
Searching for the Unexpected:
Evolution through Surprise

Daniele Gravina

Institute of Digital Games

University of Malta

A thesis submitted for the degree of

Doctor of Philosophy

May, 2019

Abstract

In this dissertation we present a new approach called surprise search that realises
the concept of surprise for the serendipitous discovery in a computational search
space. Inspired by the notion of surprise in computational creativity, surprise
search seeks unconventional solutions and equips computational creators with
the ability to search for unexpected outcomes. This new approach contrasts the
traditional paradigm of rewarding progress towards the objective, and rewards
unexpected discoveries to handle hard and deceptive problems.

According to the literature in computational creativity, surprise is a key element
for the discovery of highly creative and unconventional solutions. Furthermore,
theories of intrinsic motivation situate surprise, along with novelty, as primary
factors for the elicitation of interest, for the enhancement of learning, and for
enabling discovery. This thesis tests the hypothesis that surprise can be an
effective drive for the discovery of solutions in hard and deceptive testbeds and
it also examines how surprise may complement other forms of divergent search
such as novelty and quality diversity algorithms. The main contributions of
this work include: (1) the introduction of surprise search; (2) the validation of
surprise search for problem-solving; (3) the exploration of how surprise can be
effectively coupled with novelty search; (4) and the testing of the effectiveness
of surprise as a reward for quality diversity. The findings of this thesis support
the idea that deviation from expected behaviours can be a powerful alternative
for divergent search and quality diversity with key benefits over state-of-the-art
evolutionary approaches.

Acknowledgements

This thesis has been made possible thanks to my supervisors, Georgios N. Yan-
nakakis and Antonios Liapis, who have continuously believed in me and guide
me towards this difficult but incredibly satisfying goal. I deeply appreciate all
the help they gave me during these years.

I would like to say thank you to all the people I shared an office with along these
years, Daniel Karavolos, Phil Lopes and David Melhart. It’s been a pleasure to
share so many good moments and have fun during our boardgame sessions.

A deep thank you goes to all the people at the Institute of Digital Games,
who have made this journey somewhat easier, in particular, Costantino Oliva,
Stefano Gualeni and Jasper Schellekens.

I would also to give a big thank you to the Institute of Digital Games and the
University of Malta, for all the support.

A big big thank you goes to my mother, who has always supported me in my
entire life by pushing me to do my best and letting me follow my dreams and
desires. I’ll never be able to thank her enough.

Last but not least, Cetty, who—as a hero in the moments of needs—has helped
me to get through this. Her support was fundamental to finish this major step
of my life.

Statement of Originality

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this
work has not been submitted for any other degree or professional qualification
except as specified. (Daniele Gravina)

To my mom, my family and Cetty.

Contents

1 Introduction 1
1.1 Searching for Surprise: a Computational Creativity View 2
1.2 Searching for Surprise: a Bio-inspired View 4
1.3 Searching for Surprise: an Evolutionary Approach 6
1.4 Research Questions . 6
1.5 Contributions . 7
1.6 List of publications . 7
1.7 Structure of the Thesis . 8
1.8 Summary . 9

2 Related Work 11
2.1 Computational Creativity . 11

2.1.1 Surprise . 12
2.1.2 Novelty . 13
2.1.3 Novelty vs. Surprise . 14
2.1.4 Value . 15

2.2 Evolutionary Computation . 16
2.2.1 Multi-objective Evolution . 18
2.2.2 Neuroevolution: NEAT and CPPNs 20

2.3 Quality Diversity and Divergent Search . 23
2.3.1 EC-Hardness and Deception . 23
2.3.2 Ignoring the Objective: Divergent Search 24
2.3.3 Beyond Divergence: Diverse and Good solutions 27
2.3.4 Curiosity-based Reinforcement Learning 30

2.4 Domains . 32
2.4.1 Maze Navigation . 32
2.4.2 Soft Robots . 34

2.5 Summary . 35

3 Surprise Search: the Approach 37
3.1 Surprise Search . 37

3.1.1 The Surprise Search Algorithm . 38
3.2 Coupling Novelty and Surprise . 40

3.2.1 Novelty-Surprise Search Algorithm 41
3.2.2 Novelty Search-Surprise Search Algorithm 42

3.3 Surprise for Quality Diversity . 42
3.3.1 Surprise Search with Local Competition 43

i

Contents

3.3.2 Novelty-Surprise Search with Local Competition 44
3.3.3 Novelty Search–Surprise Search–Local Competition 44

3.4 Summary . 44

4 Surprise Search: Experiments 47
4.1 Maze Navigation Test Bed . 47

4.1.1 Domain . 48
4.1.2 Algorithms . 49
4.1.3 Experiments and Analysis . 52
4.1.4 Generality . 57

4.2 Soft Robot Test Bed . 61
4.2.1 Domain . 61
4.2.2 Algorithms . 61
4.2.3 Experiments and Analysis . 63

4.3 Discussion . 70
4.4 Summary . 71

5 Fusing Novelty and Surprise: Experiments 73
5.1 Maze Navigation Testbed . 73

5.1.1 Algorithms . 74
5.1.2 Experiments and Analysis . 75
5.1.3 Generality . 79

5.2 Soft Robot Testbed . 84
5.2.1 Algorithms . 85
5.2.2 Experiments and Analysis . 86

5.3 Discussion . 89
5.4 Summary . 92

6 Surprise for Quality Diversity: Experiments 93
6.1 Maze Navigation Testbed: First Set . 93

6.1.1 Algorithms . 93
6.1.2 First Set of Generated Mazes . 95
6.1.3 Experiments and Analysis . 97

6.2 Maze Navigation Testbed: Second Set . 104
6.2.1 Algorithms . 105
6.2.2 Experiments and Analysis: Authored Mazes 105
6.2.3 Experiments and Analysis: Second Set of Generated Mazes 109

6.3 Discussion . 113
6.4 Summary . 115

7 Discussion and Conclusions 117
7.1 Limitations . 118

7.1.1 Limitations of Surprise Search . 118
7.1.2 Limitations of Novelty-Surprise Search 121
7.1.3 Limitations of Surprise for Quality Diversity 122
7.1.4 Limitations of the Domains . 123

7.2 Extensibility: Beyond Mazes and Soft Robots 125
7.2.1 Surprise Search for Procedural Content Generation 125

ii

Contents

7.2.2 Surprise Search for Reinforcement Learning 130
7.3 Summary . 132

Appendices 133

A Experimental Parameters 135
A.1 Parameters for Maze Navigation Experiments 135
A.2 Parameters for Soft Robot Evolution Experiments 136

B Maze Navigation Generated Mazes 139

C Soft Robot Behavioural and Structural Analysis 143

D Computational Effort 147

Acronyms 149

iii

Contents

iv

List of Figures

1.1 A high-level representation of the differences between the notions
of value, novelty and surprise. We argue that the three notions are
orthogonal, as they operate on different dimensions. While value and novelty
can be considered static concepts, surprise is dynamic, as it can be viewed as
a form of “temporal novelty”. Image inspired by (Maher and Fisher, 2012)
and reproduced for the purposes of the thesis. 3

1.2 A card game example to illustrate the difference between novelty
and surprise. The cards are ordered from left to right in order of appear-
ance. In Fig. 1.2a the rightmost card is novel, as the shape and colors of
this card are different from the ones shown in the other cards; however, we
can see that every card in the sequence is novel, and therefore we can predict
that the next card will be novel as well. In the second sequence (Fig. 1.2b)
the fourth and rightmost card are surprising. A player would expect to see
an unseen card after the sequence of the first three cards, but, instead, the
fourth card shows a green circle as the first card. Also, the last card is indeed
surprising, as it shows a completely new shape and colors instead of another
green curved figure, as one would expect by seeing the previous sequence of
the first two cards. Image by Yannakakis and Liapis (2016). Authors granted
copyright permission. 4

1.3 An evolutionary-inspired analogy to the way novelty and surprise
search may operate synergistically for generating diverse individu-
als. We use parts of the phylogenetic tree of dinosaurs as an example. Blue
(dashed line) branches refer to feathered dinosaurs, versus non-feathered (or-
ange, continuous line). Note that this schematic, is a simplification (with
notable sample species) of specific phenotypic (feathers) and behavioral (fly-
ing) traits and does not necessarily follow phylogenetic lineages often studied
by paleontologists. However, the traits investigated are largely in line with
the generally agreed origin story of birds (Godefroit et al., 2013). 5

2.1 Graph model example: an agent is visiting a graph made of nodes con-
nected in a fixed configuration. Every step, an agent follows a particular
model to decide which node to visit next. In (a) the agent visit only unvis-
ited nodes (to maximise the novelty score), while in (b) the agent is trying to
maximise the surprise reward, by deviating from the predictions made with
the prediction model. 14

2.2 Evolutionary Loop: a high-level representation of an Evolutionary Algo-
rithm. 16

v

List of Figures

2.3 A representation of three possible crossover operators. 19
2.4 NEAT genotype and phenotype example. Image inspired by Stanley

and Miikkulainen (2002) and reproduced for the purposes of the thesis. . . 21
2.5 Novelty Search. A high-level diagram of the Novelty Search algorithm.

The novelty score is computed for every individual in the population by
averaging the distance from the closest neighbors collected from the current
population and an archive. Image inspired by Liapis (2014) and reproduced
for the purposes of the thesis. 26

2.6 Quality Diversity. A high-level diagram of the Quality Diversity paradigm.
Given a behaviour characterization (or space descriptor), here depicted as a
one-dimensional space, and the desired quality, the goal is to find a set of
diverse and high-performing solutions (red points). Image inspired by Cully
and Demiris (2018) and reproduced for the purposes of the thesis. 26

2.7 Global vs. Local Competition. A visualization of the resulting explo-
ration in the search space obtained with global competition and local compe-
tition. Local competition enables to exploit the explorative capabilities of a
divergent algorithm and at the same time to illuminate interesting (i.e., high
quality) regions of the search space, that would be instead out-shadowed by
the global competition variant. 29

2.8 Maze Navigation. The maze testbeds that appear in (Lehman and Stanley,
2011a) (Fig. 2.8a and 2.8b). The filled circle is the robot’s starting position
and the empty circle is the goal. 32

2.9 Robot controller for the maze navigation task. Fig. 2.9a shows the
network’s inputs and outputs. Fig. 2.9b shows the layout of the sensors: the
six black arrows are rangefinder sensors, and the four blue pie-slice sensors
act as a compass towards the goal. 33

2.10 Soft Robot Evolution. Sample of soft robots evolved with a CPPN repre-
sentation. 34

3.1 Surprise Search. High-level overview of the surprise search algorithm when
evaluating an individual i in a population at generation t. The h previous
generations are considered, with respect to kSS behavioral characteristics
per generation, to predict the expected kSS behaviors of generation t. The
surprise score of individual i is the deviation of the behavior of i from a
subset of these kSS expected behaviors. 39

3.2 Surprise-based Quality Diversity. The flow chart illustrates a high level
representation of the three introduced QD algorithms: SS-LC, NSS-LC, NS-
SS-LC. All algorithms are employed as a steady state EA (left flow chart).
The model of surprise is initialized after the generation of the initial popula-
tion and then updated every N offspring generations (right flow chart). The
evaluation of individuals (middle flow chart) goes through the calculation of
local competition, novelty, and surprise scores before those are assigned to
the corresponding algorithm. Algorithmic loops are depicted as gray boxes.
The introduced surprise-based components of the algorithm are depicted in
orange: light orange refers to the surprise components and dark orange refers
to the novelty-surprise components. For the interested reader, references are
made to the equations and sections. 43

vi

List of Figures

4.1 Authored Mazes. The maze testbeds that appear in (Lehman and Stanley,
2011a) (Fig. 4.1a and 4.1b) and new mazes introduced (Fig. 4.1c and 4.1d
respectively). The filled circle is the robot’s starting position and the empty
circle is the goal. The maze size is 300 × 150 units for the medium maze and
200 × 200 units for the other mazes. 48

4.2 Novelty Search: Sensitivity Analysis. Selecting the nearest neighbor for
novelty search: the figure depicts the average number of evaluations (normal-
ized by the total number of evaluations allocated) obtained out of 50 runs
(of 300 generations for the medium and hard maze, of 1000 generations for
the very and extremely hard maze) by varying nNS between 5 and 30 for all
four authored mazes examined. The error bars represent the 95% confidence
interval of the average. 50

4.3 The key phases of the surprise search algorithm as applied to the
maze navigation domain. Surprise search uses a history of two generations
(h = 2) and 10 behavioral clusters (kSS = 10) in this example. Robots’
final positions are depicted as green squares; cluster centroids and prediction
points are depicted as empty red and solid blue circles, respectively. 51

4.4 Surprise Search: Sensitivity Analysis. Selecting kSS for surprise search:
the figure depicts the average number of evaluations (normalized by the total
number of evaluations allocated) obtained out of 50 runs (of 300 generations
for the medium and hard maze, of 1000 generations for the very and extremely
hard maze) by varying kSS between 20 and 240 for all four mazes examined.
The error bars represent the 95% confidence interval of the average. 52

4.5 Efficiency: number of evaluations on average to find a solution for each
maze considered. Error bars denote 95% confidence intervals. The maximum
number of evaluations is 75 · 103 for the medium and hard maze, 250 · 103 for
the very hard and extremely hard maze. 53

4.6 Robustness comparison. The graphs depict the evolution of algorithm
successes in solving the maze problem over the number of evaluations. . . . 55

4.7 Maze generator: Sample generated mazes (200x200 units) created via re-
cursive division, showing the starting location (grey filled circle) and the goal
location (white circle). 58

4.8 Efficiency: number of evaluations on average by aggregating all the runs of
the 60 generated mazes for each algorithm (i.e., 3000 runs per algorithm).
Error bars denote 95% confidence intervals; the maximum number of evalu-
ations is 150 · 103. 60

4.9 Robustness: algorithm successes in solving all the generated mazes over
the number of evaluations for each considered method. 60

4.10 Representation: a CPPN describes the materials of a 5×5×5 lattice. . . . 62
4.11 Behavior Characterization: behaviour characterization used for objective

(the euclidean distance between starting point and ending point) and novelty
(the average distance of two trajectories sampled at the same rate; here only
5 samples are shown). 62

4.12 Surprise Behavior Characterization: The key phases of the surprise
search algorithm. Surprise search uses a history of two generations (h =
2) and 15 clusters (kSS = 15) in this example. One cluster’s centroid in
generations t−2 and t−1 as well as their predictions are depicted, respectively,
as red, dark red and blue lines. 63

vii

List of Figures

4.13 Visualization of the k-means calculation for surprise search: the
thick red and green lines are, respectively, two example centroid trajectories
obtained by clustering the dotted red and dotted green robot trajectories. . 64

4.14 Robustness: number of successes across different thresholds for the 8 lat-
tice’s resolutions considered. The graphs depict the number of successes for
different performance thresholds. 66

4.15 Structural variety: average number of explored bins for all feature maps.
Each bar is normalized by the maximum number of possible bins and error
bars display the 95% confidence interval of the average shown. 67

4.16 Feature maps: sample feature maps produced by the three methods, for a
single evolutionary run on a resolution of 5× 5× 5. White bins do not have
any robots, while colored bins denote the fitness of the best individual (blue
for low fitness, red for high fitness). 67

4.17 Velocity: mean of velocities over time for the resolution 5 × 5 × 5 (95%
confidence interval as error bar). 69

4.18 Walk cycles: walk cycles of different soft robots 69

5.1 Sensitivity analysis: selecting λ for NSS. The figure depicts the average
number of evaluations obtained out of 50 runs (of 75 · 103 evaluations for
the medium and hard maze, of 250 · 103 evaluations for the very hard and
extremely maze). Error bars represent the 95% confidence interval. 76

5.2 Evaluations. Number of evaluations on average to solve the three mazes
for each algorithm. Error bars denote the 95% confidence interval. The
maximum number of evaluations is 75 · 103 for the medium and hard maze,
250 · 103 for the very hard and extremely hard maze. 77

5.3 Robustness comparison: number of successes in solving the maze problems
over the number of evaluations. 78

5.4 Genotypic Space: Connections. Metrics of genomic complexity of the
final evolved ANNs, averaged from successful runs. Values in parentheses are
95% confidence intervals. 81

5.5 Genotypic Space: Hidden nodes. Metrics of genomic complexity of the
final evolved ANNs, averaged from successful runs. Values in parentheses are
95% confidence intervals. 82

5.6 Efficiency: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method. Error bars denote 95%
confidence intervals; the maximum number of evaluations is 150 · 103. . . . 83

5.7 Robustness: algorithm successes in solving all the generated mazes over
the number of evaluations for each considered method. 83

5.8 Complexity: number of connections and hidden nodes on average for evolved
ANNs which solve the mazes per approach. Error bars denote 95% confidence
intervals. 84

5.9 Sensitivity analysis of λ. The figure depicts the final average fitness of the
fittest individuals obtained from 90 runs across nine λ values in the resolution
5×5×5. Error bars display the 95% confidence interval of the average shown. 85

5.10 Relation between the resolution of the robots and the maximum fitness of
each approach (averaged from 90 runs). 88

5.11 Robustness: number of successes, cumulated on all resolutions, for different
performance thresholds. 88

viii

List of Figures

5.12 Structural variety: average cumulative number of explored bins for all
feature maps. Each bar is normalized by the maximum number of possible
bins and error bars display the 95% confidence interval of the average shown. 89

5.13 Fittest robots evolved in the first run of each approach for the resolutions
3x3x3, 5x5x5, 8x8x8 and 10x10x10 (from top to bottom). Four simulation
frames are depicted for each robot. 91

6.1 Maze generation: 10 easiest generated mazes created via recursive division,
sorted by NS-LC successes. The starting position (blue filled circle) is at the
bottom left corner; the goal position (black empty circle) is at the top right
corner. In the caption, R is the number of subdivisions, L is the A* length
and S is the number of successes of NS-LC (nLC = 15). 96

6.2 Sensitivity analysis: Average number of evaluations across the 10 easiest
mazes with four local competition sizes (5, 10, 15, 20), with five values of λ
(0.4, 0.5, 0.6, 0.7, 0.8). 99

6.3 Sensitivity to algorithmic components: Average number of evaluations
across the 10 easiest mazes for five QD approaches (NS-LC, NSS-LC, SS-LC,
SSA-LC, NS-SS-LC) and four divergent algorithms (NS, SS, NSS, NS-SS). . 101

6.4 Robustness: number of successes over evaluations by aggregating all the
runs of the 60 generated mazes for each approach. 102

6.5 Number of evaluations on average by aggregating all the runs of the 60
generated mazes for each algorithm (i.e., 3000 runs per algorithm). Error
bars denote 95% confidence intervals. 103

6.6 Complexity: number of connections and hidden nodes on average for evolved
ANNs which solve the mazes per approach. Error bars denote 95% confidence
intervals. 104

6.7 Efficiency comparison for the four mazes in Fig. 2.8. The graphs depict
the evolution of algorithm successes in solving the maze problem over the
number of evaluations. The maximum number of evaluations is 75 · 103 for
the medium and hard maze, 250 · 103 for the very hard and extremely hard
maze. 107

6.8 Robustness comparison for the four mazes in Fig. 2.8. The graphs depict
the evolution of algorithm successes in solving the maze problem over the
number of evaluations. 108

6.9 Genotypic Space: Connections. Metrics of genomic complexity of the
final evolved ANNs, averaged from successful runs. Values in parentheses are
95% confidence intervals. 109

6.10 Genotypic Space: Hidden Nodes. Metrics of genomic complexity of the
final evolved ANNs, averaged from successful runs. Values in parentheses are
95% confidence intervals. 110

6.11 Efficiency: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method. 111

6.12 Robustness: algorithm successes in solving all the generated mazes over
the number of evaluations for each considered method. 112

6.13 Complexity: number of connections and hidden nodes on average for evolved
ANNs which solve the mazes per approach. Error bars denote 95% confidence
intervals. 113

ix

List of Figures

7.1 Deviation in maze navigation: Surprise search using heatmaps, at gen-
eration t. The first two heatmaps are computed in the last two generations
by using the final robot positions, Ht−2 and Ht−1. Using linear interpola-
tion, the difference Ht−1 −Ht−2 is computed and applied to Ht−1 to derive
the predicted current population’s Ht. The surprise score penalizes a robot
if its position (green point) is on a high concentration cell on the predicted
heatmap Ht. 121

7.2 A mockup of Surprise-based MAP-Elites: the idea is to use two dif-
ferent descriptor spaces: the first one is computed as in Mouret and Clune
(2015) while the second space acts as a probabilistic distribution model of
surprise (Surprise Map) that can be used to evaluate the unexpectedness of
the solutions in a probabilistic fashion. 124

7.3 Dynamic maze navigation: a dynamic maze navigation problem, where
the obstacles between the starting point and the goal are placed during the
simulation with the wheeled robot, e.g., in this example at the timestep 100
and timestep 200. 124

7.4 Surprise-based FI-2pop. Diagram of the two-population genetic algo-
rithm augmented by surprise search used in (Gravina et al., 2016a). 128

7.5 An example of the prediction model of constrained surprise search.
The first two sets of heatmaps are computed in the last two generations, Ht−2

and Ht−1; the death location density is always normalized per floor. Using
linear interpolation, the difference Ht−1 −Ht−2 is computed and applied to
Ht−1 to derive the predicted current population’s Ht truncated to [0, 1]. An
individual’s death locations are mapped to Ht to calculate the surprise score. 129

7.6 Two example weapons created by constrained surprise search. The
weapons achieve quality diversity as they both respect balance constraints
(quality) and, at the same time, maximize their surprise score (diversity).
The weapon on the left creates ‘mines’ around the map: its bullets are ex-
tremely slow, with a large blast area (explosive, high collision radius) and
they can also bounce on walls or the level’s floor. Moreover, these ‘mines’
are fired in clusters (high shot cost) thus costing a lot of ammo (of which the
weapon has little): the first weapon requires its wielder to move around the
level, laying ‘mines’ in chokepoints when the other player is nearby. Mean-
while, the weapon on the right is very similar to a rifle: high-damage fast
bullets which shoot straight (trivial gravity effects) with a very low collision
radius, thus requiring precise aiming. Unlike traditional rifles, however, the
weapon’s bullets have some explosive qualities. 130

7.7 Surprise-based Reinforcement Learning: the flowchart illustrates the
two key phases involved in reinforcement learning through surprise search.
The figure include the general principles of the exploration-exploitation trade-
off (bold) and the algorithmic contributions of this thesis (in italics). 131

x

List of Tables

2.1 Novelty vs Surprise. A comparison of the key differences between Novelty
and Surprise. Table by Barto et al. (2013) 14

4.1 Behavioral Space. Typical successful runs solved after a number of evalu-
ations (E) across the four mazes examined. Heatmaps illustrate the aggre-
gated numbers of final robot positions across all evaluations. Note that white
space in the maze indicates that no robot visited that position. The entropy
(H ∈ [0, 1]) of visited positions is also reported and is calculated as follows:
H = −(1/logC)

∑
i{(vi/V)log(vi/V)}; where vi is the number of robot visits

in a position i, V is the total number of visits and C is the total number of
discretized positions (cells) considered in the maze. 56

4.2 Genotypic Space. Metrics of genomic complexity of the final evolved
ANNs, averaged from successful runs. Values in parentheses are 95% confi-
dence intervals. 57

4.3 Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared
to the algorithm in a column. Last row and last column are respectively the
average of each column and the average of each row. 59

4.4 Efficiency: average efficiency computed from 90 independent runs (95%
confidence interval in parentheses). Bold values are significantly different
from all the other approaches. 65

4.5 Behavioural analysis: behavioural performance metrics (resolution 5 ×
5× 5) as the mean values of 90 independent runs (95% confidence interval in
parentheses). Bold values are significantly different from all other methods. 68

5.1 Behavioural Space. Typical successful runs solved after a number of eval-
uations (E) on the three mazes examined. Heatmaps illustrate the aggre-
gated numbers of final robot positions across all evaluations. Note that white
space in the maze indicates that no robot visited that position. The entropy
(H ∈ [0, 1]) of visited positions is also reported and is calculated as follows:
H = −(1/logC)

∑
i{(vi/V)log(vi/V)}; where vi is the number of robot visits

in a position i, V is the total number of visits and C is the total number of
discretized positions (cells) considered in the maze. 80

5.2 Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared
to the algorithm in a column. Last row and last column are respectively the
average of each column and the average of each row. 84

xi

List of Tables

5.3 Efficiency: distance covered on average by the fittest individuals collected
from 90 independent runs for each method (95% confidence interval in paren-
theses). Bold values are significantly different from all the other approaches. 87

5.4 Feature maps: feature maps produced by the four methods, by aggregating
all the individuals evolved on a resolution of 4 × 4 × 4. White bins do not
have any robots, while colored bins denote the fitness of the best individual
(blue for low fitness, red for high fitness). 90

6.1 Distribution of the 60 selected mazes per number of subdivisions and
corresponding average length of the shortest path computed with the A*
pathfinding algorithm. 96

6.2 Final parameters for QD algorithms, based on a sensitivity analysis.
Shown is the average number of evaluations (and 95% confidence intervals)
across the 10 easiest mazes of Fig. 6.1. 99

6.3 Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared
to the algorithm in a column. Last row and last column are respectively the
average of each column and the average of each row. 102

6.4 Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared
to the algorithm in a column. Last row and last column are respectively the
average of each column and the average of each row. 112

A.1 NEAT parameter setting. This table shows the NEAT parameters used
for the maze navigation experiments conducted in Chapter 4, Chapter 5 and
Chapter 6. 136

A.2 Maze navigation parameters. Parameters used for the experiments re-
ported in Chapter 4. 136

A.3 Maze navigation parameters. Parameters used for the experiments re-
ported in Chapter 5. 137

A.4 Maze navigation parameters. Parameters used for the experiments re-
ported in Chapter 6; nLC

1 is used for NS-LC, NSS-LC and NS-SS-LC, nLC
2

is used for SS-LC. 137
A.5 Soft Robot Evolution parameter setting. 138

B.1 60 generated mazes: set introduced in Chapter 4. The starting position
(grey filled circle) is at the bottom left corner; the goal position (black empty
circle) is at the top right corner. 140

B.2 60 generated mazes: set introduced in Chapter 6. The starting position
(grey filled circle) is at the bottom left corner; the goal position (black empty
circle) is at the top right corner. 141

C.1 Feature maps: feature maps produced by the four methods, across the 8
resolutions considered. White bins do not have any robots, while colored
bins denote the fitness of the best individual (blue for low fitness, red for
high fitness). 144

C.2 Behavioural analysis: behavioural performance metrics as the mean values
of 90 independent runs (95% confidence interval in parentheses). Bold values
are significantly different from all other methods. 145

xii

List of Tables

C.3 Behavioural analysis: behavioural performance metrics as the mean values
of 90 independent runs (95% confidence interval in parentheses). Bold values
are significantly different from all other methods. 146

D.1 Maze Navigation Computational Effort. CPU time (in seconds) per
generation of one indicative run in the maze navigation domain. 147

D.2 Soft Robot Computational Effort: CPU time (in seconds) per generation
of one indicative run in the soft robot domain. 148

xiii

Chapter 1

Introduction

Over the last 50 years, evolutionary computation (EC) has obtained significant achievements
across several complex tasks, ranging from numerical to behavioural optimization. While
there are many possible interpretations of what evolutionary computation is, a standard set
of components usually involves one or more populations competing for limited resources,
a dynamically changing population, a degree of variational inheritance and the ability of
the individual to survive and reproduce (De Jong, 2006). The most common optimization
approach in artificial evolution is via an objective function, which rewards solutions based
on their ‘goodness’ (Goldberg and Holland, 1988), i.e., how close they are to an optimal
behaviour (if such a behaviour is known beforehand) or how much they improve a perfor-
mance metric. The objective function (or fitness function) encapsulates the principle of
evolutionary pressure for fitting (adapting) within the environment. One of the implicit
assumptions is that the fitness measure, i.e., the driver of the search process, has to be
directly correlated with the final objective of the problem. This is a common approach used
in the machine learning field (Mitchell et al., 1997): to improve a given solution, the search
should follow the gradient towards the objective.

Despite the success of such approaches in a multitude of tasks (Goldberg and Holland,
1988; Michalski et al., 2013), they are challenged in deceptive fitness landscapes (Gold-
berg, 1987), where the necessary stepping stones towards the global optimum are hidden
by low-quality solutions. In such cases, the local search of an objective-based evolution-
ary algorithm can guide search away from a global optimum and towards local optima.
As a general principle, more deceptive problems challenge the design of a corresponding
objective function. This dissertation follows Whitley (1991) and views deception as the
intuitive definition of problem hardness. The notion of objective function has been inspired
by the concept of survival of the fittest in natural evolution, which intuitively selects those
individuals that perform better. However, a selection pressure towards quality may cause
convergence to a single solution, in contrast to the diversity experienced in the natural evo-
lution. Many algorithms have been proposed to tackle the problem of deception, primarily
revolving around diversity preservation (Goldberg et al., 1987; Hu et al., 2005; Hornby,
2006), which deters premature convergence while still rewarding proximity to the objective,
and divergent search (Lehman and Stanley, 2011a; Stanton and Clune, 2016; Smith et al.,
2016) which abandons objectives in favour of rewarding diversity in the population.

Moreover, there are problems which lack an easily defined objective—or a gradient to
reach it. For instance, open-ended evolution studies within artificial life (Channon et al.,
2001) do not have a goal state and instead prioritize e.g., survival (Yaeger, 1994; Adami

1

Chapter 1. Introduction

et al., 2000). In evolutionary art, music or design, a large body of research in computational
creativity and generative systems (Boden, 2004; Ritchie, 2007; Wiggins, 2006) focuses on
the creative capacity of search rather than on the objectives. Ritchie (2007) considers
computational creativity on two core properties of a produced solution: value and novelty
(Ritchie, 2007). Value is the degree to which a solution is of high quality, whereas novelty
is the degree to which a solution (or output) is dissimilar to existing examples. While
objective-based EC can be seen as a metaphor of searching for value, a divergent EC strategy
such as novelty search (NS) (Lehman and Stanley, 2011a; Lehman et al., 2013) can be
considered as a metaphor of searching for novelty, as it rewards solutions which exhibit
dissimilar behaviour from those in the current and the previous populations. An effective
use of both in EC can lead to highly novel and valuable at the same time outcomes (Liapis
et al., 2013), thus realizing quality diversity (Pugh et al., 2016). Quality diversity (QD)
algorithms attempt to balance between their individuals’ quality and their population’s
diversity. Quality can be assessed via an objective function, assuming a problem space where
this is possible to compute. Diversity, on the other hand, can be assessed in different ways:
for instance, MAP-Elites (Mouret and Clune, 2015) compartmentalizes the search space
beforehand based on two or more behavioral characterizations, while novelty search with
local competition (NS-LC) (Lehman and Stanley, 2011b) is a the multi-objective approach
that pushes for novelty as a second objective.

Novelty as a form of search is generally assessed as the distance from the behaviorally
closest neighbors in the current population and in an archive of past novel individuals
(Lehman and Stanley, 2011a). In that sense, novelty is the deviation from current and past
solutions. In natural evolution, the novelty of a behavioral trait such as flying, coupled
with a competitive advantage (such as the improved flying ability of Archaeopteryx against
flying reptiles of the same period) can lead to massive shifts as these behaviors become
dominant. However, according to Grace et al. (2015), novelty and value are not sufficient
for the discovery of highly creative and unconventional solutions to problems. Novelty faces
many limitations as a measure of diversity; in particular, it lacks a temporal dimension
in terms of the trends that evolution is following from one generation to the next. While
novelty can be considered a static notion, surprise considers the temporal properties of the
search, a critical dimension to assess the creativity of the generated solution (Grace et al.,
2015; Maher, 2010). Further studies in general intelligence and decision making support
the importance of unexpectedness for problem-solving (Barto et al., 2013).

1.1 Searching for Surprise: a Computational Creativity View

Driven by the notion of computational surprise for the purpose of creatively traversing the
search space towards unexpected or serendipitous solutions, this thesis introduces the no-
tion of surprise as a mechanism for divergent evolutionary search. The hypothesis is that
searching for unexpected—not merely unseen—solutions is beneficial to EC as it comple-
ments our search capacities with highly efficient and robust algorithms beyond the search
for objectives or novelty. Surprise search (SS) is built upon the novelty search (Lehman
and Stanley, 2011a) paradigm that rewards individuals which differ from other solutions in
the same population and a historical archive. Surprise is assumed to arise from a violation
of expectations (Lorini and Castelfranchi, 2007): as such, it is different to novelty which
rewards deviation from past and current behaviours.

Based on the large volume of work in computational creativity (Grace et al., 2015, 2014;

2

1.1. Searching for Surprise: a Computational Creativity View

Figure 1.1: A high-level representation of the differences between the notions of
value, novelty and surprise. We argue that the three notions are orthogonal, as they
operate on different dimensions. While value and novelty can be considered static concepts,
surprise is dynamic, as it can be viewed as a form of “temporal novelty”. Image inspired
by (Maher and Fisher, 2012) and reproduced for the purposes of the thesis.

Maher et al., 2013; Macedo and Cardoso, 2002; Macedo et al., 2009; Macedo and Cardoso,
2001) we can claim that surprise is different from novelty and value. A novel and valuable
outcome may not be necessarily surprising, e.g., we expect something novel based on the
historical trends of the previous outcomes. Surprise is indeed tailored by novelty, but it
arises from breaking the expectations (Maher et al., 2013) and not merely by new events.
We can envision that surprise operates on a different space compared to novelty (see Fig.
1.1): expectations necessarily imply a temporal dimension and hence surprise can be viewed
as form of temporal novelty. Novelty, however, works on the space of already seen or existing
results (Yannakakis and Liapis, 2016). To exemplify the difference between the notions of
novelty and surprise, Yannakakis and Liapis (2016) use a card memory game where cards
are revealed, one at a time, to the player who has to predict which card will be revealed
next (Fig. 1.2). The novelty of the next card is the highest if all past revealed cards are
different. The surprise value of the same card, however, is low as the player has grown to
expect a new, unseen, card every time. However, if seen cards are revealed after a while
then the novelty of next cards decreases, but surprise increases as the game deviates from
the expected behavior which calls for a new card every time.

3

Chapter 1. Introduction

(a) High Novelty

(b) High Surprise

Figure 1.2: A card game example to illustrate the difference between novelty and
surprise. The cards are ordered from left to right in order of appearance. In Fig. 1.2a
the rightmost card is novel, as the shape and colors of this card are different from the ones
shown in the other cards; however, we can see that every card in the sequence is novel, and
therefore we can predict that the next card will be novel as well. In the second sequence
(Fig. 1.2b) the fourth and rightmost card are surprising. A player would expect to see
an unseen card after the sequence of the first three cards, but, instead, the fourth card
shows a green circle as the first card. Also, the last card is indeed surprising, as it shows
a completely new shape and colors instead of another green curved figure, as one would
expect by seeing the previous sequence of the first two cards. Image by Yannakakis and
Liapis (2016). Authors granted copyright permission.

1.2 Searching for Surprise: a Bio-inspired View

Drawing an evolutionary analogy for novelty and surprise, one may view those processes
through the lens of phylogenetics (Wiley and Lieberman, 2011); the study of the evolution-
ary history and relationships among organisms. Both algorithms may represent evolutionary
lineages that operate synergistically on the behavioral (rather than on the genetic) space of
a phylogenetic tree. While both processes can be seen as behavioral lineages of evolution, on
the one hand, novelty search rewards diversity by aggregating the entire evolutionary his-
tory into a novelty archive, on the other hand, surprise search considers the recent historical
trends to make predictions and deviate from them. Placing the processes within an evolu-
tionary tree (see Fig. 1.3), novelty is most likely to reward extensions of current branches in
the tree whereas surprise is expected to benefit higher branching factors over time. Draw-
ing again from natural evolution in paleontology, the shift towards smaller, flying dinosaurs
in the Cretaceous period (Lee et al., 2014) pointed to a trend towards ever-smaller fliers,
as evident in most birds in following epochs: such birds would not be deemed surprising.
Differently, some birds evolved into man-sized flightless bipedal predators (Bertelli et al.,
2007) (“terror birds”): this breaks expectations and phenetic tendencies; therefore terror
birds are deemed surprising. However, terror birds are not behaviorally novel since similar-
sized bipedal predators abounded in earlier periods (i.e., most carnivorous dinosaurs) (Paul,
1988).

This analogy doesn’t imply that natural evolution actively uses the process of surprise, as
arguably it is hard to imagine how nature could generate a prediction for future generations

4

1.2. Searching for Surprise: a Bio-inspired View

Figure 1.3: An evolutionary-inspired analogy to the way novelty and surprise
search may operate synergistically for generating diverse individuals. We use
parts of the phylogenetic tree of dinosaurs as an example. Blue (dashed line) branches
refer to feathered dinosaurs, versus non-feathered (orange, continuous line). Note that this
schematic, is a simplification (with notable sample species) of specific phenotypic (feathers)
and behavioral (flying) traits and does not necessarily follow phylogenetic lineages often
studied by paleontologists. However, the traits investigated are largely in line with the
generally agreed origin story of birds (Godefroit et al., 2013).

and then deviate from it. We argue that the notion of surprise could be used as a lens
through which we can understand how to reproduce certain lineages of natural evolution.
Nonetheless, studying how natural evolution works is beyond the scope of this thesis, and
we leave the question on whether surprise search resembles natural evolution open for future
investigations.

Another interesting analogy to take in consideration is human design evolution. In
(Grace et al., 2014) it is argued that human design creativity can be fully understood
only by taking into consideration the notion of surprise, along with novelty and quality.
An example of this can be found by analyzing the trend in length of mobile phones in
the mid-2000s (Grace et al., 2014). If we analyze this trend, it is possible to notice that
in the previous decade mobile phones were getting smaller and smaller; this trend was
reversed with the introduction of multi-touch and large-screen mobile phones, breaking the
expectation to see even smaller devices. Therefore based on the trends observed in the
recent history of mobile phones, we can consider this new direction surprising. As in the
previous analogy, we don’t claim that this process was actively searching for unexpected
events. On the contrary, surprise is more the ending result of unknown processes within
these evolutionary systems; we propose to use the notion of unexpectedness to replicate the

5

Chapter 1. Introduction

serendipitous discovery obtained by those processes.

1.3 Searching for Surprise: an Evolutionary Approach

A computational, quantifiable model of surprise must build expectations based on trends in
past behaviours, and predict future behaviours from which it must diverge from. In order
to create expected behaviours, the algorithm maintains a lineage of where evolutionary
search has been. These groups of evolutionary lineages require the right level of locality
in the behavioural space—surprise can be inclusive of all behaviours (globally) or merely
consider part of all possible behaviours (locally). Any deviation from these stepping stones
of search would elicit surprise; alternatively, they can be viewed as serendipitous discovery
if the deviation leads to a surprisingly good point in the behavioural space. Unlike novelty,
surprise accounts for behavioral trends in recent generations and uses them to predict future
behaviors: if a new individual breaks those expectations, then its behavior is surprising and
the individual is favored for evolution. While surprise is tied to human emotions (Ekman,
1992), in the context of EC it is more broadly defined as deviation from expected behaviors.
Based on that definition, surprise can be considered both orthogonal and complementary to
novelty: the latter deviates from past behaviors, while the former deviates from predicted
future behaviors. With the theoretical argument of the importance of surprise as a diversity
mechanism, we suggest that surprise may constitute a powerful drive for computational
discovery as it incorporates predictions of an expected behaviour that it attempts to deviate
from; these predictions may be based on behavioural relationships in the solution space as
well as historical trends derived from the algorithm’s sampling of the domain.

1.4 Research Questions

This dissertation aims to test the hypothesis that searching for unexpected solutions is
highly beneficial for the purposes of evolutionary search. Essentially, we can summarize the
main research question as:

“How does the notion of surprise affect evolutionary search?”

As this question is quite general and can be interpreted in several ways, we need to break
it down to more specific questions:

Q1. How can we formalize effectively the notion of surprise for use in computational search?

Q2. When and under which circumstances can surprise solve optimization problems?

Q3. How can surprise be interweaved more efficiently with other quality and diversity
measures?

In order to answer the above questions, in this thesis we introduce several surprise-based
algorithms which are tested in a number of experiments. We address Q1 in Chapter 3, where
we devise a general formalization of the concept of surprise in the context of evolutionary
search, and, building on this formalization, we set out several extensions of surprise-based
search. In Chapter 4 we answer Q2, by performing a number of experiments that test
the optimization capabilities of surprise in deceptive domains. Finally, we complete our
investigation by addressing Q3 in Chapter 5 and Chapter 6. In particular, in Chapter 5,

6

1.5. Contributions

we test how surprise can be coupled with novelty for evolutionary divergence; in Chapter
6, we test different extensions of surprise search with other quality diversity algorithms.

1.5 Contributions

This thesis, in our attempt to test our key hypothesis, contributes to the current state of
the art in the following ways:

• Surprise Search: The introduction and formalization of surprise as a quantitative
measure. By modeling surprise, not only we do attempt to advance our knowledge
in understanding the phenomenon, but we equip artificial creators with capacities to
search for surprising outcomes.

• Optimization through Surprise: The implementation and validation of surprise
search in two different and difficult domains: maze navigation and soft-bodied mor-
phology design.

• Coupling Novelty and Surprise: The formalization and implementation of the
combination of two diverging and orthogonal algorithms, surprise search and novelty
search. Supported by the theoretical orthogonality of the two notions, this idea is
implemented in two formulations (novelty-surprise search and novelty search-surprise
search), tested in two domains, and compared against their base components.

• Novelty, Surprise and Value: The introduction of surprise as a quality diver-
sity mechanism. Three new extensions of surprise search, namely surprise search
with local competition, novelty-surprise search with local competition and novelty
search-surprise search-local competition are introduced and compared to state-of-the-
art quality diversity algorithms.

1.6 List of publications

In our attempt to answer the research questions introduced in Section 1.4, we achieved
results that were published as a series of papers, listed below:

1. Daniele Gravina, Antonios Liapis and Georgios N. Yannakakis: “Quality Diversity
Through Surprise”. In IEEE Transactions on Evolutionary Computation. IEEE,
(2019).

2. Daniele Gravina, Antonios Liapis and Georgios N. Yannakakis: “Fusing Novelty and
Surprise for Evolving Robot Morphologies”. In Proceedings of the Genetic and Evo-
lutionary Computation Conference. ACM, 2018.

3. Daniele Gravina, Antonios Liapis and Georgios N. Yannakakis: “Coupling Novelty and
Surprise for Evolutionary Divergence”. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2017.

4. Daniele Gravina, Antonios Liapis and Georgios N. Yannakakis: “Exploring Divergence
in Soft Robot Evolution”. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion. ACM, 2017.

7

Chapter 1. Introduction

5. Daniele Gravina, Antonios Liapis and Georgios N. Yannakakis: “Constrained Sur-
prise Search for Content Generation”. In Proceedings of the IEEE Conference on
Computational Intelligence and Games. IEEE, 2016.

6. Daniele Gravina, Antonios Liapis and Georgios N. Yannakakis: “Surprise Search:
Beyond Objectives and Novelty”. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2016.

1.7 Structure of the Thesis

This dissertation is organized as follows:

• Chapter 2: In this chapter, we review relevant studies and discuss the research
areas relevant to this work. Specifically, we extensively describe related work on
computational creativity and evolutionary computation. Furthermore, we provide in-
depth and detailed descriptions of deceptive problems, divergent search and quality
diversity.

• Chapter 3: In this chapter, we focus on how the notion of surprise can be formalized
quantitatively. A description of the surprise search algorithm and its main components
and details on the prediction model and deviation are given. Moreover, five variants
of surprise search are presented. Two of them test the idea of fusing novelty and
surprise; the remaining three interweave the notion of surprise with quality diversity
algorithms. The following chapters refer to the algorithms described in this chapter
and provide the implementation details depending on the domain tested.

• Chapter 4: In this chapter, we test the surprise search algorithm on two deceptive
domains, maze navigation and soft robot evolution. We compare the performance of
this new algorithm against two approaches, novelty search and objective search, and
we collectively test its capabilities against four authored mazes, 60 generated mazes
and eight instances of the soft robot evolution problem.

• Chapter 5: In this chapter, we introduce two extensions of surprise search (novelty-
surprise search and novelty search-surprise search) and we then investigate the effec-
tiveness of coupling novelty and surprise in one unique formulation. As in the previous
chapter, these two introduced algorithms are tested in the maze navigation and soft
robot evolution domains.

• Chapter 6: In this chapter, we explore how the notion of surprise impacts the
performance of state-the-art quality diversity approaches, though three introduced
surprise-based algorithms. Furthermore, this chapter presents a new methodology to
test quality diversity approaches in a challenging set of maze navigation problems. The
three algorithms that are introduced and extensively tested are named: surprise search
with local competition, novelty-surprise search with local competition and novelty
search-surprise search-local competition.

• Chapter 7: This chapter summarizes the main findings of this dissertation and
discusses the main limitations found in the proposed approaches, domains and ex-
periments. In order to address these limitations, a number of possible directions are
proposed for future work.

8

1.8. Summary

Many contributions of this thesis are based on previous publications listed in Section
1.6. In particular, the algorithms of Chapter 4 have been presented in publications 3, 6, and
1. The maze navigation results described in Chapter 5 have been reported in publication
6; the soft robots results described in the same chapter have been reported in publications
2 and 4. In Chapter 6 we report an analysis of results that have been partially reported
in publication 3, while the soft robots results have been presented in publication 2. The
experiments conducted in Chapter 7 have been partially presented in publication 1. In
Chapter 6 we report original results obtained with novelty search-surprise search in the
domain of soft robot evolution. The same applies for the results of the surprise-based
quality diversity algorithms in the mazes introduced in Chapter 5. Finally the analysis
of the limitations and extensions in Chapter 8 has been discussed across all the listed
publications and significantly extended.

1.8 Summary

Motivated by the importance of unexpectedness as a mechanism to find unconventional and
diverse solutions, in this chapter we introduced the main contribution of this dissertation:
surprise as a viable and effective reward for evolutionary search. Several studies in com-
putational creativity stress the importance of unexpectedness as a mechanism for finding
unconventional and diverse solutions. Supported by this theoretical work, we introduced a
new algorithm that implements surprise in the form of evolutionary search and we named it
surprise search. Surprise is introduced as evolutionary divergence and as quality diversity
measure, and tested in two domains, maze navigation and virtual creature evolution. Our
findings support the idea that surprise is an effective approach in deceptive domains and its
orthogonality with other diversity and quality measures make surprise search a useful evo-
lutionary tool. The remainder of this work is dedicated to answer extensively the questions
arisen in this chapter.

.

9

Chapter 1. Introduction

10

Chapter 2

Related Work

This dissertation discusses the notion of surprise as a potential form of divergent search
for computational creativity which is manifested as unconventional problem-solving. For
that purpose in this chapter we first draw inspiration from the literature in computational
creativity and attempt to define surprise; we then compare it against the notions of nov-
elty and value (Ritchie, 2007) which arguably define the most popular criteria of creativity
assessment for computational outcomes (Section 2.1). A second crucial domain from which
this work is built upon is evolutionary computation: in Section 2.2 we offer a detailed de-
scription of artificial evolution and we present some recent advances in the field. Section 2.3
describes the main challenges faced by fitness-based evolutionary approaches when handling
deceptive problems. Divergent search and quality diversity paradigms are then introduced
as solutions for these problems and we describe why they are important for the purposes of
this thesis. Given the necessity to test the proposed algorithms in a testbed, this chapter
ends with a description of the domains against which the performance of surprise-based
search is validated (Section 2.4).

2.1 Computational Creativity

Computational creativity focuses on the challenge of creating unconventional computational
outcomes, that can be recognized by humans as creative (Boden, 2004). However, creativity,
being such a non-trivial concept to define precisely, has lead to different definitions, starting
from search heuristics to criteria for the assessment of the outcome of an artificial creator.
A common definition shared within the field is to consider computational creativity along
two core properties of a produced solution: value and novelty (Ritchie, 2007). Value is the
degree to which a solution is of high quality, whereas novelty is the degree to which a solution
(or output) is dissimilar to existing examples. Boden (2004) and Ritchie (2007) agree that
in order to assess creativity novelty and value are essential, and Wiggins (2006) argues that
value and novelty are key features of creativity. However Grace and Maher (2014) argue that
novelty and value are not sufficient for the discovery of highly creative and unconventional
solutions to problems, and surprise might be an essential aspect to consider to solve difficult
problems (Kulkarni and Simon, 1988). Another valuable contribution on this topic is from
Boden (2004), where she defines creativity as the ability to come up with ideas or artefacts
that are new, surprising and valuable.

The distinction between novel and surprising outcomes comes from the observations
that high valuable artefacts are not merely novel but also unexpected. The concept of

11

Chapter 2. Related Work

novelty, however, does not cater for the temporal dimensions involved in the process of
unexpectedness, which in turn can be defined as temporal novelty (Maher and Fisher,
2012). Grace et al. (2014) and Maher and Fisher (2012) suggest that surprise should be a
core assessment of a creative outcome, while Macedo and Cardoso (2001) and Macedo et al.
(2009) argue that surprise is also involved in the process of generating something creative.
Based on the literature on computational creativity, it is possible to argue that surprise,
novelty and value are essential concepts that grant a computational agent to be creative.
In order to use them efficiently in an algorithm, we need to formalize these three concepts
computationally. Therefore, this section will briefly review the relevant literature related
to these three concepts and clarify their differences.

2.1.1 Surprise

The study of surprise has been central in neuroscience (Donchin, 1981), psychology (Ekman,
1992), and cognitive science (Ortony and Partridge, 1987; Kulkarni and Simon, 1988), and
to a lesser degree in computational creativity and computational search. In neuroscience,
particular event-related brain potentials that can be attributed to unexpected events have
been recognized and thus can be used as predictors of unexpectedness and event memo-
rability (Donchin, 1981). In the literature of affective modeling and psychology, surprise
defines one of the six basic emotion of Ekman (1992). In cognitive science studies, it is
possible to find several definitions of surprise: surprise has been viewed as a violation of a
belief (Ortony and Partridge, 1987), a temporal-based cognitive process of the unexpected
(Meyer et al., 1997; Lorini and Castelfranchi, 2007), or a reaction to novelty (Wiggins,
2006). Within computational creativity, coupled with novelty and value, surprise is often
attributed to a core component of a creative outcome. For instance, in (Grace et al., 2015;
Maher, 2010; Maher and Fisher, 2012; Maher et al., 2013) surprise is associated to a cre-
ative output of a computational designer, or used as an incentive for creative exploration
in agent modeling (Macedo and Cardoso, 2002; Macedo et al., 2009; Macedo and Cardoso,
2001). Computational models of surprise have also been employed to recognize important
features in images (Itti and Baldi, 2006) or to create novel data visualization techniques
(Correll and Heer, 2017), to guide automatic computational scientific discovery (Kulkarni
and Simon, 1988).

Several types of surprise have been suggested in the literature. For instance, one impor-
tant distinction has been made by Ortony and Partridge (1987) and Grace et al. (2015),
where surprise is described as either active or passive. Active surprise involves an inten-
tional act of prediction: an explicit expectation about an event is violated, and therefore
it elicits the emotional response. On the contrary, passive surprise is a stimulus given by
assumptions deriving from earlier experiences, which resembles more the concept of novelty,
as it will be described in the following subsection. Inspired by the relevant literature on
the subject, in this thesis we view surprise as the degree to which expectations about a
solution are violated through observation (Grace et al., 2014). In particular, we introduce
the notion of surprise in the context of evolutionary computation (Yannakakis and Liapis,
2016; Gravina et al., 2016b, 2017c). We will give a detailed description of surprise-based
evolutionary search in Chapter 3.

12

2.1. Computational Creativity

2.1.2 Novelty

Similarly to surprise, also the concept of novelty has been central in several disciplines. For
instance, a first distinction given by Berlyne (1960) is between short, long-term or complete
novelty. Complete novelty is something that has never been experienced before, long-term
novelty is something that has not been experienced for some time, and finally short-term
novelty is when something does not occur in the last few minutes. A further possible dis-
tinction is between absolute novelty and relative novelty (Berlyne, 1960). Absolute novelty
happens when its features have never been encountered before, whereas relative novelty
is something that is novel but with familiar features, i.e., a novel combination of known
elements (Berlyne, 1960).

In order to model a novelty detector computationally, we are required to formalize the
above distinctions. A conventional approach is to model the probability density of the un-
derlying distribution and then label as novel those inputs that fall in the low-probability
area of the distribution space. Also known as anomaly detection, these techniques try to
identify if a particular input varies significantly from the usual distributions of observa-
tions. Many techniques exist to estimate the probability distribution given a set of finite
samples, such as parametric methods (R.O. and P.E., 1973) or non-parametric (Markou
and Singh, 2003). The shared principle across all the statistical methods is simple: novelty
is proportional to the inverse of the probability of incidence.

A different view on novelty involves the use of memory to archive the past experiences. If
something has never been experienced before, it will not appear in the memory, and therefore
it can be considered novel. A fading memory, i.e., the oldest elements in the memory are
progressively deleted, can represent either short or long-term memory, depending on the
fading rate. However, such novel detection system can only return a boolean value and it
does not consider the complexity resulting from the use of a memory, such as the metric to
be used when storing an experience in memory or the computational cost of using an archive
that can potentially grow to infinity. A more sophisticated system may consider adopting a
similarity measure, which enables to evaluate different degrees of novelty. An example could
be using outlier detection through a clustering algorithm (Markou and Singh, 2003) or a
novelty detector that employs an unsupervised learning algorithm such as self-organizing
feature maps (Kohonen, 2012) or autoencoders (Liapis et al., 2013).

In evolutionary computation studies, novelty has been defined as the degree to which a
specific artefact differs from previous outcomes (Lehman and Stanley, 2011a). In particular,
in the novelty search algorithm, novelty is measured based on the distance from the nearest
(behaviourally) neighbouring individuals existent in the current population and an archive,
which represents the memory of the past experiences. More details about the use of novelty
within EC are given in Section 2.3.2, where we present a detailed definition of novelty search.

Admittedly, both the memory-based and stochastic definitions of novelty might seem
similar to the notion of surprise. In particular, when the computation of novelty involves
a model to estimate the probability of an event, this can be considered a prediction of
the occurrences of the event. This resembles the formalization of surprise as described in
Section 2.1.1. The next subsection will shed lights on the main differences between these
two notions.

13

Chapter 2. Related Work

Table 2.1: Novelty vs Surprise. A comparison of the key differences between Novelty
and Surprise. Table by Barto et al. (2013)

Novelty Surprise

Type of knowledge store Memory, memory recall Predictor, prediction

Time Time not a key factor:
items in memory are al-
ways available

Incoming data usually
compared with a tempo-
ralized prediction

Processes for nov-
elty/surprise triggering

Experience does not
match memory

Two phases:
(1) Formulation of pre-
diction,
(2) Prediction is violated

(a) Novelty (b) Surprise

Figure 2.1: Graph model example: an agent is visiting a graph made of nodes connected
in a fixed configuration. Every step, an agent follows a particular model to decide which
node to visit next. In (a) the agent visit only unvisited nodes (to maximise the novelty
score), while in (b) the agent is trying to maximise the surprise reward, by deviating from
the predictions made with the prediction model.

2.1.3 Novelty vs. Surprise

Novelty and surprise are different notions by definition as it is possible for a solution to be
both novel and/or surprising to various degrees. Following the core principles of Lehman and
Stanley (2011a) and Grace et al. (2015), novelty is defined as the degree to which a solution
is different from prior solutions to a particular problem. On the other hand, surprise is the
degree to which a solution is different from the expected solution to a particular problem.

Expectations are naturally based on inference from past experiences; analogously sur-
prise is built on the temporal model of past behaviors. Prior information is required to
predict what is expected; hence a prediction of the expected (Maher, 2010) is a necessary
component for modeling surprise computationally. By that logic, surprise can be viewed
as a temporal novelty process or as novelty on the prediction (rather than the behavioral)
space. Table 2.1 summarizes the key differences between the two notions.

The difference between novelty and surprise can be exemplified by considering an agent
travelling a graph made of nodes connected in a fixed configuration, starting from the node
labelled as 1. Every step the agent has to decide which node to visit next, and based on
a certain model it will get a reward based on the decision made. The objective of the
agent is to maximise the immediate reward of every step, while the final objective is to
visit as many different nodes as possible. Two different models are used, where respectively
the agent is rewarded when it visits a novel node i or an unexpected node i. In the first

14

2.1. Computational Creativity

case, an agent would probably try to maximise novelty by looking for novel discovery in
every step it takes in the graph: this can easily lead to a situation as in Fig. 2.1a. In
this case, the sequence of discoveries is 1 → 3 → 6 → 7: in this configuration, the agent
has to decide to visit either node 4 or node 8, but as they are both novel, the agent will
get the same reward no matter what it decides. Therefore, if it decides to visit node 4,
the agent will never visit nodes 2, 5 and 8, as backtracking (i.e., visiting already visited
nodes) is highly discouraged by the novelty reward. Instead, a surprise approach would try
to deviate from the patterns learned while visiting the nodes of the graph. In this case,
the surprise model has higher chance to visit nodes not visited in the previous example, as
backtracking could be the result of a self-surprising behaviour. If we take the same sequence
as before (1→ 3→ 6→ 7→ 4), surprise would encourage visiting already seen nodes (for
example node 3); if its prediction model has learned to expect a new node in every step,
visiting an already seen node is unexpected. Therefore, a surprising approach might lead
to visit nodes not explored by novelty, thanks to backtracking. Given the new sequence,
after visiting node 3, the expectation for the next node changes, and the prediction might
be to visit a seen node, e.g., 1. In this new state visiting node 2 has higher unexpectedness,
and the agent would be encouraged to visit a node that in the previous example has never
been reached. However, the drawback of this model is that a surprising agent can easily get
stuck visiting the same nodes in a loop, as backtracking can cause a “circular behaviour”
(e.g., it will forever visit already visited points) as pointed out in Fig. 2.1b.

Since novelty and surprise can be considered different notions of diversity, we can imagine
combining the two for the purpose of evolutionary search. This idea, introduced in (Gravina
et al., 2017a) and extensively tested in (Gravina et al., 2018, 2019b) will be described in
Chapter 3.

2.1.4 Value

Ritchie (2007) defines value as the degree to which a produced item is of high quality in its
domain. In computational art and aesthetics value is by definition a subjective trait, which
can be estimated by using human ratings given by experts in the field. However, for creative
problem solving, value can be measured more formally, and usually it captures the quality
of the solution of the problem. For instance, in an optimization scenario, a conventional
way to define an objective is to compute the distance from the desired goal through a cost
function, which in evolutionary computation is commonly known as objective function, i.e.,
the function value of the objective is proportional to the quality of the solution. Recent
findings, however, have questioned this conventional formalization of the objective function,
as in deceptive problems (Whitley, 1991) the direct use of the distance to the goal might be
counterproductive to reach the global optimum of the problem, as we will describe in more
detail in Section 2.3.

Generally speaking, novelty, surprise and value can be considered orthogonal concepts.
In fact, while novelty and surprise share some common traits highlighted in the previous
subsection, it is possible to use them as three separated dimensions: value stands for the
direct assessment of the global goal, novelty for the distance to the nearest behaviours, and
surprise for the distance from the expectations. By employing these three concepts in com-
putational search, we enhance the creativity capacity of search algorithms. Particular ben-
efits of the approach can be found on deceptive problems or problems where the objective is
not easily definable, as in open-ended evolution or computational creativity. There are ways
of integrating value in divergent search e.g., via constraints that accepted artifacts should

15

Chapter 2. Related Work

Figure 2.2: Evolutionary Loop: a high-level representation of an Evolutionary Algorithm.

have a minimum value (i.e. fitness score) while individuals satisfying these constraints can
evolve towards divergence. Examples of constrained novelty search, in particular, have been
proposed by Liapis et al. (2015) and Lehman and Stanley (2010) for problem solving tasks
(level generation and maze navigation respectively), as well as Vinhas et al. (2016) for evo-
lutionary art and Liapis et al. (2013) for novel game object generation. Quality diversity
(Pugh et al., 2016), for instance, is a novel paradigm that tries to successfully combine
the converging behaviour of the objective with the diverging properties of divergent search
synergistically. Surprise can similarly be combined with value and novelty, for instance by
linear aggregation (Gravina et al., 2017a), multiobjective evolution (Gravina et al., 2019b)
or by constraint satisfaction (Gravina et al., 2016a). In this thesis, we first introduce an
approach that aggregates novelty, surprise and value in Chapter 3 and then we test it in
Chapter 6.

2.2 Evolutionary Computation

Evolutionary computation is a computational process inspired by natural evolution that
optimizes a given problem through combination and mutation of a set of solutions, which
are evaluated and then selected based on a performance measure. Artificial evolution was
initially introduced in the 1950s to translate the malleability of the natural evolution pro-
cess into a computational algorithm, and from then a vast number of variants have been
introduced (Holland, 1992; Koza, 1994; Rechenberg, 1973). Although there are several vari-
ations of EC in literature, it is possible to extract the common characteristics shared by this
family of algorithms (Mitchell, 1998). This section offers an overview of the key features
and the principal components of evolutionary algorithms, while Chapter 3 will provide the
details of the evolutionary algorithms proposed in this dissertation.

The representation of the individuals is the first component to take into consideration,
i.e., how to codify a solution that can be used and modified by the algorithm. Depending

16

2.2. Evolutionary Computation

on the problem, designing a suitable representation may be an arduous task to accomplish.
A good representation should be able to consider all the possible solutions in the search
space and at the same time it should be computationally efficient and easy to alter; fur-
thermore, it needs to show robustness and resilience to modifications, as it might undergo
several mutations over the course of the evolutionary process. Traditional nomenclature in
EC distinguishes the representation of an individual with two different perspectives: the
Genotype is the low-level representation of the individual in the search space, while the
Phenotype is the image of the genotype in the solution space, where the evaluation of in-
dividual’s performance happens. This mapping between the search space and the solution
space should be consistent, in order to preserve the locality of the mutations, i.e., preserving
the relative distance between two genomes and their respective images in the solution space.
Further attention should be given at the phenomenon of epistasis (Davidor, 1991); the in-
teraction between the genes should be kept as low as possible, as we will explain in Section
2.3. In literature a vast number of representations have been proposed, such as traditional
representations made of a finite sequence of bits or floats to more advanced and complex
representations such as syntax trees (Koza, 1994) or artificial neural networks (Stanley and
Miikkulainen, 2002).

The second fundamental aspect that drives the behaviour of the evolutionary algorithm
is the reproduction mechanism, or how the genetic information is exchanged in the search
space between different individuals. Reproduction is achieved through two evolutionary op-
erators, traditionally named crossover and mutation. The first operator, crossover, merges
the genome of two individuals to produce a novel solution for the successive generations.
Several crossover implementations can be conceived, depending on the problem and repre-
sentation chosen. A traditional implementation firstly segments the genotype of a pair of
selected parents from the current population; it then recombines the segments of the first
parent with the complementary segments taken from the other parent, originating two new
offspring. Different segmentation techniques are possible. For instance, a genotype can be
divided by using one (One-Point Crossover) or several cutting points (N-Point Crossover)
as Fig. 2.3a and Fig. 2.3b show. An alternative implementation of this operator selects the
genes randomly from the two parents and swap them according to a predefined probabil-
ity (Fig. 2.3c). Furthermore, the offspring may go through an additional operator named
mutation. Mutation is an attenuate modification of the genome, which yields new points
in the solution space. Like crossover, we can find several implementations of the mutation
operator, depending on the representation used and the application. In the case of a vector
of real-valued numbers, a genotype can be modified by one, multiple or all its genes based on
a stochastic distribution. A debate on the importance of these two evolutionary operators
is still ongoing (Spears, 1993), as their contribution to the exploration of the search space is
different: mutation pushes for random diversity in the population, while crossover promotes
potential emergent behaviours already present in the population (Spears, 1993). However,
most of the researchers agree that their usefulness depends on the problems’ properties, the
representation used and the evolutionary implementation chosen.

Measuring the value of each individual in the population is commonly known as eval-
uation. The evaluation process assigns a fitness value to the individuals, which affect its
probability of selection. This process guarantees that the positive traits are safeguarded
across the generations, ensuring progress towards the desired goal. Traditionally, individ-
uals are evaluated objectively, meaning that their fitness is evaluated independently of the
population they are inserted in. However, recent work has started to question the validity
of this approach, especially in the case of deceptive problems. EC-hardness and deception

17

Chapter 2. Related Work

will be covered extensively in Section 2.3.
Another critical component of EC is the selection and replacement mechanism. Two

strategies can be adopted for selection, deterministic or probabilistic, but the stochastic
process is preferred as it ensures higher individual diversity and exploration. Stochastic se-
lection helps the evolutionary process to escape local optima and to explore more effectively
the search space. A number of selection mechanisms have been described in the literature,
such as elitist selection, which select only the n best individuals from the population, tour-
nament selection, which runs a tournament between n randomly selected individuals, or
roulette-wheel selection, which selects individuals proportionally to their fitness compared
to the global fitness of the population. Replacement decides how to remove and insert
individuals in the population based on the offspring generated through the reproduction.
There are two primary replacement methods: generational and steady state. Generational
replacement replaces the entire population with the offspring, while steady-state replaces
only one individual, e.g., the worst individual in the population. On top of the generational
replacement, usually, also elitism is applied, which preserves from the selection mechanism
n fittest individuals, in order to preserve the best solutions in the population from the
environmental selection.

We summarize the evolutionary loop in Fig. 2.2. The starting point is the creation of
an initial population of individuals, either randomly or deterministically. Then the created
individuals are evaluated and, accordingly to their fitness, selected based on the selection
method chosen. The selected individuals undergo the reproduction phase, and the generated
offspring replace a number of individuals of the population. Then, the process restarts from
the evaluation phase until the termination condition is reached, which depends on the one’s
requirements. Typical termination conditions used are either a fixed number of generations
or the achievement of a satisfactory solution.

Building on the notion of evolutionary search, in this thesis we propose to search for
unexpected solutions. This approach challenges the traditional view of the objective as
main drive for evolutionary computation by introducing a new way of searching for high-
performing solutions. Being a critical aspect to take in consideration for the approaches
introduced in this thesis, we will provide a detailed description of the evolutionary compo-
nents of surprise-based algorithms in the following chapter (Chapter 3).

2.2.1 Multi-objective Evolution

As their name suggests, multi-objective evolutionary algorithms (MOEAs) (Deb, 2001) aim
to find the best trade-off between two or more objectives. These algorithms are appropri-
ate for problems which have more than one desirable properties, each of which could be
considered objectives in their own right. Often, in these problems one objective may be
in conflict with another, so optimizing for one objective would end up lowering the score
of others, hence dominating them. When objectives are conflicting it is natural to expect
that any solutions found cannot optimize all objectives at the same time. Instead MOEAs
attempt to find solutions which are not dominated in at least one dimension; in particular,
a solution A it is said to dominate (Pareto dominance) another solution B if and only if
Eq. (2.1) and Eq. (2.2) are true. These solutions are called Pareto non-dominated solutions.

∀i : Ai >= Bi (2.1)

∃i : Ai > Bi (2.2)

18

2.2. Evolutionary Computation

(a) One-Point Crossover (b) Two-Point Crossover

(c) Uniform Crossover

Figure 2.3: A representation of three possible crossover operators.

where, with an abuse of notation, Ai and Bi are the i-th objective of solution A and B
respectively.

Several approaches have been proposed within the area of multi-objective evolutionary
search (Coello et al., 2007) including ranking selection, aggregation-based selection of objec-
tives and Pareto front optimization. In one of the most naive approaches, aggregation-based
selection combines the desired properties of the solution into a weighted sum. This simple
approach has a core limitation: as the search space must be explored for finding the best
weights for each objective particular solutions may be missed as the Pareto front might not
be convex. In other words, aggregation-based selection can discover solutions only on the
linear fronts defined by the selected weights. On the other hand, ranking selection favors
solutions according to a user-defined priority of the objectives. For example, if we want
to optimize the cost and velocity of a car, we may want to select a solution that does not
exceed a certain cost limit, and then opt for the vehicle that optimizes the performance
from the selected subset. Based on the notions of Pareto dominance, a dominance-based
approach can be used instead to drive evolution. NSGA-II by Deb et al. (2002) is one of the
most adopted of such approaches (and for MOEAs in general). In this thesis, we use exten-
sively NSGA-II to combine effectively surprise search with other evolutionary approaches
(Gravina et al., 2019b). These approaches will be described in Chapter 3 and validated in
Chapter 5 and Chapter 6.

Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) is generic
MOEA based on the original formulation of NSGA. The algorithm produces a population
of competing individuals and sorts them based on their non-domination ranking, which is
assigned as fitness to every individual. It then uses evolutionary operators (crossover and

19

Chapter 2. Related Work

mutation) to generate the offspring, which are combined with the parents before splitting
the resulting population into fronts. To aid the exploration the fitness landscape, NSGA-
II employs a measure called crowding distance to preserve the diversity within the same
ranking and used as a tie-breaker in the selection process.

The algorithm starts by initializing a population and dividing it into non-dominated
fronts; for each individual, a rank is assigned based on the front it belongs to. In addition,
a crowding distance measure is assigned to every individual based on how close it is to
its neighbors in the same front. Parents are selected based on the rank and the crowding
distance and the offspring is generated by means of crossover and mutation. The current
population and the generated offspring are joined and sorted again based on non-dominated
sorting, and the best N individuals are selected for the next generation.

2.2.2 Neuroevolution: NEAT and CPPNs

In evolutionary computation, the choice of representation is often considered of “vital
importance” (Schoenauer, 1996). Representation encoding influences the genotype space
(Michalewicz and Hartley, 1996), which in turns influences the phenotype space based on
the chosen mapping between the two (Bentley and Kumar, 1999). As noted in the previous
section, a standard approach involves a direct mapping between the genotype and pheno-
type and the use of a bit arrays, which theoretically can encode all the possible phenotypes
that can be stored on computer memory. However, for longer encodings, there is an expo-
nential growth of the possible combinations of bits which makes the search for the desired
solutions challenging and ultimately impractical. In practice, it is often desirable to design
a genotype of the minimal size that can encode a large space of phenotypes. Formally, we
would like to maximise the pleiotropy, i.e., how a single gene can influence multiple pheno-
typic traits, and minimize the polygeny, i.e, how a single phenotypic trait can be influenced
by interactions of multiple genes (Fogel, 1995). However, such compressed information in
the genotype requires a complex function to decode the information into a phenotype, if
even such a function exists. Furthermore, complex representations are often accompanied
by complex genetic operators (crossover and mutation) which can make the computation
burden too high compared to the benefits of a powerful representation. Another require-
ment for indirect mapping is to minimize the possible augmentation of the effects due to
the genome mutations: a minimal change in the genotype should have a similar impact in
the phenotypic space. Therefore it is required to carefully design the genetic operators, es-
pecially in the case of complex indirect representation (Bentley and Kumar, 1999). Several
representations have been proposed in the literature, such as syntax trees in Genetic Pro-
gramming, where it is possible to evolve directly pieces of code, or artificial neural networks
(ANNs), a subfield of EC that goes under the name of neuroevolution.

Inspired by the structure of the natural brain, artificial neural networks are densely con-
nected nodes (Mitchell et al., 1997), where each node is commonly referred to as “neurons”.
These neurons can take as input multiple real-valued inputs and return a single real number
value that acts as output. The output is the result of a combination of a weighted sum of
the inputs with a non-linear activation function, such as a rectifier or a sigmoid function.
Neuroevolution (NE), the evolution of artificial neural networks, has shown great promise
in several complex task (Gomez and Miikkulainen, 1999). Neuroevolution searches in the
encoded space of ANNs for a network that performs well in a specific task. Several algo-
rithms have been proposed through the years to evolve ANNs, from evolving the weights
of a fixed topology (Whitley et al., 1990) to evolve at the same time weights and structure

20

2.2. Evolutionary Computation

Figure 2.4: NEAT genotype and phenotype example. Image inspired by Stanley and
Miikkulainen (2002) and reproduced for the purposes of the thesis.

of the ANNs (Gruau et al., 1996). While a debate on the advantages of evolving both the
weights and the structure is an open area of research (Gomez and Miikkulainen, 1999), a
number of challenges have to be addressed.

A range of solutions has been proposed to evolve weights and the structures of the ANNs
simultaneously. The first problem is how to encode the networks efficiently. The encoding
can be direct or indirect: the former explicitly list all the connection between nodes and
the list of nodes; the latter instead specify rules to infer the phenotypes of the ANN. Direct
encodings are usually simpler to implement, but they can easily blow up with the number
of nodes and connections between them. On the other hand, indirect encodings are more
compact, but they can be unpredictable, as small changes in the encodings can influence the
search in unpredictable ways (Braun and Weisbrod, 1993). The second most significant issue
is related to the problem of competing conventions. Competing convention means that two
different encodings represent the same artificial neural network, i.e., two different encodings
maps to the same phenotype. This can lead to damaged phenotypes after the recombination
of two networks, and consequently to lose critical information (Stanley and Miikkulainen,
2002). The third problem is related to the protection of innovation. In neuroevolution,
innovation takes place when a network changes its structure through mutation, e.g., adding
a connection between two genes. This often leads to a decrease in performance, as the ANN
needs time to find the optimal weight for the newly added connection. Therefore, if not
explicitly protected, novel networks will not survive through evolutionary selection because
of their initial suboptimal performance (Stanley and Miikkulainen, 2002).

NEAT

In order to address these problems, Stanley and Miikkulainen (2002) proposed an approach
called Neuroevolution of Augmenting Topologies (NEAT). NEAT bypasses the difficulties

21

Chapter 2. Related Work

mentioned above by starting from simple networks and complexifying them via recombina-
tion and mutation throughout evolution. The networks are encoded as a linear represen-
tation of nodes and connections between them (see Fig. 2.4). Each genome has a list of
nodes (input, hidden and outputs) and a list of connections, which specify their in-node,
out-node, and connection weight. To allow a meaningful crossover, NEAT introduces the
concept of historical markings, which keep track of every new structural component. Every
time a new structure is created, this is marked by a unique identification. Furthermore,
historical markings address the third problem, the protection of innovation. They enable
the use of speciation, as the species are computed based on the number of shared genes
with the same identification. Speciation is used to maintain genetic diversity and to give
some room for improvement to newer and more complex networks.

Mutation in NEAT can modify the weights of the connections or add new structures,
i.e., new connections between different nodes or new nodes. Crossover instead uses the
historical markings to line up the genes from two different genomes. When lined up, the
offspring randomly select the genes from one of the two parents, and it always selects non-
matching genes from the fittest parent. Historical markings are fundamental for the process
of complexification, which finds simple ANNs at the beginning of the evolutionary process,
and then it builds more complex network starting from them. The complexification process
establishes order to the complexity of the ANNs evolved, as the simpler ones, i.e., with fewer
nodes and connections, will appear first in the evolutionary history of the algorithm. This
means that different fitness definitions can influence the size of the final evolved ANNs, as
the following sections will show. NEAT has been validated through several works, and it
is widely applied across several domains (Stanley and Miikkulainen, 2004; Stanley et al.,
2005a; Aaltonen et al., 2009; Reisinger et al., 2007; Stanley et al., 2005b). In this thesis,
we use NEAT to evolve controllers able to navigate complex mazes and to evolve soft robot
morphologies. We describe these two domains in the next sections.

While neuroevolution through NEAT is a robust and widely validated approach, it can
only encode neural networks activated by sigmoids. However, a more powerful encoding
might unleash the power of evolution as a seeker of complex and interesting structure
or morphologies. An open area of research revolves around the concepts of developmental
encodings (Stanley, 2007), which tries to find an efficient way to encode information capable
of expressing an extensive range of phenotypes, as DNA does in nature. In the spirit
of this research field, Stanley (2007) has proposed a new encoding, called Compositional
Pattern Producing Networks (CPPNs), that tries to describe the complex relationships
that arise in nature using functions compositions. A CPPN is an artificial neural network
with nodes of different activation functions (e.g., sine, sigmoid, Gaussian, etc.) which
allow regularities, repetitions and other patterns to emerge. Being CPPNs structurally
similarly to ANNs, they can be evolved by existing neuroevolution methods, such as NEAT
(Stanley and Miikkulainen, 2002). CPPNs have demonstrated their representational power
in multiple domains, such as image generation (Secretan et al., 2008), three-dimensional
object generation (Clune and Lipson, 2011), robots controllers (Risi and Stanley, 2013) and
procedural content generation (Liapis et al., 2013; Hastings et al., 2009). In the several
experiments conducted in this dissertation, we evolve artificial neural networks acting as
robotic controllers or designers of complex shapes.

22

2.3. Quality Diversity and Divergent Search

2.3 Quality Diversity and Divergent Search

In this section we describe the notions of deception, divergent search and quality diversity. In
particular, we review what are the major source of hardness for evolutionary computation
and why deception is one of the most difficult to address. We then describe two recent
paradigms that have addresses deception in evolutionary computation, divergent search
and quality diversity.

2.3.1 EC-Hardness and Deception

The term deception in the context of evolutionary computation was introduced by Goldberg
(1987) to describe instances where highly-fit building blocks, when recombined, may guide
search away from the global optimum. Since that first mention, the notion of deception
(including deceptive problems and deceptive search spaces) has been refined and expanded
to describe several problems that challenge evolutionary search for a solution. Whitley
(1991) argues that “the only challenging problems are deceptive”. However, a debate on
what makes a problem difficult is still ongoing, and the role of deception contentious. For
instance, Mitchell et al. (1992) argue that deception is only one of the many components
that can make fitness landscape difficult, and Grefenstette (1993) points out that deception
is neither a necessary or a sufficient condition to define a problem hard, as it depends on the
dynamic of the sampling strategy. Admittedly, it is difficult to define what makes a problem
hard. Given a generic description of the algorithm and the instance of the problem, a priori
measure of its performance does not exist, and the only way to measure the algorithm’s
effectiveness is by running it (Rice, 1953).

For instance, other measures of EC-hardness are the sampling error (Liepins and Vose,
1990) and a rugged fitness landscape (Kauffman, 1989). In combinatorial optimization
problems, the fitness landscape can affect optimization when performing local search. Such
algorithmic process assumes a high correlation between the fitness of neighboring points
in the search space and independent genes in the chromosome. The latter assumption is
commonly referred as epistasis (Davidor, 1991) which is a factor of GA-hardness: when
epistasis is high (i.e., where too many genes are dependent on other genes in the chromo-
some), the algorithm searches for a unique optimal combination of genes, but no substantial
fitness improvements are noticed (Davidor, 1991). As noted, epistasis is evaluated from the
perspective of the fitness function and thus is susceptible to deception; Naudts and Ver-
schoren (1999) argue that deceptive functions cannot have low epistasis, although fitness
functions with high epistasis are not necessarily deceptive. Such approaches are often based
on the concepts of correlation, i.e., the degree to which an individual’s fitness score is well
correlated to its neighbors’ in the search space, or epistasis, i.e., the degree of interaction
among genes’ effects. Another interesting take on the EC hardness is from Borenstein and
Poli (2004). They argue that the analysis of the difficulty for a certain problem can be
improved by assessing the properties of the problem’s fitness distribution. The problems’
classification is often based on properties given by human definitions: this entails a human
bias, while the analysis of the difficulty should be less dependent from the choices of the
designer. Therefore, by sampling over a set of different representation, it is possible to
isolate the problem’s properties from a particular representation. Jones and Forrest (1995)
propose instead to use a fitness distance correlation, i.e., the relationship between the fit-
ness function and an ideal goal, but this can lead to some mispredictions as the correlation
measure may be too simplistic. Guo and Hsu (2003) advance three key aspects to iden-

23

Chapter 2. Related Work

tify a hard problem. The first one is when the defined fitness lacks any information about
the goal (e.g., needle-in-the-haystack problem), and therefore an objective-based approach
cannot be useful. The second reason is when the search algorithm does not exploit helpful
information given by the fitness function intentionally. Even if this might be considered
a non-optimal use of the algorithm (it would perform worse than random search on a set
of GA-easy problems), it can be regarded as a solution for deceptive problems, the third
cause of problem hardness. In this case, the fitness function returns conflicting information
regarding the goal and ignoring the objective could be beneficial. In conclusion, as noted
by Lehman and Stanley (2011a), it seems that most of the factors of EC-hardness origi-
nate from the fitness function itself; however, poorly designed genetic operators and poorly
chosen evolutionary parameters can exacerbate the problem.

2.3.2 Ignoring the Objective: Divergent Search

Deception actively leads search away from the global optimum, often by converging prema-
turely to local optima in the search space. Numerous approaches have been proposed to
discourage this behavior, as surveyed by Lehman et al. (2013). Many diversity maintenance
techniques, such as speciation (Stanley and Miikkulainen, 2002) and niching (Wessing et al.,
2013) enforce local competition among similar solutions. Similarity can be measured on the
genotypical level (Goldberg et al., 1987), on the fitness scores (Hu et al., 2005), or on the
age of the individuals (Hornby, 2006). An alternative way of exploring the search is coevo-
lution, where the calculation of fitness is dependent on the current population (Angeline
and Pollack, 1994); competition between individuals in the same population ideally leads
to an arms race towards better solutions and finds a better gradient for search. However,
coevolution runs the risk of causing mediocre stalemates where all competitors perform
poorly and cannot improve, or that one competitor is so much better than the others that
no gradient can be found (Ficici and Pollack, 1998). An interesting alternative approach is
proposed in Hutter and Legg (2006), where the selection pressure is distributed uniformly
across sparsely populated fitness regions. Such a method has the advantage not to bias the
search towards highly fitted areas of the search space, and therefore it can counter the effect
of deception. Another possible way to counter deceptive landscapes is to use hand-crafted
(or hand-shaped) objective function. The idea, named incremental learning (Elman, 1993),
is to design multiple objective functions from simpler to harder. The algorithm will learn
the task from the easier objectives, and then it will progressively learn more complex and
interesting tasks. However, this approach requires a strong human involvement and an
in-depth knowledge of the task to solve, but, given a black-box scenario, this is not always
possible. Techniques from multi-objective evolutionary algorithms can, at least in theory,
explore the search space more effectively by evaluating individuals in more than one mea-
sure of quality (Knowles et al., 2001) and thus avoid local optima by attempting to improve
other objectives; however, multi-objective optimization cannot guarantee to circumvent de-
ception (Deb, 1999). Moreover, optimizing for multi-objectives objectives does not ensure
a more manageable problem (Brockhoff et al., 2007), as the number of non-dominated solu-
tions can grow with the number of the objectives (Purshouse and Fleming, 2007). Further,
multi-modal function optimization can be employed (Goldberg et al., 1987; Mahfoud, 1995).
For instance, the niching algorithm NEA2 by Preuss (2015) uses nearest-better clustering
to spread several parallel populations over the multiple local optima that are present in the
fitness landscape. However, in Lehman et al. (2013), it is argued that in perversely decep-
tive problems, such as maze navigation and biped robot locomotion, genotypic diversity is

24

2.3. Quality Diversity and Divergent Search

not sufficient, as all the possible “right” innovation steps towards the global optimum are
punished by the optimization process.

Divergent search tackles the problem directly by rewarding diversity at the phenotypi-
cal level, and a shift of paradigm is proposed where rewarding behavioral diversity becomes
the predominant driver of evolution. It is argued that divergence, therefore, can tackle the
problem of a deceptive fitness landscape or a deceptive fitness characterization by award-
ing diverse behaviors (Lehman and Stanley, 2011a) which may eventually lead to optimal
results. As a popular example of divergent search methods, novelty search by Lehman and
Stanley (2011a) is inspired by open-ended evolution and rewards behaviors that have not
been seen previously during search. As well as novelty search, surprise-search approaches
can be framed within this paradigm (Yannakakis and Liapis, 2016; Gravina et al., 2016b,
2017c). In particular, we can see surprise as a proxy measure to guide the search towards
the stepping stones needed to find the global solution of a given (deceptive) problem.

Novelty Search

Novelty search (Lehman and Stanley, 2011a) differs from previous approaches at handling
deceptive problems as it explicitly ignores the objective of the problem it attempts to solve.
While traditional convergent approaches provide control mechanisms, modifiers or alternate
objectives which complement the gradient search towards a better solution, novelty search
motivates exploration of the search space by rewarding individuals that are phenotypically
(or behaviourally) different without considering whether they are objectively “better” than
others. Novelty search is different than a random walk, however, as it explicitly provides
higher rewards to more diverse solutions and also because it maintains a memory of the
areas of the search space that it has previously explored. The latter is accomplished via a
novelty archive of past novel individuals, with individuals with a high novelty score being
added continuously to this archive. Each individual’s novelty score is the average distance
from a number of closest neighbors in the behavioral space; neighbors can be members
of the current population or the novelty archive (see Fig. 2.5). The distance measure is
problem-dependent and can also bias the search (Lehman and Stanley, 2011a) and thus
affect the performance and behavior of the novelty search algorithm: examples include the
agents’ final positions in a two-dimensional maze solving task, the position of a robot’s
center of mass (Lehman and Stanley, 2011a), properties of images such as brightness and
symmetry (Lehman and Stanley, 2012), machine-learned encodings (Liapis et al., 2013), or
the amount of collected reward (Risi et al., 2009, 2010).

The novelty score is computed through Eq. (2.3), i.e., the average distance with the
nNS closest individuals in the current population or an archive of novel solutions (see Fig.
2.5). In every generation, individuals with a novelty score above a fluctuating threshold are
added to a novelty archive which persists throughout the evolutionary run. The distance
dn, which is used to assess the novelty score as well as what constitutes an individual’s
closest neighbors, is based on the difference of behaviors (rather than genotypes) between
individuals. This allows novelty search to explore a diverse set of behaviors without ex-
plicitly favoring behaviors closer to the desired behavior, i.e., the solution of a problem.

n(i) =
1

nNS

nNS∑
j=0

dNS(i, µj), (2.3)

where dNS is the behavioral distance between two individuals and depends on the domain

25

Chapter 2. Related Work

Figure 2.5: Novelty Search. A high-level diagram of the Novelty Search algorithm. The
novelty score is computed for every individual in the population by averaging the distance
from the closest neighbors collected from the current population and an archive. Image
inspired by Liapis (2014) and reproduced for the purposes of the thesis.

Figure 2.6: Quality Diversity. A high-level diagram of the Quality Diversity paradigm.
Given a behaviour characterization (or space descriptor), here depicted as a one-dimensional
space, and the desired quality, the goal is to find a set of diverse and high-performing
solutions (red points). Image inspired by Cully and Demiris (2018) and reproduced for the
purposes of the thesis.

under consideration (e.g., the Euclidean distance between two robots’ final positions in a
maze navigation task), µj is the j-th nearest neighbor and n(i) is the novelty score for the
individual i. The current population and the novelty archive are used to find the nearest
neighbors.

Novelty search has demonstrated its effectiveness in domains such as maze navigation
and robot control (Lehman and Stanley, 2011a; Risi and Stanley, 2013), image generation
(Lehman and Stanley, 2012), data clustering (Naredo and Trujillo, 2013), symbolic regres-
sion (Mart́ınez et al., 2013) and game content generation (Liapis et al., 2013, 2015).

26

2.3. Quality Diversity and Divergent Search

2.3.3 Beyond Divergence: Diverse and Good solutions

While diversity alone can be beneficial to discover the optimal solution of a deceptive
problem, for particular search spaces this is not enough. When the search space is boundless
or when the diversity measure is entirely uncorrelated to desired behaviors, some push
towards quality is needed. Several solutions have been proposed to solve this issue, such as
combining novelty with objectives (Mouret, 2011; Gomes et al., 2015), the minimal criteria
novelty search algorithm by Lehman and Stanley (2010), or the constrained novelty search
algorithm by Liapis et al. (2015). However, a more aligned combination of divergence
and convergence might enable evolutionary search to discover high-performing and diverse
solutions in the same run. In fact, the solutions mentioned above try to combine novelty
with a global competition for the objective, which may contrast with the inspiration of
divergent search and make the convergence preminent again.

Nature can be source of inspiration to solve this problem. Natural evolution has discov-
ered an impressive number of diverse solutions (i.e., organisms) that can adapt to different
conditions and constraints. If we take for example the problem of moving, nature has
evolved different ways to ambulate: crawling, swimming, walking, etc. Moreover, an or-
ganism can be composed of different legs. It becomes apparent that each configuration of
the above can lead to an effective yet different solution to movement. An interesting par-
allelism can be traced back to the rise of dinosaurs. Recent theories (Langer et al., 2017)
have highlighted the fact at the beginning of the Triassic period (at the early stage of their
evolutionary history), dinosaurs were not as widespread as believed up to now, but they
were overtaken by other species that were larger and more diversified. The dinosaurs con-
tinued to live as a marginal species till the end of the Triassic period when a random event
caused the extinction of their direct competitors. Starting from the the Jurassic period,
dinosaurs began to spread and outperform any other species in terms of agility, dimensions
and strength. Therefore it seems that protecting promising niches in the search space can
lead to advantages regarding global performance, as they can save interesting and potential
characteristics that can enable further evolvability (Lehman and Stanley, 2011c).

Such an approach can lead to several advantages if transferred to an optimization sce-
nario. Given a set of solutions for a problem, an algorithm can use a repertoire of alternative
solutions in case the selected solution does not perform as expected, i.e., in case the simu-
lated results do not transfer well to reality. This problem, known as reality gap (Koos et al.,
2013), can be solved efficiently by keeping several good solutions in an archive and employ
backup solutions when needed (Cully et al., 2015). In evolutionary robotics, an archive
of diverse and good solutions grants the ability to evolve controllers able to solve multiple
tasks, which is a more efficient solution compared to evolve a separate controller for each
task. A further advantage is that diversity and quality can influence each other synergisti-
cally towards an even better solution; rewarding diversity might help to find the necessary
stepping stones towards higher-performing areas of the search space, as they circumvent
potential deceptive traps of the fitness landscape.

Inspired by these advantageous properties, Pugh et al. (2016) propose the quality di-
versity challenge. This family of algorithms search for the discovery of both quality and
diversity at the same time, following the traditional approach within computational cre-
ativity of seeking outcomes characterized by both quality (or value) and novelty (Ritchie,
2007). Such evolutionary algorithms have been named quality diversity (QD) algorithms
(Pugh et al., 2015, 2016) and aim to find a maximally diverse population of high-performing
individuals. Examples of such algorithms include novelty search with local competition by

27

Chapter 2. Related Work

Lehman and Stanley (2011b) and MAP-Elites by Mouret and Clune (2015); Cully et al.
(2015) as well as algorithms that constrain the feasible space of solutions—thereby forcing
high-quality solutions—while searching for divergence such as constrained novelty search by
Liapis et al. (2015).

It is worth mentioning that this new paradigm stresses the importance of the diversity of
the solutions, while the performance becomes of secondary importance, in contrast with the
traditional formulation of EC (Pugh et al., 2016). While many solutions have been proposed
in the literature to search for good and diverse solutions, they usually focus first on the per-
formances of the solutions, and not on their diversity. For instance, in multi-modal function
optimization (Goldberg et al., 1987; Mahfoud, 1995; Preuss, 2015), the objective is to find
the local optima of a function. MMFO accomplishes this task by spreading the solutions
over the search space employing, e.g., clustering, but usually, the diversity is maintained
in the genotypical space. This has the disadvantage that possible good solutions cannot be
reached if the fitness function is mono-modal. Behavioural diversity is in general different
from the genotypical diversity, especially when there is an indirect encoding between the
genotype and the phenotype Stanley and Miikkulainen (2002); a possible phenomenon, for
instance, it is the genotypic aliasing, which can make different genotypes acting in the same
way in the phenotypic space.

Another possible approach to the quality diversity challenge are the multi-objective
evolutionary algorithms (Deb, 2001) (explained earlier in Section 2.2.1). MOEAs try to
optimize more than one objective, and they return a selection of high-performing solutions
called Pareto front. However, MOEAs are intrinsically convergent (Cully and Demiris,
2018), as their primary use is for optimization of multiple objectives, while divergence is
used only as an aid for the exploration of the fronts (e.g., crowding distance). Admittedly,
the quality diversity paradigm has been inspired by the idea of solving single-objective opti-
mization problems via multi-objective algorithms. Such approaches have been successfully
applied to different problems in the literature. For instance, Gong et al. (2015) proposes
using MOEAs to optimize two conflicting objectives, the reconstruction error and the spar-
sity of deep artificial neural networks. In Li et al. (2016), multi-objective self-paced learning
decomposes a hard problem into simpler problems which can be optimized in a more ac-
cessible way. In Qian et al. (2015a), a multi-objective approach is proposed for ensemble
learning to obtain the best performance with the fewest learners. In Qian et al. (2015b),
feature selection is performed through evolutionary Pareto optimization to select the best
possible subset of features for a deep neural network (feature learning). Finally, in Qian
et al. (2017) MOEAs are used for influence maximization in a constrained scenario.

A shift towards divergent algorithms is necessary. The argument is similar to the one
used previously for divergent search: given a definition of objective function, a bias is
introduced in the optimization process that leads to the problems described in Section 2.3.
Searching for diversity and then archiving the best solutions helps the search process to be
independent of poorly designed fitness functions. However, the definition of the diversity
measure can influence the performance of a QD algorithm as well. As shown in (Pugh et al.,
2016; Preuss et al., 2014), depending on the diversity measured employed, specific algorithms
can be more or less performant, based on the alignment between the selected behaviour
characterization and the performance measure. While the diversity measure affects the
performance of the QD algorithm, another critical aspect to take into consideration is
how this diversity information is exploited. Novelty with local competition by Lehman
and Stanley (2011b) uses the diversity measures defined in Eq. (2.3) and MAP-Elites by
Mouret and Clune (2015) subdivides the behavioral space in bins of predefined size. In this

28

2.3. Quality Diversity and Divergent Search

Figure 2.7: Global vs. Local Competition. A visualization of the resulting exploration
in the search space obtained with global competition and local competition. Local competi-
tion enables to exploit the explorative capabilities of a divergent algorithm and at the same
time to illuminate interesting (i.e., high quality) regions of the search space, that would be
instead out-shadowed by the global competition variant.

thesis, we argue that a QD algorithm will discover more highly-fit solutions if we extend
the divergence pressure across multiple and orthogonal dimensions beyond novelty—such as
surprise. Following this view, in Chapter 3 we introduce three algorithms that explore how
both surprise and a combination of novelty and surprise might help to cover the solution
space more advantageously.

Novelty Search with Local Competition

Considered to be the first QD algorithm, novelty search with local competition (Lehman
and Stanley, 2011b) is an algorithm that combines the divergence of novelty search with the
localized convergence obtained through a local competition. In NS-LC, a multi-objective
algorithm, NSGA-II by Deb et al. (2002), searches for non-dominated solutions across two
dimensions: novelty and local competition. Novelty attempts to maximize a novelty score
computed in Eq. (2.3), i.e., the average distance of the individual’s behavior with the be-
havior of the closest neighbors in the current generation or the novelty archive. Local
competition is also calculated based on the closest individuals in the current generation and
the novelty archive (see Algorithm 1).

Local competition is introduced as a way to protect from selection the sub-performing
niches present in the population. If the evolutionary pressure is based only on global
competition and novelty, this will push the population towards one non-dominated front and
interesting niches of the search space will be discarded (Lehman and Stanley, 2011b; Mouret,
2011). However, in a quality diversity setting, we are interested in those areas of the solution
space that are diverse and sufficiently good. Following the idea of protecting potentially
attractive solutions, we limit the competition for the objective only in the behavioural
neighborhood of the solutions (see Fig. 2.7).

Algorithm 1 outlines the key steps involved in the local competition computation. The

29

Chapter 2. Related Work

Algorithm 1: Calculation of Local Competition in a population.

input : population Pop, novelty archive A, local competition nLC , objective
function f , behavioral distance d

output: population Pop
1 Initialize T ← ∅ ; // temporary vector of individuals T
2 T ← Pop ∪A ;
3 foreach i ∈ Pop do
4 Sort T ascending based on distance d to i;
5 lc(i)← nLC ;
6 for j : 0→ nLC do
7 if f(i) < f(Tj) then
8 lc(i)← lc(i)− 1;

9 return population Pop

reward for local competition lc(i) of the individual i is proportional to the number of
solutions outperformed in terms of the objective function f (see line 11 of Algorithm 1).
This creates a pressure towards those solutions that are good within their (behavioral)
niche, even if they globally underperform compared to the general population Pop. The
blend between novelty search and local competition allows NS-LC to pursue and optimize
many different behaviors in the hope that one of these directions would eventually lead to
globally optimal solutions. NS-LC has shown performance advantages over novelty search
in the domains of maze navigation (Pugh et al., 2015, 2016) and robot evolution (Lehman
and Stanley, 2011b; Cully and Demiris, 2018).

2.3.4 Curiosity-based Reinforcement Learning

While divergent search and quality diversity are gaining momentum in the field of EC, the
idea of using pure exploration as the core objective has been transferred in other fields as
well, such as in Reinforcement Learning (RL) (Sutton and Barto, 2018). Reinforcement
Learning is a machine learning approach, where an RL agent receives a training signal from
the environment by interacting with it. In RL, the objective is to maximize the expected
return of policy, i.e., maximise the sums of rewards (Sutton and Barto, 2018).

Like evolutionary computation, rewarding the main objective of the problem works well
in a number of cases, especially when the rewards distribution is dense and it is statistically
easy to find a random sequence of actions that lead to high rewards. However, there are
several cases where the reward scheme is sparse and finding a valid sequence of actions
is hard if not highly improbable (Mnih et al., 2015; Bellemare et al., 2016). To address
this challenge, exploration of the environment becomes a fundamental key to solve hard
problems where extrinsic rewards are sparse or completely missing. A vast number of
solutions have been proposed, such as using ε-greedy, Boltzmann exploration (Mnih et al.,
2015) or Gaussian Noise (Schulman et al., 2015). However, these heuristics rely on random
walks, which can be either inefficient or extremely computationally expensive for problems
with large state spaces.

30

2.3. Quality Diversity and Divergent Search

Curiosity and Intrinsic motivation

In curiosity-based learning, an RL agent explores novel observation leaded by intrinsic
motivation rewards (Kaplan and Oudeyer, 2007). The reduction of cognitive dissonance
states that to motivate agents intrinsically they should be incentivised to learn cognitive
models that successfully predict novel sensory input (Festinger, 1962). We can formalize
this theory in the context of RL by rewarding agents that observe novel, surprising or
curious events based on their internal model of the environment (Schmidhuber, 2010). For
instance, it is possible to reward the discrepancies between what is usually perceived and
what is currently perceived, i.e., the prediction error of the learning model (Gordon and
Ahissar, 2012).

Inspired by intrinsic motivation theories, a number of different solutions have been pro-
posed in recent years. Variational Information Maximizing Exploration (Houthooft et al.,
2016) is an exploration strategy that maximises the information gain of the agent’s model
of the environment. Based on the principle of curiosity, agents are encouraged to visit those
states that cause a substantial update in their dynamic model distribution. Building on the
concept of information gain, Bellemare et al. (2016) propose to use prediction gain, which
simulates in the continuous domain the concept of count-based exploration in a tabular
setting. Another count-based generalization has been proposed by Tang et al. (2017). The
authors propose to discretize the continuous state space in a hash-table, and then compute
an exploration bonus based on the visitations count. In Fu et al. (2017), the authors pro-
pose to train a classifier to distinguish new states from others seen previously, and compute
a novelty score based on how easy is to classify a state as novel. A self-supervised inverse
model is employed in (Pathak et al., 2017), where the curiosity score is computed as the
error between the prediction made using the agent’s next action and the resulting state. In
Burda et al. (2018) the authors introduce an easy and computationally preferred solution
for sparse rewards problems, where an exploration bonus aids a deep reinforcement learning
algorithm to solve difficult problems. This exploration bonus is proportional to the error
of a random neural network trained to predict the features of the observations, in order to
reward the novelty of the observed states. Justesen and Risi (2018) propose to reward the
rarity of the event experienced by the agent. In particular, the events that are experienced
more often are considered not interesting, while higher rewards are assigned to rare events.
The Rarity of the Events method pushes the agent to progressively explore rare behaviours
starting from the more common ones, with the hope that it will learn more complex and
potentially exciting tasks. Another solution comes from Shyam et al. (2018), named Model-
Based Active Exploration. In that work, the authors propose to actively search for novelty,
by computing several surrogate models and measuring the amount of error between the
models. The agent’s reward is proportional to this error which accounts for the most inter-
esting future possible states. In Savinov et al. (2018) it is proposed to compute a curiosity
metric by using an episodic memory. The approach uses a neural network to approximate
the number of environment steps to reach two observations. Given this reachability metric,
novelty is computed as the number of steps it takes to reach a selected observation starting
from the ones in memory.

Artificial curiosity and intrinsic motivation differ from surprise-based evolutionary com-
putation as the latter is based on evolutionary divergent search and motivated by open-
ended evolution, similarly to novelty search. Specifically, as we will describe in Chapter 3,
surprise search approaches does not keep a persistent world model as Schmidhuber (2010)
does; instead it focuses on the current trajectory of search using the latest points of the

31

Chapter 2. Related Work

(a) Medium (b) Hard

Figure 2.8: Maze Navigation. The maze testbeds that appear in (Lehman and Stanley,
2011a) (Fig. 2.8a and 2.8b). The filled circle is the robot’s starting position and the empty
circle is the goal.

search space it has explored (and ordering them temporally). Additionally, it rewards de-
viations from expected behaviors agnostically rather than based on how those deviations
improve a world model. This allows surprise search to backtrack and re-visit areas of the
search space it has already visited, which is discouraged in both novelty search and curiosity.

2.4 Domains

This section describes the domains used in this dissertation to validate the proposed algo-
rithms. Section 2.4.1 offers a detailed description of the first domain used to validate the
introduced algorithm: the maze navigation task. Maze navigation is a well-known task to
test divergent and quality diversity approaches, thanks to the relatively cheap computational
resources required to run the experiments and the facility to generate deceptive environ-
ment procedurally. The second domain involves the evolution of soft robot morphologies:
evolving virtual creatures is a more complex task compared to the maze navigation domain
and it is an ideal testbed to assess the potential creativity of evolutionary algorithms.

2.4.1 Maze Navigation

One of the most popular testbeds for divergent search and quality diversity algorithms is
the maze navigation problem. First proposed by Lehman and Stanley (2011a), the maze
navigation problem has several properties that make it suitable for testing divergent and
quality diversity algorithms and, hence, the algorithms proposed in this dissertation.

The problem of maze navigation can be simply formulated as follows: a robot starting
at a specific position in the maze must reach the goal position in a maze using local (in-
complete) information. The robot is equipped with six range finder sensors which indicate
the distance from the closest wall and four pie-slice sensors broadly indicating the direction
of the goal. During simulation, the sensors’ data is provided as input to an artificial neural
network (ANN) which controls the movement of the robot, i.e., its velocity and turning
angle as two outputs. As per the problem formulation, the de facto objective is to reach the
goal position, and the most intuitive objective/fitness function is to select individuals based
on their Euclidean distance from the goal—ignoring the presence of walls. The fact that
the maze topology is not known in advance (local information) results in a deceptive fitness

32

2.4. Domains

(a) Neural Network (b) Sensors

Figure 2.9: Robot controller for the maze navigation task. Fig. 2.9a shows the
network’s inputs and outputs. Fig. 2.9b shows the layout of the sensors: the six black
arrows are rangefinder sensors, and the four blue pie-slice sensors act as a compass towards
the goal.

landscape as the robot may end up in a dead-end which is locally optimal but is unable to
bring the robot any closer to the goal. In order to find the goal, in most cases the robot must
go through areas of lower fitness before the goal becomes accessible. Deceptive mazes are
easy to identify visually, as they feature dead ends along the direct line between starting and
goal position. Beyond a visually interpretable search space, which largely coincides with the
physical space of the maze, an additional property of this testbed is the relatively lightweight
simulations it affords; this allows extensive tests to be run, featuring evolutionary runs with
large population sizes and multiple re-runs. Indicatively, this dissertation performs 50 in-
dependent evolutionary runs per maze (or more, considering a sensitivity analysis), and
tests more than 100 mazes in this fashion. Such a computational burden is prohibiting
in more complex simulations such as evolving robot morphologies (Lehman and Stanley,
2011b) or generating game content and testing it in games (Cardamone et al., 2011). One
of the core contribution of this dissertation is the introduction of two new authored decep-
tive mazes and, most importantly, a new methodology to generate procedurally extremely
difficult mazes. We evaluate and compare the introduced algorithms—and all other base-
line algorithms examined—comprehensively across 4 authored mazes and 120 procedurally
generated mazes of varying complexity and degrees of deceptiveness. This analysis offers
a broad assessment of the capacity, efficiency and robustness of surprise-based approaches
in this domain. While the generality and extent to which we evaluate the algorithms are
not an innovation per se, they consist a decisive step towards establishing a methodology
for evaluating divergent and QD algorithms based on procedurally generated content. The
large number of runs and the extensive comparisons with baselines and variations of the
algorithms proposed similarly enhance the validity and generality of the findings of this
thesis.

33

Chapter 2. Related Work

Figure 2.10: Soft Robot Evolution. Sample of soft robots evolved with a CPPN repre-
sentation.

2.4.2 Soft Robots

Evolving virtual creatures is a popular testbed used to assess the potential creativity of
evolutionary algorithms, and in the last years several environments have been proposed,
ranging from evolving rigid bodies (Sims, 1994; Lehman and Stanley, 2011b) to evolving
soft body morphologies (Hiller and Lipson, 2012). While it has been proven that evolv-
ing interesting and efficient artificial creatures is feasible, these works still fall short when
compared to the complexity found in nature. Cheney et al. (2013) propose to achieve this
ambitious objective by evolving the robots’ morphologies by means of different materials,
creating “soft” robots composed of voxels with different properties.

The domain of evolutionary robotics traditionally focuses on artificially evolving the
structures of virtual creatures. The robots’ numerous degrees of freedom and the difficulty
of the task makes EC ideal for tackling this problem. Previous work has focused on evolving
rigid bodies (Sims, 1994; Lehman and Stanley, 2011b), as they are simpler and less com-
putationally expensive to simulate. On the one hand, the few degrees of freedom can limit
the dexterity of rigid bodies, unless an excessive number of joints is used. On the other
hand, soft bodies have a distributed deformation that permits theoretically infinite degrees
of freedom, allowing these “soft” robots to reach any point in the space with an infinite
number of configurations. Moreover, soft bodies can conform to obstacles, as they generate
little resistance to external forces (Trivedi et al., 2008).

Relatively few attempts have been made to evolve soft robots, as this problem comes
with a high computational cost in simulating these materials and a large parameter space,
especially if different materials are applied. (Hiller and Lipson, 2012) introduced the use
of a soft-voxel simulator (VoxCad) to simulate the statics and the dynamics of soft bodies
within reasonable computational budgets. The lattice of the soft robot has a predefined

34

2.5. Summary

resolution, and multiple materials are chosen as building blocks to compose the robot, both
active (as they can contract and expand following an external signal) and passive (e.g.,
not actuated). Within the domain of evolving virtual creature morphologies, it has been
shown that direct encodings tend to lead to poorly structured and dysfunctional robot
architectures (Cheney et al., 2013). For that purpose, several indirect encodings have been
proposed, including L-systems by Hornby et al. (2001), hierarchical nested graphs by Sims
(1994), and gene regulatory networks by Bongard and Pfeifer (2003). Cheney et al. (2013)
propose to evolve soft morphologies by evolving Compositional Pattern Producing Networks
(Stanley, 2007), given their high evolvability and expressive range capacities. CPPNs evolve
using the neuroevolution of augmenting topologies algorithm (Stanley and Miikkulainen,
2002). As shown in (Cheney et al., 2013), the CPPN representation allows soft robots to
exhibit several locomotion strategies and morphologies (Fig. 2.10).

Compared to the maze navigation domain, evolving soft robot morphologies is (a) more
challenging and (b) requires a more complex behaviour characterization (e.g., the movement
trail of the evolved robot). Given these properties, we argue that this is an ideal testbed to
investigate the generality of the results obtained in maze navigation, as it is a complementary
deceptive domain. Towards that end, we test the surprise-based approaches thoroughly
across eight different lattice resolutions and we perform ad in-depth analysis of the structural
and behavioural characteristics of the individuals evolved by the surprise search approaches.

2.5 Summary

This chapter has presented the areas of research involved in this dissertation and the key
algorithms that have been used for comparative purposes or have inspired this work. Two
interwoven areas are necessary to frame this dissertation: computational creativity and
evolutionary computation. We offered an extensive literature review on computational
creativity, which focused on three central concepts that are considered fundamental in order
for a machine to generate creative outcomes through a computational process: novelty,
surprise and value. A description of evolutionary computation followed, where its main
components were surveyed. Furthermore, we described in detail two sub-domains important
for the purposes of this thesis: multiobjective optimization and neuroevolution.

The main motivation of this work is to solve difficult problems in unconventional ways
by means of unexpected solutions. Towards that end, we introduced one of the major
source of hardness for evolutionary search, i.e., deceptive landscapes. Furthermore, we
described in detail two recent paradigms that address deceptive problems and inspired
the algorithms introduced in this work: divergent search and quality diversity. We then
introduced two state-of-the-art implementations of divergent search and quality diversity,
respectively novelty search and novelty search with local competition.

This chapter ended with a broad description of the domains used in this dissertation.
Inspired by divergent search and quality diversity paradigms, the next chapter outlines the
family of algorithms (surprise search) introduced in this work.

35

Chapter 2. Related Work

36

Chapter 3

Surprise Search: the Approach

As already stated in Chapter 1, this dissertation introduces a new general search algorithm
inspired by the concept of surprise for unconventional discovery. Surprise search is a new
approach that is framed in the divergent search paradigm and built on the principles of
evolutionary computation. This chapter formalizes the notion of surprise and builds the
algorithm within this formalization. Towards that end, we first give a general definition of
surprise and we then describe the surprise search algorithm, by offering an overview of each
component of the algorithm (Section 3.1).

Given a formalization of surprise search as an evolutionary algorithm, it is straightfor-
ward to expand with other approaches proposed in the literature. As noted in Chapter 2,
surprise search is inspired by novelty search, but each algorithm rewards solutions differ-
ently: novelty search rewards solutions which exhibit dissimilar behaviour from those in the
current and in previous populations, while surprise search rewards solutions which diverge
from expected behaviours based on past trends. With the theoretical argument for the
orthogonal nature between novelty and surprise, we argue that by coupling the search for
unseen (novelty) with the search for unexpected (surprise) solutions we will end up with an
algorithm that explores unseen points in the search space and at the same time also rewards
deviations from predicted search trends. To test our hypothesis, we introduce five additional
surprise-based algorithms. In particular, Section 3.2 describes formally how to combine ef-
fectively the two concepts of novelty and surprise in the context of divergent search: a linear
combination of novelty and surprise, novelty-surprise search (NSS), and a multi-objective
approach, novelty search-surprise search (NS-SS). Section 3.3, instead, describes how sur-
prise can be used as an effective reward in the quality diversity paradigm and it introduces
three new quality diversity algorithms. Inspired by novelty search with local competition
(see Chapter 2), the new algorithms replace novelty search with surprise search (SS-LC),
or combine measures of novelty and surprise linearly (NSS-LC) or as separate objectives
(NS-SS-LC).

3.1 Surprise Search

In Chapter 2 we offered an overview of the different formalizations of the notion of surprise.
In this section, we take inspiration from the aforementioned perspectives in computational
creativity and we attempt to give a general definition of surprise. The primary overarching
element of surprise across any of its taxonomies described earlier is the degree to which
observation is expected. Thus, independently of the various definitions across the disciplines

37

Chapter 3. Surprise Search: the Approach

that study surprise as a phenomenon, we can safely derive a general definition of surprise
that satisfies the critical characteristics of that notion. For the purposes of this dissertation,
we define surprise as the deviation from the expected and we use the notions surprise and
unexpectedness interchangeably due to their highly interwoven nature (Reisenzein, 2000):
unexpectedness being the approximate cognitive appraisal cause of surprise. Given this
definition, we can introduce the idea of surprise search and propose a general evolutionary
algorithm that realizes it. The proposed algorithm mimics the self-surprise cognitive process
and equips evolutionary search with the ability to seek for solutions that deviate from the
algorithm’s expected behavior. The predictive model of expected solutions is based on
historical trails of where the search has been and local information about the search space.
Inspired by the above arguments and findings in computational creativity, we view surprise
for computational search as the degree to which expectations about a solution are violated
through observation (Grace et al., 2015). Our hypothesis is that if modeled appropriately,
surprise may enhance divergent search and complement or even surpass the performance
of traditional forms of divergent search such as novelty. Furthermore, as novelty search
(Lehman and Stanley, 2011a) has been defined as a proxy for the intermediate stepping
stones towards the objective of the problem, our hypothesis is that surprise stands as an
alternative proxy, that can be coupled with novelty and value for divergent search and
quality diversity.

3.1.1 The Surprise Search Algorithm

This section discusses the principles of designing a surprise search algorithm for any task or
search space. To realize surprise as a search mechanism, an individual should be rewarded
when it deviates from the expected behavior, i.e., the evaluation of a population in evolution-
ary search is adapted. This means that surprise search can be applied to any EC method,
such as NEAT (Stanley and Miikkulainen, 2002).

Surprise search can be decomposed into two tasks: prediction and deviation. At the
highest descriptive level, surprise search uses local information from past generations to
predict behavior(s) of the population in the current generation; observing the behaviors of
each individual in the actual population, it rewards individuals that deviate from predicted
behavior(s): this is summarized in Figure 3.1 and Algorithm 2. The following sections
will describe the phases of prediction and deviation at high level, and will introduce the
parameters which are associated with each phase; in Chapter 4 we will elaborate on their
domain-specific implementation.

Prediction

As shown in Fig. 3.1, the predictive model uses local information from previous generations
to estimate (in a quantitative way) the expected behavior(s) in the current population.
Formally, predicted behaviors (p) are created via Eq. (3.1), where m is the predictive
model that uses a degree of local (or global) behavioral information (expressed by kSS)
from h previous generations (behavior vector bg of size kSS ; refer to line 2 in Algorithm 2).
The choice of each of these parameters (m, h, kSS) may influence the scope and impact of
predictions, and are problem-specific both from a theoretical (as they can affect performance
of surprise search) and a practical (as certain domains may limit the possible choice of
parameters) perspective.

p = m(h, kSS) (3.1)

38

3.1. Surprise Search

Figure 3.1: Surprise Search. High-level overview of the surprise search algorithm when
evaluating an individual i in a population at generation t. The h previous generations are
considered, with respect to kSS behavioral characteristics per generation, to predict the
expected kSS behaviors of generation t. The surprise score of individual i is the deviation
of the behavior of i from a subset of these kSS expected behaviors.

How much history of prior behaviors (h) should surprise search consider? To
predict behaviors in the current population, the predictive model must consider previous
generations. In order to estimate behaviors of a population at generation t, the predictive
model must find trends in the populations of generations t − 1, t − 2, · · · , t − h (line 6 in
Algorithm 2). The minimum number of generations to consider to observe an evolutionary
trend, therefore, is h = 2 (the two prior generations to the one being evaluated). However,
behaviors that have performed well in the past could also be included in a surprise archive,
similar to the novelty archive of novelty search (Lehman and Stanley, 2011a), and subse-
quently be used to make predictions of future behaviors. Such a surprise archive would
serve as a more persistent history (h > 2) but considering only the interesting historical
behaviors rather than all past behaviors.

How local (kSS) are the behaviors surprise search needs to consider to make
a prediction? Surprise search can consider behavioral trends of the entire population
when creating a prediction (global information). In that case, kSS = 1 and all behaviors
are aggregated into a meaningful average metric for each prior generation. The current
generation’s expected behaviors are similarly expressed as a single (average) metric; de-
viation of individuals in the actual population is derived from that single metric. At the
other extreme, surprise search can consider each individual in the population and derive an
estimated behavior based on the behaviors of its ancestors in the genotypic sense (parents,
grandparents etc.) or behavioral sense (past individuals with the closest behavior). In this
case kSS = P where P is the size of the population, and the number of predictions to deviate

39

Chapter 3. Surprise Search: the Approach

from will similarly be P . Therefore, the parameter kSS determines the level of prediction
locality which can vary from 1 to P ; intermediate values of kSS split prior populations into
a number of population groups using problem-specific criteria and clustering methods.

What predictive model (m) should surprise search use? Any predictive model-
ing approach can be used to predict a future behavior, such as a simple linear regression of
a number of points in the behavioral space, non-linear extrapolations, or machine learned
models. Again, we consider the predictive model, m, to be problem-dependent and contin-
gent on the h and kSS parameters. For instance, a linear model can only be used if h = 2,
which is the case for all the experiments presented in this thesis.

Deviation

To put pressure on unexpected behaviors, we need an estimate of the deviation of an
observed behavior from the expected behavior (if kSS = 1) or behaviors. Following the
principles of novelty search (Lehman and Stanley, 2011a), this estimate is derived from
the behavior space as the average distance to the n-nearest expected behaviors (prediction
points). The surprise score s for an individual i in the population is calculated as:

s(i) =
1

nSS

n∑
j=0

dSS(i, pi,j) (3.2)

where dSS is the domain-dependent measure of behavioral difference between an individual
and its expected behavior, pi,j is the j-closest prediction point (expected behavior) to indi-
vidual i and nSS is the number of prediction points considered; nSS is a problem-dependent
parameter determined empirically (nSS≤kSS).

Important notes

Surprise search operates similarly to novelty search with respect to evolutionary dynamics.
As surprise search considers a set of prior behaviors (expressed by h and kSS) to make
predictions of expected behavior, it maintains a temporal window of where search has
been. However, surprise search operates differently to novelty search with respect to the
goal: surprise maximizes deviation from the expected behaviors whereas novelty moves the
search towards new behaviors. This evidently creates a new form of divergent search that
considers prior behaviors indirectly to make predictions to deviate from.

As surprise search ignores objectives, a concern could be whether it is merely a version
of random walk. Surprise search is not a random walk as it explicitly maximizes unex-
pectedness: surprise search allows for a temporal archive of behaviors that accumulates a
record of earlier positions in the behavioral space (similarly to novelty search). Comparative
experiments with various random benchmark algorithms in Chapter 4 show that surprise
search traverses the search space in a different and far more effective manner.

3.2 Coupling Novelty and Surprise

As mentioned in the introduction, a working hypothesis of this dissertation is that we
can equip computers with better search capacities if we couple algorithms with dissimilar
properties and ways of operating in the search space. Earlier work (Lehman and Stanley,

40

3.2. Coupling Novelty and Surprise

Algorithm 2: Calculation of Surprise Score in a population.

input : population Pop, generation g, neighborhood nSS , locality kSS , history
length h, prediction model m

output: population Pop

1 Compute and store kSS clustered behaviors bg for generation g;
2 if g < h then
3 foreach i ∈ Pop do
4 s(i)← random()

5 else
6 Retrieve clustered behaviors from bg−h to bg−1;
7 p← m(h, kSS) ; // (Eq. 3.1)

8 foreach i ∈ Pop do
9 s(i)← 0;

10 pi ← Sort p ascending based on distance dss to i;
11 for j : 0→ nSS do
12 s(i)← s(i) + dss(i, pi,j) ; // (Eq. 3.2)

13 s(i)← s(i)/nSS ;

14 return population Pop;

2011a) have revealed that divergent search algorithms such as novelty have shown promise in
highly deceptive problems; however, recent findings have demonstrated that some deceptive
problems can be challenging even for divergent search (Cuccu and Gomez, 2011). In this
section we propose to combine two divergent algorithms, novelty search and surprise search,
and we assume that their complementarity in search—searching for the unseen and searching
for the unexpected—can improve an algorithm’s performance compared to merely searching
for novel or surprising solutions. As the concept of novelty is orthogonal to that of surprise
and surprise can be viewed as temporal novelty (Yannakakis and Liapis, 2016), combining
the two seems to be an approach with great potential.

The following subsections introduce two EC algorithms that couple novelty and sur-
prise as the linear aggregation of the two (novelty-surprise search) and by means of multi-
objective optimization (novelty search-surprise search). In Chapter 5 we will elaborate on
their domain-specific implementation.

3.2.1 Novelty-Surprise Search Algorithm

In the field of evolutionary computation several approaches exist for simultaneously op-
timising several objectives. While recent literature has proposed several multi-objective
evolutionary algorithms (Deb, 2001), the simplest solution is to linearly combine the ob-
jectives. In this implementation we opt for the latter approach, as adding novelty and
surprise is trivial and computationally preferred while it represents an intermediate step
towards a multi-objective implementation. The novelty-surprise search algorithm executes
both novelty and surprise search and at each generation it rewards an individual by adding
its novelty and surprise score in the following fashion:

ns(i) = λ · n(i) + (1− λ) · s(i), (3.3)

41

Chapter 3. Surprise Search: the Approach

where ns(i) is the combined novelty and surprise score of individual i and λ ∈ [0, 1] is a
parameter that controls the relative importance of novelty versus surprise.

3.2.2 Novelty Search-Surprise Search Algorithm

As described in Chapter 2, it has been shown that a linear aggregation of multiple objec-
tives is generally not able to find all the possible Pareto solutions, in particular when the
Pareto front is not convex (Coello et al., 2007). However, it should be noted that when
the objectives are dynamic, e.g., their value depends on the state of the current popula-
tion, the Pareto front might change over the course of the evolutionary process and its
resulting behaviour harder to predict. Indeed, this is the case with novelty and surprise re-
wards, as they are computed relatively to the state of the population (Lehman and Stanley,
2011a). Therefore, we propose to compare the linear aggregation of novelty and surprise
(i.e., novelty-surprise search) against its multi-objective counterpart. To accomplish this,
we introduce an alternative approach that fuses novelty and surprise independently. This
algorithm, named novelty search-surprise search, employs a multi-objective algorithm to
optimize novelty and surprise as separate and independent rewards. In this thesis we use
NSGA-II (Deb et al., 2002) to search for non-dominated solutions on the two divergent
dimensions of novelty and surprise, but other approaches can be employed (Deb, 2001). In
the proposed algorithm, the novelty dimension is computed as in Eq. 2.3, while the surprise
dimension is computed following the procedure described earlier in Section 3.1.1.

3.3 Surprise for Quality Diversity

Inspired by previous work on quality diversity (Pugh et al., 2016), we introduce three new
algorithms that introduce surprise search as an alternative divergent search mechanism with
local competition (Lehman and Stanley, 2011b) for quality diversity (surprise-based QD).
These three algorithms are named surprise search with local competition, novelty-surprise
search with local competition, and the three-objective novelty search-surprise search-local
competition.

Fig. 3.2 offers a high-level overview of the three algorithms used for surprise-based quality
diversity. The algorithms initially generate a population (Pop) of N individuals and then
initialize the novelty archive (A). We then perform an initial update of the surprise model,
and we evaluate each individual in the population according to the selected algorithm (i.e.,
NSS-LC, SS-LC or NS-SS-LC). Right before entering the main loop of the algorithm, we use
non-dominated sorting to divide the population into fronts based on the NSGA-II algorithm
(right part of Fig. 3.2). While the termination criterion is not met (e.g., high performance
is reached) we run a steady-state EA implementation (see left part of Fig. 3.2): two mating
parents are selected to generate a new offspring, which is evaluated based on the algorithm
chosen (i.e., either NSS-LC, SS-LC or NS-SS-LC); the worst individual of the population
is then replaced by the newly generated offspring if the offspring is more fit. At the end
of each steady state step of the algorithm, the non-dominated fronts are updated as in Li
et al. (2017). Every N offspring generations, we update the surprise model (see right part
of Fig. 3.2) by computing the kSS behavioral clusters and then computing the predictions
based on the surprise predictive model m. We then re-evaluate the entire population and
recompute the non-domination fronts. The algorithm returns to the main steady state loop
until either new N offspring are generated or the termination condition is reached. A key
part of the framework is its evaluation step (see middle flow chart in Fig. 3.2): it involves

42

3.3. Surprise for Quality Diversity

Figure 3.2: Surprise-based Quality Diversity. The flow chart illustrates a high level
representation of the three introduced QD algorithms: SS-LC, NSS-LC, NS-SS-LC. All
algorithms are employed as a steady state EA (left flow chart). The model of surprise
is initialized after the generation of the initial population and then updated every N off-
spring generations (right flow chart). The evaluation of individuals (middle flow chart) goes
through the calculation of local competition, novelty, and surprise scores before those are
assigned to the corresponding algorithm. Algorithmic loops are depicted as gray boxes.
The introduced surprise-based components of the algorithm are depicted in orange: light
orange refers to the surprise components and dark orange refers to the novelty-surprise
components. For the interested reader, references are made to the equations and sections.

the computation of novelty, surprise and novelty-surprise scores. Based on the algorithm
chosen, we assign the selected scores to the individual (i.e., SS-LC, NSS-LC or NS-SS-LC)
which will influence the replacement strategy and the non-domination ranking performed
by the NSGA-II algorithm. The details of each one of the three algorithms are described
in the corresponding subsections below, whereas their domain-specific implementation is
further elaborated in Chapter 6.

3.3.1 Surprise Search with Local Competition

As a direct integration of surprise search for quality diversity, the obvious approach is to
replace novelty with surprise in the novelty search with local competition (Lehman and
Stanley, 2011b) paradigm. In surprise search with local competition, NSGA-II from Deb
et al. (2002) searches for non-dominated solutions on the dimensions of local competition
and surprise. Local competition is calculated based on the superiority of the individual
being evaluated among its closest neighbors. What constitutes a nearby neighbor for local
competition is based on behavioral characterization (dSS in this case), rather than a geno-
typic one. Superiority is established based on a measure of proximity to an ideal solution:
the number of neighbors who are worse than the current individual is used as the local com-
petition score to be optimized. Borrowing from local competition as applied to NS-LC, the

43

Chapter 3. Surprise Search: the Approach

closest neighbors are drawn from the current population. Unlike NS-LC, however, SS-LC
does not maintain a novelty archive and only considers neighbors in the current population.
The surprise dimension uses the surprise score of Eq. (3.2), which assesses how much the
behavior of an individual deviates from expected behaviors based on trends in recent gen-
erations. As described in Section 3.1.1, the surprise score is calculated based on a two-step
process: first, Eq. (3.1) creates predictions based on past generations’ dominant behav-
iors, and then Eq. (3.2) calculates the surprise score based on the distance from predicted
behaviors.

3.3.2 Novelty-Surprise Search with Local Competition

Given the orthogonal nature of novelty and surprise, we hypothesize that combining novelty
and surprise as different measures of divergence would be valuable for QD. We thus expect
that combining both surprise and novelty as measures of divergence with local competition
can only improve the performance of the state of the art QD algorithm.

In the novelty-surprise search with local competition algorithm, as we name it, NSGA-II
(Deb et al., 2002) searches for non-dominated solutions on the dimensions of local competi-
tion and a weighted sum combining novelty and surprise. Local competition measures the
number of closest neighbors (in terms of behavior) which underperform compared to the
current individual. Unlike SS-LC, local competition considers the novelty archive main-
tained by the novelty search component and thus the closest neighbors considered for local
competition can be from both the current population and the novelty archive. The other
dimension targeted by NSGA-II combines the novelty score of Eq. (2.3) and the surprise
score of Eq. (3.2) in the weighted sum of Eq. (3.4), where a single parameter (λ) influences
both scores.

ns(i) = λ · n(i) + (1− λ) · s(i), (3.4)

where ns(i) is the combined novelty and surprise score of individual i and λ ∈ [0, 1] is
a parameter that controls the relative importance of novelty versus surprise, n(i) is the
novelty score (Eq. 2.3) and s(i) is the surprise score (Eq. 3.2).

3.3.3 Novelty Search–Surprise Search–Local Competition

As an alternative way to combine novelty search and surprise search in the divergence
dimension of a QD algorithm, we can consider them as independent objectives rather than
aggregating them as with NSS-LC. The three-objective algorithm novelty search–surprise
search–local competition uses NSGA-II (Deb et al., 2002) to search for non-dominated
solutions on the three dimensions: the local competition score, the surprise score (as in
Eq. 3.2) and the novelty score (as in Eq. 2.3).

3.4 Summary

This chapter has described in detail the algorithm introduced in this thesis, surprise search.
We started from a general definition of surprise—deviation from the expected—and we
then formalized each component of the algorithm starting from the chosen formalization of
surprise. Given the theoretical orthogonality between the concepts of surprise and novelty,
this chapter further proposed to expand surprise with novelty search, both for divergent
search and quality diversity. For that purpose, we first described formally how to combine
the two concepts in two different implementations of divergent search, novelty-surprise

44

3.4. Summary

search and novelty search-surprise search. Secondly, we introduced surprise for quality
diversity: we presented three new algorithms, namely surprise search with local competition,
novelty-surprise search with local competition and novelty search-surprise search with local
competition. The next three chapters will be dedicated to the evaluation of the proposed
surprise-based algorithms across two domains: maze navigation and soft robot evolution.

45

Chapter 3. Surprise Search: the Approach

46

Chapter 4

Surprise Search: Experiments

This chapter tests the surprise search algorithm in two different testbeds: maze navigation
and soft robot evolution. In particular, in Section 4.1 we test surprise search extensively
in a robot maze navigation task: experiments are held in four authored deceptive mazes
and in 60 generated mazes and compared against objective-based evolutionary search and
novelty search. In Section 4.2, instead, we test surprise search in a more challenging task:
soft robot evolution. In particular, we analyze the performance of surprise search with
a more complex behavior characterization and we compare the structural diversity of the
three evolutionary methods. Finally, Section 4.3 sums up the implications arising from the
results obtained by surprise search across the two domains considered.

4.1 Maze Navigation Test Bed

An appropriate domain to test the performance of surprise search is one that yields a
deceptive fitness landscape, where search for surprising behaviors can be evaluated against
novelty and objective search. Inspired by the comparison of novelty versus objective search
in (Lehman and Stanley, 2011a), we consider the two-dimensional maze navigation task as
our first test bed in this chapter.

The maze navigation task consists of finding the path from a starting point to a goal
in a two-dimensional maze, in a fixed number of simulation steps. The problem becomes
harder when mazes include dead-ends and the goal is far away from the starting point. As in
(Lehman and Stanley, 2011a), the robot has six range sensors to measure its distance from
the closest obstacle, plus four range radars that fire if the goal is in their arc. Therefore, the
robot’s ANN receives 10 inputs from the sensors and it controls two actuators, i.e., whether
to turn or change the speed. It should be noted that this problem is not pathfinding. The
main objective of the evolutionary algorithm (i.e., NEAT) is to find an ANN that solves the
given maze, and not directly a robot that can find the path from the starting point to the
goal. Evolving a controller able to successfully navigate a maze is a challenging problem, as
the evolutionary algorithm needs to evolve a complex mapping between the input (sensors)
and the output (movement) in an unknown environment. Even if it can be considered a
toy problem, it is an interesting testbed as it stands for a general deceptive search space
(Lehman and Stanley, 2011a).

Two properties have made this environment a canonical test for divergent search (Lehman
and Stanley, 2008, 2011a; Pugh et al., 2016; Mouret, 2011): the ease of manually designing
deceptive mazes and the low computational burden, which enables researchers to run mul-

47

Chapter 4. Surprise Search: Experiments

(a) Medium (b) Hard (c) Very hard (d) Extremely hard

Figure 4.1: Authored Mazes. The maze testbeds that appear in (Lehman and Stanley,
2011a) (Fig. 4.1a and 4.1b) and new mazes introduced (Fig. 4.1c and 4.1d respectively).
The filled circle is the robot’s starting position and the empty circle is the goal. The maze
size is 300 × 150 units for the medium maze and 200 × 200 units for the other mazes.

tiple comparative tests among algorithms. Furthermore, the generality of the findings can
be tested with automatically generated mazes, as in Section 4.1.4. More information about
this domain can be found in Chapter 2.

As with the original implementation of the maze navigation testbed (Lehman and Stan-
ley, 2011a), the ANN of the robot controller is optimized through neuroevolution of aug-
menting topologies (Stanley and Miikkulainen, 2002), an evolutionary algorithm which has
been described more in detail in Chapter 2. Starting from the mazes introduced in (Lehman
and Stanley, 2011a), we designed two additional mazes of enhanced complexity and decep-
tiveness. This section briefly describes the maze navigation problem, the mazes adopted,
and the parameters for the experiment.

4.1.1 Domain

We initially test the performance of surprise search on four authored mazes (see Fig. 4.1),
two of which (medium and hard) have been used in (Lehman and Stanley, 2011a). The
medium maze (see Figure 4.1a) is somewhat challenging as an algorithm should evolve a
robot that avoids dead-ends placed alongside the path to the goal. The hard maze (see
Figure 4.1b) is more deceptive, due to the dead-end at the leftmost part of the maze; an
algorithm must search in less promising (lower-fit) areas of the maze to find the global
optimum. For these two mazes we follow the experimental parameters set in (Lehman and
Stanley, 2011a) and consider a robot successful if it manages to reach the goal within a
radius of five units at the end of an evaluation of 400 simulation steps.

Beyond the two mazes by Lehman and Stanley (2011a), two additional mazes (very
hard and extremely hard) were designed to test an algorithm’s performance in even more
deceptive environments. The very hard maze (see Fig. 4.1c) is a modification of the hard
maze with more dead ends and winding passages. The extremely hard maze, on the other
hand, is a new maze (see Fig. 4.1d) that features a longer and more complex path from
start to goal, thereby increasing the deceptive nature of the problem.

If we define a maze’s complexity as the shortest path between the start and the goal,
complexity increases substantially from medium (240 units), to hard (360 units), to very
hard (442 units) and finally to the extremely hard maze (552 units); note that the last three
mazes are of equal size. The high problem complexity of the very hard and the extremely
hard mazes led us to empirically increase the number of simulation steps for the evaluation
of a robot to 500 and 1000 simulation steps, respectively. By increasing the simulation time

48

4.1. Maze Navigation Test Bed

in the more deceptive mazes we manage to achieve reasonable performances for at least one
algorithm examined which allows for a better analysis and comparison.

4.1.2 Algorithms

This section provides details about the general and specific parameters for all the algo-
rithms compared. We primarily test the performance of six algorithms: objective search,
novelty search and surprise search, and include three baseline algorithms for comparative
purposes. All algorithms use NEAT to evolve a robot controller with the same parame-
ters as in (Lehman and Stanley, 2011a), where the maze navigation task and the mazes
of Fig. 4.1 were introduced. Evolution is carried on a population of 250 individuals for a
maximum of 300 generations in the medium and hard maze for a fair comparison to results
obtained in (Lehman and Stanley, 2011a). However, the number of generations is increased
to 1000 for the more deceptive mazes (very hard and extremely hard) to allow us to ana-
lyze the algorithms’ behavior over a longer evolutionary period. The NEAT algorithm uses
speciation and recombination, as described in (Stanley and Miikkulainen, 2002), and the
algorithm is steady-state as in (Lehman and Stanley, 2011a). The specific parameters of all
compared algorithms are detailed below. A summary of the parameters used can be found
in the Appendix A.

Objective search

Objective search uses the agent’s proximity to the goal as a measure of its fitness. Following
Lehman and Stanley (2011a), proximity is measured as the Euclidean distance between the
goal and the position of the robot at the end of the simulation. This distance does not
account for the maze’s topology and walls, and can be deceptive in the presence of dead-
ends.

Novelty Search

Novelty search uses the same novelty metric and parameter values as presented in (Lehman
and Stanley, 2011a). In particular, the novelty metric is the average distance of the robot
from the nearest neighboring robots among those in the current population and in a novelty
archive. Distance in this case is the Euclidean distance between two robot positions at the
end of the simulation; this rewards robots ending in positions that no other robot has
explored yet. The parameter for the novelty archive (e.g., the initial novelty threshold for
inserting individuals to the archive is 6 is as given in (Lehman and Stanley, 2011a).

Sensitivity Analysis: while in (Lehman and Stanley, 2011a) novelty is calculated as
the average distance from the 15 nearest neighbors, the introduction of new mazes mandates
that the nNS parameter of novelty search is tested empirically. For that purpose we vary
nNS from 5 to 30 in increments of 5 across all mazes and select the nNS values that yield
the highest number of maze solutions (successes) in 50 independent runs of 300 generations
for the medium and hard maze, and 1000 generations for the other mazes. If there is more
than one nNS value that yields the highest number of successes then the lowest average
evaluations to solve the maze is taken into account as a selection criterion. Figure 4.2
shows the results obtained by this analysis across all mazes.

The best results are indeed obtained with 15 nearest neighbors for the medium and
hard maze, as in (Lehman and Stanley, 2011a) (49 and 48 successes, respectively). In the

49

Chapter 4. Surprise Search: Experiments

Figure 4.2: Novelty Search: Sensitivity Analysis. Selecting the nearest neighbor for
novelty search: the figure depicts the average number of evaluations (normalized by the total
number of evaluations allocated) obtained out of 50 runs (of 300 generations for the medium
and hard maze, of 1000 generations for the very and extremely hard maze) by varying nNS

between 5 and 30 for all four authored mazes examined. The error bars represent the 95%
confidence interval of the average.

very hard maze there is no difference between 10 and 15 in terms of successes (39) but
nNS = 15 yields fewer evaluations, while in the extremely hard maze nNS = 10 yields
fewer evaluations and more successes (24) than any other value tested. In summary, we use
nNS = 15 for the medium, hard and very hard maze, and nNS = 10 for the extremely hard
maze.

Surprise search

Surprise search uses the surprise metric of Eq. (3.2) to reward unexpected behaviors. As with
the other algorithms compared, behavior in the maze navigation domain is expressed as the
position of the robot at the end of a simulation. The behavioral difference dSS in Eq. (3.2) is
the Euclidean distance between the robots’ final position and a considered prediction point,
p. Following the general formulation of surprise in Chapter 3, the prediction points are a
function of a model m that considers kSS local behaviors of h prior generations. In this
comparative study we use the simplest possible prediction model (m) which is a one-step
linear regression of two points (h = 2) in the behavioral space. Thus, only the two previous
generations are considered when creating prediction points to deviate from in the current
generation (see Fig. 4.3). In the first two generations the algorithm performs mere random
search due to a lack of prediction points.

Sensitivity Analysis: To choose appropriate parameters for kSS (information locality)
and nSS (number of prediction points) in the prediction and deviation models respectively,
a sensitivity analysis is conducted for all mazes. We obtain kSS empirically by varying

50

4.1. Maze Navigation Test Bed

(a) Generation g − 2 (b) Generation g − 1 (c) Generation g

Figure 4.3: The key phases of the surprise search algorithm as applied to the
maze navigation domain. Surprise search uses a history of two generations (h = 2) and
10 behavioral clusters (kSS = 10) in this example. Robots’ final positions are depicted as
green squares; cluster centroids and prediction points are depicted as empty red and solid
blue circles, respectively.

its value between 20 and 240 in increments of 20 for each maze. We also test all kSS for
nSS = 1 and nSS = 2. As in the sensitivity analysis for novelty search we select the kSS and
nSS values that yield the highest number of successes in 50 independent runs. If there is
more than one kSS , nSS combination that yields the highest number of successes we select
the combination that solves the maze in the fewest average evaluations.

Figure 4.4 shows the average number of evaluations for all kSS values tested, for nSS = 1
and nSS = 2. It is clear that higher kSS values result to fewer evaluations on average.
Moreover, it seems that nSS = 2 leads to better performance in the two more deceptive
mazes. Based on the above selection criteria, we pick kSS = 200 and nSS = 1 for the
medium maze, which gives the highest number of successes (50) and the lowest number of
evaluations (16, 364 evaluations on average). For the hard maze we select kSS = 100 and
nSS = 1, as it is the most robust (49 success) and fastest (23, 214 evaluations on average)
among tested values. Following the same procedure kSS = 200 and nSS = 2 in the very
hard maze, and kSS = 220 and nSS = 2 in the extremely hard maze (see Fig. 4.4).

We started our investigations with the simplest possible prediction model (m), which
is a linear regression, and the shortest possible time window of two generations for the
history parameter (h). The impact of the history parameter and the prediction model
on the algorithm’s performance is not examined empirically and remains open to future
investigations.

Other baseline algorithms

Three more baseline algorithms are included for comparative purposes. Random search (RS)
is a baseline proposed in (Lehman and Stanley, 2011a) that uses a uniformly-distributed
random value as the fitness function of an individual. The other two baselines are variants
of surprise search that test the impact of the predictive model. Surprise search (random),
SSr, selects kSS random prediction points (i.e., pi,j in Eq. 3.2) within the maze following a
uniform distribution, and tests how surprise search would perform with a highly inaccurate
predictive model. Surprise search (no prediction), SSnp, uses the current generation’s actual

51

Chapter 4. Surprise Search: Experiments

Figure 4.4: Surprise Search: Sensitivity Analysis. Selecting kSS for surprise search:
the figure depicts the average number of evaluations (normalized by the total number of
evaluations allocated) obtained out of 50 runs (of 300 generations for the medium and hard
maze, of 1000 generations for the very and extremely hard maze) by varying kSS between 20
and 240 for all four mazes examined. The error bars represent the 95% confidence interval
of the average.

clusters as its prediction points (i.e., pi,j in Eq. 3.2), thereby, omitting the prediction phase
of the surprise search algorithm. SSnp uses real data (cluster centroids) from the current
generation rather than predicted data regarding the current generation, and tests how the
algorithm performs divergent search from real data. Note that SSnp is reminiscent of novelty
search, except that it uses deviation from cluster centroids (not points) and does not use a
novelty archive. The same parameter values (kSS and nSS) are used for these variants of
surprise search.

4.1.3 Experiments and Analysis

The robot maze navigation problem is used to compare the performance of surprise, novelty
and objective search. To test the algorithms’ performance, we follow the approach proposed
by Yannakakis et al. (2003) and compare their efficiency and robustness in all four test
bed mazes. We finally analyse some typical examples on both the behavioural and the
genotypical space of the generated solutions. All results reported are obtained from 100
independent evolutionary runs; reported significance is at a 95% confidence. For multiple
pairwise comparisons the Tukey’s range test is used to establish significance.

52

4.1. Maze Navigation Test Bed

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 4.5: Efficiency: number of evaluations on average to find a solution for each maze
considered. Error bars denote 95% confidence intervals. The maximum number of evalua-
tions is 75 · 103 for the medium and hard maze, 250 · 103 for the very hard and extremely
hard maze.

53

Chapter 4. Surprise Search: Experiments

Efficiency

Efficiency is defined as the effort it takes an algorithm to find a solution. In particular,
figure 4.5 shows the average number of evaluation to find a solution for each approach for
the four mazes.

In the medium maze surprise search manages to find the goal, on average, in 16, 0·103

(±2, 3·103) evaluations which is faster than novelty (19, 8·103 ±3, 1·103 evaluations) and sig-
nificantly faster than objective search (48, 2·103 ±4, 7·103 evaluations) and SSnp (26, 5·103

±4, 24·103 evaluations). We observe the same comparative advantage in the hard maze as
surprise search solves the problem in 23, 6·103 (±3, 2·103) evaluations on average whereas
novelty search, SSnp, and objective search solve it in 28, 5·103 (±4, 0·103), 47, 5·103 (±5, 1·103)
and 73, 6·103 (±1, 5·103) evaluations, respectively. Most importantly surprise search is sig-
nificantly faster (p < 0.05) than novelty search in the very hard maze: on average surprise
search finds the solution in 76, 3·103 (±10, 5·103) evaluations, whereas novelty search re-
quires 115, 6·103 (±16, 2·103) evaluations. Also in the extremely hard maze, surprise search
is faster than novelty search, as they obtain 154, 8·103 (±17, 0·103) evaluations and 178, 1·103

(±17, 2·103) evaluations, respectively. Furthermore surprise search is significantly faster
(p < 0.01) than SSnp, which requires 117, 6·103 (±14, 8·103) and 200, 2·103 (±15, 1·103)
evaluations in the very hard and the extremely hard maze, respectively.

The findings from the above experiments indicate that, in terms of maximum fitness ob-
tained, surprise search is comparable to novelty search and far more efficient than objective
search in deceptive domains. We can further argue that the deviation from the predictions
(which are neither random nor omitted) is beneficial for surprise search as indicated by the
performances of SSr and SSnp. The performance of this baseline appears to be similar to
novelty search, especially in harder mazes; this is not surprising as SSnp is conceptually
similar to novelty search, as noted in Section 4.1.2. It is also clear that, on average, surprise
search finds the solution faster than any other algorithm in all mazes.

Robustness

Robustness is defined as the number of successes obtained by the algorithm across time
(i.e., evaluations). In Figure 4.6 we compare the robustness of each approach across the
four mazes, collected from 100 runs. In the medium maze (Fig. 4.6a), surprise search
is more successful than novelty search in the first 20,000 evaluations; moreover, surprise
search finds, on average, the 100 solutions in fewer evaluations compared to the other
approaches. As noticed in the previous section, in the first 20,000 evaluations novelty
search has a comparable or higher efficiency in Fig. 4.5a; this points to the fact that while
some individuals in surprise search manage to reach the goal, others do not get as close to
it as in novelty search. On the other hand, objective search fails to find the goal in 29 runs,
because of the several dead-ends present in this maze. The control algorithm SSnp finds
the goal 93 times out of 100, but it’s slower compared to novelty and surprise search. Few
solutions are found by the baseline random search and SSr, and they are significantly slower
than the other approaches. Fig. 4.6b shows that, in the hard maze, novelty search attains
more successes than surprise search in the first 10,000 evaluations but the opposite is true
for the remainder of the evolutionary progress. As in the previous maze, this behaviour
is not reflected in the efficiency graph (Fig. 4.5b): this can be explained by how surprise
search evolves individuals, as they change their distance to the goal more abruptly, while
novelty search evolves behaviours in smooth incremental steps. On the other hand, SSnp

54

4.1. Maze Navigation Test Bed

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 4.6: Robustness comparison. The graphs depict the evolution of algorithm suc-
cesses in solving the maze problem over the number of evaluations.

finds fewer solutions in this maze, 62 out of 100. Finally, the deceptive properties of this
maze are exemplified by the poor performance of objective search and the two random
baselines.

The capacity of surprise search is more evident in the very hard maze (see Fig. 4.6c)
where the difference in terms of robustness becomes even larger between surprise and novelty
search. While in the first 50,000 evaluations novelty and surprise search attain a comparable
number of successes, the performance of surprise search is boosted for the remainder of the
evolutionary run. Ultimately, surprise search solves the very hard maze in 99 out of 100
times in just 160,000 evaluations whereas novelty search manages to obtain 85 solutions by
the end of the 250,000 evaluations. With 88 solutions out of 100, SSnp performs similarly to
novelty search in this maze but is generally slower compared to surprise search. Objective
search and the two random baselines, as expected, do not succeed in solving the maze.

Similarly, in the extremely hard maze (see Fig. 4.6d) the benefits of surprise search over
the other algorithms are quite apparent. While surprise and novelty obtain a similar number
of successes in the first 100,000 evaluations, surprise search obtains more successes in the
remaining evaluations of the run. At the end of 250,000 evaluations in the most deceptive

55

Chapter 4. Surprise Search: Experiments

Table 4.1: Behavioral Space. Typical successful runs solved after a number of evaluations
(E) across the four mazes examined. Heatmaps illustrate the aggregated numbers of final
robot positions across all evaluations. Note that white space in the maze indicates that no
robot visited that position. The entropy (H ∈ [0, 1]) of visited positions is also reported
and is calculated as follows: H = −(1/logC)

∑
i{(vi/V)log(vi/V)}; where vi is the number

of robot visits in a position i, V is the total number of visits and C is the total number of
discretized positions (cells) considered in the maze.

Medium Maze Hard Maze

Novelty Search Surprise Search Novelty Search Surprise Search

E = 25000 E = 25000 E = 25000 E = 25000
H = 0.63 H = 0.67 H = 0.61 H = 0.67

Very Hard Maze Extremely Hard Maze

Novelty Search Surprise Search Novelty Search Surprise Search

E = 75000 E = 75000 E = 75000 E = 75000
H = 0.63 H = 0.69 H = 0.64 H = 0.68

map examined, surprise search finds solutions in 67 runs versus 48 runs of novelty search.
SSnp finds 39 solutions and it is generally slower than novelty and surprise search. As in
the very hard maze, the remaining algorithms fail to find a single solution to this maze.

Analysis

As an additional comparison between surprise and novelty search, we study the behavioural
and genotypical characteristics of these two approaches. The behavioural space is presented
in a number of typical runs collected from the four mazes, while the genotypical space is
inspected through the metrics computed from the final ANNs evolved by these two algo-
rithms. Furthermore, we perform an analysis of the computational cost to run novelty and
surprise search. Objective search and the other baselines are not further analysed in this
section to emphasise on comparisons between surprise and novelty search.

Behavioral Space: Table 4.1 shows pairs of typical surprise and novelty search runs for
each of the four mazes; in all examples illustrated the maze is solved at different number of
evaluations as indicated at the captions of the images. Typical runs are shown as heatmaps
which represent the aggregated distribution of the robots’ final positions throughout all
evaluations. Moreover, we report the entropy (H) of those positions as a measure of the

56

4.1. Maze Navigation Test Bed

Table 4.2: Genotypic Space. Metrics of genomic complexity of the final evolved ANNs,
averaged from successful runs. Values in parentheses are 95% confidence intervals.

Maze Algorithm
Genomic Complexity

Connections Hidden Nodes

Medium
Surprise 35.97 (3.35) 2.66 (0.30)
Novelty 28.69 (1.30) 2.28 (0.23)

Hard
Surprise 52.34 (5.73) 3.85 (0.53)
Novelty 32.56 (2.04) 2.48 (0.27)

Very Hard
Surprise 124.21 (17.01) 8.26 (1.11)
Novelty 44.42 (3.26) 3.41 (0.45)

Extremely Hard
Surprise 179.94 (30.83) 11.43 (1.90)
Novelty 48.14 (3.83) 3.88 (0.48)

populations’ spatial diversity in the maze. Surprise search seems to explore more uniformly
the space, as revealed by the final positions depicted in the heatmaps. The corresponding
H values further support this claim, especially in the more deceptive mazes.

Genotypic Space: Table 4.2 contains a set of metrics that characterize the final ANNs
evolved by surprise and novelty search obtained from all four mazes, which quantify aspects
of genomic complexity. For genomic complexity we consider the number of connections
and the number of hidden nodes of the final ANNs evolved. As noted in (Lehman and
Stanley, 2011a), novelty search tends to evolve simpler networks in terms of connections
when compared to objective search. Surprise search, on the other hand, seems to generate
significantly more densely connected ANNs than novelty search (based on the number of
connections). It also evolves slightly larger ANNs than novelty search (based on the number
of hidden nodes). In the more deceptive mazes, differences in genomic complexity become
significantly larger. In the very hard maze the average number of connections for surprise
search grows to 124.21 (±17.01) while novelty search evolves ANNs with 44.42 (±3.26)
connections, on average; the number of hidden nodes used by surprise search is significantly
larger (8.26 ± 1.11) compared to novelty search. A similar trend can be noticed in the
extremely hard maze, where again surprise search evolves denser and larger ANNs. As
mentioned earlier, handling more complex and larger ANNs has a direct impact on the
computational cost of surprise search since it takes more time to simulate new networks
across generations. It should be noted that creating larger networks does not imply that this
behaviour is beneficial, it is however an indication that surprise search operates differently
to novelty search.

4.1.4 Generality

Previously we showed the power of surprise search in four selected instances of deceptive
problems. While surprise search outperforms novelty and objective search both in terms of
efficiency and robustness in four human-designed mazes, an important concern is whether
these results are general enough across a broader set of problems.

In order to assess how surprise search generalises in any maze navigation task, we fol-
low the methodology presented by Lehman and Stanley (2011d) and test the performance
of surprise, novelty and objective search as well as the baselines across numerous mazes

57

Chapter 4. Surprise Search: Experiments

2 subdivisions 3 subdivisions 4 subdivisions 5 subdivisions 6 subdivisions

Figure 4.7: Maze generator: Sample generated mazes (200x200 units) created via recur-
sive division, showing the starting location (grey filled circle) and the goal location (white
circle).

generated through an automated process. Moreover, the parameters of kSS and nSS which
were fine-tuned for the problem at hand in each of the four previous authored maze are now
kept the same, enabling us to observe if a particular parameter setup for surprise search
can perform well in unseen problems of varying complexity.

Experiment Description

To compare the capabilities in navigation policies of surprise, novelty and objective search
in increasingly complex maze problems, we test their performance in 60 randomly generated
mazes. These mazes are created by a recursive division algorithm (Reynolds, 2010), which
starts from an empty maze and divides it into two areas by adding a vertical or a horizontal
wall with a randomly located hole in it. This process is repeated until no areas can be further
subdivided, because doing so would make the maze untraversable or because a maximum
number of subdivisions is reached. In this experiment, the starting position and the ending
position of the maze have been fixed in the lower left and upper right corner respectively,
while the generated mazes have a number of subdivisions chosen randomly between 2 and
6. These values have been chosen empirically to avoid generating mazes that are too easy
(solvable by all three methods in few generations) or impossible to solve (because of too
many subdivisions). Examples of the mazes generated are shown in Fig. 4.7, while the
complete set of 60 generated mazes used are available in the Appendix B. The parameters
of surprise search and novelty search are fixed based on well-performing setups with mazes
of Section 4.1.3: surprise search uses kSS = 200 and nSS = 2 (used in the very hard maze)
and novelty uses nNS = 15 (used in medium, hard and very hard mazes). Each generated
maze was tested 50 times for each of three methods, measuring the number of successes
(i.e., once the agent reaches the goal) in each maze. The number of simulation timesteps is
set to 300 and the number of generations to 600.

Experiments

As a first analysis, we report the efficiency and robustness obtained by aggregating all the
runs of the 60 generated mazes for each approach, i.e., a total of 3000 runs. In terms of
efficiency, from Fig. 4.8 we can observe that surprise search is faster than novelty search
and significantly faster than objective search (p < 0.05). Surprise, novelty and objective
search require on average 71, 9·103 (±2, 3·103), 76, 2·103 (±2, 3·103) and 84, 4·103 (±2, 3·103)
evaluations for each success, respectively. Furthermore, surprise search shows a significant
improvement compared to the random baselines. Respectively, SSnp, SSr and random

58

4.1. Maze Navigation Test Bed

Table 4.3: Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared to the algorithm
in a column. Last row and last column are respectively the average of each column and the
average of each row.

OS NS SS SSnp SSr RS Average

OS - 15% 5% 6% 71% 78% 35%

NS 40% - 8% 20% 75% 81% 44.8%

SS 56% 40% - 45% 78% 85% 60.8%

SSnp 51% 35% 11% - 78% 85% 52%

SSr 1% 1% 1% 1% - 36% 8%

RS 0% 0% 0% 0% 20% - 4%

Average 29.6% 19% 5% 16.5% 62.8% 71.8% -

search obtain 75, 5·103 (±2, 3·103), 118, 7·103 (±1, 9·103) and 123, 6·103 (±1, 8·103) eval-
uations; both SSr and random search are significantly different from the performance of
surprise search (p < 0.05). In terms of robustness, Fig. 4.9 shows that surprise search finds
more successes from 112, 500 evaluations onward compared to novelty and objective search.
In particular, surprise search finds 1, 997 successes within 150, 000 evaluations, while nov-
elty search, SSnp and objective search find respectively 1, 838, 1, 907 and 1, 676 successes.
Unsurprisingly, the two random baselines find significantly less successes than any other ap-
proach considered, as they find only 846 successes (SSr) and 741 successes (random search)
after the maximum number of evaluations considered.

As a further analysis on the results obtained with the 60 mazes, we focus on which of
the evolutionary approaches finds strictly more successes. Table 4.3 shows that surprise
search has more successes than novelty search in 40% of mazes, while novelty achieves
more successes than surprise search in 8% of the generated mazes. Comparing the results
of these two approaches against objective search, surprise search outperforms objective
search in more mazes (56%) than novelty search (40%). If we look at the baselines, SSnp
reaches comparable performance to novelty search, but surprise search remains the most
successful algorithm, as it outperforms SSnp in 45% of the considered mazes. Finally, SSr
and random search evidently perform poorly compared to the other approaches. As a final
analysis, we investigate the genomic complexity of the successful controllers evolved by
surprise and novelty search across the 60 generated mazes. Surprise search shows similar
trends compared to the results obtained with the four authored mazes, as it consistently
evolves larger networks compared to novelty search. In particular, SS generates on average
54.9 (±2.3) connections, significantly more compared to NS, which evolves more sparse
networks (30.1 ±0.6). We can draw similar conclusions by looking at the average number
of hidden nodes: SS evolve significantly bigger networks than NS, as they evolve on average
3.8 (±0.2) and 2.4 (±0.1) nodes respectively.

The reported results confirm the conclusion drawn in the four authored mazes (Section
4.1.3), as we can see that the results are consistent across the authored and the generated
mazes. Surprise search is, on average, a more efficient and robust approach across different
degree deceptiveness and, more importantly, it finds more successes compared to novelty
search and the other baselines.

59

Chapter 4. Surprise Search: Experiments

Figure 4.8: Efficiency: number of evaluations on average by aggregating all the runs of the
60 generated mazes for each algorithm (i.e., 3000 runs per algorithm). Error bars denote
95% confidence intervals; the maximum number of evaluations is 150 · 103.

Figure 4.9: Robustness: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method.

60

4.2. Soft Robot Test Bed

4.2 Soft Robot Test Bed

The goal of this section is to compare and asses the capabilities of surprise search in a
more challenging and complex domain: virtual creature evolution. While the environment
and encoding directly affect the design space and the expressivity of evolved robots, a
poorly designed reward system can limit the potential for creative discovery in the design
space (Lehman and Stanley, 2011b). For example, local optima in the fitness function
can strongly bias the search towards less interesting morphologies. By explicitly ignoring
the objective, open-ended evolution can instead overcome the limitations of traditional
fitness-based search. This section shows how surprise search is able to discover diverse and
well-performing solutions in the search space of virtual creatures.

4.2.1 Domain

As described in Chapter 2, we employ the methodology proposed in (Cheney et al., 2013)
to evolve soft morphologies, where CPPNs are used as representation (Stanley, 2007) and
evolved using the neuroevolution of augmenting topologies algorithm (Stanley and Mi-
ikkulainen, 2002). The evaluation is based on data collected through simulations run on
VoxCad by Hiller and Lipson (2012), which simulates the statics, dynamics and non-linear
deformation of heterogeneous soft materials quantitatively. The simulation framework can
reproduce several materials, both active (volumetric actuated materials) and passive (for
example soft and hard tissue with different stiffness). Following Cheney et al. (2013), soft
robots consist of four materials, two active (red and green) and two passive (cyan and
blue). Green voxels expand and contract following a signal at a predefined frequency, while
a counter-phase signal actuates the red voxels. Passive materials are not actuated but are
deformed by nearby materials: cyan voxels are soft (low stiffness), while blue voxels are
harder and stiffer. These voxels are placed on a 3D lattice with a predefined resolution; the
evolved morphologies are simulated via VoxCad (Hiller and Lipson, 2012) and the resulting
behavior is used to compute the fitness of the evolved robot. As in (Cheney et al., 2013), a
CPPN is used to determine the material (if any) of each voxel. Each x, y, z coordinate of
the cubic lattice is provided as input to the CPPN: its first output determines whether the
voxel is empty, while the highest score of the remaining four outputs decides the material
of that voxel (see Figure 4.10).

4.2.2 Algorithms

Three different search methodologies are tested, and the fittest individuals of 90 independent
runs are collected and analyzed in terms of efficiency, robustness and diversity. Robots
evolved by surprise search are compared with two algorithms: novelty search and objective
(i.e., fitness-based) search.

Objective search

In fitness-oriented search, the objective is to evolve robots capable of moving as far away
as possible from a fixed starting point. Based on (Cheney et al., 2013; Methenitis et al.,
2015), the chosen performance metric is the Euclidean distance of the robot’s center of
mass between the initial and the end of simulation time in body lengths (see Figure 4.11a).
Objective search attempts to maximize this distance.

61

Chapter 4. Surprise Search: Experiments

Figure 4.10: Representation: a CPPN describes the materials of a 5×5×5 lattice.

(a) Fitness characterization (b) Distance characterization

Figure 4.11: Behavior Characterization: behaviour characterization used for objective
(the euclidean distance between starting point and ending point) and novelty (the average
distance of two trajectories sampled at the same rate; here only 5 samples are shown).

Divergent Search

Divergent algorithms such as novelty search and surprise search require a different be-
haviour characterization in order to compute the distance between individuals (dNS(i, j) in
Eq. 2.3 and dSS(i, j) and Eq. 3.2). Several behaviour characterizations have been explored
in (Methenitis et al., 2015), such as the number of voxels touching the ground, the kinetic
energy or the pressure. A straightforward behaviour characterization is the trajectory of
the soft robot during simulation, which is directly correlated with the robot’s displacement.
The two-dimensional trajectory1 of the soft robots has proved to be best in achieving good
performance with novelty search (Methenitis et al., 2015). For a fair comparison between
novelty search and surprise search, the distance characterization for both the algorithms is
the average of the Euclidean distance of the sampled points of two trajectories ti and tj
(see Eq. 4.1 and Fig. 4.11b). All trajectories start at the same point and are sampled at a
fixed rate, which guarantees a behaviour with a fixed length. Moreover, all trajectories are
transformed to make the computed measures rotation invariant, i.e., all points are rotated
so that the average over all path points fall on the x-axis.

1The three-dimensional trajectory of the robot is simplified by ignoring the height (z) component.

62

4.2. Soft Robot Test Bed

(a) Generation t− 2 (b) Generation t− 1 (c) Generation t

Figure 4.12: Surprise Behavior Characterization: The key phases of the surprise search
algorithm. Surprise search uses a history of two generations (h = 2) and 15 clusters (kSS =
15) in this example. One cluster’s centroid in generations t − 2 and t − 1 as well as their
predictions are depicted, respectively, as red, dark red and blue lines.

dist(i, j) =
K∑
k=1

||ti,k − tj,k|| , (4.1)

where ti,k is the position of the robot i at the simulation step k. K is the total number of
samples considered during the simulation.

Novelty Search: Novelty search uses the same parameters as in (Methenitis et al.,
2015); the novelty score is computed as the average distance of 10 nearest neighbours
(nNS = 10 in Eq. 2.3) using Eq. 4.1 for dNS .

Surprise search: As described in Chapter 3, surprise search relies on a prediction
model and a distance function. The surprise score is computed as the Euclidean distance
between the individual’s trajectory and the four closest predicted trajectories (nSS = 4
in Eq. 3.2). The predicted trajectories are computed by using linear regression of the
sampled point of the previous two generations (h = 2 in Eq. 3.2). The local behaviours are
computed via the k-means clustering algorithm (see Fig. 4.13), where kSS = 15 (in Eq. 3.1),
found empirically based on the best objective score acquired as per Section 4.2.2. Figure
4.12 illustrates the prediction process works for one cluster centroid. When calculating the
surprise score for generation t, the robots of generation t−2 are clustered into kSS trajectory
centroids based on k-means; in generation t− 1 the algorithm computes another set of kSS
clusters. Finally, at generation t, kSS prediction are computed via linear interpolation from
t− 2 to t− 1. The surprise score (Eq. 3.2) is then calculated as the average distance from
the four closest predicted trajectories, using Eq. 4.1 for dSS .

4.2.3 Experiments and Analysis

Previous work has explored the effectiveness of divergent algorithms such as novelty search
in a soft robot’s environment (Methenitis et al., 2015). However, in this section we want
to extensively assess how surprise can affect the outcome of soft robot evolution. Therefore
we propose to analyze the differences of three algorithms on different dimensions, both in
terms of performance and variety of structures.

Reported results are collected from the 90 fittest individuals in 90 independent evolu-

63

Chapter 4. Surprise Search: Experiments

Figure 4.13: Visualization of the k-means calculation for surprise search: the
thick red and green lines are, respectively, two example centroid trajectories obtained by
clustering the dotted red and dotted green robot trajectories.

tionary runs across 8 different resolutions2 (based on the characterization of Fig. 4.11a). We
also report an in-depth analysis of the behaviours evolved for a specific resolution. Reported
significance is at a 95% confidence. For multiple pairwise comparisons the Tukey’s range
test is used to establish significance.

Experiment parameters

The simulation in VoxCad uses the same parameters as (Methenitis et al., 2015), in par-
ticular a gravity of −27.6 m/s2, a simulation time of 0.4 seconds, a rate of 40 Hertz for
the signal that actuates active voxels and a sampling rate of 100 Hertz. Robots evolved
in this chapter have a lattice resolution between 33 and 103 included. The evolutionary
algorithm has a population of 30 individuals, which evolve for 1000 generations. It should
be noted that, unlike the previous domain, the selection mechanism is generational. Other
CPPN-NEAT parameters are the same as in (Cheney et al., 2013), and an interested reader
may find a list of them and their respective values in the Appendix A.

The main goals of robot locomotion are efficient (via the objective characterization in
Fig. 4.11a) behaviours. Focusing exclusively on the 90 fittest individuals collected from
90 independent runs across 8 resolutions, we report the results in terms of efficiency and
robustness. All values are normalised to the dimension of the 3D lattice (i.e., every value
is in body lengths of the robot).

Efficiency

Efficiency is defined as the average number of body lengths covered by the fittest robot
evolved for each method, the same fitness characterization used for objective search, as in
Fig. 4.11a.

If we look at the results, it is obvious from Table 4.4 that objective search creates
less efficient robots compared to both novelty and surprise search. Despite the fact that
objective search explicitly selects robots based on this fitness, surprise search and novelty
search explore different behaviours and manages to evolve structures that reach further.
The reported results show that the two divergent methods perform in a similar way, with

2The fittest individual of each independent evolutionary run is selected.

64

4.2. Soft Robot Test Bed

Table 4.4: Efficiency: average efficiency computed from 90 independent runs (95% con-
fidence interval in parentheses). Bold values are significantly different from all the other
approaches.

OS NS SS
3x3x3 7.74 (0.50) 8.88 (0.19) 9.32 (0.26)
4x4x4 8.13 (0.16) 9.89 (0.35) 10.71 (0.34)
5x5x5 7.51 (0.36) 11.13 (0.33) 10.73 (0.37)
6x6x6 8.38 (0.44) 11.15 (0.28) 11.43 (0.48)
7x7x7 8.07 (0.41) 11.03 (0.37) 10.57 (0.32)
8x8x8 9.23 (0.66) 11.47 (0.39) 11.35 (0.38)
9x9x9 8.32 (0.47) 11.48 (0.37) 11.08 (0.32)
10x10x10 9.29 (0.67) 11.32 (0.38) 11.18 (0.43)

an advantage for surprise search for the lower resolutions (significantly at 4×4×4, p < 0.05)
while novelty search performs slightly better in the higher resolutions (5× 5× 5, 7× 7× 7,
8× 8× 8, and 10× 10× 10), but not significantly.

Robustness

Robustness for soft robot evolution is defined as the number of fittest robots able to cover
a certain threshold distance from a fixed starting point. Unlike maze navigation, where
success is implicitly given by the domain formulation, in this test bed what a “successful
robot” means is more difficult to define. Assuming that the main interest lies in robots that
cover the maximum possible distance, we accept that a robot can be considered successful if
it covers at least a certain distance’s threshold. Therefore, the robustness metric is equal to
the number of robots that are able to cover a least a distance equal to the selected threshold,
where body lengths is the unit used. (based on the fitness characterization used in 4.11a)

Fig. 4.14 shows how robustness changes across 10 different thresholds (from 5 to 15
body lengths), for the 8 selected resolutions. Unsurprisingly, objective search is constantly
outperformed by the two divergent approaches. However, it is possible to notice that for
certain resolutions (e.g., 83 and 103) objective search eventually reaches the performances of
the other two approaches for the higher thresholds. This implicates that in some fortuitous
runs objective search is able to escape the local optimum and find an effective morphology.

On the other hand, as previously noticed, the two divergent approaches have similar
performances. If we focus on the lower resolutions, surprise search shows better perfor-
mances compared to novelty search, in particular for the resolution 43, where SS finds more
or equal successes compared to novelty search across all the 10 thresholds. In contrast, in
the higher resolutions, novelty search performs better, especially in the two resolutions 53

and 93, where NS constantly finds more successful morphologies.

Structural variety

While ultimately the interest lies in the soft robots’ performances, the robot’s structure is
what is evolved via the CPPN representation and, evidently, can severely affect its walk
cycle. This section examines the structural patterns and variety of the 90 fittest robots
from 90 independent runs.

To evaluate the variety of morphologies evolved by the three approaches, we investigate
how each algorithm explores the structural space in two main feature dimensions, the num-

65

Chapter 4. Surprise Search: Experiments

(a) 3x3x3 (b) 4x4x4 (c) 5x5x5

(d) 6x6x6 (e) 7x7x7 (f) 8x8x8

(g) 9x9x9 (h) 10x10x10

Figure 4.14: Robustness: number of successes across different thresholds for the 8 lattice’s
resolutions considered. The graphs depict the number of successes for different performance
thresholds.

ber of filled materials and the number of bones (i.e., blue voxels). In order to investigate
how the different search processes explore the space of robot structures, we take inspiration
from the feature mapping employed in the MAP-elites algorithm (Mouret and Clune, 2015)
to evolve soft robots. Unlike MAP-elites (Mouret and Clune, 2015), structural diversity
is not explicitly targeted in this case; it is interesting to see how this space is explored
when the diversity criterion is behavior in terms of movement trails. To assess structural
diversity, we compute the feature maps using the individuals evolved in one run sampled
every 10 generations, and we add the individual in the map if the selected bin is empty or
the fitness is lower compared to the individual tested. In total, therefore, 3 · 103 individuals
are tested per run; results are averaged from 90 independent runs per lattice resolution.
The two feature dimensions are the same as in (Mouret and Clune, 2015): the percentage
of the voxels filled (x-axis), and the percentage of blue stiff voxels, i.e., bones (y-axis). An
example of the feature maps and the binning method is shown in Fig. 4.16. As the smallest
lattice resolution is 27 voxels, the feature maps have a resolution of 27× 27.

Fig. 4.15 shows the number of explored bins averaged across 90 runs for each of the
eight lattice resolutions. Interestingly, novelty search and objective search tend to explore
fewer bins in the two feature dimensions considered, while surprise search is able to explore
more broadly; the reported metrics of OS, NS, and SS are significantly different for all the

66

4.2. Soft Robot Test Bed

Figure 4.15: Structural variety: average number of explored bins for all feature maps.
Each bar is normalized by the maximum number of possible bins and error bars display the
95% confidence interval of the average shown.

(a) Objective search (b) Novelty search (c) Surprise search

Figure 4.16: Feature maps: sample feature maps produced by the three methods, for a
single evolutionary run on a resolution of 5 × 5 × 5. White bins do not have any robots,
while colored bins denote the fitness of the best individual (blue for low fitness, red for high
fitness).

resolutions considered (p < 0.05). In terms of the structures favored by the different EC
methods, novelty search tends to favor consistently more filled structures composed of more
active materials; on the other hand, SS tends to explore less filled structures composed of
more non-reactive materials, as can be noticed in the example of Fig. 4.16 for the resolution
5× 5× 5; samples taken from all the 8 resolutions are reported in Appendix C.

Typical Behaviour Analysis

In order to have a better understanding of the reasons behind the performance and mor-
phologies evolved by each algorithm, it is worthwhile to investigate what behaviours are
favoured by each algorithm. For the sake of visualization, we report here only one resolu-

67

Chapter 4. Surprise Search: Experiments

Table 4.5: Behavioural analysis: behavioural performance metrics (resolution 5× 5× 5)
as the mean values of 90 independent runs (95% confidence interval in parentheses). Bold
values are significantly different from all other methods.

Objective Novelty Surprise

Trajectory length 7.64 (0.44) 12.91 (0.33) 12.14 (0.36)
Deviation 0.22 (0.03) 0.59 (0.06) 0.63 (0.07)
Max velocity 34.14 (2.28) 57.24 (1.27) 53.57 (1.81)
Mean velocity 19.11 (1.11) 32.28 (0.84) 30.37 (0.92)

tion, i.e., 53; an interested reader may find all the 8 resolutions in Appendix C.
Specifically, Table 4.5 shows that in terms of actual trajectory length (i.e., length of the

red line in Fig. 4.11a), robots evolved via novelty and surprise unsurprisingly make longer
trails than objective-based search. Interestingly for these two approaches the trail is much
longer than the Euclidean distance (i.e., their efficiency, see Table 4.4), while for objective
these values are fairly similar. Indeed, calculating deviation from the shortest path as the
average distance of each point in the trail from the shortest distance (i.e., the distance
between the red line and the black line in Fig. 4.11a) it is obvious that the trails of novelty
and surprise are curvier (higher deviation) while trails of objective are more straight.

Based on the observations regarding trail lengths, it comes as no surprise that both
the mean and the maximum velocity of robots evolved via objective search is significantly
lower than that of novelty and surprise search. This indicates that robots evolved for
objective, surprise and novelty have different walking rhythms and gaits. Fig. 4.17a shows
the velocity on the x − y plane for the resolution 5 × 5 × 5 (i.e., Euclidean distance of
consecutive samples in the trajectory over their time interval). It is obvious that while
robots evolved for objective have a steady rhythm of speeding up and slowing down, in
line with the periodic signal that actuates active voxels, robots evolved for both divergent
search approaches maintain a constantly high speed, with novelty showing erratic speed
changes not in sync with the signal. From visual inspection, another characteristic of these
fast robots evolved by novelty and surprise search is that they more drastically along the
z axis (performing jumps). Fig. 4.17b shows the velocity only in terms of changes in the
z axis, where it is obvious that robots from divergent search have more vertical movement
overall.

To demonstrate the impact of different robot structures on their behaviour, Fig. 4.18
shows snippets of the walk cycles sampled from the fittest individuals evolved by each evolu-
tionary approach. Fig. 4.18a shows the movement of the pyramid-like structure favoured by
objective search, which moves slowly along the ground. It is very stable with the centre of
mass at the bottom, and this allows it to keep moving even in longer simulations; however,
as one of its pseudopods is made of inactive (blue) voxels, its movement is curved and it
ends up walking in circles in longer simulations. On the other hand, both the green cube
of Fig. 4.18b and the red-green cube of Fig. 4.18c perform the aforementioned jumps by
contracting and expanding their entire body (almost), but as they move they also rotate
(90 degrees for Fig. 4.18b, 180 degrees for Fig. 4.18c).

68

4.2. Soft Robot Test Bed

(a) Velocity on the x− y plane.

(b) Velocity on the z plane.

Figure 4.17: Velocity: mean of velocities over time for the resolution 5 × 5 × 5 (95%
confidence interval as error bar).

(a) Objective search

(b) Novelty search

(c) Surprise search

Figure 4.18: Walk cycles: walk cycles of different soft robots

69

Chapter 4. Surprise Search: Experiments

4.3 Discussion

This dissertation identified the notion of surprise, i.e., deviation from expectations, as an
alternative measure of divergence (compared to the notion of novelty) and presented a gen-
eral framework for incorporating surprise in evolutionary search in Chapter 3. In order
to highlight the differences between surprise search and other divergent search techniques
(such as novelty search) or baselines (such as random search or objective search), experiment
in two domains have been carried out and comparisons between algorithms were made on
several dimensions. The key findings of these experiments suggest that in maze navigation
problems surprise search yields comparable efficiency to novelty search and it outperforms
objective search. Moreover it finds solutions faster and more often than any other algorithm
considered. In the soft robot domain, instead, surprise yields comparable performances to
novelty search. This probably can be attributed to the more complex behaviour character-
ization used. However, in terms of variety, surprise search explores more extensively and
consistently the search space across eight resolutions.

Based on the findings in the maze navigation experiment, the difference between the two
algorithms is manifested in both the behavioral and the genotypic space. Surprise search is
more exploratory than novelty search in the deceptive mazes examined as it leads to higher
spatial diversity. Spatial exploration in surprise search increases over time, gradually im-
proving the search capacity of the algorithm. Furthermore, surprise search yields larger
and denser ANN controllers while diversifying the population more than novelty search. In
summary, the combined characteristics of higher population diversity, ANN connectivity
and exploratory capacity indicate that surprise search performs a different and more effec-
tive type of search compared to novelty. Furthermore, the comparative analysis of surprise
search against random search suggests that surprise search is not random search. Clearly
it outperforms random search in efficiency and robustness. Furthermore, the poor per-
formance of the two surprise search variants—employing random predictions and omitting
predictions—suggests that the prediction of expected behavior is beneficial for divergent
search.

Looking at the soft robot test bed, surprise search performs similarly to novelty search—
with some differences across the eight resolutions considered—and unsurprisingly, it con-
stantly outperforms objective search. However, surprise search tends to explore the mor-
phological space more expansively—especially in terms of the volume of filled materials
or passive materials. This can be an advantage for a quality diversity algorithm, as by
combining the search capabilities of novelty and surprise might bring better performance
overall, as we will see in Chapter 6. Results obtained by objective search clearly show that
the problem is deceptive, as it fails to reach similar performances compared to all diver-
gent approaches in any of the 8 lattice resolutions tested. Moreover, the robots evolved by
objective search are structurally more similar to each other compared to those evolved via
the different divergent search alternatives. Through the in-depth analysis of the evolved
robots’ behavioural characteristics for the resolution 53, there are several insights on how
the search processes differ. Overall, the behaviours outcomes of the two divergent search
algorithms were not particularly different: both novelty search and surprise search evolve
fast-moving, hopping robots which however are not particularly good at controlling their
trajectory. The trajectories of robots evolved for divergent search are curved and erratic
(compared to a straight line from start to finish). Contrarily, objective search is shown to
evolve very different behaviours than divergent search approaches, with most metrics being
significantly different to both of them. Their movement is closer to a straight line, and they

70

4.4. Summary

do not tend to hop or move quickly.
By now we have enough evidence for the benefits of surprise search and enough find-

ings suggesting that surprise search is a different and more robust algorithm compared
to novelty search in maze navigation; moreover, in the more challenging domain of soft
virtual creatures, surprise search has shown broader search capabilities. The comparative
advantages of surprise search over novelty search are inherent to the way the algorithm
searches, attempting to deviate from predicted unseen behaviors instead of prior seen be-
haviors. Furthermore, through our analysis, we have identified qualitative characteristics of
the algorithm that gave us critical insights on the way the algorithm operates. Compared
to novelty search, surprise search may also deviate from expected behaviors that exist in
areas that have been visited in the past by the algorithm. However, we still lack empirical
evidence on the reasons the algorithm manages to perform that well compared to other
divergent search algorithms. A possible intuition about the comparative benefits of surprise
search is that the algorithm allows search to revisit areas in the behavioral space. Such a
behavior, in contrast, is penalized in novelty search. This difference in how the two algo-
rithms operate leads to the assumption that surprise search is more willing to revisit points
in the behavior space—in a form of backtracking or cyclical manner. As a result of this
shifting selection pressure in the behavioral space a different strategy is adopted every time
a particular area is revisited. As explained in detail in Chapter 2, this is a beneficial emer-
gent search behaviour because already visited solutions might hide potentially interesting
path, that cannot be found unless the algorithm backtracks to previously encountered areas
of the search space. The novelty archive operates in a similar fashion; however it contains
positions (instead of prediction points) and these positions are always considered for the
calculation of the novelty score. In surprise search, instead, the prediction points are derived
from clusters that characterize areas in the behavioral space. Such an algorithmic behavior
appears to be beneficial for search and might explain why ANNs get significantly larger in
surprise search in the maze navigation domain and why the structural space explored is
significantly higher in the soft robot domain.

4.4 Summary

This chapter tested the algorithm proposed in this dissertation, surprise search, in two differ-
ent testbeds, maze navigation and soft robot evolution. The objectives of these experiments
were to test the validity of the proposed approach and to compare its performance against
a state-of-the-art divergent algorithm, novelty search. The first section has presented the
maze navigation testbed. In particular, initially we proposed four different authored mazes,
of increasing complexity and deceptiveness. We tested each algorithm on three main as-
pects: efficiency, robustness and analysis of the ANN evolved. The results have shown that,
in this domain, surprise search is more efficient and robust compared to novelty search and
objective search. Moreover, it seems that in the most deceptive mazes, rewarding surprise is
even more advantageous compared to novelty search. In order to test the generality of the
results obtained with the four authored mazes, we presented a more general and extensive
maze navigation task, composed of 60 automatically generated mazes, and we described
the experiments conducted regarding efficiency and robustness obtained. Furthermore, we
performed an analysis in terms of successes obtained in a tournament-fashion comparison
between the approaches tested; this analysis has corroborated the results obtained in the
authored mazes.

71

Chapter 4. Surprise Search: Experiments

In the second section we described experiments conducted in a different and more com-
plex task: soft robot evolution. Based on the analysis of the results obtained in terms of
efficiency, robustness and diversity of the morphologies evolved, we have shown that search-
ing for surprising solutions can be advantageous on the diversity of the evolved robots,
whereas performance-wise novelty and surprise search yield comparable results. These find-
ings support the idea that deviation from expected behaviors can be a powerful alternative
to divergent search with key benefits over novelty or objective search. Generally, our anal-
ysis indicates that different divergent rewards can produce diverse and effective solutions.
Since novelty and surprise were shown to be different, we can imagine that combining the
two algorithms can be a promising approach. This idea will be tested in the next chapter.

72

Chapter 5

Fusing Novelty and Surprise:
Experiments

Divergent search techniques applied to evolutionary computation, such as novelty search
and surprise search, have demonstrated their efficacy in highly deceptive problems compared
to traditional objective-based fitness evolutionary processes, as shown in Chapter 4. While
novelty search rewards unseen solutions, surprise search rewards unexpected solutions. As
a result, these two algorithms perform a different form of search since an expected solution
can be novel while an already seen solution can be surprising. As novelty and surprise
search have already shown much promise individually in difficult domains (Chapter 4), the
hypothesis is that an evolutionary process that rewards both novel and surprising solutions
will be able to handle deception in a better fashion and lead to more successful solutions
faster. To test our hypothesis, in this chapter we test two evolutionary algorithms we name
novelty-surprise search (NSS) and novelty search-surprise search (NS-SS). The first approach
is a first attempt at a combined novelty-surprise search algorithm, and it uses the simplest
alternative of aggregating the novelty score and the surprise score into a single reward.
The second approach, instead, combines novelty and surprise by means of a multi-objective
approach. To validate these two implementations, we employ the same two testbeds used
in Chapter 4: maze navigation and soft robot evolution. In Section 5.1 we compare the
performances of the two novelty-surprise approaches against their base components in four
authored mazes and 60 procedurally generated mazes. In Section 5.2 instead, we compare
the performances of two proposed algorithms in a soft robot evolution domain. Finally, we
discuss the results obtained by these two new algorithms and we advance an argument on
why combining novelty and surprise is beneficial for evolutionary search.

5.1 Maze Navigation Testbed

The maze navigation domain presented in Chapter 4 is a good domain as it is simple to
grasp and apprehend. Therefore, we propose to use the maze navigation task to validate
the two new proposed divergent approaches that couple novelty and surprise. To be able
to compare our findings with the results presented in the previous chapter we test the NSS
and NS-SS algorithms in the previously introduced mazes, i.e., four authored mazes and 60
procedurally generated mazes (described in Section 4.1). In this task a simulated mobile
robot has to find the goal in a maze in a limited number of simulation steps. The robot (Fig.
2.9b) is controlled by an artificial neural network (Fig. 2.9a), with 10 inputs (6 range-finder

73

Chapter 5. Fusing Novelty and Surprise: Experiments

sensors and 4 radar sensors) and 2 outputs (which control robot movement): more details
can be found in Chapter 2 and Chapter 4.

5.1.1 Algorithms

This subsection provides a specific formulation for all the algorithms tested. Overall we
want to test the performance of four algorithms: novelty search, surprise search, novelty-
surprise search and novelty search-surprise search. Below we give the details of the two new
algorithms proposed in this chapter, while for novelty search and surprise search we refer to
the formulation given in Chapter 4 for the maze navigation domain. The NEAT algorithm
uses speciation and recombination, as described in Stanley and Miikkulainen (2002), and it
is steady-state as in Lehman and Stanley (2011a).

Novelty-Surprise Search

As noted in Chapter 3, the novelty-surprise search (NSS) algorithm executes both novelty
and surprise search and it rewards an individual by adding its novelty and surprise score.
Novelty attempts to maximize a novelty score computed in Eq. (2.3), using the Euclidean
distance between the two robots’ final positions at the end of simulation for calculating
distance from the closest individuals. Surprise instead uses the surprise score described
in Equation (3.2); as in novelty search, the behaviour of the robot is characterised by its
final position in the maze. Fig. 4.3 shows the key steps involved in the computation of
the predictions in the maze navigation domain. More details on how novelty and surprise
search are implemented can be found in Chapter 3 and Chapter 4.

Novelty Search-Surprise Search

While NSS uses a linear aggregation of novelty and surprise, NS-SS uses a multi-objective
approach to simultaneously and independently reward novelty and surprise. As noted in
Chapter 3 novelty search–surprise search (NS-SS) uses a NSGA-II multi-objective algo-
rithm (Deb et al., 2002) to search for non-dominated solutions on the dimensions of novelty
(Eq. 2.3) and surprise (Eq. 3.2). In particular, we use a steady-state variant of NSGA-II (Li
et al., 2017) in this domain. Until the termination condition is not met (i.e., a robot reaches
the goal of the maze), we run a steady-state implementation of NEAT. Two mating parents
are selected to reproduce an offspring which is evaluated through the novelty score (Eq. 2.3)
and surprise score (Eq. 3.2). We then replace the worst individual in the population if the
new individual is more fit, and we update the non-dominated fronts as in (Li et al., 2017).
Every generation (i.e., every N offspring reproductions) we update the surprise model, as
explained in Chapter 3, we evaluate and assign to the entire population the novelty and
surprise scores, and we compute the non-domination fronts (Deb et al., 2002). Finally, the
algorithm return in the steady-state loop until new N offspring are generated or the maxi-
mum number of generations is reached. Distance characterizations for novelty and surprise
are computed as in Chapter 4, via the Euclidean distance between the two robots’ final
positions at the end of the simulation.

Baselines

Novelty Search ignores the objective of the problem at hand and attempts to maximize
behavioral diversity. The novelty score, computed through Eq. (2.3), uses the behavioral

74

5.1. Maze Navigation Testbed

distance dNS between two individuals; in this domain dNS is the Euclidean distance between
the two robots’ final positions at the end of simulation. Surprise Search relies on a prediction
model and a distance function (dSS). The surprise score is computed as the Euclidean
distance between the individual’s final positions and the nSS closest predicted behaviours.
The predicted trajectories are computed by using linear regression of the sampled points of
the previous two generations’ final positions. The local behaviours are computed via the
k-means clustering algorithm. More details can be found in Chapter 3 and Chapter 4.

5.1.2 Experiments and Analysis

Four mazes, identified as medium, hard, very hard and extremely hard maze, are used in
this work. The first two mazes were introduced by Lehman and Stanley (2011a), while the
more deceptive very hard and extremely hard mazes have been introduced in the previous
chapter (Chapter 4).

Parameters

The domain-related parameters used are the same of Chapter 4; but we report them again
here for completeness. The evolved robot is considered successful if it manages to find the
goal within a radius of five units in 400 simulation steps for the medium and hard maze, 500
steps for the very hard maze and 1000 steps in the extremely hard maze. All four algorithms
use NEAT to evolve a robot controller with the same parameters as in (Lehman and Stanley,
2011a). The population size is 250 and evolution is carried out for 300 generations (75, 000
evaluations) for the medium and hard maze and for 1000 generations (250, 000 evaluations)
for the very and extremely hard maze.

Parameters for novelty search are the same as in Chapter 4, i.e., nNS = 15 for the
medium, hard and very hard maze, and nNS = 10 for the extremely hard maze. Regarding
surprise search, the surprise score is computed as the Euclidean distance between the robot
and the two closest predicted points (nSS = 2), whereas the prediction model is based on
a one-step linear regression of two past generations (h = 2). The parameter that controls
the clustering of the behaviours (kSS) for the medium and hard maze is modified from the
one used in Chapter 4, in order to make the overall parameter setting more consistent. In
particular, we rerun a sensitivity analysis with nSS = 2 for the two easiest mazes, and the
kSS values that yields the least evaluations are 100 and 50 for the medium and hard maze
respectively. On the other hand kSS for the two hardest mazes remains unchanged, i.e.,
200 and 220 for the very and extremely hard maze respectively. For a fair comparison, the
same parameters for novelty and surprise are used in NSS and NS-SS. An interested reader
may find a detailed list of all the parameters used and their respective values in Appendix
A.

Sensitivity Analysis

For both algorithms that couple novelty and surprise, the specific parameters of novelty
search (nNS) and surprise search (nSS , h, kSS) remain unchanged. However, while NS-SS
doesn’t require any more parameter tuning, NSS combines the novelty and surprise rewards
linearly as in Eq. 3.4. A core component of the proposed NSS algorithm is the λ parameter
which determines the impact of novelty versus surprise in Eq. 3.4: higher λ values put more
weight on novelty. To select appropriate λ values we run 11 experiments for each maze,

75

Chapter 5. Fusing Novelty and Surprise: Experiments

(a) Medium and hard maze (b) Very and extremely maze

Figure 5.1: Sensitivity analysis: selecting λ for NSS. The figure depicts the average
number of evaluations obtained out of 50 runs (of 75 · 103 evaluations for the medium and
hard maze, of 250 · 103 evaluations for the very hard and extremely maze). Error bars
represent the 95% confidence interval.

each time with a different λ value ranging from 0 to 1 in increments of 0.1. Each experiment
is composed of 50 runs of the NSS algorithm with the particular λ parameter.

Fig. 5.1 shows the average number of evaluations required to find a solution across λ,
for each maze. We pick λ values that solve the corresponding maze in the fewest possible
evaluations: in the medium maze and hard maze, this happens for λ = 0.6 leading to an
average of 14.4·103 and 21·103 evaluations respectively. In the very hard maze the fewest
evaluations on average (57.7·103) are found when λ = 0.3. Finally, in the extremely hard
maze the fewest evaluations on average correspond to λ = 0.6 (124·103). Based on the
sensitivity analysis results, we can notice that there is a delicate balance between the two
scores in order to obtain the best performance, with the exception of the very hard maze,
where the surprise weight is higher (λ = 0.3), probably because the performance of vanilla
surprise search are particularly good in this maze (see Chapter 4). However, in three out
of four mazes, λ has bigger values, meaning that novelty is probably the primary driver of
the search. A detailed comparison of NSS and NS-SS against novelty and surprise search is
presented in the next section.

Results

The evolution of successful navigation policies in four deceptive mazes is used to compare
the efficiency and robustness of four divergent algorithms. All results reported are computed
from 50 independent runs; reported significance is at a 95% confidence. For multiple pairwise
comparisons the Tukey’s range test is used to establish significance.

Efficiency: As in the analysis performed in Chapter 4, efficiency is defined as average
number of evaluations to find the solution in the maze. Figure 5.2 shows the efficiency of
the four algorithms considered, for each maze, where values are averaged across 50 runs of
each algorithm and the values in the error bars represent the 95% confidence interval of the
average. In the medium maze, the efficiency of the four algorithms is really similar, even if
on average NSS and NS-SS perform better (13, 8·103 ± 2, 4·103 evaluations for the former
and 13, 7·103 ± 2, 4·103 evaluations for the latter), compared to the two base algorithms
which obtain 19, 0·103± 4, 1·103 evaluations (NS), and 15, 6·103± 3, 5·103 evaluations (SS).

76

5.1. Maze Navigation Testbed

(a) Medium maze (b) Hard maze

(c) Very Hard maze (d) Extremely Hard maze

Figure 5.2: Evaluations. Number of evaluations on average to solve the three mazes for
each algorithm. Error bars denote the 95% confidence interval. The maximum number
of evaluations is 75 · 103 for the medium and hard maze, 250 · 103 for the very hard and
extremely hard maze.

In the hard maze, NS-SS and NSS outperform both NS and SS (see Fig. 5.2b), but the
two new algorithms perform in a similar way. NSS with 19, 6·103 ± 3, 4·103 evaluations
on average and NS-SS with 19, 0·103 ± 4, 9·103 evaluations on average are significantly
faster than novelty search and faster than surprise search. In the very hard maze, Fig. 5.2c
shows that NSS (56, 8·103±1, 2·103 evaluations) and NS-SS (53, 0·103±1, 2·103 evaluations)
outperform significantly NS (p < 0.05) and outperform SS. In the hardest maze (Fig. 5.2d)
we can notice a bigger gap between the performance of NSS and NS-SS, as they obtain
respectively 130, 0·103±2, 1·103 and 106, 0·103±1, 7·103 evaluations, however the difference
is not significant. Most importantly, both approaches outperform significantly the two
baselines in the most deceptive maze. From this initial analysis we can notice that both
NSS and NS-SS are more efficient than their base components, especially in the two hardest
mazes, and NS-SS shows slighty better performance compared to NSS, a difference that
grows with the deception of the mazes.

Robustness: In this section we compare the algorithms’ robustness defined as the
number of successes obtained by the algorithm across time (i.e., evaluations). Fig. 4.6
shows the robustness of all four algorithms for each maze, collected from 50 independent
runs. In the medium maze (Fig. 5.3a) both NSS and NS-SS are able to find on average
more solutions than novelty search. On the other hand, the two approaches outperform SS

77

Chapter 5. Fusing Novelty and Surprise: Experiments

(a) Medium maze (b) Hard maze

(c) Very Hard maze (d) Extremely Hard maze

Figure 5.3: Robustness comparison: number of successes in solving the maze problems
over the number of evaluations.

only in the interval between 15, 000 and 50, 000 evaluations. In the more deceptive hard
maze (Fig. 5.3b) the benefit of combining novelty and surprise is more visible. NSS clearly
outperforms novelty search for the entire evolutionary process, and it outperforms surprise
search between 7, 500 and 40, 000 evaluations. NS-SS shows comparable performances to
NSS, but it is faster between 5, 000 and 15, 000 evaluations. In the third testbed, the very
hard maze, Fig. 5.3c shows how combining novelty and surprise can improve substantially
the performance: from 20, 000 evaluations NS becomes slower in comparison to NSS while
SS also fall behind between 10, 000 and 35, 000 evaluations. As in the previous maze, NS-SS
performs similarly to NSS, but it is faster in the beginning of the evolutionary process, in
particular between 25, 000 and 60, 000 evaluations. In the most deceptive maze, we notice a
bigger performance gap between NSS and NS-SS (Fig. 5.3d). While they clearly outperform
NS and SS, we can notice that from 75, 000 evaluations onwards NS-SS becomes faster in
finding solutions, and it finally reaches 48 out of 50 successes, while NSS only solves the
maze in 43 out of 50 runs.

As a general conclusion from the efficiency and robustness comparisons we can clearly
observe that coupling novelty and surprise yields better performance both in terms of so-
lutions found and in terms of evaluations for discovering a solution. Furthermore, if we
compare NSS and NS-SS, we notice that they perform similarly in first two mazes, but in
the hardest mazes, the benefit of using a multi-objective approach is evident.

78

5.1. Maze Navigation Testbed

Further Analysis

Additional insights on the performance of NSS and NS-SS can be gleaned by analysing the
output in the behavioural space as well as the genotypic space. For the former, we observe
the heatmaps of robot positions in a number of typical runs for each algorithm. For the
latter, we present complexity metrics computed from the final ANNs evolved by the four
algorithms.

Behavioural Space: as done in the previous chapter, Table 5.1 shows a comparison
between typical runs for novelty, surprise, NSS and NS-SS, computed from experiments
in the four authored mazes. Each entry describes the number of evaluations (E) taken
by the algorithm to find the solution and the heatmap shows the robots’ final positions
throughout all evaluations. Moreover their corresponding entropy (H) is shown as a measure
of their spatial diversity. For each maze, the runs shown are chosen so that the number
of evaluations until a solution is discovered are similar among the four algorithms. Not
surprisingly, the table shows that the two approaches that couple novelty and surprise are
able to explore a larger part of the maze, especially for the very hard and extremely hard
mazes: the heatmaps show that NSS and NS-SS result in a more sparse distribution of
final robot positions. Furthermore, the entropy values show that, in the very hard and
extremely hard maze, the diversity of final positions is always higher for each typical run
considered. Investigating other runs with different E values indicated that the difference in
entropy values increases when evolution takes longer to find a solution. Therefore we can
infer that combining novelty with surprise is beneficial also for exploring the behavioural
space: while novelty searches for unexplored points of the maze, surprise search pushes for
unexpected points of the maze, which can involve backtracking to already visited places;
their combination augments their respective search capacities.

Genotypic Space: following the analysis presented in Chapter 4, Fig. 5.4 and Fig. 5.5
show the metrics collected from the final ANNs evolved by the four algorithms, focusing on
their genomic complexity. Genomic complexity is defined as the number of hidden nodes
and as the number of connections in the final ANNs. In terms of genomic complexity, we
observe that NSS evolves ANNs larger than novelty search but at the same time smaller than
surprise search; the same behaviour can be observed in terms of number of connections. This
means that NSS is able to outperform surprise search without creating as complex networks,
which alleviates the computational effort needed to evolve complex and large ANNs. On the
other hand, NS-SS evolve more connected and slightly bigger networks compared to NSS
for the easier two mazes (medium and hard maze). Instead, if we focus on the two harder
mazes, NS-SS evolves smaller networks compared to NSS, which makes this implementation
even more advantageous in terms of computational complexity.

5.1.3 Generality

In the previous chapter, we introduced a second maze navigation testbed, consisting of
60 randomly generated mazes. Therefore, it is interesting testing the capacity in solving
these 60 mazes also for the newly introduced algorithms. The generated mazes and the
maze navigation parameters are the same employed in the previous chapter (Section 4.1.4),
i.e., 300 simulations timesteps and 600 generations (150, 000 evaluations) for each approach
tested.

In this subsection, we test the performances in terms of efficiency and robustness of

79

Chapter 5. Fusing Novelty and Surprise: Experiments

Table 5.1: Behavioural Space. Typical successful runs solved after a number of evalu-
ations (E) on the three mazes examined. Heatmaps illustrate the aggregated numbers of
final robot positions across all evaluations. Note that white space in the maze indicates that
no robot visited that position. The entropy (H ∈ [0, 1]) of visited positions is also reported
and is calculated as follows: H = −(1/logC)

∑
i{(vi/V)log(vi/V)}; where vi is the number

of robot visits in a position i, V is the total number of visits and C is the total number of
discretized positions (cells) considered in the maze.

Medium Maze

NS SS NSS NS-SS

E = 25000 E = 25000 E = 25000 E = 25000
H = 0.63 H = 0.60 H = 0.62 H = 0.62

Hard Maze

NS SS NSS NS-SS

E = 25000 E = 25000 E = 25000 E = 25000
H = 0.61 H = 0.62 H = 0.65 H = 0.65

Very Hard Maze

NS SS NSS NS-SS

E = 75000 E = 75000 E = 75000 E = 75000
H = 0.63 H = 0.69 H = 0.71 H = 0.72

Extremely Hard Maze

NS SS NSS NS-SS

E = 75000 E = 75000 E = 75000 E = 75000
H = 0.64 H = 0.68 H = 0.69 H = 0.69

80

5.1. Maze Navigation Testbed

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 5.4: Genotypic Space: Connections. Metrics of genomic complexity of the final
evolved ANNs, averaged from successful runs. Values in parentheses are 95% confidence
intervals.

NSS, NS-SS, NS and SS against the 60 generated mazes. In particular, the parameters of
four algorithms tested are based on well-performing setups used in the four authored mazes:
λ = 0.6 for NSS, nNS = 15 for NS, NSS and NS-SS, and kSS = 200 and nSS = 2 for SS,
NSS and NS-SS.

Results

Fig. 5.6 shows the efficiency of the four algorithms by aggregating all the 3000 runs com-
puted by using the 60 generated mazes. We can observe that both approaches that couple
novelty and surprise show significantly better performance compared to their base compo-
nents (p < 0.05). On the other hand, as in the four human-designed mazes, the performance
of NSS and NS-SS are comparable (67, 0·103 ± 2, 2·103 and 66, 2·103 ± 2, 2·103 evaluations
on average respectively), even if we can see a small advantage for NS-SS. If we look at
the robustness of the aggregated runs, we can draw similar conclusions. Fig. 5.7 shows
that from 10, 000 evaluations both NSS and NS-SS become faster compared to novelty and
surprise search. From this analysis, we can see that NSS finds more solutions (2, 123 so-
lutions), while NS-SS is faster in the first 40, 000 evaluations, but eventually, it reaches a
slightly smaller number of solutions (2, 116). On the other hand, the two baselines perform
worse, as surprise search obtains 1, 997 solutions and novelty search reaches 1, 838 successful
robots.

A further analysis involves looking at which approach obtains strictly more successes
for each maze in a tournament-like comparison. From Table 5.2, interestingly surprise
search seems to be more successful compared to the other three approaches, as SS “wins”

81

Chapter 5. Fusing Novelty and Surprise: Experiments

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 5.5: Genotypic Space: Hidden nodes. Metrics of genomic complexity of the final
evolved ANNs, averaged from successful runs. Values in parentheses are 95% confidence
intervals.

on average 40.5% comparisons, while NS-SS and NSS obtain on average respectively 33.8%
and 36.6%. However, this finding is not inconsistent with the previous two analyses. In fact,
in this performance comparison, we are comparing the four algorithms on a maze-by-maze
basis, i.e., we compare the successes obtained for each of the 60 mazes. The results show
that most of the mazes are easy to solve, and therefore surprise search is still competitive as
shown in the medium and hard maze. On the contrary, when the mazes become particularly
deceptive, surprise search is outperformed significantly by NS-SS and NSS, as the analysis
of the aggregated runs shows.

Finally, Fig. 5.8 show the average complexity of the successful artificial networks evolved
for each method, i.e., all the ANNs able to find the goal within 300 simulations steps. We
see that similar patterns emerge compared to the analysis performed with the four easiest
mazes. One the one hand, novelty search evolved the simplest networks, and surprise search
pushed for the most complex genotypes. On the other hand, the two combinations of novelty
and surprise evolve network of similar sizes, in between the two extremes represented by
NS and SS. Overall the sizes of the these ANNs are similar to the ones evolved for the two
easiest authored mazes: this is probably a further confirmation that these generated mazes
can be in general solved easily by all the approaches, and the differences emerge only in the
hardest ones.

82

5.1. Maze Navigation Testbed

Figure 5.6: Efficiency: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method. Error bars denote 95% confidence
intervals; the maximum number of evaluations is 150 · 103.

Figure 5.7: Robustness: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method.

83

Chapter 5. Fusing Novelty and Surprise: Experiments

Table 5.2: Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared to the algorithm
in a column. Last row and last column are respectively the average of each column and the
average of each row.

NS SS NSS NS-SS Average

NS – 8.3% 35.0% 36.6% 26.6%

SS 43.3% – 38.3% 40.0% 40.5%

NSS 41.6% 38.3% –% 21.6% 33.8%

NS-SS 41.6% 38.3% 30.0% – 36.6%

Average 42.2% 28.3% 34.4% 32.7% –

(a) Connections (b) Hidden nodes

Figure 5.8: Complexity: number of connections and hidden nodes on average for evolved
ANNs which solve the mazes per approach. Error bars denote 95% confidence intervals.

5.2 Soft Robot Testbed

In Chapter 4 we have shown that in the virtual creature evolution domain novelty search
and surprise search obtain comparable performance across different test cases, but we ob-
tained several insights on how their search processes differ: SS explores more extensively
the space of possible soft morphologies, while NS performs slightly better on the higher
resolutions. Based on the promising findings of the previous section and the results re-
ported in Chapter 4, our hypothesis is that coupling novelty and surprise is a necessary
condition for discovering even more highly-performing and unconventional solutions in the
search space of virtual creatures. In order to test our hypothesis, this section evaluates how
novelty-surprise search and novelty search-surprise search perform compared to their base
components (i.e., novelty search and surprise search) in the domain of soft robot evolution
in terms of efficiency and robustness. The performance of these divergent search approaches
are compared based on the distance travelled by the evolved robots, as shown in Fig. 4.11a.
More details can be found in Chapter 2 and Chapter 4. All algorithms in this section are
tested across eight different soft robot setups, with varying lattice resolution, allowing for
a comprehensive assessment of their efficiency and robustness.

84

5.2. Soft Robot Testbed

Figure 5.9: Sensitivity analysis of λ. The figure depicts the final average fitness of the
fittest individuals obtained from 90 runs across nine λ values in the resolution 5×5×5. Error
bars display the 95% confidence interval of the average shown.

5.2.1 Algorithms

Similarly to Chapter 4, in this section we evaluate the outcomes of soft robot evolution in
terms of efficiency, robustness and structural diversity. The goal is to assess how coupling
two divergent approaches can affect the quality of the outcome and investigate the emerg-
ing differences between the robot structures favored by each EC approach. To compare the
algorithms in terms of efficiency and robustness, the fittest individuals (based on the charac-
terization of Fig. 4.11a) in each of 90 independent runs are collected. Further, the structural
diversity of the obtained robots is analyzed based on the 90 populations evolved by each
algorithm, to test their ability to explore different morphologies throughout evolution.

Novelty-Surprise Search

Novelty-surprise search (NSS) linearly combines the novelty and surprise scores as in Eq.
(3.4). While the specific parameters of novelty search and surprise search remain unchanged
(as reported above), the linear combination of novelty and surprise hinges on the λ pa-
rameter that controls the relative importance of the two rewards. In order to select the
appropriate λ parameter, we run 9 experiments with λ ranging from 0.1 to 0.9. Each ex-
periment is composed of 20 runs of the NSS algorithm with a particular λ parameter. Fig.
5.9 shows the average number of body length covered by the fittest individual across λ, for
a representative resolution of 5×5×5, chosen as it has already featured in previous work
(Cheney et al., 2013; Gravina et al., 2017b). We pick a λ that yields the highest average
performance after 1000 generations: this happens for λ = 0.6, which leads to an average of
12.13 body lengths.

85

Chapter 5. Fusing Novelty and Surprise: Experiments

Novelty Search-Surprise Search

Novelty search-surprise search (NS-SS) combines novelty search and surprise search in a
multi-objective fashion. For the soft robot domain, we use the NSGA-II multi-objective
algorithm by Deb et al. (2002) to simultaneously reward the novelty (Eq. 2.3) and unex-
pectedness of the behaviors shown by the evolved morphologies (Eq. 3.2). Unlike NSS, this
implementation doesn’t need any more parameters, while the parameters related to novelty
and surprise remain the same described previously.

Baselines

Novelty search uses the parameters of (Methenitis et al., 2015); the novelty score is computed
as the average distance of 10 nearest neighbors, i.e. nNS = 10 in Eq. (2.3), using Eq. (4.1)
for dNS . Novelty search makes use of a novelty archive, where the most novel individuals
in each generation are stored. Surprise search relies on a prediction model and a distance
function (dSS). The surprise score is computed as the Euclidean distance between the
individual’s trajectory and the four closest predicted trajectories (nSS = 4). The predicted
trajectories are computed by using linear regression of the sampled points of the previous
two generations’ trajectories. The local behaviours are computed via the k-means clustering
algorithm, where kSS = 15. More details can be found in Section 4.2.2.

5.2.2 Experiments and Analysis

While in the previous chapter we explored the effectiveness of divergent search against
objective (fitness-based) search, in this section we want to assess the performance of the
combination of novelty and surprise in the soft robot environment. Therefore, we focus only
on four algorithms—novelty-surprise search, novelty search-surprise search, novelty search
and surprise search—across eight different lattice sizes.

All reported results are obtained from 90 independent evolutionary runs; reported sig-
nificance is at a 95% confidence. For multiple pairwise comparisons the Tukey’s range test
is used to establish significance. In the experiments conducted we use the same parameters
used in Methenitis et al. (2015) and in Chapter 4: a gravity of −27.6 m/s2, a simulation
time of 0.4 seconds, a rate of 40 Hz for the signal that actuates active voxels and a sampling
rate of 100 Hz. Eight different lattice resolutions, from 33 to 103, are employed. For all the
tested approaches, the population has 30 individuals, and the number of generations is equal
to 1000. The selection mechanism used in this domain is generational; other CPPN-NEAT
parameters are described in Appendix A.

Efficiency and Robustness

The main goal of robot locomotion is to evolve efficient behaviors, i.e., robots that reach the
most distant point at the end of the simulation (based on the characterization of Fig. 4.11a).
This section focuses exclusively on the 90 fittest individuals1 collected from 90 independent
runs across 8 resolutions. All values are normalized to the dimension of the 3D lattice
(i.e., in body lengths of the robot).

Results from Table 5.3 show that, in terms of efficiency, NS-SS and NSS outperforms any
other approach for every resolution selected. In particular, NSS significantly outperforms
novelty search in 5 of the 8 resolutions tested (33, 43, 63, 83, and 103) and surprise search

1The fittest individual of each independent evolutionary run is selected.

86

5.2. Soft Robot Testbed

Table 5.3: Efficiency: distance covered on average by the fittest individuals collected from
90 independent runs for each method (95% confidence interval in parentheses). Bold values
are significantly different from all the other approaches.

NS SS NSS NS-SS
3x3x3 8.88 (0.19) 9.32 (0.26) 9.67 (0.23) 9.89 (0.23)
4x4x4 9.89 (0.35) 10.71 (0.34) 11.18 (0.36) 11.71 (0.44)
5x5x5 11.13 (0.33) 10.73 (0.37) 11.28 (0.30) 11.73 (0.35)
6x6x6 11.15 (0.28) 11.43 (0.48) 11.72 (0.30) 11.68 (0.35)
7x7x7 11.03 (0.37) 10.57 (0.32) 11.35 (0.32) 11.99 (0.34)
8x8x8 11.47 (0.39) 11.35 (0.38) 12.36 (0.41) 12.56 (0.45)
9x9x9 11.48 (0.37) 11.08 (0.32) 11.53 (0.38) 12.61 (0.45)
10x10x10 11.32 (0.38) 11.18 (0.43) 12.05 (0.35) 12.60 (0.63)

in 4 of the resolutions tested (53, 73, 83 and 103). On the other hand, NS-SS outperforms
significantly novelty and surprise search for 7 of the 8 resolutions considered (33, 43, 53,
73, 83, 93 and 103). If we compare NSS and NS-SS, we can notice that overall the multi-
objective approach is more efficient in 7 out of 8 resolutions, but the difference is significant
only for two resolutions, i.e., 73 and 93. Fig. 5.10 shows the results of efficiency across
all the resolutions by means of linear regression. We can notice that every approach has a
linear relationship between their final average efficiency and the robots’ resolution, as their
final average efficiency is highly correlated with lattice size (r > 0.7, p < 0.05 for each
method except SS, where r = 0.7 and p = 0.051). As noted in Table 5.3 and observing the
trends of the regression lines, we can notice that NSS and NS-SS constantly achieves better
results compared to the baselines. The intercept values of NSS and NS-SS are significantly
different from the two baselines based on an ANCOVA test (p < 0.05). If we focus on the
two new approaches, we can notice that NS-SS is performing constantly better compared
to NSS, but not significantly.

As in Chapter 4, we investigate the robustness of each algorithm defined as the number
of robots able to cover a distance greater than the selected threshold (in body lengths).
Fig. 5.11 shows the distribution of successes across different thresholds, cumulated across
all lattice resolutions (i.e., 90 fittest robots for each of 8 resolutions). The distribution shows
that generally NSS obtains more successes than the baselines in thresholds between 8 and
14. Furthermore, NS-SS achieves more successes for the higher thresholds, in particular
between 10 and 15. The robustness of novelty search and surprise search, on the other
hand, is comparable across all shown thresholds, as noticed in Chapter 4.

Structural Variety

In order to evaluate the variety of morphologies explored by the four approaches, we perform
an analysis of the evolved structures. In particular, we collect the individuals evolved in
one run sampled every 10 generations and we add the individuals to the bin if and only if
it is empty or the fitness is lower. We compute these feature maps across the 8 resolutions
considered, and the results are averaged from 90 independent runs per lattice resolution.
The two feature dimensions are the same as in (Mouret and Clune, 2015): the percentage
of the voxels filled (x-axis), and the percentage of blue stiff voxels, i.e., bones (y-axis). To
perform a fair comparison with the results of the previous chapter, the feature maps have
a resolution of 27× 27.

Fig. 5.12 shows the number of explored bins averaged across 90 runs for each of the

87

Chapter 5. Fusing Novelty and Surprise: Experiments

Figure 5.10: Relation between the resolution of the robots and the maximum fitness of each
approach (averaged from 90 runs).

Figure 5.11: Robustness: number of successes, cumulated on all resolutions, for different
performance thresholds.

88

5.3. Discussion

Figure 5.12: Structural variety: average cumulative number of explored bins for all
feature maps. Each bar is normalized by the maximum number of possible bins and error
bars display the 95% confidence interval of the average shown.

eight lattice resolutions. Surprise search shows better exploratory capacity compared to all
the other divergent approaches. Interestingly, novelty search tends to explore fewer bins
in the two feature dimensions considered, while NSS, NS-SS, and especially surprise search
are able to explore more broadly. Regarding the two approaches that combine novelty and
surprise, NSS and NS-SS structures lie between these two “extremes”. This algorithmic
property seems to be beneficial for divergent search in terms of performance (in terms of
efficiency and robustness). Indeed, NSS and NS-SS find more bins in the feature space
chosen compared to novelty search (significantly in 7 out of 8 resolutions and 1 out of 8
resolutions for NSS and NS-SS respectively). However, surprise search finds significantly
more bins in the feature space chosen compared to NSS and NS-SS in all lattice resolutions
(p < 0.05). We show a sampled run for each approach in Table 5.4; samples taken from all
the 8 resolutions are reported in Appendix C.

The example robots shown in Fig. 5.13 attest to the variety of forms which can be well-
performing while structurally different. Further, the figure shows four frames of simulation
per robot that illustrate the variance in the way the different evolved morphologies move
away from their starting point.

5.3 Discussion

In this chapter, we have shown that by coupling novelty and surprise search we can obtain
two algorithms that are faster and more robust than novelty search or surprise search alone
in the maze navigation and soft robot domain. In the experiments of Section 5.1.1 we
have compared two new divergent algorithms in various maze setups. The reported results
show that coupling surprise and novelty improves the algorithm performance more than its
constituent parts, and it proves advantageous with regards to efficiency and robustness. The
first algorithm, NSS, has shown improved performance in the four authored mazes, especially
in the two hardest ones. Moreover, the analysis in the procedurally generated mazes shows
that NSS is more effective on average across different degrees of deceptiveness. While these

89

Chapter 5. Fusing Novelty and Surprise: Experiments

Table 5.4: Feature maps: feature maps produced by the four methods, by aggregating all
the individuals evolved on a resolution of 4 × 4 × 4. White bins do not have any robots,
while colored bins denote the fitness of the best individual (blue for low fitness, red for high
fitness).

Novelty search Surprise search

Novelty-surprise search Novelty search-surprise search

results already demonstrate the advantages of NSS as a combined form of divergent search,
even better results have been obtained by employing a multi-objective approach. As NSS
couples novelty and surprise linearly, it cannot exploit various combinations of novelty and
surprise in a dynamic fashion. This static behavior of NSS limits the capabilities of the
algorithm. This probably explains why NS-SS shows better results when navigating the
hardest authored mazes (i.e., very hard maze and extremely hard maze). However, in the
second experiment with 60 generated mazes, the performance of the two implementations
is comparable: this is probably due to the relatively low deceptiveness of the majority of
the randomly generated mazes, which does not highlight the differences between these two
implementations.

In the second domain employed, the objective was to test the performance of the two
introduced algorithms, NSS and NS-SS, in the soft robot evolution domain. In this section,
we methodically compare the performance of soft robot evolution across different lattice
resolutions. Admittedly, the main motivation for this analysis is to test how sensitive each
of the divergent search approaches is to the granularity allowed per morphology. Over-
all, both the proposed implementations have shown improvements in performance both in
terms of efficiency and robustness. Results show that both NSS and NS-SS are consistently

90

5.3. Discussion

(a) Novelty search (b) Surprise search

(c) Novelty-surprise search (d) Novelty search-surprise search

Figure 5.13: Fittest robots evolved in the first run of each approach for the resolutions
3x3x3, 5x5x5, 8x8x8 and 10x10x10 (from top to bottom). Four simulation frames are
depicted for each robot.

more efficient than the other algorithms when considering all eight resolutions tested as a
whole (via ANCOVA tests), showing that the algorithm can scale to more or less complex
problems. Notably, larger lattices generally lead to more efficient behaviors, with robots of
27 voxels reaching 20% shorter distances (normalized to robots’ body lengths) than robots
with 1000 voxels. This is perhaps not surprising, as a higher resolution allows for more
expressive morphologies (more voxels to choose from) and more robust behaviors. While
the higher resolutions would challenge a direct representation, the indirect encoding (via
CPPNs) can scale and perform better at higher resolutions for all EC methods tested. Like
maze navigation, NS-SS shows better search capabilities compared to the linear aggrega-
tion solution. In particular it seems that using a multi-objective approach leads to better
efficiency and robustness in 7 out of 8 resolutions; however, the difference is not significant
enough to draw definitive conclusions and more analysis is required.

Based on the evidence collected, we can argue that combining two different yet powerful
ways of divergent search ends up being beneficial with respect to search. Both NSS and
NS-SS algorithms search for novel solutions, which means exploring not yet seen points in
the search space, and at the same time also rewards surprising solutions, which means devi-

91

Chapter 5. Fusing Novelty and Surprise: Experiments

ating from predicted behavioral trends. The working hypothesis is that novelty search and
surprise search give orthogonal rewards; their combination should benefit divergent search,
which seems to be confirmed by the evidence shown in this chapter. It seems that the com-
bination of novelty and unexpectedness results in a deeper exploration of the search space,
as a greedy search only for novel behavior might “hide” less novel but efficient behaviors.
Combining novelty with surprise alleviates that, as surprise may backtrack to previously
seen behaviors. On the one hand, when novelty search finds a highly novel solution, this will
likely be still considered novel for several generations until it gains sufficient neighbors. On
the other hand, surprise search will consider a solution surprising only in the first generation
it appears, as the prediction model will change in the following generations; this has the
drawback that a really good solution in terms of global fitness can be eliminated by surprise
search because it is not surprising anymore. By aggregating the novelty and surprise scores,
we eliminate both of these drawbacks: novelty is able to “maintain” surprising solutions
from evolutionary rejection (if they also have a high novelty score) and, at the same time,
very novel solutions have less impact on the selection mechanism as their surprise score
degrades throughout evolution. As seen in the behaviour analysis of the testbed navigation
task, the coupling is beneficial as it pushes robot controllers to spread out and explore
the behavioural space more extensively. We can draw similar conclusions in the soft robot
domain. Through the in-depth analysis of the evolved robots’ structural characteristics,
we have shown that surprise search helps the search algorithm to explore more extensively
the structural space, while novelty search explores less but find more efficient morpholo-
gies. Combining these two processes allow to explore more efficiently the search space and
improve the overall performance of the algorithm.

5.4 Summary

This chapter has introduced two new divergent algorithms which couple novelty and sur-
prise search and it tested their performance in the maze navigation and soft-robots domain.
In particular, we started our investigation from the well-studied maze navigation domain
and we performed two separated experiments. In the first experiment, we tested the perfor-
mance of NSS and NS-SS in four human-designed mazes introduced in the previous chapter.
Subsequently, we conducted a second experiment where we compared the efficiency and the
robustness of NSS and NS-SS against 60 randomly generated mazes. In the third set of
experiments, finally, we explored how combining novelty and surprise affects soft robot
evolution, both in terms of performance and variety of evolved structures. Extensive exper-
iments which vary the impact between novelty and surprise (λ) for the linear aggregations,
a multi-objective implementation and vary the number of voxels available for the robot
showed that the combined search for novel and surprising solutions is advantageous. Evi-
dently, combining novelty and surprise search allows search to eliminate, in part, limitations
inherent in novelty search and surprise search, as it outperforms the performance of the two
algorithms when tested on their own. The orthogonality of novelty and surprise is evidenced
by the fact that combining the two in one algorithm evidently results in improved robust-
ness and efficiency. Therefore we can imagine that coupling surprise and novelty with other
objectives might be even more advantageous. Towards that end, in the next chapter, we test
three novel extensions of surprise search in the context of quality diversity optimization.

92

Chapter 6

Surprise for Quality Diversity:
Experiments

Motivated by the promising results obtained by surprise search on its own (Chapter 4) and
coupled with other approaches (Chapter 5), in this chapter we investigate how surprise
can be combined with other objectives besides novelty and test these new approaches as
quality diversity algorithms. There is limited exploration on how different paradigms of
divergent search may impact the solutions found by quality diversity. To cover this gap,
this chapter investigates the impact of surprise to quality diversity performance. In Section
6.1 we describe the domain employed and the implementation details of the tested algo-
rithms. We then introduce a new challenging set of 60 deceptive mazes, specifically selected
to be deceptive and hard to solve. To complete the performance overview of surprise-based
QD, in Section 6.2 we perform a second set of experiments in other 60 automatically gen-
erated mazes and four authored mazes, both introduced in Chapter 4. This chapter finally
concludes with an analysis of the obtained results (Section 6.3).

6.1 Maze Navigation Testbed: First Set

As noted previously, the maze navigation problem is interesting and effective domain to test
divergent and quality diversity approaches. The problem of maze navigation is the identical
to the one presented in Chapter 2: a wheeled robot starting at a specific position in the
maze must reach the goal position in a maze using incomplete information given by sensors.
More details can be found in Chapter 2 and Chapter 4. In the following subsection we
describe the implementation details of the surprise-based QD approaches in this domain.

6.1.1 Algorithms

In this chapter, genetic operators, mutation chances and speciation parameters are identical
to those reported in Lehman and Stanley (2011a) and used in Chapter 4 and Chapter 5;
parameters of novelty search are described in Section 6.1.2. This subsection describes the
implementation details of the algorithms which are compared in subsection 6.1.3 to test our
hypothesis that surprise search enriches the capacity of QD.

93

Chapter 6. Surprise for Quality Diversity: Experiments

Baselines

Objective Search: As an indication of how deceptive landscapes can hinder traditional EC
approaches, objective search is used as a baseline for selecting among generated mazes in
Section 6.1.2. As per Lehman and Stanley (2011a), the objective f is to minimize the
Euclidean distance between the goal in the maze and the robot’s final position at the end
of simulation. Objective search never finds a solution in any of the mazes used in the
experiments of Section 6.1.2, so its results are omitted.

Novelty Search: As discussed in Chapter 2 and Chapter 4, novelty search ignores the ob-
jective of the problem at hand and attempts to maximize behavioral diversity. The novelty
score, computed through Eq. (2.3), uses the behavioral distance dNS between two individu-
als; in this domain dNS is the Euclidean distance between the two robots’ final positions at
the end of simulation. The same distance is used to identify closest neighbors (µj). Finally,
in all novelty search experiments in this section we follow the literature and consider the
15 closest individuals as our nNS parameter as in (Lehman and Stanley, 2011b), Chapter 4
and Chapter 5.

Novelty Search with Local Competition

As noted in Chapter 2, novelty search with local competition combines the divergence of
novelty search with the localized convergence obtained through a local competition (Lehman
and Stanley, 2011b). In this chapter, NS-LC uses a steady-state NSGA-II multi-objective
algorithm (Li et al., 2017) to find non-dominated solutions on two dimensions: novelty and
local competition. Novelty attempts to maximize a novelty score computed in Eq. (2.3),
using the Euclidean distance between the two robots’ final positions at the end of simulation
for calculating distance from the closest individuals. As with novelty search, we are based
on the successful experiments performed in the literature (Lehman and Stanley, 2011b) and
consider the nNS = 15 closest individuals in all NS-LC experiments. Local competition is
calculated based on the closest individuals (in terms of Euclidean distance) in the current
population and the novelty archive. In the maze navigation task, local competition counts
the number of neighboring robots with final positions that are farther from the goal in
terms of Euclidean distance. Note that unlike earlier work (Lehman and Stanley, 2011b),
this chapter decouples the number of individuals considered for the novelty score (nNS)
with the number of individuals used to calculate local competition (nLC). In this section
we perform a sensitivity analysis for the best locality parameter (nLC) of local competition
in NS-LC and the other QD algorithms.

Surprise Search with Local Competition

As noted in Chapter 3, surprise search with local competition uses a steady-state NSGA-II
multi-objective algorithm (Li et al., 2017) to find non-dominated solutions on two dimen-
sions: surprise and local competition. Surprise uses the prediction model of Eq. (3.1) to
make a number of predictions (p) for the expected behaviors in the current population. The
individuals in the current population are then evaluated based on their distance from the n
closest predictions as per Eq. (3.2). In this testbed, predictions are made on the robots’ final
position, and distance refers to the Euclidean distance between two robots’ final positions at
the end of simulation. For deriving kSS behaviors to predict, k-means clustering is applied

94

6.1. Maze Navigation Testbed: First Set

on the robots’ final position in one generation. Based on earlier results on surprise search
and novelty-surprise search on difficult maze navigation tasks (see previous Chapter 4 and
Chapter 5), kSS = 200 and nSS = 2. The two last generations are used (h = 2) to cluster
behaviors, and predictions are based on a linear interpolation between cluster centroids in
subsequent generations (Fig. 4.3 illustrates how behaviors are clustered and how predictions
are computed). More details on the way clustering is performed and predictions are made
for surprise search in maze navigation can be found in Chapter 3.

Novelty-Surprise Search with Local Competition

As noted in Chapter 3, novelty-surprise search with local competition uses a steady-state
NSGA-II multi-objective algorithm (Li et al., 2017) to search for non-dominated solutions on
the dimensions of local competition (computed in the same way as NS-LC) and a weighted
sum of the novelty score and surprise score as in Eq. (3.3). Parameters for novelty search are
the same as in (Lehman and Stanley, 2011b) (i.e., nNS = 15), while parameters for surprise
search are the same as above (i.e., h = 2, nSS = 2, kSS = 200). Distance characterizations
for NSS-LC are computed as in the other QD algorithms, via the Euclidean distance between
the two robots’ final positions at the end of simulation. A sensitivity analysis is performed
in this section to identify which values for λ and nLC (the neighbors considered for local
competition) are most appropriate for this testbed.

Novelty Search–Surprise Search–Local Competition

As noted in Chapter 3, NS-SS-LC uses a steady-state NSGA-II multi-objective algorithm (Li
et al., 2017) to search for non-dominated solutions on three dimensions: local competition
(computed in the same way as NS-LC), novelty search, and surprise search. Parameters
for novelty search are the same as in (Lehman and Stanley, 2011b) (i.e., nNS = 15), while
parameters for surprise search are the same as above (i.e., h = 2, nSS = 2, kSS = 200).
Distance characterizations for NS-SS-LC are computed as in the other QD algorithms, via
the Euclidean distance between the two robots’ final positions at the end of simulation. A
sensitivity analysis is performed in this section to identify the best nLC values for NS-SS-LC
in this testbed.

6.1.2 First Set of Generated Mazes

While a substantial portion of research on divergent search and quality diversity have fo-
cused on hand-crafted deceptive mazes (Lehman and Stanley, 2011a, 2010; Pugh et al.,
2016), this section uses a broader set of mazes to test the QD algorithms introduced in
Chapter 3. These mazes are not crafted by a human designer but generated procedurally; a
similar set of generated mazes has been used in (Lehman and Stanley, 2011d), Chapter 4 and
Chapter 5 to evaluate the performance of divergent search algorithms. Generating rather
than hand-crafting mazes allows for a broader range of spatial arrangements to be tested,
without human curation towards possibly favorable patterns. Additionally, this chapter
uses maze generation to find appropriate deceptive mazes which satisfy two criteria related
to the algorithms tested rather than inherent structural patterns. These criteria are:

1. Objective search must not find any solutions in 50 evolutionary runs.

2. NS-LC (with parameters as in (Lehman and Stanley, 2011b)) must find a solution in
at least one of 50 evolutionary runs.

95

Chapter 6. Surprise for Quality Diversity: Experiments

(a) R = 8, L = 453,
S = 50

(b) R = 8, L = 332,
S = 40

(c) R = 6, L = 362,
S = 32

(d) R = 6, L = 391,
S = 22

(e) R = 8, L = 364,
S = 17

(f) R = 6, L = 333,
S = 16

(g) R = 9, L = 355,
S = 15

(h) R = 11, L = 325,
S = 14

(i) R = 5, L = 488,
S = 12

(j) R = 10, L = 325,
S = 5

Figure 6.1: Maze generation: 10 easiest generated mazes created via recursive division,
sorted by NS-LC successes. The starting position (blue filled circle) is at the bottom left
corner; the goal position (black empty circle) is at the top right corner. In the caption, R is
the number of subdivisions, L is the A* length and S is the number of successes of NS-LC
(nLC = 15).

Table 6.1: Distribution of the 60 selected mazes per number of subdivisions and corre-
sponding average length of the shortest path computed with the A* pathfinding algorithm.

Subdivisions 5 6 7 8 9 10 11 12

Mazes 2 9 5 16 13 10 4 1

A* length 403 350 358 353 330 318 323 291

The first criterion establishes that each maze is deceptive, as attempting to optimize prox-
imity to the goal does not result in any solutions. However, the first criterion may be
satisfied by mazes which have extremely long paths from start to finish which may not be
reachable within the alloted simulation time for each robot. To ensure that the maze is not
too difficult (or practically impossible), the state-of-the-art QD algorithm NS-LC is used as
a second criterion: if “vanilla” NS-LC (Lehman and Stanley, 2011b) cannot find a solution
even after numerous retries, then the maze is characterized as too difficult and is ignored.

As for the randomly generated mazes in Chapter 4 and Chapter 5, mazes are generated
via a recursive division algorithm (Reynolds, 2010), which subdivides the maze (by adding
walls at the border) recursively until no more walls can be added. The algorithm stops after
a specific number of subdivisions, or when adding a new wall would make the path non-
traversable. The start position is always set on the bottom-left corner and the goal position
on the top-right corner. Width of gaps and the minimum width of corridors is defined
in a way that allows the robot controller to comfortably pass through. All mazes tested
have between 5 and 12 subdivisions (chosen randomly), and evolution for both objective
search and NS-LC is performed on a population of 250 individuals for a maximum of 600
generations and a simulation time of 300 frames.

96

6.1. Maze Navigation Testbed: First Set

Through the above process, more than 800 mazes were generated and tested but only
60 mazes were found to satisfy the two criteria. The 60 mazes used in this chapter are
available in Appendix B. Details of the 60 mazes’ properties are described in Table 6.1,
including the actual distance between the start and goal position based on A* pathfinding.
It is immediately obvious that most mazes chosen have between 8 and 10 subdivisions, and
that the A* distance decreases as the subdivisions increase. Indeed, there is a significant
(p < 0.01) negative correlation between the number of subdivisions and the A* distance
(-0.39). This is likely due to the fact that with more subdivisions the likelihood that a
random maze would not be solvable even by NS-LC increases; for instance due to narrower
corridors and more complex structures. Through an informal assessment of the many mazes
generated, mazes with fewer subdivisions tend to fail the first criterion while mazes with
more subdivisions tend to fail the second criterion.

While the criterion of at least one success in 50 evolutionary runs for NS-LC is satisfied
in all 60 mazes in our test set, it is worthwhile to investigate how many successes are actually
scored by NS-LC per maze. The number of evolutionary runs (out of 50) in which NS-LC
finds a solution is indicative of the hardness of the problem, and will be used in subsection
6.1.3 as an important performance metric for comparing QD algorithms. Fig. 6.1 shows
the 10 easiest mazes, where NS-LC found the most solutions in 50 runs. Among those 10
mazes, the average number of successes was 22.3 (95% CI = 10.03) while in all 60 mazes
this was 5.93 (95% CI = 2.45). More broadly, the number of successes per maze ranged
from 50 out of 50 (in 1 maze) to 1 out of 50 (in 20 mazes). There seems to be a significant
(p < 0.05) correlation between NS-LC successes and A* path length (0.32). There is a weak
negative correlation between NS-LC successes and number of subdivisions (-0.11) which is
however not significant (p > 0.05); indeed, among the easiest mazes of Fig. 6.1 there is one
with 11 subdivisions (Fig. 6.1h) as well as one with 5 subdivisions (Fig. 6.1i).

6.1.3 Experiments and Analysis

As discussed previously, the maze navigation problem is used to test four quality diversity
algorithms: NS-LC, SS-LC, NSS-LC and NS-SS-LC. Sixty generated mazes are used to test
each algorithm in 50 evolutionary runs per method per maze with the same parameters: a
population size of 250 individuals, a maximum of 600 generations, and a simulation time
of 300 time steps. The core performance measure we consider is the aggregated number of
evaluations per successful run across all mazes per method. A successful run discovers one
robot that can reach the goal position from the start position within the 600 generations
alloted; when a solution is found, evolution immediately ends. It is important to mention
that for those methods where multi-objective optimization is applied (e.g., NS-LC), the
final front of solutions is not considered as a performance indicator. Significance reported
for all experiments in this section is at a 95% confidence. For multiple pairwise comparisons
the Tukey’s range test is used to establish significance.

In order to find appropriate values for the many parameters in each evolutionary method,
a sensitivity analysis is performed on a subset of mazes and reported. Then, the best
parameters are selected for each algorithm which in turn are compared on their best setup.
Note that evolutionary runs reported in the sensitivity analysis are independent from those
reported in the main comparison of QD algorithms.

97

Chapter 6. Surprise for Quality Diversity: Experiments

Sensitivity Analysis

Due to a plethora of parameters that may impact the performance of QD algorithms exam-
ined in this section, we rely largely on successful parameter values reported in the literature
for the baseline algorithms. However, we perform a sensitivity analysis along two parame-
ters for which we could not find suggested values: the locality of local competition (nLC)
in all QD algorithms and the weight of novelty versus surprise (λ) in NSS-LC. Since most
mazes in the test set are particularly difficult to solve, the impact of a parameter tweak
is not expected to have a strong impact on the algorithm’s performance1. Therefore, the
10 easiest mazes (based on “vanilla” NS-LC) shown in Fig. 6.1 are used for the sensitivity
analysis. The core performance metric for sensitivity analysis is the average number of
evaluations needed by each algorithm to discover a controller able to solve the maze. In
a run where no solution was found within the allocated budget, the maximum allocated
evaluations (150·103) is used. This metric is averaged across 50 evolutionary runs.

Beyond testing the sensitivity of nLC and λ, we assess how the various sub-components
of the introduced algorithms (novelty, surprise and the linear combination of novelty and
surprise) affect algorithmic performance with an additional set of baseline algorithms de-
scribed. In the sensitivity analysis we report results based on 50 evolutionary runs per
maze; the experiments used in this analysis are independent from those in the subsequent
main comparison of the QD approaches. Furthermore, we run separate and indipendent
runs in the two sensitivity analysis, i.e., 50 runs per maze in the first analysis of the nLC
and λ parameters, and other 50 runs per maze in the sub-components analysis.

Sensitivity to Parameters: the parameter setups range from a nLC value between 5
and 20 (increments of 5) and λ for NSS-LC between 0.4 and 0.8 (increments of 0.1). The
results of this analysis in terms of average number of evaluations across all runs in all 10
easiest mazes are shown in Fig. 6.2.

The results of the sensitivity analysis show that both parameters have an impact on
the performance of both SS-LC and NSS-LC (where applicable). Notably, however, nLC
seems to have very limited impact on the performance of NS-LC, with marginally better
performance obtained with nLC = 5. The same parameter impacts SS-LC in a much more
pronounced manner, with nLC = 5 and nLC = 15 giving a far worse performance for SS-LC
than other values tested. The best performance for SS-LC is for nLC = 10, which however
requires more evaluations than NS-LC. NS-SS-LC tends to fluctuate in the same way as
NS-LC, although it seems to fall behind for nLC = 15. Finally, NSS-LC hinges on both λ
and nLC and it is clear from Fig. 6.2 that good performance can be achieved for several
combinations of these two parameters. However, the least evaluations are achieved with
a high λ value (see Table 6.2), in which case the novelty score contributes more than the
surprise score. Based on this analysis, the parameters for the remaining experiments (sub-
components analysis and the final comparison of the best setup for the QD algorithms at
test) are shown in Table 6.2.

Sensitivity to Algorithmic Components: apart from the many different parameters
in the proposed QD algorithms, there are several design decisions in the implementation
of each. Based on the core components of algorithms considered (novelty, surprise, local
competition), we will compare the four QD algorithms (NS-LC, SS-LC, NSS-LC and NS-

1For example, in a maze where NS-LC has only one success in 50 runs, the impact of any parameter is
expected to be a product of chance.

98

6.1. Maze Navigation Testbed: First Set

(a) Local competition nLC = 5 (b) Local competition nLC = 10

(c) Local competition nLC = 15 (d) Local competition nLC = 20

Figure 6.2: Sensitivity analysis: Average number of evaluations across the 10 easiest
mazes with four local competition sizes (5, 10, 15, 20), with five values of λ (0.4, 0.5, 0.6,
0.7, 0.8).

Table 6.2: Final parameters for QD algorithms, based on a sensitivity analysis. Shown
is the average number of evaluations (and 95% confidence intervals) across the 10 easiest
mazes of Fig. 6.1.

Algorithm Parameters Evaluations (·103)

NS-LC nLC = 5, nNS = 15 109.8± 4.4

SS-LC nLC = 10, nSS = 2, 115.7± 4.0
h = 2, kSS = 200

NSS-LC λ = 0.7, nLC = 5,
nNS = 15,

104.2± 4.5

nSS = 2, h = 2, kSS =
200

NS-SS-LC nLC = 5, nNS = 15,
nSS = 2,

111.0± 4.2

h = 2, kSS = 200

SS-LC) against novelty search (described in subsection 6.1.1) and four more baselines:

• Surprise Search, described in Chapter 3. Surprise search uses the same predictive
model as SS-LC, as described in subsection 6.1.1 and Fig. 4.3. The parameters of SS

99

Chapter 6. Surprise for Quality Diversity: Experiments

(nSS , h, kSS) are the same as SS-LC in Table 6.2.

• Novelty-Surprise Search, which is a single objective implementation that linearly com-
bines novelty and surprise (see Eq. 3.3) as described in Chapter 3. Performing the
same analysis across λ values as done for NSS-LC, we use λ = 0.4 for NSS while nSS ,
h, and kSS are the same as NSS-LC in Table 6.2.

• Novelty Search–Surprise Search uses a steady-state NSGA-II multi-objective algo-
rithm (Li et al. (2017)) to search for non-dominated solutions on the dimensions of
novelty (Eq. 2.3) and surprise (Eq. 3.2). All parameters are the same as NS-SS-LC in
Table 6.2.

• Surprise Search Archive with Local Competition (SSA-LC), which is a variant of
SS-LC where the divergence objective of NSGA-II uses the surprise score but also
maintains a novelty archive identical to how it is maintained in NS-LC Lehman and
Stanley (2011b) (using the same fluctuating threshold and assessing individuals for
insertion to the novelty archive based on the novelty score of Eq. 2.3). To calculate the
surprise score, SSA-LC considers the nearest neighbors both in the prediction space
and in the novelty archive. To calculate the local competition score, SSA-LC considers
the nearest neighbors in the current population and in the novelty archive (similar
to NS-LC). Results for the best performing nLC parameter are reported (nLC = 5),
while other parameters of surprise search (nSS , h, kSS) are the same as SS-LC in
Table 6.2.

The first three baseline algorithms test only the diversity dimensions of some of the
proposed QD algorithms (NSS is the diversity dimension used in NSS-LC, while NS-SS is
the two-objective diversity component of NS-SS-LC). SSA-LC tests another way of combin-
ing deviation from expected (through the prediction space) and seen (through the novelty
archive) behaviors.

Fig. 6.3 shows the performance of all algorithms discussed in this section, separating QD
approaches (on the left of the figure) from pure divergent search approaches (on the right).
It is clear that using a local competition as a second objective significantly improves perfor-
mance over a divergence-only variant (e.g., SS-LC versus SS, NSS-LC versus NSS). Notably,
the NS-SS multi-objective divergent search approach performs surprisingly well, being the
most efficient divergent search approach and requiring significantly fewer evaluations than
both SS and NS. NS-SS actually performs at a similar level as some QD approaches (such
as SS-LC).

Fig. 6.3 also highlights that while novelty search alone underperforms compared to
surprise search, NSS and SS-NS, when combined into a QD algorithm the performance
rankings are much different. NSS-LC and NS-LC perform much better compared to SS-LC
(significantly for NSS-LC), although the fact that a version of NS-LC was used to find
appropriate mazes that it can solve may have been a reason for the good performance
of NS-LC. Moreover, NS-SS-LC does not perform better than NSS-LC and NS-LC in the
same way as NS-SS does over NSS and NS. While the performance of NS-SS-LC is further
discussed in the following main comparison of QD algorithms and in section 6.3, a likely
reason is that the simultaneous optimization of three objectives makes the problem more
difficult for a multi-objective approach to solve (Purshouse and Fleming (2007)).

Finally, it is obvious that the introduction of a novelty archive to surprise search leads
to a much worse performance. The working hypothesis for this behavior is the divergence

100

6.1. Maze Navigation Testbed: First Set

Figure 6.3: Sensitivity to algorithmic components: Average number of evaluations
across the 10 easiest mazes for five QD approaches (NS-LC, NSS-LC, SS-LC, SSA-LC,
NS-SS-LC) and four divergent algorithms (NS, SS, NSS, NS-SS).

dimension of this multi-objective approach. Specifically, “vanilla” surprise search attempts
to deviate from predicted points in the search space, which can force it to back-track
to previously seen areas of the search space. Introducing a novelty archive, where such
previously visited areas of the search space are kept, actively deters back-tracking and
impairs the surprise search component of SSA-LC.

Comparison of QD Algorithms

Having ensured an optimal set of parameters for all QD algorithms tested, each of the
four quality diversity methods are applied to each of the 60 generated mazes. Compar-
isons among QD methods—and against novelty search as an indicative divergent search
algorithm—aim to answer two core questions: whether an algorithm is more likely to find
a solution in an evolutionary run than others (addressed in the successes analysis), and
whether an algorithm finds such a solution in fewer evaluations (robustness analysis). While
not a measure of performance, the evolved controllers are also compared in terms of the
complexity of the ANN evolved (genomic complexity analysis), as an indication of genotypes
favored by each approach.

Successes: Table 6.3 shows how each method compares in terms of number of successes
in each of the 60 generated mazes. In this table, the number of mazes where one approach
outperforms the other (in terms of successful runs out of 50) is shown on a per column and
per row basis. As expected, novelty search as a pure divergent approach has the lowest
rank compared to the other algorithms with an average of 2.1% instances outperforming
the four QD algorithms and 78.7% instances being outperformed. On the other hand,
NSS-LC outperforms all approaches more often (58.7%) than it is outperformed (20.4%).
Notably, SS-LC does not perform equally well, as it is often outperformed by NS-LC (51.7%);
however, NSS-LC outperforms NS-LC (48.3%) more often than it is outperformed by NS-LC

101

Chapter 6. Surprise for Quality Diversity: Experiments

Table 6.3: Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared to the algorithm
in a column. Last row and last column are respectively the average of each column and the
average of each row.

NS NS-LC NSS-LC SS-LC NS-SS-LC Average

NS – 1.7% 0.0% 5.0% 1.7% 2.1%

NS-LC 83.3% – 30.0% 51.7% 40.0% 51.2%

NSS-LC 81.7% 48.3% – 60.0% 45.0% 58.7%

SS-LC 70.0% 28.3% 25.0% – 30.0% 38.3%

NS-SS-LC 80.0% 41.7% 26.7% 46.7% – 48.7%

Average 78.7% 30.0% 20.4% 40.8% 29.2% –

Figure 6.4: Robustness: number of successes over evaluations by aggregating all the runs
of the 60 generated mazes for each approach.

(30%). It is interesting that NS-SS-LC outperforms NS-LC (41.7%) marginally more often
than the opposite (40%), but when compared to all the approaches it has fewer instances
of superior behavior (48.7%) than NS-LC.

It is important to note that NSS-LC is also superior to NS-LC in the 10 easiest mazes,
where both approaches are more likely to have a successful run than in the hardest mazes of
the test set; in harder mazes, a successful run is largely a matter of chance. In the 10 easiest
mazes of Fig. 6.1, NSS-LC outperforms NS-LC in 6 of 10 mazes and is outperformed by
NS-LC in 4 mazes. Note that results in Table 4.3 are from 50 runs independent of the runs
performed for the sensitivity analysis; however, admittedly the parameters of both NS-LC
and NSS-LC were optimized explicitly for these 10 mazes of Fig. 6.1.

Robustness: While the number of evolutionary runs resulting in a success is a good
indication of algorithms’ performance, it is worthwhile to investigate how quickly those
solutions are found. We use robustness as a secondary performance metric: robustness is

102

6.1. Maze Navigation Testbed: First Set

Figure 6.5: Number of evaluations on average by aggregating all the runs of the 60
generated mazes for each algorithm (i.e., 3000 runs per algorithm). Error bars denote 95%
confidence intervals.

defined as the number of overall successes obtained by each algorithm after a number of
evaluations. This indicates how consistent the results are, should evolution stop earlier than
the current generation limit.

Fig. 6.4 and 6.5 report the robustness and the average number of evaluations respec-
tively per method. Results are aggregated among all the runs of the 60 generated mazes
per method, i.e., a total of 3000 runs. Aggregating successes across mazes allows for a
more realistic view of algorithmic performance: averaging successes across the 60 mazes
leads to very large deviations as some mazes are much harder than others (based on NS-LC
performance described in subsection 6.1.2). Unsurprisingly, novelty search is outperformed
by every other algorithm from 20·103 evaluations onwards, achieving a total of 149 success-
ful runs in 60 mazes. NSS-LC outperforms NS-LC and NS-SS-LC after 20·103 evaluations
and consistently reaches more successes than any other method from that point onward.
When the maximum evaluations are reached, NSS-LC obtains 451 successes versus the 400
successes of NS-LC, 405 successes of NS-SS-LC and the 344 successes of SS-LC. The supe-
riority of NSS-LC over NS-LC is also evident in Fig. 6.5, as on average NSS-LC requires
significantly fewer evaluations than every other algorithm. This finding is not surprising
per se, since NSS-LC finds more solutions while other approaches often spend their entire
budget (evaluations) searching but not finding a solution. However, Fig. 6.5 establishes that
this difference in successes results in a statistically significant acceleration of the algorithm.
NS-SS-LC seems to perform very similarly to NS-LC, both in terms of number of successes
over the progress of evolution, and in terms of average evaluations of Fig. 6.5. This ob-
servation is corroborated by tests in the sensitivity analysis. Finally, results of SS-LC are
underwhelming also in terms of robustness, as it quickly falls behind both NSS-LC and
NS-LC, and on average it needs significantly more evaluations than other QD alternatives.

Genomic Complexity: As an indication of the type of solutions favored by each
evolutionary method, we compare the complexity of the evolved ANNs which were successful

103

Chapter 6. Surprise for Quality Diversity: Experiments

(a) Connections (b) Hidden nodes

Figure 6.6: Complexity: number of connections and hidden nodes on average for evolved
ANNs which solve the mazes per approach. Error bars denote 95% confidence intervals.

in finding the goal in each method (i.e., 400 ANNs for NS-LC, 149 ANNs for novelty
search etc.). Genotypic complexity refers here to the average number of hidden nodes and
connections of a successful ANN. In Chapter 4 and 5, the genotypic complexity across
four divergent search methods (NS, SS, NSS and NS-SS) showed that each method favored
different structures, with surprise search favoring far larger networks than novelty search.
Figure 6.6 shows the average number of hidden nodes and connections per approach. As
in previous findings (Chapter 4 and Chapter 5), novelty search favors very small networks
(few connections, few hidden nodes), while NS-LC has denser and larger networks than
novelty search but less than both NSS-LC and SS-LC (significantly so for SS-LC). Finally,
it is interesting to note that NSS-LC has significantly smaller and sparser networks than SS-
LC, striking a happy (i.e., most effective) medium between NS-LC and SS-LC. Structural
metrics of ANNs evolved by NS-SS-LC have no significant differences with either NSS-LC or
NS-LC, but seem to fall between the two; the similarity with networks of NS-LC is further
evidence that NS-SS-LC performs a very similar search process as NS-LC, which explains
their similar performance in Fig. 6.4.

6.2 Maze Navigation Testbed: Second Set

In the previous two chapters we tested the capabilities of surprise search (Chapter 4),
novelty-surprise search and novelty search-surprise search (Chapter 5) in two maze naviga-
tion testbeds, one made of human-designed mazes and one made of procedurally generated
mazes. It is interesting to conclude our analysis of the newly introduced QD algorithms
(SS-LC, NSS-LC and NS-SS-LC) with the previously introduced mazes, in particular the
four authored mazes (i.e., medium, hard, very hard and extremely hard mazes, see Fig. 4.1)
and the set of procedurally generated mazes presented in Chapter 4. The old set of gener-
ated mazes will be called “second set” of generated mazes from now on, in order to avoid
confusion with the first set of generated mazes introduced in the previous section.

This section starts with an analysis of the performance in terms of efficiency and ro-
bustness of NS-LC, SS-LC, NSS-LC and NS-SS-LC in the four authored mazes (Section
6.2.2). Then, in Section 6.2.3 we perform an analysis in terms of efficiency, robustness and
successes with the second set of generated mazes. For all the experiments reported in this
section, significance is at a 95% confidence. For multiple pairwise comparisons the Tukey’s

104

6.2. Maze Navigation Testbed: Second Set

range test is used to establish significance.

6.2.1 Algorithms

The maze navigation testbed is the same used in the two previous chapters and the previous
section. In order to assess the performance of the surprise-based QD algorithms, we follow
the same methodology as in Chapter 4 and validate the three QD algorithms across the
previously introduced set of mazes.

In particular, we test three surprise-based QD algorithms and two baselines:

• Novelty Search, as described in Chapter 2. The parameters of NS (nNS) are the same
as NS-LC in Table 6.2.

• Novelty Search with Local Competition. NS-LC uses a steady-state NSGA-II multi-
objective algorithm (Li et al., 2017) to search for non-dominated solutions on the
dimensions of novelty (Eq. 2.3) and local competition. All parameters are the same
of Table 6.2.

• Surprise Search with Local Competition. SS-LC uses a steady-state NSGA-II multi-
objective algorithm (Li et al., 2017) to search for non-dominated solutions on two
objectives: surprise (Eq. 3.2) and local competition. All parameters are the same of
Table 6.2.

• Novelty-Surprise Search with Local Competition. NSS-LC uses a steady-state NSGA-
II multi-objective algorithm (Li et al., 2017) to search for non-dominated solutions on
two objectives: a linear combination of novelty and surprise, and local competition.
All parameters are the same of Table 6.2.

• Novelty Search-Surprise Search-Local Competition. NS-SS-LC uses a steady-state
NSGA-II multi-objective algorithm (Li et al., 2017) to search for non-dominated so-
lutions on three objectives: novelty, surprise and local competition. All parameters
are the same of Table 6.2.

To perform a fair comparison with the results obtained in the previous section, we use the
same parameter setup used for the QD algorithms in Section 6.1.1. Also for NS and NS-LC
we use the same setup chosen previously, i.e., nNS = 15 and nLC = 5. A summary of the
parameters can be found in Appendix A.

6.2.2 Experiments and Analysis: Authored Mazes

Firstly, we test the performance of surprise-based QD algorithms against the four authored
mazes introduced in the Chapter 4 (see Fig. 4.1). For the medium (Fig. 4.1a) and hard
maze (Fig. 4.1b) we employ the parameter setup used in Lehman and Stanley (2011a) and
we count as successful a navigation policy that manages to reach the goal within a radius
of five units at the end of an evaluation of 400 simulation steps. For the harder mazes, very
hard (Fig. 4.1c) and extremely hard (Fig. 4.1d) we use the parameters used in Chapter
4, i.e., the number of simulation timesteps grows to 500 and 1000 for the very hard and
extremely hard maze respectively. Following the same logic, the number of generations is
fixed to 300 for the two easiest mazes (medium and hard maze) and 1000 for the hardest
ones (very hard and extremely hard maze).

105

Chapter 6. Surprise for Quality Diversity: Experiments

Performance

Firstly we investigate the performances of the QD algorithms in terms of efficiency and ro-
bustness. Efficiency is defined as the average number of evaluations taken by each approach
to find the solution in the maze. If we look at the number of evaluations across the four
authored mazes we can see that the performances of the four QD algorithms are compara-
ble, and the differences are minimal, especially between NSS-LC and NS-LC. In the easiest
maze, Fig. 6.7a we can see that all the QD approaches outperform novelty search. On aver-
age, NS-LC and NSS-LC perform better compared to other approaches, with a really small
advantage for the latter (9, 8·103 ± 3, 0·103 and 10, 7·103 ± 2, 3·103 evaluations for NS-LC
and NSS-LC respectively). Similar evidence is shown in the hard maze, where Fig 6.7b
shows that all the QD approaches outperform novelty search. As in the previous maze, NS-
LC and NSS-LC take fewer evaluations on average to find successful robots, respectively
18, 6·103±4, 3·103 and 18, 9·103±4, 2·103 evaluations. In the more deceptive very hard maze
(Fig. 6.7c) we can notice that all the tested approaches perform significantly better than
novelty search (p < 0.05), but the differences between the four QD approaches are again
minimal; on average NSS-LC is faster than the other algorithms with 52, 0·103 ± 1, 3·103

evaluations. Finally in the extremely hard maze, Fig. 6.7d, NS-LC and NSS-LC outperform
the other two QD algorithms with respectively 104.5·103 ± 2, 0·103 and 104, 2·1032, 0·103

evaluations on average. Furthermore, novelty search is outperformed significantly by any
other approach (p < 0.05).

If we look at the robustness across the four mazes, similar conclusion can be drawn. In
the medium maze, Fig. 6.8a shows that the four QD approaches perform similarly, and from
5, 000 evaluations onwards they all start to be faster compared to NS. In the hard maze
(Fig. 6.8b), we can notice that SS-LC struggles to perform as well as the other approaches,
while NSS-LC, NS-LC and NS-SS-LC perform similarly across the entire evolutionary his-
tory. Fig. 6.8c shows the robustness comparison for the very hard maze; we can notice
that in this maze NS-SS-LC is the slowest of the four QD approaches, while the behaviors
of the other three approaches are quite similar. In the last maze (extremely hard maze,
Fig. 6.8d), we can see that even the quality-diversity algorithms struggle in finding 50 out
of 50 successes, but no clear differences are identified between the QD algorithms tested.
In particular, NSS-LC and NS-LC find 46 successes, while NS-SS-LC and SS-LC obtain 44
and 39 successes respectively. SS-LC seems to be again the slowest of the QD approaches,
while the other three algorithms have comparable performances.

Furthermore we can compare the performance of surprise-based QD with surprise search,
NSS and NS-SS (see Chapter 4 and Chapter 5). In terms of efficiency, the introduced
QD approaches perform similarly to NSS and NS-SS, while NS-LC, NSS-LC and NS-SS-
LC outperform them only in the hardest maze, but no significance can be established.
Unsurprisingly the surprise-based QD algorithms outperform surprise search in the two
hardest mazes.

Overall we can see that, unlike the mazes tested in Section 6.1, these mazes are not
deceptive enough to show clear differences in terms of performance. In terms of efficiency,
on average NSS-LC outperform NS-LC in three out of four mazes, but the performance gap
between the two approaches is not significant.

106

6.2. Maze Navigation Testbed: Second Set

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 6.7: Efficiency comparison for the four mazes in Fig. 2.8. The graphs depict the
evolution of algorithm successes in solving the maze problem over the number of evaluations.
The maximum number of evaluations is 75 · 103 for the medium and hard maze, 250 · 103

for the very hard and extremely hard maze.

107

Chapter 6. Surprise for Quality Diversity: Experiments

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 6.8: Robustness comparison for the four mazes in Fig. 2.8. The graphs depict the
evolution of algorithm successes in solving the maze problem over the number of evaluations.

108

6.2. Maze Navigation Testbed: Second Set

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 6.9: Genotypic Space: Connections. Metrics of genomic complexity of the final
evolved ANNs, averaged from successful runs. Values in parentheses are 95% confidence
intervals.

Genomic Complexity

As done in Chapter 4 and 5, we offer an overview of the metrics collected from the successful
ANN evolved by each approach across the four authored mazes. In particular, Fig. 6.9
and Fig. 6.10 present the genomic complexity of the successful robots collected from the
experiments run in the four mazes. We can observe that, as expected, SS-LC tends to
create the bigger networks, both in terms of connections and number of hidden nodes, as
can be noticed in the hard, very hard and extremely hard mazes. On the other hand, NS-LC
tends to create the simplest networks compared to the other QD algorithms, and only NS
creates smaller and less dense ANNs. Finally, NSS-LC and NS-SS-LC create “medium” size
ANNs, i.e., the complexity of the ANNs evolved by these two approaches is between the
two extremes represented by NS-LC and SS-LC.

6.2.3 Experiments and Analysis: Second Set of Generated Mazes

In the previous section, we tested the capabilities in search policies for the surprise-based
QD algorithms across a number of generated mazes. However, these mazes were biased
by the selection policy explained in Section 6.1.2. In Chapter 4 we introduced another set
of generated mazes, used to test the capabilities of surprise search across several mazes.
Therefore, in order to offer a thorough view of the performances of surprise-based QD
algorithms, we test them against the same set of generated mazes. The parametrization
setup is analogous to the one used in Chapter 4 and Chapter 5: we run each algorithm
for 50 times per maze, the number of simulation steps is set to 300 and the number of

109

Chapter 6. Surprise for Quality Diversity: Experiments

(a) Medium maze (b) Hard maze

(c) Very hard maze (d) Extremely hard maze

Figure 6.10: Genotypic Space: Hidden Nodes. Metrics of genomic complexity of the
final evolved ANNs, averaged from successful runs. Values in parentheses are 95% confidence
intervals.

generations is 600.

Performance

Inspired by the analysis done in the previous two chapters, we perform an analysis by
aggregating all the runs of the 60 generated mazes, and we compare the efficiency and ro-
bustness for the algorithms at test. If we look at the efficiency, Fig. 6.11 shows that like
with the four authored mazes, the performances of the four QD approaches are comparable.
We can see that NSS-LC performs on average better than the other three QD algorithms,
obtaining 62, 0·103±2, 2·103 evaluations, while NS-LC, SS-LC and NS-SS-LC require respec-
tively 64, 0·103± 2, 2·103, 64, 9·103± 2, 2·103 and 64, 0·103± 2, 2·103 evaluations on average.
Unsurprisingly, they all outperform significantly novelty search (p < 0.05).

In terms of robustness, Fig. 6.12 reveals that NSS-LC begins to be faster from 40, 000
evaluations onwards, and it constantly finds more successes from that point on. At the
end of the 150, 000 evaluations, NSS-LC reaches 2, 195 successes, while NS-LC obtains
2, 152 successes, NS-SS-LC 2, 157 successes and SS-LC 2, 146 successes. The novelty search
algorithm finds fewer successes than any other approach considered, in particular from
15, 000 evaluations onwards. An interesting insight arising from this analysis is that the
all the QD algorithms require half of the evaluations compared to the mazes in Section
4.1.4 and they obtain 5 times more successes. As noticed in Chapter 5, this highlight the
relatively low difficulty of the majority of the generated mazes in this set, which evidently
are not deceptive enough to show clear differences in terms of performance between the
four QD algorithms. If we compare these results with the previous two chapters, we notice

110

6.2. Maze Navigation Testbed: Second Set

Figure 6.11: Efficiency: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method.

that—in terms of efficiency—all the surprise-based QD approaches outperform the two
novelty-surprise approaches, in particular, NSS-LC manage to outperform both significantly
(p < 0.05). We can draw similar conclusions if we compare the results with surprise search:
all the surprise-based QD algorithms significantly outperform SS and reach more successes
overall.

Finally, we focus on the successes obtained by the QD algorithms in the 60 generated
mazes. Table 6.4 shows the number of mazes where a selected method achieves at least one
more success (out of 50) compared to the successes obtained by another approach. The
reported results show that NSS-LC performs better compared to the other QD approaches,
both in terms of number of comparisons won and the number of comparisons lost. Sur-
prisingly, novelty search overall outperforms the other approaches on average more often
compared to the other algorithms. As noted in Chapter 5, it seems that this set is rela-
tively easy for divergent and quality diversity algorithms, and the majority of the mazes are
equally solvable for all the approaches. Interestingly, the average number of mazes where
NS is outperformed is mostly constant: it seems that for a selected number of mazes, quality
diversity is a necessary condition to reach more successes more often.

Genomic Complexity

In order to investigate the networks evolved by each evolutionary approach, we compare the
complexity of the successful ANNs across the 60 generated mazes for each algorithm testing.
Genomic complexity is defined as the average number of hidden nodes and connections of the
ANNs that were able to find the goal for the selected method. Fig. 6.13 shows the number
of hidden nodes and the number of connections on average for each method. As expected,
novelty search evolves the simplest networks overall, i.e., ANNs with the fewest number

111

Chapter 6. Surprise for Quality Diversity: Experiments

Figure 6.12: Robustness: algorithm successes in solving all the generated mazes over the
number of evaluations for each considered method.

Table 6.4: Algorithms tournament: Percentage of 60 generated mazes for which the
algorithm in a row has a strictly greater (≥1) number of successes compared to the algorithm
in a column. Last row and last column are respectively the average of each column and the
average of each row.

NS NS-LC SS-LC NSS-LC NS-SS-LC Average

NS – 36.6% 36.6% 35.0% 36.6% 36.3%

NS-LC 43.3% – 28.3% 16.6% 23.3% 27.9%

SS-LC 41.6% 21.6% – 18.3% 20.0% 25.4%

NSS-LC 41.6% 33.3% 30.0% – 28.3% 33.3%

NS-SS-LC 41.6% 23.3% 26.6% 16.6% – 27.1%

Average 42.1% 30.4% 21.6% 21.3% 27.1% –

of nodes and connections. This pull for the simplicity is probably what makes the ANNs
smaller for NS-LC compared to the surprise-based QD approaches. On the other hand,
SS-LC shows the higher complexity, consistently with the results obtained with the harder
set of mazes evaluated in Section 6.1.2 and with the four authored mazes (Section 6.2.2).
Finally, the two QD approaches that couple novelty and surprise with local competition,
NSS-LC and NS-SS-LC, generate medium-complex ANNs (i.e., their metrics fall between
the two extremes represented by NS-LC and SS-LC), with slightly more complexity for
the former. If we compare the complexity of the five methods with the results obtained
in the four authored mazes (6.2.2), we can notice that similar conclusions can be drawn.
Interestingly, unlike the previous results in 6.1.2, NS-LC and NS-SS-LC show a significantly
different number of connections in this set of easier mazes.

112

6.3. Discussion

(a) Connections (b) Hidden nodes

Figure 6.13: Complexity: number of connections and hidden nodes on average for evolved
ANNs which solve the mazes per approach. Error bars denote 95% confidence intervals.

If we compare overall the complexity of the methods across the two set of mazes, we can
notice that a higher number of hidden nodes and connections are generated for the harder
(more deceptive) mazes. If we look at the number of connections, in the first set of generated
mazes (Section 6.1.2), we can notice that if we average the number of connections across
the five algorithms analyzed we obtain 79.4, while in the easier set of mazes this metric goes
down to approximately 41.4 connections. We can notice a similar pattern for the hidden
nodes. In particular, for the harder mazes, the number of nodes is doubled compared to
the less deceptive mazes. This analysis confirms our hypothesis that the second set of
generated mazes is relatively easy, as the required ANNs complexity to solve this set of
mazes is comparable to the two easiest authored mazes (i.e., medium and hard maze),
where the five approaches evolve on average ANNs of approximately 34 connections and 3
nodes.

6.3 Discussion

In the experiments of Section 6.1 and 6.2, we compared three new quality diversity algo-
rithms with alternate dimensions of diversity combined with local competition in terms of
robustness and efficiency in discovering solutions in diverse maze setups. The key findings
are that NSS-LC outperforms the other QD approaches considered in this work, namely
NS-LC, NS-SS-LC and SS-LC; NS-SS-LC has a very similar performance as NS-LC, while
SS-LC underperforms by comparison. Furthermore, the experiments conducted with the
second set of generated mazes and the authored mazes (Section 6.2) partially confirmed the
results obtained with the first set of mazes. The relatively low difficulty of the mazes tested
in the second section doesn’t highlight the performance advantage of NSS-LC, which still
outperform all the other approaches, but not significantly as with the first set of mazes.

The findings on NSS-LC validate our hypothesis that surprise can be a beneficial form
of search for quality diversity. Coupled with our findings from sensitivity analysis in subsec-
tion 6.1.3 when components of the QD algorithms were added or removed and the results
obtained with the second set of mazes in Section 6.2, we speculate and discuss on two
likely reasons why adding surprise to novelty helps to achieve better overall performance.
As discussed extensively in Chapter 5 and Chapter 4, a core hypothesis for the differences
in algorithmic performance is that surprise search allows the algorithm to back-track, re-

113

Chapter 6. Surprise for Quality Diversity: Experiments

visiting areas of the search space that have been explored in previous generations. Since
surprise search operates on diverging from predictions, it may favor past behaviors if they
are sufficiently different from predicted future trends. We have already provided such an
example from nature in Chapter 1 where “terror birds” were surprising as they went against
behavioral trends (birds were becoming smaller and better fliers) while not being particu-
larly novel historically. By comparison, novelty search actively discourages re-visiting areas
of the search space due to the novelty archive. This has been a hypothesis for the effi-
ciency of surprise search compared to novelty search in purely deceptive tasks (Chapter 4),
although admittedly it is difficult to prove quantitatively. However, an indication of the
back-tracking nature of surprise is gleaned by the more complex networks evolved to solve
the mazes in Fig. 6.6, Fig. 6.13, Fig. 6.9 and Fig. 6.10; the increased size compared to
novelty search, which is consistent in other findings (as in Chapter 4, Chapter 5), is likely
because same areas of the behavioral space are re-visited in later stages of evolution with
larger networks. A clearer indication is that when surprise search with local competition
also considers an archive of past novel individuals (SSA-LC), its performance drops signifi-
cantly. We expect that the influence of an archive which actively deters back-tracking goes
against the main drive of surprise search. It is evident that the back-tracking of surprise
search does not seem to perform well in QD algorithms, as combining it with local competi-
tion seems to lead to local optima. This is perhaps why SS-LC underperforms in these tests,
although it should be noted that it still scores more successes than novelty search alone in
70% of the first set of generated mazes (Table 6.3), in 41.6% of the second set of generated
mazes (Table 6.4) and in 75% of the authored mazes. On the other hand, allowing novelty
search to back-track through a surprise score component is likely why NSS-LC performs
better. There is a fine balance between too much back-tracking (e.g., in SS-LC) and too
little (e.g., in NS-LC), but the fact that NSS-LC performs better at higher λ values (e.g.,
λ = 0.6 or λ = 0.7 in Fig. 6.2) should be an indication that the novelty score primarily
drives the search and back-tracking is favored in specific circumstances.

The second likely cause for a high-performing NSS-LC is based on recent research on
novelty in highly successful patents, where the authors focused on the “sweet spot” of
novelty (He and Luo, 2017). That study suggests that a sweet spot of novelty might
exist on the border of what we can call a “conventional solution” and a completely novel
solution. A similar hypothesis suggests that optimal solutions exist on the border between
feasible and infeasible spaces in constrained optimization (Schoenauer and Michalewicz,
1996). In the maze navigation domain, for instance, behaviors that are “too novel” might
dominate solutions that are less novel but more promising. Surprise may help to search
in a more fine-grained fashion the space between a completely new solution and solutions
already in the population or in the archive, in order to find the desired sweet spot of
novelty. This is not only possible through back-tracking, but especially in NSS it is due
to the balance of the two scores (novelty versus surprise). When the population in one
generation becomes too novel compared to that of the previous generation, predictions will
be even more distant points; in this case, the surprise score will have a larger impact as
the distance from predicted points will be larger than that of past or current points. In
general this balancing factor softens the greedy search for all-new solutions and, coupled
with the secondary objective of local competition, results in a more efficient search process.
The difference between NS-SS-LC and NSS-LC is perhaps the most surprising, as we as
we would expect the decoupling of novelty and surprise scores to perform better compared
than an aggregated approach. The very good performance of NS-SS as a two-objective
divergent search algorithm (outperforming NSS, as reported in Chapter 5 and Section 6.1)

114

6.4. Summary

also indicated that a decoupling of the two measures of divergence would be beneficial and
pointed to the orthogonal nature of surprise and novelty. However, as a QD algorithm the
three-objective NS-SS-LC approach seemed to perform on par with NS-LC, to the degree
of evolving similar sized networks.

If we look at the results of the previous two chapters, we notice that overall surprise-
based QD algorithms perform better in the hardest of the four authored mazes and the
second set of generated mazes. These results, together with the findings reported in Fig.
6.3, confirm that a quality-diversity approach helps the maze navigation algorithm to find
faster the goal of the mazes, especially for the hardest mazes, and that combining novelty
and surprise in a quality diversity formulation helps to improve even further its performance.

6.4 Summary

This chapter explored the impact of different diversity strategies on quality diversity evo-
lutionary approaches and tested the hypothesis that surprise search may augment the ex-
ploration capacity of QD algorithms. Building on the concept of novelty search as one
dimension coupled with local competition as a second dimension, alternatives to novelty
search which used surprise or a combination of novelty and surprise were devised. These
new QD algorithms were tested extensively on the maze navigation domain; we used a broad
set of 60 mazes with varying degrees of deceptive fitness landscapes and each algorithm was
evaluated across a total of 3000 evolutionary runs. Additionally, we tested the capabilities
of these newly introduced algorithm against two supplementary set of mazes (four authored
mazes and a second set of 60 generated mazes), to obtain a complete picture of the per-
formances against the previously introduced maze navigation tasks. This makes the total
number of runs performed for each approach equal to 6200 runs. Experiments concluded
that an aggregated novelty-surprise search with local competition outperforms other QD
algorithms, both in terms of number of runs which find a solution to the problem and the
number of evaluations in which such solutions are found. The chapter finally ended with
an in-depth discussion of the several experiments conducted and how the obtained results
opened new directions in exploring different notions of divergence and quality diversity. The
following chapter will offer a general overview of the results obtained in this dissertations
and dissect the main limitations of the methodologies presented in this thesis.

115

Chapter 6. Surprise for Quality Diversity: Experiments

116

Chapter 7

Discussion and Conclusions

This dissertation aims to investigate how the notion of surprise can be exploited for evo-
lutionary search. In order to do so, we provided a general definition of the algorithm that
follows the principles of searching for surprise and we applied the idea across two paradigms,
divergent search and quality diversity. In particular, we addressed three research questions:
1) how the notion of surprise can be generally defined as a quantitative measure for compu-
tational search, 2) when and under which circumstances surprise search can be an effective
optimization algorithm in deceptive domains, 3) how surprise can be interwoven with other
divergent and quality diversity algorithms.

In order to answer the first question, we formalized surprise for computational search
and then, starting from this quantitative formulation, we defined an algorithm that uses
surprise as a proxy measure to make the required steps towards the global optimum. In-
spired by the divergent search paradigm, we introduced a new algorithm called surprise
search. In Chapter 3 we described in detail each sub-components of the algorithm and a
number of extensions, which involve both novelty search and quality diversity approaches.
In Chapter 4 we addressed the second question, by validating the proposed surprise search
in two independent domains. The experiments suggest that surprise search yields either
better (in maze navigation) or comparable (in soft robot evolution) efficiency compared to
novelty search and it significantly outperforms objective search. Given the promising results
obtained with surprise search alone, Chapter 5 and Chapter 6 tackled the last remaining
research question, by investigating how we can couple surprise with other evolutionary ap-
proaches. In particular, Chapter 5 tested the idea of coupling novelty and surprise for
the purposes of divergent search. The results in the maze navigation task and soft robot
evolution show that coupling novelty and surprise (i.e., NSS, NS-SS) can be advantageous
in terms of efficiency and robustness compared to their base components. In Chapter 6,
finally, we investigated how surprise search impacts the performance of QD algorithms. We
devised a number of surprise-based QD approaches and we tested them thoroughly against
120 generated mazes, with varying degree of difficulty. Surprise has shown to be an effective
reward for quality diversity and to improve the performances of state-of-the-art approaches
in a significative way.

In conclusion, we argue that this thesis has investigated extensively to what degree
surprise can be employed and used in the context of computational search. The obtained
results show that (a) surprise search has clear advantages over other forms of evolutionary
divergent search, and outperforms traditional fitness search in deceptive problems, (b) sur-
prise shows greater exploration capacity compared to other divergent search approaches,

117

Chapter 7. Discussion and Conclusions

(c) surprise efficaciously complements other forms of evolutionary search, i.e., novelty and
local competition.

However, during this exploration, we found a number of limitations in the subcompo-
nents of the introduced algorithms. Furthermore, although a great effort has been made to
cover the two chosen domains thoroughly, there is an upper bound to the generality of the
reported results. In Section 7.1 we describe these limitations in detail, both regarding the
algorithms and the experiments reported in this dissertation. Finally, we broaden the scope
of this work in Section 7.2: building on the existing work, we describe how the introduced
surprise-based family of algorithms can be transferred to other domains.

7.1 Limitations

In this dissertation, a great effort has been made to cover most of the possible drawbacks,
but, unsurprisingly, some limitations remain to be addressed. This section offers a detailed
description of each limitation found and tries to address the main drawbacks with proposals
for future work.

7.1.1 Limitations of Surprise Search

The experiments described in Chapter 4 have shown that surprise search is an efficient and
robust approach for solving deceptive problems. However, we took several design decisions
in terms of subcomponents employed, representation used and parameter settings, which
affect the generality of the obtained results.

Model of Expected Behaviour

As described in Chapter 3, when it comes to designing a model of expected behaviour
there are two key aspects that need to be considered: how much prior information the
model requires and how that information is used to make a prediction. In this thesis,
the prediction of behaviour is based on the simplest form of 1-step predictions via linear
regression. This simple predictive model shows the capacity of surprise-based algorithms
given theirs performance advantages over state-of-the-art algorithms, but more work on
exploring how much time and how the information is used to make the prediction is required.
Further, the prediction space is missing a proper in-depth analysis, because admittedly it is
difficult to understand how the predictions are affecting the performance of the algorithm
and the exploration of the search space. In Chapter 4, it is argued that deviating from
the predicted behaviour may create a backtracking behaviour that can result in revisiting
areas of the search space and this may help surprise search to explore more broadly. The
behavioural space analysis in the maze navigation testbed (Section 4.1.3) partially assessed
the explorations capabilities of surprise search. However we lack empirical evidence on
this intuition and a deeper investigation of the backtracking dynamic will be considered
for future work. Another possible issue is related to the computation of prediction in the
general case, especially in more complex tasks. While a simple linear regression model seems
to be sufficient for delivering state of the art results in both simple and complex behavioral
spaces (Chapter 4) other surrogate models (Jin, 2005; Jin et al., 2018) could be investigated
for more complex tasks and domains (Gaier et al., 2018). A first possible step towards this
investigation could be to use different prediction models (m in Eq. 3.1) for the computation
of surprise. For instance, we can imagine learning in an unsupervised manner a neural

118

7.1. Limitations

network model of the environment, e.g., a world model (Ha and Schmidhuber, 2018), and
use the learned model to predict non-linear behaviors of heterogeneous tasks.

Moreover, we can envision that better results can be achieved if machine learned or
non-linear predicted models are built on more prior information (h > 2). A possible way
of considering more extensive history is to apply linear interpolation of past centroids over
time. For instance, in the maze navigation domain, it is possible to compute a 3-dimensional
line over the three dimensions considered (two-dimensional Euclidean space and time) and
compute the next predicted position over the line by taking the interpolated position at
generation t. Linear regression can be easily replaced by a quadratic or cubic regression,
an artificial neural network model or a kriging model (Jin et al., 2018). Investigating how
the correctness of the prediction model affects the performance of surprise search is another
possible direction of future work. For instance, we can consider using multiple prediction
models at the same time (e.g., linear and non-linear models) and compute the surprise
score as a weighted sum of the distances calculated from the expected behaviors. Based on
the correctness of the predictions in the past generations, we can then change the weights
proportionally to the accuracy of the different prediction models.

Another possible direction for future investigation is coupling surprise search with sur-
rogate models. Indeed, one of the most important drawbacks in EC is the computation
time needed for the evaluation of the generated solutions. A typical run might require from
thousands to million evaluations of the individuals before finding an acceptable solution to
the problem. When the computational cost is prohibitive, we can approximate the fitness
landscape with a surrogate model, in order to accelerate the evaluation phase at the cost
of less precision (Jin, 2011). Several approaches have been proposed, as in Karavolos et al.
(2017) where a machine learned model is used to predict the balance of a game level in
a first-person shooter. Surrogate models might be particularly effective for the soft robot
evolution domain, as the VoxCad simulations are extremely heavy computationally (Ch-
eney et al., 2013). Using a surrogate model may make the discovery of efficient robots more
difficult given the deceptiveness of this domain, but it would certainly boost the number
of evaluations and experiments which could be performed. Therefore, a trade-off between
efficiency and computational cost should be explored.

Prediction Locality of Surprise Search

The algorithm presented in this dissertation allows for various degrees of prediction locality.
We define prediction locality as the amount of local information considered by surprise
search to make a prediction. This is expressed by kSS which is set by the algorithm designer,
as noted in Chapter 3. Prediction locality can be derived from the behavioural space but
also from the genotypic space. Experiments conducted in Chapter 4 (see Fig. 4.4) show
that surprise is slightly more sensitive to the change of hyperparameters compared to other
kind of search (i.e. for kSS < 100 in the maze navigation domain). However, the performed
experiments show that the performances stabilize as long as kSS is sufficiently high for the
problem at hand. Nonetheless, future investigations should test more in-depth the effect of
locality for surprise search across different domains and investigate the sensitivity of kSS
extensively.

An important limitation is related with the clustering algorithm used for the prediction
locality, k-means. Surprise search, in the form presented in this thesis, requires some form
of behavioural clustering. While k-means was investigated in the reported experiments for
its simplicity and popularity, it should be noted that for high values of kSS the k-means

119

Chapter 7. Discussion and Conclusions

algorithm might end up not assigning any data point to a particular cluster; the chance of
this happening increases with kSS and the sparseness of data (in particular in datasets con-
taining outliers) (Hartigan and Wong, 1979). Further, the seeding initialization procedure
we follow for k-means aims to behaviourally connect centroids across generations so as to
enable us to predict and deviate from the expected behaviour in the next generation. The
adopted initialization procedure (i.e., inheriting from centroids of the previous generation)
does not guarantee that all seeded centroids will be allocated during the assignment step of
k-means, as a data point might change drastically from one generation to the next. In the
case of surprise search, when an empty cluster appears in the current generation (i.e., in
positions where a cluster existed in a past generation but not currently), then its prediction
is not updated (i.e., moved) until a data point gets close to the empty cluster’s centroid.
Predicted centroids that have not been recently updated (due to empty clusters) are still
considered when calculating the surprise score, and indirectly act as an archive of earlier
predictions. However, this archive is not persistent as the number of ‘archived’ prediction
points can increase or decrease during the course of evolution and depends on kSS . Com-
parative studies between approaches are needed, including different ways of dealing with
(or taking advantage of) empty clusters.

As an alternative to k-means, we may consider using a different clustering algorithm,
such as agglomerative clustering or DBSCAN (Rokach and Maimon, 2005). Another possible
solution is to use a supervised learning algorithm to learn how to compute the locality of
the solutions. This model can be implemented by collecting data from human users, and
then compute the prediction locality through the trained model, for instance by means of
preference learning (Yannakakis et al., 2018).

Behaviour Characterization and Deviation

Experiments in this thesis focus on diversifying the behaviour of the evolved ANNs (in the
maze navigation testbed) and soft robots’ trails (Chapter 4); to do this, we use several be-
haviour characterizations (for the objective, for the distance, and for prediction in surprise
search) which have featured extensively in previous work (Mouret and Doncieux, 2012;
Cheney et al., 2013). However, the results might be influenced by the chosen behaviour
characterization. Other behaviour characterizations have been proposed (Methenitis et al.,
2015) and could be potentially used to measure distance, e.g., dn(i, j) in Eq. 2.3 and ds(i, j)
in Eq. 3.2. The current algorithm allows for any degree and type of deviation from the
expected behaviour. Inspired by novelty search, this thesis only investigated a linear de-
viation from expectations—i.e., the further a behaviour is from the prediction the better.
There exist, however, several ways of computing deviation in a non-linear or probabilistic
fashion, e.g., as per Grace et al. (2015).

In a maze navigation environment, for instance, we can alternatively consider a non-
distance-based deviation by using heatmaps of the chosen behaviour characterization. Fig-
ure 7.1 shows the key phases of this implementation: in generation t − 2 and t − 1 we
compute the heatmaps Ht−2 and Ht−1 which aggregate the final positions of all robots
(kSS = 1), and we use a linear interpolation to compute the predicted heatmap at gener-
ation t. The surprise score is then computed by mapping the individual’s position on the
predicted heatmap: 1−Ht(x, y), where x, y is the final position of the robot mapped onto
the heatmap.

120

7.1. Limitations

Ht−2 at generation t− 2 Ht−1 at generation t− 1 Ht at generation t

Figure 7.1: Deviation in maze navigation: Surprise search using heatmaps, at genera-
tion t. The first two heatmaps are computed in the last two generations by using the final
robot positions, Ht−2 and Ht−1. Using linear interpolation, the difference Ht−1 −Ht−2 is
computed and applied to Ht−1 to derive the predicted current population’s Ht. The surprise
score penalizes a robot if its position (green point) is on a high concentration cell on the
predicted heatmap Ht.

7.1.2 Limitations of Novelty-Surprise Search

Extensive work has been done to test the hypothetical orthogonality of novelty and surprise
(Chapter 5). The evidence confirmed our hypothesis, as we showed that the two approaches
are more effective when combined compared to their base components, i.e., novelty search
and surprise search. However, based on their algorithmic properties, using novelty and
surprise search implies that the two dimensions change throughout the evolutionary process.
Therefore, the analysis of the dynamics of the two divergent measures is hard, as both
surprise and novelty are dynamic and their values depend on the state of the population.
Indeed, novelty search depends on the state of the population and the novelty archive
(Lehman and Stanley, 2011a,b), while surprise search depends on the historical trends
and predictions which are recomputed in every generation (Gravina et al., 2017c, 2016b).
Nonetheless, more theoretical and experimental work is required to understand the dynamics
behind the beneficial synergy of the two divergent processes.

Towards that end, different combinations of the two rewards can be probed and tested.
For example, Gomes et al. (2017) propose novelty-driven cooperative coevolutionary algo-
rithms, where novelty helps the coevolutionary process to not converge towards a stable
(and local optimal) solution. Extending on this idea, we can imagine that coupling novelty
and surprise in a cooperative coevolution setting may help the coevolutionary algorithm to
perform even better and, at the same time, may help to understand the underlying dynam-
ics when these two divergent techniques are run together. Another possible implementation
can couple novelty and surprise in a probabilistic fashion. Correll and Heer (2017) propose
to use Bayesian Surprise (Itti and Baldi, 2006) to highlight unexpected patterns in data
visualization. Also the notion of novelty can be formulated in a probabilistic manner, as
described in (Li and Pŕıncipe, 2018). Therefore, it is possible to test these two alternative
formulations of novelty and surprise and compare them with the algorithms proposed in
this dissertation. We can envision that a user-based model of novelty and surprise can be
also realised. Inspired by interactive novelty search (Woolley and Stanley, 2014), we can
imagine to compute surprise and novelty rewards based on the user preference and apply

121

Chapter 7. Discussion and Conclusions

them in an interactive evolution scenario (Liapis, 2014).

7.1.3 Limitations of Surprise for Quality Diversity

Surprise search has shown to be an advantageous quality diversity approach when coupled
with novelty and local competition, as shown in Chapter 6. However, we found two main
limitations during the analysis of the results. First, the quality diversity variants of surprise
search have been tested only in one domain (i.e., maze navigation), which limits the gen-
eralization of the results obtained. The second domain, soft robot evolution, has not been
tested due to the high computational time required to run the experiments (Cheney et al.,
2013). The VoxCad simulations are indeed particularly expensive, especially as the resolu-
tion increases: indicatively, for resolutions of 10× 10× 10, one evolutionary run takes 88.2
CPU hours. Second, we only tested one variant of the surprise-based quality diversity algo-
rithms. Chapter 4 and Chapter 5 test two variants of SS, NSS and NS-SS (steady-state and
generational), while all algorithms employed in Chapter 6 use a steady-state implementation
of NEAT, as in (Lehman and Stanley, 2011a). In particular, the multi-objective algorithms
(NS-LC, SS-LC, NSS-LC, NS-SS-LC) use a steady-state implementation of NSGA-II (Li
et al., 2017). There are three main reasons behind this choice: first, for fair comparisons
with the baselines used in this dissertation (NS, SS, NSS) which use a steady state imple-
mentation for the maze navigation testbed (Lehman and Stanley, 2011a; Gravina et al.,
2016b, 2017a); second, due to evidence in (Lehman et al., 2013) that the generational coun-
terpart of novelty search does not perform equally well in a maze navigation scenario, likely
due to a “less informative gradient” for novelty search given by a generational reproduc-
tion mechanism (Lehman et al., 2013); third, due to arguments in recent studies (Durillo
et al., 2009; Nebro and Durillo, 2009; Buzdalov and Parfenov, 2015) that a steady-state
multi-objective implementation can be beneficial in terms of convergence and diversity for
particular problems. Based on the aforementioned studies we assume that a steady state
implementation is more suitable for the maze navigation testbed. Nevertheless, future work
will test the degree to which this assumption holds by comparing current findings against
a generational implementation of the proposed QD algorithms.

Another interesting insight obtained from the results in Section 6 has revealed that the
three-dimensional solution NS-SS-LC does not perform as expected. We can assume that
the simultaneous search for three dimensions (compared to all other QD approaches which
search along two dimensions) was the primary cause of its subdued performance. As the
dimensions increase, so does the number of non-dominated solutions (Purshouse and Flem-
ing, 2007), which makes the search process slower. A further complication (as noted in the
previous subsection) is that all three of the dimensions have dynamic, fluctuating scores:
novelty search is sensitive to both the population and the novelty archive and the same
individual may receive a different novelty score from one generation to the next. The same
applies for surprise score, which depends on the ever-changing recent trends and predictions
which are recalculated in every generation, and the local competition which again depends
on other individuals in the population and the novelty archive. How multi-objective algo-
rithms handle such dynamic fitness dimensions has not been sufficiently examined, and is
an interesting direction of inquiry. Due to the high performance of NS-SS, however, we
expect that an algorithm that can in principle handle more objectives more efficiently will
lead to improved performance for NS-SS-LC. A possible way to address this problem could
be implementing and testing different multi-objective algorithms for the surprise-based QD
algorithms. We can envision that a reference point based algorithm, such as NSGA-III (Deb

122

7.1. Limitations

and Jain, 2014), might mitigate some of the problems encountered and will be considered
for future work. Further, the results reported in Chapter 6 shows that surprise with local
competition underperforms compared to the other QD approaches. This might be due to
the local competition reward formulation. Local competition is closely related to the inner
workings of the novelty search algorithm, as it computes the localized reward based on the
concept of the behavioural neighbourhood, while surprise search uses the prediction space.
Therefore, we can imagine that a different model of local competition, working on both
dimensions (the behavioural space used by novelty and the prediction space used by sur-
prise), may be beneficial and improve even further the capabilities of the QD approaches
proposed.

Finally, as noted in Chapter 6, we focused on enhancing one quality diversity approach
with surprise: a multi-objective blend of a divergence score and a measure of local supe-
riority. Other approaches for quality diversity such as MAP-Elites (Mouret and Clune,
2015; Cully et al., 2015) could also be considered, either as another QD algorithm used as
a benchmark for NSS-LC, or to introduce surprise as a way of searching within the space of
MAP-Elites. MAP-Elites is a QD algorithm where a descriptor space (a space defined by
the designer of the algorithm) is discretized and stored as a grid. Given this N -dimensional
space, MAP-Elites searches for highest performing solutions for each bin. The algorithm
starts by generating a random set of solutions; these solutions are then evaluated and their
associated descriptors recorded. Every generated solution is then potentially saved in their
corresponding bin, computed based on the recorded descriptor. If the selected bin is empty,
the solution is stored in the grid, otherwise the performances of the stored solution and of
the new solution are compared, and only the best one is kept. After this initialization proce-
dure, the stored solutions are uniformly selected to generate a new individual, by means of
crossover or/and mutation. The new solution is then evaluated and then potentially stored
in the corresponding bin if its performance is better compared to the solutions stored, fol-
lowing the same procedure as in the initialization. These three phases—selection, mutation,
and evaluation—are repeated a number of times until the grid reaches the desired coverage
or a predefined number of evaluations is reached.

As noticed the selection phase of the MAP-Elites algorithm chooses randomly the par-
ents from the solutions stored in the grid. In order to aid the exploration of underrepre-
sented solutions, we can imagine selecting the individuals stored in the grid based on their
unexpectedness. Surprise could be integrated into MAP-Elites, for instance, by storing
two different maps: one used as in the standard algorithm and the other one used for the
surprise computation, with deviation from predictions used as a selection process for the
algorithm (see Fig. 7.2). In (Gravina et al., 2019c) we perform a first step towards this
direction in the soft robot domain, where surprise search is used to diversify the selection
process of MAP-Elites.

7.1.4 Limitations of the Domains

The two domains used throughout in this dissertation present some limitations as well. In
the maze navigation domain, a shared characteristic across the various mazes is the static
environment used in the simulations and the use of only one goal per maze. A possible
extension is to add more than one goal in the maze navigation problem, as previously
tested in (Pugh et al., 2016). Another interesting direction is including dynamic obstacles
in the maze: every n timesteps, we may add an obstacle in the maze, making the problem
dynamic and more difficult (see Fig. 7.3). We can implement dynamic maze navigation in

123

Chapter 7. Discussion and Conclusions

Figure 7.2: A mockup of Surprise-based MAP-Elites: the idea is to use two different
descriptor spaces: the first one is computed as in Mouret and Clune (2015) while the second
space acts as a probabilistic distribution model of surprise (Surprise Map) that can be used
to evaluate the unexpectedness of the solutions in a probabilistic fashion.

Timestep 0 Timestep 100 Timestep 200

Figure 7.3: Dynamic maze navigation: a dynamic maze navigation problem, where the
obstacles between the starting point and the goal are placed during the simulation with the
wheeled robot, e.g., in this example at the timestep 100 and timestep 200.

two ways. The first way is to make the changes in the maze deterministically, i.e., all the
times the wheeled robot traverses the mazes, the modifications of the maze will appear at
the same place and at the same timestep. The second way is to place the obstacles in the
maze randomly, making the problem also noisy. Another limitation is related to the soft
robot domain. It is worth mentioning that analysis of the structural properties performed
in Chapter 4 and 5 has focused on the rate of non-active materials and filled voxels as in
(Mouret and Clune, 2015), but other structural properties could be relevant, such as the rate
of active materials or more sophisticated distance measures. Futhermore, we can imagine
changing the behaviour characterization employed. Instead of using the behavioural trails
of the evolved robots, surprise-based algorithms may use their structural features directly,
similarly to (Mouret and Clune, 2015).

A further limitation of the results reported in this work is related to the use of a specific

124

7.2. Extensibility: Beyond Mazes and Soft Robots

neuroevolution algorithm, NEAT (Stanley and Miikkulainen, 2002), for both domains. This
poses the question whether the performances of the tested algorithms might depend on the
features of neuroevolution. To address this limitation, it would be interesting to test the
capabilities of surprise-based algorithms with different representations and testbeds. The
proposed algorithms should be tested against a broader set of state of the art evolution-
ary algorithms, such as CMA-ES (Hansen, 2006) or multimodal optimization algorithms
(Preuss, 2015).

To a degree, the experiment with the generated mazes (Chapter 4, Chapter 5 and Chap-
ter 6) and the two independent implementations for each approach tests how generalizable
the proposed algorithms are. Since results from that experiment indicated that surprise-
based algorithms scale better to more deceptive problems, we need to further test the po-
tential of the algorithm through more deceptive and complex environments. For instance,
the capacity of these algorithms needs to be tested in other domains such as gameplaying or
procedural content generation (Yannakakis and Togelius, 2018). Several works have stud-
ied the potential use of divergent search and quality diversity in computational creativity
domains (Liapis et al., 2015; Liapis, 2016; Khalifa et al., 2018). This limitation has been
partially addressed in (Gravina et al., 2016a), which will be described in more detail in
the following section. However, a broader study on the performances of the surprise-based
algorithms in non-NEAT domains is an important and necessary step for future work.

7.2 Extensibility: Beyond Mazes and Soft Robots

This thesis has put a great deal of effort in exploring the performance of the proposed
algorithms across different setups and domains. However more directions wait to be ex-
plored, both concerning potential enhancement of the algorithms (e.g., prediction model or
deviation model) and domains to which the algorithmic contributions of this work could be
applied. This section offers an overview of the main directions that could be taken in the
future.

7.2.1 Surprise Search for Procedural Content Generation

As other divergent search approaches (e.g., novelty search) have been successfully used for
computational creativity and open-ended search, we can foresee that surprise could be an
interesting addition in the search for unconventional artefacts, especially in the context of
content generation and computational art. Surprise-based search is particularly well-suited,
for example, in procedural content generation (PCG). Procedural content generation has
been used since the 1980s in the game industry to quickly and computationally efficiently
create elaborate structures such as the dungeons of Rogue (Toy and Wichman 1980) or the
universe of ELITE (Acornsoft 1984). Commercially, procedural content generation is used
primarily for two reasons: (a) to cut down on development effort and time, and (b) to create
unexpected, unique experiences every time the game is played, thus increasing its lifetime
and replayability value. Due to the former, small teams of game developers have been able
to (procedurally) create grandiose gameworlds such as those in Minecraft (Mojang 2011)
and No Man’s Sky (Hello Games 2016). Due to the latter, games such as Civilization V
(Firaxis 2010) have been immensely successful in retaining a userbase engaged despite the
lack of e.g., an overarching campaign. In literature, different branches have been recognized
for PCG: constructive, generate-and-test, search-based and Procedural Content Generation
via Machine Learning (PCGML) (Togelius et al., 2011; Summerville et al., 2018)

125

Chapter 7. Discussion and Conclusions

Historically, constructive algorithms were the first algorithms capable of generating con-
tent for games automatically. Constructive algorithms are ad-hoc approaches that generate
content without any quality control over the generated content. These algorithms fea-
ture two key advantages: they are fast and highly controllable. Given their advantageous
characteristics, they are ubiquitous in commercially acclaimed games, such as in the action-
based game Bloodborne (FromSoftware, 2015). Compared to the historical use of procedural
content generation in games, academic interest in PCG from the perspective of artificial
intelligence is relatively recent. Nonetheless, a number of constructive algorithms have
been proposed and successfully tested in different genre such as puzzle games (Smith et al.,
2013), platformer levels (Smith et al., 2011), mazes, dungeons (Horswill and Foged, 2012)
and strategy game maps (Smith and Mateas, 2011).

Academic interest in PCG has often used search-based processes (Togelius et al., 2011)
such as evolutionary computation to create game content which optimizes one or more
game qualities deemed relevant by the designers. PCG research focuses on expanding the
generative algorithms, going beyond constructive approaches (Togelius et al., 2011) While
the majority of PCG research focuses on creating one final artifact which exemplifies the
desired properties of its type, there are several attempts at creating a diverse set of content
using, e.g., multi-objective optimization (Togelius et al., 2013), multi-modal optimization
(Preuss et al., 2014) and novelty search (Liapis et al., 2015). PCG research has used many
different sets of algorithms, often revolving around evolutionary computation and constraint
satisfaction, among others. Broadly, evolutionary computation under the umbrella term
search-based PCG (Togelius et al., 2011) evolves a large population of artifacts towards a
certain objective, usually pertaining to in-game quality. Constraint satisfaction, instead,
uses a carefully selected set of constraints to ensure that all of the generated content is
playable (Smith et al., 2013).

More recent approaches involve the use of machine learning: PCGML is defined as the
“generation of game content using machine learning models trained on existing content”
(Summerville et al., 2018). The main difference from the approaches mentioned above is
that the generation happens directly from the machine learning model, i.e., from the latent
space learned from the data used to train the model. While PCGML can be used as in
the search-based approaches, it complements the constructive and search-based PCG with
specific capabilities more suited for machine learning, such as repair, critique and content
analysis of the generated content. Given a sufficiently large database of representative
content, PCGML can recognize issues in the generated content and suggest a possible way
to fix it, e.g., an unbalanced map for a first-person shooter (Karavolos et al., 2017). Not
only functional hints but also high-level suggestions can be generated: PCGML might act
as a critique of the content and suggest possible improvements based on the knowledge
acquired through the data used to train the model. For instance, Karavolos et al. (2018b)
use deep learning to automate the design of adversarial shooter game and Karavolos et al.
(2018a, 2019) couples SB-PCG and PCGML to automatically train a game designer and
evolve a game creator for the FPS genre.

Procedural Content Generation through Quality Diversity

Being a recent trend in evolutionary computation, quality diversity algorithms are underex-
plored as procedural content generators, despite that diversification and quality are highly
valued qualities from a user’s perspective (Gravina et al., 2019a). The game industry tends
to focus on the controllable generation of content (e.g., constructive methods (Togelius et al.,

126

7.2. Extensibility: Beyond Mazes and Soft Robots

2011)), and the consequence is that content tends to be similar. Generally, a trade-off be-
tween quality and diversity has to be taken: if the search space is too restricted, quality can
be guaranteed, but the generated content will be similar. On the one hand, such gameplay
qualities are required from the generated content in order to ensure the game is playable
and balanced across players (e.g., in a competitive game). On the other hand, a core moti-
vation of commercial PCG is the element of surprise it can elicit from players. For example,
although astonishing for the quality of the generated planets, No Mans Sky (Hello Games,
2016)—a commercial game that featured PCG as its main selling point—has been criti-
cized for the limited variety of the generated content. While constructive approaches have
a limited range of possible outcomes, diversity-only approaches can lead to poorly subopti-
mal solutions or yield unusable content. Constrained novelty search by Liapis et al. (2015)
solves this problem by subdividing the search space in two: feasible and infeasible. The
algorithmic process rewards infeasible solutions based on their distance from the feasibility
and then, once the solutions have reached the desired features, the algorithm explores the
feasible space by rewarding novel solutions. Another interesting take on this problem is by
Khalifa et al. (2018). In that work, another affirmed QD algorithm, MAP-Elites (Mouret
and Clune, 2015) is applied to generate new levels for a bullet hell game. As in the previous
example, a feasible-infeasible approach is employed, and the dimensions of dexterity and
strategy are explored to generate challenging and playable levels. We can imagine applying
surprise-based algorithms to augment the creative potential of QD approaches. An initial
investigation in this direction has been performed by Gravina et al. (2016a), where a set of
balanced and surprising weapons for first-person shooters were evolved through a quality
diversity approach named constrained surprise search.

Constrained Surprise Search

Constrained surprise search is inspired by earlier work on creating sets of diverse artifacts
(Gravina and Loiacono, 2015), and applies surprise search on the task of procedural content
generation. In particular, the goal is generating pairs of weapons for a competitive first-
person shooter game: the two weapons must be usable and balanced between them, but also
exhibit surprising behavioral properties (i.e., different weapon pairs would allow different
types of gameplay or strategies to emerge). Towards that end, constraints on usability
and balance are satisfied via a feasible-infeasible two-population approach (FI-2pop GA)
which guides infeasible content towards feasibility (Kimbrough et al., 2008). In the feasible
population, however, the weapon pairs evolve towards surprising behaviors, i.e., behaviors
that were not predicted based on the previous generations. The considered behaviour
characterization is a weapon tester agent’s death location: as we have described above,
we can employ a heatmap as a probability distribution of the population’s behaviour and
predict the next generation’s heatmap by means of linear interpolation of each singular cell.

The weapons are used in the commercially successful Unreal Tournament III (Epic
Games 2007) game (UT3). Besides its commercial appeal, UT3 has well-designed game
levels and AI modules which allow for simulations of game matches in order to derive
behavioral properties of the weapons. Weapons in UT3 are already quite diverse, which
allows the surprise-based algorithm to explore different sets of parameters such as bouncing
bullets, grenades affected by gravity, or exploding projectiles. The two weapons evolved in
this scenario are tested by two AI-controlled agents competing for the highest number of
kills in UT3. Simulations are used to create a map of the death locations of each player;
these act as behavioral characteristics of the weapons and are used to assess unexpected

127

Chapter 7. Discussion and Conclusions

Figure 7.4: Surprise-based FI-2pop. Diagram of the two-population genetic algorithm
augmented by surprise search used in (Gravina et al., 2016a).

behaviors in the surprise search algorithm.

Algorithm: this approach fuses the properties of FI-2pop constrained optimization
(Kimbrough et al., 2008) with surprise search (Gravina et al., 2016b), by using the latter to
evolve the feasible population. The proposed algorithm uses two populations which evolve
towards different goals, one for the feasible individuals and the other for the infeasible ones
(Fig. 7.4). In the genotype, each weapon is represented by 11 parameters with different
value ranges and in-game properties; the generator evolves pairs of weapons (one per player
in a deathmatch FPS game)

There are certain playability requirements for the generated weapons: balance, effective-
ness and safety. Each of these properties can be evaluated as a scalar value, via heuristics
discussed below, based on simulations between AI controlled agents. A pair of weapons is
considered playable (i.e. feasible) if each property is above a specific threshold. Moreover,
for infeasible individuals the heuristics can be used to derive the distance from feasibility
with regards to each constraint. Balance is computed as the Shannon Entropy (Shannon,
2001) of the kills obtained by the two agents; effectiveness is calculated by dividing the total
number of kills obtained in the simulation by the maximum score limit ; safety is computed
as the exponential of 0.9 elevated for the number of suicides (i.e. a death which was not
scored as another player’s kill). The feasibility constraint is satisfied if balance is ≥ 0.9,
effectiveness is ≥ 1 (i.e. if exactly 20 kills are scored) and safety is ≥ 0.9 (i.e. if there’s at
most one suicide). The rationale for the strict thresholds for effectiveness and safety are
to avoid creating sparse heatmaps of death locations (due to low effectiveness) or death
locations originating from suicides (due to low safety).

The feasible population contains individuals which satisfy all constraints listed above,
while the infeasible population contains individuals which have at least one of safety, balance
and efficiency below the minimal threshold. The infeasible population assigns its members
a fitness equal to balance + effectiveness + safety, regardless of whether some of the
values of these properties are above the feasibility threshold. This favors individuals which
satisfy more constraints to others which satisfy no constraints, although some averaging

128

7.2. Extensibility: Beyond Mazes and Soft Robots

Ht−2 Ht−1 Predicted Ht Invidual’s ht,i
Weap. 1 Weap. 2 Weap. 1 Weap. 2 Weap. 1 Weap. 2 Weap. 1 Weap. 2

L
ow

er
U

p
p

er

Figure 7.5: An example of the prediction model of constrained surprise search.
The first two sets of heatmaps are computed in the last two generations, Ht−2 and Ht−1;
the death location density is always normalized per floor. Using linear interpolation, the
difference Ht−1 − Ht−2 is computed and applied to Ht−1 to derive the predicted current
population’s Ht truncated to [0, 1]. An individual’s death locations are mapped to Ht to
calculate the surprise score.

artifacts may occur. Unlike traditional FI-2pop approaches, the infeasible population at-
tempts to maximize this value, as the three properties act as objectives (with minimal value
constraints).

In the feasible population, surprise search attempts to deviate from predicted behavioral
trends of the current population. Behavior of a weapon is considered to be the playtraces
of the player who wields it, and in particular the locations where their opponent died in this
one-versus-one deathmatch game. Since the genotype contains two weapons and the level
used for the simulation consists of two floors, this creates a total of 4 heatmaps of death
locations of each player. These heatmaps assign each death on a tile of a low-resolution grid
(10 by 13 tiles per floor), incrementing the value (or heat) of that tile; example heatmaps
are shown in Fig. 4.1. Note that heatmaps are normalized to a range of [0, 1] based on the
maximum heat value of each map (i.e. per floor and per player).

Surprise search attempts to deviate, therefore, from the expected heatmaps of this gen-
eration: i.e., have death locations which are unexpected based on the current evolutionary
trends. Surprise search focuses on diverging from predictions p (see Eq. 3.1) of the current
population, calculated by observing the previous generations’ behavioral changes. We use
only the populations of the last two generations (h = 2; Eq. 3.1) to predict the current
population, applying a linear interpolation (m is a linear regression model in Eq. 3.1). The
model, m, considers the population as a whole (kSS = 1; Eq. 3.1). In short, when predicting
the heatmaps Ht for a population at generation t, the heatmaps of the population at t− 2
(Ht−2) is subtracted from those of the population at t − 1 (Ht−1) to calculate ∆H. The
prediction of Ht is obtained by adding ∆H to Ht−1, ensuring that its values fall within [0, 1]
in all 4 heatmaps. Figure 7.5 illustrates this procedure.

The primary goal was to discover feasible and diverse content via constrained surprise
search, thereby achieving quality diversity. The results obtained indicate that constrained
surprise search tends to evolve diverse pairs of weapons, which have unexpected in-game
uses. The FI-2pop paradigm also allows this method to discover feasible individuals quickly
and consistently. As an example, Figure 7.6 shows a couple of weapons generated by
constrained surprise search.

129

Chapter 7. Discussion and Conclusions

Figure 7.6: Two example weapons created by constrained surprise search. The
weapons achieve quality diversity as they both respect balance constraints (quality) and,
at the same time, maximize their surprise score (diversity). The weapon on the left creates
‘mines’ around the map: its bullets are extremely slow, with a large blast area (explosive,
high collision radius) and they can also bounce on walls or the level’s floor. Moreover, these
‘mines’ are fired in clusters (high shot cost) thus costing a lot of ammo (of which the weapon
has little): the first weapon requires its wielder to move around the level, laying ‘mines’ in
chokepoints when the other player is nearby. Meanwhile, the weapon on the right is very
similar to a rifle: high-damage fast bullets which shoot straight (trivial gravity effects) with
a very low collision radius, thus requiring precise aiming. Unlike traditional rifles, however,
the weapon’s bullets have some explosive qualities.

7.2.2 Surprise Search for Reinforcement Learning

Another potential domain for surprise-based search is Reinforcement Learning (Sutton and
Barto, 2018). The idea of applying the intuition behind quality diversity within reinforce-
ment learning is not new. As described in Chapter 2, we can argue that intrinsic motivation
shares some common ground with the notion of quality diversity. However, the idea of apply-
ing stochastic search coupled with reinforcement learning has largely unexplored potential
and only recently it has been explored with some promising results (Conti et al., 2017). For
instance, Colas et al. (2018) introduce the idea of decoupling exploration and exploitation
in RL.

Goal Exploration Process - Policy Gradient is composed of two different phases. During
the first phase, a method called goal exploration process (Forestier et al., 2017) is used to
explore efficiently the state-action space and populate a replay buffer. In the second phase,
a Deep Reinforcement Learning (Deep RL) algorithm (Mnih et al., 2015) uses the replay
buffer to sample diverse and efficient policies for the given problem. Therefore, this approach
exploits the advantages of the two paradigms: while quality diversity is an efficient method
to explore search spaces and circumvent deceptive environments, deep reinforcement learn-
ing is used to fine-tune the policies found during the first phase. Interestingly, Ecoffet et al.
(2018) argue that backtracking to previously visited states is of fundamental importance to
solve sparse reward systems. We argue that the unique properties of surprise search shown
in this work—orthogonality with novelty and value, emerging backtracking behaviour—can
be helpful to address difficult problems in RL. A surprise-based approach could be a useful

130

7.2. Extensibility: Beyond Mazes and Soft Robots

Figure 7.7: Surprise-based Reinforcement Learning: the flowchart illustrates the two
key phases involved in reinforcement learning through surprise search. The figure include
the general principles of the exploration-exploitation trade-off (bold) and the algorithmic
contributions of this thesis (in italics).

aid to increase the exploration capabilities of reinforcement learning algorithms.
Inspired by Colas et al. (2018), we can imagine transferring the methodology described in

this thesis in the context of RL. A possible implementation can use surprise-based quality
diversity as a way to find unexpected behaviours in the state-action space (exploration
phase) and store them in a separated archive, which can be used in the second phase
(exploitation phase) as Fig. 7.7 shows. Surprise search, in particular, can explore the
state-action space in an uninformed manner (as in divergent search), or explore both high-
performing and diverse solutions as for surprise-based QD. The explored behaviours are
stored subsequently in a separated archive as pairs of policy parameters and outcomes
(based on the chosen behaviour characterization). This archive of pairs is then used in the
second phase, where we populate the replay buffer used by the Deep RL algorithm, which
can be implemented as plain Deep RL or coupled with other approaches. Extending on
(Colas et al., 2018), we can imagine to alternate the two phases every N epochs, in order
to fully exploit the exploration capabilities of the surprise-based QD algorithm and make
the overall process more dynamic.

The introduction of surprise-based RL can broaden the scope of surprise search to re-
inforcement learning environments. Thanks to the fusion of surprise-based evolutionary
approaches with Deep RL, we can envision to solve deceptive problems and sparse reward
domains. For instance, there are a number of deceptive problems where Deep RL algorithms
have difficulties in finding optimal solutions, such as games with deceptive reward systems
(Anderson et al., 2018). Deceptive games are games where the reward system is designed to
lead the agent away from the globally optimal policy. Anderson et al. (2018) introduced a
set of deceptive games in the General Video Game Artificial Intelligence framework (Perez-
Liebana et al., 2019), where they implement a number of games with different types of
deception. In particular, they introduce several categories of deception, such as the Greed
Trap, where local reward gradients lead to suboptimal solutions or the Smoothness Trap
where the global optimum is surrounded by low performing areas of the solution space. A
possible solution to this problem is to aid the exploration of the RL agent with surprise
search: we argue that the surprise-based RL algorithm can be a promising approach for
these deceptive problems, as surprise search may help the RL algorithm to overcome the

131

Chapter 7. Discussion and Conclusions

deceptiveness of the reward system across different deceptive categories.

7.3 Summary

This chapter has offered an overview of the main insights gained by testing the proposed
surprise-based algorithms in several benchmarks. Based on the evidence collected, we argue
that surprise is an effective evolutionary tool and, sided with novelty search and local com-
petition, it contributes the search for high-quality solutions in an efficient and robust way,
especially in deceptive problems. We performed a number of experiments to validate the
proposed algorithms thoroughly, but some limitations have been found in the design choices
and experiments performed. Chiefly, these limitations are based on two main aspects: the
generalization of the reported results and the design of the algorithms’ subcomponents. To
address these limitations we proposed two main directions for future work. First, given
the general formulation described in Chapter 3, we proposed several extensions for the
surprise-based algorithms, e.g., in terms of prediction model or behaviour characterization
used. Second, we proposed to corroborate the algorithms introduced in this dissertation
in other domains. In particular, we can envision to use surprise-based search to generate
unexpected content for games and to aid the exploration capabilities of deep reinforcement
learning algorithms.

132

Appendices

133

Appendix A

Experimental Parameters

A.1 Parameters for Maze Navigation Experiments

In the experiments conducted in this dissertation, surprise search and surprise-based algo-
rithms have been implemented as an extension of NEAT. To facilitate a fair comparison, all
the tested algorithms are tested with the same NEAT parameters. The software package
employed is based on the original Novelty Search C++ implementation provided by Lehman
and Stanley (2011a). The source code of the described framework is available online1. Table
A.1 shows the parameters used in experiments reported in this work. Additionally Table
A.2, Table A.3 and Table A.4 show the parameters chosen for the experiments conducted in
in Chapter 4, Chapter 5 and Chapter 6. A description of the parameters is also provided:

• Population size: the number of artificial neural networks evolved.

• c1: weight for the excess genes used in the compatibility metric computation (Stanley
and Miikkulainen, 2002).

• c2: weight for the disjoint genes used in the compatibility metric computation (Stanley
and Miikkulainen, 2002).

• c3: weight for the connection strength used in the compatibility metric computation
(Stanley and Miikkulainen, 2002).

• Ct: compatibility threshold (Stanley and Miikkulainen, 2002). This threshold is used
to check if two individuals are part of the same species.

• Add Link probability: this parameter specify how often a mutation can add a link
between two nodes of the ANN.

• Add Node probability: this parameter specify how often a mutation can add a new
node in the ANN.

• Initial Archive Threshold: this parameter specify the minimum novelty value to en-
ter the novelty archive. This parameter is used only for the novelty search based
algorithms.

• Simulation steps: the number of simulation steps run in the maze for the wheeled
robot.

1https://gitlab.com/2factor/QDSurprise

135

Appendix A. Experimental Parameters

Table A.1: NEAT parameter setting. This table shows the NEAT parameters used for
the maze navigation experiments conducted in Chapter 4, Chapter 5 and Chapter 6.

Parameter Value
Population size 250
c1 1.0
c2 1.0
c3 3.0
Ct variable
Probability Add Link 0.1
Probability Add Node 0.005
Initial Archive Threshold 6.0

Table A.2: Maze navigation parameters. Parameters used for the experiments reported
in Chapter 4.

Parameter Medium Hard Very Hard Extremely Hard Generated Mazes
Simulation steps 300 300 500 1000 300
Generations 300 300 1000 1000 600
nNS 15 15 15 10 15
kSS 200 100 200 220 200
h 1 1 2 2 2

• Generations: maximum number of generations allowed for the experiment.

• nNS : a novelty search parameter that establishes the number of nearest neighbours
to consider when computing the novelty measure (See Eq. 2.3).

• kSS : a surprise search parameter that define the locality of the behaviour used to
compute the predictions (See Eq. 3.1).

• h: parameter that defines the number of previous generations used by surprise search
(See Eq. 3.1).

• m: parameter that defines prediction model used by surprise search (See Eq. 3.1).

• p: predictive behaviours used by surprise search (See Eq. 3.1).

• dSS : domain-dependent measure of behavioural distance used by surprise search (See
Eq. 3.2).

• nSS : a surprise search parameter that define the number of closest predicted behaviour
to consider to compute the surprise score (See Eq. 3.2).

• λ: a novelty-surprise search parameter that defines the weight used to compute the
linear aggregation between novelty and surprise (See Eq. 3.3).

A.2 Parameters for Soft Robot Evolution Experiments

The experiments reported with the Soft Robot Evolution testbed were run with an extension
of the source code provided by Methenitis et al. (2015) and Cheney et al. (2013). The source

136

A.2. Parameters for Soft Robot Evolution Experiments

Table A.3: Maze navigation parameters. Parameters used for the experiments reported
in Chapter 5.

Parameter Medium Hard Very Hard Extremely Hard Generated Mazes
Simulation steps 300 300 500 1000 300
Generations 300 300 1000 1000 600
nNS 15 15 15 10 15
kSS 100 50 200 220 200
h 2 2 2 2 2
λ 0.6 0.6 0.3 0.6 0.6

Table A.4: Maze navigation parameters. Parameters used for the experiments reported
in Chapter 6; nLC

1 is used for NS-LC, NSS-LC and NS-SS-LC, nLC
2 is used for SS-LC.

Parameter Medium Hard Very Hard Extremely Hard Generated Mazes
Simulation steps 300 300 500 1000 300
Generations 300 300 1000 1000 600
nNS 15 15 15 15 15
kSS 200 200 200 200 200
h 2 2 2 2 2
λ 0.7 0.7 0.7 0.7 0.7
nLC

1 5 5 5 5 5
nLC

2 10 10 10 10 10

code of the described algorithms is available online2. Table A.5 shows the parameters used
for the experiments conducted in this work. A detailed description of these parameters can
be found in (Stanley, 2007) and (Cheney et al., 2013).

2https://gitlab.com/2factor/Soft-Robots-SurpriseSearch

137

Appendix A. Experimental Parameters

Table A.5: Soft Robot Evolution parameter setting.

Parameter Value

VoxCad
Gravity −27.6 m/s2

Simulation time 0.4 seconds
Signal rate 40Hz

CPPN-NEAT

Population size 30
Generation 1000
c1 2.0
c2 2.0
c3 1.0
Ct 6.0
Probability Add Link 0.05
Probability Add Node 0.03
Compatibility Modifier 0.3
Species Size Target 8.0
Dropoff Age 15.0
Age Significance 1.0
Survival Threshold 0.2
Mutate Link Weights Probability 0.8
Mutate Only Probability 0.25
Mutate Link Probability 0.1
Smallest Species Size With Elitism 5.0
Mutation Power 2.5
Adult Link Age 18.0
Force Copy Generation Champion 1.0
Generation Dump Modulo 1.0
Extra Activation Functions 1.0
Signed Activation 1.0
Extra Activation Updates 9.0
nNS 10
kSS 15
h 4
λ 0.6

138

Appendix B

Maze Navigation Generated Mazes

139

Appendix B. Maze Navigation Generated Mazes

Table B.1: 60 generated mazes: set introduced in Chapter 4. The starting position (grey
filled circle) is at the bottom left corner; the goal position (black empty circle) is at the top
right corner.

140

Table B.2: 60 generated mazes: set introduced in Chapter 6. The starting position (grey
filled circle) is at the bottom left corner; the goal position (black empty circle) is at the top
right corner.

141

Appendix B. Maze Navigation Generated Mazes

142

Appendix C

Soft Robot Behavioural and
Structural Analysis

143

Appendix C. Soft Robot Behavioural and Structural Analysis

Table C.1: Feature maps: feature maps produced by the four methods, across the 8
resolutions considered. White bins do not have any robots, while colored bins denote the
fitness of the best individual (blue for low fitness, red for high fitness).

Res. OS NS SS NSS NS-SS

33

43

53

63

73

83

93

103

144

Table C.2: Behavioural analysis: behavioural performance metrics as the mean values of
90 independent runs (95% confidence interval in parentheses). Bold values are significantly
different from all other methods.

33 Objective Novelty Surprise

Trajectory length 7.98 (0.48) 9.38 (0.20) 9.75 (0.22)
Deviation 0.19 (0.05) 0.39 (0.08) 0.35 (0.07)
Max velocity 44.86 (2.01) 44.77 (1.08) 46.69 (1.28)
Mean velocity 19.96 (1.21) 23.47 (0.50) 24.31 (0.56)

43 Objective Novelty Surprise

Trajectory length 8.33 (0.16) 10.71 (0.33) 11.28 (0.31)
Deviation 0.16 (0.02) 0.49 (0.08) 0.49 (0.08)
Max velocity 39.14 (0.76) 47.86 (1.72) 47.68 (1.36)
Mean velocity 20.84 (0.40) 26.79 (0.84) 28.20 (0.79)

53 Objective Novelty Surprise

Trajectory length 7.64 (0.44) 12.91 (0.33) 12.14 (0.36)
Deviation 0.22 (0.03) 0.59 (0.06) 0.63 (0.07)
Max velocity 34.14 (2.28) 57.24 (1.27) 53.57 (1.81)
Mean velocity 19.11 (1.11) 32.28 (0.84) 30.37 (0.92)

63 Objective Novelty Surprise

Trajectory length 8.44 (0.46) 12.52 (0.29) 12.45 (0.46)
Deviation 0.27 (0.04) 0.54 (0.06) 0.61 (0.08)
Max velocity 36.14 (2.45) 53.75 (1.11) 52.62 (1.56)
Mean velocity 21.11 (1.15) 31.30 (0.72) 31.13 (1.16)

73 Objective Novelty Surprise

Trajectory length 7.71 (0.48) 12.09 (0.36) 11.54 (0.30)
Deviation 0.19 (0.04) 0.58 (0.08) 0.58 (0.07)
Max velocity 29.01 (2.04) 49.54 (1.30) 47.37 (1.46)
Mean velocity 19.27 (1.20) 30.22 (0.91) 28.85 (0.76)

83 Objective Novelty Surprise

Trajectory length 8.93 (0.68) 12.93 (0.38) 11.70 (0.39)
Deviation 0.23 (0.03) 0.58 (0.07) 0.55 (0.09)
Max velocity 31.13 (2.31) 45.98 (1.50) 42.78 (1.41)
Mean velocity 22.31 (1.71) 29.81 (0.94) 29.23 (0.97)

145

Appendix C. Soft Robot Behavioural and Structural Analysis

Table C.3: Behavioural analysis: behavioural performance metrics as the mean values of
90 independent runs (95% confidence interval in parentheses). Bold values are significantly
different from all other methods.

93 Objective Novelty Surprise

Trajectory length 7.86 (0.51) 11.92 (0.38) 11.46 (0.37)
Deviation 0.21 (0.03) 0.51 (0.07) 0.57 (0.08)
Max velocity 27.46 (1.75) 44.03 (1.33) 40.78 (1.42)
Mean velocity 19.65 (1.26) 29.81 (0.96) 28.66 (0.92)

103 Objective Novelty Surprise

Trajectory length 9.08 (0.68) 11.60 (0.34) 11.34 (0.38)
Deviation 0.22 (0.04) 0.55 (0.08) 0.41 (0.06)
Max velocity 30.45 (2.25) 41.73 (1.38) 40.32 (1.41)
Mean velocity 22.70 (1.70) 29.01 (0.85) 28.34 (0.95)

146

Appendix D

Computational Effort

While the analysis of computational effort has been focused on the efficiency and robustness
of the considered algorithms, it is worth investigating the computation time required to run
the surprise-based evolutionary algorithms proposed in this work and compared them to
two baselines, novelty search, and objective search. We report the obtained results in terms
of CPU time per generation (in seconds) recorded in one indicative run for each algorithm
in the two domains used in this thesis. Table D.1 and Table D.2 show the results in the
maze navigation domain and in the soft robot domain respectively. All the experiments
have been run independently in a 2.4 GHz 40-cores workstation.

Table D.1: Maze Navigation Computational Effort. CPU time (in seconds) per gen-
eration of one indicative run in the maze navigation domain.

Medium Hard Very Hard Extremely Hard

OS 0.210 0.287 0.461 1.410
NS 0.309 0.342 0.475 0.675
SS 0.234 0.235 0.952 0.967

NSS 0.423 0.491 0.734 1.201
NS-SS 0.775 0.787 0.960 1.301
NS-LC 0.835 0.828 0.929 1.543
SS-LC 0.739 0.746 0.899 2.075

NSS-LC 1.021 1.182 1.180 1.507
NS-SS-LC 1.034 1.158 1.133 1.644

147

Appendix D. Computational Effort

Table D.2: Soft Robot Computational Effort: CPU time (in seconds) per generation
of one indicative run in the soft robot domain.

OS NS SS NSS NS-SS

3x3x3 1.872 4.419 5.761 5.495 6.487
4x4x4 9.707 11.659 12.128 12.647 13.164
5x5x5 18.070 22.052 22.999 22.294 25.496
6x6x6 28.551 40.387 31.591 38.291 32.850
7x7x7 26.879 64.178 53.246 50.220 58.146
8x8x8 74.586 91.975 83.791 85.687 79.129
9x9x9 90.697 117.067 127.328 112.114 121.617
10x10x10 162.423 156.618 140.949 156.700 172.854

148

Acronyms

Deep RL Deep Reinforcement Learning. 130

EC Evolutionary Computation. 1

FI-2pop GA Feasible-infeasible Two-population Genetic Algorithm. 127

MOEAs Multi-objective Evolutionary Algorithms. 18

NEAT Neuroevolution of Augmenting Topologies. 21

NS Novelty Search. 2

NS-LC Novelty Search with Local Competition. 2

NS-SS Novelty Search-Surprise Search. 37

NS-SS-LC Novelty Search-Surprise Search-Local Competition. 37

NSGA-II Non-dominated Sorting Genetic Algorithm II. 19

NSS Novelty-Surprise Search. 37

NSS-LC Novelty-Surprise Search with Local Competition. 37

PCG Procedural Content Generation. 125

PCGML Procedural Content Generation via Machine Learning. 125

QD Quality Diversity. 2

SS Surprise Search. 2

SS-LC Surprise Search with Local Competition. 37

149

Acronyms

150

Bibliography

Timo Aaltonen, J. Adelman, T. Akimoto, M.G. Albrow, B. Álvarez González, S. Amerio,
D. Amidei, A. Anastassov, A. Annovi, J. Antos, et al. Measurement of the top-quark
mass with dilepton events selected using neuroevolution at cdf. Physical Review Letters,
102(15):152001, 2009. — Cited on page 22.

Christoph Adami, Charles Ofria, and Travis C. Collier. Evolution of biological complexity.
Proceedings of the National Academy of Sciences, 97(9), 2000. — Cited on page 1.

Damien Anderson, Matthew Stephenson, Julian Togelius, Christoph Salge, John Levine,
and Jochen Renz. Deceptive games. In International Conference on the Applications of
Evolutionary Computation, pages 376–391. Springer, 2018. — Cited on page 131.

P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions for
complex tasks. In Proceedings of the International Conference on Genetic Algorithms,
1994. — Cited on page 24.

Andrew Barto, Marco Mirolli, and Gianluca Baldassarre. Novelty or surprise? Frontiers in
psychology, 4:907, 2013. — Cited on pages xi, 2, and 14.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural
Information Processing Systems, pages 1471–1479, 2016. — Cited on pages 30 and 31.

Peter Bentley and Sanjeev Kumar. Three ways to grow designs: A comparison of embryoge-
nies for an evolutionary design problem. In Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann Publishers Inc., 1999. — Cited on page 20.

Daniel E. Berlyne. Conflict, arousal, and curiosity. McGraw-Hill series in psychology, 1960.
— Cited on page 13.

S. Bertelli, L. M. Chiappe, and C. Tambussi. A new phorusrhacid (aves: Cariamae) from
the middle miocene of Patagonia, Argentina. Journal of Vertebrate Paleontology, 27(2),
2007. — Cited on page 4.

Margaret A. Boden. The Creative Mind: Myths and Mechanisms. Routledge, 2004. —
Cited on pages 2 and 11.

Josh C. Bongard and Rolf Pfeifer. Evolving complete agents using artificial ontogeny. In
Morpho-functional Machines: The new species, pages 237–258. Springer, 2003. — Cited
on page 35.

151

Bibliography

Yossi Borenstein and Riccardo Poli. Fitness distributions and ga hardness. In International
Conference on Parallel Problem Solving from Nature, pages 11–20. Springer, 2004. —
Cited on page 23.

Heinrich Braun and Joachim Weisbrod. Evolving neural feedforward networks. In Artificial
Neural Nets and Genetic Algorithms, pages 25–32. Springer, 1993. — Cited on page 21.

Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein, Frank Neumann, and
Eckart Zitzler. Do additional objectives make a problem harder? In Proceedings of the
Genetic and Evolutionary Computation Conference. ACM, 2007. — Cited on page 24.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018. — Cited on page 31.

Maxim Buzdalov and Vladimir Parfenov. Various degrees of steadiness in nsga-ii and their
influence on the quality of results. In Proceedings of the Genetic and Evolutionary Com-
putation Conference. ACM, 2015. — Cited on page 122.

Luigi Cardamone, Georgios N. Yannakakis, Julian Togelius, and Pier Luca Lanzi. Evolving
interesting maps for a first person shooter. In European Conference on the Applications
of Evolutionary Computation, pages 63–72. Springer, 2011. — Cited on page 33.

Alastair Channon et al. Passing the alife test: Activity statistics classify evolution in geb
as unbounded. In ECAL, pages 417–426. Springer, 2001. — Cited on page 1.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution: evolv-
ing soft robots with multiple materials and a powerful generative encoding. In Proceed-
ings of the Genetic and Evolutionary Computation Conference. ACM, 2013. — Cited on
pages 34, 35, 61, 64, 85, 119, 120, 122, 136, and 137.

Jeff Clune and Hod Lipson. Evolving three-dimensional objects with a generative encoding
inspired by developmental biology. In ECAL, pages 141–148, 2011. — Cited on page 22.

Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen, et al. Evolutionary
algorithms for solving multi-objective problems, volume 5. Springer, 2007. — Cited on
pages 19 and 42.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling explo-
ration and exploitation in deep reinforcement learning algorithms. arXiv preprint
arXiv:1802.05054, 2018. — Cited on pages 130 and 131.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stan-
ley, and Jeff Clune. Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents. arXiv preprint arXiv:1712.06560,
2017. — Cited on page 130.

Michael Correll and Jeffrey Heer. Surprise! bayesian weighting for de-biasing thematic
maps. IEEE Transactions on Visualization Computer Graphics, 23(1):651–660, 2017. —
Cited on pages 12 and 121.

Giuseppe Cuccu and Faustino Gomez. When novelty is not enough. In European Conference
on the Applications of Evolutionary Computation, pages 234–243. Springer, 2011. — Cited
on page 41.

152

Bibliography

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular
framework. IEEE Transactions on Evolutionary Computation, 22, 2018. — Cited on
pages vi, 26, 28, and 30.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can
adapt like animals. Nature, 521(7553):503–507, 2015. — Cited on pages 27, 28, and 123.

Y. Davidor. Epistasis variance: A viewpoint on ga-hardness. In Foundations of Genetic
Algorithms. Morgan Kaufmann, 1991. — Cited on pages 17 and 23.

Kenneth A. De Jong. Evolutionary computation: a unified approach. MIT press, 2006. —
Cited on page 1.

Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties and construction
of test problems. Evolutionary Computation, 7, 1999. — Cited on page 24.

Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms, volume 16.
John Wiley & Sons, 2001. — Cited on pages 18, 28, 41, and 42.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part i: Solving prob-
lems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4):
577–601, 2014. — Cited on page 122.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002. — Cited on pages 19, 29, 42, 43, 44, 74, and 86.

Emanuel Donchin. Surprise!. . . surprise? Psychophysiology, 18(5):493–513, 1981. — Cited
on page 12.

Juan J. Durillo, Antonio J. Nebro, Francisco Luna, and Enrique Alba. On the effect of
the steady-state selection scheme in multi-objective genetic algorithms. In International
Conference on Evolutionary Multi-Criterion Optimization, pages 183–197. Springer, 2009.
— Cited on page 122.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Mon-
tezuma’s revenge solved by go-explore, a new algorithm for hard-exploration problems
(sets records on pitfall, too). http://eng.uber.com/go-explore/, 2018. — Cited on
page 130.

Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4), 1992. — Cited
on pages 6 and 12.

Jeffrey L. Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71–99, 1993. — Cited on page 24.

Leon Festinger. A theory of cognitive dissonance, volume 2. Stanford university press, 1962.
— Cited on page 31.

S. Ficici and J. B. Pollack. Challenges in coevolutionary learning: Arms-race dynamics,
open-endedness, and mediocre stable states. In Proceedings of the International Confer-
ence on Artificial Life, 1998. — Cited on page 24.

153

Bibliography

David B. Fogel. Phenotypes, genotypes, and operators in evolutionary computation. In
Evolutionary Computation, 1995., IEEE International Conference on, volume 1, page
193. IEEE, 1995. — Cited on page 20.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically moti-
vated goal exploration processes with automatic curriculum learning. arXiv preprint
arXiv:1708.02190, 2017. — Cited on page 130.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models
for deep reinforcement learning. In Advances in Neural Information Processing Systems,
pages 2577–2587, 2017. — Cited on page 31.

Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. Data-efficient design explo-
ration through surrogate-assisted illumination. Evolutionary Computation, 26(3):381–
410, 2018. — Cited on page 118.

Pascal Godefroit, Andrea Cau, Dong-Yu Hu, François Escuillié, Wenhao Wu, and Gareth
Dyke. A jurassic avialan dinosaur from china resolves the early phylogenetic history of
birds. Nature, 498(7454):359–362, 2013. — Cited on pages v and 5.

David E. Goldberg. Simple genetic algorithms and the minimal deceptive problem. In
Genetic Algorithms and Simulated Annealing, Research Notes in Artificial Intelligence.
Morgan Kaufmann, 1987. — Cited on pages 1 and 23.

David E. Goldberg and John H Holland. Genetic algorithms and machine learning. Machine
learning, 3(2), 1988. — Cited on page 1.

David E. Goldberg, Jon Richardson, et al. Genetic algorithms with sharing for multi-
modal function optimization. In Genetic algorithms and their applications: Proceedings
of the Second International Conference on Genetic Algorithms, pages 41–49. Hillsdale,
NJ: Lawrence Erlbaum, 1987. — Cited on pages 1, 24, and 28.

Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Devising effective novelty
search algorithms: A comprehensive empirical study. In Proceedings of the Genetic and
Evolutionary Computation Conference. ACM, 2015. — Cited on page 27.

Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Novelty-driven cooperative
coevolution. Evolutionary computation, 25(2):275–307, 2017. — Cited on page 121.

Faustino J. Gomez and Risto Miikkulainen. Solving non-markovian control tasks with
neuroevolution. In Proceedings of the 16th international joint conference on Artificial
intelligence-Volume 2, pages 1356–1361. Morgan Kaufmann Publishers Inc., 1999. —
Cited on pages 20 and 21.

M. Gong, J. Liu, H. Li, Q. Cai, and L. Su. A multiobjective sparse feature learning model
for deep neural networks. IEEE Transactions on Neural Networks and Learning Systems,
26(12):3263–3277, 2015. — Cited on page 28.

Goren Gordon and Ehud Ahissar. Hierarchical curiosity loops and active sensing. Neural
Networks, 32:119–129, 2012. — Cited on page 31.

154

Bibliography

Kazjon Grace and Mary Lou Maher. What to expect when you’re expecting: The role of un-
expectedness in computationally evaluating creativity. In Proceedings of the International
Conference on Computational Creativity, 2014. — Cited on page 11.

Kazjon Grace, Mary Lou Maher, Douglas Fisher, and Katherine Brady. Data-intensive
evaluation of design creativity using novelty, value, and surprise. International Journal
of Design Creativity and Innovation, 2014. — Cited on pages 2, 5, and 12.

Kazjon Grace, Mary Lou Maher, Douglas Fisher, and Katherine Brady. Modeling expecta-
tion for evaluating surprise in design creativity. In Design Computing and Cognition’14,
pages 189–206. Springer, 2015. — Cited on pages 2, 12, 14, 38, and 120.

Daniele Gravina and Daniele Loiacono. Procedural weapons generation for unreal tour-
nament iii. In Games Entertainment Media Conference (GEM), 2015 IEEE, pages 1–8.
IEEE, 2015. — Cited on page 127.

Daniele Gravina, Antonios Liapis, and Georgios N Yannakakis. Constrained surprise search
for content generation. In Proceedings of the IEEE Conference on Computational Intel-
ligence and Games (CIG). IEEE, 2016a. — Cited on pages x, 16, 125, 127, and 128.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Surprise search: Beyond
objectives and novelty. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2016b. — Cited on pages 12, 25, 121, 122, and 128.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Coupling novelty and
surprise for evolutionary divergence. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2017a. — Cited on pages 15, 16, and 122.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Exploring divergence for
soft robot evolution. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, 2017b. — Cited on page 85.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Surprise search for evolu-
tionary divergence. arXiv preprint arXiv:1706.02556, 2017c. — Cited on pages 12, 25,
and 121.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Fusing novelty and sur-
prise for evolving robot morphologies. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2018. — Cited on page 15.

Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N. Yan-
nakakis. Procedural content generation through quality-diversity. In Proceedings of the
IEEE Conference on Games, 2019a. — Cited on page 126.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Quality diversity through
surprise. IEEE Transactions on Evolutionary Computation, 23, 2019b. — Cited on
pages 15, 16, and 19.

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. Blending notions of diver-
sity for map-elites. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, 2019c. — Cited on page 123.

155

Bibliography

John J. Grefenstette. Deception considered harmful. In Foundations of genetic algorithms,
volume 2, pages 75–91. Elsevier, 1993. — Cited on page 23.

Frederic Gruau, Darrell Whitley, and Larry Pyeatt. A comparison between cellular encod-
ing and direct encoding for genetic neural networks. In Proceedings of the 1st annual
conference on genetic programming, pages 81–89. MIT Press, 1996. — Cited on page 21.

Haipeng Guo and William H. Hsu. Ga-hardness revisited. In GECCO, pages 1584–1585,
2003. — Cited on page 23.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.
— Cited on page 119.

Nikolaus Hansen. The CMA evolution strategy: a comparing review. In Towards a new
evolutionary computation, pages 75–102. Springer, 2006. — Cited on page 125.

John A. Hartigan and Manchek A. Wong. Algorithm as 136: A k-means clustering al-
gorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):
100–108, 1979. — Cited on page 120.

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. Evolving content in the galactic
arms race video game. In Computational Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on, pages 241–248. IEEE, 2009. — Cited on page 22.

Yuejun He and Jianxi Luo. The novelty ‘sweet spot’ of invention. Design Science, 3, 2017.
— Cited on page 114.

Jonathan Hiller and Hod Lipson. Dynamic simulation of soft heterogeneous objects. arXiv
preprint arXiv:1212.2845, 2012. — Cited on pages 34 and 61.

John Henry Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992. — Cited
on page 16.

Gregory S. Hornby. Alps: the age-layered population structure for reducing the problem
of premature convergence. In Proceedings of the Genetic and Evolutionary Computation
Conference, 2006. — Cited on pages 1 and 24.

Gregory S. Hornby, Hod Lipson, and Jordan B. Pollack. Evolution of generative design
systems for modular physical robots. In Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, volume 4, pages 4146–4151. IEEE, 2001.
— Cited on page 35.

Ian Douglas Horswill and Leif Foged. Fast procedural level population with playability
constraints. In AIIDE, 2012. — Cited on page 126.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Vime: Variational information maximizing exploration. In Advances in Neural Informa-
tion Processing Systems, pages 1109–1117, 2016. — Cited on page 31.

J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg. The hierarchical fair competition
(hfc) framework for sustainable evolutionary algorithms. Evolutionary Computation, 13
(2), 2005. — Cited on pages 1 and 24.

156

Bibliography

Marcus Hutter and Shane Legg. Fitness uniform optimization. IEEE Transactions on
Evolutionary Computation, 10(5):568–589, 2006. — Cited on page 24.

Laurent Itti and Pierre F. Baldi. Bayesian surprise attracts human attention. In Advances
in Neural Information Processing Systems, pages 547–554, 2006. — Cited on pages 12
and 121.

Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary computation.
Soft computing, 9(1):3–12, 2005. — Cited on page 118.

Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and future chal-
lenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011. — Cited on page 119.

Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo, and Kaisa Miettinen. Data-driven
evolutionary optimization: An overview and case studies. IEEE Transactions on Evolu-
tionary Computation, 2018. — Cited on pages 118 and 119.

Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 184–192, 1995. — Cited on page 23.

Niels Justesen and Sebastian Risi. Automated curriculum learning by rewarding temporally
rare events. In IEEE Conference on Computational Intelligence and Games (CIG), pages
1–8. IEEE, 2018. — Cited on page 31.

Frédéric Kaplan and Pierre-Yves Oudeyer. Intrinsically motivated machines. In 50 years
of artificial intelligence, pages 303–314. Springer, 2007. — Cited on page 31.

Daniel Karavolos, Antonios Liapis, and Georgios N. Yannakakis. Learning the patterns of
balance in a multi-player shooter game. In Proceedings of the 12th International Confer-
ence on the Foundations of Digital Games, page 70. ACM, 2017. — Cited on pages 119
and 126.

Daniel Karavolos, Antonios Liapis, and Georgios N. Yannakakis. Pairing character classes
in a deathmatch shooter game via a deep-learning surrogate model. In Proceedings of the
FDG Workshop on Procedural Content Generation, 2018a. — Cited on page 126.

Daniel Karavolos, Antonios Liapis, and Georgios N. Yannakakis. Using a surrogate model
of gameplay for automated level design. In Proceedings of the IEEE Conference on Com-
putational Intelligence and Games (CIG). IEEE, 2018b. — Cited on page 126.

Daniel Karavolos, Antonios Liapis, and Georgios N. Yannakakis. A multi-faceted surrogate
model for search-based procedural content generation. IEEE Transactions on Games,
2019. — Cited on page 126.

S. A. Kauffman. Adaptation on rugged fitness landscapes. In Lectures in the Sciences of
Complexity. Addison-Wesley, 1989. — Cited on page 23.

Ahmed Khalifa, Scott Lee, Andy Nealen, and Julian Togelius. Talakat: Bullet hell gen-
eration through constrained map-elites. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2018. — Cited on pages 125 and 127.

157

Bibliography

Steven Orla Kimbrough, Gary J. Koehler, Ming Lu, and David Harlan Wood. On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained optimization: Dis-
tance tracing and no free lunch. European Journal of Operational Research, 190(2):
310–327, 2008. — Cited on pages 127 and 128.

Joshua D. Knowles, Richard A. Watson, and David W. Corne. Reducing local optima
in single-objective problems by multi-objectivization. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 269–283. Springer, 2001. — Cited on
page 24.

Teuvo Kohonen. Self-organization and associative memory, volume 8. Springer Science &
Business Media, 2012. — Cited on page 13.

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary
Computation, 17(1):122–145, 2013. — Cited on page 27.

John R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and computing, 4(2):87–112, 1994. — Cited on pages 16 and 17.

Deepak Kulkarni and Herbert A Simon. The processes of scientific discovery: The strategy
of experimentation. Cognitive science, 12(2):139–175, 1988. — Cited on pages 11 and 12.

Max C. Langer, Mart́ın D. Ezcurra, Oliver W.M. Rauhut, Michael J. Benton, Fabien Knoll,
Blair W. McPhee, Fernando E. Novas, Diego Pol, and Stephen L. Brusatte. Untangling
the dinosaur family tree. Nature, 551(7678):E1, 2017. — Cited on page 27.

Michael S. Y. Lee, Andrea Cau, Darren Naish, and Gareth J. Dyke. Sustained miniaturiza-
tion and anatomical innovation in the dinosaurian ancestors of birds. Science, 345(6196):
562–566, 2014. — Cited on page 4.

Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness to solve problems through
the search for novelty. In Proceedings of the International Conference on Artificial Life,
2008. — Cited on page 47.

Joel Lehman and Kenneth O. Stanley. Revising the evolutionary computation abstrac-
tion: minimal criteria novelty search. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2010. — Cited on pages 16, 27, and 95.

Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary computation, 19(2), 2011a. — Cited on pages vi, vii, 1,
2, 13, 14, 24, 25, 26, 32, 38, 39, 40, 42, 47, 48, 49, 51, 57, 74, 75, 93, 94, 95, 105, 121,
122, and 135.

Joel Lehman and Kenneth O. Stanley. Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2011b. — Cited on pages 2, 28, 29, 30, 33, 34, 42, 43, 61, 94,
95, 96, 100, and 121.

Joel Lehman and Kenneth O. Stanley. Improving evolvability through novelty search and
self-adaptation. In 2011 IEEE Congress of Evolutionary Computation (CEC), pages
2693–2700. IEEE, 2011c. — Cited on page 27.

158

Bibliography

Joel Lehman and Kenneth O. Stanley. Novelty search and the problem with objectives.
Genetic Programming Theory and Practice IX, pages 37–56, 2011d. — Cited on pages 57
and 95.

Joel Lehman and Kenneth O. Stanley. Beyond open-endedness: Quantifying impressiveness.
In Proceedings of the International Conference on Artificial Life, 2012. — Cited on
pages 25 and 26.

Joel Lehman, Kenneth O. Stanley, and Risto Miikkulainen. Effective diversity maintenance
in deceptive domains. In Proceedings of the Genetic and Evolutionary Computation Con-
ference. ACM, 2013. — Cited on pages 2, 24, and 122.

Hao Li, Maoguo Gong, Deyu Meng, and Qiguang Miao. Multi-objective self-paced learning.
In Proceedings of the Thirtieth AAAI Conf. on Artificial Intelligence, pages 1802–1808,
2016. — Cited on page 28.

Kan Li and José C. Pŕıncipe. Surprise-novelty information processing for gaussian online
active learning (snip-goal). In 2018 International Joint Conference on Neural Networks
(IJCNN), pages 1–6. IEEE, 2018. — Cited on page 121.

Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Qiang Zhang. Efficient nondomination level
update method for steady-state evolutionary multiobjective optimization. IEEE Trans-
actions on Cybernetics, 47(9):2838–2849, 2017. — Cited on pages 42, 74, 94, 95, 100,
105, and 122.

Antonios Liapis. Searching for Sentient Design Tools for Game Development. PhD thesis,
Center for Computer Games, IT University of Copenhagen, Copenhagen, Denmark, 2014.
— Cited on pages vi, 26, and 122.

Antonios Liapis. Exploring the visual styles of arcade game assets. In Proceedings of Evolu-
tionary and Biologically Inspired Music, Sound, Art and Design (EvoMusArt). Springer,
2016. — Cited on page 125.

Antonios Liapis, Héctor P. Mart́ınez, Julian Togelius, and Georgios N. Yannakakis. Trans-
forming exploratory creativity with DeLeNoX. In Proceedings of the International Con-
ference on Computational Creativity, 2013. — Cited on pages 2, 13, 16, 22, 25, and 26.

Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Constrained novelty search:
A study on game content generation. Evolutionary Computation, 23(1), 2015. — Cited
on pages 16, 26, 27, 28, 125, 126, and 127.

G. E. Liepins and M. D. Vose. Representational issues in genetic optimization. Journal of
Experimental and Theoretical Artificial Intelligence, 2(101), 1990. — Cited on page 23.

Emiliano Lorini and Cristiano Castelfranchi. The cognitive structure of surprise: looking
for basic principles. Topoi, 26(1), 2007. — Cited on pages 2 and 12.

Lúıs Macedo and Amı́lcar Cardoso. Modeling forms of surprise in an artificial agent. In
Proceedings of the nnual Conference of the Cognitive Science Society, 2001. — Cited on
pages 3 and 12.

Lúıs Macedo and Amı́lcar Cardoso. Assessing creativity: the importance of unexpected
novelty. Structure, 1(C2):C3, 2002. — Cited on pages 3 and 12.

159

Bibliography

Luis Macedo, Amilcar Cardoso, Rainer Reisenzein, Emiliano Lorini, and C. Castelfranchi.
Artificial surprise. Handbook of research on synthetic emotions and sociable robotics: New
applications in affective computing and artificial intelligence, 2009. — Cited on pages 3
and 12.

Mary Lou Maher. Evaluating creativity in humans, computers, and collectively intelli-
gent systems. In Proceedings of the 1st DESIRE Network Conference on Creativity and
Innovation in Design, 2010. — Cited on pages 2, 12, and 14.

Mary Lou Maher and Douglas H. Fisher. Using AI to evaluate creative designs. In Proceed-
ings of the 2nd International Conference on Design Creativity, volume 1, 2012. — Cited
on pages v, 3, and 12.

Mary Lou Maher, Katherine Brady, and Douglas H. Fisher. Computational models of
surprise in evaluating creative design. In Proceedings of the fourth international conference
on computational creativity, volume 147. Citeseer, 2013. — Cited on pages 3 and 12.

Samir W. Mahfoud. Niching methods for genetic algorithms. Urbana, 51(95001):62–94,
1995. — Cited on pages 24 and 28.

Markos Markou and Sameer Singh. Novelty detection: a review—part 1: statistical ap-
proaches. Signal processing, 83(12):2481–2497, 2003. — Cited on page 13.

Yuliana Mart́ınez, Enrique Naredo, Leonardo Trujillo, and Edgar Galván-López. Searching
for novel regression functions. In Evolutionary Computation (CEC), 2013 IEEE Congress
on, pages 16–23. IEEE, 2013. — Cited on page 26.

Georgios Methenitis, Daniel Hennes, Dario Izzo, and Arnoud Visser. Novelty search for soft
robotic space exploration. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2015. — Cited on pages 61, 62, 63, 64, 86, 120, and 136.

Wulf-Uwe Meyer, Rainer Reisenzein, and Achim Schützwohl. Toward a process analysis
of emotions: The case of surprise. Motivation and Emotion, 21(3), 1997. — Cited on
page 12.

Zbigniew Michalewicz and Stephen J. Hartley. Genetic algorithms+ data structures= evo-
lution programs. Mathematical Intelligencer, 18(3):71, 1996. — Cited on page 20.

Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell. Machine learning: An
artificial intelligence approach. Springer Science & Business Media, 2013. — Cited on
page 1.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998. — Cited on
page 16.

Melanie Mitchell, Stephanie Forrest, and John H. Holland. The royal road for genetic
algorithms: Fitness landscapes and ga performance. In Proceedings of the first european
conference on artificial life, pages 245–254, 1992. — Cited on page 23.

Tom M. Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):
870–877, 1997. — Cited on pages 1 and 20.

160

Bibliography

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.
— Cited on pages 30 and 130.

Jean-Baptiste Mouret. Novelty-based multiobjectivization. New horizons in evolutionary
robotics, pages 139–154, 2011. — Cited on pages 27, 29, and 47.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909, 2015. — Cited on pages x, 2, 28, 66, 87, 123, 124, and 127.

Jean-Baptiste Mouret and Stéphane Doncieux. Encouraging behavioral diversity in evolu-
tionary robotics: An empirical study. Evolutionary computation, 20(1):91–133, 2012. —
Cited on page 120.

Enrique Naredo and Leonardo Trujillo. Searching for novel clustering programs. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference. ACM, 2013. — Cited
on page 26.

B. Naudts and A. Verschoren. Epistasis and deceptivity. Bulletin of the Belgian Mathemat-
ical Society, 6(1), 1999. — Cited on page 23.

Antonio J. Nebro and Juan J. Durillo. On the effect of applying a steady-state selection
scheme in the multi-objective genetic algorithm nsga-ii. In Nature-Inspired Algorithms
for Optimisation, pages 435–456. Springer, 2009. — Cited on page 122.

Andrew Ortony and Derek Partridge. Surprisingness and expectation failure: what’s the
difference? In Proceedings of the Joint conference on Artificial intelligence, 1987. —
Cited on page 12.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International Conference on Machine Learning
(ICML), volume 2017, 2017. — Cited on page 31.

Gregory S. Paul. Predatory Dinosaurs of the World: A Complete Illustrated Guide. Simon
& Schuster, 1988. — Cited on page 4.

Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina, Julian Togelius, and
Simon M. Lucas. General video game ai: a multi-track framework for evaluating agents,
games and content generation algorithms. IEEE Transactions on Games, 2019. — Cited
on page 131.

Mike Preuss. Multimodal optimization by means of evolutionary algorithms. Springer, 2015.
— Cited on pages 24, 28, and 125.

Mike Preuss, Antonios Liapis, and Julian Togelius. Searching for good and diverse game
levels. In Proceedings of the IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 2014. — Cited on pages 28 and 126.

Justin K. Pugh, Lisa B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. Confronting the
challenge of quality diversity. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2015. — Cited on pages 27 and 30.

161

Bibliography

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier
for evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016. — Cited on
pages 2, 16, 27, 28, 30, 42, 47, 95, and 123.

Robin C. Purshouse and Peter J. Fleming. On the evolutionary optimization of many
conflicting objectives. IEEE Transactions on Evolutionary Computation, 11, 2007. —
Cited on pages 24, 100, and 122.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Pareto ensemble pruning. In Proceedings of the
AAAI Conf. on Artificial Intelligence, pages 2935–2941, 2015a. — Cited on page 28.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset selection by pareto optimization. In
Advances in Neural Information Processing Systems, pages 1774–1782, 2015b. — Cited
on page 28.

Chao Qian, Jing-Cheng Shi, Ke Tang, and Zhi-Hua Zhou. Constrained monotone k-
submodular function maximization using multi-objective evolutionary algorithms with
theoretical guarantee. IEEE Transactions on Evolutionary Computation, 2017. — Cited
on page 28.

Ingo Rechenberg. Evolution strategy: Optimization of technical systems by means of bio-
logical evolution. Fromman-Holzboog, Stuttgart, 104:15–16, 1973. — Cited on page 16.

Rainer Reisenzein. The subjective experience of surprise. The message within: The role of
subjective experience in social cognition and behavior, pages 262–279, 2000. — Cited on
page 38.

Joseph Reisinger, Erkin Bahceci, Igor Karpov, and Risto Miikkulainen. Coevolving strate-
gies for general game playing. In Computational Intelligence and Games, 2007. CIG 2007.
IEEE Symposium on, pages 320–327. IEEE, 2007. — Cited on page 22.

AM Reynolds. Maze-solving by chemotaxis. Physical Review E, 81(6):062901, 2010. —
Cited on pages 58 and 96.

Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953. — Cited on
page 23.

Sebastian Risi and Kenneth O. Stanley. Confronting the challenge of learning a flexible
neural controller for a diversity of morphologies. In Proceedings of the Genetic and Evo-
lutionary Computation Conference. ACM, 2013. — Cited on pages 22 and 26.

Sebastian Risi, Sandy D. Vanderbleek, Charles E. Hughes, and Kenneth O. Stanley. How
novelty search escapes the deceptive trap of learning to learn. In Proceedings of the
Genetic and Evolutionary Computation Conference. ACM, 2009. — Cited on page 25.

Sebastian Risi, Charles E. Hughes, and Kenneth O. Stanley. Evolving plastic neural net-
works with novelty search. Adaptive Behavior, 18(6):470–491, 2010. — Cited on page 25.

Graeme Ritchie. Some empirical criteria for attributing creativity to a computer program.
Minds and Machines, 17(1), 2007. — Cited on pages 2, 11, 15, and 27.

162

Bibliography

Duda R.O. and Hart P.E. Pattern Classification and Scene Analysis. John Wiley and Sons,
New York, 1973. — Cited on page 13.

Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge
discovery handbook, pages 321–352. Springer, 2005. — Cited on page 120.

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Tim-
othy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint
arXiv:1810.02274, 2018. — Cited on page 31.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development, 2(3), 2010. — Cited on page 31.

Marc Schoenauer. Shape representations and evolution schemes. Evolutionary Program-
ming, 5, 1996. — Cited on page 20.

Marc Schoenauer and Zbigniew Michalewicz. Evolutionary computation at the edge of
feasibility. In Proceedings of the 4th International Conference on Parallel Problem Solving
from Nature, pages 245–254, 1996. — Cited on page 114.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning, pages
1889–1897, 2015. — Cited on page 30.

Jimmy Secretan, Nicholas Beato, David B. D. Ambrosio, Adelein Rodriguez, Adam Camp-
bell, and Kenneth O. Stanley. Picbreeder: evolving pictures collaboratively online. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1759–1768. ACM, 2008. — Cited on page 22.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001. — Cited on page 128.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration.
arXiv preprint arXiv:1810.12162, 2018. — Cited on page 31.

Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 15–22. ACM, 1994. — Cited on
pages 34 and 35.

Adam M. Smith and Michael Mateas. Answer set programming for procedural content
generation: A design space approach. IEEE Transactions on Computational Intelligence
and AI in Games, 3(3):187–200, 2011. — Cited on page 126.

Adam M. Smith, Eric Butler, and Zoran Popović. Quantifying over play: Constraining
undesirable solutions in puzzle design. In Proceedings of ACM Conference on Foundations
of Digital Games, pages 221–228, 2013. — Cited on page 126.

Davy Smith, Laurissa Tokarchuk, and Geraint Wiggins. Rapid phenotypic landscape explo-
ration through hierarchical spatial partitioning. In International conference on parallel
problem solving from nature, pages 911–920. Springer, 2016. — Cited on page 1.

Gillian Smith, Jim Whitehead, and Michael Mateas. Tanagra: Reactive planning and
constraint solving for mixed-initiative level design. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):201–215, 2011. — Cited on page 126.

163

Bibliography

William M. Spears. Crossover or mutation? In Foundations of genetic algorithms, volume 2,
pages 221–237. Elsevier, 1993. — Cited on page 17.

Kenneth O. Stanley. Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 8(2):131–162, 2007. — Cited
on pages 22, 35, 61, and 137.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2), 2002. — Cited on pages vi, 17, 21, 22, 24,
28, 35, 38, 48, 49, 61, 74, 125, and 135.

Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through evolutionary
complexification. Journal of artificial intelligence research, 21:63–100, 2004. — Cited on
page 22.

Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-time neuroevolution
in the nero video game. IEEE Transactions on Evolutionary Computation, 9(6):653–668,
2005a. — Cited on page 22.

Kenneth O. Stanley, Nate Kohl, Rini Sherony, and Risto Miikkulainen. Neuroevolution of
an automobile crash warning system. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2005b. — Cited on page 22.

Christopher Stanton and Jeff Clune. Curiosity search: producing generalists by encouraging
individuals to continually explore and acquire skills throughout their lifetime. PloS one,
11(9):e0162235, 2016. — Cited on page 1.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmg̊ard, Amy K
Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content gener-
ation via machine learning (pcgml). IEEE Transactions on Games, 10(3):257–270, 2018.
— Cited on pages 125 and 126.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT
press, 2018. — Cited on pages 30 and 130.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel. #exploration: A study of count-
based exploration for deep reinforcement learning. In Advances in Neural Information
Processing Systems, pages 2753–2762, 2017. — Cited on page 31.

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne.
Search-based procedural content generation: A taxonomy and survey. IEEE Transac-
tions on Computational Intelligence and AI in Games, 3(3):172–186, 2011. — Cited on
pages 125 and 126.

Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan Hagelbäck, Georgios N
Yannakakis, and Corrado Grappiolo. Controllable procedural map generation via multi-
objective evolution. Genetic Programming and Evolvable Machines, 14(2):245–277, 2013.
— Cited on page 126.

Deepak Trivedi, Christopher D. Rahn, William M. Kier, and Ian D. Walker. Soft robotics:
Biological inspiration, state of the art, and future research. Applied Bionics and Biome-
chanics, 5(3):99–117, 2008. — Cited on page 34.

164

Bibliography

Adriano Vinhas, Filipe Assunção, João Correia, Aniko Ekárt, and Penousal Machado. Fit-
ness and novelty in evolutionary art. In International Conference on Evolutionary and
Biologically Inspired Music and Art, pages 225–240. Springer, 2016. — Cited on page 16.

S. Wessing, M. Preuss, and G. Rudolph. Niching by multiobjectivization with neighbor
information: Trade-offs and benefits. In Proceedings of the Evolutionary Computation
Congress, 2013. — Cited on page 24.

Darrell Whitley, Timothy Starkweather, and Christopher Bogart. Genetic algorithms and
neural networks: Optimizing connections and connectivity. Parallel computing, 14(3):
347–361, 1990. — Cited on page 20.

L. Darrell Whitley. Fundamental principles of deception in genetic search. In Foundations
of genetic algorithms, volume 1, pages 221–241. Elsevier, 1991. — Cited on pages 1, 15,
and 23.

Geraint A. Wiggins. A preliminary framework for description, analysis and comparison of
creative systems. Knowledge-Based Systems, 19(7), 2006. — Cited on pages 2, 11, and 12.

Edward Orlando Wiley and Bruce S. Lieberman. Phylogenetics: theory and practice of
phylogenetic systematics. John Wiley & Sons, 2011. — Cited on page 4.

Brian G. Woolley and Kenneth O. Stanley. A novel human-computer collaboration: com-
bining novelty search with interactive evolution. In Proceedings of the Genetic and Evo-
lutionary Computation Conference. ACM, 2014. — Cited on page 121.

Larry Yaeger. Computational genetics, physiology, metabolism, neural systems, learning,
vision, and behavior or poly world: Life in a new context. Santa Fe Institute Studies In
The Sciences Of Complexity, 17, 1994. — Cited on page 1.

Georgios N. Yannakakis and Antonios Liapis. Searching for surprise. In Proceedings of the
International Conference on Computational Creativity, 2016. — Cited on pages v, 3, 4,
12, 25, and 41.

Georgios N. Yannakakis and Julian Togelius. Artificial intelligence and games, volume 2.
Springer, 2018. — Cited on page 125.

Georgios N. Yannakakis, John Levine, John Hallam, and Markos Papageorgiou. Perfor-
mance, robustness and effort cost comparison of machine learning mechanisms in flatland.
In Proceedings of the Mediterranean Conference on Control and Automation, 2003. —
Cited on page 52.

Georgios N. Yannakakis, Roddy Cowie, and Carlos Busso. The ordinal nature of emotions:
An emerging approach. IEEE Transactions on Affective Computing, 2018. — Cited on
page 120.

165

