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ABSTRACT 
 

Survival analysis is a useful statistical tool for problems 

that deal with survival data. This data is used in order to 

analyze the predicted duration for a certain event to occur. 

Initial survival analysis was linked explicitly with events 

related to death. However, this is no longer the case and 

nowadays survival analysis is used in almost all research 

areas to model duration of device failure or relapse duration 

to drug, smoking and alcohol addiction. This paper presents 

several approaches to model survival durations of patients 

undergoing aortic valve replacement. These survival models 

will be used to relate survival durations for censored data to 

several pre- and post-operative patient related variables to 

identify risks factors. 

  

 

1. Introduction  
 

Throughout the centuries, survival analysis was used solely 

to investigate mortality rates; however, in the last fifty 

years, applications of survival analysis have been extended 

to various fields. Survival analysis is now used in marketing 

to model shelf-life duration or consumption duration of food 

products; in industry to model the lifetime duration of 

electronic devices; in criminology to model prison durations 

of offenders; in health insurance to model cure durations 

from certain diseases, and in sociology to model marriage 

durations before divorce. Moreover, survival analysis can be 

used to estimate survival durations and life expectancy, 

amongst other applications.   
 

In 1958, Kaplan and Meier presented the product limit 

estimator to estimate the survival function from life 

duration data. This non-parametric statistic accommodates 

censored data to estimate survival probabilities and hazard 

rates. Initially Kaplan and Meier submitted separate papers 

with similar results but John Tukey, the editor of the Journal 

of the American Statistical Association, convinced them to 

combine their efforts and produce a single paper. An 

alternative non-parametric approach is the Nelson-Aalen 

estimator, which can be used to estimate the cumulative 

hazard rate function for censored data.  This estimator was 

originally introduced by Nelson but later on Aalen 

extended its use by investigating its small and large sample 

properties using martingale methods. No distributional 

assumptions are required for both Kaplan Meier and Nelson 

Aalen estimators. 

The seminal paper entitled ‘Regression models and life 

tables’ proposed by Cox (1972) introduced the proportional 

hazard (PH) model. The semi-parametric model specifies 

that the conditional hazard function of failure time given a 

set of predictors is the product of an unknown baseline 

hazard function, which is a function of time (parametric part) 

and an exponential function of the linear combination of the 

predictors (non-parametric part).  The Cox model can be 

used to compare the relative forces of two lives, given that 

they have the same baseline hazard.  In this approach, Cox 

estimated the regression parameters by maximizing the 

partial log-likelihood function.  Breslow (1972) suggested 

an alternative approach in which the cumulative baseline 

hazard and the regression parameters are estimated 

simultaneously.  The Breslow estimator, which yields both 

the estimator for the cumulative baseline hazard function as 

well as Cox’s estimator of the regression parameters has 

been used extensively in research and is implemented in 

several statistical software packages. 

 

The Cox regression model is based on the assumption that the 

effects of the covariates being predicted remain constant over 

time. This limitation can be a problem when the shape and 

nature of the hazard functions are unknown. On the other 

hand, parametric models are based on the assumption that the 

lifetime distribution belongs to a given family of parametric 

distributions. This parametric approach links the survival 

duration to a set of predictors using a specified probability 

distribution for the hazard function. For a constant hazard 

function the exponential distribution is used; for a monotonic 

increasing/decreasing hazard function the Weibull or Gompertz 

distribution is used; and for a humped hazard function the log-

normal or log-logistic distribution is used. The accelerated 

failure time (AFT) parametric models relax the assumption of 

proportional hazards and assume that the logarithm of the 

survival time is a linear function of the predictors.  In other 

words, in PH models the predictors act multiplicatively on the 

hazard, while in AFT models the predictors act multiplicatively 

on time.  

 

 

2. Non-Parametric Survival Techniques 
 

Let 1 2 ... rt t t    be the ordered times of observed deaths 

of N lives. Moreover, let 
id  be the number of deaths 

observed at time 
it  for 1 i r  ; let 

ic  be the number of 

censored observation in the time interval 
1[ , )i it t 

and let 
in  

be the number of lives still alive before 
it .  Moreover, let 

ih  

be the hazard rate at time 
it , which is the probability of 

instantaneous death at 
it . 
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( )i i ih P T t T t                               (1) 
 

If the observed deaths and survivals are independent, it can be 

shown that the likelihood function is the product of the 

likelihood of all deaths and the likelihood of all censored lives 

surviving until the times at which observations are censored.  

Moreover, they showed that likelihood function can be 

expressed as the product of independent binomial likelihoods. 
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By differentiating the log-likelihood function with respect to 

ih and setting the result equal to 0 yields:  
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By assuming non-informative censoring, the Kaplan-Meier 

estimate of the survival function ( )S t   is given by: 
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Moreover, var[ ( )]KMS t  is given by: 
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In the Nelson-Aalen approach, ˆ
ih  values are used to estimate 

the integrated hazard function  ( )t  given by: 
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By assuming non-informative censoring and by considering 

discrete hazards 
ih  occurring at times 

it t , the Nelson-

Aalen estimate of the survival function ( )S t   is given by: 
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Moreover, ˆvar[ ( )]t  is given by: 
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When 
ih  is very small, 1ih

ie h


  , hence 
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3. Semi-Parametric Survival Techniques 
 

One of the most widely used in survival models is the 

proportional hazards model, proposed by Cox (1972). The 

semi-parametric survival model is made up of the two 

components. The parametric part is the baseline hazard 

function, 0 ( )h t   which defines how risk varies with time. The 

non-parametric part is the exponential function, 'exp( )ix β , of a 

linear combination of the predictors (risk factors). The 

proportional hazard model is given by: 
 

'

0( ) ( )exp( )i ih t h tx x β  where  '

1

p

i j ij

j

x


x β         (10) 

 

With an increase in the thj  covariate, the hazard rate increases 

when 0j  , and decreases when 0j  . The absolute force 

of mortality of a life cannot be estimated without estimating 

the baseline hazard; however, if one wishes to compare the 

relative forces of mortality of two lives with similar baseline 

hazards then 
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This implies that the hazards of the two lives will remain 

proportional over time. Moreover, the logarithm of the hazard 

ratio increases by 
j  for every 1 unit increase in 

1 2j jx x . 

 

Let ( )iR t  denote the set of lives that are at risk before time
it . 

If 1id    for 1 i r   then the partial likelihood function is 

given by: 
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Each observed lifetime contributes to the probability that the 

life observed to die should have been the one out of the ( )iR t  

lives at risk to die, conditional on the fact that one death was 

observed at time
it . So the contribution from the first death to 

the partial likelihood is the force of mortality for the first life 

to die divided by the total force of mortality for the lives in 

the risk group just before the event occurred. The partial 

likelihood function considers solely observed deaths and the 

contribution of the censored observation enters indirectly in 

the total force of mortality, which is the denominator of the 

partial likelihood function. The baseline hazard function 

disappears from the partial likelihood function because it 

cancels out. Ties occur when some observations are censored 

exactly at an observed death or there may be more than one 

death at each observed lifetime ( 1)id  .  The first case is dealt 

with by assuming that censoring always occur after the death 

was observed. When two or more lives die at the same time 
it  

their contribution to the partial likelihood should be included 

in the risk group ( ).iR t The modified partial likelihood function 

is given by: 
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When maximizing the partial likelihood function, estimation of 

the parameters will be based on the order, rather than the time, 

in which the deaths occurred. Nevertheless, the model seeks to 

identify the factors that influence mortality rates and hence 

increase or reduce the chance of a premature death. 

Maximization of the partial likelihood yields the maximum 

likelihood estimates of the parameters and provides the link 

between of the observed covariates and hazard rates.  When 
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the Cox model includes several covariates, the process of 

maximizing the partial likelihood function may be very 

cumbersome and cannot be achieved directly.  However, it 

can be maximized using an iterative numerical technique 

such as the Newton-Raphson method.   

 

The partial likelihood estimator for β  is unbiased and has an 

asymptotic multivariate normal distribution. Moreover, the 

asymptotic variance matrix can be estimated by the inverse of 

the observed information matrix from which the standard 

errors of the parameter estimates can be computed. 
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4. Parametric Survival Techniques 
 

To adjust the survival functions for the effects of the covariates, 

two models are used which include the accelerated failure-time 

(AFT) model and the proportional hazards (PH) model. In the 

PH model, the concomitant predictors (covariates) have a 

multiplicative effect on the hazard function 
 

0 0 1 1( ) ( )exp( ... )p ph t h t x x              (13) 
 

where 
0 1,  ,..., p    are regression parameters; 

1 2,  ,..., px x x  

are predictors and 
0 ( )h t is the baseline hazard function. In 

the PH model, the covariates have a multiplicative effect on the 

hazard function. The PH models accommodated by STATA 

include the Exponential, Gompertz and Weibull distributions. 
 

Table 1: PH models accommodated by STATA 

Distribution Survival Function Parametrization 

Exponential  exp j jt  'exp( )j i  x β  

Weibull  exp j jt
  'exp( )j i  x β  

Gompertz 
1exp[ ( 1)]jt

j e


     
'exp( )j i  x β  

 

In the AFT model, the logarithm of the survival time is 

expressed as a linear function of the covariates.  
 

0 1 1log ... p pt x x                      (14) 
 

The AFT model changes the time scale by a factor of 
'exp[ ( )]i x β . Depending on whether this factor is greater or 

less than 1, time is either accelerated or decelerated. The AFT 

models accommodated by STATA include the Exponential, 

Weibull, Log-normal and Log-logistic distributions. 
 

Table 2: AFT models accommodated by STATA 

Distribution Survival Function Parametrization 

Exponential  exp j jt  
'exp[ ( )]j i   x β  

Weibull  exp j jt
  

'exp[ ( )]j i   x β  

Log-normal 1- [(log( ) ) / ]j jt     '

j i  x β  

Log-logistic 
1 1[1 ( ) ]j jt
   

'exp[ ( )]j i   x β  

To determine which model provides the best fit, the researcher 

can either use the Akaike Information Criterion (AIC), proposed 

by Akaike (1974) or the Bayesian Information Criterion (BIC) 

proposed by Schwartz (1978). The AIC penalizes the log-

likelihood by the number of estimated parameters (p), while 

BIC penalizes the log-likelihood by the sample size (N) and 

the number of estimated parameters (p). 
 

2(log-likelihood) 2AIC p                 (15) 
 

 2(log-likelihood) l logBIC p N             (16) 
 

The model which provides the smallest information criterion 

provides the best fit for a particular dataset.   

 

 

5.  Application 
 

The dataset consists of 480 patients who underwent an aortic 

valve replacement at the cardiothoracic centre in a Maltese 

hospital. This data was collected by a cardio-vascular surgeon 

over a period of 16 years, ranging between 2003 and 2019. 

Most of the patients who underwent this treatment were aged 

over 60 years, which is expected since the prevalence of heart 

disease increases drastically with age. After surgery, all patients 

had follow-up appointments. The time of death of patients who 

died before the end of the investigation period (2019) was 

recorded and the survival duration was computed. Patients who 

were still alive after the end of the investigation period were 

right censored.  

 

The dataset includes a number of patient-related explanatory 

variables, together with other information related to the 

patients’ health conditions in pre-operative and the post-

operative periods. In this study, the dependent variable is 

Time, which is a continuous variable measuring the survival 

duration between the surgery and the time of death/end of the 

investigation period. The categorical variable Status indicates 

whether the patient was dead or alive at the end of the 

investigation period and will be used as a censoring variable. 

The continuous variable BMI provides the ratio of the 

patient’s weight (kilograms) to the patient’s height squared 

(m
2
).  The Parsonnet Score has a metric scale and measures 

the risk of death of a patient after undergoing heart surgery, 

where the larger the score the higher is the risk. The continuous 

variables HDU and ITU record the duration (days) of the 

patient’s recovery in the High Dependency Unit and the 

Intensive Therapy Unit respectively. The categorical variables 

Diabetes, Hypertension and Dialysis indicate whether the 

patient was diabetic, had high blood pressure and was on 

dialysis. The categorical variable Transfusion indicates 

whether the patient required/not required blood transfusion 

directly from another individual. The continuous variable 

Ventilation measures the duration (hours) that the patient 

spent on a life-assisting mechanical ventilator following the 

surgery. The categorical variable Creatinine indicates the 

presence/absence of waste product in the blood that normally 

passes through the kidneys and is eliminated through urine. 

The continuous variable Bleeding measures the blood volume 

(millilitres) that was provided to the patient during or after 

surgery. The categorical variable IABP indicates whether or 

not the patient required an intra-aortic balloon pump during 

heart surgery. 
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Table 3: Descriptive statistics of continuous variables 

Variable Mean St. Deviation 

Time 4012.16 1576.43 

BMI 29.44 4.330 

Parsonnet Score 6.24 5.122 

ITU 1.04 0.331 

HDU 1.19 3.603 

Ventilation 5.24 6.766 

Bleeding 565.66 268.434 

 
Table 4: Frequency table (categorical variables) 

Variable Frequency Percentage 

Diabetes 440 29.7% 

Hypertension 753 50.9% 

Transfusion 518 35.0% 

Dialysis 25 1.7% 

Creatinine 47 3.2% 

IABP 39 2.6% 

 
Of the 1480 patients participating in the study, 22.8% died 

before the end of the investigation period, while the rest 

77.2% were right censored.  Table 3 displays the means and 

standard deviations of each continuous risk factor. The mean 

Parsonnet score (6.24) indicates that the risk of mortality is 

fair and that there is a 5% predicted mortality rate. All the 

patients undergoing heart surgery spend one night in ITU and 

are retained in this unit if health condition is critical. If the 

patients’ health condition is not life-threatening, they are 

transferred to the HDU for a convalescence period. The mean 

duration of patients requiring support of a ventilator was 5.24 

hours and the mean blood volume transfused was 565.66 

millilitres; however, these values were considerably larger for 

high risk patients.  The mean BMI (29.44 kg/m
2
) is larger 

than average indicating that the majority of the patients were 

overweight or obese. 

 

Table 4 displays the frequency and percentage of each 

categorical risk factor. 29.7% of the patients were diabetic; 

50.9% suffered from high blood pressure; 1.7% were on 

dialysis, 2.6% required the use of an intra-aortic balloon pump 

during surgery; 35% required blood transfusion and 3.2% of 

the patients had the presence of creatinine. 

 
 

6. Results of non-parametric survival methods 

 
The Kaplan-Meier estimates of the survival probabilities were 

computed using the facilities of STATA.  Figures 1 and 2 show 

the Kaplan Meier survival distributions and 95% confidence 

intervals when patients are grouped by diabetes and dialysis 

condition. The Logrank test was used to compare survival 

distributions of groups of patients clustered by categorical 

risk factors. The Logrank test identifies two significant risk 

factors, which include dialysis [X
2
(1) = 54.51, p < 0.001] and 

diabetes [X
2
(1) = 11.51, p = 0.007]. Hypertension, creatinine, 

transfusion and IABP were not found to be significant risk 

factors. Figures 3 and 4 show the Nelson Aalen cumulative 

hazard functions and 95% confidence intervals when patients 

are grouped by diabetes and dialysis condition. 

 

Figure 1: Survival function for patients grouped by diabetes 

 

 

Figure 2: Survival function for patients grouped by dialysis 

 

 

Figure 3: Cumulative hazard functions (grouped by diabetes) 

 

 

Figure 4: Cumulative hazard functions (grouped by dialysis) 
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7. Results of semi-parametric survival methods 

 

The estat phtest was used to test the proportionality 

hazard assumption for the Cox regression model that includes 

12 risk factors. This test confirmed that the proportionality 

hazard assumption is satisfied [X
2
(12) = 10.38, p = 0.583].  

 

Table 5: Hazard ratios of Cox model 

Parameter HR S.E. Z P z  

BMI 1.001 0.0124 0.11 0.910 

Diabetes 1.304 0.1726 2.00 0.045 

Hypertension 1.439 0.4953 1.06 0.290 

Parsonnet 1.091 0.0105 9.03 0.000 

ITU 0.847 0.1606 -0.87 0.382 

HDU 1.051 0.0119 4.36 0.000 

Ventilation 0.992 0.0112 -0.72 0.474 

Bleeding 1.000 0.0002 0.23 0.815 

IABP 1.470 0.5076 1.12 0.265 

Dialysis 4.837 1.2884 5.92 0.000 

Creatinine 0.994 0.0114 -0.50 0.615 

Transfusion 0.942 0.1322 -0.42 0.675 

Log-Likelihood -2222.45 

LR test X
2
(12) = 135.53, p < 0.001 

 

Table 5 displays the hazard ratios and standard errors of the 12 

risk factors. To identify the parsimonious model a backward 

elimination procedure was used.  Table 6 shows that this 

model includes four significant risk factors, where the 

Parsonnet score is the best predictor of survival duration 

because it has the lowest p-value.  It is followed by dialysis 

condition, treatment duration in the High Dependency Unit and 

diabetes condition.  

 

Table 6: Hazard ratios of parsimonious Cox model 

Parameter HR S.E. Z P z  

Diabetes 1.514 0.1835 2.26 0.024 

Parsonnet 1.087 0.0103 8.85 0.000 

HDU 1.047 0.0098 4.89 0.000 

Dialysis 4.268 1.1079 5.59 0.000 

Log-Likelihood -2229.31 

LR test X
2
(4) = 121.81, p < 0.001 

 

The hazards of death of patients who are on dialysis or are 

diabetic are respectively 4.268 and 1.514 times than patients 

who do not have these conditions. Moreover, for every extra 

day of treatment in the High Dependency Unit, the hazard of 

death increases by 4.7% and for every 1 unit increase in the 

Parsonnet score the risk of death increases by 8.7%, given that 

other effects are kept constant.  

 

 

8. Results of parametric survival methods 

 

Since the proportionality hazard assumption was satisfied for 

this data set, PH survival models were fitted. These include the 

Exponential distribution leading to a constant hazard; the 

Gompertz leading to an exponential hazard, and the Weibull 

distribution leading to a monotonic increasing or decreasing 

hazard. Table 7 displays the log-likelihood, AIC and BIC 

values for the parametric survival models assuming these 

three survival distributions. The parametric survival model 

assuming a Gompertz distribution provides the best fit since 

it yields the smallest AIC and BIC values. The estimate of 

the ancillary parameter  is 0.00034.  

 

Table 7: AIC and BIC values of the PH survival models 

Distribution 
Log-

likelihood p AIC BIC 

Exponential -962.3 4 1932.6 1953.8 

Gompertz -917.0 5 1844.0 1870.5 

Weibull -927.1 5 1864.2 1890.7 

 

Table 8 displays the hazard ratios and standard errors of the 4 

significant risk factors of the Gompertz survival model and the 

results resemble those of the Cox regression model. 

 

Table 8: Hazard ratios of Gompertz survival model 

Parameter HR S.E. Z P z  

Diabetes 1.430 0.1641 2.18 0.029 

Parsonnet 1.094 0.0102 9.63 0.000 

HDU 1.051 0.0109 4.79 0.000 

Dialysis 4.182 1.1508 5.43 0.000 

Log-Likelihood -917.0 

LR test X
2
(4) = 110.45, p < 0.001 

 

 

9. Conclusion  
 

The Cox regression model is based on the assumption that the 

effects of the covariates being predicted remain constant over 

time. This limitation can be a problem when the shape and 

nature of the hazard functions are unknown. On the other hand, 

parametric models are based on the assumption that the survival 

distribution has a known parametric form. The two modeling 

approaches yielded similar results because the proportionality 

hazard assumption was satisfied. 
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