tensors. The choice to opt for this

form of decomposition is simple; when finding the resulting field equations, each type

of perturbation decouples from one another, i.e. the evolution of each perturbation

is independent from each other. This allows for the investigation of the perturbed

cosmology to be solved in a more straightforward approach.

This decomposition, however, does not apply for all different cosmological space-

times. For instance, in the case of the Lemâıtre-Tolman-Bondi metric, an alter-

native decomposition is considered, with this being composed of polar and axial

perturbations, which “replace” the scalar and vector perturbations discussed previ-

ously [333]. In the case of an anisotropic Bianchi Type I spacetime, for instance,

a similar SVT decomposition to that of the FLRW one applies, but requires some

minor alterations in order to obtain the correct perturbed spacetime [334].

The decoupling of the perturbations leads to different physical implications for each

SVT component. Briefly, these infer the following:

1. Scalar modes are capable of describing the evolution of large scale structure

of the universe, which is the main purpose of this chapter. They are also

important to describe the anisotropies in the CMB [144,331,335,336];
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2. Vector perturbations had seen less physical impact compared to the other

two perturbations since, in the general context of GR and standard inflation,

these perturbations decay with the universe’s expansion, leaving no physical

imprint [337]. However, this does not mean they are not important. If such

perturbations are more dominant, these would leave an imprint in the CMB B-

polarisation spectrum [331]. This measurement could be explained if inflation

is sourced by more than one scalar field [338]. Furthermore, in ekpyrotic

and bouncing cosmologies, the presence of a time of collapse before the “Big

Bang” bounce would cause a growth in the vector perturbation, rather than a

decay, which would break the homogeneity assumption in such small volume

regimes [337,339].

3. Tensor perturbations describe the primordial gravitational mode spectrum,

particularly the tensor modes (plus and cross polarisations). As mentioned in

Chapter 6, tensor perturbations describe various properties of the primordial

waves, namely their amplitude, speed and effective mass [277]. Furthermore,

this allows for the computation of the tensor power spectrum, which quantifies

the strength of the stochastic background (see for instance Ref. [340]).

Clearly, the main focus will lie on the evolution of the scalar perturbations, leaving

vector and tensor perturbations to not be explored further.

Before advancing, a small comment regarding higher-order SVT perturbations is

necessary. The SVT decomposition procedure applies very well at first order due to

its decoupling nature. However, this is not true once higher order perturbations are

introduced. Indeed, the higher-order variables become dependent on cross contribu-

tions from lower order perturbations [341]. Despite this difficulty, these higher-order

corrections have physical implications most notably for inflation. Contributions from

second order perturbations could infer a deviation from the Gaussian nature of the

CMB leading to so called non-Gaussianities. These are beyond the scope of this

work, see for instance Refs. [342–344] for further details on the topic.
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Focusing solely on scalar perturbations simplifies the metric to

ds2 = (1 + 2φ)dt2 − 2a(t)B,idx
idt− a2(t)[(1− 2ψ)δij + 2E,ij]dx

idxj. (7.6)

Now, one has to clearly distinguish between the background and perturbed quan-

tities from the aspect of coordinate transformations. Focusing on the background

metric, one can always define some coordinate transformation which makes the

FLRW metric to appear as if it was inhomogeneous and anisotropic. This is the

aspect of covariance of the metric [100, 329]. However, it does not truly represent

the inhomogeneous and anisotropic structure of the universe, as it is only a mere

coordinate transformation. To truly distinguish between the background and per-

turbed metrics, the coordinate transformations have to also represent the smallness

of the perturbed metric. Similar to the procedure carried out in gravitational waves,

a gauge transformation of the form21

xµ → xµ + ξµ(xν) (7.7)

for some vector ξµ such that |ξµ| � 1 is applied to investigate how the scalar func-

tions transform under such infinitesimal coordinate gauge transformations. Clearly,

this keeps the background metric gauge-invariant and hence only the scalar pertur-

bations change under coordinate transformations. Since only scalar perturbations

are considered, ξµ is decomposed in terms of SVT components while keeping the

scalar perturbations. This leads to the coordinate transformations

t→ t+ α, (7.8)

xi → xi + ∂iβ, (7.9)

for some scalar functions α(t, xi) and β(t, xi). In this way, the scalar perturbations

21A more detailed mathematical interpretation of the gauge coordinate transformations is given
in Refs. [57, 329,330].
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transform according to [144,331]

φ→ φ− α̇, (7.10)

B → B + a−1α− aβ̇, (7.11)

E → E − β, (7.12)

ψ → ψ +Hα. (7.13)

As there are two coordinate degrees of freedom and four metric scalar perturbations,

it is therefore always possible to eliminate two scalar perturbations by appropriate

fixation of α and β. This leads to gauge fixing i.e. a preferred coordinate frame

of reference which shall prove to be useful in solving the field equations. There

are various gauge choices; here, only the conformal Newtonian (or also known as

longitudinal) gauge is addressed. For further details regarding other gauges, see

Refs. [100,144,329–331] and references therein.

The conformal Newtonian gauge fixes E = B = 0, reducing the metric to be only

dependent on the gravitational potentials φ and ψ, which has been a very popular

gauge in the study of large scale structures. Here, the term Newtonian stems from

the fact that in the weak-field limit, these potentials correspond to the standard

Newtonian gravitational potential φ = ψ = −GM/r [57, 345].

Although one can gauge fix the coordinates, the physical interpretation of these

scalar perturbation quantities is still left unanswered as these will change between

different coordinate systems (i.e. different coordinate gauge transformations). Phys-

ical quantities are independent of coordinates and hence, one should look for per-

turbation variables which are gauge-invariant, i.e. quantities which do not change

under gauge transformations [329].
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Bardeen constructed two simple gauge invariant perturbations, rightfully named

Bardeen potentials, being [346]

φB ≡ φ− d

dt

[
a2
(
Ė − a−1B

)]
, (7.14)

ψB ≡ ψ + a2H
(
Ė − a−1B

)
. (7.15)

From the given forms, in the conformal Newtonian gauge, the Bardeen potentials

would exactly correspond to the gravitational potentials φ and ψ respectively. Hence,

the resulting evolution equation obtained in terms of these variables would remain

unchanged.

Up to this point, the SVT decomposition and the issue of gauge invariance has only

been investigated in the context of the metric. However, the field equations consist

of contributions from the matter sector, namely the stress-energy tensor. Hence,

these properties have to be investigated there as well.

Starting with the SVT decomposition, for which only the scalar perturbations are

presented, the main interest lies in the scalar perturbations of a perfect fluid. Triv-

ially, two natural scalar perturbations arise from the energy density δρ and pressure

δp respectively. However, other components also arise.

Any perfect fluid within a homogeneous and isotropic background has a temperature

which depends solely on time and not on space. In this way, only density and pres-

sure components arise. However, in an inhomogeneous and anisotropic background,

the temperature now also depends on position, which gives rise to, momenta and

anisotropic stresses, beside perturbations in density and pressure. From a Boltz-

mann viewpoint, once spatial effects are introduced, the distribution function is

perturbed to account for the spatial dependence on temperature. For relativistic

fluids, for instance, this yields monopole, dipole and quadrupole moments which

correspond to energy perturbation, velocity perturbation and anisotropic stress re-

spectively. Non-relativistic fluids (e.g. CDM) on the other hand do not give rise to
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anisotropic stress [61,99,100,144].

An alternative simple way to characterise this description, is to include an anisotropic

stress tensor Πµν and to consider velocity perturbations on uµ. This tensor satisfies

the properties Π0
0 = Π0

i = uµΠµν = 0. Furthermore, without loss of generality, this

can be defined to be traceless Πi
i = 0 as the anisotropic component can be redefined

in the pressure component. However, this is not a necessary condition, and will thus

not be considered further.

The velocity and the anisotropic stress being vectors and tensors respectively can

therefore be decomposed according to the SVT decomposition. The corresponding

scalar perturbation for the velocity vector is the velocity potential v [329,330] while

the scalar component of the anisotropic stress tensor is denoted by πS. Overall, the

perturbed stress-energy tensor components take the final form22

δT 0
0 = δρ, δT i

0 = (ρ+ p) ∂iv,

δT 0
i = −a2 (ρ+ p) ∂iv, δT j

i = −δpδji − ∂i∂jπS. (7.16)

Hence, the trace of the stress-energy tensor T is

T = ρ+ δρ− 3 (p+ δp)− ∂2πS. (7.17)

Similar to the Bardeen potentials, the scalar components of the stress-energy are

not gauge invariant, and hence their behaviour changes from one coordinate system

to another. In order to account for this, one should find a gauge invariant quantity

which describes the inhomogeneous overdense regions in space, which is the main

aim of this part of the work. This is given by the gauge-invariant comoving density,

22If the anisotropic stress is chosen to be traceless, then the scalar component would take the
form of Π j

i = ∂〈i∂j〉π
S [99, 101,329,331].
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which, in conformal Newtonian gauge takes the form of [100,101,144,329]

δρm ≡ δρ+ a2ρ̇v. (7.18)

As a measure of the fractional evolution of structure, it is also useful to define the

fractional comoving density, namely

δ ≡ δρm

ρ
. (7.19)

7.2 Scalar Perturbations in f (T, T ) Gravity

Following the discussion and motivation of the previous section, all necessary tools

to investigate the growth of large scale structure have been defined and can now be

applied to f(T, T ) gravity. In particular, the model ansatz f(T, T ) = T+F (T, T ) for

some arbitrary function F (T, T ) is considered, which corresponds to TEGR plus a

modification. Before progressing forward, it is important to first list the background

evolution equations in a flat FLRW background. From the field equations Eq.(2.38),

these result in

(1 + FT ) 3H2 +
F + T

4
+
FT
2

(ρ+ p) =
ρ

2
, (7.20)

(1 + FT ) Ḣ − 12H2ḢFTT +H (ρ̇− 3ṗ)FTT = −1− FT
2

(p+ ρ). (7.21)

Together they yield the modified continuity equation (or directly from Eq.(2.40))

(1− FT ) [ρ̇+ 3H (ρ+ p)] =
FT
2

(
ρ̇− ṗ

)
+ (ρ+ p)

[
−12HḢFTT + (ρ̇− 3ṗ)FT T

]
.

(7.22)

As discussed in Chapter 2, the introduction of the trace of the stress-energy ten-

sor modifies the continuity equation, which leads to the non-conservation of the
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stress-energy tensor, as is evident by the non-zero value of the RHS. However, it

is possible to impose its conservation as a constraint as this would limit the pos-

sible gravitational Lagrangian form. For the FLRW cosmology, this imposes the

constraint

0 = FT (ṗ− ρ̇) + 6(ρ+ p)

[
4HḢFTT +

(
ṗ− ρ̇

3

)
FT T

]
. (7.23)

This shall be explored in further detail in Section 7.3. It is also useful to define the

effective dark energy density and pressure components, namely

ρDE := TFT −
f

2
− FT (ρ+ p), (7.24)

pDE := −ρDE + 4TḢFTT + 2H(ρ̇− 3ṗ)FTT + 2ḢFT − FT (ρ+ p), (7.25)

which together yield the dark energy EoS

ωDE = −1 +
4TḢFTT + 2H(ρ̇− 3ṗ)FTT + 2ḢFT − fT (ρ+ p)

TFT − f
2
− FT (ρ+ p)

. (7.26)

With all the relevant background cosmological equations derived, the focus now falls

on deriving the scalar perturbed Friedmann equations in a Newtonian gauge. How-

ever, the scalar perturbed metric cannot be applied directly to derive the perturbed

equations in the context of teleparallel based theories. This is based on the found-

ing principle of the theory, since the fundamental variable is the tetrad and not the

metric. Hence, one must first consider the SVT perturbations of the tetrad which

would then generate the metric.

Similar to the metric tensor, the tetrad consists of a background tetrad ēaµ which

describes the FLRW geometry and a perturbed one γaµ which describes the inho-

mogeneous and anisotropic geometry, i.e. it takes the form of

eaµ = ēaµ + γaµ, (7.27)
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with |γaµ| � |ēaµ|. For simplicity, the background tetrad is taken to be the diagonal

tetrad ēaµ = Diag(1, a, a, a), thus setting the spin connection to zero. On the other

hand, the most general SVT perturbed tetrad takes the form of [325,327,347]

γaµ =

 φ −∂iw − Ui
a(∂iw̃ + Vi) a

(
−ψδij + ∂〈i∂j〉h+ εijk∂

kh̃+ ∂jci + εijkw
k + hij

) , (7.28)

which consists of six scalars φ, w, w̃, ψ, h and h̃, four vectors Ui, Vi, ci and wk,

and a tensor hij. The vectors are divergenceless, while the tensor is traceless and

transverse. This amounts to a total of 16 degrees of freedom, as expected from the

tetrad.

The corresponding perturbed metric tensor then takes the general form

gµν =

 1 + 2φ a [∂i(w + w̃) + Ui + Vi]

a [∂i(w + w̃) + Ui + Vi] −a2
[
(1− 2ψ)δij + 2∂〈i∂j〉h+ ∂icj + ∂jci + 2hij

]
 .

(7.29)

One finds some interesting properties. Firstly, the scalar h̃ and vector wk do not

appear in the metric tensor. However, this does not infer anything about their

behaviour and are to be constrained through the field equations. Secondly, when

comparing with the initial metric perturbation Eq.(7.2) in a pure SVT decomposed

form, one finds the correspondence that −2B ≡ w + w̃, −2Si ≡ Ui + Vi, E ≡ h,

Fi ≡ ci and χij ≡ hij. This shall prove to be a crucial point when considering the

longitudinal gauge. As the focus lies on scalar perturbations, the effects of the vector

and tensor perturbations shall not be developed further. For more details regarding

their application in the aspect of teleparallel theory, see Refs. [116,284,325,327,347].

Considering only the scalar perturbations, the metric tensor reduces to

gµν =

 1 + 2φ a∂i(w + w̃)

a∂i(w + w̃) −a2
[
(1− 2ψ)δij + 2∂〈i∂j〉h

]
 . (7.30)
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To reduce the metric to be in the longitudinal gauge, one has to set h = 0 and

w + w̃ = 0. The latter constraint poses two possibilities, either w = w̃ = 0 or

w = −w̃ which value may or may not be zero depending on the equations of motion.

This choice is of great importance in the theory and will be discussed shortly. In

this gauge, the torsion scalar takes the form of

T = −6H2 + 12H
(
ψ̇ +Hφ

)
− 4a−1H∂2w. (7.31)

Clearly, the choice on w (or equivalently w̃) affects the value of the torsion scalar.

On the other hand, the scalar perturbed field equations obtained from Eq.(2.38)

result in the following

E0
0 : (1 + FT )

[
a−2∂2ψ − 3Hψ̇ − 3H2φ

]
+ 3H2

[
FTT δT + FTT δT

]
+
FT
4

(
3δρ− δp− ∂2πS

)
+
ρ+ p

2

[
FTT δT + FT T δT

]
=

1

2
δρ (7.32)

Ei
0 : − (1 + FT ) ∂i

(
ψ̇ +Hφ

)
− ∂iψ

[
−12HḢFTT + (ρ̇− 3ṗ)FTT

]
=
a2

2
(ρ+ p) (1− FT ) ∂iv, (7.33)

E0
i : (1 + FT ) ∂i

(
ψ̇ +Hφ

)
−H (FTT∂iδT + FTT ∂iδT )

= −a
2

2
(ρ+ p) (1− FT ) ∂iv, (7.34)

Tr
(
Ei

j

)
: (1 + FT )

[
Hφ̇+ 3H2φ+ 3Hψ̇ + 2Ḣφ+ ψ̈ − 1

3
a−2∂2 (ψ − φ)

]
− FTT

(
3H2δT + 2ḢδT +HδṪ + 12H2Ḣφ

)
− FT

4

(
δT − 2

3
∂2πS

)
+ FTT

[
−
(

3H2 + Ḣ
)
δT −HδṪ + (ρ̇− 3ṗ)

(
δT

12H
+Hφ

)]
+ 12H2Ḣ (FTTT δT + FTTT δT )−H (ρ̇− 3ṗ) [FTTT δT + FTT T δT ]

=
1

2

(
δp+

∂2πS

3

)
, (7.35)

Ei
j, i 6= j : a−2 (1 + fT ) ∂j∂

i (ψ − φ) + a−1∂j∂
iw
[
−12HḢFTT + (ρ̇− 3ṗ)FTT

]
= (1− FT ) ∂j∂

iπS. (7.36)
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where Eρ
A corresponds to the free indices in the field equations, δT = 12H

(
ψ̇ +Hφ

)
−4a−1H∂2w and δT = δρ − 3 (p+ δp) − ∂2πS. Here, one finds a matching result

between the works in Refs. [82,127], with contributions from w and the anisotropic

stress respectively. Furthermore, the scalar perturbation h̃ does not appear in the

field equations, leaving its effect to be negligible [127,327].

To better understand the role of w, it is useful to investigate the cases between TEGR

and f(T ) gravity in the absence of anisotropic stresses. The TEGR perturbed field

equations lead to

E0
0 : a−2∂2ψ − 3Hψ̇ − 3H2φ =

1

2
δρ, (7.37)

E0
i : ∂i

(
ψ̇ +Hφ

)
= −a

2

2
(ρ+ p) ∂iv, (7.38)

Tr
(
Ei

j

)
:Hφ̇+ 3H2φ+ 3Hψ̇ + 2Ḣφ+ ψ̈ − 1

3
a−2∂2 (ψ − φ) =

1

2
δp, (7.39)

Ei
j, i 6= j : ∂j∂

i (ψ − φ) = 0, (7.40)

where the field equation Ei
0 matches with E0

i. There are four undetermined degrees

of freedom ψ, φ, δρ and v (once the fluid is specified, δp can be determined from

δρ, see for instance Ref. [99]) and four constraint equations, leading to consistency

since the system is not overdetermined. In the case of f(T ) gravity, however, the

equations become

E0
0 : (1 + FT )

[
a−2∂2ψ − 3Hψ̇ − 3H2φ

]
+ 3H2FTT δT =

1

2
δρ, (7.41)

Ei
0 : − (1 + FT ) ∂i

(
ψ̇ +Hφ

)
+ 12HḢFTT∂

iψ =
a2

2
(ρ+ p) ∂iv, (7.42)

E0
i : (1 + FT ) ∂i

(
ψ̇ +Hφ

)
−HFTT∂iδT = −a

2

2
(ρ+ p) ∂iv, (7.43)

Tr
(
Ei

j

)
: (1 + FT )

[
Hφ̇+ 3H2φ+ 3Hψ̇ + 2Ḣφ+ ψ̈ − 1

3
a−2∂2 (ψ − φ)

]
− FTT

(
3H2δT + 2ḢδT +HδṪ + 12H2Ḣφ

)
+ 12H2ḢFTTT δT =

1

2
δp, (7.44)
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Ei
j, i 6= j : (1 + FT ) ∂j∂

i (ψ − φ)− 12aHḢFTT∂j∂
iw = 0. (7.45)

Thus, the undetermined degrees of freedom are now the former plus w, with five

constraint equations. This would then lead to a consistent system of equations,

provided that no a priori constraint on w is set. For instance, if w = w̃ = 0,

Eq.(7.36) implies that ψ = φ. Comparing Eqs.(7.34) and (7.33) would then yield

the constraint

FTT

(
12Hψ̇ + 12H2φ− 12Ḣψ

)
= 0, (7.46)

which does not appear in GR as FTT 6= 0. This means that for the remaining

three undetermined degrees of freedom (φ = ψ, δρ and v), one has four constraint

equations, and this leads to an overdetermined system that can lead to inconsisten-

cies [116, 127]. If the gauge condition w = −w̃ is only considered instead, without

further imposing that w = 0 a priori (this could still occur from an evolutionary

perspective but it is not imposed), the extra constraint equation would not infer

pathological issues, as an extra degree of freedom is now retained (four degrees of

freedom and four constraint equations). This would then resolve this inconsistency

since the equations are now able to determine all degrees of freedom [127, 325].

Motivated by this, the extra degree of freedom w shall be retained.

Besides the field equations, the existence of scalar perturbations imposes new conser-

vation laws that arise from the perturbed stress-energy tensor. As matter couplings

do not conserve the stress-energy tensor in the traditional sense, these conserva-

tion laws arise in a more general aspect. The first equation is the the perturbed

continuity equation, i.e.

(1− FT )

[
δρ̇+ 3H

(
δρ+ δp+

∂2πS

3

)
− 3 (ρ+ p) ψ̇ + (ρ+ p) ∂2v

]
=

FT
2

(
δρ̇− δṗ− ∂2π̇S

)
+ FTT

[
−2a−2∂2ψ (ρ̇− 3ṗ) + (ρ+ p)

(
3HδT + δṪ

)
−12HḢ (δρ+ δp) + 6H

(
Hφ+ ψ̇

)
(ρ̇− 3ṗ) + (ρ̇+ ṗ) δT

]
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+ FT T

[
(ρ+ p)

(
3HδT + Ṫ

)
+

1

2

(
3δρ− δp− ∂2πS

)
(ρ̇− 3ṗ) + (ρ̇+ ṗ) δT

]
− 12HḢ (ρ+ p) (FTTT δT + FTT T δT ) + (ρ+ p) (ρ̇− 3ṗ) (FTT T δT + FT T T δT ) .

(7.47)

Due to the velocity components of the fluid, a new second conservation law arises,

yielding the so called Euler equation, which describes the conservation of momentum

of the fluid

(1− FT )
{

(ρ+ p)
[
a2∂iv̇ + 2a2H∂iv + ∂iφ

]
+ a2ṗ∂iv + ∂iδp+ ∂i∂

2πS
}

= −1

2
FT
[
a2 (ρ̇− ṗ) ∂iv + ∂i

(
δρ− δp− ∂2πS

)]
. (7.48)

7.2.1 Derivation of the Growth Structure Equation

So far, all the relevant zeroth and first order scalar perturbed equations have been

derived. The next step is to make use of these equations in order to investigate the

evolution of matter overdensities. As discussed in Ref. [144], a simple equation that

can characterise the growth of structure δ is expected to be in the form of

δ̈ + [Pressure−Gravity] δ = 0. (7.49)

This follows from the Newtonian treatment of gravitational instability of interstellar

structures, firstly formulated by Jeans in 1902 [348]. The role of gravity is to collapse

the source, and hence it allows for the formation of overdense regions throughout

the universe. On the other hand, the role of pressure is to counteract and therefore

stabilise the possible collapse of the structure. If pressure is sufficiently dominant,

then no overdense regions can form.

Besides these two key components, one also has to factor in the effect of the relative

expansion of the universe. This should act as a dampening effect, since expansion
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is causing the particles to be further apart from one another. This is causing the

effect of gravity to be suppressed. From a Newtonian description, this leads to

[1, 61, 349,350]

δ̈ + 2Hδ̇ = 4πGρδ − cs
2

a2
k2δ, (7.50)

where cs
2 := ∂ρ

∂p
is the adiabatic sound speed of the fluid and k is the wavenumber.

Here, the gravitational constant is reintroduced for the sake of clarity. Trivially, one

can identify some key components on the evolution by comparing it to the behaviour

of a damped harmonic oscillator. The Hubble parameter acts as a damping term.

On the other hand, the frequency of the system is sourced by a gravitational term

4πGρ and a pressure term cs2k2

a2 . Depending on the length scale k, one of the terms

dominates and thus generates or suppresses the formation of structure. This is

known as the Jean’s criterion for gravitational instability.

Formally formulated in a static universe, for k2cs
2 > 4πGρ (pressure dominated), the

system starts to oscillate, leading to no growth. On the other hand, for k2cs
2 < 4πGρ

(gravity dominated), gravitational instability occurs and overdense regions form.

In a relativistic treatment, a similar equation does result, but one has to include the

contributions of the different species which constitute the universe, namely baryonic

matter, CDM, photons and neutrinos. Furthermore, one also has to define a sense of

a length scale of interest. Starting with the latter, it is useful to define the comoving

distance η, which measures the distance travelled by photons from the beginning of

time t = 0 to some time t (or equivalently, from a = 0 if it starts from a Big Bang

to some scale factor a). This is defined through [144]

η ≡ c

t∫
0

dt′

a(t′)
= c

a∫
0

da′

a′
1

a′H(a′)
. (7.51)

where the speed of light is reintroduced for simplicity. Here, t′ and a′ are integration

variables. In this way, any two particles could have been in casual contact if their
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distance is within a comoving distance. However, they could not have been in casual

contact if their distance is larger than the comoving distance as these must exceed

the speed of light. Therefore, any relevant structure formation should form within

scales falling inside a comoving distance.

In terms of the wavenumber k, which is roughly related to the inverse wavelength

λ of the mode k ∼ λ−1, the modes of interest must have wavelengths smaller than

the comoving distance to ensure the particles have entered in casual contact leading

to the condition kη � 1 (or as an order approximation k � aH). Such modes are

called sub-horizon modes (corresponding to large scales). Conversely, those which

lie outside this regime are called superhorizon kη � 1, but they are not of interest

here.

Next, one should classify which overdense region is to be investigated. As large

scales are of interest, the main focus lies in the structure of CDM regions. However,

one should also account for the effect of other species. Starting with radiation-

dominated epochs, most particles are relativistic and hence exhibit a large radiation

pressure (and non-zero anisotropic stress). For the scales of interest, this leads

to an oscillatory behaviour as indicated by Eq.(7.50) [350]. The baryonic matter

exhibits a similar behaviour since, during early times, these are tightly coupled to

the photons and hence also oscillate [144,330]. CDM on the other hand experiences

little growth as it is less dominant than the background radiation. Furthermore,

radiation causes a large expansion, thus a larger Hubble friction [61, 350]. In fact,

according to Eq.(7.50), δ ∝ ln a.

Once the universe enters a matter-dominated phase, the situation changes. First, the

photons and neutrinos have long decoupled during these epochs leading to barely

any contribution to the anisotropic stress [99, 100]. In other words, there is no

growth evolution of any radiative sources. Second, the baryons have now been

decoupled from the photons and therefore have become non-relativistic. However,

by the time they do achieve this state, CDM would have already started to dominate
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the evolution of the potential since the period of matter-radiation equality. It is

afterwards that baryons then grow similar to CDM [61, 144]. Therefore, the only

major source of growth stems from CDM (and later by baryonic matter) which

according to Eq.(7.50) yields a linear growth δ ∝ a. This is known as the Mészáros

effect, first derived by P. Mészáros in 1974 [351].

Lastly, the universe enters a dark energy-dominated phase. During these epochs, the

effects of CDM, radiation and baryonic matter are practically negligible compared

to dark energy. This leads to barely any growth, which is understandable due to

the fact that during such times, the scale factor is expanding at an exponential rate,

causing the Hubble friction to be significantly dominant. In fact, from Eq.(7.50),

the fractional growth does not grow since δ becomes constant [144].

With these considerations, in order to investigate the growth formation for CDM

(which sets the pressure components p = δp = 0), epochs will within the matter

domination periods are considered. Furthermore, the absence of anisotropic stress

is assumed. Since models which obey the conservation of the stress-energy tensor

are assumed, they shall be considered throughout the derivation. In general, where

this condition does not necessarily hold, the result as derived in Ref. [352] is ob-

tained. However, the conclusions regarding the resulting growth evolution remain

unchanged.

As per above motivations, the growth equation for large scale structure can now

be derived, for which the method described in Ref. [127] is followed. It is first re-

marked that in this case, the gauge invariant fractional matter perturbation density

Eq.(7.19) becomes

δM =
δρ

ρ
− 3Ha2v. (7.52)

From Eqs.(7.33) and (7.34), the relation

FTT

(
12Hψ̇ + 12H2φ− 12Ḣψ − 4a−2k2ξ

)
= −FTT (δρ− 3ρψ) , (7.53)
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is obtained where the quantity ξ := aHw has been defined. To eliminate φ from the

equation, Eq.(7.36) can be used to yield

φ = ψ − 3ξ

1 + FT

(
4ḢFTT + ρFTT

)
, (7.54)

which, when combined with the former equation, results in

4ξFTT =
ρFTT (δM + 3Ha2v − 3ψ) + FTT

[
12Hψ̇ + 12ψ

(
H2 − Ḣ

)]
k2

a2 + 9H2

1+FT

(
4ḢFTT + ρFTT

) . (7.55)

In the sub-horizon scale approximation, the expression simplifies to

4ξFTT ≈
a2

k2

{
ρFTT

(
δM + 3Ha2v − 3ψ

)
+ FTT

[
12Hψ̇ + 12ψ

(
H2 − Ḣ

)]}
.

(7.56)

As an order approximation, the expression reduces to the more simple form

ξ ∼ a2H2

k2

(
δM + a2Hv + ψ

)
(7.57)

where the presence of δM + a2Hv holds provided FTT 6= 0 and FTT 6= 0. This

expression can be simplified further through the use of the Euler equation Eq.(7.48),

which for CDM, becomes

(
v̇ + 2Hv +

φ

a2

)
(1− FT ) = −FT

2a2
δM. (7.58)

As an order approximation, one has a2Hv + φ ∼ δM where δM only appears for

FT 6= 0. From Eq.(7.54), the order expression becomes δM + a2Hv ∼ ψ + ξ which

reduces the sub-horizon limit expression to

ξ ∼ a2H2

k2
(ξ + ψ)� ψ. (7.59)

Therefore, by definition of φ Eq.(7.54), the gravitational potentials are of the same
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order of magnitude φ ' ψ.

Observe that throughout this approximation, certain functional constraints have

been considered, namely FT , FTT , FTT 6= 0. Irrespective of functional constraints,

however, the result remains unchanged. Starting with the case when FTT = 0, then

from Eq.(7.53), either FTT = 0 or δρ = 3ρψ. For the former case, by Eq.(7.54), this

means φ = ψ identically as required. Note that, in this case, the Lagrangian reduces

to the model F (T, T ) = α + βT + g(T ), where α and β are integration constants

and g is some arbitrary function. The said model shall be considered later on during

the growth analysis.

In the second case, Eq.(7.54) simplifies to

φ = ψ − 3ξρFTT
1 + FT

. (7.60)

From Eq.(7.20), in the sub-horizon limit together with the above expression yields

the simple relationship

ψ =
2ξρFTT
1 + FT

, (7.61)

which therefore implies that ψ = −2φ. This condition, however, does not measure up

with experiments. As discussed in Refs. [353, 354], Solar system tests, particularly

Shapiro’s time delay effect, tightly constrains the difference in the potentials to

be [355]
|ψ − φ|
φ

< 2× 10−5, (7.62)

while the above constraint sets a fixed value of 3, well beyond the observed con-

straint. An analysis carried out in the context of large scale structure also suggests

that, despite being a weaker constraint, this difference should be relatively small

i.e. [356] ∣∣∣∣φ− ψψ
∣∣∣∣ ≤ 0.5. (7.63)

Therefore, this case is discarded.
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If FTT 6= 0 and FTT = 0, Eq.(7.57) leads to the immediate result ξ ∼ a2H2

k2 ψ � ψ, as

obtained in Ref. [127], thus leaving the result unchanged, irrespective of the value

of FT . Therefore, all the different conditions lead to the same result that φ ' ψ.

With this sub-horizon limit approximation, one can then proceed to derive the

evolution equation for the gauge-invariant fractional overdensity δM. This process

should start by combining Eqs.(7.32) and (7.34) while introducing the definition of

δM results into

(
1

2
− 3FT

4
− ρFT T

2

)
δM = (1 + FT )

k2ψ

a2ρ
+

1

2

{
FTT

[
12H

(
ψ̇ +Hφ

)
− 4a−1Hk2w

]
+ 3Ha2vρFT T

}
+

3FT
4
a2Hv. (7.64)

Since ψ ' φ and k2ψ
a2H2 � ψ, the equation simplifies to

AδM = (1 + FT )
k2ψ

a2ρ
+

3Ha2v

2
ρFT T +

3FT
4
a2Hv, (7.65)

where the quantity A := 1
2
− 3

4
FT − 1

2
FT T ρ has been conveniently defined. From

Eq.(7.33), in the sub-horizon limit, the order relation Hφ ∼ ρa2v is obtained, mean-

ing the expression simplifies further to

AδM = (1 + FT )
k2ψ

a2ρ
. (7.66)

Taking the time derivative and using Eq.(7.33) once more yields

ȦδM + Aδ̇M =
k2v

2
(FT − 1) . (7.67)

Differentiating once again with time and using Euler’s equation Eq.(7.58) and the

previous expression for the velocity yields the final result of
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Aδ̈M +

[
2Ȧ+ 2AH − 3AH

1− FT

(
4ḢFTT + ρFT T

)]
δ̇M

+

[
Ä+ 2ȦH − 3ȦH

1− FT

(
4ḢfTT + ρFT T

)
− 1− FT

2(1 + FT )
Aρ− k2FT

4a2

]
δM = 0.

(7.68)

Instead of investigating the evolution of the matter overdensities with time, it is more

convenient to analyse its behaviour with scale factor, thus yielding the expression

δ′′M(a) +
1

aAH

[
aAH ′ + 2A′aH + 3AH − 3AH

1− FT
(4H ′aHFTT + ρFT T )

]
δ′M(a)

+
1

Aa2H2

[
a2H2A′′ + 3A′aH2 + A′a2HH ′ − 3A′aH2

1− FT
(4H ′aHFTT + ρFT T )

− 1− FT
2(1 + fT )

Aρ− k2FT
4a2

]
δM(a) = 0. (7.69)

Clearly, the TEGR limit A = 1
2

and F (T, T ) = 0 is recovered as desired. In general,

this equation would yield two solutions for δM referred to as the growing and decaying

modes, which, as their name implies, describe the growing and decaying solutions

respectively. As the interest lies in the formation of structure, only the growing

solution shall be investigated. This is usually referred to as the growth factor,

which is denoted by D(a) [144].

7.2.2 Interpreting the Growth Structure Equation

When studying the evolutionary behaviour of the growth equation, it is evident that

the equation is identical to that given by a damped harmonic oscillator. Generally,

such an oscillator obeys the differential equation [357–359]

x′′(t) + 2ζω0x
′(t) + ω0

2x = 0, (7.70)
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where ζ is the damping ratio and ω0 is the natural frequency of the system. The

former leads to underdamping (0 < ζ < 1), critical damping (ζ = 1) and under-

damping (ζ > 1) behaviours, while the special case of negative damping (ζ < 0)

causes the system to oscillate with an ever increasing amplitude [359]. In the ab-

sence of damping (ζ = 0), for real values of ω0, the system oscillates with frequency

ω0, while for complex values, the system grows exponentially with time.

The natural frequency and damping ratio take the form of

ω0
2 ≡ 1

Aa2H2

[
a2H2A′′ + 3A′aH2 + A′a2HH ′ − 3A′aH2

1− FT
(4H ′aHFTT + ρFT T )

− 1− FT
2(1 + fT )

Aρ− k2FT
4a2

]
, (7.71)

2ζω0 ≡
1

aAH

[
aAH ′ + 2A′aH + 3AH − 3AH

1− FT
(4H ′aHFTT + ρFT T )

]
. (7.72)

when the large scale growth equation Eq.(7.69) is compared to the behaviour of a

damped harmonic oscillator. To investigate their physical implications, particular

Lagrangian limits are considered.

In the sub-case of F (T ) gravity, the model is practically identical to TEGR, except

for a minor modification in the definition of the frequency due to the introduction

of the FT coefficient

ω0
2 = − 1

1 + FT

2ρ

a2H2
. (7.73)

If the Newtonian gravitational constant G is reintroduced throughout the derivation,

one will find that an effective gravitational strength can be defined as

Geff ≡
G

1 + FT
. (7.74)

Therefore, the role of FT determines whether the effect of gravity is stronger or

weaker in the formation of structure. Nonetheless, the value of FT is not expected

to deviate much from the standard value of the Newtonian gravitational constant,
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thus leaving the value of |FT | � 1. In this way, the results obtained from the

TEGR description remain unchanged. However, in general, this argument would

not hold true for models in which the magnitude is significantly dominant. For

instance, when FT < −1, the system experiences an oscillatory growth behaviour.

It is remarked that the above results agree with the large scale equation derived

in Refs. [127, 325–327] while the effective constant is also in agreement with Refs.

[181, 347]. As various F (T ) models have been extensively studied, only the role of

T shall be explored.

For more general arbitrary choices for the Lagrangian F (T, T ) which does not re-

duce to either GR or F (T ) gravity, the evolutionary behaviour changes considerably.

The natural frequency is generally strongly dependent on the wavenumber k, some-

thing which does not appear in the latter cases. This can cause strong constraints

on the theory since it alters the prediction for the matter power spectrum, which

provides a measure of the number of overdense regions with scale (see for instance

Refs. [100,144] for further details). Such behaviour is also observed in other modified

theories of gravity.

Taking the f(R) theory of gravity as an example, the effective Newtonian constant

takes the form of23

Geff =
G

fR

1 + 4k
2fRR
a2f

1 + 3k
2fRR
a2f

. (7.75)

The large scale evolution then has two distinct behaviours. At earlier times, the

quantity k2fRR
a2f

� 1 which leads to an effective gravitational constant to be Geff →
4G
3fR

leading to a stronger gravitational affect and hence more growth. At later times,

the situation changes k2fRR
a2f
� 1 leading to Geff → G

fR
similar to f(T ) gravity. During

transient periods, the dependence of k becomes more prominent and this affects the

shape of the power spectrum [361–363].

23In general, as discussed in Ref. [360], the form of the effective gravitational constant is different
from the one listed here for more general f(R) models which could lead to deviations, especially
at late times. However, if the model obeys Solar System tests i.e. |fR| � 1, the effective constant
reduces to the one listed here.
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A similar strong k2 dependence is also obtained in the curvature analogue of f(T, T )

theory, f(R, T ) gravity, as the comoving scale becomes dominant at all scales in the

sub-horizon regime leading to disagreements with observations [328]. Therefore,

for viable models, this effect should be suppressed. This is theoretically possible

provided FT ' 0 once the universe enters a matter dominated phase.

The k2 dependence leads to the second point, where the frequency is now not nec-

essarily complex. Similar to the Jeans’ instability criterion, this situation suggests

that there exists a threshold comoving scale which causes the growth of structure

to become oscillatory, leading to a halt in structure formation.

Overall, the above discussions infer the foreseeable issues of the F (T, T ) gravity

prediction. This shall be shown explicitly for particular Lagrangian functions obey-

ing the stress-energy conservation criterion where the k-dependence clearly leads to

deviations from observations.

7.3 Constraints on the f (T, T ) function

As mentioned in Section 7.2, the requirement for the stress-energy tensor to be

conserved leads to a constraint on the Lagrangian. Since the large scale structure

has been investigated for times well within matter domination epochs with the only

matter source being CDM, the background stress-energy trace is reduced to T = ρ.

Thus, the continuity equation Eq.(7.22) becomes

FT + 8ḢFTT + 2T FT T = 0. (7.76)

Note that the continuity equation can be expressed purely as a PDE in terms of

T and T by replacing Ḣ using the modified Friedmann equation Eq.(7.21) which
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results in

FT + 2T FT T +
2FTT

1 + 2TFTT + FT
(T − F + 2TFT − 2TT FTT ) = 0. (7.77)

It is remarked that 1+2TFTT +FT 6= 0, otherwise it leads to the solution F (T, T ) =

−T + α
√
−T + g(T ) for some constant α corresponding to the boundary term

and arbitrary function g(T ). Effectively, this reduces the gravitational Lagrangian

to only be sourced by the trace of the stress-energy, thus removing any torsional

gravitational effects that would make the model unrealistic.

Despite the relatively simple form, this does not yield any general analytic solutions,

and hence must be solved for specific ansatz choices. Trivially, any function solely

expressed in terms of torsion satisfies the constraint as expected from f(T ) gravity

since the stress-energy tensor is conserved in such models. Therefore, non-trivial

contributions from the trace must be considered if its effect on the growth rate is to

be explored. As shown in Refs. [94,95], two such models can be obtained.24

7.3.1 Model I: F (T, T ) = g(T )

In the first model, the modification is assumed to be solely sourced by matter,

namely F (T, T ) = g(T ) for some function g. Here, one finds the solution g(T ) =

α
√
T +β, where α and β are integration constants with β representing a cosmological

constant.25 The latter constants can be constrained from the Friedmann equation

by evaluating at present times. Indeed, substituting in Eq.(7.20) yields

α =

√
3

H0
2ΩM,0

[
H0

2 (ΩM,0 − 1)− β

6

]
. (7.78)

24Other ansatz models besides the ones explored in Refs. [94, 95] have been considered as sum-
marised in Ref. [352], being F (T, T ) = T g(T ) for some unknown function g(T ) and F (T, T ) =
TnT m for real constants n and m. However, no new solutions have been obtained.

25In Refs. [94,95], the model is generalised for an arbitrary perfect fluid having a constant EoS ω.
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Since β represents the cosmological constant, it is useful to parametrise this constant

in terms of another constant variable ε, which measures the deviation from ΛCDM

via

β ≡ 6H0
2(ΩM,0 − 1 + ε). (7.79)

Indeed, for ε = 0, β reduces to the ΛCDM value and α = 0 reduces the Lagrangian to

standard TEGR with a cosmological constant as expected. This way, the Friedmann

equation Eq.(7.20) takes the simple form of

H2 = H0
2

(
ΩM

a3
− ΩM + 1− ε+

ε

a3/2

)
. (7.80)

It is remarked that despite being in a curvature based setting, an identical solution

is obtained in f(R, T ) theories for an additive model ansatz f(R, T ) = g(R) +h(T )

[89–91,328]. Nonetheless, the cosmological implications are only identical for g(R) =

R, otherwise, the theories are fundamentally distinct.

In order to constrain the parameter ε, a similar procedure to that used in Chapter

3 to constrain the f(T ) models is employed. This requires the present values of the

EoS of the dark energy fluid and of the deceleration parameter to be ωDE,0 ≈ −1

and q0 ∼ −0.5 respectively.

In the case of the EoS for this model, its present value is found to be

ωDE,0 = −2ε− 4(ΩM,0 + ε− 1)

3ε− 4(ΩM,0 + ε− 1)
(7.81)

from Eq.(7.26), from which the following observations are noted. For ε < 0 or

ε > 4 − 4ΩM,0, ωDE,0 < −1 meaning it behaves as a phantom fluid. The case ε = 0

gives a cosmological constant (which is true for all times) as expected. For 0 < ε <

2−2ΩM,0, the fluid behaves as quintessence while for ε = 2−2ΩM,0, the fluid behaves

as dust. Lastly, for 2− 2ΩM,0 < ε < 4− 4ΩM,0, the EoS is positive. As observations

indicate a value close to that of a cosmological constant, any reasonable solution
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should be in a domain close to ε = 0 as for ε > 4 − 4ΩM,0, the EoS is reasonably

smaller from that observed, unless the value of ε is reasonably large.

The deceleration parameter, on the other hand, evolves with scale factor as

q(a) = −1 +
3

4

a3/2ε+ 2ΩM,0

a3/2ε− a3(ΩM,0 + ε− 1) + ΩM,0

. (7.82)

In order to obtain an observed acceleration today, the condition

ε <
1

3
(4− 6ΩM,0) (7.83)

must be satisfied which, using the observed values, requires ε < 11
15

. Given the

constraint on ε based on the EoS analysis, this condition is trivially satisfied. Note

that the obtained constraint also falls in line with the results obtained in Ref. [95],

where for ΩM,0 = 0.3, using SNe Ia data, the parameter is constrained to lie in the

range of − 5
36
≤ ε ≤ − 1

36
(−1.04726 ≤ ωDE,0 ≤ −1.00982).

7.3.2 Model II: F (T, T ) = Tg(T )

The second ansatz choice assumes a TEGR rescaling, namely F (T, T ) = Tg(T )

which yields the solution

g(T ) = −1−
(

µ√
T

+ ν

)−1

, (7.84)

with µ and ν being integration constants. It is worth noting that when µ = 0, ν

serves as a constant TEGR rescaling with the special case ν = −1 reducing the

Lagrangian to standard TEGR. Substituting into the Friedmann equation Eq.(7.20)

and evaluating at presents times yields the constraint

H0
2 = − 1

3ν

(
µ+ ν

√
3H0

2ΩM,0

)2

. (7.85)
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This infers two implications, the first being that ν < 0 (otherwise no real solution is

obtained), while the second being that this is a quadratic expression in the integra-

tion constants. The latter implies that one of the integration constants is a spurious

degree of freedom. Without loss of generality, ν is found in terms of µ to be

ν = −
3H0 + 2µ

√
3ΩM,0 ±

√
9H0

2 + 12H0µ
√

3ΩM,0

6H0ΩM,0

. (7.86)

To guarantee that the values for ν are real, a constraint on µ is required, being

9H0
2 + 12H0µ

√
3ΩM,0 ≥ 0 =⇒ µ ≥ −1

4

√
3H0

2

ΩM,0

. (7.87)

For simplicity, µ is redefined to be

µ ≡ −η
4

√
3H0

2

ΩM,0

(7.88)

for some new constant parameter η. The above constraint therefore implies η ≤ 1.

In this way, the expression for ν Eq.(7.86) takes the much simpler form of

ν =
η − 2± 2

√
1− η

4ΩM,0

. (7.89)

Observe that the constraint η ≤ 1 guarantees that the requirement ν < 0, is always

satisfied. The only exception occurs when the positive solution is considered with

η = 0 which is not permitted as ν = 0 in this instance. Finally, this simplifies the

Friedmann equation to be

H

H0

= a−3/2 +
η(a−3/2 − 1)

−2± 2
√

1− η
. (7.90)

Similar to the previous model, the parameter η is constrained using present values of

the dark energy EoS and the deceleration parameter. In the case of ωDE, its present

176



Chapter 7: Growth of Structure in f (T, T ) Gravity

value obtained from Eq.(7.26) is given to be

ωDE,0 =
η
(
ΩM,0 − 1∓

√
1− η

)
2
(
1±
√

1− η
)2

+ ΩM,0η − 4ΩM,0

(
1±
√

1− η
) . (7.91)

Taking ΩM,0 = 0.3, the following constraints are obtained.

For the positive solution, the fluid exhibits phantom behaviour for η < 0 or 0.58 <

η < 0.84, it behaves as a cosmological constant for η = 0.84, while quintessence

behaviour is attained for 0 < η < 0.51 or 0.84 < η ≤ 1. The fluid behaves as

dust for η = 0.51 and becomes positive for 0.51 < η < 0.58. Thus, the model can

compare with physical data within regions close to η = 0 and η = 0.84.

In the second case, for the negative solution, the EoS can never behave as a phantom

fluid. In fact, the EoS behaves as quintessence for 0 < η ≤ 1, dust for η = 0

(as expected since this corresponds to TEGR rescaling) and positive for η < 0.

Furthermore, it is observed that ωDE,0 ≥ − 7
11

, which is far from any observed value.

Therefore, the negative solution cannot realise the observational constraint.

Moving on to the deceleration parameter, its present value is given to be

q0 =
1

2
+

3η

4
(
−1±

√
1− η

) . (7.92)

To recover acceleration, for the positive solution, any value of η 6= 0 causes a present

time acceleration. However, in order to match with the present time value of q0 ∼

0.5, the value is to be constrained in the domain close to η ∼ 0.84. Thus, regions

close to η = 0 obtained from the EoS analysis are to be discarded.

In the negative case, an acceleration is obtained for 8
9
< η ≤ 1. However, for this

range of values, −1
4
≤ q0 < 0, which is incompatible with the observed constraint.

Thus, as also inferred from the EoS analysis, the negative solution does not agree

with observations.
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Based on the observational constraints obtained in Ref. [95] with ΩM,0 = 0.3, η

lies within the range of 0.87 < η < 0.92, which describes the present behaviour of

dark energy to be that of quintessence. This constraint is relatively close to the one

obtained through the previous considerations.

7.4 Numerical Results

The next step is to analyse the growth evolution for the two Lagrangian solutions

obtained. In either case, the growth cannot be solved analytically and is thus solved

numerically. As times well within matter domination epochs are considered, the

initial scale factor for the numerical computation is taken to be ai = 0.1, which is

reasonable, given the matter-radiation equality occurs at a scale factor aeq. ∼ 10−4.

To set the initial conditions for D(a), Eq.(7.69) is investigated during matter domi-

nation epochs. During such times, H ∝ a−3/2. Furthermore, based on observational

constraints, this yields A ≈ 0.5 and the effect of the derivatives becomes negligi-

ble.26 This reduces the equation to its GR limit, leading to the growth factor to

grow linearly with scale factor i.e. D(a) = a. In this way, the initial conditions are

set to be D(ai) = 0.1 and D′(ai) = 1.

7.4.1 Model I: F (T, T ) = α
√
T + β

For the first model, the parameters α and β are related via Eq.(7.78) leading the

background evolution to depend solely on the dimensionless parameter ε defined

in Eq.(7.80). Based on observations, the parameter should lie in a range close to

ε = 0. Naturally, the choice ε = 0 is not considered as this would otherwise reduce

to ΛCDM. Therefore, the behaviour of the model shall be tested for two distinct

26In principle, even if fT is small, there will be a threshold scale where the k2-term becomes
dominant. However, this feature is not explored when determining the initial conditions.
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values, ε = ±0.3× 10−3.

The choice of this parameter is two-fold. Firstly, this satisfies the observational

requirement. Secondly, the model is identical to the curvature equivalent f(R, T ) =

R + α
√
T + β, and hence, the results are expected to match with those obtained

in Ref. [328]. Since it does not lead to any new results, this model shall be used as

an example to illustrate its non-viability with observations. To better present the

behaviour at different scales, the evolutions of the natural frequency ω0 and damping

factor ζ are presented.

Beginning with the positive case ε = 0.3 × 10−3 where the evolution is shown in

Fig. 7.1, structure forms at a slower rate than ΛCDM for all scales. The smallest

scales (k = 50H0) have a growth evolution similar to ΛCDM, while for larger scales,

this becomes increasingly periodic (k = 500H0). Such behaviours can be traced

to the values of the frequency and the damping ratio presented in Figs.7.2 and 7.3

respectively.

Figure 7.1: Growth factor evolution for the F (T, T ) = α
√
T + β model with the

parameters defined by Eqs.(7.78) and (7.79) for the case when ε = 0.3 × 10−3. For
sufficiently small scales, the system behaves as ΛCDM. However, when larger scales
are considered, the system starts to deviate from the latter, becoming increasingly
periodic, while behaving as an underdamped oscillator close to present times.
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Starting with the former, the frequency is effectively complex for k = 50H0 at all

times except for when it is close to present times, which yields the growth observed.

Once larger scales are considered, most notably for k = 500H0, the frequency tran-

sitions from complex to real values towards present times. This means that initially,

structures are formed but then decay in an oscillating fashion at later times. This

matches the behaviour observed in the damping ratio. It is worth noting that in such

cases, the damping ratio transitions from overdamping to underdamping (except for

small scales), confirming the observed decaying oscillatory behaviour at late times.

For the negative ε case (ε = −0.3× 10−3), the behaviour changes completely as

observed in Fig. 7.4. Growth structure forms at a faster rate than ΛCDM for each

sub-horizon scale mode with faster rates achieved for larger modes, while the smallest

ones yield an evolution close to ΛCDM. This agrees with the observed behaviour for

the frequency in Fig. 7.5 as it is always complex.

Figure 7.2: The square of the natural frequency evolution with scale factor for the
model F (T, T ) = α

√
T +β for ε = 0.3×10−3. For sufficiently small scales (k = 50H0),

the frequency is effectively complex, leading to the growing mode similar to ΛCDM.
For larger scales, ω0

2 transitions from negative to positive, implying a change from
growth formation to oscillatory decay.
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Figure 7.3: Damping ratio evolution with scale factor for the model F (T, T ) =
α
√
T + β for ε = 0.3 × 10−3. For small sub-horizon scales (k = 50H0), the damping

ratio only occurs at late times, meaning its effect is mostly absent during matter
domination epoch. However, for larger scales, this becomes more dominant at earlier
times. Indeed, the damping ratio transitions from an overdamped state towards an
underdamped state. Nonetheless, the overdamped and the critical damping states are
very short, leaving little to no effect in the growth evolution (Fig. 7.1). The observed
oscillations are caused by the damping ratio ending up in an underdamped state.

Figure 7.4: Growth factor evolution for the F (T, T ) = α
√
T + β model with the

parameters defined by Eqs.(7.78) and (7.79) for the case when ε = −0.3 × 10−3. In
this case, the growth evolution is larger than ΛCDM for all scales. For sufficiently
small sub-horizon scales, this is relatively close to the latter, but departs for larger
scales.
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Figure 7.5: The square of the natural frequency evolution with scale factor for the
model F (T, T ) = α

√
T + β for ε = −0.3 × 10−3. Irrespective of scale, the frequency

is always complex, and this leads to the observed growing behaviour. As the scale
increases, ω0

2 becomes smaller, causing a faster growth expansion as seen in Fig. 7.4.

7.4.2 Model II: F (T, T ) = −T
[
1 +

(
µ√
T + ν

)−1
]

In the case of the second model, through the relation of the constants µ and ν given

in Eq.(7.86) and the introduction of the parameter η in Eq.(7.88), the latter serves

as the sole degree of freedom in the system, as is evident in the solution for the

Hubble parameter Eq.(7.90). From observational constraints, it was concluded that

only the positive solution is viable with η ∼ 0.84. However, irrespective of choice

of η close to that value, it is observed that the resulting growth structure evolution

remains identical.

As an example, η is chosen to be 0.9. The resulting growth structure evolution is

shown in Fig. 7.6 which clearly does not describe any realistic behaviour. Barely

any structure forms (small growth values), and the CDM growth is always in an un-

derdamped state with practically no structure left at present times. The behaviour

is further supported from the values of the frequency and damping ratio in Figs.7.7

and 7.8 respectively.
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Figure 7.6: Growth evolution for the model F (T, T ) = −T
[
1 +

(
µ√
T + ν

)−1
]

where

the constants obey the relations Eqs.(7.86) and (7.88) with η = 0.9 for the positive
Hubble solution Eq.(7.90). The resulting growth evolution is that of an ever under-
damped oscillator, which is far from ΛCDM predictions.

Figure 7.7: Natural frequency evolution with scale factor for the model F (T, T ) =

−T
[
1 +

(
µ√
T + ν

)−1
]

for the positive Hubble solution Eq.(7.90) with η = 0.9. As

the frequency takes positive values, the resulting growth evolution becomes oscillatory.
Furthermore, the magnitude of the frequency increases with scale.
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Figure 7.8: Damping ratio evolution with scale factor for the model F (T, T ) =

−T
[
1 +

(
µ√
T + ν

)−1
]

for the positive Hubble solution Eq.(7.90) with η = 0.9. Here,

since ζ(a) < 1 for all the considered scales, the system behaves as an underdamped
oscillator.

Starting with the frequency, this is always positive, causing the oscillatory behaviour.

The frequency increases with scale, leading to the observed increased number of

periods. From the damping ratio, it is observed that for all it scales lies in the

underdamped state, hence causing the decay. Thus, the model is deemed to be

incompatible with observations.

7.5 Discussion

Throughout this chapter, the role of scalar perturbations in the formation of large

scale structure has been investigated for the class of teleparallel theories which in-

clude couplings to the trace of the stress energy tensor T . Since the main aim was

to investigate the formation of structure of CDM, sub-horizon scales were chosen.

After examining the basic key features of the expected growth evolution for CDM

and other primary ingredients present during various cosmological epochs, the large

scale structure for CDM was then derived. This was carried out during times well

184



Chapter 7: Growth of Structure in f (T, T ) Gravity

within the matter epoch, and in the absence of anisotropic stress and other fluids

as their contributions are small. This leads to the final growth equation Eq.(7.69)

which is the main result of this chapter.

To investigate its evolutionary properties, the equation is compared to a damped

harmonic oscillator. The GR and f(T ) gravity limits lead to a frequency which is

scale-independent, a result previously obtained in literature. Furthermore, within

reasonable bounds for viable f(T ) gravity models, the model is effectively ΛCDM.

In more general f(T, T ) theories however, the frequency is observed to have a strong

k2 dependence proportional to fT . This is similar to what is obtained in f(R, T )

gravity, therefore questioning the viability of the gravitational model.

The role of the k2 dependence is then investigated for model Lagrangians which

satisfy the standard conservation of the stress-energy tensor. As derived in Refs.

[94, 95], two models have been investigated, F (T, T ) = α
√
T + β and F (T, T ) =

−T
[
1 +

(
µ√
T + ν

)−1
]
.

The first model corresponds to its f(R, T ) equivalent considered in Ref. [328] and

hence the results are expected to be recovered. To match the results, ε is chosen

to take the values ε = ±0.3× 10−3, which lie within observational constraints. For

the positive ε case, the model exhibits less growth than ΛCDM for all relevant sub-

horizon scales, which is further strongly suppressed at larger scales as it approaches

an underdamped oscillating state. In the negative case, structure forms at a faster

rate than ΛCDM with larger scales yielding a faster growth.

For the second model, only the positive solution for the Hubble parameter Eq.(7.90)

(and, consequently, for ν Eq.(7.89)) permits an agreement with observations for the

background cosmological behaviour. This is achieved for values of η which lie within

domains close to η = 0.84 (if the SNe Ia data analysis carried out in Ref. [95] is

included, 0.87 < η < 0.92). However, for all reasonable choices of η close to the given

constraint, the resulting evolution is not physical. Taking η = 0.9 as an illustrative
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example, the system evolves as an underdamped oscillator for all sub-horizon scales

with values so small that barely any structure forms. This leads the model to be in

disagreement with observations.

Overall, it is expected that most f(T, T ) models do not realise a correct growth

structure formation at large scales due to the strong k2 dependence in the theory.

This effect can only be suppressed if it is possible to define a coupling where the

contribution from the stress-energy trace T is absent after matter-radiation equality.

In other words, FT ' 0 during these epochs, which yields a strong constraint on the

Lagrangian.

186



Chapter 8

Conclusion

Throughout this work, an alternative description to gravity, constructed from torsion

rather than curvature of spacetime, has been investigated. This has been achieved by

an appropriate choice of the connection, as this determines the type of geometry. For

curvature based theories of gravity, the connection is given by the Levi-Civita con-

nection Eq.(2.11) while for teleparallel gravity, this is obtained by the Weitzenböck

connection Eq.(2.12). In its basic form described as TEGR, obtained by replacing

the Ricci scalar R with the torsion scalar T in the gravitational action (Eq. 2.20),

the theory has been shown to be equivalent at the level of equations (although

fundamentally different), and hence, most of the results predicted by GR are re-

tained, along with some of the observational problems. In a similar way as carried

out in curvature based theories, extensions to this torsional and teleparallel avenue

have been constructed and studied, in order to try and explain some fundamental

questions about the universe.

In particular, the extensions studied in this work are f(T ) gravity, the teleparallel

extension of the Gauss-Bonnet term f(T, TG) gravity, effects of the boundary term

B through f(T,B) gravity (which includes f(R) theories as a sub-case), as well as

non-trivial couplings between the trace of the matter stress-energy tensor T with

torsion in f(T, T ) gravity. These different models have been investigated under
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different fields, for which the results are summarised in the following sections.

8.1 Homogeneous Cosmological Stability

The stability of the FLRW metric under homogeneous and isotropic perturbations

in the context of f(T ) gravity theory have been investigated first. Through these

types of perturbations, one can determine whether the background cosmology is valid

throughout the cosmic evolution, which is achieved by requiring the perturbations

to remain small throughout the evolutionary history. Here, the work serves as a

generalisation of previous investigations where an analytical solution for the matter

and Hubble perturbations (Eqs.(3.21) and (3.22)) has now been obtained. These

results show that one can investigate the stability of any f(T ) gravity model solely

through the evolution of the Hubble parameter.

To investigate the stability behaviour, two viable f(T ) models have been considered:

the power-law and exponential models. By constraining them using observational

data, the models have been shown to be stable as they both appear to remain in a

de Sitter phase at late times (hence being an attractor). Overall, the exponential

model has been shown to be the closest to mimic the ΛCDM evolution.

Homogeneous perturbations have also been studied for the other gravitational mod-

els, for instance f(T, TG) [364], f(T,B) [69] and f(T, T ) gravity [94,96]. In each case,

however, a general analytical solution for the homogeneous perturbation variables is

not recovered. This could prove to be interesting grounds for future investigations.

Although not investigated in this work, dynamical systems have proven to be a very

useful tool to determine the overall behaviour of a model without having to resort to

solving the system analytically. Thanks to this approach, one can easily discriminate

between viable models according to the phase trajectory of the cosmology. In the

case of f(T ) gravity, this has been thoroughly investigated with the work in Ref. [177]
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describing the general behaviour for any given f(T ) function. For the remaining

models, work has been done with the aim of determining their dynamics, but has

been mostly applied for very specific models, as shown in the case of f(T, TG) gravity

[81] and f(T, T ) gravity [94,365]. Thus, it still remains to be seen what the overall

picture of these theories holds in terms of general evolution viewed from the eyes of

dynamical systems.

8.2 Cosmological Reconstruction

The method of cosmological reconstruction has been applied in f(T, TG) gravity to

construct Lagrangians capable of describing various cosmological histories. Recon-

struction therefore serves as a powerful tool to hint towards a more concrete form of

the gravitational Lagrangian without resorting to testing different model ansatz. In

the case of f(T, TG) gravity, the resulting PDEs are too complex to solve and hence

different ansatz choices are considered. The Lagrangian is further constrained to be

able to recover the vacuum solutions which require f(0, 0) = 0.

For power-law and de Sitter cosmologies, various models have been constructed and

shown to be able to satisfy the vacuum constraint. However, in the case of a ΛCDM

cosmology, although a Lagrangian can be reconstructed, none of the ansatz models

considered are able to satisfy the vacuum constraint. The reconstructed solutions

are summarised in Tables 4.1, 4.3 and 4.4.

Bouncing cosmologies have also been investigated, since they serve as an impor-

tant alternative to the singularity problem encountered in a Big Bang, and as an

alternative to inflation. Future singularities can also arise through bouncing cos-

mologies used to discuss the possible future state of the universe (e.g. Big Rip) or

a mechanism for a graceful exit inflation (Type IV singularity). Overall, although

different f(T, TG) Lagrangians can be reconstructed for all the bouncing models
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considered, only the superbounce and Type III singularity are able to satisfy the

vacuum constraint within a non-empty universe. Thus, if this condition is enforced,

the type of bouncing cosmology is restricted. For the bouncing models considered,

the reconstructed solutions are given in Tables 5.1–5.4.

From these results, it would be an interesting viewpoint to investigate the role

of f(T, TG) gravity in further detail, given its capability to describe cosmological

solutions which are also able to recover vacuum solutions. This analysis can also

be extended to f(T,B) gravity and f(T, T ) gravity primarily in the context of

bouncing cosmologies. Reconstructed solutions for power law, de Sitter and ΛCDM

expansion histories have been carried out in the literature; see Refs. [69, 71, 366] in

the context of f(T,B) gravity and Refs. [94, 97, 98] for f(T, T ) gravity. For all the

models considered, the analysis can also be extended to reconstruct the Lagrangian

based on the SNe Ia data in a similar context as carried out in f(R) gravity [182].

8.3 Gravitational Waves

The existence of GWs has been investigated in a weak-field linearised gravity ap-

proach, which yields linearised teleparallel field equations used to determine the

basic properties of the waves predicted by said theories. In particular, the number

and type of the polarisation states together with their speed has been investigated.

With present and future data regarding these two properties of GWs, these will

therefore serve as constraints for the theory. Furthermore, the analysis has been

carried out under two formalisms, the so called metric and tetrad approaches, to

illustrate that both approaches lead to the same consistent result.

Starting with the simplest case of f(T ) gravity, the well known result that the same

polarisation states and speed as GR is recovered. However, when a cosmological

constant background is introduced, the result changes slightly. Despite it exhibiting
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the same behaviour as encountered in GR with a cosmological constant, a new effec-

tive cosmological constant given in Eq.(6.112) is obtained. This causes an amplitude

and phase shift difference, which agrees with the tensor perturbation analysis shown

in Refs. [284, 327]. For higher-order perturbations, the gravitational radiation rela-

tion is the same as that found in GR but at third order, a contribution from fTT (0)

arises deviating from GR. This was not explored further due to the complexity of

the equations.

Next, in the case of f(T,B) gravity, the result is effectively identical to that encoun-

tered in f(R) gravity, it being a massive scalar mode with the speed of propagation

being smaller than that of light for fBB(0) 6= 0 together with the massless two

tensor modes. The model has also been investigated in a cosmological constant

background setting, but could not be solved in general. Nonetheless, it is expected

that the cosmological constant affects the amplitude and phase of the waves. Fi-

nally, for f(T, TG) gravity theory, the standard massless tensor polarisations arise,

which was expected as TG represents a higher order term.

This work provided the basic GW features of the models. However, a more detailed

account about the aspect of cosmological perturbation theory is still required. One

would be able to calculate the primordial GW tensor spectrum and then compute

the scalar-tensor ratio which is well constrained from Planck data [152]. For in-

stance, in f(T ) gravity, models which yield a matter bounce cosmology suffer from

the same issues of matter bounces themselves, namely having a scalar-tensor ratio

incompatible with observations [234,367]. On the other hand, this scalar-tensor ratio

could match with observations provided certain constraints on the f(T ) Lagrangian

are satisfied [285,368]. This analysis could be extended to the other theories as well.

Another important point is that, although the tensor modes have been shown to

propagate at the speed of light on a Minkowski background, this is not necessarily

true on an FLRW background. As discussed in Chapter 6, f(R,G) theories have

been shown to yield a different wave speed, and hence are strongly constrained from
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observations. Thus, it would be interesting to see whether this is also true in its

teleparallel analogue and in f(T,B) gravity for the tensor mode propagation.

Lastly, the GW polarisations of f(T, T ) gravity could also be investigated. However,

it is expected that this will reduce to the same result as f(T ) gravity since in the

weak-field regime, the system is analysed far away from the source leading to T → 0.

This is similar to what occurs in f(R, T ) gravity [369]. However, if this stress-energy

trace is sourced by a scalar field φ for instance (with stress-energy trace T φ), this

could realise new modes, as shown in f(R, T φ) gravity [369].

8.4 Large Scale Structure

Growth of large scale structure in the context of f(T, T ) theory was investigated

through the use of scalar linear cosmological perturbations in an FLRW background.

By using the correct form of the tetrad scalar perturbation Eq.(7.28) and focusing

on sub-horizon scales, it was found that the growth factor is strongly dependent on

scale due to the k2-dependence found in Eq.(7.69). A similar feature is found in the

curvature analogue of the theory, and this sets the theory to be strongly constrained

against observations.

For the two F (T, T ) models considered which satisfy the stress-energy conservation

constraint, the growth of the first model F (T, T ) = α
√
T + β has been shown to

match that of the curvature derived result as expected, since the Lagrangians are

equivalent, which shows consistency. For the parameters considered, the effect of

scale has been shown to be dominant for sufficiently large sub-horizon scales.

On the other hand, the second model F (T, T ) = −T
[
1 +

(
µ√
T + ν

)−1
]

does not

realise any physical growth even though a satisfactory background evolution is ob-

tained, making the model non-viable. With these results, it has been argued that a

viable model is achieved provided FT ' 0 past matter-radiation equality, meaning
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the dependence on the trace should be negligible at late times.

Here, only sub-horizon scales have been investigated. However, super-horizon modes

are as important especially in computing the CMB anisotropy spectrum for low

multipoles. In the case of f(T ) gravity for instance, the super-horizon scale does

not yield a constant potential as found in GR, but is scale dependent leading to

a different behaviour in the low multipole regime [325, 326]. Nonetheless, one can

find f(T ) models where this deviation is sufficiently small [181]. The anisotropy

spectrum analysis can then naturally be extended to the other teleparallel models,

namely f(T,B), f(T, TG) and f(T, T ) gravity to be tested against observations. For

instance, f(R) [370–372] (amongst other works) and f(R,G) [373] gravity have been

shown to be able to match with CMB data, and hence it would be interesting to

check whether their torsional analogues are also capable of doing so.

8.5 Final Remarks

Through the investigation of these extended teleparallel theories in various topics on

cosmology, teleparallel theory has been shown to be a viable alternative to explain

the mechanics of gravitation. Nonetheless, these models will always need to be

continuously subjected to present and future observations in order to be able to deem

whether teleparallel gravity can correctly account for all gravitational phenomena.

Following the discussions in Chapter 1, a viable teleparallel theory of gravity must

then be able to, amongst others:

1. Recover the Newtonian weak-field limit and pass all local Solar system tests.

As shown in Refs. [374–376], despite these tests imposing strong constraints

on the parameters of the theory, teleparallel gravity is still able to satisfy all

local tests;

2. Explain the galactic mechanics. This can be achieved by either describing dark
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matter as a manifestation of gravity, or using teleparallel theory in conjunction

with the predicted behaviour and properties of dark matter [377]. The former

has been shown to be possible in the case of f(T ) gravity [378];

3. Correctly predict the observed cosmological behaviours, both at a background

level (acceleration and Hubble tension) as well as at a perturbative level (the

CMB spectrum and polarisation spectra, and large scale structure formation).

These features have been shown to be possible as discussed throughout this

work;

4. Correctly predict the GW propagation speeds (to be the same as that of light)

and through future observations, the correct polarisations. Once again, these

are achieved through teleparallel gravity, as shown in Chapter 6.

Therefore, the future of teleparallel theories remains a promising alternative avenue

to provide a more concrete description of gravity.
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µν) gravity phenomenology

and ΛCDM universe, Phys. Lett. B725, 437 (2013).

[89] H. Shabani and M. Farhoudi, f(R, T ) Cosmological Models in Phase Space,
Phys. Rev. D88, 044048 (2013).

200



References

[90] E. H. Baffou, A. V. Kpadonou, M. E. Rodrigues, M. J. S. Houndjo, and
J. Tossa, Cosmological viable f(R, T ) dark energy model: dynamics and
stability, Astrophys. Space Sci. 356, 173 (2015).

[91] H. Shabani and M. Farhoudi, Cosmological and Solar System Consequences
of f(R, T ) Gravity Models, Phys. Rev. D90, 044031 (2014).

[92] T. P. Sotiriou and V. Faraoni, Modified gravity with R-matter couplings and
(non-)geodesic motion, Class. Quant. Grav. 25, 205002 (2008).

[93] E. L. B. Junior, M. E. Rodrigues, I. G. Salako, and M. J. S. Houndjo, Recon-
struction, Thermodynamics and Stability of ΛCDM Model in f(T, T ) Gravity,
Class. Quant. Grav. 33, 125006 (2016).

[94] M. G. Ganiou, I. G. Salako, M. J. S. Houndjo, and J. Tossa, f(T, T ) cosmo-
logical models in phase space, Astrophys. Space Sci. 361, 57 (2016).

[95] D. Saez-Gomez, C. S. Carvalho, F. S. N. Lobo, and I. Tereno, Constraining
f(T, T ) gravity models using type Ia supernovae, Phys. Rev. D94, 024034
(2016).

[96] F. Kiani and K. Nozari, Energy conditions in F (T,Θ) gravity and compati-
bility with a stable de Sitter solution, Phys. Lett. B728, 554 (2014).

[97] D. Momeni and R. Myrzakulov, Cosmological reconstruction of f(T, T ) grav-
ity, Int. J. Geom. Meth. Mod. Phys. 11, 1450077 (2014).

[98] S. B. Nassur, M. J. S. Houndjo, A. V. Kpadonou, M. E. Rodrigues, and
J. Tossa, From the early to the late time universe within f(T, T ) gravity,
Astrophys. Space Sci. 360, 60 (2015).

[99] J. Lesgourgues, G. Mangano, G. Miele, and S. Pastor, Neutrino Cosmology,
Cambridge University Press, Cambridge, UK, 2018.

[100] O. F. Piattella, Lecture Notes in Cosmology, UNITEXT for Physics, Springer,
Cham, 2018.

[101] A. R. Liddle and D. H. Lyth, Cosmological inflation and large scale structure,
Cambridge University Press, 2000.

[102] J. Hubbard and B. West, Differential Equations: A Dynamical Systems Ap-
proach: A Dynamical Systems Approach. Part II: Higher Dimensional Sys-
tems, Applications of Mathematics, Springer, 1991.

[103] S. Bahamonde et al., Dynamical systems applied to cosmology: dark energy
and modified gravity, Phys. Rept. 775-777, 1 (2018).

[104] S. Carloni, P. K. S. Dunsby, S. Capozziello, and A. Troisi, Cosmological
dynamics of Rn gravity, Class. Quant. Grav. 22, 4839 (2005).

201



References

[105] S. Carloni, A. Troisi, and P. K. S. Dunsby, Some remarks on the dynamical
systems approach to fourth order gravity, Gen. Rel. Grav. 41, 1757 (2009).

[106] S.-Y. Zhou, E. J. Copeland, and P. M. Saffin, Cosmological Constraints on
f(G) Dark Energy Models, JCAP 0907, 009 (2009).

[107] E. J. Copeland, S. Mizuno, and M. Shaeri, Dynamics of a scalar field in
Robertson-Walker spacetimes, Phys. Rev. D79, 103515 (2009).

[108] G. Cognola et al., A Class of viable modified f(R) gravities describing inflation
and the onset of accelerated expansion, Phys. Rev. D77, 046009 (2008).

[109] A. Paliathanasis, M. Tsamparlis, S. Basilakos, and J. D. Barrow, Dynamical
analysis in scalar field cosmology, Phys. Rev. D91, 123535 (2015).

[110] N. Goheer, J. A. Leach, and P. K. S. Dunsby, Dynamical systems analysis of
anisotropic cosmologies in Rn-gravity, Class. Quant. Grav. 24, 5689 (2007).

[111] C. R. Fadragas, G. Leon, and E. N. Saridakis, Dynamical analysis of
anisotropic scalar-field cosmologies for a wide range of potentials, Class.
Quant. Grav. 31, 075018 (2014).

[112] J. Wainwright and L. Hsu, A dynamical systems approach to Bianchi cos-
mologies: Orthogonal models of class A, Class. Quant. Grav. 6, 1409 (1989).

[113] C. G. Boehmer and N. Chan, Dynamical systems in cosmology, in LTCC
Advanced Mathematics Series: Volume 5 Dynamical and Complex Systems,
pp. 121-156 (2017), 2014.

[114] J. D. Barrow, G. F. R. Ellis, R. Maartens, and C. G. Tsagas, On the stability
of the Einstein static universe, Class. Quant. Grav. 20, L155 (2003).

[115] S. S. Seahra and C. G. Boehmer, Einstein static universes are unstable in
generic f(R) models, Phys. Rev. D79, 064009 (2009).

[116] S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Cosmological pertur-
bations in f(T ) gravity, Phys. Rev. D83, 023508 (2011).

[117] V. Faraoni, The Stability of modified gravity models, Phys. Rev. D72, 124005
(2005).

[118] V. Faraoni, de Sitter space and the equivalence between f(R) and scalar-tensor
gravity, Phys. Rev. D75, 067302 (2007).

[119] B. Li, J. D. Barrow, and D. F. Mota, The Cosmology of Modified Gauss-
Bonnet Gravity, Phys. Rev. D76, 044027 (2007).

[120] P. Wu and H. Yu, The Stability of the Einstein static state in f(T ) gravity,
Phys. Lett. B703, 223 (2011).

202



References

[121] I. G. Salako, M. E. Rodrigues, A. V. Kpadonou, M. J. S. Houndjo, and
J. Tossa, Λ CDM Model in f(T ) Gravity: Reconstruction, Thermodynam-
ics and Stability, JCAP 1311, 060 (2013).

[122] E. V. Linder, Einstein’s Other Gravity and the Acceleration of the Universe,
Phys. Rev. D81, 127301 (2010), [Erratum: Phys. Rev.D82,109902(2010)].

[123] P. Wu and H. W. Yu, Observational constraints on f(T ) theory, Phys. Lett.
B693, 415 (2010).

[124] K. Karami and A. Abdolmaleki, Generalized second law of thermodynamics
in f(T )-gravity, JCAP 1204, 007 (2012).

[125] S. K. Biswas and S. Chakraborty, Interacting Dark Energy in f(T ) cosmology:
A Dynamical System analysis, Int. J. Mod. Phys. D24, 1550046 (2015).

[126] S. Basilakos, Linear growth in power law f(T ) gravity, Phys. Rev. D93,
083007 (2016).

[127] R. Zheng and Q.-G. Huang, Growth factor in f(T ) gravity, JCAP 1103, 002
(2011).

[128] R. Myrzakulov, Accelerating universe from F (T ) gravity, Eur. Phys. J. C71,
1752 (2011).

[129] C. G. Boehmer and F. S. N. Lobo, Stability of the Einstein static universe in
IR modified Horava gravity, Eur. Phys. J. C70, 1111 (2010).

[130] C. G. Boehmer, L. Hollenstein, and F. S. N. Lobo, Stability of the Einstein
static universe in f(R) gravity, Phys. Rev. D76, 084005 (2007).

[131] C. G. Boehmer and F. S. N. Lobo, Stability of the Einstein static universe in
modified Gauss-Bonnet gravity, Phys. Rev. D79, 067504 (2009).

[132] K. Atazadeh and F. Darabi, Einstein static Universe in non-minimal kinetic
coupled gravity, Phys. Lett. B744, 363 (2015).

[133] H. Shabani and A. H. Ziaie, Stability of the Einstein static universe in f(R, T )
gravity, Eur. Phys. J. C77, 31 (2017).

[134] A. Paliathanasis, J. L. Said, and J. D. Barrow, Stability of the Kasner Universe
in f(T ) Gravity, Phys. Rev. D97, 044008 (2018).

[135] S. Nesseris, S. Basilakos, E. N. Saridakis, and L. Perivolaropoulos, Viable
f(T ) models are practically indistinguishable from ΛCDM, Phys. Rev. D88,
103010 (2013).

[136] G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys.
Rev. D79, 124019 (2009).

203



References

[137] U. Alam, Z. Lukic, and S. Bhattacharya, Galaxy Clusters as a probe of early
dark energy, Astrophys. J. 727, 87 (2011).

[138] A. Mehrabi, Growth of perturbations in dark energy parametrization scenar-
ios, Phys. Rev. D97, 083522 (2018).

[139] M. Li, Y. Cai, H. Li, R. Brandenberger, and X. Zhang, Dark Energy Pertur-
bations Revisited, Phys. Lett. B702, 5 (2011).

[140] G. Sethi, A. Dev, and D. Jain, Cosmological constraints on a power law
Universe, Phys. Lett. B624, 135 (2005).

[141] R.-G. Cai, A Dark Energy Model Characterized by the Age of the Universe,
Phys. Lett. B657, 228 (2007).

[142] C. Kaeonikhom, B. Gumjudpai, and E. N. Saridakis, Observational constraints
on phantom power-law cosmology, Phys. Lett. B695, 45 (2011).

[143] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon
and Flatness Problems, Phys. Rev. D23, 347 (1981), [Adv. Ser. Astrophys.
Cosmol.3,139(1987)].

[144] S. Dodelson, Modern Cosmology, Academic Press, Amsterdam, 2003.

[145] R. H. Brandenberger, Introduction to Early Universe Cosmology, PoS
ICFI2010, 001 (2010).

[146] F. Lucchin and S. Matarrese, Power Law Inflation, Phys. Rev. D32, 1316
(1985).

[147] A. B. Burd and J. D. Barrow, Inflationary Models with Exponential Potentials,
Nucl. Phys. B308, 929 (1988), [Erratum: Nucl. Phys.B324,276(1989)].

[148] A. R. Liddle and D. H. Lyth, COBE, gravitational waves, inflation and ex-
tended inflation, Phys. Lett. B291, 391 (1992).

[149] T. Souradeep and V. Sahni, Density perturbations, gravity waves and the
cosmic microwave background, Mod. Phys. Lett. A7, 3541 (1992).

[150] J. J. Halliwell, Scalar Fields in Cosmology with an Exponential Potential,
Phys. Lett. B185, 341 (1987).

[151] P. A. R. Ade et al., Planck 2013 results. XXII. Constraints on inflation,
Astron. Astrophys. 571, A22 (2014).

[152] Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, (2018).

[153] S. Unnikrishnan and V. Sahni, Resurrecting power law inflation in the light
of Planck results, JCAP 1310, 063 (2013).

204



References

[154] S. D. Odintsov, V. K. Oikonomou, and E. N. Saridakis, Superbounce and
Loop Quantum Ekpyrotic Cosmologies from Modified Gravity: F (R), F (G)
and F (T ) Theories, Annals Phys. 363, 141 (2015).

[155] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Bounce universe history
from unimodular F (R) gravity, Phys. Rev. D93, 084050 (2016).

[156] M. Koehn, J.-L. Lehners, and B. A. Ovrut, Cosmological super-bounce, Phys.
Rev. D90, 025005 (2014).

[157] V. K. Oikonomou, Superbounce and Loop Quantum Cosmology Ekpyrosis
from Modified Gravity, Astrophys. Space Sci. 359, 30 (2015).

[158] A. Dev, M. Sethi, and D. Lohiya, Linear coasting in cosmology and SNe Ia,
Phys. Lett. B504, 207 (2001).

[159] A. Dev, M. Safonova, D. Jain, and D. Lohiya, Cosmological tests for a linear
coasting cosmology, Phys. Lett. B548, 12 (2002).

[160] E. W. Kolb, A Coasting Cosmology, Astrophys. J. 344, 543 (1989).

[161] J. T. Nielsen, A. Guffanti, and S. Sarkar, Marginal evidence for cosmic accel-
eration from Type Ia supernovae, Sci. Rep. 6, 35596 (2016).

[162] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without
Singularity, Phys. Lett. B91, 99 (1980), [,771(1980)].

[163] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the
Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,
Phys. Lett. 108B, 389 (1982), [Adv. Ser. Astrophys. Cosmol.3,149(1987)].

[164] K. Bamba, S. D. Odintsov, and E. N. Saridakis, Inflationary cosmology in
unimodular F (T ) gravity, Mod. Phys. Lett. A32, 1750114 (2017).

[165] F. Darabi, Reconstruction of f(R), f(T ) and f(G) models inspired by variable
deceleration parameter, Astrophys. Space Sci. 343, 499 (2013).

[166] S. Basilakos, S. Capozziello, M. De Laurentis, A. Paliathanasis, and M. Tsam-
parlis, Noether symmetries and analytical solutions in f(T )-cosmology: A
complete study, Phys. Rev. D88, 103526 (2013).

[167] H. Wei, X.-J. Guo, and L.-F. Wang, Noether Symmetry in f(T ) Theory, Phys.
Lett. B707, 298 (2012).

[168] H. Dong, J. Wang, and X. Meng, The distinctions between ΛCDM and f(T )
gravity according Noether symmetry, Eur. Phys. J. C73, 2543 (2013).

[169] N. Sk, Noether symmetry in f(T ) teleparallel gravity, Phys. Lett. B775, 100
(2017).

205



References

[170] R. Myrzakulov, Cosmology of F (T ) gravity and k-essence, Entropy 14, 1627
(2012).

[171] K. Atazadeh and F. Darabi, f(T ) cosmology via Noether symmetry, Eur.
Phys. J. C72, 2016 (2012).

[172] H. Mohseni Sadjadi, Generalized Noether symmetry in f(T ) gravity, Phys.
Lett. B718, 270 (2012).

[173] W. El Hanafy and G. L. Nashed, Reconstruction of f(T )-gravity in the absence
of matter, Astrophys. Space Sci. 361, 197 (2016).

[174] M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, and F. Rahaman,
Anisotropic Universe Models in f(T ) Gravity, Phys. Rev. D86, 104059 (2012).

[175] M. Chevallier and D. Polarski, Accelerating universes with scaling dark matter,
Int. J. Mod. Phys. D10, 213 (2001).

[176] E. V. Linder, Exploring the expansion history of the universe, Phys. Rev.
Lett. 90, 091301 (2003).

[177] M. Hohmann, L. Jarv, and U. Ualikhanova, Dynamical systems approach and
generic properties of f(T ) cosmology, Phys. Rev. D96, 043508 (2017).

[178] A. Awad, W. El Hanafy, G. G. L. Nashed, and E. N. Saridakis, Phase Portraits
of general f(T ) Cosmology, JCAP 1802, 052 (2018).

[179] A. Awad and G. Nashed, Generalized teleparallel cosmology and initial sin-
gularity crossing, JCAP 1702, 046 (2017).

[180] S. Capozziello, G. Lambiase, and E. N. Saridakis, Constraining f(T ) telepar-
allel gravity by Big Bang Nucleosynthesis, Eur. Phys. J. C77, 576 (2017).

[181] R. C. Nunes, Structure formation in f(T ) gravity and a solution forH0 tension,
JCAP 1805, 052 (2018).

[182] S. Capozziello, V. F. Cardone, and A. Troisi, Reconciling dark energy models
with f(R) theories, Phys. Rev. D71, 043503 (2005).

[183] T. D. Saini, S. Raychaudhury, V. Sahni, and A. A. Starobinsky, Reconstructing
the cosmic equation of state from supernova distances, Phys. Rev. Lett. 85,
1162 (2000).

[184] G. Esposito-Farese and D. Polarski, Scalar tensor gravity in an accelerating
universe, Phys. Rev. D63, 063504 (2001).

[185] V. Sahni, The Cosmological constant problem and quintessence, Class. Quant.
Grav. 19, 3435 (2002).

206



References

[186] V. Sahni and A. Starobinsky, Reconstructing Dark Energy, Int. J. Mod. Phys.
D15, 2105 (2006).

[187] Y.-G. Gong and A. Wang, Reconstruction of the deceleration parameter and
the equation of state of dark energy, Phys. Rev. D75, 043520 (2007).

[188] S. Nojiri and S. D. Odintsov, Modified f(R) gravity consistent with realistic
cosmology: From matter dominated epoch to dark energy universe, Phys.
Rev. D74, 086005 (2006).

[189] E. Elizalde, S. Nojiri, S. D. Odintsov, D. Saez-Gomez, and V. Faraoni, Recon-
structing the universe history, from inflation to acceleration, with phantom
and canonical scalar fields, Phys. Rev. D77, 106005 (2008).

[190] S. Nojiri and S. D. Odintsov, Dark energy, inflation and dark matter from
modified F (R) gravity, TSPU Bulletin N8(110), 7 (2011).

[191] S. Nojiri, S. D. Odintsov, and D. Saez-Gomez, Cosmological reconstruction of
realistic modified F (R) gravities, Phys. Lett. B681, 74 (2009).

[192] M. Jamil, D. Momeni, M. Raza, and R. Myrzakulov, Reconstruction of some
cosmological models in f(R, T ) gravity, Eur. Phys. J. C72, 1999 (2012).

[193] E. J. Copeland, E. W. Kolb, A. R. Liddle, and J. E. Lidsey, Reconstructing
the inflation potential, in principle and in practice, Phys. Rev. D48, 2529
(1993).

[194] J. E. Lidsey et al., Reconstructing the inflation potential: An overview, Rev.
Mod. Phys. 69, 373 (1997).

[195] M. J. S. Houndjo, Reconstruction of f(R, T ) gravity describing matter domi-
nated and accelerated phases, Int. J. Mod. Phys. D21, 1250003 (2012).

[196] S. Nojiri and S. D. Odintsov, Modified gravity and its reconstruction from the
universe expansion history, J. Phys. Conf. Ser. 66, 012005 (2007).
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[332] H. von Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welcher
der Wirbelbewegungen entsprechen, Journal für die reine und angewandte
Mathematik 55, 22 (1858).

[333] C. Clarkson, T. Clifton, and S. February, Perturbation Theory in Lemaitre-
Tolman-Bondi Cosmology, JCAP 0906, 025 (2009).

[334] T. S. Pereira, C. Pitrou, and J.-P. Uzan, Theory of cosmological perturbations
in an anisotropic universe, JCAP 0709, 006 (2007).

[335] W. Hu and N. Sugiyama, Toward understanding CMB anisotropies and their
implications, Phys. Rev. D51, 2599 (1995).

[336] A. Riotto, Inflation and the theory of cosmological perturbations, ICTP Lect.
Notes Ser. 14, 317 (2003).

216



References

[337] F. C. Mena, D. J. Mulryne, and R. Tavakol, Non-linear vector perturbations
in a contracting universe, Class. Quant. Grav. 24, 2721 (2007).

[338] J. M. T. Thompson, editor, Advances in astronomy: From the big bang to the
solar system, Imperial College Press, London, UK, 2005.

[339] M. Bojowald and G. M. Hossain, Cosmological vector modes and quantum
gravity effects, Class. Quant. Grav. 24, 4801 (2007).

[340] S. Chongchitnan and G. Efstathiou, Prospects for direct detection of primor-
dial gravitational waves, Phys. Rev. D73, 083511 (2006).

[341] S. Matarrese, S. Mollerach, and M. Bruni, Second order perturbations of the
Einstein-de Sitter universe, Phys. Rev. D58, 043504 (1998).

[342] V. Acquaviva, N. Bartolo, S. Matarrese, and A. Riotto, Second order cosmo-
logical perturbations from inflation, Nucl. Phys. B667, 119 (2003).

[343] K. A. Malik and D. Wands, Evolution of second-order cosmological perturba-
tions, Class. Quant. Grav. 21, L65 (2004).

[344] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Non-Gaussianity from
inflation: Theory and observations, Phys. Rept. 402, 103 (2004).

[345] J. B. Hartle, An introduction to Einstein’s general relativity, Addison-Wesley,
San Francisco, USA, 2003.

[346] J. M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys. Rev. D22,
1882 (1980).

[347] K. Izumi and Y. C. Ong, Cosmological Perturbation in f(T) Gravity Revisited,
JCAP 1306, 029 (2013).

[348] J. H. Jeans, The stability of a spherical nebula, Phil. Trans. R. Soc. Lond.
199A, 1 (1902).

[349] D. J. Raine and T. E. G. Thomas, An introduction to the science of cosmology,
Series in Astronomy and Astrophysics, Institute of Physics Publishing, Bristol,
UK, 2001.

[350] G. Bothun, Modern cosmological observations and problems, Taylor & Francis
Group, London, UK, 1998.
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