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Abstract – In this work, we report on the mechanical design and development, the kinematic analysis, and the simulation 
of a new dexterous robot finger. The robot finger design is based on that of the human counterpart in size, mechanical 
structure, and range of motion, and exhibits four distinct joint motions (one abduction/adduction or yaw motion, and three 
flexion/extension or pitch motions), as does the human finger. Three miniature DC motors with built-in encoders drive the 
yaw motion of the finger and the two innermost pitch joints. The finger therefore has three independent degrees of 
freedom. The outermost pitch joint of the finger is mechanically coupled to the middle joint, and the design allows for the 
variation of the ratio of angular speed between the two coupled joint motions. The motors are installed on the finger itself 
and on the adjoining section of palm, and the required torques at the joints are obtained through speed reduction 
transmission systems. An analytical study of the finger, including forward and inverse kinematics and differential 
kinematics analyses, static force analysis, and computation of joint velocity profiles for straight-line motion of the 
fingertip, has been carried out. The results of these analyses have been used to develop the control program for the finger, 
as well as a versatile simulation tool that can be used to optimise future designs of the finger. The simulation program has 
been validated by comparison to the results of tests carried out on the prototype finger. The ultimate aim of the work is to 
produce a dexterous robot hand to be used in a flexible manufacturing environment in industry or as a prosthetic device. 

1. Introduction  
One of the major tasks in robotics, in situations where flexibility is a primary requirement, is the design of the end effector. 
A biological counterpart of the end effector, the human hand, has a size and dexterity that make it one of the most versatile 
tools in existence. If it could be reproduced artificially and mounted on robots, the human hand would yield exceptional 
performance in flexible manufacturing environments. Complemented by appropriate programming and control, this artificial 
hand would provide an ability to reproduce human operations in hazardous environments, reduce set up times and reduce 
the need for specialized tools. 

Various studies have been carried out on the human hand in order to evaluate its properties and performance from an 
engineering perspective. In [1], [2], and [3] the average dimensions of the hand were estimated by taking measurements 
over samples of human subjects. In [4] a study was carried out to model the motion constraints of the human hand, and in 
particular the ranges of motion of each of the finger joints. The degrees of coupling that exist between the various joints of 
the hand were described and estimated. In [5], an experimental determination of human grasping forces was carried out 
using custom-built force sensing devices that were worn over the fingertips during grasping. 

The results of studies such as the ones described above have been applied towards the design of artificial hands. Indeed, the 
development of dexterous fingers and hands has become an active research area in many institutions all over the world. 
Finger joint actuation has classically been achieved either by using remotely located actuators and tendon transmission 
systems (e.g. [6], [7]), or by using motors that are located within the finger structure itself (e.g. [8], [9]). More novel 
approaches have involved the development of a single-piece finger structure [10] and the use of ultrasonic motors to actuate 
the finger joints [11]. 

The fingers of the recently developed HIT/DLR hand [12] use brushless DC motors that are located within the linkage 
structure to actuate the joints. The yaw and pitch motions of the knuckle joint of each finger are achieved using two motors 
via a bevel gear differential transmission system (this method was also used on the predecessor to this hand [13]), while the 
pitch motion of the middle joint is achieved through a third motor.  The outermost joint of each finger is not actuated 
independently, but is coupled instead to the corresponding middle joint by means of a rigid linkage.  

One of the main objectives of robots is to replace, and often to mimic, human performance in specific environments. The 
objective of this work is to develop a robot finger that attempts to reproduce the kinematic properties of the human finger. 



This work will be applied to the development of a human-scale anthropomorphic robot hand for a wide range of 
applications, including manufacturing and prosthesis. 

2.  Design Considerations 
Before the actual design process could be started, various aspects had to be considered. This helped to define targets with 
which the design had to comply. 

One of the aspects considered was the size and weight of the robotic finger. The robotic finger was designed to have a size 
comparable to that of an average adult male. This is required in order to make it easier to implement the robotic finger in a 
prosthetic device in the future. Another reason is that it would facilitate the use of the finger in conjunction with standard 
devices e.g. handles, tools. The weight of the robotic finger was also kept as low as possible. Minimizing the weight would 
increase the payload of the eventual robot hand. Also the lighter the finger, the lighter would be the prosthetic device and 
hence it would be more attractive to amputees. 
 
Another important aspect to be considered is the maximum force that the robotic finger has to withstand at the fingertip. 
The results obtained in [5] were used as a guideline for the maximum force exerted at the fingertip of the designed finger. 
 
The robotic finger was designed keeping in mind the bio-mimetic philosophy. In this philosophy, biology is used as the 
main source of inspiration. In this respect, the robotic finger was designed having four joints. The three outer links 
represent the proximal phalange, intermediate phalange and distal phalange of the human finger. Having determined the 
number of joints, the next step is that of determining the number of independent degrees of freedom. Increasing the 
number of degrees of freedom of the robotic finger would eventually increase the dexterity, at the cost of an increase in the 
complexity of the control system. A compromise had to be reached between the two and the decision taken was that of 
designing the robotic finger with three degrees of freedom. Two degrees of freedom would represent flexion and extension 
movements while a separate degree of freedom would represent abduction and adduction movements. In the human finger, 
the joints having a flexion and extension movement (pitch movement) are the metacarpal-interphalangeal (MCP) joint, the 
proximal interphalangeal (PIP) joint, and the distal interphalangeal (DIP) joint. The joint that provides abduction and 
adduction movements (yaw movement) is the MCP joint. In the human finger the distal phalange cannot be moved unless 
the intermediate phalange is moved, i.e. the PIP and DIP joints exhibit coupled motion. In our design, we adopted the same 
approach. The outer joint (equivalent to the DIP joint) is not actuated independently, but is instead coupled to the middle 
joint (equivalent to the PIP joint).  
 
The kinematic model adopted for the robot finger design is given in Fig. 1, where the joints have been labeled according to 
their human counterparts. As shown in the figure, the two degrees of freedom of the human MCP joint are replaced by two 
separate joints, designated MCP1 (for yaw motion) and MCP2 (for flexion/extension or pitch). The displacement 
constraints of the joints are similar to those of the human being [4]. These are 
 

–150 ≤ θMCP1 ≤ 150 
00 ≤ θMCP2 ≤ 900 
00 ≤ θPIP ≤ 1100 
00 ≤ θDIP ≤ 900 

 

 

 
Figure 1 – Structure of the Robot Finger 

 

The robotic finger follows an exoskeleton design, with a rigid outer shell serving as a housing for the actuators and the 
position sensors required for the control system. In this respect, the design concept is different from that of the human 
finger, which is based on an endoskeleton design. The reason for this deviation was that in our design, we required to mount 
the actuators on the finger (and on a section of the palm) itself, in order to have a self-contained unit. It is to be noted that 



the human finger does not exhibit this feature, since many of the muscles that actuate the finger joints are located remotely 
on the forearm.  

For an actuation system to be considered suitable for the robotic finger it must be compact, but at the same time it must be 
able to provide the necessary torque at the finger joint. In this design, use was made of permanent magnet DC motors from 
maxon motors [14] as actuators. This type of actuator, having a compact and a reasonable cost, is not able to give a high 
output torque at the shaft. Torque values for such actuators are in the range of mNm. The actuation system, in order to be 
suitable for the robotic finger, must be able to provide a maximum torque value of around 1.75Nm, which is considerably 
different from the output torque of the available actuators. Hence in this case a suitable transmission system had to be 
designed to increase the value of the torque obtained from the actuator. Gears were adopted for speed reduction and eventual 
increase in output torque. Although gears are complicated in design, they are readily available, reliable in operation and 
relatively low in cost.  

Another important aspect considered during the design stage of the robotic finger was material selection. The materials 
considered suitable for the main structure of the finger were glycol-modified polyethylene terephthalate (PETG) and 
polymethyl methacrylate (Perspex). Perspex was the preferred option due to its lower cost, and its availability in a wider 
range of suitable sheet thicknesses. Perspex also has an exceptionally low value for the specific density, this being only 
1.17g/cm3, and this helped to reduce the overall weight of the robotic finger. Another advantageous property of Perspex is 
that it has a good degree of compatibility with the human tissue and thus makes it ideal for prosthetic devices. Since the 
current model was built for demonstration purposes the optical properties of Perspex (i.e. the fact that it is transparent) was 
another advantage. Perspex is also easy to machine. For these reasons, the main structure of the robotic finger was 
constructed using sheets of Perspex. For certain small parts, such as the distal phalanges and the shafts, which required 
high strength, aluminium was used. Aluminium has as specific density of 2.7g/cm3 and has a high strength to weight ratio. 
Aluminium has also good yield strength properties and machinability. 
 
Design for Manufacture (DFM) principles were adopted in the development of the dexterous robotic finger. For example, 
machining time was reduced by avoiding the use of circlips, which would have required the machining of grooves. 
Another area where DFM principles were adopted was in the mechanical stops that were designed on the intermediate 
phalange. The designed mechanical stops were an integral part of the intermediate phalange, and this reduced the need for 
machining multiple parts and fastening them together. The thickness of the mechanical stops was kept equal to the 
thickness of the link itself to reduce machining time due to the extra thickness of the mechanical stop. An exploded view 
of the finger design is shown in Fig.2.  
 
 

 
Figure 2 - Intermediate Phalange after applying DFM Guidelines 

 

Design for assembly (DFA) techniques were also adopted in this work. For example, in the design of the actuator housing, 
the solution adopted involved that of stacking the actuators on top of each other, thus achieving a ‘sandwich effect’, which 
rigidly retained the actuators. The assembly of the actuators is shown in Fig.3. 



 

 
Figure 3 - Assembly of Actuators in Palm 

 
The robotic finger was also designed to be modular. An example of this is the fingertip design, which was itself modular 
(Fig.4). The tip can be modified according to the specific application of the robotic finger, and could for example be 
equipped with a slip or tactile sensor if required. 
 

 
Figure 4 - Assembly of Fingertip to the Distal Phalanges 

 

3. Mechanical Design of the Finger 
The robotic finger was designed using the dimensions listed in Table 1.  
 

Distal Phalange Length 30mm 
Intermediate Phalange Length 30mm 
Proximal Phalange Length 55mm 
Robotic Finger Length 115mm 
Finger Thickness 20mm 
Maximum Finger Breadth 32mm 
Minimum Finger Breadth 19mm 
Palm Length 80mm 

Table 1 - Dimensions of the Robotic Finger 

 



 
Figure 5 - Mechanism mounted in the Proximal Phalange 

 
The mechanism mounted in the proximal phalange is quite compact and weighs only 24.6g (refer to Fig.5). The 
mechanism consists of a 0.75W DC motor, two spur gears, a planetary gear head, and a single thread worm and wheel. In 
usual design set-ups, the shaft of the motor serves as a direct input to the planetary gear head. In this case, due to space 
constraints, a suitable flange at the gear head input was designed and two spur gears with gear ratios 1:1 were used. The 
planetary gear head chosen has a reduction ratio of 1024:1. The actual torque value at the PIP Joint is 1Nm, which is 
comparable to the torque value available on the human counterpart.  

 
Figure 6 - Mechanism mounted in the Palm 

 
The mechanism that actuates the proximal phalange is mounted in the palm and is illustrated in Fig.6. 

Besides having flexion and extension movements, the robotic finger exhibits also abduction and adduction movements. The 
output torque requirement is similar to that of the pitch mechanism mounted in the proximal phalange. Hence it was possible 
to use the same mechanism as shown in Fig.6 with some modifications. The yaw mechanism at the MCP1 joint is shown in 
Fig.7. 

 

 
Figure 7 - Yaw Mechanism 

The coupling mechanism adopted for the two outer links was designed based on the constraints established by Lin et al [4]. 
The relationship between the two joints was therefore defined to be: 

 
 

where θDIP represents the flexion angle of the DIP joint and θPIP represents the flexion angle of the PIP joint. The above 

PIPDIP θθ
3
2

=



relationship was achieved using a cable system. Although the cable system is simple and has various advantages, it only 
works in one direction. This meant that a suitable return mechanism also had to be designed. The return mechanism 
adopted is one involving springs.  
 

 
Figure 8 - Cable Mechanism for the Distal Phalange 

 

The coupled mechanism is shown in Fig.8 and consists of a cable, which is connected to the distal phalange, passed over a 
pulley at the PIP joint and finally rigidly affixed to the proximal phalange. A nut lock system is used to retain the cable in 
position at point C. This will also serve to give the cable the required tension. As the intermediate phalange rotates, the cable 
is wound around pulley A and unwound from pulley B. When the distal phalange rotates, potential energy is stored in the 
torsional spring, which will eventually be used to return the distal phalange back to the initial position. In this way the 
relationship between θPIP and θDIP depends on the ratio of the radii of the pulleys A and B. Different relationships between 
θPIP and θDIP were achievable by implementing a mechanism whereby the position of pulley A could be adjusted in a 
vertical plane.  

The shaft of each DC motor is coupled to an incremental encoder having a resolution of 256 pulses per motor shaft 
revolution. The encoder signals are connected to the control system from which joint angle can be calculated, providing 
positional feedback information. The joint angle controller is implemented digitally on a desktop PC via an input-output 
interface board. The interface board reads the encoder signals and also generates reference signals to the current driver 
circuits actuating the motors. Communication of signals between the interface board and the three motor/encoder pairs 
takes place on a time-multiplexed basis. The control program, coded in C language, implements a pole-placement control 
algorithm with integral action for every motor. 
 
At start up the incremental encoders need to be reset at a predefined angular position, this is done by moving all the joints 
counter-clockwise until the current driver circuits indicate that they have the hit mechanical stops. The program then resets 
the variables associated with the angular position values of the motors. 
 
The designed dexterous robotic finger and the actual prototype are shown in Fig.9 and Fig.10 respectively.  

 

 
Figure 9 – CAD drawing of the Robotic Finger (Autodesk Inventor®) 

 



 
Figure 10 - Prototype Robotic Finger 

 

4. Kinematic & Static Force Analysis of the Finger 

General 
The Kinematics of the finger describes the relationship between the joint angles and the position/orientation of the 
fingertip. It involves the solution of both the Direct Kinematics and Inverse Kinematics problems. In our application, the 
results of the analysis were used to develop the control program for the finger, and later to develop a simulation program. 
The Denavit-Hartenberg (DH) convention was used to develop the analysis of the kinematics of the robot finger. The local 
reference frames used to give the relation between the fingertip and the fixed reference frame in terms of joint variables, 
are shown in Fig.11. 

 

 
Figure 11 - Reference Frames at Joints 

 
The pulley mechanism at the PIP joint, which is used to move the PIP and DIP joints at a specified ratio, may be adjusted 
to be off-centre either upwards or downwards. A detailed analysis using geometric methods was carried out to derive the 
relation between the PIP to DIP joint ratio and the pulley eccentric shift. The results are shown in Fig.12. This analysis 
showed that the relation between the DIP joint angle and the PIP joint angle becomes slightly non-linear when the centre 
of the pulley is shifted either upwards or downwards. The relationship between the two joint motions, however, could still 
be approximated to a linear one over a large part of the range of motion of the finger. The ratio RDP is given by  
 

RDP = θDIP / θPIP 
 
By using the adjustable pulley mechanism, RDP could be varied between the approximate limits of 0.5 and 0.8.  
 



Normal robotic structures are designed not to have more than two links connected consecutively in parallel to avoid 
redundancies and hence simplify the calculations. The finger has three consecutive links connected in parallel, but since 
two of them, i.e. the DIP and PIP joints are dependent on each other, the redundancy is eliminated. The use of three links 
instead of two facilitates the grasping process. 
 

 
Figure 12 - PIP to DIP Ratio Plot at Various Shift Values 

 

Forward Kinematics 
The equations for the fingertip position as derived using the DH convention are given by  
 

PX  = CosθMCP1 (LDIP CosθA+ LPIP CosθB + LMCP CosθMCP2 + LOffset) 
PY  = SinθMCP1 (LDIP CosθA+ LPIP CosθB + LMCP CosθMCP2 + LOffset) 
PZ  = LDIP SinθA+ LPIP SinθB + LMCP SinθMCP2 + ZOffset 

 
where (PX, PY, PZ) are the coordinates of the fingertip in the fixed reference frame; θA = (θMCP2 + θPIP (1 + RDP)); θB = 
(θMCP2 + θPIP); and the remaining parameters are defined in Fig.11. 
 

Inverse Kinematics 
The Inverse Kinematics solution gives the angular positions of the joints as functions of the fingertip position in the 
workspace. The geometric approach was chosen to calculate the inverse kinematics, and an iterative technique was used to 
compute the required joint positions. The permitted ranges of the coordinates of the fingertip (shown below) were included 
in the control program to keep the iteration loop in the permissible range: 
 
PX ≤ LTIPmax 

where LTIPmax is the length between the axis of the MCP1 joint and the fingertip of the fully extended finger 

 

LTIPmax Sin(–150) ≤ PY ≤ LTIPmax Sin(150)  

due to the mechanical constraints of the MCP1 joint, set to be –150 ≤ θMCP1 ≤ 150  based on Lin et al [4]. 

 

(ZOffset – (LMCP + LPIP + LDIP)) ≤ PZ ≤ ZOffset  

due to the mechanical constraints of the flexion/extension joints. 

 



The values for the other variables must be in the range 

LTIP ≤ LTIPmax  

0 ≤ LMT ≤ (LMCP + LPIP + LDIP)  

LPT ≤ (LPIP + LDIP)  

where LMT is the distance between the MCP2 joint axis and fingertip, and LPT is the distance between the PIP joint axis and 

finger tip (see Fig. 13). 

 
In the first part the control program prompts the user for the desired position of the fingertip and for the pulley offset 
values. After confirming that the values inputted are in the permissible range, the maximum possible MCP2 joint angle 
θMCP2  to the line LMT (Fig.13) is computed by 
 
θMCP2max = Sin-1 ((LOffset - PZ) / LMT)  

for (LTIP – LOffset) ≥ 0 

 
Figure 13 - 

2maxMCPθ  for Start of Iteration Loop 

 
but if (LTIP – LOffset) < 0 as shown in Fig.13, then the maximum possible MCP2 joint angle θMCP2max must be equal to 900, 
due to the constraint 00 ≤ θMCP2 ≤ 900 [4]. 
 
The C-program starts from θMCP2max as a fixed angle and computes the forward kinematic equations, for 00 ≤ θPIP ≤ 900 at a 
predefined increment iteratively. The MCP2 angle is then decreased by a predefined decrement and the iteration for θPIP is 
repeated until the constraint RDP = θDIP / θPIP is satisfied within a prespecified tolerance. If θMCP2max is decreased to a value 
less than 00 the program stops and informs the user that no solution was found. Fig.14 shows the flowchart for the inverse 
kinematics compilation. 
 

Differential Kinematics 
Differential Kinematics gives the relationship between the joint angular velocity  and the fingertip in terms of velocities θ&
p&  along the fixed reference axes. Since the finger has four joints but three degrees of freedom, the Jacobian matrix was 

not a square matrix.  
 
The Jacobian matrix of the finger is: 
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Figure 14 - Inverse Kinematics Program Flowchart 

 
 



where: 
( )

11 1 2 2MCPP DIP A PIP B MCP MCP OffsetJ S L C L C L C Lθ θ θ θ= − + + +  

( )
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2
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and θθ cos≡C , θθ sin≡S  
 
The linear velocities of the fingertip along the x, y and z-axes are given by: 
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where 1MCPθ& , 2MCPθ&  and PIPθ&  are the angular velocities of the MCP1 (abduction/adduction), MCP2 (flexion) and PIP 

joints respectively; and is the term taken from row i and column j of the positional Jacobian matrix. 
ijPJ

 
A closed form for the Inverse Differential Kinematics solution was obtained by solving the Forward Differential 
Kinematics and the PIP to DIP ratio constraint simultaneously. The following solutions were obtained for each joint: 
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Motion Path Planning 
The Kinematics and Differential Kinematics analyses were used for the planning of the joint angles and joint angular 
velocities required to move the fingertip along a path between the current position and the desired position. This was 
carried out for two modes of motion, the point-to-point (joint interpolated) mode and the straight-line mode. 
 
Joint interpolated mode: 
 
In joint interpolated mode no constraints are placed on the path followed by the fingertip between the current position and 
the desired position. The joint angle with the largest required travel is driven at maximum allowable speed whilst the 
remaining joints are driven with an angular velocity such that all joints start and complete their motion simultaneously. 
 
The joint interpolated method does not need a lot of computational power since the joints travel at a constant speed 
through the path. The joint angles are obtained from the inverse kinematics solution for both the current position PC and 
the destination position PD of the fingertip. Then for each joint the corresponding angular distance ∆θ is obtained by 
subtracting the appropriate joint angles e.g. 

P PD CPIP PIPθ θ− . The largest ∆θ from the MCP1, MCP2 and PIP joint angles is 

moved at the predefined maximum angular velocity ωmax. The time tmax required for the whole complete motion is 
calculated and recorded. The other joints are moved at a constant angular velocity, in such a way that all angles start and 
finish at the same time tmax, with 
 

max
max

max

t θ
ω
∆

=  

max

j
j t

θ
ω

∆
=  where j = MCP1, MCP2 and PIP 

 
Straight-line mode: 
 
In straight-line mode, the joint movements are coordinated such that the fingertip travels through a linear path between the 
current position and the desired position (Fig.15). This makes it an ideal operation when the finger is inserting a pin in a 
hole or moving along a surface. 
 
The length of linear path is 
 ( ) ( ) ( )2 2

D C D C D Cd X X Y Y Z Z= − + − + − 2   

 
where (XC, YC, ZC) and (XD, YD, ZD) are the co-ordinates of the finger tip current position and desired position respectively, 
relative to the reference frame. (See Fig.15) 
 
Resolving the required linear velocity 

Lv  along the path to the axes of the world reference frame: 
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The time required for completing motion 
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where is a predefined length for the increment along the path as shown in Fig.15. incd
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The smaller the increments are ( ), the better is the motion along the path, but the more computational power and 
memory are required. For the list of points produced the inverse kinematics and inverse differential kinematics are 
calculated. Then the finger is set to move from each point to each consecutive point at the respective calculated angular 
velocities. It is important to note that, in the application of this analysis for simulation purposes none of the joints must be 
allowed to move at a velocity higher than a preset maximum limit.  

0incd →

 
 

 
Figure 15 - Linear Motion of the Fingertip 

 
The flowchart for the structure of the trajectory planning is shown in Fig.16. An example of the velocity profile for each 
joint for a straight-line path is shown in Fig.17. 
 
 

Static Forces 
The Jacobian matrix was used to determine the relation between the forces at the fingertip along the fixed reference frame 
axes and the torques applied at the joints when in static equilibrium configuration. The statics model is represented by the 
following equation 
 

TJτ γ=  
 

whereτ  is the matrix representing the torque at each joint and γ  is the matrix representing the forces at the fingertip 
along each respective axis. The weight W of each link was measured and the centres of gravity were found experimentally. 
From this the contribution to the joints’ torques by the links’ weights could be calculated and added to derived equations in 
the static model. 
 
The contribution of the weight W of the links along the Z-axis, which is taken to act at the centre of gravity of each joint 
is given by: 

κ

 

MCPZGτ = ( ) ( )MCP MCP MCP PIP MCP MCP PIP B DIP MCP MCP PIP B DIP AW C W L C C W L C L C Cκ θ θ κ θ θ θ κ θ+ + + + +  

PIPZGτ =  ( ) (PIP PIP B DIP PIP B DIP AW C W L C Cκ θ θ κ θ+ + )
DIPZGτ  = ( )DIP DIP AW Cκ θ   

 



 
Figure 16 - Motion Path Planning Simulation Program Flowchart 



 
Figure 17 - Angular Velocities Obtained for a Linear Motion Mode 

 

The force f at the fingertip for the known motor joint torques Motorτ  is given by: 
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where RSτ  is the torque experienced on the PIP joint by the return spring at the DIP joint. 
 

5. Simulation of Finger Kinematics  
A computer simulation program, based on the results of the kinematic analysis, was developed using the C language. The 
simulation program includes all the models mentioned, i.e. Kinematics, Differential Kinematics, and Statics as well as 
reach plotting and workspace volume calculation. Constraints were implemented in the program to avoid singularities, and 
to avoid variables getting out of the permissible range. The models were used to give the required information to the 
position control system for the trajectory of the robot finger. The simulation may later be utilised in the conceptual design 
of a robot finger to achieve specific performance criteria. An animation was also developed to show the posture of the 
finger during calculation. It is also used to visualise the path of the finger during trajectory planning.  
 
Validation 
 
The validation of the program was done by performing experiments on prototype finger models and comparing the results 
to the simulation program, checking that values correspond to each other. During programming a consistency check was 
made, whereby the values obtained by the inverse kinematics and inverse differential kinematics were checked to 
correspond to the values obtained by forward kinematics and forward differential kinematics respectively.  
 
For kinematics verification the corresponding actual fingertip position in relation to the joint angles was compared to those 
of the simulation. An actual size cardboard finger model with the corresponding joints was built and attached to a graph 



paper (Fig.18). The joints can be moved freely to the desired joint angles. The actual joint angles were entered in the 
simulation program and the output obtained from kinematics for the fingertip position was checked to correspond to the 
actual position of the fingertip. 
 

 
Figure 18 - Prototype for Kinematics Validation 

 
The differential kinematics were validated by moving one joint at a time at constant speed. The joint was moved by a finite 
but small predefined angle ∆θ (as shown in Fig.19) and the time taken t for the complete motion was recorded by the 
control system. The motion of the fingertip from point C to point D was assumed to be linear, and by measuring the 
components of the distance along each axis and dividing it by time t, the linear velocity along each axis could be 
calculated. This was then compared to the values of the fingertip linear velocity obtained in the simulation program for the 
same joint angular velocity. The distance between the fingertip starting position C and final position D was obtained by the 
inverse kinematics program from the known joint angles. This validation procedure was carried for all three independently 
movable joints. 
 

 
Figure 19 - Differential Kinematics Validation 

 
To validate the statics model the force developed at the fingertip along the fixed reference frame axes was checked to 
correspond to the actual torque at the motors. The force at the fingertip was calculated by compressing a spring with 
known spring constant. The torque at each joint was developed by hanging standard masses to a pulley attached to the free 
joint (Fig.20), each time recording the spring deflection at the finger tip, while keeping the other joints fixed. The 
experiment was repeated for the MCP1, MCP2 and PIP joints. 
 

 
Figure 20 – Springs and Statics Validation Setup 



Finger Work Envelope Plotting, Workspace Volume and Area calculation 
 
Using the results of the Kinematics analysis the work envelope of the finger tip along the X-Z and X-Y fixed reference 
frame axes, with θMCP1 = 0 could be plotted (Fig.21).  
 

  
 (a) Fingertip workspace: side view (b) Fingertip workspace: plan view 

 
Figure 21 - Locus Plot of Anthropomorphic Robot Finger 

 
  

This was performed by moving the joints from one extremity to another systematically (Fig.22), each time recording the 
position of the fingertip by forward kinematics. The work envelope plotting is important in inverse kinematics as it helps 
the user visualise the region in which the fingertip may be located.  
 

 
Figure 22  - Finger Motion during Locus Plotting 

 
The program first calculates the volume between the upper dark line in Fig.21 and the highest point ZOffset where ZOffset is the 
predefined height of the palm above the origin. The program then subtracts this from the volume between the dotted line and 
the same highest point ZOffset. The equation for the workspace volume is:  

 

( )( )1

2 2
1 2
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The developed simulation program was utilised to obtain the workspace volume and work envelope area of the robot 
finger by means of numerical integration. The link lengths for maximum volume and maximum area as fractions of the 
total finger length L, keeping the palm length constant, are shown in Table 2. 
 

Criteria 
Proximal 
Phalange

Intermediate 
Phalange 

Distal 
Phalange Value 

VolumeMax 0.57L 0.2L 0.23L 4330L3 
AreaMax 0.52L 0.21L 0.27L 84L2 

Table 2 – Link lengths for Specific Criteria 



 
It is noted that in Table 2 it was assumed that the links had a thickness added below the links, of similar dimensions as that 
of a human. The results yielded were similar to those of an anthropomorphic finger. 
 

6. Preliminary Testing of the Finger Prototype 
 
After the simulation program was validated, it was used to assess the level of performance of the current model finger by 
comparing the actual values of specific parameters to the ideal theoretical values. The parameters that were tested in the 
current finger were the position accuracy, repeatability, and joint speed. 
 
The divergence between the actual position and the desired position was obtained by experimentation and the accuracy 
was calculated to be ±5mm (Fig.23). 
 

 
Figure 23  - X and Z Finger Tip Position Accuracy 

 
A set of positions was selected and the fingertip was driven to these points from the initial calibrated position repeatedly. 
The variation between repeated positions was recorded and the difference between them was calculated and plotted (Fig. 
24). The repeatability for x- and z-positions is ±2mm whilst for the y-position it is ±6mm.  
 

 
Figure 24  - Variation Obtained between Repeated Positions 

 
In the present model the joint speeds have been limited to two degrees per second and the finger is currently able to apply 
a maximum force of approximately 5N.  
 

7. Conclusion 
 
In this work, we have developed, demonstrated and tested a new, four-joint, three-degree-of-freedom robot finger that is 
designed to form part of an anthropomorphic, dexterous robot hand. The design utilises actuators, transmission systems, 
and sensors that are integrated within the structure itself, in order to keep the design as compact as possible and to 
minimise the use of cables. Materials and components are selected to minimise both weight and cost of the finger. An 
innovative feature of the finger is the incorporation of an adjustable linkage between the PIP and DIP joints in the 
mechanical design, to enable the use of different coupling ratios between these two joint motions as required. Analyses of 
the kinematics and statics of the finger have been carried out, and used to develop versatile simulation programs that can 
be used to optimise design parameters of the finger. Current work involves the improvement of the mechanical systems of 
the finger to improve accuracy and force capability, further use of the simulation programs to obtain optimum values of 
link lengths and R

DP 
for specific fields of applications, and the implementation of a comprehensive control system for the 

finger based in part on the analysis described in this work.  
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