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Abstract

Let G = (V,E) be a graph. For r ≥ 1, let I(r)
G be the family of independent

vertex r-sets of G. For v ∈ V (G), let I(r)
G (v) denote the star {A ∈ I(r)

G : v ∈ A}.
G is said to be r-EKR if there exists v ∈ V (G) such that |A| ≤ |I(r)

G (v)| for any

non-star family A of pair-wise intersecting sets in I(r)
G . If the inequality is strict,

then G is strictly r-EKR.

Let Γ be the family of graphs that are disjoint unions of complete graphs, paths,

cycles, including at least one singleton. Holroyd, Spencer and Talbot proved that, if

G ∈ Γ and 2r is no larger than the number of connected components of G, then G
is r-EKR. However, Holroyd and Talbot conjectured that, if G is any graph and 2r
is no larger than µ(G), the size of a smallest maximal independent vertex set of G,

then G is r-EKR, and strictly so if 2r < µ(G). We show that in fact, if G ∈ Γ and

2r is no larger than the independence number of G, then G is r-EKR; we do this

by proving the result for all graphs that are in a suitable larger set Γ′ ) Γ. We also

con�rm the conjecture for graphs in an even larger set Γ′′ ) Γ′.
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1 Introduction

Throughout this paper, we denote the set of natural numbers by N, the set {x ∈ N : m ≤
x ≤ n} by [m, n] and [1, n] by [n].

Next, we give some terminology and notation relating to graph theory.
A graph G = (V, E) = (V (G), E(G)) is assumed to be �nite, simple and undirected

unless speci�ed otherwise. (An in�nite graph is temporarily introduced in De�nition 1.11,
but this is the only such graph to appear.) We denote a typical edge of G by vw where
v, w ∈ V (G). For any v ∈ V (G), the set of neighbours of v (that is, vertices adjacent to
v) will be denoted by NG(v), and NG(v)∪{v} will be denoted by N̂G(v). An independent
set of vertices of G is a set of pair-wise non-adjacent vertices.

We denote the complete graph, the path, and the cycle on n vertices by Kn, Pn and
Cn, respectively. The length of Pn is n− 1. A singleton is a vertex of G that is adjacent
to no other vertex, and the empty graph En is the graph consisting of n singletons.

Let G be any graph; then the distance d(v, w) between vertices v and w in the same
connected component of G is the length of the shortest path between v and w. For k ∈ N
the kth power of G, denoted by Gk, is the graph with vertex set V (G) where vw ∈ E(Gk)
i� d(v, w) ≤ k. Note that P k

n = Kn for k ≥ n− 1, while Ck
n = Kn for k ≥ n/2.

If G is a graph and S ⊆ V (G), then the subgraph H of G induced by S has V (H) = S,
two vertices of H being adjacent in H i� they are adjacent in G.

Finally, the Cartesian product G×H of two graphs has V (G×H) = V (G)× V (H),
two vertices (v, w) and (x, y) being adjacent in G×H i� either v = x and wy ∈ E(H) or
vx ∈ E(G) and w = y.

Next, we introduce notation for certain families of sets of vertices of a graph.
We denote the family of all independent sets of vertices of G by IG. Then α(G) and

µ(G) denote, respectively, the maximum and minimum sizes of a maximal member of IG

under set-inclusion.
For r ≥ 1, let I(r)

G be the family of independent r-sets of G, that is, {I ∈ IG : |I| = r}.
For v ∈ V (G), let I(r)

G (v) denote the star of I(r)
G with centre v, that is, {A ∈ I(r)

G : v ∈ A}.
More generally, for any family F of sets, the stars of F are the sub-families F(x) :=

{F ∈ F : x ∈ F} (where we assume x ∈
⋃

F∈F F ). A family is said to be intersecting if
any two sets in it intersect. Note that stars are trivially intersecting.

In [16], Holroyd and Talbot introduced the following de�nition that is inspired by the
classical Erd®s-Ko-Rado (EKR) Theorem [11]: G is said to be r-EKR if no intersecting

family A ⊆ I(r)
G is larger than the largest star of I(r)

G , and to be strictly r-EKR if no

non-star intersecting family A ⊆ I(r)
G is as large as the largest star of I(r)

G .
It is interesting that many EKR-type results can be expressed in terms of the r-EKR

or strict r-EKR property of some graph G. This observation was made in [16] and inspired
a number of other results about the EKR properties of certain graphs. Before coming to
the crux of this paper, we give a brief review of such results, recalling certain well-known
classes of graphs and also de�ning new ones.

The EKR Theorem [11] and the Hilton-Milner Theorem [13] may be expressed in terms
of empty graphs as follows.
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Theorem 1.1 (Erd®s, Ko, Rado [11]; Hilton, Milner [13]) Let r ≤ n/2. Then En

is r-EKR, and strictly so if r < n/2.

The work of Cameron and Ku [6] (inspired by the work in [7]) on intersecting permu-
tations and the works of Ku and Leader [17] and Li and Wang [18] on intersecting partial
permutations can be summed up and phrased as follows.

Theorem 1.2 (Cameron, Ku [6]; Ku, Leader [17]; Li, Wang [18]) Kn×Kn is strictly
r-EKR for all r ∈ [n].

A well-known intersection theorem that was �rst stated by Meyer [19] and proved by
Deza and Frankl [8] and Bollobás and Leader [1] can be phrased as follows.

Theorem 1.3 (Meyer [19]; Deza, Frankl [8]; Bollobás, Leader [1]) Let r ≤ n and
k ≥ 2. Let G be the disjoint union of n copies of Kk. Then G is r-EKR, and strictly so
unless r = n ≥ 3 and k = 2.

Other proofs are found in [9, 10] and, in a more general context, in [3]. Holroyd, Spencer
and Talbot [15] extended the non-strict part of Theorem 1.3 by showing that, if G is the
disjoint union of n complete graphs each of order at least 2, then G is r-EKR for all r ≤ n.

Suppose G is a graph whose vertex set has a partition V (G) = V1∪ ...∪Vk into partite
sets such that any two vertices are adjacent i� they belong to distinct partite sets. Such a
graph is said to be a complete multipartite graph, or more particularly a complete k-partite
graph. (Thus if |V1| = ... = |Vk| = 1, then G = Kk.) Holroyd and Talbot [16] considered
the problem for complete multipartite graphs.

Theorem 1.4 (Holroyd, Talbot [16]) Let G be the disjoint union of two complete mul-
tipartite graphs. Let r ≤ µ(G)/2. Then G is r-EKR, and strictly so if r < µ(G)/2.

This result follows immediately from the case k = 1 of the next result (see [16]).

Theorem 1.5 (Borg, Holroyd [5]) Let G be the disjoint union of k complete multipar-
tite graphs and a non-empty set V0 of singletons. Let r ≤ µ(G)/2. Then:
(i) G is r-EKR;
(ii) G fails to be strictly r-EKR i� 2r = µ(G) = α(G), 3 ≤ |V0| ≤ r, k = 1.

In the recent years, a number of EKR results have been obtained for powers of paths
and cycles.

Theorem 1.6 (Holroyd, Spencer, Talbot [15]) If d ≥ 1 and G is a dth power of a
path, then G is r-EKR for all r ≤ α(G).

A nice EKR-type result of Talbot [20] for separated sets can be stated as follows.

Theorem 1.7 (Talbot [20]) Let r ≤ α(Ck
n). Then Ck

n is r-EKR, and strictly so unless
k = 1 and n = 2r + 2.
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The clique number cl(G) of graph G is the size of a largest complete sub-graph of G.

Theorem 1.8 (Hilton and Spencer [14]) Let G be the disjoint union of graphs
G0, G1, ..., Gn such that cl(G0) ≤ min{cl(Gi) : i ∈ [n]}, where G0 is a power of a path and,
for each i ∈ [n], Gi is a power of a cycle. Then G is r-EKR for all r ≤ α(G).

As we explain later, the work in this paper is inspired by the following result.

Theorem 1.9 (Holroyd, Spencer, Talbot [15]) Let G be the disjoint union of n con-
nected components, each a complete graph, path, cycle or singleton, including at least one
singleton. Then G is r-EKR for all r ≤ n/2.

Unlike all the preceding theorems, this result does not live up to Conjecture 1.10 (below),
because for an arbitrary graph G, µ(G) is at least as large as the number of connected
components of G and may be much larger.

As we hinted earlier, the idea of the graph-theoretical formulation we have been dis-
cussing emerged in [16], in which Holroyd and Talbot initiated the study of the general
EKR problem for independent sets of graphs and made the following conjecture.1

Conjecture 1.10 (Holroyd, Talbot [16]) Let G be any graph, and let r ≤ µ(G)/2.
Then G is r-EKR, and strictly so if r < µ(G)/2.

By proving Theorem 1.4, they provided an example of a graph G such that G obeys the
conjecture and, as we demonstrate in a stronger fashion below, G may not be r-EKR if
µ(G)/2 < r < α(G) (it is easy to see that for such a graph G, G is r-EKR for r = α(G)).
They gave various other examples of graphs H and values r > µ(H)/2 for which H is not
r-EKR, and one particularly interesting example of this kind has r = α(H). The idea
behind Conjecture 1.10 is that if I is any maximal independent set of a graph G with
µ(G) ≥ 2r, then, since |I| ≥ µ(G), it holds by the EKR Theorem that (I, ∅) (i.e. the
empty graph with vertex set I) is r-EKR, and strictly so if µ(G) > 2r.

We now show that there are graphs G such that µ(G) < α(G) and G is not r-EKR for
all µ(G)/2 < r < α(G). Indeed, let G be the graph consisting of a 3-set V0 of singletons
and a complete bipartite graph with partite sets V1 and V2 of sizes 5 and 4 respectively.
So 7 = µ(G) < α(G) = 8. For r ∈ [α(G)], let Jr be a star of I(r)

G with centre x ∈ V0, and

let Ar := {A ∈ I(r)
G : |A ∩ V0| ≥ 2}. Clearly Jr is a star of I(r)

G of largest size. However,
for µ(G)/2 < r < α(G), we have |Ar| > |Jr|. This proves what we set out to show.

Conjecture 1.10 seems very hard to prove or disprove. However, restricting the problem
to some classes of graphs with singletons makes it tractable. Theorem 1.1 and the example
that we gave above demonstrate the fact that when an arbitrary number of singletons are
allowed in a graph G, G may not be r-EKR for r > µ(G)/2.

The following is the �rst of two important de�nitions that are needed to state the new
results presented in this paper (Theorems 1.13 and 1.14).

1The �rst author [2] has recently proved this conjecture for µ(G) ≥ 1
2 (r − 1)(3r − 3)(3r − 4) + r in a

more general form.
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De�nition 1.11 (Borg [4]) For a monotonic non-decreasing (mnd) sequence d = {di}i∈N
of non-negative integers, let M := M(d) be the graph such that V (M) = {xi : i ∈ N} and,
for xa, xb ∈ V (M) with a < b, xaxb ∈ E(M) i� b ≤ a + da. Let Mn := Mn(d) be the
sub-graph of M induced by the subset {xi : i ∈ [n]} of V (M). We call Mn an mnd graph.

In the case di = d (i ∈ N), the graph Mn(d) is just the dth power of Pn, i.e. P d
n . The

r-EKR problem for any mnd graph Mn and any r is addressed [2]. Here, the solution for
the r-EKR problem for Mn with d1 = 0 and r ≤ α(Mn)/2 is part of Theorem 1.14 below.

We now come to our second de�nition. We shall represent the vertices of Cn by
v1, ..., vn and take E(Cn) to be in the natural way, i.e. E(Cn) = {v1v2, ..., vn−1vn, vnv1}.
We shall use the term `mod' to represent the usual modulo operation with the exception
that, for any two integers a and b, ba mod a is a instead of 0.

De�nition 1.12 For n > 2, 1 ≤ k < n − 1, 0 ≤ q < n, let qC
k,k+1
n be the graph with

vertex set {vi : i ∈ [n]} and edge set E(Ck
n) ∪ {vivi+k+1 mod n : 1 ≤ i ≤ q}.

If q > 0, then we call qC
k,k+1
n a modi�ed kth power of a cycle; essentially it is a (k + 1)th

power for some of the cycle and a kth power for the remainder of the cycle.
The objective of this paper is to provide an improvement of the techniques in [15] that

enables us to con�rm the conjecture for the class of graphs in Theorem 1.9 and even larger
classes. The key idea that leads us to this improvement is to consider a suitable larger
class of graphs, namely to allow copies of mnd graphs and modi�ed powers of cycles in the
disjoint union speci�ed in Theorem 1.9. Since the proof goes by induction, we will need
to perform certain deletions on the original graph. When a deletion is performed on a
power of a cycle, which is signi�cantly more di�cult to treat than the other components,
we obtain a modi�ed power of a cycle (mpc) or a power of a path, and if a deletion is
performed on an mpc then we obtain an mnd graph or an mpc. So the idea is that every
time a deletion is performed, the resulting graph is in the admissible class. Although not
necessary for our main aim, we show that our method allows us to include trees (connected
cycle-free graphs) as components; the scope is to illustrate the fact that the method we
employ works for many classes of graphs.

Theorem 1.13 Conjecture 1.10 is true if G is a disjoint union of complete multipartite
graphs, copies of mnd graphs, powers of cycles, modi�ed powers of cycles, trees, and at
least one singleton.

Our method also allows us to improve Theorem 1.9 beyond Conjecture 1.10.

Theorem 1.14 Let G be a disjoint union of complete graphs, copies of mnd graphs,
powers of cycles, modi�ed powers of cycles, and at least one singleton. Let r ≤ α(G)/2.
Then G is r-EKR.

Note that in this result we cannot include components like complete multipartite graphs
or trees, because otherwise, as we have shown above, G may not be r-EKR for µ(G)/2 <
r ≤ α(G)/2.
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2 The compression operation

In the context of set combinatorics, a compression operation (or simply a compression) is a
function that maps a family of sets to another family while retaining its size and (usually)
some other important properties; the survey paper [12] on the uses of this technique
is recommended. Loosely speaking, a compression replaces a particular element of the
ground set by another particular element whenever possible.

In the graph-theoretic context the ground set is V (G) and we are interested in inde-
pendent subsets of V (G). The shift operation δu,v is de�ned on any such set as follows:

δu,v(F ) :=

{
(F\{v}) ∪ {u} if u /∈ F, v ∈ F and (F\{v}) ∪ {u} ∈ IG;
F otherwise

Then compression ∆u,v acts on sub-families of IG, as follows. Let F be a sub-family of
IG. Then for each A ∈ F , de�ne

∆u,v(F) := {δu,v(A) : A ∈ F} ∪ {A ∈ F : δu,v(A) ∈ F}.

It should be clear that δu,v preserves the sizes of sets while ∆u,v preserves the sizes of
families of sets.

Let G be a graph, v ∈ V (G). We use G − v to denote the graph obtained from G
by deleting v ∈ V (G) (and hence edges incident to v), and G ↓ v to denote the graph
obtained by deleting also all vertices in NG(v) (and incident edges). Next, for any F ⊆ IG,
we de�ne the following sub-families of F :

F〈v〉 := {A\{v} : A ∈ F(v)} ⊆ IG↓v, F(v) := {A ∈ F : v /∈ A} ⊆ IG−v.

Lemma 2.1 Let uv ∈ E(G). Let F ⊂ I(r)
G be an intersecting family, and let A be the

family ∆u,v(F). Then:

(i) A(v) is intersecting;
(ii) if |NG(u)\N̂G(v)| ≤ 1, then A〈v〉 is intersecting;
(iii) if NG(u)\N̂G(v) = ∅, then A and A(v) ∪ A〈v〉 are intersecting.

Proof. We begin with the observation that since uv ∈ E(G), the 2-set {u, v} is not
contained in any set of IG, and hence F may be partitioned as

⋃5
i=1Fi where

F1 := {F ∈ F : u ∈ F, v /∈ F},
F2 := {F ∈ F : {u, v} ∩ F = ∅},
F3 := {F ∈ F : v ∈ F, u /∈ F and (F\{v}) ∪ {u} ∈ F1},
F4 := {F ∈ F : v ∈ F, u /∈ F and (F\{v}) ∪ {u} /∈ IG},
F5 := {F ∈ F : v ∈ F, u /∈ F and (F\{v}) ∪ {u} ∈ IG\F1}.

Moreover, A =
⋃4

i=1Fi ∪ A5 where A5 := {(F\{v}) ∪ {u} : F ∈ F5}.
Note that A(v) = F1∪F2∪A5. Since F1∪F2 and A5 are each intersecting, to prove (i)

we need merely verify that if A ∈ F1 ∪F2, B ∈ A5, then A∩B 6= ∅. Now consider the set
C ∈ F5 such that (C\{v})∪{u} = B. Since F is intersecting, there exists x ∈ V (G)\{v}
such that x ∈ A ∩ C. So x ∈ A ∩B. Hence (i).
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We next prove (ii). So suppose |NG(u)\N̂G(v)| ≤ 1. Clearly A〈v〉 = (F3 ∪ F4)〈v〉.
If A ∈ F3, then the set A′ := A\{v} ∪ {u} is in F1, and hence, for any F ∈ F3 ∪ F4,
(A ∩ F )\{v} = (A′ ∩ F )\{v} 6= ∅ (as u /∈ F and F is intersecting). Thus we need merely
show that F4〈v〉 is intersecting. If NG(u)\N̂G(v) = ∅, then F4 = ∅, as (A\{v})∪{u} ∈ IG

whenever A ∈ IG and v ∈ A. If NG(u)\N̂G(v) = {x} for some x ∈ V (G), then x 6= v and
every set F ∈ F4 must own x; thus F4〈v〉 is indeed intersecting.

We �nally prove (iii). So suppose NG(u)\N̂G(v) = ∅. Thus F4 = ∅. Clearly,
⋃3

i=1Fi

and A5 are intersecting. Thus, to show that A is intersecting, we must show that if
A ∈

⋃3
i=1Fi, B ∈ A5, then A ∩ B 6= ∅. The set C := (B\{u}) ∪ {v} is in F and so

A ∩ C 6= ∅. Suppose A ∩ C = {v}. Then A ∈ F3; but then D := (A\{v}) ∪ {u} is in F1

and D ∩C = ∅, a contradiction. So (A ∩C)\{v} 6= ∅ and hence A ∩B 6= ∅. Therefore A
is intersecting. By (ii), it follows that A(v) ∪ A〈v〉 is intersecting. 2

3 Vertex deletion lemmas

It frequently happens that a vertex of a graph may be deleted without decreasing µ or α.
This is important to our improvement of Theorem 1.9; in this section we develop several
vertex deletion lemmas that will be employed in the proofs of Theorems 1.13 and 1.14.

Lemma 3.1 Let G be a graph, and let v ∈ V (G). Then

min{µ(G ↓ v), µ(G− v)} ≥ µ(G)− 1.

Proof: Let Z be a maximal independent set of G ↓ v of minimum size; then Z ∪ {v}
is a maximal independent set of G, hence µ(G ↓ v) ≥ µ(G) − 1. Now let Z be a
maximal independent set of G − v. If Z is not maximal in G, then Z ∪ {v} is. Thus
µ(G− v) ≥ µ(G)− 1. 2

Corollary 3.2 Let r ≤ 1
2
µ(G), and let v, w ∈ V (G). Then:

(i) r − 1 < 1
2
µ(G ↓ v);

(ii) r − 1 ≤ 1
2
µ((G− v) ↓ w).

Proof. Lemma 3.1 implies:
(i) r − 1 < 1

2
(µ(G)− 1) ≤ 1

2
µ(G ↓ v);

(ii) r − 1 ≤ 1
2
(µ(G)− 2) ≤ 1

2
(µ(G− v)− 1) ≤ 1

2
µ((G− v) ↓ w). 2

The next lemma relies on a well-known property of trees: any tree other than a
singleton has a vertex with only one neighbour.

Lemma 3.3 Let T be a tree with |V (T )| ≥ 2, and let w ∈ V (T ) such that NT (w) consists
only of one vertex v. Then

µ(T − v) ≥ µ(T ).
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Proof. Let Z be a maximal independent set of T − v. Since w is a singleton of T − v,
we must have w ∈ Z. So Z is also a maximal independent set of T because vw ∈ E(T ).
Thus µ(T − v) ≥ µ(T ). 2

Lemma 3.4 Let Mn(d) be as in De�nition 1.11, and let Mn := Mn(d). Let d1 > 0.
Then
(i) µ(Mn − x2) ≥ µ(Mn);
(ii) α(Mn − x2) ≥ α(Mn);
(iii) α(Mn ↓ x2) ≥ α(Mn)− 2.

Proof. Let Z be a maximal independent set of Mn − x2. Then x1 ∈ Z or x1xz ∈
E(Mn−x2) for some xz ∈ Z. Suppose x1 ∈ Z. Since d1 > 0, we have x1x2 ∈ E(Mn), and
hence Z is a maximal independent set of Mn. Now suppose x1xz ∈ E(Mn − x2) for some
xz ∈ Z. Then, by de�nition of Mn, z ≤ 1 + d1 < 2 + d2, and hence x2xz ∈ E(Mn). Thus,
Z is again a maximal independent set of Mn. Hence (i).

Now let I be an arbitrary independent set of Mn. If x2 /∈ I then I is an independent
set of Mn − x2. Suppose x2 ∈ I instead. Since d1 > 0, x1 /∈ I. It is therefore easy to see
that {xj−1 : j ∈ [n], xj ∈ I} is an independent set of Mn − x2 of size |I|. Hence (ii).

Clearly I can contain at most 2 vertices in V (Mn)\V (Mn ↓ x2). Hence (iii). 2

Lemma 3.5 Let qC
k,k+1
n be as in De�nition 1.12, and let q > 0. Then:

(i) µ(qC
k,k+1
n − vk+2) ≥ µ(qC

k,k+1
n );

(ii) α(qC
k,k+1
n − vk+2) ≥ α(qC

k,k+1
n );

(iii) α(qC
k,k+1
n ↓ vk+2) ≥ α(qC

k,k+1
n )− 2.

Proof. Let C := qC
k,k+1
n and V := V (C). If NC(v1) = V \{v1} then trivially µ(C−vk+2) =

µ(qC
k,k+1
n ) = 1. So suppose NC(v1) 6= V \{v1}. Let Z be a maximal independent set of

C − vk+2, and let s := min{i : vi ∈ Z}, t := max{i : vi ∈ Z}. If s ≤ k + 1 then
vsvk+2 ∈ E(C), and hence Z is also maximal in C. Suppose s ≥ k + 3. Suppose also
that vk+2vs /∈ E(C). Then vk+1vs /∈ E(C − vk+2) and, since q < n (by de�nition of C)
and s ≤ t ≤ n, vtvk+1 /∈ E(C − vk+2). So Z ∪ {vk+1} ∈ IC−vk+2

, but this contradicts the
maximality of Z. So vk+2vs ∈ E(C), and hence Z is also maximal in C. Hence (i).

Now let I be an arbitrary independent set of C. If vk+2 /∈ I then I is an independent
set of C − vk+2. Suppose vk+2 ∈ I instead. Note that v1 /∈ I as v1vk+2 ∈ E(C). By
construction of C, {vj−1 : j ∈ [n], vj ∈ I} is an independent set of C − vk+2 of size |I|.
Hence (ii).

Clearly I can contain at most 2 vertices in V (C)\V (C ↓ vk+2). Hence (iii). 2

Lemma 3.6 Let n ≥ 2k + 2. Then:
(i) µ(Ck

n − vk+1 − v2k+2) ≥ µ(Ck
n);

(ii) α(Ck
n − vk+1 − v2k+2) ≥ α(Ck

n);
(iii) α(Ck

n ↓ vk+1) ≥ α(Ck
n)− 2.
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Proof. Let Z be a maximal independent set of Ck
n − vk+1 − v2k+2. If Z contains z ∈

{vk+2, ..., v2k+1} then zvk+1, zv2k+2 ∈ E(Ck
n), and hence Z is also maximal in Ck

n. Now
consider Z ∩ {vk+2, ..., v2k+1} = ∅. Thus, if zvk+1, zv2k+2 /∈ E(Ck

n) for all z ∈ Z then
Z ∪ {v} is an independent set of C − vk+1 − v2k+2 for all v ∈ {vk+2, ..., v2k+1}, but this is
a contradiction. We therefore have zw ∈ E(Ck

n) for some z ∈ Z and w ∈ {vk+1, v2k+1}.
Suppose w = vk+1 and Z ∪ {v2k+2} is an independent set of Ck

n. Then zv2k+1 /∈ E(Ck
n −

vk+1 − v2k+2), and hence Z ∪ {v2k+1} is an independent set of Ck
n − vk+1 − v2k+2, a

contradiction. By symmetry, we can neither have both w = v2k+2 and Z ∪ {vk+1} an
independent set of Ck

n. Therefore there exist z1, z2 ∈ Z such that z1vk+1, z2v2k+2 ∈ E(Ck
n),

and hence Z is maximal in Ck
n. Hence (i).

(ii) and (iii) follow by the same arguments for the corresponding parts in Lemma 3.5. 2

4 Proof of Theorem 1.13

We shall now use the lower bounds obtained in Lemmas 3.4, 3.5 and 3.6 to prove The-
orem 1.13. Before proceeding to the main proof, we need two straightforward lemmas
concerning stars.

We remark that whenever we use a notation of the kind F(x)(y) we mean the family
(F(x))(y), which, according to the notation we set up earlier, is the family {A ∈ F(x) : y ∈
A} (= {A ∈ F : x, y ∈ A}). The same applies for notation like F(x)(y), F(x)〈y〉, etc.

Lemma 4.1 Let G be a graph containing an edge vw and a singleton x. Suppose 2 ≤
r ≤ α(G). Then |I(r)

G (v)| ≤ |I(r)
G (x)|, and the inequality is strict if r ≤ µ(G).

Proof. Since x is a singleton, A\{y} ∪ {x} ∈ I(r)
G for any A ∈ I(r)

G (x) and y ∈ A.

Setting J := {A\{v} ∪ {x} : A ∈ I(r)
G (v)(x)}, it follows that J ⊆ I(r)

G (x)(v). Given that

vw ∈ E(G), we have IG(v)(w) = ∅, and hence actually J ⊆ I(r)
G (x)(v)\I(r)

G (x)(w); also,

I(r)
G (x)(w) ⊆ I(r)

G (x)(v), and hence |J | ≤ |I(r)
G (x)(v)| − |I(r)

G (x)(w)|. We therefore have

|I(r)
G (v)| = |I(r)

G (v)(x)|+ |I(r)
G (v)(x)| = |I(r)

G (v)(x)|+ |J |
≤ |I(r)

G (x)(v)|+ |I(r)
G (x)(v)| − |I(r)

G (x)(w)|
= |I(r)

G (x)| − |I(r)
G (x)(w)|.

Now suppose r ≤ µ(G). Since {x, w} ∈ I(2)
G , there exists I ∈ I(r)

G such that {x, w} ⊂ I,

i.e. I(r)
G (x)(w) 6= ∅. Thus |I(r)

G (v)| < |I(r)
G (x)|. 2

Lemma 4.2 Let G be a graph with µ(G) ≥ 2r. Let A be an intersecting sub-family of

I(r)
G such that A〈v〉 = I(r−1)

G↓v (y) 6= ∅ for some y ∈ V (G ↓ v). Then A ⊆ I(r)
G (y).

Proof. Suppose there exists A ∈ A(v) such that y /∈ A. We are given that I(r−1)
G↓v (y) 6= ∅,

and so I(r)
G (v)(y) 6= ∅. Therefore there exists a maximal independent set Y of G such that

v, y ∈ Y . Given that 2r ≤ µ(G), we have 2r ≤ |Y |. Since y, v ∈ Y \A, it follows that
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there exists an r-subset A′ of Y \A containing {y, v}. So A′\{v} ∈ I(r−1)
G↓v (y), and hence

A′ ∈ A(v). But A ∩ A′ = ∅, which contradicts A intersecting. Hence result. 2

Proof of Theorem 1.13. The result is trivial for r = 1, so we assume r ≥ 2 and
use induction on |E(G)|. If |E(G)| = 0 then the result is given by Theorem 1.1, so we
assume that |E(G)| > 0. This means that G contains a non-singleton component. If G
consists solely of complete multipartite graphs and singletons then the result is given by
Theorem 1.5. We now consider the case when G contains a connected component G1 that
is neither a singleton nor a complete mulitpartite graph.

Let G2 be the graph obtained by removing G1 from G. Note that

µ(G) = µ(G1) + µ(G2).

Since G1 contains no singletons and G contains at least one singleton, G2 contains
some singleton x.

Let r ≤ µ(G)/2, and let F be an extremal intersecting sub-family of I(r)
G . Let J :=

I(r)
G (x). So |J | ≤ |F|. Lemma 4.1 tells us that J is a largest star of I(r)

G and that, for

any v ∈ V (G1), J 〈v〉 and J (v) are largest stars of I(r−1)
G↓v and I(r)

G−v respectively.
Now G1 is one of the following: a tree, a copy of an mnd graph, a modi�ed power of

a cycle, a power of a cycle. We consider each of these four possibilities separately and in
the order we have listed them. We will actually show that in each of the �rst three cases,
G is in fact strictly r-EKR even if r = µ(G)/2.

Case I: G1 is a tree T , |V (T )| ≥ 2. So there exists u ∈ V (G1) such that NG1(u)
consists solely of one vertex v (see the preceding section). Let A := ∆u,v(F). Since

NG(u) = NG1(u) = {v}, it follows by Lemma 2.1(iii) that A〈v〉 ∪ A(v) is intersecting.
Since G1 contains no cycles, G1 − v and G1 ↓ v contain no cycles, and hence G1 − v

and G1 ↓ v are disjoint unions of trees and singletons. So G− v and G ↓ v belong to the
class of graphs speci�ed in the theorem.

By Corollary 3.2(i), r − 1 < µ(G ↓ v)/2. By Lemma 3.3, µ(G1 − v) ≥ µ(G1); so
µ(G− v) = µ(G1 − v) + µ(G2) ≥ µ(G1) + µ(G2) = µ(G) ≥ 2r.

Therefore, since A〈v〉 ⊂ I(r−1)
G↓v and A(v) ⊂ I(r)

G−v, the inductive hypothesis gives us

|A〈v〉| ≤ |J 〈v〉| and |A(v)| ≤ |J (v)|. So |A| ≤ |J |. Since |F| = |A| and F is extremal,
|A〈v〉| = |J 〈v〉| and |A(v)| = |J (v)|. Since r − 1 < µ(G ↓ v)/2, it follows by the

inductive hypothesis that A〈v〉 = I(r−1)
G↓v (y) for some y ∈ V (G ↓ v). Thus, by Lemma 4.2,

A ⊆ I(r)
G (y). If y is not a singleton of G then Lemma 4.1 gives us |I(r)

G (y)| < |J |, but this
leads to the contradiction that |F| < |J |. So y is a singleton of G, and hence F ⊆ I(r)

G (y)

(as A ⊆ I(r)
G (y)). Therefore G is strictly r-EKR.

Case II: G1 is an mnd graph Mn := Mn(d). Since G1 contains no singletons, n ≥ 2
and d1 ≥ 1. Let v := x2 and u := x1, and let A := ∆u,v(F). By de�nition of Mn and

d1 ≥ 1, NG1(u) ⊂ N̂G1(v). Since NG(u) = NG1(v), it follows by Lemma 2.1(iii) that
A〈v〉 ∪ A(v) is intersecting.
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Clearly, G1 − v is a copy of Mn−1({d′i}i∈N), where d′1 = d1 − 1 and d′i = di+1 for all
i ≥ 2. Also, if n ≤ 2 + d2 then G1 ↓ v = (∅, ∅), and if n > 2 + d2 then G1 ↓ v is a copy
of Mn−2−d2({d′′i }i∈N) where d′′i = di+2+d2 for all i ≥ 1. So G − v and G ↓ v belong to the
class of graphs speci�ed in the theorem.

The rest follows as in the preceding case, except that we get µ(G1 − v) ≥ µ(G1) by
Lemma 3.4(i).

Case III: G1 is a modi�ed kth power of a cycle, i.e. G1 = qC
k,k+1
n for some q > 0.

We set u := vk+1 and v := vk+2, and we note that the condition q < n in the de�nition
of qC

k,k+1
n implies NG1(u) ⊆ N̂G1(v) and hence NG(u) ⊆ N̂G(v). Thus, for A := ∆u,v(F),

we know by Lemma 2.1(iii) that A〈v〉 ∪ A(v) is intersecting.
If n = k + 2 then G1 = Kn, which is a special complete multipartite graph; contradic-

tion. So n ≥ k + 3.
Suppose vk+3v1 ∈ E(G1). It is easy to see that we then have N̂G1(v) = V (G1) =

N̂G1(v1), which gives µ(G1 − v) = µ(G1) = 1 and G1 ↓ v = (∅, ∅). Thus, by the same line
of argument for the preceding cases, we conclude that G is strictly r-EKR.

So suppose vk+3v1 /∈ E(G1). Then V (G1 ↓ v) = {vm, ..., vn} where

m =

{
2k + 3 if q < k + 2;
2k + 4 if q ≥ k + 2.

Let n′ := n−m + 1. By considering the bijection β : V (G1 ↓ v) → {xj : j ∈ [n′]} de�ned
by β(vl) = xn−l+1 (l ∈ [m, n]), one can see that G1 ↓ v is a copy of Mn′({di}i∈N) where

di =

{
k if i ≤ n− (q + k + 1);
k + 1 if i > n− (q + k + 1).

It is also not di�cult to check that G1 − v is a path if q = k = 1, and that

G1 − v is a copy of

 n+q−k−2C
k−1,k
n−1 if q < k + 1;

Ck
n−1 if k + 1 ≤ q ≤ k + 2;

q−k−2C
k,k+1
n−1 if q > k + 2

otherwise. So G− v and G ↓ v belong to the class of graphs speci�ed in the theorem.
The rest follows as in Case I, except that we get µ(G1 − v) ≥ µ(G1) by Lemma 3.5(i).

Case IV: G1 is a kth power of a cycle Cn, i.e. G1 = Ck
n. Let u := vk and v := vk+1. If

n < 2k + 2 then G1 = Kn, which is a special complete multipartite graph; contradiction.
So n ≥ 2k + 2. Let A := ∆u,v(F). Since NG(u)\N̂G(v) = {vn}, Lemma 2.1(ii) tells us

that A〈v〉 and A(v) are intersecting.
Clearly, G1 ↓ v is a power of a path. As in Case I, it follows that |A〈v〉| ≤ |J 〈v〉|.
Now G1 − v is a path (if k = 1) or a copy of n−k−1C

k−1,k
n−1 (if k > 1); however, we

are not guaranteed that µ(G1 − v) ≥ µ(G1) (this is the case if, for example, G1 = C4).
Let G := A(v). Let u′ := v2k+1 and v′ := v2k+2, and let B := ∆u′,v′(G). Clearly,

NG−v(u
′) = NG1−v(u

′) ⊂ N̂G1(v
′). Thus, by Lemma 2.1(ii), B〈v′〉 ∪ B(v′) is intersecting.
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If k = 1 then G1 − v − v′ is a disjoint union of a path and a singleton, and if k > 1
then G1− v− v′ is a copy of n−2k−2C

k−1,k
n−2 . It is easy to see that G1− v ↓ v′ is a power of a

path. So G− v− v′ and G− v ↓ v′ belong to the class of graphs speci�ed in the theorem.
By Corollary 3.2(ii), r− 1 ≤ µ(G− v ↓ v′)/2. By Lemma 3.3, µ(G1− v− v′) ≥ µ(G1);

so µ(G− v − v′) = µ(G1 − v − v′) + µ(G2) ≥ µ(G1) + µ(G2) = µ(G) ≥ 2r.

Therefore, since B〈v′〉 ⊂ I(r−1)
G−v↓v′ and B(v′) ⊂ I(r)

G−v−v′ , the inductive hypothesis gives

us |B〈v′〉| ≤ |J (v)〈v′〉| and |B(v′)| ≤ |J (v)(v′)|. So |G| = |B| ≤ |J (v)|. Since F = |A| =
|A〈v〉|+ |G| ≤ |J 〈v〉|+ |J (v)|, we have |F| ≤ |J |, and hence G is r-EKR.

Now suppose r < µ(G)/2. Since |F| = |A| and F is extremal, we must have |A〈v〉| =
|J 〈v〉| and |G| = |J (v)|. By Corollary 3.2(i), we have r − 1 < µ(G ↓ v)/2, and hence,

by the inductive hypothesis, A〈v〉 = I(r−1)
G↓v (y1) for some y1 ∈ V (G ↓ v) ⊂ V (G)\{u, v}.

Since |G| = |J (v)|, we have |B〈v′〉| = |J (v)〈v′〉| and |B(v′)| = |J (v)(v′)|. Given that
r < µ(G)/2, we have r − 1 < (µ(G) − 2)/2 ≤ µ(G − v ↓ v′)/2 by Lemma 3.1. Thus, by

the inductive hypothesis, B〈v′〉 = I(r−1)
G−v↓v(y2) for some y2 ∈ V (G−v ↓ v′). By Lemma 4.2,

B ⊆ I(r)
G−v(y2). We next show that y1 = y2.

If y2 is not a singleton of G − v then Lemma 4.1 gives us |I(r)
G−v(y2)| < |J (v)|, but

this leads to the contradiction that |G| < |J (v)|. So y2 is a singleton of G − v, and
hence, since G1 − v contains no singletons, y2 ∈ V (G)\V (G1) ⊂ V (G)\{u, v, u′, v′}.
Note that, by de�nition of B, B(v′) ⊆ G. Thus, since B〈v′〉 = I(r−1)

G−v↓v′(y2), we have

V := I(r)
G−v(y2)(v

′) ⊆ G. Suppose y1 6= y2. Let A1 ∈ {I ∈ V : u, y1 /∈ I} (note that A1

exists since y2 is a singleton of G− v and, by Lemma 3.1, µ(G− v) ≥ µ(G)− 1 ≥ 2r− 1).
So A1 ∈ G, {u, v} ∩ A1 = ∅, and hence A1 ∈ F . Recall that y1 ∈ V (G ↓ v), which
means that y1v /∈ E(G); let Y be a maximal independent set of G containing y1 and v.
Since 2r ≤ µ(G) ≤ |Y | and {y1, v} ∩ A1 = ∅, the family Y := {A ∈

(
Y \A1

r

)
: y1, v ∈ A}

is non-empty. Let A2 ∈ Y ; note that A2 ∈ I(r)
G (y1)(v). Since A〈v〉 = I(r−1)

G↓v (y1), we have

A(v) = I(r)
G (y1)(v) and hence A2 ∈ A(v). Now, by de�nition of A, A(v) ⊆ F . Hence

A2 ∈ F . But A1 ∩ A2 = ∅, which contradicts F intersecting. So y1 = y2 indeed.
Since y2 /∈ {u′, v′} and B ⊆ I(r)

G−v(y2), we clearly have G ⊆ I(r)
G−v(y2). So we have

F = A(v) ∪ G ⊆ I(r)
G (y2). This proves that G is strictly r-EKR. 2

5 Proof of Theorem 1.14

Theorem 1.14 is trivial for r = 1, so we assume r ≥ 2 and prove the result by induction
on |E(G)|. If |E(G)| = 0 then the result is given by Theorem 1.1, so we assume that
|E(G)| > 0. This means that G contains a non-singleton component G1. Let G2 be the
graph obtained by removing G1 from G. Note that

α(G) = α(G1) + α(G2).

Since G1 contains no singletons and G contains at least one singleton, G2 contains
some singleton x.
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Let r ≤ α(G)/2, and let F be an extremal intersecting sub-family of I(r)
G . Let J :=

I(r)
G (x). So |J | ≤ |F|. By Lemma 4.1, J is a largest star of I(r)

G , and, for any v ∈ V (G1),

J 〈v〉 and J (v) are largest stars of I(r−1)
G↓v and I(r)

G−v respectively.
Note that a complete graph is an mnd graph, so we need to consider the following

possible cases for G1.

Case I: G1 is an mnd graph Mn := Mn(d). As in Case II of the Proof of Theorem 1.14,
we take v := x2, u := x1 and A := ∆u,v(F), and we obtain that A〈v〉∪A(v) is intersecting
and that G− v and G ↓ v belong to the class of graphs speci�ed in the theorem.

By (ii) and (iii) of Lemma 3.4, we have α(G1−v) ≥ α(G1) and α(G1 ↓ v) ≥ α(G1)−2;
so α(G− v) = α(G1 − v) + α(G2) ≥ α(G1) + α(G2) = α(G) ≥ 2r and α(G ↓ v) = α(G1 ↓
v) + α(G2) ≥ α(G1) − 2 + α(G2) = α(G) − 2 ≥ 2r − 2 = 2(r − 1). Therefore, since

A〈v〉 ⊂ I(r−1)
G↓v and A(v) ⊂ I(r)

G−v, the inductive hypothesis gives us |A〈v〉| ≤ |J 〈v〉| and
|A(v)| ≤ |J (v)|. So |F| = |A| ≤ |J |, and hence G is r-EKR.

Case II: G1 is a modi�ed kth power of a cycle, i.e. G1 = qC
k,k+1
n for some q > 0. As

in Case III of the Proof of Theorem 1.14, we take u := vk+1, v := vk+2 and A := ∆u,v(F),

and we obtain that A〈v〉 ∪ A(v) is intersecting and that G − v and G ↓ v belong to the
class of graphs speci�ed in the theorem. The rest follows as in Case I, except that we use
Lemma 3.5 instead of Lemma 3.4.

Case III: G1 is a kth power of a cycle Cn, i.e. G1 = Ck
n. As in Case IV of the Proof

of Theorem 1.14, we take u := vk, v := vk+1 and A := ∆u,v(F), and we obtain that

A〈v〉 and A(v) are intersecting and that G − v and G ↓ v belong to the class of graphs
speci�ed in the theorem. As in Case I, we get |A〈v〉| ≤ |J 〈v〉|, |A(v)| ≤ |J (v)| and hence
|F| = |A| ≤ |J |; the only di�erence is that we use Lemma 3.6 instead of Lemma 3.4. So
G is r-EKR. 2
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