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ABSTRACT
This paper introduces a fully automatic method for generating video
game tutorials. The AtDELFI system (AuTomatically DEsigning
Legible, Full Instructions for games) was created to investigate
procedural generation of instructions that teach players how to
play video games. We present a representation of game rules and
mechanics using a graph system as well as a tutorial generation
method that uses said graph representation. We demonstrate the
concept by testing it on games within the General Video Game
Artificial Intelligence (GVG-AI) framework; the paper discusses
tutorials generated for eight different games. Our findings suggest
that a graph representation scheme works well for simple arcade
style games such as Space Invaders and Pacman, but it appears
that tutorials for more complex games might require higher-level
understanding of the game than just single mechanics.
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1 INTRODUCTION
Artificial intelligence has been used in many roles in games, most
prominently for playing games, generating game content, and mod-
eling players [36]. In this paper, we present a prototype system for
generating video game tutorials, a new application of AI in games
presenting both important potential practical applications and hard
research challenges.

Tutorials are designed to help you learn to play a game. They
come in several different forms, such as textual instructions (e.g.
“press A to jump”), videos where an agent plays part of the game to
show how it’s done, and instructional content such as levels that
gradually introduce core mechanics. Many video games utilize some
combination of these different types of tutorials to teach players
how to play them.

Being able to automatically or semi-automatically generate game
tutorials would have significant benefits for game development,
given the cost and effort associated with authoring tutorials for
games. But it would also be important for making the vision of
automated game generation possible, as attempts at video game
generation so far have highlighted the difficulty of evaluating gener-
ated games without knowing how to play them as a human [5, 25].
Finally, a system for automatic tutorial generation may also give
us insight into game design itself, as it could show us new ways of
playing a game or give us a way of measuring qualities of a game
(such as its depth) from the generated tutorial [20].

The system we describe in this paper generates a combination
of textual instructions and visual videos. Given a simple arcade
game, it describes a set of actions to take in order to score points
and to win the game. The actions are at the level of a single game
mechanic, such as firing a shot at something or collecting an item.
Each instruction is complemented by a short video snippet, showing
how a game-playing agent executes the action.

In order to make this possible, the system described in this paper
builds on top of the General Video Game AI Framework (GVG-
AI) [27, 28], which is an AI benchmarking and game prototyping
framework where games are specified in the Video Game Descrip-
tion Language (VGDL) [12]. VGDL is a high-level language for 2D
arcade games, and using this language allows us to analyze games
at the mechanics level. The GVG-AI framework also contains a
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number of good general-purpose game-playing agents, allowing
us automatically play the games involved, another crucial part of
the tutorial generation process. Finally, as the GVG-AI framework
currently contains more than 100 games, we can easily test the
system over a large number of different games.

While building our tutorial generation system on top of the
GVG-AI framework can be seen as a form of “cheating”, given the
capabilities GVG-AI affords—in particular, access to the game rules
in easy-to-parse symbolic format—and the fact that no released
games are written in VGDL, we see it as a form of scaffolding that
allows us to prototype a system to showcase the capabilities a truly
general tutorial generation could one day include, once the requisite
underlying technologies exist. We foresee that, in the future, some
combination of automatic game state identification, code inspection
and other technologies could make this system a reality.

2 BACKGROUND
This section expands on the evolution of tutorials in video games
and different types of tutorials. Additionally, it highlights works
related to automatic methods for tutorial generation and finding
meaning from game mechanics.

2.1 An Overview of Tutorial Evolution
In video games, tutorials are often the very first thing a player
encounters. Their purpose is to teach a player how to play the
game. Tutorials and how they are presented to players have been
evolving since the first games were introduced to the public [33].

The first electronic games often lacked formal tutorials. Arcade
games had simple mechanics that players could pick up easily:
“Tilt the joystick to move,” “Press button to shoot,” etc. Pong (Atari
1972) is an example of a simplistic game without need of a tutorial.
As arcade games became more popular, game designers began to
include easy-to-read mechanic tables and videos on the arcade
machines themselves. StreetFighter (Capcom 1987) and Pac-Man
(Namco 1980) used both images and text written on the machine
surface, as well as in-game videos of certain mechanics and moves
players can use.

The introduction of consoles to the gaming community allowed
designers to create games with more complex mechanics. To help
players achieve their goals in the game, designers began to in-
clude formal tutorials teaching players the gameplay basics. Games
like Space Invaders (ATARI 1978) and Super Mario Bros (Nintendo
1985)included booklets with text and photos explaining certain
moves and mechanics.

Designers experimented with other methods of teaching game
rules, such as interactive in-game tutorials. Figure 1 shows an early
example of interactive in-game tutorial in Gauntlet (Atari 1985), a
complicated RPG dungeon crawler. To ease the player’s learning
curve, the tutorial was split among several levels. Whenever players
first encountered a new element, the game paused and explanatory
text appeared. Designers began to take advantage of just-in-time
information systems that video games afforded, which has only
in recent years been explored and researched in depth along with
other similar techniques [14, 15, 24, 29]. Parametrized design spaces
[18, 30] might assist with the exploration of interactive tutorial

Figure 1: Gauntlet interactive tutorial about colliding with
enemies.

design, as it becomes easier to experiment with different teachable
elements in a level.

2.2 Tutorial Types and Content
Whether or not a tutorial is ingrained in gameplay, it tends to fall
somewhere along the axis of Sheri Graner Ray’s knowledge acqui-
sition styles for players [31]. These styles range from Explorative
Acquisition to Modeling Acquisition. Explorative acquisition em-
phasizes learning about something by doing it, whereas modeling
acquisition focuses on studying how to do something before doing
it. While one cannot say with absolute certainty if one technique is
superior to another, different techniques suit different audiences
and/or games [2, 31, 35]. According to Andersen et al., the effec-
tiveness of tutorials on gameplay depends on how complex a game
is to begin with [2]; sometimes tutorials are not useful at all.

In a previous research, we offered a non-exhaustive list of three
different tutorial types in games: Teaching Using Instruction, Teach-
ing Using videos, and Teaching Using a Well Designed Experi-
ence [17]. Instruction Tutorials are simple text-based instructions
that the player reads, similar to how board game instruction books
explain rules. Demonstration Tutorials show examples of actions
the player can take in game, such as inMega Man X (Capcom 1993)
when the player is shown the charging up mechanic [13]. Carefully
Designed Experience Tutorials set up scenarios within which the
player can explore and discover rules and mechanics. One of the
most well known examples of this would be Super Mario BrosWorld
1-1, a level that teaches the player about the jumping mechanic,
that the goal of the game is to go to the right, what is good to collect
in the game (coins and power ups), and what is bad (goombas).

To gain more understanding about tutorials, games, and mechan-
ics, researchers have created various languages to model games.
GVGAI’s VGDL (discussed in 3) is an example of such a language.
Dan Cook’s concept of skill atoms [4], which refers to the feedback
loop through which a player learns a new skill during gameplay, is
another example. Figure 2 shows the skill atom for learning how to
jump. A skill atom can be divided into four separate elements:
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Figure 2: A skill atom for learning how to jump in any
generic game, in the order of action (button), simulation
(jump and collide), feedback (animation on screen), andmod-
eling (“I can jump!”)1

• The Action the player performs to learn a new skill. This
could involve anything from pressing a button or doing a
complex series of actions to accomplish an end goal.

• The Simulation of that action in game. The player’s action
somehow affects the world.

• The Feedback from the simulation informs the player of the
new state of the game.

• The Modeling the player now performs within their head,
mapping the action they just took to the feedback from the
simulation. “If I press this button, my character jumps up.”

Skill atoms can be associated with other skill atoms to form skill
chains. Using skill chains, one could presumably model any game.

A related concept is strategy ladders, where each step is an
addition to the previous step’s strategy that makes a significant
difference in playing. It has been proposed that a game’s depth can
be defined as the length of its longest strategy ladder [20].

2.3 Generative Methods for Tutorials and
Game Mechanics

Several systems address challenges related to tutorial generation.
TutorialPlan [21] generates text and image instructions for new
users of AutoCAD. Blackjack and poker heuristics have been gen-
erated to create effective strategies for beginners[6–8]. Mikami et
al. generated tutorials for API coding libraries [23], claiming that
the resulting generated tutorials helped users learn libraries more
effectively than current tutorials. Alexander et al. formalized the
game logic of Minecraft (Mojang 2009) into mechanics to create ac-
tion graphs, representing the player experience, and created quests
and achievements based off those actions [1].

Another approach is that of Game-O-Matic [34], which generates
arcade style games and instructions using a story-based concept-
map inputted by a user. After the game is created, Game-O-Matic
generates a tutorial page, explaining who the player will control,
how to control them, and winning/losing conditions, by using the
concept-map and relationships between objects within it. Mappy
is a system which takes a Nintendo Entertainment System game
1image from https://www.gamasutra.com/view/feature/129948/the_chemistry_of_
game_design.php?page=3

and a sequence of buttons presses as input to generate an approxi-
mation of a linked map of rooms [26]. Mappy essentially attempts
to create understanding of map levels from movement mechan-
ics. This is similar to what Summerville et al. created as a part of
the Gemini system, a logic program that performs static reason-
ing over game specifications in order to find meaning [32]. One
can see overlap between our system and theirs, in particular the
similarities between AtDelfi’s condition/action nodes (covered in
section 4.1.1) and Cygnus’ precondition/result formalisms. Within
the Cygnus system, the player can derive higher-level meanings
about the game in question from implicit rules (which they call
“dynamics”). However this derived knowledge is not structured in
the form of a tutorial. Whereas the Cygnus system takes game
mechanics as input, AtDelfi was designed to perform automatic
mechanic identification and automatically construct tutorials out
of that.

3 THE GENERAL VIDEO GAME ARTIFICIAL
INTELLIGENCE FRAMEWORK

The General Video Game Artificial Intelligence framework [28]
(GVG-AI) is a framework built to run games written in the Video
Game Description Language (VGDL) [12]. GVG-AI was originally
developed in the context of the eponymous competition, but has
since been used in various research projects. The framework allows
the use of automated agents interchangeably between games. To
be well-equipped to play different games, an agent must hold a
varying set of skills, such as reacting to the system, agile decision
making and long-term planning. Thus, success at the set of GVG-AI
games involves adapting to changing mechanics, goals and strategy
requirements in parallel fashion to how high-skilled players adapt
to their opponent strategies to win.

The Video Game Description Language [12] (VGDL) is a game
description language used to represent 2D games of the arcade
(Pac-man), action (Space Invaders), and/or puzzle game (Sokoban)
genres. VGDL games consist of 2 parts: a game description and
level descriptions. The game description is responsible for holding
information about game objects, game mechanics and termination
conditions. Figure 3 shows a simple Sokoban game and its game
description. The game description consists of 4 subparts:

Sprite Set: a hierarchical list of game objects, called game sprites.
Similar game sprites can be grouped under a common name
in the hierarchy, which is considered a parent of these simi-
lar game sprites. For example, in Pac-man, two sprites are
grouped into the “Pac-man” parent type: hungry and powered.
Each type shares some game rules with the other while also
having different game rules associated with it: Whereas hun-
gry can be destroyed by ghosts, powered can destroy ghosts
instead. Each sprite has a type, orientation, and image. The
sprite type defines its behavior, e.g. in Pac-man, a ghost is
a RandomPathAltChaser, which means it chases a “hungry”
Pac-man but flees from it after Pac-man eats a power pellet.

Interaction Set: a list of all game interactions. Interactions occur
upon collision between two sprites. For example, In Pac-man,
if the player collides with a pellet, the latter will be destroyed
and the score increases.

https://www.gamasutra.com/view/feature/129948/the_chemistry_of_game_design.php?page=3
https://www.gamasutra.com/view/feature/129948/the_chemistry_of_game_design.php?page=3
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Figure 3: A definition of a simple game (a version of
Sokoban) in VGDL, and a screenshot of part of the game in-
engine.

Termination Set: a list of conditions, which define how to win or
lose the game. These conditions can be dependent on sprites
or on a countdown timer. For example, in Pac-man, if the
player eats all the pellets, the player wins the game.

Level Mapping: a table of characters and sprite names that is used
to decode the level description.

The level description contains a 2Dmatrix of characters, and each
character can be decoded using the Level Mapping. Each character
maps to game sprites’ starting location for that level.

4 SYSTEM OVERVIEW
AtDELFI ’s tutorial generation process starts by creating a “me-
chanic graph”, which tracks all mechanics, game objects, win-
ning/losing conditions, and user-input information in the game. It
encapsulates objects, conditions, and actions as nodes and creates
edges, which represent relationships between nodes, as described in
Sections 4.1.1 and 4.1.2. After building the graph, the system finds
“critical paths” by tracing mechanics from user inputs all the way to
terminal states, as explained in Section 4.1.3. Occasionally, rules are
similar enough to undergo “rule merging”, which we explain in Sec-
tion 4.1.4. The system then constructs the tutorial instructions (see
Section 4.2) and finally collects frames with agent-play-throughs
to display on a tutorial card (see Section 4.3).

4.1 The Mechanic Graph
At the core of tutorial generation is the system’s understanding of
the game rules and mechanics. To organize this, the system uses a

Figure 4: An examplemechanic: “If the Player stomps on the
head of a Goomba, destroy the Goomba.”

directed graph to keep track of relationships between elements of
gameplay, which is inspired by Dormans’ mission graph concept [9–
11]. By representing the game space as a mechanic graph, one can
easily trace mechanics and find skill chains described by Cook [4].

4.1.1 Nodes. There are three unique types of nodes: objects,
conditions, and actions. Objects are anything the player can interact
with or see in a game, e.g. characters, enemies and the player avatar.
Time is also included as an in-game entity, as some games have
termination conditions based on a certain amount of time passing.
Actions are verbs the game uses to change in-game objects, such
as destroying a specified game object, transforming a object into
another object, or winning the game. Conditions mark events that
must take place to enact an action, as, for example, pressing a button,
checking if the amount of passed game time is over a certain amount,
or if the player’s sprite has been destroyed.

A set of nodes forms a mechanic, which describes the condition
an object or group of objects must trigger for an associated action
to take place. This representation is similar to Cook’s skill atoms [4].
When mechanics are linked together, they create structures like
Cook’s skill chain theory. Figure 4 is an example of a mechanic
describing how stomping on the head of a Goomba in Super Mario
Bros (Nintendo 1985) will destroy said Goomba. A “Player” object
node and a “Goomba” object node both point at a “Stomp On Head”
condition node. The condition node leads to a “Destroy” action
node, which is pointing back to the “Goomba” object node.

4.1.2 Controls and Points. Depending on the type of game being
played, information about control and input may be contained
within a node representing the player character, or stored separately
from the graph in case the player is not explicitly controlling a single
character. This type of information includes anything that explains
the player’s ability to affect the game through direct input, such as
pressing buttons or using a game-pad.

Information about points is contained in the specific action that
would cause an increase or decrease of points. For example, stomp-
ing on a Goomba in Super Mario Bros (Nintendo 1985) gives the
player 100 points, and would be represented by a mechanic similar
to the one in Section 4.1.1. The only difference would be found
in the “Destroy” action node, where there would be an additional
attribute about raising the score by 100 points.

4.1.3 Critical Paths. Just as each node in the mechanic graph
has inputs and outputs, mechanics themselves can be represented
as having inputs and outputs. We define critical paths as the series
of mechanics starting from an explicit player input and ending with
a winning or losing terminal state. For example, a player wins Space
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Invaders (Nishikado 1978) when all aliens in a level are destroyed.
A critical path for Space Invaders would be something like: “Use
the joystick to move, press A to shoot. If a missile and an alien
collide, destroy the alien (and get points). If all aliens are destroyed,
the player wins.” The specific pathfinding algorithm used to find a
correct critical path depends on the game and game mechanics.

4.1.4 Rule Merging. Similar mechanics have the potential to be
combined to simplify how tutorial instructions are presented to the
user. We call this process “rule merging.” The exact implementation
behind this depends almost entirely on the game, but the motivation
is the same: make the tutorial more legible by grouping similar
mechanics. For example, using Super Mario Bros as an example
again, instead of saying “the Player can kill Goombas using fireballs
and the Player can kill Koopas using fireballs,” the system can
simplify it to “the player can kill enemies using fireballs.”

4.2 Generating Instructions
Using winning and losing critical paths, points, and movement in-
formation, the system uses a grammar to generate text instructions.
Like rule merging, this process is heavily dependent on a given
game, as language will vary based on particular game mechanics.
For example, colliding with anything in Space Invaders will require
instruction language such as “Colliding with an alien will destroy
the alien.” An item in The Legend of Zelda (Nintendo 1986), on the
other hand, will be “collected” if the player collides with it.

4.3 Creating videos
In order to gather video frames to display in a tutorial, the system
captures play-through data from artificial agents who can reliably
beat the game. By tracking when mechanics are triggered in-game,
the system can then display an agent executing that mechanic next
to the instructions describing it.

5 CREATING TUTORIALS FOR GVG-AI
GAMES

As a proof-of-concept for the AtDELFI system, we tested our design
on games from the GVG-AI framework. The following subsections
describe the process of generating a tutorial for any GVG-AI game
and include GVGAI’s Aliens as an example of this process.

5.1 Building the Graph from VGDL
First, the system reads the Sprite Set, the Interaction Set, and the
Termination Set from the game description file of a GVG-AI game.
Every sprite found in the Sprite Set is given an object node within
the graph. Every interaction and termination in the Interaction and
Termination Set is given a condition node and an action node.

In GVG-AI, it is safe to assume that any given interaction within
the Interaction Set in a game will have a “collide” condition. How-
ever, the Termination Set might contain mechanics with unique
conditions, such as counting how many sprites exist in the game
or ending the game after a certain amount of time. Sprite nodes
involved in an interaction or termination rule are linked in the
directed graph to their associated condition nodes, while condition
nodes are linked to their associated action nodes. This process’ end
result is a fully functional directed graph that adequately maps

Table 1: Avatar Type and Movement Parsing

Avatar Type Movement
Moving “...use the four arrow keys to move.”
Horizontal “...use the left and right arrow keys to move.”

Flak “...use the left and right arrow keys to move.
Press space to shoot/use/release [object].”

Vertical “...use the up and down arrow keys to move.”

Ongoing
“...use the arrow keys to change direction.
You will not stop traveling in that
direction until you change direction again.”

Ongoing Shoot “...use the arrow keys to change direction.
Press space to shoot/use/release [object].”

Ongoing Turning “...use the arrow keys to change direction.
You cannot do 180 degree turns!”

Oriented “...use the arrow keys to turn and move.”

Shoot “...use the arrow keys to turn and move.
Press space to shoot/use/release [object].”

every mechanic in the game. A generated graph of GVGAI’s Aliens
has been included in the supplemental documents for this paper.

5.1.1 Controls. Information about user controls is implicitly
stored when the avatar sprite (the sprite whom the player always
has direct control of in any GVG-AI game) is registered into a sprite
node, as all GVG-AI games require the player to explicitly control a
single sprite. The avatar type determines controls and movement
afforded to the player. Table 1 shows the different types of avatars
and how movement information is parsed from them.

5.1.2 Points. Every mechanic’s action node contains score data.
Each interaction in the Interaction Set that results in a change in
points registered its mechanic as a point-changing mechanic in the
graph’s generation and stored how it affects point totals. Because
of this, the graph has a list of all point-affecting mechanics.

5.1.3 Critical Paths. Critical paths can lead to wins or losses.
For critical paths that lead to wins, the system observes every avatar
sprite node in the graph (in some GVG-AI games, there are multiple
avatar sprites). From each avatar sprite node, it then finds every
possible path from that node to every winning terminal mechanic.
Afterwards, it sorts these paths by length and picks the shortest
path for every terminal mechanic. Finally, it iterates over every
avatar sprite and picks the longest “shortest path” for each terminal
mechanic. Preliminary testing suggested that this method results in
a concise critical path that does not cut out important mechanics.

For critical paths leadings to losses, the system observes every
losing terminal mechanic. From each of these mechanics, it works
backwards attempting to decipher what might cause the mechanic
to activate. In GVG-AI, there are two terminal conditions: a time-
out, or the current number of clones of a certain sprite is at some
threshold. The first is easy for the system to decipher, as no specific
mechanic causes a timeout. The second requires the system to look
at the sprite involved in the terminal mechanic, and see what other
mechanics would impact its value. Any mechanic that achieves this
goal is included in the losing critical path, i.e. any mechanic causing
the number of clones of this sprite to rise or fall.
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Figure 5: Aliens - Avatar KillSprite Rule Merging

Figure 6: A subtree of the overall text-replacement tree for
all GVGAI games in the AtDELFI System

5.2 Rule Merging
There are cases where rules in a GVG-AI game are similar enough to
be merged when describing them to the player, i.e. combined into a
single rule rather than explained separately. For every rule from the
points and critical paths sections, the system loops through sprites
that share parents with the two sprites involved in the mechanic.
If it can find an identical mechanic in every sprite, the mechanics
are merged into a single mechanic. Parent data for a sprite can be
found within the sprite node, as described in Section 5.1. Figure 5
provides an example of rule merging in the GVG-AI’s Aliens. It
shows two different rules being merged into one generic rule, which
destroy the avatar upon collision with both kinds of alien. Since
both alienGreen and alienBlue destroy the avatar upon collision,
they can merge into a single “alien”-based rule.

5.3 Tutorial Instructions
A tutorial’s instructions are game explanations written in plain
text. To create instructions, the system performs text-replacement
using a decision tree. A subsection of this tree is displayed in Figure
6. Using information about controls, points, and winning/losing
critical paths, the system can generate human-readable text, which
is displayed to the user. Table 2 shows an example of generated
tutorial instructions for GVG-AI’s Aliens. It is important to note
that this text replacement is generalized across every game in the
GVGAI framework. As a result, the names of sprites (i.e. “avatar
(FlakAvatar)” in Aliens) are displayed as they are written in VGDL.

Table 2: Tutorial instructions for GVG-AI’s Aliens

Controls: As the avatar, use the arrow keys to turn and move.
Press space to shoot the sam (missile).

Winning: If you press space, then avatar (FlakAvatar) will
shoot a sam (missile).
If alien and sam (missile) collide, then the alien
sprite will be destroyed.
If there are no more portalSlow (portal) sprites
or portalFast (portal) sprites or alienGreen (alien)
sprites or alienBlue (alien) sprites then you will win.

Losing: If avatar (FlakAvatar) and bomb (misisle) collide,
then the avatar (FlakAvatar) sprite will be destroyed.
If avatar (FlakAvatar) and alien collide, then the
avatar (FlakAvatar) sprite will be destroyed.
If there are no more avatar (FlakAvatar sprites
then you will lose.

Points: If the alien and the sam (missile) collide,
then you will gain 2 points.
If the base and the sam (missile) collide,
then you will gain 1 point.

5.4 Tutorial Videos
Tutorial videos show animated examples of mechanics to the player.
To create them, the system, using an adapted version of Seek-
whence [22], takes frames captured by artificial agents playing the
game and transform them into animations for the player to watch
on a tutorial card, which displays tutorial videos in an easy-to-read
format. Figure 7 shows a section of such a card for GVG-AI’s Aliens.

However, at the moment of this research there is yet to exist an
agent that can beat every game in the GVG-AI framework. There-
fore, in an attempt to make the generator as robust as possible,
the system uses a cocktail of winning competitors from past GVG-
AI competitions, all of which can be found on the GVG-AI web-
site2: adrienctx [28], NovelTS, NovTea [16], Number27 [27], and
YOLOBOT [19]. To capture the full extent of winning and losing
conditions, our system also uses a one-step look-ahead agent and a
doNothing agent. The former looks only one step ahead into the
forward model, while the latter literally does nothing.

Each agent plays every level of a given game. Meanwhile, the
system captures every frame and stores it in a database. After all
agents have played, the system then queries the database for the
exact frame where each mechanic in the critical paths and the
points sections of the tutorial occurred. In the event that an agent
was unable to beat a level, it might be missing frames for a winning
critical path mechanic query, in which case the system will look
at another playthrough. If an agent triggered this mechanic, the
system requests 5 frames around the triggered mechanic to be
placed in the tutorial video. Unused frames are deleted to save space.
Mechanic frames found are bundled together with the mechanic
they show and displayed on a tutorial card in an easy to read format.
Frames are looped through to create an animation demonstrating
the mechanic. If no agent triggered a tutorial-referenced mechanic,
the system does not display any frames. For mechanics that are

2www.gvgai.net
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Figure 7: A tutorial demonstrating mechanics for GVG-AI’s Aliens, the buttons allow the user to switch from winning, losing,
and point-gaining information

merged together, the system displays a video for every mechanic
that was merged.

6 EVALUATION
To evaluate AtDELFI, we used it to generate tutorials for 8 GVG-
AI games: Aliens, Butterflies, Camelrace, Jaws, Plants, RealPortals,
SurviveZombies, and Zelda. These games were selected from the
four different groups identified by Bontrager et al. [3]. This section
is divided into readability of instructions and videos, and analysis of
metrics gathered during agent-play-through.

6.1 Readability
The readability of generated tutorials was evaluated subjectively.
For each tutorial, we read the generated instructions, observed the
demonstrated mechanics, and compared it to the VGDL game de-
scription written by the GVG-AI game developers. Our evaluations
are described below:

Aliens Aliens is a clone of Space Invaders. The player uses arrow
keys to move left and right on the bottom of the screen, shooting
down aliens and avoiding missiles they shoot back. The player
score for each alien destroyed. If the player collides with an alien
or an alien’s missile, they lose the game. The Aliens generated
tutorial was one of the most understandable among the 8 games.
Information given in all four sections of the instructions ade-
quately explained main characteristics of the game: destroy all
aliens and do not get blown up. Agents collected frames that
highlighted every mechanic, making it user-friendly.

Butterflies In Butterflies, players must collect all butterflies and
keep them away from the flowers (as they eat the flowers). Each
butterfly collected increases the score, and after collecting all

butterflies, the player wins. If a butterfly eats a flower, it multi-
plies, and if all flowers are eaten the player loses. The game’s
challenge is balancing flower management to score high without
losing. The Butterflies tutorial did an adequate job at explaining
the objectives of the game. Instructions do not touch upon the
strategy of letting butterflies multiply in order to maximize point
gain, but it does explain how to win, how to lose, and that collect-
ing butterflies is a way to increase score. In addition to winning,
losing, and collecting butterflies for points, the videos show a
sequence where a butterfly collides with a flower and multiplies,
but it does not explicitly comment on this mechanic. It displays
this information only to show that, by allowing all flowers to be
destroyed, the player will lose the game.

Camel Race Camel Race is a racing game. Towin, the player needs
to be the first camel to touch the opposite side of the screen.
There are various obstacles the player needs to avoid in order
to accomplish this goal. The only way to gain any points is by
winning the game. The generated tutorial explains the winning
and losing mechanics. Agent videos show win and lose situations
when the goal-line is on either side of the screen.

Jaws Jaws is a survival game where the player needs to evade/kill
all sharks within 1000 ticks. The sharks are divided into two
types, passive and aggressive. Passive sharks swim in a straight
line and can be killed by the player’s gun, while aggressive sharks
swim towards the player and cannot be killed by bullets. When
sharks die, they turn into jewels, which can be collected by the
player for points. The instructions describe the winning and
losing paths correctly. However, although they explain that by
collecting jewels the score will increase, they fail to include that
jewels are spawned after destroying a shark. This lack of detail
could confuse a player, who does not immediately see where
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jewels come from. Only through watching a video can players
see how jewels are spawned.

Plants Plants is a GVG-AI clone of Plants vs. Zombies (PopCap
Games 2009). The goal is to survive for 1000 ticks. Zombies spawn
on the right side of the screen moving towards the left, and
the player loses if a zombie reaches the left side of the screen.
The player needs to build plants, which fire zombie-killing pea
sprites. Generated instructions explain how to win and to lose,
but come short when it comes to mechanics involving points:
they only explain that when peas collide with zombies the score
will increase. It does not explain that plants spawn peas or that
the player can create plants to defend themselves. Additionally,
the videos do include a sequence showing a pea spawning from a
plant and hitting a zombie along side text “If the zombie and the
pea collide, then you will gain 1 point,” but does not explicitly
comment on the pea spawning mechanic.

RealPortals RealPortals is a GVG-AI clone of Portal (Valve 2007).
The player must reach the door, which sometimes is behind
another locked door that needs a key. The player is restricted by
water, which often lies between them and the door. To succeed,
players need to pick up wands, which allow them to create portals
through which they can spontaneously travel across the map.
There are two different types of wands, and each corresponds to
a different portal gateway. The generated tutorial explain how to
change portal types (by colliding with different wands), but does
not explain how each wand is used to create portals, nor how
the player can travel using the portals. The instructions fail to
explain that the portals are necessary in order to win the game,
however it does include that the player needs to collide with
the goal to win. They also explain that using a portal gives the
player points. None of the agents were able to beat RealPortals.
They show an agent using portals to gain points, but always in
compromising positions (e.g. the agent uses the portal to teleport
into the water, proceeding to die immediately after). Because
none of the agents won, the winning critical path information is
incomplete, specifically the part about colliding with the goal to
win the game, as seen in Figure 8.

SurviveZombies SurviveZombies is a zombie-survival game, where
the player needs to survive for 1000 ticks to win. The player can
increase their score and get more hit points if they pick up honey,
which is created when bee sprites collide with zombies. The
player will lose hit points if they collide with any zombies, and if
their hit points are depleted, they lose the game. The instructions
describe surviving to win, but do not mention the hit point me-
chanic. This is due to this version of tutorial generation not being
created with the understanding of hit point mechanics. It compen-
sates for this by describing that collision with zombies is deadly:
“If avatar and hell collide, then the avatar sprite will be destroyed.”
The instructions also do not mention how honey regenerates
hit points, only explaining that collecting honey awards points.
However, the videos do show the hit point mechanic by display-
ing the moment hit points change when zombies are collided
with or honey is collected.

Zelda Zelda is a simplified GVG-AI clone of the dungeon system
in The Legend of Zelda (Nintendo 1986). The goal is to pick up a
key and unlock the door in the level. The player will encounter
monsters, which can kill the player, causing them to lose. The

player can swing a sword; if they hit a monster, the monster is
destroyed, and the player gains points. Instructions explain the
key and door mechanic used to win the game, as well as how
the player can kill and be killed by monsters. The agent videos
include sequences of every type of monster, killing and being
killed by, the player, making this a user-friendly tutorial.

6.2 Metrics
Figure 9 shows statistics about different GVG-AI games. “Sprite
Count” indicates the number of sprites that exist in a game’s Sprite
Set, “Hierarchy Depth” reflects the maximum depth of parent hier-
archy of sprites, and “Interaction Count” is the number of interac-
tions written in the Interaction Set. We see that the “Sprite Count”
value is almost directly proportional to “Interaction Count” in all
games except for Plants, RealPortals, and Zelda. Plants’ “Interaction
Count” is nearly half of its “Sprite Count,” whereas the “Interaction
Count” is more than twice the “Sprite Count” in Zelda. RealPortals
is known in GVG-AI to be an extremely complicated game, and
thus its “Interaction Count” is over three times its “Sprite Count.”

Figure 10 shows statistics about graphs generated from each
game. “Win Length” tells the number of nodes on the winning
critical path, “Lose Length” reflects the number of nodes on the
losing critical path, “Merged Interactions” indicates how many
interactionswheremerged into one, and “Point Rules” is the number
of different ways the player can score. By looking at Figures 9 and
10, one might begin to conjecture why the tutorial for RealPortals
was insufficient. We believe that the high “Interaction Count” (58
interactions) and the small number of “Merged Interactions” (12
interactions) leaves the algorithm with a rather large graph to
traverse, compared to the mechanic graphs of other games.

All agents track mechanics related to the winning critical path
during play-through. Once all agents finish playing a specific game,
we find, for all play-throughs resulting in victories, the first oc-
currence of each mechanic in the winning critical path. These are
then averaged together by mechanic, by game. Figure 11 is a graph
displaying where, on average, the winning critical path mechanics
occur for the first time. The figure only shows a maximum of 4
events since this is the length of the longest winning critical path
in any of these games. From the image, one can see that the frame
number increases or remains the same with every next event. This
demonstrates that if an agent won a game, it followed the order of
the winning critical path. RealPortal is not displayed in the figure
because none of the agents were able to reach a winning state. Jaws,
Plants, and SurviveZombies are displayed as straight lines on top of
each other because all of them have only one event in their critical
path (“Win the game after 1000 ticks”).

7 CONCLUSION
Automatic tutorial generation is a non-trivial problem. Although
our graph-based representation system works with simple arcade
style games in the GVG-AI framework (such as Aliens and Zelda)
when given an explicit rule representation, it breaks down when
used on complex games like Plants or RealPortals. Tutorials for both
of these games fail to adequately describe the game to the player.
The Plants tutorial did not fully explain that the player needs to
create plants, which fire pellets at the zombies. The RealPortals



AtDELFI:
Automatically Designing Legible, Full Instructions For Games FDG18, August 7–10, 2018, Malmö, Sweden

Figure 8: A tutorial demonstrating mechanics for GVG-AI’s RealPortals, although there are agent videos for points and losing,
the win section is incomplete due to the fact that none of the agents could beat the game.

tutorial did not at all explain that the player can travel through the
use of portals, or that using the portals to move around is required in
every map of the game. This is because critical paths are built using
just VGDL information in the current system, and the knowledge
that one would have to use portals to win would only be obtained
by an actual play-through of the game. It is also of note to mention
that none of the agents were able to win RealPortals, due to the
large search space and delayed reward of winning. Because of this,
its video tutorial missed frames for its winning section. To improve
the system, we would need to either construct or use agents that
are capable of winning the game in question.

It is obvious that there are some limitations to the simplistic
graph system described in this paper. We believe that a successful

Figure 9: GVG-AI games statistics containing the amount of
sprites, the maximum depth of parent hierarchy of sprites,
and the amount of interactions in each game description.

Figure 10: GVG-AI tutorial graphs statistics, showing the
winning/losing path length, the amount of merged interac-
tions in the mechanic graph and the amount of different
ways to score points in each game.

tutorial generator needs to have a higher level of understanding
than just simple mechanics, when it comes to more complex games.
Our system used a longest-shortest path algorithm to find critical
paths in the mechanic graph. However, we hypothesize that using
an agent to track which mechanics it used during play would result
in more effective tutorials. We did not implement this idea in this
project due to time constraints, but by tracking the frequency count
of each mechanic, we might be able to find a more accurate critical
path containing well-used mechanics rather than a longest-shortest
path, assuming that the mechanics the agent used more frequently
are significant for winning.

We would like to explore tutorial generation without an explicit
rule-based representation like VGDL. Rather, we want to discover
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Figure 11: The average of the frame number where the win-
ning critical path interactions happens for the first time.

mechanics by using agent play-throughs, and by using the discov-
ered mechanics, construct a mechanic graph. Methods for auto-
matically identifying maps, mechanics and other characteristics of
games given only an executable version of the game show promise
for this kind of project [26]. As stated above, there are limitations
to our system, and one priority is to improve it for GVG-AI games.
We are interested in using this method on games outside of the
GVG-AI framework, such as creating modular tutorials for vari-
ous mechanics in Infinite Mario Bros (Persson 2009) or building a
treasure/scavenger hunt generator in Minecraft (Mojang 2009).
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