
1 

 

The (potential) impact of seasonality and climate change 1 

on the physicochemical and microbial properties of dairy 2 

waste and its management 3 

1 Styliani Roufou, 1,3 Sholeem Griffin, 2 Lydia Katsini, 2 Monika Polańska, 2 Jan F.M. Van 4 
Impe and 1,3 Vasilis P. Valdramidis 5 

 6 
1 University of Malta, Faculty of Health Sciences, Department of Food Sciences and 7 
Nutrition, MSD2080, Malta 8 
2 University of KU Leuven, Department of Chemical Engineering BioTec+, Chemical & 9 
Bioprocess Technology & Control, Ghent 9000, Belgium 10 
3 University of Malta, Centre of Molecular Medicine and Biobanking, MSD2080, Malta 11 
 12 
Corresponding author 13 
E-mail: vasilis.valdramidis@um.edu.mt 14 
Address: University of Malta, Faculty of Health Sciences, Msida, MSD2080, Malta 15 
 16 

Declarations of interest: none 17 

 18 

Highlights 19 

• High nutrient values and pollutant capacity characterize dairy waste. 20 

• Environmental changes increase the risk of adverse effects on the quality of dairy 21 

waste. 22 

• Microbial survival mechanisms can be affected by environmental changes. 23 

• Climate change forecasts require new sustainable approaches in all sectors of the 24 

dairy industry. 25 

Abstract 26 

Background 27 

The dairy industry is one of the most polluting sectors globally, producing waste 28 

identified by the high content of biological and chemical oxygen demand, organic and 29 

inorganic matter. The continuous disposal of dairy waste into the environment 30 

negatively impacts ecosystems. Seasonality has been shown to affect the 31 

physicochemical composition of milk and, consequently, dairy waste. However, the 32 
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impact of climate change on the dairy sector remains unexplored. Therefore, it is 33 

important to understand its impact on dairy waste in relation to environmental safety 34 

and the increased risks due to microbial multiplication. 35 

Scope and Approach 36 

This review summarises the available data and outlines the characteristics of dairy 37 

waste and current waste management strategies. The effect of seasonality on dairy 38 

waste, its microbial population and waste management strategies have been 39 

elaborated. Finally, the effect of the seasonality of dairy waste has been used as an 40 

estimator to predict the impact of climate change. This review aims to provide the 41 

latest source of information on the impact of climate change on dairy waste.  42 

Key Findings and Conclusions 43 

Real-time monitoring of environmental changes must be taken into account to 44 

determine their environmental impact on dairy waste physicochemical and microbial 45 

properties. Seasonal variations provide key insights into the impact of climate change 46 

on dairy waste. Further analysis is required to assess microbial behavior under 47 

environmental stress in dairy waste and elucidate adaptive mechanisms used by 48 

microbes to mitigate stress. New waste management decision tools and legislation will 49 

be critical to a sustainable dairy industry resilient to climate change. 50 

 51 
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 Introduction 55 

Global population trends define the future demand for food, water and energy. A 56 

rapidly growing global population leading to a rise in food production, including dairy 57 

products, will generate vast amounts of waste that could increase environmental 58 

pollution (Keilman, 2020). Effective management of the final food products and their 59 

waste should be the foundation for sustainable dairy industry. The dairy industry is 60 

present worldwide and produces many products, such as raw milk and cheese, 61 
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releasing solid and liquid waste into the environment. Seasonal variations challenge 62 

the dairy industry in maintaining product safety and quality throughout a year (Li et 63 

al., 2020). A slight temperature rise in autumn is enough to delay the first frost, leading 64 

to changes in the animal lactation period (FAO, 2020). 65 

 66 

 The terms of season and climate are used in this review, so their definition is required, 67 

as they describe two different conditions. On the one hand, each season is over a 68 

period of three months and is divided based on the equinoxes and solstices. Two 69 

methods are commonly used to define the seasons: the astronomical and 70 

climatological.  The timings in the astronomical definition change each year. In the rest 71 

of this paper, the climatological term, which divides the season by the first day of the 72 

month, includes equinoxes and solstices, is used to define the season. Furthermore,  73 

the season names specifically refer to the North Hemisphere (Kotsias et al., 2021). On 74 

the other hand, the climate represents the average expected conditions for several 75 

years. The IPCC describes climate change as ' a change of climate attributed directly 76 

or indirectly to human activity that alters the composition of the global atmosphere 77 

and which is in addition to natural climate variability observed over comparable time 78 

periods ’ (Masson-Delmotte et al., 2018). The impact of seasonality on the dairy 79 

industry has been extensively investigated. However, the potential impact of climate 80 

change on the dairy industry has not been thoroughly studied. Climate change may be 81 

linked with the emerging risks in dairy foods and their waste products.  82 

 83 

This review is divided into three sections. The first section deals with the type and 84 

composition of dairy waste, its uses, and treatments while emphasizing the effect of 85 

seasonal change on them. The second section outlines the legislation applicable to the 86 

disposal of dairy waste in the environment and underlines the need for new strategies. 87 

In addition, the third part focuses on future climate projections and their impact on 88 

dairy waste. 89 

 90 

https://www.timeanddate.com/calendar/seasons.html


4 

 

1. Dairy industry 91 

The dairy industry is considered a significant contributor to the worldwide economy 92 

in the current global market. In 2020, global dairy exports enlarged to 78 million 93 

tonnes (in milk equivalents), an upsurge of 1.5 per cent from 2019. Between 2016 and 94 

2019, the dairy price index increased from 83 to 103 USD per ton worldwide (FAO, 95 

2020). The rise in consumption of dairy products and the benefits to human health 96 

enrich the importance of the dairy sector (Atallah et al., 2020). The annual worldwide 97 

milk production in 2020 reached 860 million tons, an intensification of 1.4 per cent 98 

from 2019, mainly due to increased production in Asia, Europe, and North America 99 

(FAO, 2020).  100 

 101 

 102 

 103 

The quantity and quality of milk are closely associated with variables such as seasons, 104 

animal diet, health, and breed. A Danish study on bulk milk concluded that milk 105 

composition differences could be partly explained by breed, seasonal differences and 106 

partly by farm management. In particular, the concentration of minerals in milk is 107 

significantly affected by the season (Poulsen et al., 2014). Monthly fluctuations in 108 

global milk production in 2020 are an excellent example of the impact of seasonality 109 

and climate change on the chemical characteristics of milk. In particular, unusually 110 

high temperatures in Brazil and dry weather in Africa during the summer months have 111 

reduced pasture quality and feed availability, limiting milk production expansion (FAO, 112 

2020). These changes also affect the waste quantity and quality of the dairy industry. 113 

 114 

2. Dairy waste composition and its relation to 115 

climatic/seasonal stress factors  116 

Milk is composed of approximately 87% water and 13% solids. The global increase of 117 

1.4% in annual milk production in 2019 led to the processing of high milk quantities; 118 

consequently, a large volume of dairy waste. Dairy waste is produced from different 119 

dairy processing lines, such as equipment sanitisation, raw material transfer and 120 
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packaging. Environmental conditions, raw material and production techniques in the 121 

dairy plant affect the properties of the waste (Yonar et al., 2018). This section will 122 

classify dairy waste and characterize its composition. It will also describe the 123 

relationship between dairy waste and different environmental factors. 124 

 125 

Two categories of waste are generated in the dairy industry and can be classified as 126 

solid and liquid. Solid waste mainly refers to recyclable materials, such as damaged or 127 

out-of-date products (WBC, 2007). The most significant proportion of the waste is the 128 

highly nutritious liquid state; it can be divided into three subcategories: whey, 129 

wastewater, and sludge. The liquid waste volume and organic characteristics depend 130 

on the milk source, season, lactation period of the animal, breed, feeding system, and 131 

production processes (Ganju et al., 2017). The waste flow in the dairy industry is 132 

summarized in Figure 1. In the United States (US), the dairy industries reported a 20% 133 

addition in their total liquid waste volume during the spring and summer compared to 134 

winter due to the favourable lactation period and weather conditions (Struk-135 

Sokołowska, 2018).  136 

 137 

Whey and wastewater can be generated directly from liquid waste. After treatment, 138 

the remaining effluents of whey also end up as wastewater. Sludge is produced after 139 

separating solids from the wastewater and is usually dehydrated before disposing of 140 

waste air flotation particles (Garcha et al., 2016). Liquid waste is distinguished by a 141 

high concentration of milk components, such as casein, lipids, and lactose, 142 

contributing to high biological oxygen demand (BOD) and chemical oxygen demand 143 

(COD). The concentrations of total solids, BOD5 (level obtained after a five-day test) 144 

and COD, are the main parameters that indicate the pollutant capacity of waste 145 

(Slavov, 2017).  146 

 147 

Liquid waste can be directly disposed to the environment or used to produce by-148 

products such as animal feed. The direct disposal of dairy waste increases the risk to 149 

public health and the environment, which can be influenced by specific climatic 150 

conditions or seasonal variation (Manikandan, 2016). A report concluded that a 10oC 151 
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rise in global temperature decreases the total solids in milk and affect dairy waste 152 

composition by reducing COD (Balku, 2018). Every year, worldwide, about 4 - 11 153 

million tons of dairy waste is released into the environment, which poses a severe 154 

threat to biodiversity. Nevertheless, the impact of climate change on dairy waste 155 

remains unevaluated mainly. Dairy waste predominately pollutes natural water and 156 

soil quality, where the air is minimally affected by such waste  (Boguniewicz-Zabłocka 157 

et al., 2017). Hereunder, the pollutants of dairy waste are discussed in relation to 158 

seasonality and environmental conditions.  159 

 160 

2.1 Whey 161 
Whey is the yellowish-green translucent liquid fraction of milk that remains after the 162 

removal of curd. Approximately 9 L of this serum is produced for every 1 Kg of cheese. 163 

It is a dilute nutrient stream and contains more than 50% of the volume and 164 

ingredients of raw milk and is mainly produced as a by-product of cheese manufacture. 165 

Its composition and volume depend on the type of cheese production, season, and 166 

origin of the milk  (Slavov, 2017). Based on cheese production, two types of whey are 167 

generated; sweet and acidic, where globally, about 94% of the total production is 168 

sweet. However, acidic whey treatment is much more complicated due to the high 169 

mineral content and lactic acid presence (Talebi et al., 2019). 170 

 171 

The compositions of sweet and acidic whey from different species of animals are 172 

presented in Table 1. In general, the protein content of sweet whey was higher than 173 

that of acidic. However, acidic contained less lactose and more ash and minerals such 174 

as calcium and magnesium due to the casein micelles acidification (Lievore et al., 175 

2015). The BOD5 and COD are closely related to lactose concentration, i.e., sweet 176 

whey has almost 7 g/L higher than acidic, making it more polluting. Sheep’s milk whey 177 

(sweet and acidic) was identified by higher total solids, fats and protein contents than 178 

cow’s and goat’s milk whey. Due to the recent public interest in the consumption of 179 

sheep and goat’s milk, only limited data is available on their pollution capacity.  180 

 181 
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Whey composition also varies due to the effect of seasonality on milk quality. Acidic 182 

whey produced during the summer months in Brazil, in 2011-2012, was slightly higher 183 

in acidity and had a higher solubility index. This association is expected as whey 184 

proteins become less soluble as acidity increases (Lievore et al., 2015). Between 2014 185 

- 2015 in Poland, phosphorus concentration, total protein, and lactose in raw sheep 186 

milk whey were lowered by 10 mg/g, 1.4 g/Kg and 0.98 g/Kg, respectively, during the 187 

winter compared to summer months (Kawęcka, 2020). Apart from the seasonality, 188 

further studies must be performed to understand the impact of specific climatic 189 

conditions on whey characteristic. 190 

 191 

An essential component of whey is protein, which accounts for a large proportion of 192 

milk nitrogen. Whey proteins are usually globular, comprising β-lactoglobulin and α-193 

lactalbumin (Ganju et al., 2017). They have a high content of essential amino acids and 194 

proteins with functional properties, e.g., antimicrobial activity. For example, 195 

lactoferrin is a whey protein with antimicrobial activity, which results from its iron 196 

sequestering and lipopolysaccharide-binding properties. The ability to bind to the 197 

bacterial surface causes lipopolysaccharide released from the outer membrane and, 198 

consequently, cell damage and death (Xiong et al., 2020). 199 

  200 

However, differences in the milk animal origin, season, and treated conditions can 201 

impact the composition of proteins present in whey. Table 2 shows the average 202 

composition of proteins in whey in different types of milk. A high number of β-203 

lactoglobulin describes sheep's milk whey compared to the other two types. In 204 

contrast, it has the lowest values of α-lactalbumin, namely 0.94 ± 0.09 g/L. The amount 205 

of β-lactoglobulin is found to be inversely proportional to that of α-lactalbumin. Also, 206 

there is a negative correlation between the concentration of a-caseins and 207 

immunoglobulin. Hence, sheep’s milk whey has the lowest α-lactalbumin and the 208 

highest immunoglobulin concentration (Giroux et al., 2018). Lastly, high lactoferrin 209 

and lactoperoxidase quantities make sheep’s milk whey proteins a potential 210 

alternative to providing high-quality bioactive ingredients in the food industry (Corrêa, 211 

2019). In this study, the authors have reported that seasonality affects whey proteins. 212 
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In particular, they concluded that the immunoglobulin content reduced by half in 213 

winter; in contrast, the serum albumin content practically did not change (Kawęcka, 214 

2020). Few studies are focusing on seasonality and climate change on the above 215 

proteins; hence further analysis is required. 216 

 217 

2.2 Wastewater 218 
The dairy consumes a vast volume of water for its operation, generating a large 219 

amount of wastewater. Dairy wastewater has a white color with an unpleasant odor 220 

and turbid character (Sharmila et al., 2020). Approximately 2.5 liter of wastewater is 221 

generated per liter of processed milk. Dairy wastewater is mainly generated from the 222 

manufacture of products, whey, and cleaning equipment such as bottles and transport 223 

pipes. It has high sodium content from the use of caustic soda for cleaning (Yonar et 224 

al., 2018). The most significant amount of wastewater is generated during milk 225 

powder production as a result of evaporation and condensation of water contained in 226 

milk. This is followed by butter, cheese, and drinking milk production. Publications on 227 

the physicochemical characterisation of dairy wastewater are limited and often lack 228 

animal origin identification (Wang et al., 2019). 229 

 230 

Dairy wastewater is non-toxic but contains fats, high nutrient compounds and 231 

detergents. Hence, it is identified by a relatively elevated temperature of 30 – 40◦C 232 

and high of COD and BOD5, compared to the other dairy waste. The differences 233 

between dairy wastewater composition are dependent on the type of milk, as outlined 234 

in Table 3. The pollutant capacity of dairy wastewater generated from processing goat 235 

and sheep's milk is higher than that of cow’s milk due to a higher ratio of BOD5 to COD, 236 

which amounts to 0.56 ± 0.06 and 0.53 ± 0.38, respectively. Furthermore, wastewater 237 

generated from goat’s and sheep’s milk is slightly acid with low pH at 4.85 ± 0.99. The 238 

acidic nature of goat and sheep’s wastewater results in significantly higher macro-and 239 

micro-nutrients concentrations than wastewater generated from cow’s milk. This is 240 

due to the demineralization of casein micelles by acidification (Giroux et al., 2018). 241 

 242 
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Similar to whey, the effect of seasonality on wastewater is remarkable. There is almost 243 

a 20% increase in the average wastewater volume in summer when compared to 244 

winter (Ahmad et al., 2019). A study in India in 2012 found that in winter, the 245 

temperature, COD and BOD5 were lower, and the pH was higher compared to 246 

summer, where the temperature, in winter, was 27 ± 2.08 °C, the COD was 954 ± 86.18 247 

mg/L, BOD5 was amounting at 320 ± 26.76 mg/L and the pH was 6.8 ± 0.64 (Aagosh 248 

Verma, 2017). Another study in Poland, between 2016 and 2017, agreed with the 249 

impact of seasonality on wastewater. The BOD5  and COD  were the highest in summer, 250 

reaching levels of 1.9 g/L and 4.5 g/L, respectively. In contrast, the total value of 251 

nitrogen and phosphorus were higher during winter due to the lower temperatures 252 

(Struk-Sokołowska, 2018). Based on climate forecasts, a rise in global temperature and 253 

carbon dioxide (CO2)  is expected to change the nutrient content and pH of dairy 254 

wastewater. These changes will alter the waste quality, which may require new waste 255 

management. Further studies are required in order to understand the impact of 256 

climatic parameters on dairy wastewater. 257 

 258 

2.3 Sludge 259 
Dairy sludge formation results from casein decomposition and has a strong butyric 260 

acid odor (Shete et al., 2013). Dairy sludge is another polluting dairy waste considered 261 

by its low heavy metal content and high amounts of decomposable carbon. Dairy 262 

industries emit 5 to 25 per cent of the total volume of treated wastewater as dairy 263 

sludge. Its composition varies depending on the environmental conditions and 264 

wastewater treatment process (Ganju et al., 2017; Sharmila et al., 2020). In dairy 265 

sludge, the BOD5 and COD amount to 1.1 - 1.14 g/L, and 3.7 - 4.02 g/L, respectively 266 

(Bhattacharya et al., 2019). Its pH is approximately 7 - 8 (Frąc et al., 2017). The 267 

characteristics of sludge are described in Table 4. Compared to the other dairy waste, 268 

dairy sludge has a higher concentration of heavy metals, like copper and zinc. 269 

Additionally, the carbon concentration is also low due to the high amount of nitrogen 270 

bound to the proteins.  271 

 272 
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As expected, different milk quality over a year leads to a different sludge composition. 273 

In the coastal areas of Antalya, most of the sludge characteristics and the total heavy 274 

metal content changed significantly depending on the seasons during a year. During 275 

summer and autumn, the sludge was identified by a low pH of 6.1 and high organic 276 

matter, total nitrogen and total phosphorus. Notably, the zinc content was 277 

determined at high concentrations in summer and autumn; in contrast, the elements 278 

copper, nickel, cadmium and chromium were found higher in winter and spring. In this 279 

study, no differences in composition were observed due to the region (Bülent 280 

Topcuoğlu, 2018). There is currently no information in relation to the impact of climate 281 

change on dairy sludge. 282 

 283 

3. The impact of seasonal and climatic variation on the 284 

microbiota of dairy waste  285 

Dairy waste is not only highly nutritious for humans but is also considered an excellent 286 

growth substrate for microorganisms. Dairy waste supports the presence of a complex 287 

system of organisms consisting of a mixture of bacteria, fungi and protozoa that have 288 

remained and survived in dairy waste after the treatment of raw materials (Atallah et 289 

al., 2020; Sharmila et al., 2020). The most frequently present microorganisms in dairy 290 

waste are analyzed in this section. Dairy wastewater promotes the growth of sewage 291 

fungi, such as Sphaerotilus natans (Shete et al., 2013). Yeast such as Saccharomyces 292 

spp., Candida ssp., and Cryptococcus spp. were also isolated from dairy wastewater 293 

(Ritambhara et al., 2019). The concentration of yeast and fungi in unpasteurized whey 294 

were at 3.1 ± 0.05 Log CFU/mL (Mohsen Pour, 2014). In India, Aspergillus aculeatus 295 

has been isolated from dairy sludge (Roy et al., 2018). 296 

 297 

In the category of bacteria, a study analyzed pasteurized (65°C/ 30 minutes) and 298 

autoclaved (121°C/ 15 minutes) whey and found that in both samples, the total 299 

coliforms and thermotolerant bacteria had a concentration below 3 MPN/ mL, while 300 

mesophilic aerobic and coagulase-positive Staphylococcus spp. were counted at 10 301 

CFU/ mL (Chaves de Lima et al., 2017). The microbial composition of raw dairy waste 302 
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showed a high concentration of aerobic and anaerobic bacteria, mainly belonging to 303 

the lactic acid bacteria family that usually thrives in dairy waste, at a magnitude of 7 ± 304 

0.02 Log CFU/ mL. The total aerobic and anaerobic spore-forming bacteria were 4 ± 305 

0.12 Log CFU/mL. Clostridia spp. load was approximately 5 ± 0.02 Log CFU/mL, 306 

whereas Enterococci spp. were detected below 4 ± 0.12 Log CFU/mL (Pagliano et al., 307 

2019). During wastewater treatment, the concentration of bacteria in the air can reach 308 

104 to 107 CFU/m3. The highest emission of microorganisms usually occurs during the 309 

aeration of waste in aeration tanks and units such as mud storage tanks. The dairy 310 

sludge was also found to emit viable airborne microorganisms (Szyłak-Szydłowski et 311 

al., 2016).  312 

 313 

There are various heterotrophic microorganisms present in dairy waste. 30% of the 314 

bacteria isolated from dairy waste were Gram-negative. Their shapes were mainly 315 

rods, cocci, and coccobacilli (Alaa et al., 2019). Bacterial species isolated from dairy 316 

waste included Pseudomonas fluorescens, Pseudomonas aeruginosa, Enterobacter, 317 

Escherichia coli, Citrobacter spp., Alcaligenes spp., Proteus spp., Klebsiella 318 

pneumoniae, Acinetobacter baumannii, Pseudomonas nitroreducens  (Kaur et al., 319 

2019; Rajeshkumar et al., 2004; Ritambhara et al., 2019). The Gram-positive strains 320 

isolated from the dairy waste were categorized by coccobacilli shape (Alaa et al., 2019) 321 

and included Staphylococcus spp., Micrococcus luteus, Bacillus cereus, Bacillus subtilis, 322 

Streptococcus faecalis, and Sporolactobacillus spp. (Rajeshkumar et al., 2004; Sadeghi 323 

et al., 2019).  324 

 325 

The nature of the waste is critical for the survival of the microbes. After one month, 326 

stored under anaerobic conditions at 18oC - 20oC in fresh dairy sludge and wastewater, 327 

the concentration of E. coli decreased by 37% and 90%, respectively. This difference 328 

can be explained by the increase in TSS and pH in the dairy sludge samples (Costa et 329 

al., 2017; Côté et al., 2006). The concentration of microorganisms present in dairy 330 

waste varies also depending on the seasonality and any other environmental 331 

fluctuations. In Poland, higher concentrations of microorganisms were found in the 332 

summer than in the winter in air samples collected near the dairy sludge tanks. 333 
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Mesophilic bacteria were abundant in these samples, and the concentration reached 334 

1.9 x 104  CFU/m3 during the summer. On the other hand, the highest concentrations 335 

of total coliforms were found in the autumn (Szyłak-Szydłowski et al., 2016). Another 336 

study examined the seasonal impact on whey samples from Italy. In it, the 337 

Enterobacteriaceae spp. levels were higher in spring compared with the winter, 338 

reaching 1.7 x 106  CFU/mL, while Acinetobacter spp. was the fourth most abundant 339 

genus present in these whey samples during winter. Finally, no significant differences 340 

were observed in the concentrations of Pseudomonas spp. between winter and spring 341 

(Da Silva Duarte et al., 2020). 342 

 343 

Other climatic stress factors can affect the microbiota of dairy waste. In particular, soil 344 

moisture is the climatic factor that directly affects the survival of sludge 345 

microorganisms, while the increase in temperature and concentration of atmospheric 346 

carbon dioxide is expected to slightly promote their proliferation (Alkorta et al., 2017). 347 

In Oklahoma, a 2oC increase in temperature in a ten-year study had shown that soil 348 

microbial communities adapted to increased temperature by changing the 349 

composition and patterns of the used substrate (Zhou et al., 2012). In contrast, the 350 

microbial growth in wastewater appears to be more affected by climate change, and 351 

their survival depends on environmental conditions (Madakka et al., 2019). The 352 

increase and dissolution of atmospheric CO2  in dairy wastewater and whey can lower 353 

pH affecting the growth and survival of many microorganisms. A study by Mandalakis 354 

et al. (2019) confirms that Pseudomonas spp., also present in the dairy waste,  isolated 355 

from a CO2-rich marine environment, was tolerant enough to withstand pH changes 356 

from 5 to 8.  357 

 358 

The rise of wind storms will also rise the spread of airborne microorganisms present 359 

at the highest concentrations during the summer in dairy waste. The positive 360 

relationship between rainfall and bacterial dispersal could improve the spread of 361 

microbes from water contamination during periods of heavy rain (Vermeulen et al., 362 

2014). A study by Wu et al. (2009) found that the microbial load of the E. coli in the 363 

Blackstone River in the USA generally augmented more than ten times during wet 364 
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weather events compared to dry weather periods.  A study by Chinivasagam et al. 365 

(2009) reported the survival, growth and airborne spread of Campylobacter and 366 

Salmonella from farms to areas at a short distance from the farm. The farms used dairy 367 

waste to feed the animals. Another study found that the bacterial counts in 368 

atmospheric samples are 1.7 – 2.7 times higher during dust storms (Hellberg et al., 369 

2016). After more than a month of exposure to dry sand with a relative humidity of 370 

40-55%, E. coli and S. aureus, present in the dairy waste, were found to have better 371 

survival rates than Salmonella spp. and Pseudomonas spp. (Griffin, 2007). However, 372 

further studies are needed to verify the transmission pathways and the exact effect of 373 

future environmental changes on dairy microbes. 374 

 375 

4. The effect of seasonality and climate change on dairy 376 

waste disposal and valorisation practices  377 

In the past, the main focus was the effect of seasonality on dairy waste. The impact of 378 

the environmental conditions, such as temperature and humidity, on dairy waste and 379 

their microbes is unknown (Atallah et al., 2020). Dairy waste is a highly nutritious 380 

substrate that can support the proliferation of pathogenic microorganisms, posing a 381 

risk to human health.  Dairy waste management strategies have focused on safe 382 

disposal by reducing the COD and BOD5 proportion and recovering value-added 383 

products. Different dairy waste treatment strategies are discussed in the following 384 

section, which may have to be further strengthened in a climate change environment. 385 

 386 

Dairy waste treatments can be classified into three categories (Figure 2). The first 387 

category contains the natural process, which is the direct discharge of untreated waste 388 

into the environment, such as the use of whey as feed. Environmental regulators and 389 

dairy processors have highlighted the environmental damage caused by the direct 390 

disposal of untreated dairy waste. Some pre-disposal treatments should be applied to 391 

dairy waste based on chemical waste characteristics (Ritambhara et al., 2019). 392 

Biological treatments include aerobic and anaerobic technologies, such as aerobic 393 

lagoons and anaerobic filters. These treatments are the most promising methods for 394 
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the removal of organic matter from dairy waste. Lastly, physicochemical processes can 395 

be used to reduce milk fat and colloidal proteins in dairy waste. Physicochemical and 396 

biological treatments can contribute to the disposing of waste according to 397 

environmental standards; however, they are expensive (Ryan et al., 2016; Yonar et al., 398 

2018).  Hereafter, the main modes of disposal are summarized, and different 399 

valorization practices are discussed. 400 

 401 

Physicochemical and biological processes in dairy waste management can be used to 402 

remove emulsified compounds from dairy waste but lead to a limited COD level 403 

reduction (Slavov, 2017). The use of conventional biological and chemical processes 404 

for the treatment of dairy waste, such as anaerobic digestion, has some limitations 405 

due to the difficulty of decomposing organic matter. Hence, a combination of different 406 

methods can be used to achieve high efficiency and effectiveness in treating dairy 407 

waste.  408 

 409 

4.1 Modes of disposal of dairy waste 410 
Dairy waste is most commonly discarded directly to agricultural land as fertiliser/ 411 

irrigate, used for animal feed, or as a substrate in wetlands. Every year, about 4 - 11 412 

million tons of dairy waste is released into the environment worldwide. The acid and 413 

sweet whey load are 60 - 80 times more polluting than domestic sewage and 100 - 175 414 

times than the corresponding domestic wastewater volume (Ryan et al., 2016). The 415 

harmful effects of dairy waste are on living organisms as well as on agriculture, 416 

resulting in the degradation of the environment and biodiversity (Sharmila et al., 417 

2020). Dairy waste is used as a fertilizer on land due to its high nutrient content. It can 418 

enrich the soil with organic compounds such as phosphorus and water-soluble 419 

nitrogen that can undergo biological nitrogen transformations important for 420 

increasing crop yield. However, such applications may result in soil degradation. It is 421 

also known that nitrite and nitrate, present in dairy waste, are highly soluble and can 422 

eventually leach into groundwater. Moreover, large disposal amounts of dairy waste 423 

leave high saline reserves in the soil, damaging soil fertility and reducing crop yield 424 
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(Ryan et al., 2016). Another negative impact of the direct disposal of dairy waste on 425 

the environment is the release of strong unpleasant odors and gases that cause 426 

discomfort (Atallah et al., 2020).  427 

 428 

Disposal of dairy wastewater in lakes, rivers, or sea leads to overgrowth of microbes 429 

as well as of aquatic plants. The oil and grease in dairy wastewater form a film on the 430 

surface of the water, creating a high oxygen demand. This overloading of nutrients has 431 

adverse effects, including the rapid spread of plankton, reduction of dissolved oxygen, 432 

water deterioration, cyanotoxin production, fish death, and other living beings. 433 

Furthermore, discharging dairy wastewater rich in nutrients leads to eutrophication of 434 

the host wetland. In 2008, untreated acidic whey was dumped in a wetland in Ohio, 435 

killing more than 5,400 wild animals, mostly fish, due to eutrophication that depletes 436 

dissolved oxygen in water (Hirsch, 2015).  437 

 438 

A wetland system is a free surface water construction. It is a preferred application for 439 

dairy waste in developing communities. The rapid growth of wetland species, such as 440 

plants, algae and microbes, leads to an anaerobic wetland environment, causing death 441 

in aquatic animals and plants. However, these species can convert protein biomass 442 

into a more manageable form that can be considered a high-quality protein source 443 

appropriate for animal feeding (Wang et al., 2019). Dairy wastewater disposal to 444 

wetlands increases turbidity and affects aquatic life (Alaa et al., 2019; Bhattacharya et 445 

al., 2019). The use of a large surface area and a potentially hazardous effect on both 446 

surface and groundwater, insect attraction, and the lack of dairy sludge recycling 447 

further add to the disadvantages of utilising dairy wastewater on wetlands (Slavov, 448 

2017; Wang et al., 2019).  449 

 450 

A natural infiltration flow occurs in the ground from the rocks and sand to clear 451 

groundwater. However, minerals and heavy metals such as iron and dairy nitrates 452 

have been found in high groundwater samples collected near the dairy waste disposal 453 

area (Kumar et al., 2016). The high values of fats, lactose, detergents, proteins and 454 

inorganic salts in dairy wastewater make the water unsuitable for human consumption 455 
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and irrigation purposes. Dairy waste as an animal feed is a source of high-quality 456 

proteins and lactose as well as calcium, phosphorus, and water-soluble vitamins. It has 457 

been reported that 5% of dairy sludge is used as animal feed; this treatment is the 458 

most accessible solution for the dairy industry to deal with the issue of dairy sludge 459 

disposal (Ryan et al., 2016). 460 

 461 

The application of the above modes of disposal is directly related to seasonality and 462 

climate change with dairy waste. In 1999, in the USA, the wetlands exhibited a 463 

seasonal pattern; their volume decreased as the atmospheric and water temperature 464 

rose due to evaporation. This phenomenon changes the concentrations of total solids, 465 

COD and BOD5 (Newman et al., 2000). In summer, lack of oxygen and high 466 

temperatures can cause significantly higher nutrients in the wetland system. This has 467 

a negative effect on nutrient removal by plants due to the lower solubility of oxygen 468 

in hot water, which reduces nitrification and phosphorus removal processes. 469 

Temperature is a key factor related to the activity of nitrification, the effect on the 470 

activities of microorganisms and the diffusion of oxygen into wastewater systems. 471 

(Abbasi et al., 2019). Another study found that the level of iron on the groundwater 472 

had the highest value at 0.83 mg/L during the winter. In contrast, the highest 473 

concentration of nitrates was found in summer at 15.8 mg/L.  474 

 475 

The effect of temperature change on the dissolution of heavy metals has been 476 

observed (Kumar et al., 2016). Lead (Pb) is a hazardous element for human health and 477 

may cause carcinogenic effects mediated by increased oxidative stress, mutagenesis 478 

or altered DNA repair. Furthermore, Pb toxicity involves causing cell damage through 479 

ROS formation, disruption of enzyme formulations, and interference with calcium (Ca) 480 

metabolism. Due to the widespread Pb contamination, bacteria have developed 481 

resistance mechanisms to Pb (Bazzi et al., 2020). According to a study by Castro-482 

González et al. (2018), during summer, a rise in protein concentration of dairy waste 483 

increases the content of Pb due to its affinity to whey proteins. 484 

 485 
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The combination of increased rainfall and the application of dairy waste to land can 486 

lead to soil and groundwater pollution due to high organic compounds such as 487 

proteins and lactose. The study of Donnison et al. (2009) reported that higher 488 

concentrations of Campylobacter and E. coli O157: H7 were transferred from the soil 489 

to the drainage during high rainfall rates. These pathogens were found to drain from 490 

the soil maintained at 10oC for 3 - 4 weeks after applying an inoculated dairy waste. 491 

Heavy rainfall leads to flooding of dairy waste tanks; the runoff point becomes a means 492 

of dispersing microorganisms, spreading them to new areas (Hofstra, 2011). 493 

Furthermore, a possible change in wind speed may affect microbial proliferation and 494 

dairy waste treatment efficiency. A potential increase in wind speed will improve the 495 

aeration rate in wetlands by 20% (Smith et al., 2019). 496 

 497 

Overall, these applications are no longer considered sustainable due to concerns 498 

about the potentially harmful effects on the environment and animals health. 499 

Contaminated effluent can be transported to soil and drinking water sources for 500 

animals and humans (Donnison et al., 2009). The specific potential risks of soil and 501 

water pollution and dangerous, volatile substances because of dairy waste disposal 502 

are not fully characterised. Limited studies refer to the harmful effect of the 503 

environmental conditions on dairy waste.   504 

 505 

4.2 Impact of climate change on dairy waste treatments 506 
The utilisation of dairy waste has received great interest in the last 20 years due to the 507 

different functions of their components and the need to reduce environmental 508 

pollution. To eliminate or reduce the waste, treatments such as mechanical, physical, 509 

chemical and biological processes are applied. The costs for these treatments are very 510 

high; therefore, dairy waste disposal directly in agricultural land as fertiliser and reuse 511 

for animal feed is still the most common (Sharmila et al., 2020). 512 

 513 

Physicochemical treatment includes coagulation/flocculation, micro-/nano-/ultra-514 

filtration, and reverses osmosis, reducing or eliminating colloids of fats and proteins. 515 

The efficiency of physiochemical treatments depends primarily on the quality of dairy 516 
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waste. Dairy waste passing through a cross-flow reverse osmosis membrane system 517 

produces good water quality. However, these techniques are expensive and create 518 

synthetic chemicals which cause problems in the environment. Moreover, the effect 519 

of season and climate-dependent pH fluctuation of dairy waste on the effectiveness 520 

of these techniques must be assessed. Additionally, there is low availability of selective 521 

membranes in the market, and the high flow rates used in the treatment can easily 522 

damage them. Moreover, a large surface area is required for the installation of these 523 

facilities and the need for good training staff, resulting in increased treatment costs, 524 

making it expensive and making it unsuitable for small industries (Alaa et al., 2019; 525 

Ritambhara et al., 2019).  526 

 527 

Biological treatment includes aerobic, activated sludge, and anaerobic technologies 528 

such as anaerobic sequencing batch reactors. These techniques purify the waste by 529 

digesting all the dairy waste components. Anaerobic techniques degrade nutrients by 530 

partly converting them into biogas, whereas aerobic processes result in the 531 

degradation of high organic waste loads. However, these systems are not suitable for 532 

all climates and can be challenging to run and maintain and require the addition of 533 

other feedstocks (Ryan et al., 2016). Gases, such as methane, can be emitted by 534 

anaerobic waste systems impacting climatic conditions (Bhattacharya et al., 2019). 535 

Moreover, biological methods that use natural microbiota decrease biodegradability 536 

as the mortality rate increases due to significant differences in wastewater 537 

characteristics (Alaa et al., 2019). The biological treatment helps the disposal of waste 538 

safely according to environmental standards and minimizes any impact on its 539 

properties caused by climatic changes. However, it can be costly and require a large 540 

area and large reactor size. Furthermore, fat and organics removal efficiency is 541 

reduced due to the formation of long-chain fatty acids and the continuous 542 

accumulation solids in the reactor (Ritambhara et al., 2019). 543 

 544 

Overall, dairy waste treatment in the dairy processing sector consists mainly of 545 

techniques to remove fats and reduce oxygen requirements. Fluctuations in the 546 

concentration of dairy waste over a year lead to uncertainty about the usefulness of a 547 
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single treatment (Yonar et al., 2018). Waste management in the dairy industry is well 548 

recognized; however, the production and disposal of its waste remain a challenging 549 

subject. The application of new treatments that can reduce the exposure of dairy 550 

waste to any impactful climatic stress factors should be considered.  551 

 552 

5.  The potential effect of climate change on current 553 

legislation for dairy waste management  554 

 Disposing of untreated dairy waste directly into nature to minimize operating costs 555 

poses many health risks from a variety of chemicals and microorganisms that can be 556 

transmitted to water and food  (Shete et al., 2013). Therefore, some substances are 557 

subject to strict control to meet waste quality standards from EU Council legislation 558 

(Boguniewicz-Zabłocka et al., 2017). According to the World Bank Group (WBG), the 559 

accepted values of dairy waste compounds on a full-season scale are summarised in 560 

Table 5. The components of dairy waste that contribute towards its pollutant capacity 561 

must be present under certain limits. The total solids should be less than 2.2 g/L, the 562 

COD amounting between 3 and 10 g/L and the BOD5 less than 4 g/L. The accepted 563 

value of pH should range from 6 to 9, with a temperature of less than 38°C.  564 

Furthermore, the organic load for dairy wastewater should not exceed 0.28 - 0.30 Kg 565 

BOD5/m3.  566 

 567 

Accordingly, industries should use appropriate techniques to meet waste disposal 568 

standards. Based on the EU regulations, dairy products must be processed 569 

appropriately and sanitized. The purpose of stabilization procedures is to reduce 570 

pathogens, eliminate unpleasant odors and prevent environmental degradation 571 

(Mroczek et al., 2016). Dairy producers need to develop productive and economically 572 

profitable ways of waste management, thus reducing the levels of infectious 573 

substance and biological agents (Arvanitoyannis et al., 2006). The seasonal variation 574 

is included in these acceptable ranges. Therefore, authorities may need to make 575 

changes in this range dependent on climate change projections. Accordingly, the 576 
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industries should use suitable techniques to meet the waste discharge standards over 577 

a year. 578 

 579 

6. A future perspective on climate change parameters 580 

and their impact on the dairy waste quality  581 

 582 

Global weather patterns have changed noticeably in the last decade. Extreme 583 

temperatures, droughts and seasonal changes such as warmer summers with wetter 584 

and more extended rainy periods have been reported. These extreme weather 585 

conditions are associated with climate change  (Hellberg et al., 2016). The impact of 586 

climate change on dairy production is both direct through effects on the animals 587 

themselves and indirect through effects on crop production and developed exposure 588 

to parasites and pathogens (Silanikove et al., 2015). In 2018, hot and dry weather in 589 

Europe caused a decrease in cereal production. Furthermore, warm weather causes 590 

stress on animal health and milk production (Augère-Granier, 2018). Both events can 591 

directly impact the milk quality and properties of dairy waste dumped or further 592 

processed before it is exposed to our environment. Organisms, parasites and diseases 593 

have been affected by climatic conditions. Climate change is expected to alter the 594 

distribution and impact of microorganisms on human, animal and plant hosts (Bebber, 595 

2019). This section outlines the most critical climate change factors, such as 596 

temperature, CO2 level, wind, rainfall and relative humidity on dairy waste and its 597 

management. 598 

 599 

The projected change in global temperature has an upward trend in most parts of the 600 

world. Global temperatures in 2016, tied with 2020, were the warmest in 140 years, 601 

and this long-term warming trend will continue (NASA, 2018). Along with this rising 602 

temperature trend, the frequency of hot spots is expected to surge in most areas on 603 

a daily and seasonal scale (Hellberg et al., 2016). Further analysis is needed to 604 

understand the impact of temperature change on dairy waste and their microbes. 605 

Another essential climatic factor is atmospheric carbon dioxide, which has increased 606 
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by 20% in the last five years. By the end of 2020, atmospheric carbon dioxide 607 

concentration is expected to reach 411 ppm, which is the highest recorded value in 608 

history (Lindsey, 2020). Exposure of animals to carbon dioxide causes discomfort due 609 

to highly sensitive chemoreceptors. The amount of dissolved carbon dioxide in the soil 610 

is 10 - 50 times higher than in the atmosphere (Yu et al., 2019). Carbon dioxide 611 

influences the regulation of pH in natural water. Dissolved carbon dioxide reacts with 612 

water forming carbonic acid (H2CO3) as follows: 613 

 614 

CO2 (g) + H2O (aq) ⇌ H2CO3(aq)   (1) 615 

Carbonic acid is a diprotic acid  616 

H2CO3(aq)  ⇌ H+(aq)  + HCO3-(aq) (2) 617 

HCO3-(aq)  ⇌ H+(aq)  + CO3-2(aq)   (3) 618 

 619 

This reaction reduces the solvent pH when CO2 is dissolved (Nydahl et al., 2019). 620 

Hence, a possible increase in atmospheric carbon dioxide can be associated with a rise 621 

in liquid acidity, including the liquid waste water. Unfortunately, the effect of CO2 on 622 

dairy waste and their microbes is limited. 623 

The wind and dust are expected to change based on future forecasts. A rise of 0.6 - 624 

12% in wind speed and the cyclone phenomenon is expected to increase by 1 - 8% 625 

over time with cumulative global warming. In general, prevailing surface winds tend 626 

to flow from colder to warmer places due to the different atmospheric pressure (Kling 627 

et al., 2020). Climate change is also likely to raise global dust due to desertification 628 

and increased wind speeds associated with storm systems. High speed winds separate 629 

particles from the ground, which are lifted into the atmosphere and transported over 630 

long distances. Hence contaminated particles may be transferred to new areas and 631 

cause the spread of diseases.  Another climatic factor is the rainfall, for which a 16 - 632 

24% surge in intensity is predicted globally by 2100 (Hausfather, 2018). Areas that 633 

experience increased rainfall is likely to have a rise in the level of groundwater. 634 

Groundwater is the source of one-third of all freshwater used for domestic, 635 

agricultural and industrial applications. Moreover, the spatial distribution and 636 

availability of pastures and water depend on rainfall availability.  637 
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 638 

Lastly, the relative humidity is expected to rise as the earth heats. A 4oC increase will 639 

result in about 28% more water vapor in the atmosphere and soil (Hausfather, 2018). 640 

This change can improve the proliferation of fungal mycotoxins and pathogens (Sun et 641 

al., 2011). Many studies have investigated the negative effect of the seasonal and 642 

climatic conditions on animal health, quality and quantity of milk; hence there is 643 

evidence for a possible link between climate change and dairy waste. 644 

 645 

The impact of seasonality and climate change on various aspects of human and animal 646 

health and welfare is a widespread issue. It has also been recognized to have a 647 

significant potential for bacterial contamination and quality of food and water 648 

(Miraglia et al., 2009). However, climate change effects on the food supply chain have 649 

received less attention than other aspects of humans and animals health. Further 650 

analysis is needed to understand the mechanisms of microbial survival in combination 651 

with climate change to reduce human health and safety risks. The dairy industry is a 652 

vulnerable sector to climate change, given its sensitivity to seasonality. It is imperative 653 

to understand the impact of climate change on the dairy industry and manage dairy 654 

waste with various climate change processes.  655 

 656 

Conclusion 657 

The dairy industry is an important food processing sector with high water 658 

consumption and generates large waste quantities. The composition of dairy waste 659 

varies from industry to industry and seasons. Information on the negative impact of 660 

seasonality on the composition waste streams is limited. In a general view, dairy waste 661 

has high organic content, BOD and COD, heavy metals and water during the summer. 662 

If not treated properly and deposited directly onto the environment, it can cause 663 

serious environmental problems affecting humans, agriculture, terrestrial and aquatic 664 

animals. 665 

 666 
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In this review, the impact on the quality of dairy waste under various important 667 

environmental factors (either seasonal or climatic) have been identified and presented. 668 

The main conclusion that can be drawn is that climate change scenarios will negatively 669 

affect the dairy industry. It is essential to expand current knowledge on the relationship 670 

between climate factors and microbial prevalence and dispersal in the environment. 671 

Future studies are needed to investigate the impact of environmental changes on the 672 

quality of dairy waste and its microbiota to elucidate the effects of climate change on 673 

microbial safety. Once these relationships are understood, they can be used to 674 

develop or improve interventions that outweigh environmental-climate change risks. 675 

Importantly, progress in this area also requires scientists from various disciplines to 676 

work together to address the complex interactions of climate, ecosystems and 677 

biohazards. This review is based on the view that further research in this area is 678 

essential. 679 
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 Table 1.  Compounds of whey in a different milk origin (species) ±. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
± values represent averages of three or more studies,  

* not available, 
1Lozano et al. (2008), 2Giroux et al. (2018), 3Gomes et al. (2013), 4Sanmartín et al. (2012), 5Blaschek et al. (2007), 6Dareioti et al. (2015), 7Andreottola et al. (2002),  8 Kessler (1981), 9Odlum 

(1990),  10Bayer (1983), 11Donkin (1997), 12Yadav et al. (2014), 13Macedo et al. (2018), 14Popović-Vranješ et al. (2017), 15Kaminarides et al. (2018), 16Secchi et al. (2018), 17Chwialkowska et al. 

(2019)

Compound Cow Goat Sheep 
Sweet Acidic Sweet Acidic Sweet Acidic 

Ash (% w/w) 0.54 ± 0.09 
1,2,3 

0.62 ± 0.03 
2,4 

0.51 ± 0.04 
2,3,4 

0.70 ± 0.03  
2,15 

0.55 ± 0.01 
2,15,16 

0.82 ± 0.02  
2,16 

BOD5 (g/L) 41.35 ± 3.60 
7,9 

33 ± 5.80 
8,11 

n.a. * n.a. * n.a. * n.a. * 

COD (g/L) 67.50 ± 6.20 
7,9,10 

61.20 ± 3.80 
8,10 

n.a. * 68 ± 2 
12 

n.a. * 76.30 ± 3.80  
17 

Lactose (% w/w) 0.48 ± 0.00  
1,2,3 

0.45 ± 0.28 
 2,4 

0.48 ± 0.03 
2,3,4,13 

0.35 ± 0.25 
2,12,14 

0.44 ± 0.06  
2,13 

0.42 ± 0.02  
 2,17 

Oils & Fats (% w/w) 0.56 ± 0.08   
2,3 

0.44 ± 0.10 
2,4,5 

0.60 ± 0.23 
2,3,4,13 

0.25 ± 0.19 
2,12,14 

1.45 ± 0.41  
2,13,15 

0.99 ± 0.01 
 2 

pH 5.91 ± 0.08 
1,2,3,7 

4.73 ± 0.04  
2,11 

6.06 ± 0.12 
2,3,4,13 

4.10 ± 0.48 
2,12,14,17 

5.87 ± 0.30 
 13,15 

4.72 ± 0.20  
2,17 

Protein (% w/w) 0.95 ± 0.05 
1,2 

0.81 ± 0.20 
2,4,5 

0.88 ± 0.20 
2,3,4,13 

0.85 ± 0.06 
2,12,14,17 

2.52 ± 0.12 
13,15,16 

1.64 ± 0.02  
2,16 

Total Solids (% 
w/w) 

6.94 ± 0.07 
1,2,3,7 

6.68 ± 1.30 
2,4,5 

6.93 ± 0.19 
2,3,13 

6.30 ± 0.20  
2,12,14,17 

9.39 ± 0.47 
2,13 

6.69 ± 0.01  
2,17 
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Table 2. Protein compounds present in the whey of different animal species±. 

Compound Cow Goat Sheep 
α-Lactalbumin (g/L) 1.45 ± 0.09 1,2,3,4 1.94 ± 0.53 3,4,6,7 0.94 ± 0.09 4,6,7,8 
β-Lactoglobulin (g/L) 4.98 ± 0.12 1,2,3,4 5.24 ± 0.44 3,4,6,7 6.12 ± 0.13 4,6,7,8 
Glycomacropeptides (mg/L) 1.20 ± 0.10 2,6 n.a* 1.20 ± 0.42 5,8 
Immunoglobulin (g/L) 0.69 ± 0.10 1,2,3 0.49 ± 0.15 3,9 1.44 ± 0.05 7,8,9 
Lactoferrin (mg/L) 3.10 ± 0.06 1,2,7 1.38 ± 0.37 7 3.57 ± 0.79 7,8 
Lactoperoxidase (mg/L) 3 ± 0.10 2 n.a.* 3.30 ± 0.51 8 

Serum albumin (g/L) 3.60 ± 0.40 1,2,3 4.30 ± 0.52 3,9 5.21 ± 0.31 7,9 
± values represent averages of three or more studies,  

* not available, 
1 Doultani et al. (2004), 2 De Wit (1998), 3 Sanmartín et al. (2012), 4 Moatsou et al. (2005), 5 Kerasioti et al. (2016), 6 
Ruprichova et al. (2014), 7  Ha et al. (2014), 8 Pilbrow et al. (2016), 9 Giroux et al. (2018).  
 
Table 3. Characterisation of dairy wastewater based on different species of animals±. 

Compound Cow Goat & Sheep 
BOD5 (g/L) 2.81 ± 1.40 1,2,3 7.75 ± 4 4,5 
BOD5/COD  0.53 ± 0.38 3 0.56 ± 0.06 4,5 
Calcium (g/100g)  n.a.* 7.50 ± 8.50 4,6 
COD (g/L) 20.75± 1.90 1,2,3 13.10 ± 6.70 4,5 
Magnesium (mg/L) n.a* 68.40 ± 30.70 4,6 
Nitrogen (mg/L N) 61 ± 25 2,3 319 ± 66.68 4,5 
Oils and fats (mg/L) 320 ± 48.40 2 248 ± 7.10 5 
pH 7 ± 0.80 1,2,3 4.85 ± 0.99 4,5,6 
Total solids (g/L) 2.63 ± 1.45 1,2,3 8.20 ± 0.86 4,5,6 
Total dissolved solids (g/L) 1.86 ± 0.20 1,3 5.34 ± 0.58 4,5,6 
Total suspended solids (g/L) 0.62 ± 0.06 1,2,3 2.45 ± 0.26 4,5 
Turbidity (NTU)  n.a.* 1170 ± 57.10 4,5 

± values represent averages of three or more studies,  

* not available, 
1 Venkata Mohan et al. (2007), 2 Janni et al. (2009), 3 Gutiérrez et al. (1991), 4 Prazeres et al. (2016), 5 Rivas et al. 

(2010), 6 Asunis et al. (2019). 

 

Table 4. Physicochemical properties of dairy sludge±. 
Compound Dairy sludge levels 
Ash (% w/w) 22.50 ± 3.35 2,4 
Cadmium (mg/kg)  0.07 ± 0.01 4 
Calcium (g/kg)  48.52 ± 9.40 3,4 
Carbon (% w/w) 38.40 ± 2.51 1,2,4 
Chromium (mg/kg)  10.79 ± 0.44 3,4 
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Copper (mg/kg)  10.04 ± 0.46 3,4 
Iron (g/kg)  27.70 ± 1.50 3 
Magnesium (g/kg)  2.90 ± 0.43 3,4 
Mercury (mg/kg)  0.03 ± 0.00 4 
Nickel (mg/kg) 6.80 ± 5.10 3,4 
Nitrogen (% w/w)  5.30 ± 0.12 1,2,3,4 
Phosphorus (g/kg) 33.04 ± 0.25 3,4 
Potassium (g/kg) 7.10 ± 0.40 3,4 
Sulfur (g/kg) 6.10 ± 3.20 1,2,3 
Zinc (mg/kg) 82.41 ± 2.99 3,4 

± values represent averages of three or more studies,  
1 Kwapinska et al. (2017), 2 Horvat et al. (2019), 3 Daly et al. (2019), 4Oszust et al. (2018). 

 

Table 5. Acceptable levels of dairy waste based on (WBC, 2007). 

Characteristics Unit Acceptable level 

BOD5 g/L < 4 

Conductivity mS/m < 160 

COD g/L 3-10 

Nitrogen mg/L < 10 

pH - 6 - 9 

Phosphorus mg/L < 2 

Sodium mg/L < 200 

Sulphate mg/L < 300 

Temperature °C < 38 

Total coliform bacteria MPN/100mL 400 

Total solids g/L < 2.2 

 


	Highlights
	Abstract
	Keywords
	Introduction
	1. Dairy industry
	2. Dairy waste composition and its relation to climatic/seasonal stress factors
	2.1 Whey
	2.2 Wastewater
	2.3 Sludge

	3. The impact of seasonal and climatic variation on the microbiota of dairy waste
	4. The effect of seasonality and climate change on dairy waste disposal and valorisation practices
	4.1 Modes of disposal of dairy waste
	4.2 Impact of climate change on dairy waste treatments

	5.  The potential effect of climate change on current legislation for dairy waste management
	6. A future perspective on climate change parameters and their impact on the dairy waste quality
	Conclusion
	Acknowledgements
	References
	Figure caption
	Figures
	Tables

