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Abstract

For positive integers r and n with r ≤ n, let Pn,r be the family of all sets

{(x1, y1), ..., (xr, yr)} such that x1, ..., xr are distinct elements of [n] := {1, ..., n} and

y1, ..., yr are also distinct elements of [n]. Pn,n describes permutations of [n]. For

r < n, Pn,r describes r-partial permutations of [n]. Families A1, ...,Ak of sets are said

to be cross-intersecting if, for any distinct i and j in [k], any set in Ai intersects any

set in Aj . A sharp bound for the sum of sizes of cross-intersecting sub-families of Pn,n

has recently been established by the author. We generalise this bound by showing

that, if A1, ...,Ak are cross-intersecting sub-families of Pn,r, then

k∑
i=1

|Ai| ≤

{ (
n
r

)
n!

(n−r)! if k ≤ n2

r ;

k
(
n−1
r−1

) (n−1)!
(n−r)! if k ≥ n2

r .

We also determine the structures for which the bound is attained when r < n. Our

main tool is an extension of Katona's cyclic permutation method.

1 Introduction

For an integer n, the set {1, 2..., n} is denoted by [n]. The power set {A : A ⊆ X} of a set
X is denoted by 2X , and the uniform sub-family {Y ⊆ X : |Y | = r} is denoted by

(
X
r

)
.

If F is a family of sets and x is an element of the union of all sets in F , then we call
the sub-family of F consisting of those sets that contain x a star of F with centre x.

A family A is said to be intersecting if any two sets in A intersect. Note that a star of
a family is trivially intersecting.

The classical Erd®s-Ko-Rado (EKR) Theorem [12] says that, if r ≤ n/2, then an inter-
secting sub-family A of

(
[n]
r

)
has size at most

(
n−1
r−1

)
, i.e. the size of a star of

(
[n]
r

)
; if r < n/2,

then A attains the bound if and only if A is a star of
(
[n]
r

)
(see [12, 15]). Two alternative

proofs of the EKR Theorem that are particularly short and beautiful were obtained by
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Katona [16] and Daykin [7]. In his proof, Katona introduced an elegant averaging tech-
nique called the cycle method. Daykin's proof is based on a fundamental result known as
the Kruskal-Katona Theorem [17, 18]. The EKR Theorem inspired a wealth of results and
continues to do so; the survey papers [9, 13] are recommended.

For integers r and n with r ≤ n, let

Pn,r := {{(x1, y1), ..., (xr, yr)} : x1, ..., xr are distinct elements of [n],

y1, ..., yr are distinct elements of [n]}.

Pn,n describes permutations of the set [n] because a permutation y1y2...yn of [n] corre-
sponds uniquely to the set {(1, y1), (2, y2), ..., (n, yn)} in Pn,n. An r-partial permutation

of a set [n] is an ordered pair (A, f) where A ∈
(
[n]
r

)
and f : A → [n] is an injection

(see [19]). So Pn,r describes r-partial permutations because an r-partial permutation
({a1, ..., ar}, f) corresponds uniquely to the set {(a1, f(a1)), ..., (ar, f(ar))} in Pn,r; also,
if two sets {(a1, f(a1)), ..., (ar, f(ar))} and {(b1, g(b1)), ..., (br, g(br))} in Pn,r intersect, then
ai = bj and f(ai) = g(bj) for some i, j ∈ [r], which is exactly what we mean when we say
that the r-partial permutations ({a1, ..., ar}, f) and ({b1, ..., br}, g) intersect (see [6, 19]).

Deza and Frankl [8] proved an analogue of the EKR Theorem for permutations. Cameron
and Ku [6] and Larose and Malvenuto [20] independently showed that the largest intersect-
ing sub-families of Pn,n are the stars of Pn,n.

Theorem 1.1 ([8, 6, 20]) If A is an intersecting sub-family of Pn,n, then |A| ≤ (n− 1)!,
and equality holds if and only if A is a star of Pn,n.

Ku and Leader [19] solved the EKR problem for r-partial permutations of [n] using
Katona's cycle method. They also proved that, for 8 ≤ r ≤ n− 3, the largest intersecting
sub-families of Pn,r are the stars, and they conjectured that only the stars are extremal
for the few remaining values of r too. Li and Wang [21] proved this conjecture, taking the
same cycle method approach of Ku and Leader.

Theorem 1.2 ([19, 21]) If 1 ≤ r < n and A is an intersecting sub-family of Pn,r, then

|A| ≤
(

n−1
r−1

)
(n−1)!
(n−r)!

, and equality holds if and only if A is a star of Pn,r.

We now shift our attention to cross-intersecting families. Families A1, ...,Ak are said to
be cross-intersecting if, for any i, j ∈ [k] such that i 6= j, any set in Ai intersects any set in
Aj. The study of cross-intersecting families is related to the study of intersecting families,
and results for cross-intersecting families are generally stronger than results for intersecting
families; this will become clear from the rest of the paper.

Hilton [14] established the following best possible cross-intersection result using the
Kruskal-Katona Theorem.

Theorem 1.3 ([14]) Let r ≤ n/2 and k ≥ 2. Let A1, ...,Ak be cross-intersecting sub-
families of

(
[n]
r

)
. Then

k∑
i=1

|Ai| ≤
{ (n

r

)
if k ≤ n

r
;

k
(

n−1
r−1

)
if k ≥ n

r
.
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Unless k = 2 = n/r, the bound is attained if and only if one of the following holds:
(i) k < n/r, Ai =

(
[n]
r

)
for some i ∈ [k], and Aj = ∅ for all j ∈ [k]\{i};

(ii) k > n/r and |A1| = ... = |Ak| =
(

n−1
r−1

)
;

(iii) k = n/r and A1, ...,Ak are as in (i) or (ii).

The EKR Theorem follows from this result: take A to be any intersecting sub-family of(
[n]
r

)
, and take A1 = ... = Ak = A and k > n/r in the above result.
For any family A, we de�ne A∗ to be the sub-family of A consisting of those sets in A

that intersect each set in A, and we set A′ := A\A∗. So A′ consists of those sets in A that
do not intersect all sets in A.

In [2], the following extension of the EKR Theorem is proved and shown to immediately
yield Theorem 1.3 (it is also shown that in case (ii) of Theorem 1.3, we actually have that
A1 = ... = Ak and A1 is a star of

(
[n]
r

)
).

Theorem 1.4 ([2]) Let r ≤ n/2, and let A ⊆
(
[n]
r

)
. Then

|A∗|+ r

n
|A′| ≤

(
n− 1

r − 1

)
,

and if n > 2r then equality holds if and only if either A′ =
(
[n]
r

)
and A∗ = ∅ or A′ = ∅ and

A∗ is a star of
(
[n]
r

)
.

The proof was obtained by extending Daykin's proof of the EKR Theorem.
As explained below, in this paper we provide an analogue of Theorem 1.4 for partial

permutations and use it to obtain an analogue of Theorem 1.3 also for partial permutations.
A sharp bound for the sum of sizes of cross-intersecting families of permutations emerges

from [4, Theorem 2.4], and the solution to the problem of determining precisely the cases
(conjectured in [4]) in which the bound is attained is given in [3] as part of a more general
result for permutations of subsets of [n].

Theorem 1.5 ([3, 4]) If A1, ...,Ak are cross-intersecting sub-families of Pn,n, then

k∑
i=1

|Ai| ≤
{

n! if k ≤ n;
k(n− 1)! if k ≥ n.

Unless 2 ≤ k ≤ 3 = n, the bound is attained if and only if one of the following holds:
(i) k < n, Ai = Pn,n for some i ∈ [k], and Aj = ∅ for all j ∈ [k]\{i};
(ii) k > n, A1 = ... = Ak and A1 is a star of Pn,n;
(iii) k = n and A1, ...,Ak are as in (i) or (ii).

In the case 2 ≤ k ≤ 3 = n there are other optimal con�gurations (see [3]).
We mention that other authors have considered the maximum product problem (see

[10], [11]); in [10] it is proved that the product of sizes of any k ≥ 2 cross-intersecting
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sub-families of Pn,n is a maximum if they are all the same star of Pn,n. In this paper we
are interested in the maximum sum problem.

Our aim is to extend Theorem 1.5 to a result for cross-intersecting sub-families of Pn,r

and to also determine the extremal structures. The case r < n requires methods that
are di�erent from the ones in [3, 4] for the special case r = n. Using the method in [5],
which provides an extension of Katona's cycle method [16], and tools forged by Ku and
Leader [19] (inspired by the idea of good cyclic orderings in [1]), we �rst prove the following
analogue of Theorem 1.4.

Theorem 1.6 Let r < n, and let A ⊆ Pn,r. Then

|A∗|+ r

n2
|A′| ≤

(
n− 1

r − 1

)
(n− 1)!

(n− r)!
,

and equality holds if and only if one of the following holds:
(i) A′ = Pn,r and A∗ = ∅;
(ii) A′ = ∅ and A∗ is a star of Pn,r.

We then apply an argument found in [2, 3] to show that the above result enables us to
extend Theorem 1.5 to the following analogue of Theorem 1.3 for permutations and partial
permutations.

Theorem 1.7 Let r ≤ n, k ≥ 2. Let A1, ...,Ak be cross-intersecting sub-families of Pn,r.
Then

k∑
i=1

|Ai| ≤

{ (
n
r

)
n!

(n−r)!
if k ≤ n2

r
;

k
(

n−1
r−1

) (n−1)!
(n−r)!

if k ≥ n2

r
.

Unless 2 ≤ k ≤ 3 = r = n, the bound is attained if and only if one of the following holds:
(i) k < n2

r
, Ai = Pn,r for some i ∈ [k], and Aj = ∅ for all j ∈ [k]\{i};

(ii) k > n2

r
, A1 = ... = Ak and A1 is a star of Pn,r;

(iii) k = n2

r
and A1, ...,Ak are as in (i) or (ii).

This generalises Theorems 1.1 and 1.2: take k > n2/r and A1 = ... = Ak = A, where A is
an arbitary intersecting sub-family of Pn,r, in the above result.

2 Proofs

In various parts of this paper we will use `mod∗' to represent the usual modulo operation
with the exception that, for any two integers a and b, ba mod∗ a is a instead of 0. For
convenience we shall abbreviate (b+ c) mod∗ a to b+ c mod∗ a, that is, b+ c mod∗ a is the
result of applying the mod∗ c operation to (a + b).

Let X be an m-set. A cyclic ordering of X is a bijection σ : X → [m]. An r-
interval of σ is a sequence σ−1(i), σ−1(i + 1 mod∗ m), ..., σ−1(i + r − 1 mod∗ m) for some
i ∈ [m], that is, the sequence of those r elements x1, x2, ..., xr of X that are mapped to
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i, i + 1 mod∗ m, ..., i + r − 1 mod∗ m (respectively) by σ. We say that an r-subset A of X
meets σ if A consists of the points of some r-interval of σ.

The lemma below, which is inspired by Theorem 1.4, will be our main tool. It extends
Katona's cycle method by giving a result for any family, whether intersecting or not. The
lemma is established in [5], but we shall give the proof for completeness since it is short.

Lemma 2.1 ([5]) Let m ≥ 2r, and let X be a set of size m. Let σ be a cyclic ordering of
X. Let C be the family of those r-subsets of X that meet σ. For any B ⊆ C we have

|B∗|+ r

m
|B′| ≤ r,

and if m > 2r then equality holds if and only if either B′ = C and B∗ = ∅ or B′ = ∅ and
|B∗| = r.

Proof. Clearly there are m r-subsets of X that meet σ, i.e. |C| = m. So the result
is straightforward if B∗ = ∅. Suppose B∗ 6= ∅. Let B∗ ∈ B∗, and let x1, ..., xr be the
r-interval of σ such that B∗ = {x1, ..., xr}. For i ∈ [r], let Ci ∈ C be the set of points in
the r-interval of σ starting with xi, and let C ′

i ∈ C be the set of points in the r-interval
of σ ending with xi. Let D := {C1, ..., Cr} ∪ {C ′

1, ..., C
′
r}. Note that B∗ = C1 = C ′

r and
hence D = {B∗} ∪ {C2, ..., Cr} ∪ {C ′

1, ..., C
′
r−1}. By the de�nitions of B∗ and B′, we have

B∗ ∪ B′ ⊆ D (because D consists of all the sets in C that intersect B∗, and each set in
B = B∗ ∪ B′ intersects B∗) and, since r ≤ m/2, C ′

j−1 /∈ B∗ ∪ B′ for any j ∈ {2, ..., r} such
that Cj ∈ B∗. It follows that there are at least |B∗| − 1 sets in D that are not in B∗ ∪ B′,
and hence |B′| ≤ |D| − |B∗| − (|B∗| − 1) = 2r − 2|B∗|. So

|B∗|+ r

m
|B′| ≤ |B∗|+ 1

2
|B′| ≤ |B∗|+ 1

2
(2r − 2|B∗|) = r,

and it is immediate from this expression that if r
m

< 1
2
then equality holds throughout if

and only if |B∗| = r and B′ = ∅. Hence the result. 2

Katona [16] proved the above result for intersecting sub-families of C. Our result applies
to any sub-family.

Each set in Pn,r is a subset of the Cartesian product [n] × [n]. We say that a cyclic
ordering σ of [n]× [n] is r-good if any r-interval of σ forms a set in Pn,r; in simple terms, σ
is r-good if any r elements (x1, y1), ..., (xr, yr) of [n]× [n] that are numbered consecutively
(in the cyclic sense) by σ are such that x1, ..., xr are distinct and y1, ..., yr are distinct. Note
that, if a cyclic ordering is r-good, then it is s-good for all s ∈ [r].

It is easy to see that no cyclic ordering of [n]×[n] is n-good. However, Ku and Leader [19]
observed that the cyclic ordering τ : [n]×[n] → [n2] de�ned by τ(x, y) = n(y−x mod∗ n)+x
is r-good for all r ∈ [n − 1]. In the proof of Theorem 1.6, we shall instead use the cyclic
ordering γ : [n]× [n] → [n2] de�ned by

γ(x, y) = n(x− y mod∗ n) + y.
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γ is also r-good for all r ∈ [n−1]. This can be immediately seen from the following example
with n = 5, where each element (x, y) of [n] × [n] is given the label γ(x, y) shown in bold
superscript.

(1, 5)10 (2, 5)15 (3, 5)20 (4, 5)25 (5, 5)5

(1, 4)14 (2, 4)19 (3, 4)24 (4, 4)4 (5, 4)9

(1, 3)18 (2, 3)23 (3, 3)3 (4, 3)8 (5, 3)13

(1, 2)22 (2, 2)2 (3, 2)7 (4, 2)12 (5, 2)17

(1, 1)1 (2, 1)6 (3, 1)11 (4, 1)16 (5, 1)21

It may be very helpful to keep the above illustration in mind when reading the proof of the
theorem, particularly the part dealing with the extremal cases.

Let Sn be the set of bijections from [n] to [n]. For π, ρ ∈ Sk and a cyclic ordering σ of
[n]× [n], let σπ,ρ : [n]× [n] → [n2] be de�ned by σπ,ρ(π(i), ρ(j)) = σ(i, j) for any i, j ∈ [n].
Note that σπ,ρ is a cyclic ordering of [n]× [n]. Moreover, the following holds.

Lemma 2.2 Let r ∈ [n− 1], and let σ be an r-good cyclic ordering of [n]× [n]. Then, for
any π, ρ ∈ Sn, σπ,ρ is an r-good cyclic ordering of [n]× [n].

Proof. Suppose not. Then there exists an r-interval (x1, y1), ..., (xr, yr) of σπ,ρ such that
either x1, ..., xr are not all distinct or y1, ..., yr are not all distinct. So there exist two dis-
tinct elements (a1, b1) and (a2, b2) of {(x1, y1), ..., (xr, yr)} and an integer p ∈ [r − 1] such
that σπ,ρ(a2, b2) = σπ,ρ(a1, b1) + p mod∗ n2 and either a1 = a2 (and b1 6= b2) or b1 = b2

(and a1 6= a2). Suppose a1 = a2. Setting i := π−1(a1), j1 := ρ−1(b1), j2 := ρ−1(b2), we
get σ(i, j2) = σ(i, j1) + p mod∗ n2, which contradicts the fact that σ is an r-good cyclic
ordering of [n]× [n]. Similarly, we cannot have b1 = b2. 2

Proof of Theorem 1.6. We assume r ≥ 2 and n ≥ 3 as otherwise the result is triv-
ial. Let X := [n]× [n] and P := Pn,r. For a cyclic ordering σ of X, a family F ⊆ P and a
set P ∈ P , let Fσ = {F ∈ F : F meets σ} and

Φ(σ, P ) =

{
1 if P meets σ;
0 otherwise.

Note that

(A∗)σ ∪ (A′)σ = (Aσ)∗ ∪ (Aσ)′ and (A∗)σ ⊆ (Aσ)∗. (1)

Let C be the set of all r-good cyclic orderings of X. We have |C| > 0 because τ, γ ∈ C.
As observed in [19], there exists an integer q > 0 such that any P ∈ P meets exactly q
r-good cyclic orderings of X. So

∑
σ∈C Φ(σ, P ) = q for all P ∈ P . Thus we have
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q
(
|A∗|+ r

n2
|A′|

)
=

( ∑
A∗∈A∗

q

)
+

r

n2

(∑
A′∈A′

q

)
=
∑

A∗∈A∗

∑
σ∈C

Φ(σ, A∗) +
r

n2

∑
A′∈A′

∑
σ∈C

Φ(σ, A′)

=
∑
σ∈C

( ∑
A∗∈A∗

Φ(σ, A∗) +
r

n2

∑
A′∈A′

Φ(σ, A′)

)
=
∑
σ∈C

(
|(A∗)σ|+

r

n2
|(A′)σ|

)
≤
∑
σ∈C

(
|(Aσ)∗|+ r

n2
|(Aσ)′|

)
(by (1)) (2)

≤
∑
σ∈C

r (by Lemma 2.1) (3)

= r|C|,

and hence |A∗|+ r
n2 |A′| ≤ r|C|

q
. Let S be the star of P with centre (1, 1). Clearly any cyclic

ordering σ of X meets exactly r sets containing a �xed element (like (1, 1)), and if σ ∈ C
then (by de�nition of an r-good cyclic ordering) these r sets are all in P . This means that∑

S∈S Φ(σ, S) = r for all σ ∈ C. Now as in the above, q|S| =
∑

σ∈C

∑
S∈S Φ(σ, S). So

q|S| =
∑

σ∈C r = r|C|, giving r|C|
q

= |S|. Therefore |A∗| + r
n2 |A′| ≤ |S|, and hence the

inequality in the theorem.
It is straightforward that the bound is attained if one of (i) and (ii) holds. We now

prove the converse. If A′ = ∅ then |A∗| ≤
(

n−1
r−1

) (n−1)!
(n−r)!

; this is in fact Theorem 1.2, which

also tells us that equality holds only if A∗ is a star of P . Now suppose A′ 6= ∅ and we have
equality in our theorem. So we have equality in (2) and (3). By (1) and the equality in
(2), we clearly have

(A∗)σ = (Aσ)∗ and (A′)σ = (Aσ)′. (4)

The equality in (3) and Lemma 2.1 give us that, for any σ ∈ C, if (Aσ)′ 6= ∅ then (Aσ)′ = Pσ

(and (Aσ)∗ = ∅). Thus, by (4),

for any σ ∈ C, if (A′)σ 6= ∅ then (A′)σ = Pσ. (5)

We now use this together with A′ 6= ∅ to show that A′ = P . Let A0 ∈ A′. For i = 0, 1, ..., r,
let P(i) := {P ∈ P : |P ∩ A0| = r − i}; so P(i) is the family of those sets in P that have
exactly i elements not in A0. P is a disjoint union of the families P(0),P(1), ...,P(r), and A′

contains P(0) since P(0) = {A0}. Our next step is to show that A′ also contains P(1), and
then we go on to show that in fact A′ contains each family P(i).

Let A1 be an arbitrary set in P(1). Let (x1, y1), ..., (xr, yr) be the distinct elements
of A0; only one of these is not in A1, and we may assume it is (xr, yr). So A1 =
{(x1, y1), ..., (xr−1, yr−1), (x, y)}, where x ∈ [n]\{x1, ..., xr−1} and y ∈ [n]\{y1, ..., yr−1}.
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Suppose x 6= xr and y 6= yr. Let π, ρ ∈ Sn such that π(1) = x, ρ(1) = y, and for
i = 1, ..., r, π(i + 1) = xi and ρ(i + 1) = yi. Lemma 2.2 tells us that γπ,ρ ∈ C. We have
γπ,ρ(x, y) = γπ,ρ(π(1), ρ(1)) = γ(1, 1) = 1, γπ,ρ(x1, y1) = γπ,ρ(π(2), ρ(2)) = γ(2, 2) = 2, ...,
γπ,ρ(xr, yr) = γπ,ρ(π(r + 1), ρ(r + 1)) = γ(r + 1, r + 1) = r + 1. So γπ,ρ maps the elements
of A0 to 2, ..., r + 1, and γπ,ρ maps the elements of A1 to 1, ..., r; this means that both A0

and A1 meet γπ,ρ. So A0 ∈ (A′)γπ,ρ (recall that A0 ∈ A′) and A1 ∈ Pγπ,ρ . By (5), we have
(A′)γπ,ρ = Pγπ,ρ , and hence A1 ∈ (A′)γπ,ρ . Thus A1 ∈ A′.

Now suppose we instead have x = xr or y = yr; by symmetry, we may assume
x = xr. Then y 6= yr (as (x, y) /∈ A0) and hence y is an element of the set Y :=
[n]\{y1, ..., yr}. Let yr+1, ..., yn be the elements of Y , taking yr+1 to be y. So A1 =
{(x1, y1), ..., (xr−1, yr−1), (xr, yr+1)}. Let π, ρ, % be the members of Sn given by π(i) = xi

for all i ∈ [n], ρ(i) = yi for all i ∈ [n], %(i) = yi for all i ∈ [n]\{r, r + 1}, %(r) = yr+1,
%(r+1) = yr. Lemma 2.2 tells us that γπ,ρ, γπ,% ∈ C. Now let A′ be the r-set in P consisting
of those elements of [n]× [n] that are numbered r + 2, ..., 2r + 1 by γπ,ρ; so

A′ =


{(xr+2, yr+2), ..., (x2r+1, y2r+1)} if n ≥ 2r + 1;
{(xr+2, yr+2), ..., (xn, yn), (x2, y1), ..., (x2r−n+2, y2r−n+1)} if r + 2 ≤ n < 2r + 1;
{(x2, y1), ..., (xr+1, yr)} if n = r + 1.

Both A0 and A′ meet γπ,ρ, meaning that A0 ∈ (A′)γπ,ρ and A′ ∈ Pγπ,ρ . By (5), we have
(A′)γπ,ρ = Pγπ,ρ , and hence A′ ∈ (A′)γπ,ρ . Thus A′ ∈ A′. Obviously γπ,% meets A1; so
A1 ∈ Pγπ,% . Suppose n ≥ r + 2. Then we can immediately see that γπ,% also meets A′

(because 2r − n + 1 ≤ r − 1), meaning that A′ ∈ (A′)γπ,% . As above, it follows by (5) that
A1 ∈ A′. Now suppose n = r +1. Then γπ,%(xr+1, yr) = r +1 = n and γπ,%(xi+1, yi) = n+ i
for i = 1, ..., r − 1. So γπ,% again meets A′, and hence we again conclude that A1 ∈ A′.

We have therefore shown that P(1) is contained in A′. More importantly, we have in
fact shown that

A ∈ A′, P ∈ P , |A ∩ P | = r − 1 ⇒ P ∈ A′. (6)

We claim that, if i ∈ {2, ..., r} and P(i−1) ⊂ A′, then P(i) ⊂ A′. Since P(1) ⊂ A′, the
claim inductively implies that the families P(2), ...,P(r) are also contained in A′, and hence
A′ = P as required. We conclude the proof by verifying the claim using (6).

Suppose we have P(i−1) ⊂ A′ for some i ∈ {2, ..., r}. Let Ai be an arbitrary set in P(i),
i.e. |A0 ∩ Ai| = r − i. We may assume A0 ∩ Ai = A0\{(xr−i+1, yr−i+1), ..., (xr, yr)}. For
brevity, let (x∗, y∗) be (xr−i+1, yr−i+1). Since (x∗, y∗) /∈ Ai, one of the following cases holds:
1. there is no element (x, y) of Ai such that x = x∗ or y = y∗;
2. there is exactly one element (x, y) of Ai such that x = x∗, y 6= y∗ or x 6= x∗, y = y∗;
3. there is exactly one element (x, y) of Ai such that x = x∗, y 6= y∗ and exactly one element
(x′, y′) of Ai such that x′ 6= x∗, y′ = y∗.

Consider case 1. Let (x, y) ∈ Ai\A0 and let A := (Ai\{(x, y)}) ∪ {(x∗, y∗)}. Clearly
A ∈ P(i−1) and hence A ∈ A′. Also, |A ∩ Ai| = r − 1. By (6), Ai ∈ A′.

Next, consider case 2. Let A := (Ai\{(x, y)}) ∪ {(x∗, y∗)}. We clearly have A ∈ P(i−1),
|A ∩ Ai| = r − 1, and hence Ai ∈ A′ as in case 1.
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Finally, consider case 3. Since r < n, we can choose y ∈ [n] such that no element (a, b) of
Ai has b = y. Let A := (Ai\{(x′, y′)})∪{(x′, y)}. So A ∈ P and |A∩Ai| = r−1. If (x′, y) ∈
A0 then A ∈ P(i−1) (as (x′, y) /∈ A0 ∩ Ai) and hence Ai ∈ A′. So suppose (x′, y) /∈ A0.
Then, by taking A′ := (A\{(x, y)}) ∪ {(x∗, y∗)} = (Ai\{(x, y), (x′, y′)}) ∪ {(x∗, y∗), (x′, y)},
we clearly get that A′ ∈ P(i−1), |A′ ∩ A| = r − 1, and hence A ∈ A′, which in turn implies
Ai ∈ A′ since |A ∩ Ai| = r − 1.

Therefore, P(i) is contained in A′ as we claimed. 2

Lemma 2.3 Let r < n. Suppose ∅ 6= F ⊆ Pn,r such that, for any A ∈ F and B ∈ Pn,r

with A ∩B = ∅, B ∈ F . Then F = Pn,r.

Proof. The result is trivial for n ≤ 2, so we assume n ≥ 3. For any positive integer z, let θz :
Pn,r → Pn,r be the translation operation de�ned by θz(A) := {(x, y+z mod∗ n) : (x, y) ∈ A}
(that is, θz shifts the points in A upwards by z positions in the cyclic sense). Let F1 be
a set in F . For each z ∈ [n − 1], let Fz+1 := θz(F1). The sets F1, F2, ..., Fn are disjoint,
and hence the conditions of the lemma tell us that they are all in F . Since a set P in Pn,r

can intersect at most r disjoint sets (simply because it has r elements), there exists j ∈ [n]
such that P ∩ Fj = ∅, meaning that P ∈ F . Hence the result. 2

Proof of Theorem 1.7. The result for r = n is Theorem 1.5, so we consider r < n.
It is easy to check that the bound in the theorem is attained in each of the cases (i), (ii),
(iii). We now show that

∑k
i=1 |Ai| is a maximum only in those cases.

Let A =
⋃k

i=1Ai. Clearly A∗ =
⋃k

i=1A∗
i and A′ =

⋃k
i=1A′

i. Suppose that for some
distinct i and j in [k], A′

i and A′
j have a common member A. Having A ∈ A′

i means
that there exists a set Ai in A′

i that does not intersect A, but this contradicts the cross-
intersection condition because A ∈ Aj. So the families A′

1, ...,A′
k are pair-wise disjoint,

and hence |A′| =
∑k

i=1 |A′
i|. Applying Theorem 1.6, we therefore get

k∑
i=1

|Ai| =
k∑

i=1

|A′
i|+

k∑
i=1

|A∗
i | ≤ |A′|+ k|A∗| = n2

r

(
r

n2
|A′|+ |A∗|+ kr − n2

n2
|A∗|

)
≤ n2

r

((
n− 1

r − 1

)
(n− 1)!

(n− r)!
+

kr − n2

n2
|A∗|

)
=

(
n

r

)
n!

(n− r)!
+ (k − n2

r
)|A∗|. (7)

Suppose k < n2

r
. Then

∑k
i=1 |Ai| ≤

(
n
r

)
n!

(n−r)!
, and equality holds if and only if A∗ = ∅

and A = A′ = Pn,r. Now suppose A = Pn,r, and let i ∈ [k] such that Ai 6= ∅. Together
with the cross-intersection condition, this implies that, if A ∈ Ai and B is a set in Pn,r

that does not intersect A, then B has to be in Ai. So the conditions of Lemma 2.3 hold
for Ai, and hence Ai = Pn,r. Due to the cross-intersection condition, this forces any other
family Aj to be empty. Hence (i).

Next, suppose k > n2

r
. Then, by (7) and Theorem 1.6,

k∑
i=1

|Ai| ≤
(

n

r

)
n!

(n− r)!
+ (k − n2

r
)

(
n− 1

r − 1

)
(n− 1)!

(n− r)!
= k

(
n− 1

r − 1

)
(n− 1)!

(n− r)!
,
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and equality holds if and only if A∗
1 = ... = A∗

k = A∗ and |A∗| =
(

n−1
r−1

) (n−1)!
(n−r)!

= |A|. Now

Theorem 1.1 tells us that |A∗| =
(

n−1
r−1

) (n−1)!
(n−r)!

if and only if A∗ is a star of Pn,r. Hence (ii).

Finally, suppose k = n2

r
. Then, by (7),

r

n2

k∑
i=1

|Ai| ≤ |A∗|+ r

n2
|A′| ≤

(
n− 1

r − 1

)
(n− 1)!

(n− r)!
. (8)

If A∗ = ∅ then A is as in the case k < n2

r
, and if A∗ 6= ∅ then it is immediate from

Theorem 1.6 that A∗ is as in the case k > n2

r
. Hence the result. 2
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