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Abstract 

It is generally considered that economic feasibility of a reconfigurable manufacturing system is 

only attainable if the system is defined to be reconfigurable at the outset of its design. In this 

work we consider the potential exception to this perception, in the context of a common 

industrial scenario where a specialized and expensive manufacturing machine or system will 

otherwise be rendered useless due to loss of business of the particular product being 

manufactured. Specific guidelines to convert from a fixed to a reconfigurable system are 

proposed, and evaluated through a case study. It is shown that under certain conditions, 

reconfigurable manufacturing systems may be economically feasible even if they are developed 

through the modification of pre-existing dedicated systems. 
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1. Introduction 

The changes in market demands witnessed in the past decades have had a significant effect 

on the manufacturing strategy employed. Previously, product life cycles were long and identical 

products were produced for the masses, resulting in the development and perfection of dedicated 

manufacturing lines famously pioneered by Henry Ford in the early 20th century (e.g. Bhuiyan 

and Baghel, 2005). In the early 1980’s the concept of flexible manufacturing systems (FMS) 

was developed to cope with the transformation of consumer markets; shorter product life cycles 

and high product variety (e.g. Buzacott, 1982). Towards the end of the 20th century, the notion 

of reconfigurable manufacturing systems (RMS) appeared: living and evolving systems which 

are designed to be reconfigurable, to be quickly adaptable to changes in product requirements, 
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and to be able to respond to customer requirements faster and more effectively (Koren et al., 

1999). 

Reconfigurable manufacturing systems aim at combining the high throughput of dedicated 

manufacturing lines with the flexibility of FMS, with the added ability to react quickly and 

efficiently to changes (Koren et al., 1999). In addition to the above, they facilitate rapid system 

design, rapid conversion to new models, the ability to quickly and reliably integrate technology, 

and the ability to cater for varying product volumes with increased product variety (Mehrabi et 

al., 2000). Mehrabi et al. propose a set of distinguishing features, or key characteristics, which 

are requirements for a truly reconfigurable manufacturing system. A system which possesses all 

these characteristics is considered to have a high degree of reconfigurability. Reconfiguration 

can be initiated by a number of factors, such as variation in product demand, the introduction of 

new products, or the update of system components or integration of new components for 

improved productivity or improved quality. In the case of reconfiguration for new products or 

variation in demand, the process will begin at the system (i.e. top) level and propagate 

downwards (Koren and Ulsoy, 1997). The six core characteristics of RMS are considered to be 

modularity of the system hardware and software sub-components; integrability of the various 

current modules as well as of potential future modules; convertibility of the system for 

application to the manufacture of different products including future products; diagnosability 

with respect to the causes of quality and reliability problems; customization of the system 

hardware and software for the specific part family under consideration; and scalability of the 

system for rapid and economical changes in production capacity (Mehrabi et al., 2000; 

ElMaraghy, 2005).  

At either the system or machine level, two types of reconfiguration are recognized. Physical 

reconfigurability refers to the scalability of production volume, capacity and capability which is 

achieved by adding, removing or repositioning machines, machine modules or material handling 

systems. This approach is typically costly since it involves complex machines. Logical 

reconfigurability is any form of reconfigurability which can be employed without physical 

reconfigurability to achieve better agility. This includes flexibility of machines, operations, 

processes, routing, scheduling, planning and programming of manufacturing systems. This 

approach is less costly since it is achieved through good system and software design (ElMaraghy, 
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2005). The industry also recognizes that reconfigurable machine tools (RMTs) are essential 

enablers of RMS; that reconfigurable assembly lines are, at least in theory, easier to achieve than 

RMS because of the less stringent tolerances; and that hybrid human-machine RMS are 

advantageous because they make use of the flexibility which is in-built in human nature but at a 

relatively low cost (ElMaraghy, 2005); Wiendahl et al., 2007. The study of reconfigurability in 

manufacturing extends to new approaches for control (e.g. Priego et al., 2015 and Durkop et al., 

2014) and strategy (e.g. Fasth-Berglund and Stahre, 2013). 

A key requirement for an RMS is considered to be that its constituent systems and 

components must be designed to be reconfigurable from the outset, in order to adequately meet 

the core system characteristics of this paradigm (Mehrabi et al., 2000; ElMaraghy, 2005). It is 

emphasized that one must first define the part family of products, then address the appropriate 

system design issues, then link these to the corresponding machine design issues, and finally 

address methods to reduce reconfiguration and ramp-up times. Although this approach is 

understandable, it may not take into account the common situation when highly specialized 

machines become idle or underused due to loss of business of the particular product being 

manufactured. In such cases, it may in fact be advantageous to carry out a conversion project 

rather than scrapping the machine and buying another. 

The conversion of a fixed automation system to an automated RMS is not considered in the 

literature and is identified as a research gap. The objective and contribution of this work is to 

explore this possibility and approach. A provisional set of systematic guidelines are proposed, 

to be used to convert a fixed automation system to a reconfigurable manufacturing automation 

system. The problem is approached by (i) taking note of the key requirements for reconfigurable 

systems (as summarized above); (ii) identifying the key shortcomings in reconfigurability of a 

generic fixed system; (iii) developing a formal set of generic guidelines, based on (i) and (ii) 

above, for conversion; (iv) applying the guidelines to an industrial case study; (v) carrying out 

an economic analysis of the proposed system; (vi) evaluating the application of the guidelines 

during the case study; and (vii) evaluating the proposed system with respect to reconfigurability 

requirements. 
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2. Development of the conversion guidelines 

2.1. Requirements of RMS 

The design of RMS needs to address both system-level issues as well as machine-level issues 

(Koren and Ulsoy, 1997). System-level design looks at the manufacturing system as a whole, 

composed of a number of machines as constituents of the system. Machine-level design focuses 

on the individual machines which make up that manufacturing system as seen in Fig. 1. A 

number of requirements for reconfigurability, found in the literature, have been identified as 

relating either to the system or to the machine level, and have been listed in Table 1. The table 

also gives an indication of the specific RMS characteristic(s) that are addressed by each 

requirement.  

2.2. A generic fixed manufacturing automation system 

A generic manufacturing automation system in use at Trelleborg Malta is considered, in order 

to highlight the general limitations of fixed systems with respect to reconfigurability. The system 

being used for this example is an end-of-line inspection machine which was custom built for a 

particular product. Such systems are typically made-up of a number of cameras located around 

a rotating glass table. Finished parts are placed inside the bowl feeder which orients the parts 

and carries the parts to the feed track as seen in Fig. 2. The parts exit the feed track onto the glass 

plate where they are checked by a number of cameras. These machines are custom designed for 

specific parts; with just the number of cameras needed to inspect critical areas and dimensions 

of these parts according to customer and internal requirements. 

 

Fig. 1. System and machine level constituents of a RMS 
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In this example, the system uses compressed air jets to orient the parts in the bowl feeder and 

to remove defective parts and good parts from the glass table, see Fig. 3. If a part with the same 

shape but different material, density or tribological properties needs to be used on this machine, 

then the air pressure would need to be adjusted. This would technically be possible; however 

this process is long and tedious and often takes weeks for ramp-up due to feeding problems. 

 

Fig. 2. Bowl feeder which feeds parts into the feed track 

Table 1. RMS and RMT requirements and associated characteristics 

 Requirement Characteristic1 

  M I C D Cu S 

 System Level       

S1 System components are easily added and removed       

S2 Machines can be moved easily and quickly       

S3 Electricity and plumbing connections allow movement of 

machines 

      

S4 Manufacturing system planning and monitoring software 

can be customised 

      

S5 Parts are inspected on-line; either manually or 

automatically 

      

S6 System can detect and correct production errors       

S7 System can handle different parts from one part family 

with little to no down time 

      

S8 System capacity can be increased quickly and easily       

 Machine Level       

M1 Machine components are easily added and removed       

M2 Machine elements can be switched/relocated within the 

same machine 

      

M3 Control system supports addition of components       

M4 Adding latest technological components is easily achieved       

M5 Machine components are customisable       

M6 Component control is customisable/open architecture       

M7 Machine can handle different parts from one part family 

with little to no change over 

      

M8 Machine can detect and correct production errors       

M9 Machine capacity can be increased quickly and easily       

M10 Machine has on-line part inspection       

1M:modularity; I:integrability; C:convertability; D:diagnisability; Cu:customisability; S:scalability. 
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Some features of the part can be modified without affecting the process; however the main 

shape of the part cannot be modified because it must compatible with the guide rails in the 

vibratory bowl feeder for orienting the parts. Also, a similar part with different dimensions 

would typically not pass through the feed track, (see Fig. 4). Thus systems of this type are 

typically not adaptable to different parts within the product family.  

The system was designed for inspection of matt black parts. If the surface finish of the parts 

is different; it may cause issues for the cameras to identify defects. Furthermore, light coloured 

parts cannot be inspected on the current machine because the current lighting setup and 

transparent glass table make it difficult to contrast between a light coloured part and a bright 

background. 

 

Fig. 3. Air jet needle on the right of the image, used for removal of parts from the glass plate 

 

Fig. 4. Profile of part in feed track 
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The system is currently made up of two cameras which inspect the top and bottom faces of 

the part while another camera is used to measure two critical dimensions of the part. The machine 

does not allow the addition of another camera; for example a camera to inspect the side of the 

part. 

The inspection machines are currently running at maximum capacity in order to keep up with 

the demand. If the required volume increases, the system cannot be modified to be able to process 

more parts; thus requiring a large investment in a new machine. Furthermore, if one of the 

machine components fails, the entire system will stop until the problem is rectified. 

The system software, as with many fixed systems, is locked by the machine builder and 

cannot be reprogrammed. For example, the production data is displayed in number format. It is 

not possible to display the production data in graphical format without going to the machine 

builder. Also debugging of software has to be done by the machine builder. The graphical user 

interface is fixed and cannot be modified to improve user friendliness for example. 

2.3. Typical shortcomings of fixed automation systems 

The typical shortcomings of fixed systems with respect to reconfigurability involve the 

inability to meet the requirements listed in Table 1, and in practical terms based on the generic 

system described in section 2.2 may include limitations such as the following: (i) The system 

was designed for a specific part and cannot cater for similar parts within the same part family 

(lack of adjustability for product variants, e.g. in shape, materials, texture, colour); (ii) The 

system structure is fixed and cannot be easily adjusted (modules cannot be added without 

complex system redesign; the machine/component layout cannot be easily changed); (iii) The 

current system is not scalable (system capacity cannot be increased; an increase in capacity 

requires investment in a new machine); (iv) The system software is not adjustable (e.g. it does 

not allow for reprogramming of functions; the graphical user interface cannot be modified). The 

proposed guidelines for conversion to RMS involve the systematic assessment of each of the 

reconfigurability requirements, and the individual targeting of each limitation with specific 

solutions.  
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2.4. Step 1: Define the requirements for the RMS 

The first step is to define the bounds of the conversion project; i.e. what portion of the entire 

manufacturing system will be targeted during the improvement project. At this point it is 

important to hold a discussion with all key stakeholders including representatives from 

marketing or sales, production, quality and product development. A number of questions to be 

considered during the early stages of the reconfiguration process have been gathered from the 

literature search, particularly from Reza Abdi and Labib (2003), Koren and Shpitalni (2010); 

and Azab et al. (2013).  This list is not exhaustive, however it helps direct the thought process 

during early discussions and thus can provide a good basis for defining the boundaries of the 

project:  

 Is the demand for the product being produced forecasted to increase? 

 Is it expected that different parts from the same product family will be processed on this 

line? 

 Is the current production technology outdated or produces parts of inferior quality compared 

to competition or to customer requirements? 

 What key product features are important to allow new products to be produced on the same 

system? Use of Design for Manufacturing techniques is important. 

 What defines products from the current product family? In some cases it may not be viable 

to create a system which can cater for all parts within a current part family. Product families 

may need to be subdivided and reclassified accordingly. 

 Is demand for the product or product family currently produced on this manufacturing 

system on the decline? 

 What is the budget for converting the current fixed system? 

 How will the down-time and production capacity lost due to the conversion process affect 

the company and the customers? 

In this work a logical approach has been taken to categorize and address the inhibitions to 

reconfigurability at the system and machine levels as described in sections 2.5 and 2.6 below. 

The individual problems that may need to be solved are generic and are derived from Table 1, 

while the suggested solutions are based on intense discussion with engineering and technical 
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personnel from the project development and quality departments of the partner company as well 

as from the shop floor. The lists are therefore not necessarily exhaustive and may also need to 

be adapted to the specific scenario under consideration. As indicated in Table 1, the guidelines 

are intended to address the attainment of the six core characteristics of RMS. 

2.5. Step 2: Address the current inhibitions to reconfigurability at the system level 

System components such as machines, material handling systems etc. cannot be added or 

removed. This may be due to a number of reasons listed below: 

(i) System components are welded in place or bolted to the ground and thus cannot be moved.  

Solution: Make use of quick release fasteners, rather than welding components to each 

other. If the machine is bolted to the ground for stability reasons, fix the machine to a sturdy 

base (concrete or steel) with wheels; which supports the machine but which can be moved 

around quickly. 

(ii) System components are not fixed in place but require heavy lifting equipment to be moved, 

which is not readily available.  

Solution: Air powered dollies allow for quick movement of machinery and require minimal 

capital investment. Such systems require the machine to be lifted before placing the dollies 

under it. The operator of the moving equipment uses a remote control to manoeuvre the 

machine to its new location. Alternatively air casters can be used which are designed to 

float heavy machinery across shop floors using a thin film of pressurized air, to bring down 

the coefficient of friction between the machine and the floor. Such systems can be 

permanently attached to each machine in the system to allow ease of machine movement. 

For this to work, the surface of the floor along which the machines will be moved must be 

smooth and free from large cracks or holes which would allow air to escape and result in a 

subsequent loss of lifting ability. When designing new machines or machine substructures, 

it is also recommended to look into the possibility of using lightweight composite materials 

for many discrete manufactured components. Aluminium composites can be used instead 

of cast iron; resulting in lighter components with better mechanical properties (Benjafaar 

et al., 2002). 
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(iii) Support services such as electricity, plumbing, compressed air and network connections 

are fixed, limiting the ability to move machines around.  

Solution: This issue can be overcome by having electricity, plumbing, compressed air 

connections and even network cables passing along an elevated structure above the shop 

floor. This structure will consist of a number of connection points to which a machine can 

be connected via cables or pipes. The points should make use of quick connections to speed 

up the process of disconnecting and connecting machines. The use of these quick 

connections must be supported by standardization of each type of connection, e.g. all air 

connections on the shop floor should make use of the same male and female connections. 

 Production planning and product routing between different system components cannot be 

changed. 

Solution: The production planning system may need to be updated to be able to choose the 

routing of the products on the shop floor. If the system will frequently be reconfigured with 

machines being moved around, it may be necessary to use a mapping system to make it 

easy for the users (shop floor personnel) to understand where to get products or material 

from and where to take them to. This can be achieved through mapping of the shop floor 

using a coordinate style system and including the locations in the job card. 

Parts being produced in the system are inspected off-line and poor quality production is not 

immediately detected. 

Solution: For a system to be reconfigurable it must be able to monitor the quality of the 

key characteristics of the products being produced. This can be done either manually or 

automatically, through statistical sampling or 100% inspection. The information may be 

used to guide machine setters, or be directly fed back into the system which modifies the 

system parameters to correct the problem. 

The current system can only handle one part number, and changeover to other parts is lengthy 

and complicated. 

Solution: The system design needs to be modified to be able to cater for different parts from 

the same part family. This can be achieved through intelligent redesign of the system 



11 
 

components. An example of this would be a material handling system made up of 

components which can be easily adjusted for production of different parts. 

Increasing capacity of current system requires duplication of the entire system. 

Solution: To increase capacity, an analysis of the current process should be carried out to 

identify the bottleneck in the process. This system component can then be duplicated to 

increase the productivity and thus reduce or eliminate the bottleneck. Material handling 

systems between machines should be upgraded so that products from multiple machines 

can be handled by the system. In the case of multiple machines within the same 

manufacturing system, it is important to have the ability of parts to cross over between 

machines at each stage of the manufacturing process. 

2.6. Step 3: Address the current inhibitions to reconfigurability at the machine level 

Machine components are fixed and components cannot be added or removed. This may be 

due to a number of reasons listed below: 

(i) The components were not designed to be changed (Physical constraints).  

Solution: Redesign the machine components such as fixtures, spindles etc. so that these can 

be easily dismantled and replaced. 

(ii) The system software and control architecture does not allow for changing the components 

connected to the machine (Logical constraints).  

Solution: Redesign the system software/controller to be capable of handling additional 

components with minimal effort and changeover time. The use of wireless rather than 

point-to-point hard-wired connections will help improve the ability to move machine 

components. 

(iii) Machine components are controlled by a single central control system.  

Solution: Truly reconfigurable systems allow for seamless addition and removal of 

components (plug-and-play feature). Such technology has not yet become available but is 

being developed by a number of component manufacturers. The target is to have one small 

package which brings together transducing, network connectivity and the first level of 

control. 

(iv) The control system has insufficient channels to cater for additional components which may 
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are needed to cater for products from the product family.  

Solution: Upgrade control system/interface to be able to cater for an increase in inputs as 

may be needed in the foreseeable future. 

(v) Control of each major machine component is not possible.  

Solution: Upgrade actuator, sensor and control system to be able to control each major 

component separately and easily. 

Parts being produced on the machine are inspected off-line and poor quality production is not 

quickly detected. 

Solution: For a machine to be reconfigurable it must be able to monitor the quality of the 

key characteristics of the products being produced. This can be done either manually or 

automatically, through statistical sampling or 100% inspection, either on-line or off-line, 

in-process or post-process. 

The current machine can only handle one part number, and changeover to other parts is 

lengthy and complicated. 

Solution: The machine and component design needs to be modified to be able to cater for 

different parts from the same part family. This can be achieved through careful re-design 

of the machine components and how these connect to the machine. The use of quick release 

mechanisms and collet chucks is preferred to use of nuts and bolts which are time 

consuming and prone to damage. 

Increasing capacity of current machine is not possible. 

Solution: The machine design needs to be modified to be able to cater for additional 

capacity.  

2.7. Flow chart of conversion guidelines 

The flow chart given in Fig. 5 depicts the decision making process for whether or not to 

convert the current fixed system to a reconfigurable manufacturing system. It asks the critical 

questions which would be necessary to kick off such a conversion project. The flow chart does 

not consider the economic viability of the project because at this point, the cost of conversion 

would still be unknown. Fig. 5 links with the chart depicting the conversion process, given in 

Fig. 6. 



13 
 

Each decision box checks if one of the key characteristics of reconfigurability is present in 

the current system. If this is not present, the user is asked whether this requirement is critical for 

the manufacturing system to be able to achieve the requirements highlighted in the first flow 

chart. If this is not necessary, then the user can move to the next decision box. The decision 

boxes are located one after another to provide a structure which ensures that each of the questions 

are considered before having reached the end of the flow chart. It is noted that the flow chart in 

 

Fig. 5. Flow Chart depicting the decision process (Note: IPD indicates integrated product development) 

Examples of disturbances to environment:

•Forecasted increase in demand volumes

•Modification of current product line

•Addition of new products to product line
•Current equipment becoming obsolete

•Product sales declining
•Management drive to increase agility of the business

Monitoring of Micro and Macro Environment

Are any of the 

above true?

No

Convert system to RMS

Liaising with Key Stakeholders

Marketing and 
Sales

Production and 
Operations

Product Design 
and 

Development

IPD

Yes 



14 
 

Fig. 5 addresses both the system and machine levels. While in some cases it may be sufficient 

to address only one of these levels, the flow chart as presented ensures that all opportunities for 

 

Fig. 6. Flow Chart depicting the conversion process 
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change are considered, and that the user follows a structure which ensures that all the steps are 

addressed accordingly.  

Once the bottom of the second flow chart is reached and system reconfigurability is achieved, 

the flow chart loops back to the first stage of the first flowchart which is to monitor micro and 

macro environment. This loop is very important for the success of the reconfigured system and 

the business as a whole. Firstly, the manufacturing system may need to be modified at some 

point in the future, thus monitoring of market conditions is of critical importance. Furthermore, 

a business that constantly monitors (and reacts accordingly) to changing environmental 

conditions is far more likely to succeed than one which is oblivious to the internal and external 

environment.  

The flow charts should be used in conjunction with the full conversion guidelines, since the 

latter give more detail in each stage. Similar to typical design processes, the RMS conversion 

design process is an iterative process. 

2.8. Economic analysis 

There are a number of anticipated financial benefits of operating a RMS, e.g. improved sales 

by responding to customer requirements faster than competition; improved production efficiency 

through integration of latest machine components; reduced scrap loss due to better diagnosability 

of production errors; increasing capacity requiring less capital investment since it can be 

achieved by duplicating machine components rather than entire machines or production systems. 

A cost breakdown of each proposed improvement must be prepared, to establish economic 

viability. The costs incurred may also include: engineering design costs, installation costs, 

additional special tooling, training costs as well as cost of lost production due to machine 

conversion downtime. Not all cost savings are easy to quantify; but at least an estimate can be 

made. For example, one can analyse how many request-for-quotation requests (RFQs) were 

rejected during a period due to the inability to produce the requested parts. Although responding 

to the RFQ would not imply that the contract would have been won, one can say that the potential 

for sales would be increased. A simpler example is estimating that the new system should give 

a specific production scrap loss (e.g. 2%) as opposed to the current system’s (e.g. 5%). Thus it 

is more straightforward to evaluate whether the improvement is justifiable or not. 
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Capital expenditure appraisal for the project can be carried out using various methods such    

as break even or net present value (NPV) analysis (e.g. Russell et al., 2002). Application of the 

latter method entails carrying out projected calculations of setup savings, as well as of all other 

savings / losses, for every year of intended operation over the projected lifetime of the production 

system, and drawing up a chart as indicated in Table 2. The actual values for every year are 

discounted by a factor that is determined by the company’s cost of capital, as per equation (1), 

so that all savings and losses are normalized to an appropriate NPV. A positive total NPV 

suggests that the project is economically feasible.  

Discount factor =
1

(1+𝑟)𝑛
   (1) 

where r = cost of capital; and n = number of years since start of project. 

3. Case study 

3.1. Overview 

The specific business unit of the company produces V-ring rubber seals ranging from 1.5mm 

to 450mm internal diameter. Product variety is hard; production of part numbers is done in 

batches before changing over to different part numbers. Production is typically characterized by 

short production runs (average of 2 to 3 shifts), thus performing frequent changeovers. Many 

standard catalogue items are currently manufactured using the “tube moulding and cutting” 

process, involving the injection or compression moulding of a rubber “tube” followed by 

Table 2. Template for the application of the NPV method for economic appraisal, for a projected project lifetime of N years. 

Year Description Value Discount factor NPV 

     

  €  € 

0 Total outlay    

0 Initial savings    

1 Setup savings    

1 Personnel savings / losses     

1 Other savings / losses     

2 Setup savings    

2 Personnel savings / losses     

2 Other savings / losses     

. .    

. .    

N Setup savings    

N Personnel savings / losses     

N Other savings / losses     

Total net present value:  
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grinding, cutting and dividing carried out on a dedicated cutting line. Currently there is a 

production cell which has become idle for 47 out of 52 weeks in a year. Thus there is an 

opportunity to develop this idle manufacturing system into a reconfigurable one which can 

produce parts currently produced using the tube-moulding process. The company wishes to 

convert this production cell to a closed cell which can be reconfigured to handle different 

products from the product family. The current layout of the cell, which can cater for two almost 

identical part numbers, is shown in Fig. 7.    

3.2. Conversion 

This procedure involved the systematic application of the guidelines listed in section 2, and 

is summarized here. 

3.2.1. Defining the requirements for the RMS 

 V-ring production volumes are typically low. Thus to maximize the operational efficiency 

of the manufacturing system, it must be capable of handling different products from the same 

product family. Discussions were held with key stakeholders including the product manager 

representing product design and marketing, the production manager and the tooling manager. 

The first step was redefining the product family, i.e. what key characteristics are common and 

can these be exploited when modifying the manufacturing system. V-rings are mainly produced 

as standard items, and come in a variety of sizes, profiles and materials. Thus products with the 

same dimensions may be available in a different material and different section profile. 

Furthermore, production volumes vary greatly depending on the material and profile. Fig. 8 is a 

 

Fig. 7. The current production cell 
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graphical representation depicting the cumulative machine usage of the part numbers chosen to 

run on the new system at the forecasted production volumes, including the part which is being 

produced on the current manufacturing system setup. Calculations are based on four parts per 

lift and consideration of different moulding cycle times which are dependent on the material. 

Production would span 7-hour shifts, 3 shifts per day, 5 days per week and 52 working weeks in 

a year. The machine usage plateaus at around 97% usage leaving an allowance of around 200 

hours for changeovers and scheduled or unscheduled machine down time. 

The current process also has a number of drawbacks due to the fact that parts are batched and 

taken for secondary processes between moulding and cutting. This increases the work-in-process 

and production lead times, which in turn reduces the response time from customer order to 

delivery. Also the secondary process used to remove flash from the parts is an expensive process 

which is prone to creating defective parts. A new approach must be created which will keep the 

parts within the manufacturing cell and promote one piece flow rather than batching. 

The project has been assigned a cost of capital of 10%. The project must return a positive 

NPV by the end of the predicted useful life. Furthermore, the proposed process would need to 

produce better quality parts thus at a lower scrap rate than the current method for producing 

these parts. The current method has a global average scrap rate of around 30% while the part 

number produced on the current fixed system has an average scrap rate of 10%. 

The current system was designed for medium volume production of two very similar 

products, specially designed for a customer. Orders for one of these products have stopped 

 

Fig. 8. Forecasted annual production volumes for the next financial year and the % cumulative machine usage for the proposed 

manufacturing system based on the selected production parameters 
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completely and the demand for the other product has reduced significantly. The manufacturing 

system is currently idle for 47 out of 52 weeks in a year. Given the very low operational 

efficiency of the current system; it is evident that this is a good opportunity to develop a new 

system. To minimize impact due to machine downtime during the conversion process, the 

estimated volumes for the next year will be manufactured before starting the project.  

3.2.2. Address the current inhibitions to reconfigurability at the system level 

 A function – means analysis was used to analyze the current system and to draw up 

alternatives for the proposed manufacturing system. It was first analyzed at a broad, system 

level, thus looking at the machines or system components which make up the system. The 

manufacturing system is currently made up of three main components, these being the injection 

moulding machine, the material handling system, and the indexing table. Analysis was applied 

as per the guidelines given in sections 2.5 and 2.6 above, and the function – means analysis chart 

(Fig. 9) was used to help generate alternative solutions to the problem. Further details are given 

in the remainder of this subsection. 

To prevent unwanted movement of system components, no changes are required for the 

injection moulding machine and for the material handling system. The indexing table (including 

the user interface and control unit) can be bolted to a metal platform to achieve reconfigurability 

while adhering to the manufacturer’s recommendations for adequate anchoring. To allow desired 

movement of system components, movement of the injection moulding machine will be made 

possible through the use of standard machine dollies which will be permanently positioned under 

the machine. The two steering dollies will be located at opposite ends of the machine while the 

fixed skates will be located in the centre of the machine. Additionally a lockable safety brake 

will be welded to the machine structure to prevent unwanted movement of the machine during 

use. Movement of the material handling system and of the indexing table will be achieved 

through the use of newly installed castor wheels. 

With respect to the location of support services, the manufacturing system already makes use 

of an elevated support service infrastructure, located three metres above the shop floor. The 

system is made up of a number of horizontal and vertical tracks passing through strategic points. 

Electricity, plumbing, compressed air or network connections can be made at any location within 

an hour. A vertical track will be made which will transfer the utilities down straight to the 
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machine. With respect to the supply of water and compressed air, quick connect coupling will 

be used for quick connection and disconnection of these services for the injection moulding 

machine and indexing table, while no modifications are required for the material handling 

system. 

For production planning, an electronic Kanban system will be used, whereby when an order 

comes in for one of the products from the production line, the system will reserve parts from the 

finished goods supermarket. This will trigger re-stocking of the supermarket from the indexing 

table, which in turn will indicate that moulding of this part number needs to be started when 

possible. 

 

Fig. 9. Function – means analysis chart applied to the manufacturing system 
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With respect to product control, the injection moulding of elastomers is an exceedingly 

complex problem with product quality dependent on a very large number of factors including, 

but not limited to, issues related to raw material condition (e.g. humidity, particle 

contamination); machine parameters (e.g. mould temperature, cure time); tool condition (e.g. 

tool damage, tool wear); and other factors (e.g. nozzle seating, nozzle diameter). All of the above 

factors, and many others, will affect the final quality of the part. Unsurprisingly, some 

parameters have more of an effect on part quality than others. Some typical defects found during 

injection moulding of elastomers include blisters, flow marks, join marks, non-fill (short shot), 

excess flash (at parting line), dirty mould, cured-in rubber, foreign particle inclusion, undercure, 

overcur, dimensional error, tool damage, mismatch, and thick parting line. Thus, the automatic 

diagnosis and solving of moulding issues is extremely challenging. This aspect of the new design 

has therefore not yet been addressed, however it is envisaged that it would be possible to develop 

an expert system whereby artificial intelligence is used to help diagnose problems in the injection 

moulding process. With respect to the indexing table, one of the vacant steps in the indexing 

table will incorporate a camera to check the critical dimension. 

With respect to product handling, the entire manufacturing system will be redesigned to be 

able to handle different parts from the same part family. With respect to capacity increase, the 

system will be redesigned so that if another injection moulding machine is added to the system, 

the parts from both machines can be handled at the same time without the need to reconfigure 

the material handling system. Both of these issues will be discussed further in section 3.2.3.  

3.2.3. Address the current inhibitions to reconfigurability at the machine level 

Problem A: Machine components are fixed and components cannot be added or removed. 

Proposed solutions: All parts forecasted to be manufactured on the injection moulding 

machine do not necessitate any modifications to the machine setup but rather to the mould 

and cavity inserts. These are addressed under solutions to Problem C below. The material 

handling system consists of three conveyor belts which transfer the parts from the moulding 

machine into a box. Currently, parts are then transported to another department for 

cryogenic finishing and post curing. In the proposed system, the finishing process and post-

curing process will be fully integrated into the manufacturing cell. To eliminate the need 

for cryogenic finishing, the indexing table needs be modified to allow the flash to be cut 
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off during the cutting process. The system is currently made up of eight spindles which are 

attached to the indexing table using a collet chuck. This method of fastening spindles to 

the indexing table is quick and flexible for different sized spindle diameters and can be 

retained. Spindles for different product sizes will be manufactured. 

Problem B: Parts being produced on the machine are inspected off-line and poor quality 

production is not quickly detected. 

Proposed solutions: As discussed above, automatic diagnosability and automatic 

rectification of problems on the injection machine is not feasible at this point in time. An 

expert system can be developed whereby artificial intelligence is used to help diagnose the 

problem. With respect to the material handling system, inspection at this point would be 

useful for early detection of moulding issues. Also, at this stage the parts have lower value 

than at end of line since they have not gone through the entire process. Such a system would 

require orientation of the parts for the camera to inspect the critical surfaces. It is possible 

to carry out automatic orientation, inspection and transfer of parts onto the indexing table 

using a robot and machine vision system. On the indexing table, critical dimensions after 

cutting can be measured using machine vision with back lighting (see Fig. 10). 

Problem C: The current machine can only handle one part number, and changeover to other 

parts (within the same part family) is lengthy and complicated. 

Proposed solutions: The current setup is only capable of producing two almost identical 

part numbers. In order to be able to cater for a variety of part sizes; a bolster plate and insert 

cavity assembly was designed for the fixed, moving and floating middle plate; which would 

allow the system user to quickly changeover to a different part. Concept designs were 

discussed with key stakeholders including the product manager representing product 

 

Fig. 10. Proposed inspection and illumination system 
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design and marketing, the production manager representing operations and logistics and a 

representative from the tool room where the tool will be manufactured. All stake holders 

agreed with the concept of having mother moulds which remain permanently fixed in the 

machine; and interchangeable inserts. The material handling system, composed of three 

conveyor belts, can already handle all parts from the part family without the need to change 

over. On the indexing table, different sized parts would require setting of cutting blade 

positions relative to the part. Furthermore, future design changes may call for different 

angles and positions of the blades. The current system has manually adjustable slides which 

can be used to adjust position and angle of the blade and height adjuster for varying depth 

of cut. The same system will be replicated for the additional (third) cutting stage. In the 

future this can be automated to shorten the set-up times. Other parameters such as speeds 

and delays can be modified using the graphical user interface. 

Problem D: Increasing capacity of current machine is not possible. 

Proposed solutions: The design of the mould incorporates extra blocked inserts that can be 

utilized in case of a need to increase capacity (see Fig. 11). The machine is capable of 

coping with up to double the demand of all the part numbers from the product family. The 

material handling system is capable of coping with increased demand as long as the post 

cure oven is not over loaded. A detailed analysis was carried out to ensure that the oven 

can cope with increased demand. The indexing table can already handle more than four 

times the current demand.  

 

Fig. 11. Fixed plate assembly with four core inserts and four blocked inserts 
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3.3. Economic analysis 

A detailed economic analysis of the conversion revealed that this would result in a substantial 

positive NPV over the minimum expected useful life (taken to be five years) of the 

manufacturing system. This was fueled mainly by the cost of replacing worn out tools on the 

current system, which would be mandated if the status quo is retained at a cost that would exceed 

the capital outlay for the conversion process excluding engineering design and installation costs. 

In addition, the analysis revealed that the proposed system would greatly reduce the setup time 

per batch (by a factor of eight), and that the scrap rate would be reduced by a factor of three due 

to an improved cutting process. Furthermore, the potential of enhanced reconfigurability of the 

new mould tools using standard inserts; and of labour savings due to the use of an automatic 

injection moulding machine, further enhanced the viability of the conversion. 

It is noted that the company’s policy mandates that the salary costs of resident engineers and 

technicians involved in the design and installation of a project should not be considered as capital 

expenses. This policy serves to drive innovation and process improvement by keeping the total 

project costs down. It is also noted that the production time lost during the conversion process 

would not affect the business since the current year’s demand on the manufacturing line would 

be produced prior to the start of the conversion process. 

3.4. Evaluation 

The proposed system design was evaluated with respect to the six characteristics of RMS, 

and found to satisfy all of these adequately. With respect to diagnosability, the system still makes 

use of the human element for identifying and characterising types of defects: however, it uses 

an expert system to diagnose the problem and provide suggestions for remedial action, and 

employs machine vision to measure the critical dimensions, giving the machine setter immediate 

feedback if dimensions are out of specification. With respect to scalability, the injection 

moulding output can be doubled with minimal investment; and beyond that with moderate 

investment in a larger cold runner block and mould tool. Additional system components can be 

added independently to incrementally increase capacity without major capital expenditure.  
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4. Discussion 

4.1. Application of guidelines 

The guidelines were found to be very useful during the development of the manufacturing 

system. The case study chosen for this project would be considered to be medium complexity 

since the process is short and the part family is made up of very similar parts. Nevertheless, the 

guidelines were designed for a generic case and thus should not be affected by process 

complexity. 

Before undertaking a project of this nature, the process designer should research the subject 

of reconfigurability and understand that it does not involve only modularity or scalability; but a 

different business approach which must incorporate all six pillars of reconfigurability both 

physically and logically. The ultimate goal of implementing a reconfigurable manufacturing 

system is to improve business agility and competitiveness. Once this is understood by the 

designer, stakeholder involvement is critical; from upper management-level, down to operator-

level. 

During the initial stages of the project, the requirements are often unclear and the future of 

the manufacturing system still unknown. For these reasons it is important to form a team which 

includes representatives from the major business areas. Here the scope of the conversion project 

must be made clear since some of the guidelines may not be applicable for the particular 

manufacturing process under consideration. 

Furthermore, the list of questions to be considered during the early stages of the 

reconfiguration process was updated following the first application of the guidelines to the case 

study. Thus, with each application of the guidelines, there may be more questions to be added 

to the list, thus the current list is not an exhaustive one. As discussed previously, the aim of the 

list is to direct the thought process during the early discussions, thus providing a basis for 

defining the boundaries of the project and provoking discussion. 

During the application of the guidelines a number of decisions needed to be taken. The 

importance of using decision making tools such as the weighted ranking method became evident 

in order to make good and unbiased decisions. Product development tools, such as 
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morphological charts to generate alternative solutions to problems, and process failure mode and 

effects analysis (PFMEA) were applied, and these were found to be very useful. 

It is understood that in most cases, the selected manufacturing system would already be 

several years old and also most likely have been idle for a while. An evaluation of the state of 

the machines should always be carried out before undertaking such a project to avoid unplanned 

repair costs and subsequent escalation of project costs. For the conversion project to be 

successful, it should be paired with a workspace optimization exercise (e.g. Abdulmalek and 

Rajgopal, 2007) and preventive maintenance on the entire manufacturing system to ensure 

maximum efficiency of the final system.  

4.2. Validity of the results 

When interpreting the results of any project, one must be cautious to ensure that subjectivity 

of the researchers carrying out the project does not influence the interpretation of the results. 

This project consisted of the creation of a set of guidelines, application of guidelines and 

evaluation of the results; all of which done by the same small team of researchers. While this 

may pose a risk of experimental bias, it is believed that an amount of subjectivity can be 

beneficial for research work due to the deep involvement of the researcher, who has a deeper 

understanding of the topic than outsiders (Ratner, 2002).  

The interpretation of the results was done in a qualitative manner by analyzing the proposed 

system with respect to each requirement of reconfigurability. In this case, the conclusion is that 

the guidelines were found to be highly beneficial for the case study and that the proposed system 

exhibited all of the key characteristics which make up reconfigurable systems as described by 

Mehrabi et al., (2000). 

Useful future work would involve the development of a structured system for scoring the 

reconfigurability of any system, whereby a fixed system would be expected to rank low and a 

reconfigurable system to rank high. Other important future work would be to apply the 

guidelines to completely different systems, operating in different industries and applied by 

different people. In order for such an exercise to be successful, training of these persons would 

be necessary, which in itself may influence the objectivity of the exercise. 
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5. Conclusion 

This work has provided a detailed and systematic approach for planning a conversion project 

along with practical examples of how such requirements can be achieved using current 

technologies available on the market. The guidelines are valid for the conversion of low to 

medium complexity manufacturing automation systems of this type. Further work is required to 

determine whether these remain as straightforward to apply to more complex manufacturing 

automation systems or if improvements are necessary. The work also makes use of discounted 

cash flow techniques for evaluation of the economic viability of such a conversion project. The 

exercise indicates that, contrary to the more common perception, RMS may under certain 

conditions be economically feasible even if they are developed through the modification of pre-

existing dedicated systems. 

References  

Abdulmalek FA and J Rajgopal (2007). Analyzing the benefits of lean manufacturing and value 

stream mapping via simulation: A process sector case study. International Journal of 

Production Economics, 107(1), 223-236. 

Azab, A, H ElMaraghy, P Nyhuis, J Pachow-Frauenhofer and M Schmidt (2013). Mechanics of 

change: A framework to reconfigure manufacturing systems. CIRP Journal of Manufacturing 

Science and Technology, 6(2), 110–119. 

Benjafaar, S, SS Heragu and SA Irani (2002). Next generation factory layouts: research 

challenges and recent progress. Interfaces, 32(6), 58–76. 

Bhuiyan, N and A Baghel (2005). An overview of continuous improvement: from the past to the 

present. Management Decision, 43(5), 761–771.  

Buzacott, JA (1982). The fundamental principles of flexibility in manufacturing systems. In 

Proceedings of the 1st International Conference on Flexible Manufacturing Systems, pp. 13-

22. Brighton: North Holland. 

Durkop, L, H Trsek, J Otto, and J Jasperneite (2014). A field level architecture for reconfigurable 

real-time automation systems. In Proceedings of the IEEE Workshop on Factory 

Communication Systems. Toulouse: IEEE. 



28 
 

ElMaraghy, HA (2005). Flexible and reconfigurable manufacturing systems paradigms. 

International Journal of Flexible Manufacturing Systems, 17(4), 261–276. 

Fasth-Berglund, A and J Stahre (2013). Cognitive automation strategy for reconfigurable and 

sustainable assembly systems. Assembly Automation, 33(3), 294–303. 

Koren, Y and AG Ulsoy (1997). GA: Reconfigurable Manufacturing Systems. NSF Engineering 

Research Center, College of Engineering. The University of Michigan. Ann Arbor, 

ERC/RMS Report 1.  

Koren, Y and M Shpitalni (2010). Design of reconfigurable manufacturing systems. Journal of 

Manufacturing Systems, 29(4), 130–141. 

Koren, Y, U Heisel, F Jovane, T Moriwaki, G Pritschow, G Ulsoy, H. Van Brussel (1999). 

Reconfigurable manufacturing systems. Annals of the CIRP, 48(2), 527–540. 

Mehrabi, MG, AG Ulsoy, and Y Koren (2000). Reconfigurable manufacturing systems: Key to 

future manufacturing. Journal of Intelligent Manufacturing, 11, 403–419. 

Priego, R, A Armentia, E Estévez, and M Marcos (2015). On Applying MDE for Generating 

Reconfigurable Automation Systems. In Proceedings of the International Conference on 

Industrial Informatics, pp. 1233-1238. Cambridge: IEEE. 

Ratner, C (2002). Subjectivity and objectivity in qualitative methodology. Forum: Qualitative 

Social Research Sozialforschung, 3(3), Art 16. 

Reza Abdi, M and AW Labib (2003). A design strategy for reconfigurable manufacturing 

systems (RMSs) using analytical hierarchical process (AHP): a case study. International 

Journal of Production Research, 41(10), 2273–2299. 

Russell, D, G Wilkinson-Riddle and A Patel (2002). Cost Accounting: An Essential Guide, 

Harlow: Financial Times Prentice Hall.  

Wiendahl, H, H ElMaraghy, P Nyhuis, M Zäh, H Wiendahl, N Duffie, and M Brieke (2007). 

Changeable manufacturing-classification, design and operation. Annals of the CIRP 56(2), 

783–809. 

 


