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Summary:
Procedural Content Generation (PCG) has been in the industry since the early
days of Video Games. It was used to support huge amount of data with a small
footprint due to technical limitations. Although technical difficulties became
history and storage is no longer a problem, PCG is still one of the hot topics
in Video Games’ research field. PCG helps in reducing development time and
cost, becoming more creative, and understanding the process of creating game
content. In this work, a system is proposed to help in generating levels for
Puzzle Script. Levels are generated without any restriction on the rules. Two
different approaches are used with a trade off between speed (Constructive
approach) and playability (Genetic approach). These two approaches use a
level evaluator that calculates the scores of the generated levels automatically
based on their playability and difficulty. The generated levels are assessed by
human players statistically, and the results show that the constructive approach
is capable of generating playable levels up to 90%, while genetic approach
can reach up to 100%. The results also show a high correlation between the
system scores and the human scores. The constructive approach is used to
generate rules for Puzzle Script as well. The results of the new system prove
the possibility of generating playable rules without any restrictions.
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Abstract
Procedural Content Generation (PCG) has been in the industry since the early days

of Video Games. It was used to support huge amount of data with a small footprint due
to technical limitations. Although technical difficulties became history and storage is no
longer a problem, PCG is still one of the hot topics in Video Games’ research field. PCG
helps in reducing development time and cost, becoming more creative, and understanding
the process of creating game content. In this work, a system is proposed to help in
generating levels for Puzzle Script. Levels are generated without any restriction on the
rules. Two different approaches are used with a trade off between speed (Constructive
approach) and playability (Genetic approach). These two approaches use a level evaluator
that calculates the scores of the generated levels automatically based on their playability
and difficulty. The generated levels are assessed by human players statistically, and the
results show that the constructive approach is capable of generating playable levels up
to 90%, while genetic approach can reach up to 100%. The results also show a high
correlation between the system scores and the human scores. The constructive approach is
used to generate rules for Puzzle Script as well. The results of the new system prove the
possibility of generating playable rules without any restrictions. These generated rules are
characterized by being playable but not challenging due to the huge search space of the
rule generation. By limiting the search space, it is possible to generate high quality rules
compared to human designed rules.
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Chapter 1: Introduction
Video Games were originally created by small groups of people in their spare time. As
time passed Video Games evolved to be a huge multi-billion industry where thousands of
people work everyday to create new games. Automation doesn’t play huge role in creating
games as most of the work is done by humans. Hiring humans ensures producing high
quality games but it costs a lot of money and time.

1.1 Motivation
During the early days of Video Games, games were created by few people in their spare
time. Most of the time was spent in programming the game, while a small portion was
dedicated for graphics, sounds, and music because of the technical limitations of the
devices at that time. Although these limitation are no more valid, producing a game
takes more time than before. Most of that time is spent on creating content for the game
(graphics, music, sounds, levels, and ...etc)[66]; for example creating graphics for a huge
main stream game may take hundreds of artist working for a year or two. That is why the
production cost of a huge game reaches millions of dollars[24].

That huge production cost caused lots of Game Studios to shut their doors [16] and
hence creating new game ideas became limited. In spite of technological advancement,
we could not reduce the cost and time for creating good game contents because creation
process heavily depends on the creative aspect of the human designer. Automating this
creative process is somehow difficult as there is no concrete criteria for judging creativity
which raises the main question: Can technology help to reduce the time and money needed
in producing games?

1.2 Problem Statement
Creating content for any creative medium, e.g. games, art, music, movies, and ...etc, is
really a tough problem and takes a huge amount of time. For example a famous popular
game called Threes took around 14 month working on the concept itself [60]. Game
market is growing fierce as there is always a demand for new games with new contents.
That can not be accomplished very fast because creating new innovative games requires a
long time.

Games consist of lots of aspects ranging from game graphics to game rules. It is hard
to generate automatically all these aspects at the same time, so this work just addresses
Levels and Rules. Level Generation has been in industry for decades since early days of
games [1] but it has always used lots of hacks and it has never been generalized. Same
applies to Rule Generation except that there is a very small contribution in that field.

Complete automation of levels and rules for all types of games seems beyond the reach
at the present time, so this work focuses on automatic generation of Puzzle Games because
they are accessible by all players, they do not require much time to be played, and do not
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have any boundaries on their ideas. This is our motive to investigate for new ways in Level
and Rule Generation for Puzzle Games.

1.3 Objectives
The aim of this work is to try to understand how our brain works in creating creative
content, helping game designers and developers to think outside the box, and minimizing
their time for searching for new content by providing them with good diverse seeds for
levels and rules. It is not intended to create an Artificial Intelligence that can create a whole
game from scratch and sell it afterwards because its too early to think that computers can
do that on its own and people are not prepared yet to deal with that kind of Intelligence
that can replace them at work.

1.4 Organization of the thesis
The remainder of this thesis is organized as follows. Chapter 2 explains the background
needed to understand Procedural Content Generation in Video Games, continued by
Chapter 3 explaining any previous work done in that area. Chapter 4 explains different
methodologies and techniques used in the proposed system, followed by our results from
applying these techniques in Chapter 5. Finally, Chapter 6 presents our conclusion and
future work.

2



Chapter 2: Background
This chapter presents the necessary background information needed to understand this
thesis. It starts with explaining Puzzle Genre in Video Games, and is followed by a
description of Procedural Content Generation (PCG) along with a special case called
Search Based PCG. It is conducted by describing Video Game Description Language and
why it is important. Finally, it explains General Video Game Playing and its relation to
this research.

2.1 Puzzle Genere in Video Games
In 1950 a small group of academic people started developing Video Games on the main
frames of their schools. This has continued till the 1970s when Video Games reached
Main Stream industry. In 1980s lots of technicals problems were solved which brought
new types of Video Games. Game Genres were invented to differentiate between different
game types so players can refer to their favorite games by genres, for example there is
Adventure genre like Legend of Zelda, Fighting genre like Street Fighter, Platformer genre
like Super Mario Bros, Shooter genre like Space Invaders, Puzzle Genre like Bomberman
and ...etc. In 2000, people started to go toward being mobile and making games for cellular
phones and one of the most important genres on these mobile devices is Puzzle Genre[23].

Puzzle Genre is a style of Video Games that emphasize on solving puzzles, it always
focuses on logical or conceptual challenges. Puzzle games can be described using the
following aspects:

• Graphics: How the game looks like.
• Inputs: How input is given to the game.
• Rules: How the game behaves to events.
• Levels: How objects are organized.
• Winning Condition: How to win the game.

2.2 Procedural Content Generation
Procedural Content Generation (PCG) means generating game content using a computer.
It was first developed due to technical limitations (small disk space) and the need to
provide a huge amount of content. Akalbeth was the first game using PCG. The game
starts asking the player to provide it with a lucky number that is used as a seed to a
random number generator which generates everything in the game from player statistics to
dungeon maps. The game has a very small footprint around 22 Kb so it does not need to be
loaded from lots of disks [1]. Although technical difficulties become history and storage
is no longer a problem, PCG is still one of the hot topics in Video Games Industry and
Research. PCG helps us reduce development time and cost, be creative, and understand
the process of creating game content. PCG can be used to generate different game aspects
for example Textures, Sounds, Music, Levels, Rules, and ...etc. In this thesis we will focus
only on the Levels and Rules Generation which are the core aspect for any Puzzle Game.

3



2.2.1 Level Generation
A level is a different combination of game objects. This combination controls the game
flow and difficulty. For example in Super Mario, as the game advances the levels become
longer and include more enemies and gaps. Level Generation has been in industry since
dawn of games in order to decrease the game size (game levels are stored as a seed for
a random number generator), but it is now used to introduce huge amount of levels that
humans can not generate manually in reasonable time. Level Generation has always been
done for a specific game using lots of hacks to improve the output result. These hacks
cause the output levels to follow certain guidelines which may cause elimination of huge
amounts of possible levels. On the other hand these guidelines ensure that the output
levels are all playable (the game goal is achievable) [19].

2.2.2 Rule Generation
Rules are what governs the game behavior. Based on them players can know how the
game will be played; for example what to collect, what to avoid, how to kill enemies
...etc. Rules are very different from one game genre to another, for example in Board
Games (e.g. Monopoly) all rules are applied after each player’s turn, while in Platformer
Games (e.g. Super Mario) the rules are applied with every time step (not depending on the
player movement). Due to that huge difference between rules in different genres, Rule
Generation is one of the most difficult content to generate. That is why we need to find a
way to represent and describe rules. The common way to represent all different genres
is using Coding Languages. Generating new Rules using Coding Languages may take
years because Coding Languages are used to create any computer related software such as
plug-ins, programs, viruses, games and ...etc. Still some researchers managed to use it but
it needed more guidance due to the huge search space of Coding Languages [9]. A better
solution is to use a description language for the rules that is more specific for a certain
genre which will be discussed in Section 2.4 [62].

2.3 Search Based PCG
There are many approaches to generate content in Video Games. The search based
approach is one famous technique that has been used a lot in the recent research. The
search based approach can be divided into three main aspects Search Algorithm, Content
Representation, and Evaluation Function [63].

2.3.1 Search Algorithm
Search Algorithm is the Engine for generating content. Any search algorithm can be used
such as Simulated Annealing, Hill Climbing, and Genetic Algorithm (GA) . GA is a
search algorithm based on Darwin Theory "Survival for the Fittest". GA uses techniques
inspired from natural evolution such as selection, crossover and mutation in order to find a
solution to large space optimization problems [20].

4



2.3.2 Content Representation
There are several ways for modeling different aspects of the game content during the
generation process. The way of representing the content can affect a lot on the output of
the generation. For example levels may be represented as: [63]

• 2D matrix where each value represents a tile location in the level.
• Sequence of position of objects in level.
• Sequence of level Patterns.
• Level properties such as Number of Objects in map, Number of Players and ...etc.
• Random number seed.

2.3.3 Evaluation Function
Without an Evaluation Function, the Search Algorithm will be blind. The evaluation
function leads the Search Algorithm to find better content in the solution space. The
evaluation Function can be either one of the following: [63]

• Direct evaluation function: Utilizes some understanding about the generated
content and evaluates it accordingly.

• Simulation-based evaluation function: Uses an Artificial Intelligence agent to
test the generated content. Based on the agent’s behavior, the system estimates the
content’s quality.

• Interactive evaluation function: Uses human feedback and interaction with the
system to evaluate the generated content.

2.4 Puzzle Script as Video Game Description Language
Referring to Section 2.2.2 we can not generate game rules without having a methodology
to describe it. Video Game Description Language (VGDL) was originally invented to
help with the work for General Video Game Playing at Standford University. The idea
behind VGDL was to provide a simple description language that can be used to describe
simple 2D games. Researchers insist that any VGDL language must have the following
aspects:[15]

• Human Readable: It must be easy for human user to understand games written
with it and formulate new ones.
• Unambiguous and Easy to parse: It must be easy to parse using a computer and

generate playable games.
• Searchable: The games formulated using it can be formulated in the form of a tree

so it is easy to use Search Algorithm (discussed in Section 2.3.1) to find new games.
• Expressive: It can be used to express more than one game.
• Extensible: It can be extended to add more game types and dynamics.
• Viable for Random Generation: Each component of the language have ’sensible

defaults’ so its easier to search for new values for certain components without
worrying about other ones.
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Figure 2.1: Puzzle Script File
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Puzzle Script (PS) is a VGDL created by Stephan Lavelle to help game designers and
developers to create puzzle games [38]. Games generated by PS are time stepped games
similar to Sokoban game; Sokoban is an old Japanese puzzle game where your goal is to
push some crates towards certain locations[51]. PS file starts with some meta data like
game name, author name, and website then it is divided into 7 sections objects, legend,
sounds, collision layers, rules, win conditions, and levels. Figure 2.1 shows an example of
the PS file for Sokoban game. It is refereed to in the following subsections.

2.4.1 Objects
Objects section is the first section of the PS file and it contains a list for all the object
names and colors being used in the game for example in Figure 2.1 we had Background,
Target, Wall, Player, and Crate associated with a color.

2.4.2 Legend
Legend is a table of one letter abbreviation and one or more group of objects for example
in Figure 2.1 the Wall is assigned "#" symbol and Crate and Target together are assigned
"@" symbol.

2.4.3 Sounds
Sounds section consists of group of game events associated with a certain number. PS
engine uses these numbers as a parameter to BFXR (a random sound effects generator) to
generate sounds in runtime[5]. For example in Figure 2.1 Move event for Crate object is
assigned to value 36772507.

2.4.4 Collision Layers
Collision Layers section assigns a layer number for each object. Objects of the same layer
number can not exist together at the same location. Each line is considered a new layer,
for example in Figure 2.1 Player, Crate, and Wall can not exist at same location in any
level as they are assigned to the same layer.

2.4.5 Rules
Rules are a set of production rules that governs how the game will be played. Production
rules have the following formate

Tuple ... Tuple -> Tuple ... Tuple

where the number of tuples on the right must be equal to number of tuples on the left, and
each tuple must be in the following format

[Objects | ... | Objects]
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Each tuple has a group of Objects separated by "|" symbol which means that these objects
are beside each other for example [Player | Crate] means there is a Player and Crate object
beside each other. The number of "|" in both left and right side of each tuple must be equal.
Objects must be written in the following format

Direction Object ... Direction Object

Object must be selected from the Objects section and must be from different collision
layer for example [Player Target] means Player and Target exist on the same tile. Last
thing is the Direction, it must be one of the following ">", "<", "∧", and "∨". The first
one means same as the moving direction, the second one means opposite to the moving
direction, while the third means 90◦ from the moving direction, and the final one is −90◦

from the moving direction. Let’s take a real example on rules, for example in Figure 2.1
the rule is

[> Player | Crate] -> [> Player | > Crate]

means if there is a Player and Crate beside each other, and the Player moves towards the
Crate, then both the Player and the Crate will move in the same direction.

2.4.6 Win Conditions
Win Conditions section identifies when the level should end. It consists of 2 objects
separated by "on" keyword. For example in Figure 2.1 "all Target on Crate" means that
the level ends when all Target objects are on the same location with Crate objects. The
possible keywords (win rules) are "all", "some", and "no". "all" means every single object
is at the same location with the other, while "some" means at least one object at the same
location with the other, but "no" means that the two objects must not be at same location.

2.4.7 Levels
Levels are 2D matrices showing the current configuration for each game level using the
abbreviations found in the Legends section. Each level is separated from the next level
by a new line. In Figure 2.1 you can see 3 designed Sokoban levels. By replacing each
symbol by the corresponding object from the Legend section then the color from Objects
section. You will get the following levels in Figure 2.2.
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Figure 2.2: Puzzle Script Levels

2.5 General Video Game Playing
General Video Game Playing (GVGP) is an area in Artifical Intelligence (AI) where
people try to develop an intelligent agent that is able to play more than one game. Most
of Game Playing Agents are not general players, they are designed for a certain game
like Chess, Poker, Backgammon, or ...etc. At the beginning the AI is supported with the
game rules in the form of VGDL (Section 2.4), the current game state, and all the possible
actions. The agent should choose the next action. After several play-outs the agent should
learn how to maximize his score or reach goal and avoid death. Researchers used different
methods to create general AI using Monte Carlo Tree Search, Neural Networks, and
Reinforcement Learning methods. GVGP is very important for PCG, specially for rule
and level generation. GVGP Agents are a useful tool for testing automatically generated
levels and rules by judging the agent playing behavior.[27]
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Chapter 3: Literature Review
This chapter will provide a review of the past work on Procedural Content Generation. It
highlights different efforts towards generating levels and rules for games. These efforts are
grouped according to their similarity and sorted chronologically within each group.

3.1 Level Generation
This section presents some of the work related to Level Generation. Most of the previous
work focused on generating levels for Platformer and Arcade Games. Most of the work
found about Puzzle Games was limited toward specific games such as Sokoban[57, 31],
Cut The Rope[46], and Fruit Dating[37]. Even the generic work needs prior human
knowledge about the game rules[43, 42].

Generating levels for Puzzle Games seems interesting but it has lots of problems. Some
of these problems are the main reason for not gaining much interest in previous work.

• All levels must be solvable (have at least one solution).
• Most of the level objects should be used (adding unused items may be considered

as a bad level design).
• Puzzle Games ideas have no restriction. For example some games have continuous

space where game actions depend on player’s skills and perfect timing (Angry
Birds[2], Cut the Rope[10], and Where’s my Water?[67]) while other games have
discrete space where game actions depend on the best sequence of actions regardless
of the time taken (Fruit Dating[18], Sokoban[51], and HueBrix[25]).

3.1.1 Puzzle Level Generation

Figure 3.1: Screenshot from Sokoban
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This section presents previous work that is related to our problem. One of the earliest
research in Puzzle Games was by Murase et al.[31]. Murase et al. work focused on
generating well designed solvable levels for Sokoban[51]. Sokoban is an old Japanese
puzzle game where your goal is to push some crates towards certain locations as shown in
Figure 3.1. Their work consists of the following 3 stages:

• Generate: Responsible for generating Level Layouts. Level Layouts are generated
by placing predefined templates at random positions. Goal locations and crates are
placed afterwards at random positions such that each goal location is reachable from
the player location and each crate is reachable from a unique goal location.

• Check: Responsible for checking for playability. The system uses Breadth First
Search (BFS) to check for solution. All unsolvable levels are removed in this step.

• Evaluate: Responsible for selecting best generated levels. The system removes all
levels that have a solution that is very short (less than 7 steps), contains less than
four direction changes, or does not contain any detours.

Results show that for every 500 generated levels only 14 are considered as good levels.
These good levels are characterized by having a short solution sequence due to the usage
of BFS.

Taylor and Parberry[57] followed Yoshio Murase et al.[31] work to improve generated
level quality. Their system consists of 4 stages:

• Generating empty room: Responsible for generating Level Layouts like Yoshio
Murase et al.[31] work. After generating the layouts, the system discards any level
that is not completely connected, has huge empty space, or has number of empty
floors less than the planned number of boxes and goals.

• Placing goals: Responsible for finding the best suitable goal locations. The system
uses a brute force algorithm to generate every possible goal location where the ones
that give the highest score are chosen during evaluation step.

• Finding the farthest state: Responsible for placing crates at farthest location from
its goal location. This process is done using a similar algorithm to BFS. The
algorithm expands all the reachable locations from a goal location and returns the
farthest location. The farthest location is calculated using a box line metric heuristic
which calculates the number of unrepeated moves required to reach that location.
• Evaluating generated levels: Responsible for evaluating the generated levels.

Evaluation is done using some heuristic functions. For example: number of box
pushes in the solution, number of levels found at same solution depth, number of
box lines, number of boxes, and ...etc.

The generated levels do not suffer from the problem of short level sequences presented in
Yoshio Murase et al.[31] work. As the target number of crates increases, the generation
process takes more time but delivers much more interesting and difficult levels.
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Figure 3.2: Screenshot from Fruit Dating

Rychnovsky[37] work focused on generating levels for his new game Fruit Dating. As
shown in Figure 3.2, Fruit Dating is a puzzle game where the player needs to move all
similar fruits beside each other. The game is played by swiping in one of the four direction
(up, down, left, right). Swiping in any direction causes all objects to move towards that
direction. Rychnovsky developed a level editor that can be used to generate new levels or
test playability of certain level. Generating new levels is done using the following steps:

• Generating level structure: The system generates level structures based on 2 steps.
First step is generating external walls. External walls are generated at any random
location connected to the border with short random length. Second step is generating
inner walls. Inner walls are generated at any free location surrounded by eight free
locations.

• Placing game objects: The system generates fruits at random locations based on
predefined weights. Every empty location is assigned a score using these weights.
Locations with highest scores are selected. Other game objects use the same strategy
but using different weights.

• Checking for a solution: The system uses an algorithm similar to BFS to find the
solution of the generated level. If no solution is found, the level is discarded.

The technique doesn’t take more than a couple of minutes to generate a level. The main
problem is that there is no way to influence difficulty in the generated levels.
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Figure 3.3: Screenshot from Cut The Rope

Shaker et al.[42] worked on generating levels for physics based puzzle games. They
applied their technique on Cut The Rope (CTR) . As shown in Figure 3.3, CTR goal is
to cut some ropes to free the attached candy to reach OmNom (a frog monster fixed at a
certain position on the screen). As game progresses more game objects are introduced.
These objects help in changing the movement direction of the candy to redirect it towards
OmNom. Shaker et al. used Grammar Evolution (GE) technique to generate levels for
CTR. GE is a result of combining an evolutionary algorithm like GA with a grammar
representation. The grammar is designed to ensure that every game object appears at
least one time. The fitness function used to rate the generated levels depends on some
heuristic measures based on prior knowledge about the game. For example: Candy should
be placed higher than the OmNom, OmNom must be placed below the lowest rope, and
...etc. Since using heuristic measures does not ensure playability, each generated level is
played 10 times using a random player. The fitness score is reduced by a large number
if no solution was found. Shaker et al. generated 100 playable levels and analyzed them
according to some metrics such as frequency, density, and ...etc.

Shaker et al.[46] conducted their research on CTR to improve generated level quality.
They replaced the random player with an intelligent one. Two types of automated players
were developed. The first one takes an action based on the current properties of all objects
in the level. While the second one takes an action based on the reachability between
every level object and the candy at every time step based on the candy’s current position,
velocity, and direction. The generated levels are far more diverse because the random
player discards some potential levels in the search space.
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Later in [43], Shaker et al. introduced a new generation technique named Progres-
sive Approach. Progressive Approach can be used on any kind of games to reduce the
generation time. Progressive Approach is divided into two main steps:

• Time-line Generation: GE is used to evolve a time-line of game events.
• Time-line Simulation: Evolved time-lines are simulated using an intelligent agent.

The agent utilize prior knowledge about the game to map the time-line to a possible
level layout. Based on the agent result and some desirable heuristics (based on the
current generated game), each time-line is assigned a fitness score.

Shaker et al. tested the new technique on CTR and compared its results with their previous
work[46]. The results indicates a huge decrease in generation time, as it changed from 82
seconds towards 9.79 seconds. Although Progressive Approach is much faster and better
from previous, it is difficult to determine the level difficulty before simulation. Also the
quality of the levels depends on the intelligent agent used in the mapping process.

Figure 3.4: Screenshot from KGoldRunner

Williams-King et al.[68] work focused on generating levels for their game KGoldRun-
ner. KGoldRunner is just a port for the famous game Lode Runner[30]. As shown in
Figure 3.4, the goal is to collect all gold chunks without getting killed. Player can move
left, move right, climb a ladder, move across a bar, or dig the floor. The game contains
enemies who changes the position of the gold chunks. After collecting all gold chunks
a hidden ladder appears which leads the player to the end of the level. Williams-King
et al. used GA to generate random levels. Generated levels are evaluated using fitness
function based on some prior knowledge about the game. For example: testing level for
connectivity using BFS between the starting point and all the gold coins in the levels. High
score levels are simulated using an automated player that tries to collect all gold chunks
using 20 different paths. The number of solvable paths indicates the level difficulty. As
the number of generations increases more time is required but levels are more likely to be
solvable.
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Figure 3.5: Screenshot from Refraction

Smith et al.[47] worked on generating puzzle levels for Refraction. Refraction is an
educational game created by Center for Games Science at the University of Washington.
Refraction teaches children concepts in math through a puzzle game. As shown in
Figure 3.5, the goal is to make every alien spaceship fully powered by directing a laser
beam towards them. Each ship needs a fraction of the laser to operate. Player should use
tools like Benders (change the direction of laser by 90◦), Splitters (divide laser power
by number of outputs from it), and ...etc to achieve that goal. Smith et al. divided their
generator into 3 main components:

• Mission Generation: Responsible for generating a general outline showing level
solutions.

• Level Embedder: Responsible for translating the general outline to a geometric
layout.

• Puzzle Solver: Responsible for testing generated level for solution.

These components are implemented into two different ways (Algorithmic approach and
Answer Set Programming (ASP) ). Results shows that ASP is faster than Algorithmic
approach specially in Puzzle Solver module, while Algorithmic approach produces more
diverse levels than ASP.

3.1.2 Non-Puzzle Level Generation
This section focuses on Level Generation for non Puzzle Games. The previous work
in that field focused on different game genres but a lot of work was done in Platformer
genre. Showing some of the work will help in understanding the current research direction
towards Level Generation.

The constructive approach in PCG has been used in commercial games for a long
time. It has been used in generating textures, trees, sound effects, and levels. Ismail
and Nijman[39] used an Agent Based PCG to generate levels for their commercial game
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Nuclear Throne. The system spawns an agent at a random position on the map. This agent
starts moving into a random direction with a certain probability to change direction. New
agents are spawned based on a certain probability. The agents continue moving till the
number of dug floors reaches 110 or reaches a dead end. Coxon[33] used perlin noise
and cellular automata algorithm to generate a huge map for his commercial game Lenna’s
Inception. The game map is divided into small rooms. Perlin noise is used to assign a
certain terrain type for each room. Cellular automata algorithm is used to craft the details
for each room while ensuring reachability between entrances and exits.

Search algorithms (specially GA) has been used a lot in level generation specially
in academia. Sorenson and Pasquier[53] worked on improving GA to adapt with level
generation for any game. The new technique divides the population into feasible and
infeasible populations. Each population is evolved on its own using crossover and mu-
tation. Chromosomes can transfer from Feasible to Infeasible population and vice versa.
The feasible population uses a fitness function that measures the challenge presented in
the game. The infeasible population uses a fitness function that measures the distance
towards the feasible population. These techniques were tested over two different games
The Legend of Zelda and Super Mario Bros. The results show promising levels generated
for both games which is an indication of the possibility of using this technique as a generic
framework.

Preuss et al.[36] used three different search techniques to generate diverse game maps
for Strategy Games. They used Restart Evolution Strategies, Novelty Search, and Niching
Evolutionary Algorithm are then compared their results. The fitness function used for
evaluation consists of 3 metrics:

• Tile Based Distance: measures diversity between each two maps.
• Objective-based Distance: measures the quality and playability of the map accord-

ing to some heuristics for Strategy Games.
• Visual Impression Distance: measures how good the map looks using 20 different

human designed heuristic measures.

Niching Evolutionary Algorithm generated the best results in diversity and quality mea-
surement, followed by Restart Evolution Strategies which produced same results like
Niching Evolutionary Algorithm, while Novelty Search was the worst of them in both
quality and diversity.

Liapis et al.[28] improved Novelty Search Algorithm to perform better than previ-
ous work[36]. The improved algorithm borrowed an idea from Sorenson and Pasquier
work[53] by dividing the population into feasible and infeasible populations. The feasible
population uses a fitness function that measures the distance between chromosomes to
ensure diversity. The infeasible population was tested using two different fitness functions.
The first one is same as that used for the feasible population, while the second one uses the
same fitness function used for Sorenson and Pasquier work[53]. The results prove that the
second fitness generates more feasible solutions but less diverse compared to the first one.

Baghdadi et al.[3] used GA to evolve levels for the commercial game Spelunky[54].
Spelunky entire map is divided into 4x4 rooms. Levels are represented as a group of
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integers. These integers represent positions for start room, exit room, room connections,
number of enemies, and ...etc. Each level is mapped to a layout before evaluation. Mapping
process consists of the following three main steps:

• Generating internal structure for each room using an Agent Based PCG.
• Adding some corridors to ensure connection between rooms.
• Distributing monsters, ladders, and bombs equally across the level.

Levels are evaluated using a fitness function that consists of two heuristics metrics. The
first heuristic metric ensures level playability by measuring connectivity between manda-
tory rooms, placement of starting room, and ...etc. Second heuristic metric measures level
difficulty by measuring path length, number of enemies, and ...etc. The results show that
the introduced technique is able to generate a good designed levels for Spelunky with a
certain difficulty.

Smith et al.[49] generated levels for Super Mario Bros (SMB) using Rhythms.
Rhythms is a way to express the pace of playing a level. Rhythms are a sequence of
actions that player needs to finish the current SMB level. The generator is divided into 2
main parts:

• Rhythm Generation: Responsible for generating a sequence of actions required to
finish the level.

• Rhythm to Geometry Generation: Responsible for translating the generated
Rhythm into a corresponding level layout.

The generated level is tested against some critic measures provided by the human designer.
For example, probability of sloped platforms, frequency of jumps, and ...etc. These critic
measures help in enhancing the quality and ensuring the playability of the generated levels.
The results show the importance of including the pace of playing in generating platformer
levels.

Sorenson and Pasquier[52] used GA to generate SMB levels based on previous studies
about GameFlow[56, 7, 55]. GameFlow studies measure the player enjoyment as the
amount of challenge facing the player. The studies recommend keeping the challenge
level at an optimal rate (too much challenge cause frustration, too little challenge cause
boredom). Based on that fact, The study modeled the challenge level as the player’s
Anxiety. Sorenson and Pasquier used anxiety curve as a fitness function to evaluate the
generated levels. The rate of change of anxiety curve is modeled using the following
equation:

d f
dt

= m∗
da
dt

Where m can be +1 or -1. The value of m is +ve all the time till a certain threshold. If
this threshold is exceeded, m value becomes -ve causing the curve to decrease till another
threshold is reached where it starts increasing again. They compared their results with the
original SMB levels. This analysis proves that anxiety curves show a promising direction
for using GameFlow as a measurement.
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Shaker er al.[45] used GE to generate levels for SMB. The level is represented using
context free grammar that represents the level as a group of chunks where each chunk
can be any game object. GE tries to increase the number of chunks appearing in the level
while minimizing the number of conflicts between them. The results of the generator
is compared with two other generators. They introduced a set of metrics to be used in
comparison. For example, Linearity is used to measure the difference between platform
heights. The results show the efficiency of the introduced metrics in comparing different
SMB generators.

Some commercial games generate levels by combining a group of hand crafted game
chunks to ensure the high quality of the level. Yu and Hull[59] divided Spelunky map into
4x4 rooms. Each room is chosen from a set of predefined rooms ensuring the existence of
a path between start and end points. The generator modifies each selected room by adding
some new blocks without blocking any movement path. Enemies and items are added after
selecting the layout. Also Mcmillen[58] used a similar technique for his commercial game
The Binding of Isaac. Due to the huge success of these games, that technique became
popular among academia.

Dahlskog and Togelius[11, 12, 14, 13] published several papers on generating levels
for SMB game utilizing the patterns found in the original game. They started[11] by
analyzing all original levels from SMB and detecting all repeated patterns. Repeated
patterns are divided into 5 main categories (Enemies, Gaps, Valleys, Multiple Paths, and
Stairs). Each category is divided into multiple configurations called Meso Patterns, for
example Enemies pattern can appear as an Enemy (single enemy), 2-Horde (two ene-
mies together), 3-Horde (three enemies together), 4-Horde (four enemies together), and
a Roof (Enemies underneath hanging platform). The level generator generates levels by
randomly choosing a group of these patterns and generating a geometry corresponding to
them.Levels generated by that technique have the same feeling like original SMB levels.
They conducted their research[12, 14] to improve the quality of the generated levels by
using these analyzed patterns as an evaluation function. Levels are generated from concate-
nating a group of vertical slices called Micro Patterns. Micro Patterns are generated from
original levels in SMB. GA is used to improve the generated levels using a fitness function
that rewards levels which contain more Meso Patterns. The generated levels are more
similar to the original levels of SMB and more diverse. They conducted their research[13]
to improve the quality of the generation by introducing Macro Patterns. A Macro Pattern
is a group of Meso Patterns after each other which can be used to identify the level of
difficulty. SMB levels were analyzed and Macro Patterns are extracted from it. Macro
Patterns from SMB are used as fitness function for GA to reward levels with more Macro
Patterns. The results take more time to generate but they have the same flow of SMB levels.

Shaker and Abou-Zleikha[44] used Non-Negative Matrix Factorization (NMF) tech-
nique to capture the patterns of level design of SMB. NMF can be used on any game if
it has a huge amount of levels to learn the pattern from them. They used five different
PCG techniques to generate 5000 levels for SMB (1000 level from each technique). NMF
method factorize these levels into two new matrices:

• Pattern Matrix: captures the patterns found in each vertical slice of SMB.
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• Weight Matrix: captures the percentage of each pattern to appear in the current
level.

Pattern Matrix can be used to generate same levels like any of the input generators if
its original weight vector is used. Shaker and Abou-Zleikha generated levels using free
weights and compared them with all the results from the five used techniques. The results
show that NMF covers more of the search space than all the five techniques combined,
but Shaker and Abou-Zleikha could not know if the whole space provides a good playing
experience.

Snodgrass and Ontanon[50] used Markov Chain Model to generate levels for SMB.
Markov Chain Model is another way to learn about the design patterns from original SMB
levels. The technique can be used on different game genres if there is a huge amount
of highly designed levels. They tested the technique with different input parameters
and evaluated the generated levels using human players. The results of the best input
configuration only generate 44% playable levels.

3.2 Rule Generation
This section will show the latest research and the different techniques used to generate
rules for different game genres. Most of the work in this section target generating Arcade
games[61, 8, 40, 48, 64]. Arcade games are the most popular in research because they are
easier to generate (simple rules), they provide a huge diversity in mechanics, and there is a
huge research happening in GVGP for Arcade Games[27]. Other work tries to generate
Board Games[6], Card Games[17], and Platformer Games[9] but as far as we know no
one tried to generate Puzzle Games except for the work by Lim and Harrell[29].

3.2.1 Puzzle Rule Generation
Puzzle rule generation was infamous till 2014., when Lim and Harrel[29] published their
work on generating new rules for PuzzleScript games. They use GA to find the possible
rules that can solve a certain level for a certain game. For example what are the rules that
can solve Sokoban level shown in Figure 3.6? Lim and Harrel used GA to generate rules.
They divided the fitness function into 3 parts:

• Rule Heuristics: measures some logical constrains that should be found in rules.
For example player should be on the left hand side of at least one rule, all movements
in a certain rule should be in the same direction, and ...etc.

• Validity: checks for runtime errors in the generated rules.
• Feasibility: checks if the level is solvable using an automated player.

After running GA for 50 generations on the level shown in Figure 3.6, the system dis-
covered new rules such as Crate Pulling, Morphing, and Spawning. Although the new
discovered rules are similar to human designed rules, It is still an achievement.
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Figure 3.6: Tested Sokoban level in Lim et al. work

3.2.2 Non-Puzzle Rule Generation
Although Rule Generation is the hardest content to be generated, a computer software
written by Browne and Marie invented a board game called Yavalath. Yavalath is listed
in the top 100 abstract board games of all times[69]. Browne and Maire software[6]
used standard evolutionary approach to evolve game rules written in Game Description
Language (GDL) for Combinatorial Games. Combinatorial Games are games that have
finite number of states, deterministic (no randomness), discrete (one step at a time), perfect
information (everything is visible), and involve two or more players. Evolved games
fitness were measured by automated players for several plays (playouts). Based on the
results of the playouts a score is given for each game based on 57 different heuristic
metrics. The best scored games were tested by human players where each tester assign a
score for these games. Comparing human scores with the system scores show a correlation
between both of them.

Jose et al.[17] used Genetic Programming (GP) to generate rules for card games
using GDL specified for card games. The generated games are tested using automated
players for hundred playouts. Based on the results of these playouts, games are assigned
a fitness score. The system removes all games that have never been finished in at least
one of the playouts, results in draw for more than 20% of the playouts, or have more than
10 stages for one round. Other games are evaluated based on the difference between the
number of wins of the best player to the worst player, the average number of turns required
to finish the game, and the average number of turns with no actions. The resulted games
are well formed and can be played by humans but at the same time they are boring and not
interesting as most of them can be won using simple strategy.

Togelius and Schmidhuber[61] worked on generating rules for Arcade Games. Games
are encoded in the form of collision and score matrices and a list of object behaviors. The
collision matrix shows the result of colliding any two game objects. For example red, white,
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kill, none means If a red object collides with a white object, the red object will be killed
while nothing will happen to the white object. Score matrix is defined in the same way but
with values of +1, 0, -1. The list of object behaviors shows how different objects behave in
the game (random movement, clockwise movement, still, and ...etc). All generated games
terminate when score≥ scoremax or when time≥ timemax. Togelius and Schimdhuber used
a hillclimbing algorithm to generate game rules. Each iteration new game is generated
and evaluated using a fitness function. The current game will be replaced with the new
game if the new game scores better. The fitness function is based on the idea of learning
progress which is inspired by Koster’s Theory of Fun[26] and Schmidhuber’s theory of
curiosity[41]. A game is considered as a good game according to how much it can be
learned. Based on that idea evolutionary strategies algorithm is used to evolve a neural
network to play the generated games. The performance of the evolved neural network in
playing the generated games is used as a fitness score. That approach needs very long
time to run that is why the best generated games are just playable games but not interesting.

Cook and Colton[8] took a new approach in generating Arcade Games. They divided
the game into 3 main elements:

• Map: is a 2D matrix showing passable and impassable tiles in the levels.
• Layout: is a list of position for every object on the map.
• Rules: govern how game works and they are represented in the same way in Togelius

and Schmidhuber work[61].

Each game element is evolved using GA to maximize its own fitness score. For example
map fitness measures the reachability of each tile, layout fitness checks for the distance
between different objects, and rules fitness checks for game playability. All game elements
communicate with each other through a central game object. After each generation every
game element updates the central game object with the best scored output. The system
is very easy to add/remove game elements but some game elements can finish evolution
early which minimize communications between different elements. Most of the generated
games are not interesting although some of them have some similarity with the famous
game PacMan.

Figure 3.7: The challenge level for the Toggleable function
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All discussed techniques so far are based on having a specific GDL that governs the
generation of rules. Cook et al.[9] decided to generate new game rule for his platformer
game (A Puzzling Present) by analyzing and generating actual game code. They use code
reflection ability to get all data members from the player class. Cook et al. used GP to
evolve a new Toggleable function that helps an automated player to overcome a challenge
level. A Toggleable function is any function where its effect can be reversed. Toggleable
function is applied to one of the player data members. Cook et al. used the challenge level
presented in Figure 3.7 to test the Toggleable function. The challenge level is designed
to ensure no possible solution using platformer rules (moving and jumping). After the
algorithm finds a Toggleable function that helps in solving the challenge level, the system
starts generating levels using GA. Levels are rated based on 3 simulation runs to ensure
certain characteristics.

• First Simulation: Check for a solution without using the new Toggleable function.
• Second Simulation: Check for a solution using the new Toggleable function.
• Third Simulation: Check for level difficulty based on the solution length.

Some of the best evolved Toggleable functions are Gravity Inversion, Teleportation, and
Bouncing. The mechanics and levels are rated using human users. Human users rated
Gravity Inversion and Bouncing higher than Teleportation as they are more understandable.

Farbs released a game called ROM CHECK FAIL[40]. ROM CHECK FAIL is a game
which changes the rules applied on each object every few seconds. The new rules are
selected from a pool of handcrafted rules. Some of rules controls player movements,
enemy movements, object collisions, or ...etc. For example the player can be Link from
The Legend of Zelda where he can move in all directions or a Spaceship from Space
Invaders where he can only move left and right and shoot upwards. Although the game
seems unfamiliar and weird, it has made a huge impact on the gaming scene (inspired lots
of developers).

Smith and Mateas[48] went for another direction in generating new games. Instead
of generating a game then test it against a set of constrains and/or evaluation function.
They decided to limit the generative space by not exploring these parts to minimize the
processing time. They used ASP to generate games with required aspects and constraining
the unplayable parts in the generative space. For example putting a constraint for only
winning if all white objects are killed, ensures ASP does not explore games with a different
winning condition. Smith and Mateas tested their idea with Arcade Games by creating a
game called Variation Forever[65] which is inspired by ROM CHECK FAIL[40]. Games
are described using the same way as that of Togelius and Schmidhuber[61]. Results show
promising direction in using ASP for limiting the generative space.

3.3 General Video Game Playing
This section presents the latest work in General Video Game Playing (GVGP) either as
standalone research or as a part of level or rule generation algorithms. Most of the dis-
cussed work with level generation either use BFS algorithm[31] or a tailored AI specially
for a certain game[46]. For most of Level Generation work a tailored AI performs better
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than using a general one as tailored AI is designed with previous knowledge about the
game. Utilizing this knowledge helps the automated player to find the solution quickly.

Tailored AI will not work with Rule Generation. Rule Generation searches for new
unseen games where automated player is used to test its playability. Most of work done
in Rule Generation used some kind of Search Algorithm (variants of BFS) to find the
solution except for Togelius and Schmidhuber[61] work. They used an evolutionary
Neural Network to measure learning progress through the evolved game. Browne and
Maire[6] used Min-Max trees with Alpha Beta Pruning for automating game plays. They
utilize the current game description to provide estimates for each board configuration.
Jose et al.[17] used two types of automated players. The first one is random player which
chooses random actions to model weak players, while the second is based on Monte Carlo
Tree Search (MCTS) algorithm to model professional player. Cook et al.[9] used a normal
BFS technique to search for a result for the challenge level. Lim and Harrel[29] compared
BFS algorithm to solve generated games with Best First Search (BestFS) algorithm.
BestFS is another name for A* algorithm where it sorts the explored nodes based on a
heuristic function. The system utilizes the knowledge about the goal condition and tries
to minimize the distance between goal objects. The system also minimizes the distance
between the player object and goal objects based on the fact that the player is the main
object affecting the game world. Results show that BestFS finds solution faster than BFS
but with slightly longer moves.

Most of GVGP research was done on Arcade Games by ATARI 2600. One of the first
work in that direction was the work done by Bellemare et al.[4]. They developed a system
called Arcade Learning Enviroment (ALE) which contains lots of different Arcade Games
from ATARI 2600. They tested their system against two different AI approaches:

• Learning techniques: Reinforcement learning algorithm called S arsa(λ) is tested
using different types of features. Features ranged from using screen pixel colors to
using the 1024 bit of Atari RAM.

• Planning techniques: Normal BFS and BFS with Upper Confidence Bounds
Applied to Trees (UCT) are tested.

Results show that both approaches performed better than the average normal player. Al-
though Planning techniques outperformed Learning techniques, it took more time to decide
each action.

Hausknecht et al.[22] evolved a NN to play ATARI 2600 games. The system consists
of 3 main steps

• Visual Processing: The system processes the game screen and detects all moving
objects and groups them into classes based on velocity information.

• Self-Identification: The system identifies which class is the player. The player
object is identified by calculating the entropy over velocities for each class. The
class with the highest entropy is considered the player.

• Perform Action: The system chooses its next action based on the positions of every
object.
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Their system outperformed three variants of S arsa(λ) techniques based on their perfor-
mance in playing two Atari 2600 games (Freeway and Asterix).

Perez et al.[34, 35] summarized the techniques and the results from General Video
Game AI Competition (GVG-AI) [21]. GVG-AI is a competition that takes place every
year for creating a General Player that can play some unseen ATARI 2600 games. Lots of
techniques and methods used in the entries for the competition. Some of the techniques are
based on learning methods while others on general heuristics. Heuristic methods produced
better results than most of learning methods in the competition. The best algorithm is an
Open Loop Expectimax Tree Search, followed by an algorithm named JinJerry Algorithm
which is a variant of MCTS, then some variants of BFS. The first learning algorithm to
appear in table of results is at the sixth place. The learning algorithm is a reinforcement
learning technique called Q-Learning Algorithm which models the world in a form of
Markov Decision Process.

Nielsen et al.[32] tested different AI techniques over ATARI 2600 games. They used
different AI technique varies from very intelligent (MCTS) to totally dump (DoNothing).
AI techniques are tested against 20 handcrafted games, 200 mutated version, and 80
random games. Based on the results, most intelligent techniques performed better on
handcrafted games than other games. On the other hand, the DoNothing algorithm perform
very bad on handcrafted games than other games. These results strengthen the idea of the
need for an intelligent player to judge procedural generated games.
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Chapter 4: Methodology
This chapter describes the proposed approach for generating Puzzle Script levels and rules
using different methodologies. This chapter is divided into two parts Level Generation
and Rule Generation.

4.1 System Overview
As stated in the previous chapters, Rule Generation is the most difficult task in PCG. This
work explores the idea behind generating new rules for the Puzzle Script engine. Unlike
the work by Lim et al.[29], we are exploring Puzzle Script rules without fixing a certain
level or a winning condition. Figure 4.1 shows a high level block diagram for the system.

Figure 4.1: Overall high level system block diagram

The system starts by generating random rules for different games. These rules are
analyzed using a Rule Analyzer. The Rule Analyzer utilizes some basic information
about Puzzle Script rules to understand the importance of each game object and its basic
functionality. The output of the Rule Analyzer (Object Features) and human designed
Level Outlines are fed to a Level Generator. The Level Generator is responsible for
generating initial level layouts by modifying the Level Outlines. The generated rules and
the resulted levels are subjected to an evaluator. The evaluator uses an automated player to
play the generated levels. Based on the result of each play, the system give each generated
level a score. This score is modified using heuristic metrics to assess the generated rules.
The system evolves using the same GA operators from Lim et al. work[29].

Rule Generation needs levels to assess the generated rules, while Level Generation
needs rules to generate levels. To break this circle, we start with Level Generation. We
assume that rules are known before generation then generate levels with a high fitness. By
solving the problem of Level Generation, we use the level generator in Rule Generation to
test the generated rules.

4.2 Level Generation
Level Generation is not an easy task especially when the game rules are not known before
generation. Most of the previous work in the Puzzle Level Generation (refer to Chapter 3)
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was limited for generating levels for a specific game. Although some research suggested a
general technique to generate levels, it is still based on designing a game specific fitness
function. In this work, we suggest a set of global metrics for Puzzle Games that can help
in generating levels with the minimum prior knowledge.

Our approach relies heavily on the understanding of the current game rules and some
prior knowledge about Puzzle Script language. Figure 4.2 shows a high level block
diagram of the system. The following subsections will describe each block in details.

Figure 4.2: High level system block diagram for Level Generation

The system starts by analyzing the current game rules using a Rule Analyzer. The
Rule Analyzer utilizes some basic information about Puzzle Script rules to understand the
importance of each game object and its basic functionality.

The output of the Rule Analyzer (Object Features) and human designed Level Outlines
are fed to a Level Generator. The Level Generator is responsible for generating initial
level layouts by modifying the Level Outlines. It utilizes the Object Features to insert
game objects at suitable positions in the Level Outlines. Level Generator uses two dif-
ferent approaches: a Constructive Approach and a Genetic Approach. The Constructive
Approach is faster in generation but produce less diverse levels, while Genetic Approach
requires more time but gives access to a vast majority of levels.

The generated levels are subjected to a Level Evaluator. The Level Evaluator uses an
automated player to play the generated levels. Based on the result of each play, the Level
Evaluator gives a score to the level based on set of heuristic measures (will be discussed
later). These measures make sure that the resulting level is playable and challenging.

In case of the Constructive Approach, the system selects the best scored levels to
output them, while the Genetic Approach enhances the output levels using GA.

4.2.1 Rule Analyzer
The Rule Analyzer is the first module in our system. It analyzes current game rules and
extract some useful information about each object. The extracted information is fed to the
Level Generator and the Level Evaluator. Each object is assigned:

• Type: Object type depends on its presence in the Puzzle Script file. There are 4
different types:
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– Rule Object: Any object that appears in a rule is defined as a rule object. Rule
objects are essential for rules to be applied.

– Player Object: It is defined by name "Player" in the Puzzle Script. It is the
main game entity. It can move freely without any restriction. Any level must
have at least 1 player object. Player object is a Rule Object as well.

– Winning Object: They are objects appearing in the winning condition. At
least one of them is a Rule Object or a Player Object.

– Solid Object: All objects that do not appear in any rule but on the same
collision layer with a Rule Object.

• Subtype: each Rule Object is assigned a Subtype based on its presence in game
rules. These subtypes are:

– Critical Object: is an object that has appeared with the Player object and one
of the Winning Objects in the rules.

– Normal Object: same like the Critical Object but it only appears with one of
them.

– Useless Object: is an object that neither appears with the Player Object nor
the Winning Objects in any rule.

• Priority: It reflects the number of rules each object appears in them.

• Behaviors: Behaviors are analyzed from the difference between the left hand side
and the right hand side of each rule for every object. Every object can have one or
more behavior. There are 4 kinds of behaviors:

– Move: If an object on the left hand side has a different movement than its
movement on the right hand side, this object has a Move behavior. For example,
In the following rule Crate moves when Player approaches it.

[ > Player | Crate ] -> [ > Player | > Crate ]

– Teleport: An object is considered to have a Teleport behavior if its location in
the rule changes from the left hand side to the right hand side. For example, In
the following rule Crate changes position with Player on collision.

[ > Player | Crate ] -> [ Crate | Player ]

– Create: If the number of a certain object on the left hand side is less than
its number on the right hand side, then this object has a Create behavior. For
example, In the following rule, Crate is created when Player moves to an empty
place.

[ > Player | ] -> [ Crate | Player ]

– Destroy: If the number of a certain object on the left hand side is greater than
its number on the left hand side, then this object has a Destroy behavior. For
example, In the following rule, the three Crates are destroyed when they are
aligned beside each other.

[ Crate | Crate | Crate ] -> [ | | ]
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• Minimum Required Number: It is the maximum number of times for an object
to appear in the left hand side of game rules. For example consider the following
group of rules:

[ > Player | Crate ] -> [ > Player | > Crate ]

[ > Crate | Crate ] -> [ > Crate | > Crate ]

The Crate object appeared in the both rules. The first rule the Crate object appeared
once, while in the second rule it appeared twice. This means the minimum required
number of Crates is two. This is not the case when an object has a Create behavior.
Create rules are responsible for generating objects. The Minimum Required Number
of the Create objects is updated to reflect the least number of appearances in all the
Create rules. For example the following rules have two Create rules (the first and
the third).

[ > Player | ] -> [ Crate | Player ]

[ > Crate | Crate ] -> [ > Crate | > Crate ]

[ Gem | Crate | Gem ] -> [ Crate | Crate | Crate ]

The number of Crate objects in each rule are 0, 2, 1 respectively. In normal case,
the minimum required number of Crate object will be 2. Crate object have Create
behavior (in both the first and the third rule) then the minimum required number of
objects will be zero instead.

• Relations: It is a list of all objects that appear in the same rule with a certain object.
For example, In the following rules, Crate has relations with Player and Lava, Player
has a relation with Crate, and Lava has a relation with Crate.

[ > Player | Crate ] -> [ > Player | > Crate ]

[ > Crate | Lava ] -> [ | ]

Each object has a special list exclusively for the left hand side.

4.2.2 Level Generator
The Level Generator is responsible for creating a level in the best possible way. Two
approaches were used to generate levels. The following subsections will discuss each one
of them.
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4.2.2.1 Constructive Approach

Constructive Approach uses information from the Rule Analyzer to modify the input Level
Outlines. In this approach, several levels are generated using a certain algorithm and the
best levels are selected. A pseudo code for the algorithm is presented in Algorithm 1.

Algorithm 1: Pseudo algorithm for the Constructive Approach
Data: level outline, object features
Result: modified level outline

numberObjects = Get the number of objects for each object type;

levelOutline = Insert Solid Objects in the level outline;
levelOutline = Insert Winning Objects in the level outline;
levelOutline = Insert Player Object in the level outline;
levelOutline = Insert Critical Objects in the level outline;
levelOutline = Insert Rule Objects in the level outline;

return levelOutline;

The algorithm consists of two main part. The first part is responsible for determining
the amount of objects that should be presented in the current level outline. The second part
is responsible for inserting game objects in an intelligent way to the current level outline.

Algorithm 2 shows the process of calculating the amount of objects. The algorithm
starts by determining the percentages for each object type. Each object type contributes
by a percentage equal to its minimum required number to make sure that all rules can
happen. A cover percentage is calculated based on the number of critical and winning
objects. The value of the cover percentage is inversely proportional with the summation
of both critical and winning objects. Critical and Winning Objects are the main game
objects, without them the game is not playable at all. The excessive increase in their
numbers causes the level to be very complex. Having a small cover percentage when the
numbers of winning and critical objects are huge, makes sure the game is not very complex.
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Algorithm 2: Get the number of objects algorithm
Data: level outline, object features
Result: Number of Objects for each type

percentages[Winning Object] = Minimum Number[Winning Object 1] + Minimum
Number[Winning Object 2];
if Player Object is a Winning Object then

percentages[Winning Object] = 2;
end
percentages[Solid Object] = Number of different kinds of Solid Objects;
percentages[Critical Object] = Summation of the minimum required numbers of all
Critical Objects;
percentages[Rule Object] = Summation of the minimum required numbers of all
Rule Objects;
Divide all percentages by their total summation;

coverPercentage = 1 - percentages[Winning Object] - percentages[Critical Object];
totalNumber = coverPercentage * total free area in the level outline;
numberObjects = totalNumber * weights * percentages;
numberObjects[Player] = 1;

return numberObjects;

The following algorithms are responsible for inserting objects based on the numbers
resulted from the previous part. These algorithm insert the new Object at the most suitable
empty location. The most suitable location is calculated based on the features of the
inserted object. If the object has a Move behavior, it should be inserted at spots with the
most free locations around it, so it can move freely. Otherwise any random free location is
okay.

Algorithm 3 shows the insertion algorithm for Solid Objects. The algorithm inserts a
random solid objects at a random empty space (as Solid Object has not a Move behavior)
in the level outline. The algorithm is repeated for several times based on its number. The
same idea is used for inserting Player Object in Algorithm 5 but for only one time.

Algorithm 3: Solid Objects Insertion Algorithm
Data: level outline, object features, number of objects
Result: modified level outlines

while numberObjects[Solid Object] > 0 do
object = Get a random solid object;
location = Get a suitable empty location;
levelOutline[location] = object;
numberObjects[Solid Object] -= 1;

end

return levelOutline;

Before inserting the Player to the level, Winning Objects should be inserted. Algo-
rithm 4 is responsible for inserting Winning Objects into the level outline. The algorithm
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generates an equal amount of both winning objects unless any of these objects have a
Create behavior. The number of the generated Winning Objects must be a multiple of their
minimum required number to ensure that all rules can be applied. The first winning object
is inserted at any suitable empty location, while the other must be inserted at the farthest
suitable empty location. Inserting at a very far location ensures a more difficult level. At
"No" winning condition, the second object is inserted at the same location of the first object.

Algorithm 4: Winning Objects Insertion Algorithm
Data: level outline, object features, number of objects
Result: modified level outlines

if Winning Objects have Create beahvior then
minObject1 = Minimum Number(Winning Object 1);
minObject2 = Minimum Number(Winning Object 2);

else
minObject1 = Max(Minimum Number(Winning Object 1), Minimum
Number(Winning Object 2));
minObject2 = minObject1;

end

while numberObjects[Winning Object] > 0 do
for 1 to minObject1 do

location = Get a suitable empty location for Winning Object 1;
levelOutline[location] = Winning Object 1;
numberObjects[Winning Object] -= 1;

end

for 1 to minObject2 do
if Winning Condition != No then

location = Get the farthest suitable empty location for Winning Object 2;
end
levelOutline[location] = Winning Object 2;
numberObjects[Winning Object] -= 1;

end
end

return levelOutline;

Algorithm 5: Player Object Insertion Algorithm
Data: level outline, object features, number of objects
Result: modified level outlines

location = Get a suitable empty location for the Player Object;
levelOutline[loction] = Player Object;

return levelOutline;

Algorithm 6 is responsible for inserting Critical Objects. Critical Objects are one
of the most important objects in the game. As they are connected with both Player and
Winning Objects. In some games, levels are not solvable without Critical Objects. For
example, the following rules are from a game called DestroyGame. The game goal is to
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destroy all Gem objects. Gem objects can be destroyed if they are aligned with 2 Crate
objects. Crate objects can be pushed by the Player object.

[ > Player | Crate ] -> [ > Player | > Crate ]

[ Crate | Gem | Crate ] -> [ | | ]

From these rules Crate is a critical object as it is connected with Gem and Player objects. If
there are no Crates in the level, the game will be unplayable. For that reason the algorithm
ensures inserting the minimum required number of all the critical objects. The algorithm
adds more critical objects according to critical objects’ calculated number. Each critical
object has a chance to appear directly proportional with its Priority feature.

Algorithm 6: Critical Objects Insertion Algorithm
Data: level outline, object features, number of objects
Result: modified level outlines

foreach object in Critical Objects do
for 1 to Minimum Number of object do

location = Get a suitable empty location;
levelOutline[location] = object;
numberObjects[Critical Object] -= 1;

end
end

while numberObjects[Critical Object] > 0] do
object = Choose a random Critical Object based on its priority;
for 1 to Minimum Number of object do

location = Get a suitable empty location;
levelOutline[location] = object;
numberObjects[Critical Object] -= 1;

end
end

return levelOutline;

Same is done with Rule Objects in Algorithm 7. Random Rule Objects are inserted to
the map based on their Priority feature.
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Algorithm 7: Rule Objects Insertion Algorithm
Data: level outline, object features, number of objects
Result: modified level outlines

while numberObjects[Rule Object > 0] do
object = Choose a random Rule Object based on its priority;
for 1 to Minimum Number of object do

location = Get a suitable empty location;
levelOutline[location] = object;
numberObjects[Critical Object] -= 1;

end
end

return levelOutline;

4.2.2.2 Genetic Approach

This method uses GA to evolve level outlines to playable levels. Elitism is used to ensure
that the best levels are carried on through the next generations.

Chromosome Representation: In this technique levels are represented as a 2D ma-
trix. Each location value represents all the objects at that location.

Genetic Operators: Crossover and Mutation are used to ensure better levels in the
following generations. One point crossover is used where a point (x, y) is selected from
the first chromosome and all previous rows (having smaller x) are swapped with the second
chromosome. Mutation changes any random selected position using the following:

• Creating mutator: a random object is selected to replace an empty position in the
level. In case of "No" as a winning condition, the two winning objects are treated as
one object.

• Deleting mutator: a random object from the level is deleted.
• Swapping mutator: a random empty position is swapped with a non-empty one.

The mutation operation happens by subjecting the level outline to these 3 mutators using
different probabilities. The Creating and deleting mutators are given a lower probability
than the swapping mutator to ensure a moderate number of objects are inserted in the
level.

Initial Population: Three different techniques are used to generate an initial popula-
tion for the GA. These techniques are:

• Random Initialization: The population is initialized as mutated versions of the
empty level outline. This technique takes a very long time to find a good designed
level as it searches the whole generative space.

• Constructive Initialization: The population is initialized using the Constructive
Approach algorithm. Using the algorithm tightens the search space so less time is
required to find challenging playable levels.
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• Hybrid Initialization: The population is initialized as a mixture between the
Random Initialization and the Constructive Initialization. A portion of the population
is initialized using the Constructive Approach Algorithm and some mutated versions,
while the other portion is the same like the Random Initialization. Using that
algorithm ensures more diversity than the previous two approaches.

More details about the results of each algorithm will be discussed in Chapter 5.

4.2.3 Level Evaluator
Level Evaluator is responsible for evaluating the generated levels. Level evaluation is
based on some global knowledge about the Puzzle Script Language and Puzzle Games.
The easy way to evaluate a puzzle level is to measure its level playability. Level playability
is measured by using an automated player which will be discussed later. Playability is not
enough to judge puzzle levels. Some other metrics must be used to ensure that the solution
sequence is interesting. A level is interesting if it needs some thinking ahead to reach the
goal. For example, Figure 4.3 shows several levels designed for Sokoban game where all
are playable but some of them are more interesting than the others. The first level is a very
easy level which can be solved in one move. The second level needs more moves which
is more interesting, but it has a straight forward solution. The last level is not as easy to
solve, it needs some prior thinking which is more interesting than the previous two.

Figure 4.3: Examples on different levels for Sokoban game

4.2.3.1 Automated Player

The Level Evaluator uses an enhanced version of the BestFS Algorithm as the automated
player. BestFS Algorithm was introduced in Lim et al.[29] work. BestFS is similar to BFS
algorithm but instead of exploring states sequentially, it sorts them according to a score
generated from a fitness function. This causes the algorithm to explore the more important
nodes first, helping it to reach the solution faster. As explained in Chapter 3, Lim et al.
algorithm uses two metrics (as a fitness function) to evaluate each game state:

• Distance between winning objects: BestFS tries to either increase or decrease the
distance between the winning objects according to the winning condition. The "No"
winning condition is the only rule that needs to increase the distance, while the
others need to decrease it. Figure 4.4 shows an example from Sokoban, where the
distance between crates and targets is highlighted.
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• Distance between player and winning objects: BestFS always tries to minimize
the distance between the player and the winning objects. To achieve the first metric,
the player should come near the winning objects. Figure 4.5 shows the same level
from Sokoban, where the distance between player and winning objects (crates and
targets) is highlighted.

Figure 4.4: Example of distance between
winning objects metric

Figure 4.5: Example of distance between
player and winning objects metric

These metrics work fine for all games where player is not one of the winning objects.
When the player is one of the winning objects, the two metrics behave in the same way.
The player always tries to move towards the winning objects regardless of any other game
objects. For example, Figure 4.6 shows a level from a game called LavaGame. LavaGame
is a puzzle game where the goal is to make the player reach the exit. The path towards the
exit is usually stuck by lava which can be destroyed by pushing a crate over it. According
to the Lim et al. metrics, the player will try to move nearer to the exit by going left. This
movement will not help the player to reach the exit, so the player will start wandering
aimlessly trying to stumble across a movement sequence that can solve the level.
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Figure 4.6: Example level from LavaGame showing the problem in the old metrics

Player’s aim is to move crates towards the lava to unblock his path towards the exit.
This aim is somehow explained in the game rules, so by further analysis the game rules
we can know which objects need to be closer. Returning to our example about LavaGame,
the game rules are stated in the following order:

[> Player | Crate] -> [> Player | > Crate]

[> Crate | Lava] -> [ | ]

The first rule says if there is a player and crate beside each other and the player moves
toward it, the crate will also move. The second rule says if there is a crate and lava beside
each other and the crate moves toward it, both crate and lava will be destroyed. In any
proper game, rules must be applied before achieving the winning condition. Based on that
fact, the distance between objects on the left hand side of the rules must be decreased. The
relation between objects in the left hand side of the rules is captured by the Rule Analyzer
Relations list for each game object. This distance is used as the new heuristic measure
beside the original ones. The three metrics are given different weights and used as a new
fitness function to evaluate game states. The second metric has lower weight than the
others as this metric is sometimes expressed in the new metric.

The output of the automated player is essential in evaluating the level quality. Four
different values are returned which capture the way the automated player plays the level.
These four values are:

• The score for the best reached state so far: The score is calculated using the first
metric (Distance between winning objects). The best achieved score for all states is
reported.

• The movement sequence to reach the best state: The automated player saves up
all the movements that happened to reach each state and returns the sequence that
leads to the best state.
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• The number of states explored while searching for the solutions: The automated
player saves the number of states that it explores before terminating.

• The number of rules that the game engine applies to reach the best state: With
each movement, some rules may be applied by the game engine. The automated
player saves this number for each state and returns the number associated with the
best state.

The modified BestFS finds the solution faster than Lim et al. automated player [29]. More
details will be explained in Chapter 5.

4.2.3.2 Heuristic Measures

Heuristic measures are calculated using a weighted function of six attributes. The function
is described as the following:

Fscore = 0.3∗Pscore +0.2∗Lscore +0.15∗Nscore +0.12∗Bscore +0.12∗Rscore +0.11∗Escore

where Pscore is the Playing Score, Lscore is the Solution Length Score, Nscore is the Object
Number Score, Bscore is the Box Line Score, Rscore is the Applied Rule Score, and Escore
is the Exploration Score. The weights for each attribute are measured experimentally to
reflect the importance of each feature in the generated levels. The following points will
further explain each of these scores.

• Playing Score (Pscore): Playing score is used to ensure level playability. Instead
of using a boolean value for playable or not. A float value is assigned for how
much the player is near the solution. The first output of the automated player
is used for that purpose. Making the domain more continuous (using float) helps
in measuring the percentage of the level playability instead of using it as a constraint.

Based on the work by Nielsen et al.[32] which proved that static players (Do Nothing
players) score badly in all human crafted games, these bad scores prove that the
Do Nothing players can be used as a measurement for game design. A score is
calculated for the initial level state. This score is subtracted from the previous score
to show how much improvement the automated player have done. The Playing
Score is expressed by the following equation:

Pscore = S play−S nothing

where S play is the automated player score and S nothing is the Do Nothing player
score.

• Solution Length Score (Lscore): Figure 4.3 shows that interesting levels usually
have more steps than the trivial ones. The first idea is to compare the length of the
best movement sequence with a target value. This idea will not work as expected
because solution length depends on the size of the level. For example, Figure 4.7
shows different levels from Sokoban and their corresponding solution length. Its
obvious that the second level has longer solution because it has bigger area.
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Figure 4.7: Examples of two sokoban levels with different area and solution lengths

From the previous example we can conclude that the solution length depends on
the level area. Instead of using the solution length as the metric we used the ratio
between the solution length and the level area. A mapping function is used to
convert that number to a value in the range of [0, 1]. We analyzed 40 hand crafted
levels with different area from 5 different games. A histogram is plotted for the ratio
between the solution length and the level area and shown in Figure 4.8.

Figure 4.8: Histogram for the ratio between the solution length and the level area

The histogram seems to follow a Normal Distribution with µ = 1.221 and σ = 0.461.
Based on that, the Solution Length Score is expressed by the following equation:

Lscore = Normal(
L
A
,1.221,0.461)
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where Normal(ratio,µ,σ) is a normal distribution function, L is the solution length,
and A is the level area.

• Object Number Score (Nscore): The Object Number Score is calculated by the
following equation:

Nscore = 0.4∗Nrule + 0.3∗Nplayer + 0.3∗Nwinning

where Nrule is the Number of Rule Objects ratio, Nplayer is the Number of Players
value, and Nwinning is the Number of Winning Objects value.

– Number of Rule Objects (Nrule): In a good designed level, most of the rule
objects should appear in the level to ensure there is a possibility of applying
every rule. The number of times the object should appear in the level must be
greater than or equal his minimum required number property from the Rule
Analyzer. A ratio is calculated between the number of objects greater than
their minimum required number property and the total number of the rule
objects.

Nrule =
Nmin

Nmax

where Nmin is the number of objects greater than their minimum required
number property and Nmax is the total number of the rule objects.

– Number of Players (Nplayer): The game should have only one player. If any
level has a different value, the score will be zero.

Nplayer =

1 one player object exists
0 otherwise

– Number of Winning Objects (Nwinning): The number of both winning objects
should be equal, unless one of them have a "Create" behavior. Based on the
previous condition, the score is set to either one or zero.

Nwinning =


1 NwinnOb j1 == NwinOb j2 and no Create behavior
1 Create behavior exists
0 otherwise

where NwinOb j1 is the number of the first winning object and NwinOb j2 is the
number of the second winning object.

• Box Line Score (Bscore): It is similar to Taylor and Parberry[57] metric to find the
farthest state. This metric calculates the number of unrepeated moves found in the
solution divided it by the solution length. The following equation represents it:

Bscore =
Lunique

L

where Lunique is the number of unrepeated moves in the solution and L is the solution
length.
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• Applied Rule Score (Rscore): Good level design involves applying game rules for
a number of times to solve any level. The ratio between the number of applied
rules to the solution length should be used as an indication for a good level design.
Exaggerating in applying the rules results in a boring level. Same can be said for the
very low amount of applying the rules. Figure 4.9 shows two levels from Sokoban
with different solutions. The left level needs to apply Sokoban’s rule for one time to
solve the level, while the right needs to apply Sokoban’s rule with every single step.

Figure 4.9: Example for two boring levels from Sokoban

To find the best ratio between both, We analyzed 40 hand crafted levels from 5
different games. A histogram is plotted for the ratio between the number of applied
rules and the solution length is shown in Figure 4.10.
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Figure 4.10: Histogram for the number of rules applied to the solution length

Again the histogram seems to follow a Normal Distribution with µ = 0.417 and
σ = 0.128. Based on that the Applied Rule Score is expressed by the following
equation:

Rscore = Normal(
Rapplied ±Rnone

L
,0.417,0.128)

where Normal(ration,µ,σ) is a normal distribution function, Rapplied is the number
of applied rules, Rnone is the number of applied rules with no action associated, and
L is the solution length. The Rnone is used to decrease the normal distribution value
according to amount of rules applied at the beginning of the game with no action
associated to decrease them from happening.

• Exploration Score (Escore): The increase in the number of explored states by the
automated player means that the current level is not obvious to be solved directly by
the automated player heuristics. This does not mean exploring huge space without
finding a solution is better than exploring small number of states with a solution.
The following equation expresses this idea:

Escore =


0.75 +

Nexplored

Nmax
solution exists

0.5 no solution and Nexplored = Nmax

0 no solution and Nexplored < Nmax

where Nexplored is the number of explored states and Nmax is the maximum number
of states the automated player can explore. The automated player has a fixed number
of iterations to ensure fast execution.
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4.3 Rule Generation
After explaining the Level Generation system, we can generate playable and challenging
levels if the system is provided with rules. Back to the original block diagram in Sec-
tion 4.1, we use Constructive Approach as Level Generator. In the following subsections
each module is discussed in details.

4.3.1 Rule Generator
Rule Generator is responsible for generating and evolving rules. Rule generator uses GA
for the evolution process.

Chromosome Representation: The chromosome represents a list of rules of maximum
four and a minimum one plus a single winning condition.

Genetic Operators: Crossover and Mutation are used to evolve the rules. Crossover
takes place only when the two chromosomes possess the same number of rules, the same
number of tuples within each rule, and the same number of objects per tuple. There are
two kinds of crossover that can take place:

• Hand Side Crossover: Single point crossover is used to swap the whole right hand
side between rules of different chromosomes.

• Element Crossover: Two point crossover is used to swap a single object from the
first chromosome with the second one.

Mutation has no preconditions to take place except for a certain probability. There
are five different mutation operators (mutators). Chromosomes are subjected to each one
based on a certain probability. The five mutators are:

• Rule size mutator: changes the number of rules either by adding an empty rule or
removing a rule.

• Object mutator: changes a random object in a rule with any random object.
• Direction mutator: changes the direction of a random object in a rule. It also can

add or remove a direction for a random object.
• Tuple size mutator: change the number of objects inside the tuple by either deleting

a random object or adding a random object with a random direction.
• Hand side swap mutator: swaps the left hand side with the right hand side of a

rule.

These operators are not used over the winning condition. The winning condition has a
separate crossover and mutation operators. Crossover is done using two points crossover
to swap one of the winning objects or the winning condition. Mutation replaces any of the
winning objects with a random object or changes the winning condition to a random rule.

Initial Population: The population is initialized randomly using mutated versions of
an empty rule.
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4.3.2 Rule Analyzer
Rule Analyzer is responsible for understanding the generated rules by the Rule Generator.
The same Rule Analyzer from Section 4.2.1 is used here.

4.3.3 Level Generator
Level Generator is responsible for generating random levels for the generated rules. It
uses the Constructive Approach algorithm described in Section 4.2.2.1.

4.3.4 Rule and Level Evaluator
Rule and Level Evaluator is responsible for giving a score for the generated games (rules
and levels). It is a combination between the Level Evaluator from Section 4.2.3 and Lim
et al.[29] Evaluator. The weights are measured experimentally to ensure the best results.
The game evaluation score is expressed by the following equation:

RLscore = 0.5∗Lscore + 0.5∗Rscore

where Lscore is the level score and Rscore is the rule score.

4.3.4.1 Level Score

It uses the automated player described in Section 4.2.3.1 to give each generated level a
score and the best scored level is the selected one. The level score is calculated using the
same equation in Section 4.2.3.2 except for the Playability Score. Instead of using a range
of values, it just indicates if it is playable or not to point out the importance of finding
playable rules.

4.3.4.2 Rule Score

It is divided into 2 different parts rule heuristics score and rule validity score. The weights
are measured experimentally to ensure the best results. The rule score is expressed by the
following equation:

Rscore = 0.6∗Hscore + 0.4∗Vscore

where Hscore is the rule heuristic score and Vscore is the rule validity score.

Rule Heuristics Score (Hscore): It is similar to Lim et al.[29] heuristics. It is a group of
heuristics that ensures higher chance of playability for the generated games. The Rule
Heuristic Score is expressed by the following equation:

Hscore =
1
8
∗ (Pscore +Cscore + Uscore + Wscore + WOscore + PLscore + Mscore + Dscore)

where Pscore is the player exists score, Cscore is the critical path exists score, Uscore is
the useless objects score, Wscore is the winning condition validity score, WOscore is the
winning object in the rules score, Lscore is the player in LHS score, Mscore is the player
movement score, and Dscore is the direction consistency score.
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• Player exists score (Pscore): It ensures that a player exists in any of the game
rules. The player object must exist in the rules to have some game interaction. It is
expressed by the following equation:

Pscore =

1 player exists in the rules
0 otherwise

• Critical path exists score (Cscore): It ensures the existence of a path between the
player object and at least one of the winning objects in the Relations list (from the
Rule Analyzer). Having a path ensures that the game can be finished by moving
with the player. It is expressed by the following equation:

Cscore =

1 citical path exists
0 otherwise

• Useless objects score (Uscore): The amount of useless objects found in the game
rules. Useless objects are rule objects that are neither connected to a player or a
winning condition in the Relations list. Useless objects are not affected by any
player action so the score is inversely proportional to their number. The score is
expressed by the following equation:

Uscore =
1

Nuseless + 1

where Nuseless is the number of useless objects.
• Winning condition validity score(Wscore): The winning objects should have some

features to ensure game playability. These features differ according to the winning
condition. No rule requires at least one of the winning object having a Delete, Move,
or Teleport behavior, while other winning rules (All and Some) requires Create,
Move, or Teleport behavior. This score is expressed by the following equation:

Wscore =

1 winning object have one of the required features
0 otherwise

• Winning object in the rules score (WOscore): At least one of the two winning
objects should appear in any rule. This score is expressed using the following
equation:

WOscore =

1 at least one winning object exists in the rules
0 otherwise

• Player in LHS score (PLscore): Player should exists on the left hand side of at least
one rule. This score is expressed by the following equation:

PLscore =

1 player exists in LHS of at least one rule
0 otherwise

• Player Movement (Mscore): Player should have at least one movement action
associated with it in any rule to affect other game objects. This score is expressed
by the following equation:
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Mscore =

1 player movement exists
0 otherwise

• Direction consistency (Dscore): Rules should have the same movement action
across the whole rule to ensure human playability. The score is inversely propor-
tional to the number of different movements in the rules. This score is expressed by
the following equation:

Dscore =
1

Dunique

where Dunique is the average number of unique movement for all rules.

Rule Validity Score (Vscore): It ensures that no errors are found in the generated rules.
Errors can be detected from Puzzle Script engine during the compilation process. This
score is expressed using the following equation:

Vscore =

1 no errors
0 otherwise
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Chapter 5: Results & Evaluation
This chapter shows the results of the level and rule generation techniques proposed in
Chapter 4. The generated levels and games are all published on a website 1 to collect
human feedbacks. The collected feedbacks are compared with the automated player scores.
The following section analyzes the results of the new automated player and compares its
results with the original one, followed by the results of the level generation techniques,
and finally the results of the rule generation.

5.1 Automated Player
Section 4.2.3.1 introduces a new metric to improve the automated player performance.
Different weights are given to each one of the three metric components. The distance
between the two winning objects metric is the most important because it indicates the
playability of the level. Other metrics contributes with a lower weight equals to 50%. The
distance between the player and the winning objects metric is weighted 50% compared to
the new metric because at least one of the two winning objects is a rule object. The new
metric measures the distance between rule objects in the left hand side of all rules. This
means one of the winning objects already contributes in the new metric. The following
equation shows the final weights:

dtotal = dwinning + 0.5∗ (drules + 0.5∗dplayer)

where dwinning is the distance between winning objects metric, drules is the distance be-
tween rule objects (new metric), and dplayer is the distance between the player and the
winning objects.

The following section will describe the different games and levels used to test the
automated players, followed by a comparison between their results.

5.1.1 Input Description
Forty handcrafted levels from five different games were used. The five games are com-
pletely different to cover different object behaviors and winning conditions. Levels are
also designed with different sizes and ideas to cover different design aspects. Figure 5.1
shows different handcrafted levels for these games.

1http://www.amidos-games.com/puzzlescript-pcg/
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Figure 5.1: Examples for handcrafted levels from different games

The five games are Sokoban, LavaGame, BlockFaker, GemGame, and DestroyGame.

• Sokoban: The goal of the game is to place every single crate over a certain position.
The player should push crates to achieve that goal.
• LavaGame: The goal of the game is to reach the exit. The path towards the exit is

always blocked by a lava. The player should push crates over the lava to clear his
way.
• BlockFaker: The goal of the game is to reach the exit. The path towards the exit is

always blocked by lots of crates. The player should push these crates to align them
vertically or horizontally. Every three aligned crates are destroyed which clear the
path towards the exit.

• GemGame: The goal of the game is to place at least one gem over one of several
locations. The player can create gems by pushing crates. Every three aligned crates
are replaced with a single gem instead of the middle crate.

• DestroyGame: The goal of the game is to clear every single gem. Gems can be
destroyed when they are aligned with two other crates vertically or horizontally.
The player should push crates to reach that goal.

5.1.2 Comparing Different Players
In this section, the new automated player is compared to Lim et al.[29] automated player.
Each of them plays all the forty levels and reports the solution length and the number of
states explored. Figure 5.2 shows the average number of states each player explores in
each game to reach the goal.
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Figure 5.2: Comparison between the number of explored states for different automated
players

The enhanced player outperforms the original player in Sokoban and GemGame, but
its almost similar in the rest of the games. In games where the player is one of the winning
objects, the enhanced player performs slightly better in BlockFaker, while in LavaGame,
it is slightly worse. The enhanced players also performed badly in DestroyGame. The
main reason behind the bad performance in these games is the presence of the Destroy
behavior as the core mechanic of the game. For example, Figure 5.3 has two crates and
two lava. The metric measures the average distance between each crate and all lava. If
the lower lava is destroyed first, the metric will represent the long distance between the
crate and the far lava which is a little bit longer than before where both distances (short
and long) are considered. Based on that, the player will explore more states that will not
lead to the destroying the lower lava.

Figure 5.3: LavaGame level cause the enhanced player to do worse
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Another drawback of the new metric is when levels have lots of unused objects. The
new metric makes the player explore the unused objects aiming to reach the goal which
increase the total number of explored states. This drawback is not so important as the
main goal is to generate levels not to solve them. The presence of unused objects leads to
an increase in the level difficulty.

Figure 5.4 shows the average solution length for each game for the different players.
The enhanced player produces a slightly shorter solutions than the original player. Com-
paring both Figure 5.2 and Figure 5.4 a correlation can be noticed between both of them
except for Sokoban. Sokoban does not follow the same pattern due to being abstract as the
game has a very small amount of objects and just one rule. This abstraction is the main
reason both players can reach the goal in almost the same amount of steps.

Figure 5.4: Comparison between the average solution length for different automated
players

Table 5.1 shows the correlation between the average solution length and the average
explored states between the two players. The values in the table are the difference between
the original player and the enhanced player. Positive values indicates the enhanced player
is better than the original and vice versa.

The average solution length The average explored states
Sokoban -0.875 11127.625

LavaGame -1 -3914
BlockFaker 5 2736.625
GemGame 12.875 16763.625

DestroyGame -4.75 -6696.75
Correlation 0.77127

Table 5.1: Correlation between the average explored states and the average solution length
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5.2 Level Generation
This section shows the results of the level generation techniques introduced in Chapter 4.
The new automated player is used with a fixed number of explored states. It is limited to
5000 explored states to ensure fast execution.

The following section will discuss the required input for the system to work, followed
by the results for each technique. The results are evaluated by the system and several
human players and a correlation is calculated. The correlation may be low for several
reasons:

• The automated player evaluates all levels and gives them a score corresponding to
the levels’ percentage of playability which is not the case with human players.

• The very challenging levels are rated high with the system, while low with human
players.

• There is no concise definition for a good level.
• Small amount of human players contribute in the evaluation compared to the huge

amount of the generated levels.

5.2.1 Input Description
From Chapter 4, The level generation system needs a game description and level layouts
as an input. Five different games were tested with eight different level layouts.

5.2.1.1 Game Descriptions

The five different games are the same games described in Section 5.1.1 as they cover
a wide variety of different object behaviors and winning conditions. The following list
explains these behaviors and rules.

• Sokoban: The game have four main objects (Player, Crate, Target, and Wall). Crate
and Target are winning objects with Crate having a Move behavior. Wall is a solid
object. The game has an "All" winning condition.

• LavaGame: The game has five main objects (Player, Lava, Crate, Target, and Wall).
Player and Target are winning objects. Lava and Crate are normal rule objects with
Destroy behavior. Crate also has a Move behavior. Wall is solid object. The game
has an "All" winning condition.

• BlockFaker: The game has five main objects (Player, Crate, Stopper, Target, and
Wall). Player and Target are winning objects. Stopper and Crate are normal rule
objects with Crate having Move and Destroy behaviors. Wall is solid object. The
game has an "All" winning condition.

• GemGame: The game has five main objects (Player, Crate, Gem, Target, and Wall).
Gem and Target are winning objects with Gem having a Create behavior. Crate is a
critical rule object with Move and Destroy behaviors. Wall is a solid Object. The
game has a "Some" winning condition.
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• DestroyGame: The game has five main objects (Player, Crate, Gem, Target, and
Wall). Gem and Target are winning objects with Gem having a Destroy behavior.
Crate is a critical rule object with Move and Destroy behaviors. Wall is a solid
object. The game has a "No" winning condition.

5.2.1.2 Level Layouts

Eight different level layouts are used to automatically generate levels. These layouts are
the same layouts used in the handcrafted games. Figure 5.5 shows these layouts. The
layouts have different sizes and different internal structure. The biggest level layout is of
size 8x8 because the generation time increases as the level size increases.

Figure 5.5: Different level layouts for level generation

5.2.2 Constructive Approach Results
One hundred levels are generated using the constructive algorithm described in Sec-
tion 4.2.2.1. Each level is evaluated and the best two levels are selected. This approach
is repeated for the five different games and applied over all layouts. The total amount of
generated levels are 80 levels. Figure 5.6 shows examples of some of the generated levels
for different games.
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Figure 5.6: Examples of the generated levels using constructive approach

Out of the 80 levels only 15% are reported as unplayable by the system. By testing
these levels by human players only 10% are completely unplayable while the remaining
levels are very difficult levels (needs more states to be explored). Table 5.2 shows the
scores for all the generated levels using the system and human players.

Table 5.2 shows the correlation between the generated scores and the human player
scores. Sokoban and BlockFaker have the highest correlation value. The reason is the
automated player is better at these games using 5000 states (refer to Figure 5.2). LavaGame
has the most unplayable levels because of the huge amount of crates compared to the
lava as Crate has a higher priority than lava (refer to the game rules). GemGame and
DestroyGame have a very small correlation. These games have the most difficult rules so
the automated player prefers generating easier levels. These games have a Do Nothing
score equal to zero which makes the playability score having the highest effect on the
result.
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Sokoban LavaGame BlockFaker GemGame DestroyGame
Levels Automated

Player
Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

1 0.616362 0.49074074 0.6284062 0 0.67445767 0.5 0.77059963 0.5 0.8232172 0.5
2 0.616362 0.46551724 0.5876679 0.29166667 0.6232392 0.46428571 0.770599 0.5 0.8232172 0.5
3 0.69734 0.63793103 0.5896824 0 0.65679029 0.46428571 0.9577728 0.625 0.9098534 0.6
4 0.694114 0.62068965 0.5821967 0.45 0.6505131 0.5 0.95777289 0.625 0.9095344 0.6
5 0.685905 0.71428571 0.62574735 0.3125 0.60716514 0.39285714 0.96990456 0.4375 0.914115 0.6
6 0.671965 0.66346153 0.61386285 0.5 0.59945915 0.64285714 0.95356176 0.625 0.8975684 0.55
7 0.68588 0.58653846 0.6865308 0.5 0.74308529 0.46428571 0.85842389 0.5625 0.9479144 0.45
8 0.67818 0.60576923 0.66280606 0.55 0.71286994 0.75 0.8531832 0.5625 0.9418275 0.55
9 0.676906 0.61538461 0.7116651 0.45 0.75019982 0.53571428 0.91531076 0.5 0.9259153 0.55
10 0.6724738 0.625 0.6679423 0 0.74666923 0.78571428 0.8580357 0.5 0.9144401 0.6
11 0.70278 0.59615384 0.65113456 0.5 0.6585878 0 0.87784682 0.375 0.935399 0.5
12 0.698841 0.68 0.63963322 0 0.6572663 0.57142857 0.8774374 0.5625 0.9293 0.5
13 0.659504 0.56 0.77533756 0.5 0.78383958 0.60714285 0.9196736 0.625 0.947915 0.5
14 0.6530206 0.64 0.67766235 0.45 0.7277456 0.78571428 0.8669255 0.6875 0.9369172 0.7
15 0.681864 0.72 0.69552052 0 0.7283029 0.678571429 0.91133042 0.75 0.9449218 0.55
16 0.671696 0.72 0.667115 0 0.7209062 0 0.89999055 0.8125 0.93881904 0.65

Correlation 0.6716985 Correlation 0.2051036 Correlation 0.2414221 Correlation 0.2536727 Correlation 0.1976141

Table 5.2: Automated Player Scores vs Human Player Scores for constructive approach
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The constructive technique is a very fast technique that can be used in real time level
generation depending on the time taken by the automated player. Although the algorithm
ensures high level playability, it limits the search space for potential levels. The search
space is limited due to the restrictions found in the algorithm such as:

• The number of objects are always limited by the size of the free areas in the map.
Same map sizes have the same number of objects.

• The moving objects are always placed at the most free place. Moving objects are
always placed at the same location for each level layout.

• The second winning object is always at the farthest distance from the first object.
The second winning object is always at the level borders refer to Figure 5.6.

Removing any of these constrains causes the playability to be dropped dramatically.
The smaller levels are subjected to a higher similarity than the bigger ones. Out of the 80
levels only 8.75% are the same and all of them occur in the first three layouts, especially
the first one.

5.2.3 Genetic Approach Results
The genetic approach gives the system the ability to improve the generated levels scores.
GA is used for 20 generations with a population equal to 50 chromosomes. The crossover
rate is around 70% and the mutation rate is around 10%. GA is applied on each level
layout and the best two chromosomes from each layout are selected.

Initial results from GA are presented in Figure 5.7. It is clear that the best chromosomes
disappear after few generations so 2% elitism is used. The drawback of using elitism is
that the second best chromosome is usually the same as the best one.

Figure 5.7: Maximum fitness for GA without Elitism

The following subsections shows the results of the different initialization methods for
GA introduced in Section 4.2.2.2. At the end of each subsection the automated player
scores are compared with human player scores, then the results are analyzed.
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5.2.3.1 Random Initialization

Figure 5.8 and Figure 5.9 show the evolution of the maximum and the average fitness
respectively. Sokoban is the best evolved game in all of them because it needs small
amount of objects to have a playable level. On the other hand, GemGame levels has
a very bad score because GemGame has pretty tough restrictions to be playable. The
DestroyGame has a zero Do Nothing score, while Sokoban always has a high Do Nothing
score (refer to Table 5.2). This difference is the reason that DestroyGame levels have a
higher fitness score than Sokoban levels but with less difficulty.

Figure 5.8: Maximum fitness for GA with random initialization

Figure 5.9: Average fitness for GA with random initialization
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Figure 5.10: Examples of the generated levels using GA with random initialization

Figure 5.10 shows different generated levels using GA with random initialization for
different games. The generated levels are subjected to human players to test their playa-
bility and challenge. About 42.5% of the generated levels are repeated (due to elitism).
75% of the generated levels are playable although the automated player reported only
73.75%. GemGame and DestroyGame have a higher percentage of unplayable levels,
while LavaGame and BlockFaker have a lower percentage. The reason behind is that the
winning condition for BlockFaker and LavaGame is easier to be satisfied than GemGame
and DestroyGame.

Table 5.3 shows the correlation between the automated player scores and the human
player scores. The correlation is the highest at GemGame and DestroyGame because most
of the generated levels are unplayable and have a very small automated player score. It
is obvious from the table and the previous figures that more generations are needed to br
able to find more playable and challenging levels. For examples, most of LavaGame and
BlockFaker levels are just straight forward towards the goal.

56



Sokoban LavaGame BlockFaker GemGame DestroyGame
Levels Automated

Player
Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

1 0.472927827 0.441176471 0.55654906 0.875 0.56366794 0.25 0.2895113 0 0.823277724 0.5
2 0.472927827 0.426470588 0.55654906 0.875 0.56366794 0.25 0.2895113 0 0.823277724 0.5
3 0.66605524 0.569444444 0.4829044 0.25 0.58819125 0.25 0.2852678 0 0.285267846 0
4 0.66605524 0.569444444 0.4829044 0.25 0.58819125 0.25 0.2852678 0 0.285267846 0
5 0.620078 0.777777778 0.58316514 0.291666667 0.539436756 0.25 0.284260212 0 0.296260212 0
6 0.601255799 0.694444444 0.58316514 0.291666667 0.539436756 0.25 0.284260212 0 0.296260212 0
7 0.57708091 0.402777778 0.55400489 0.25 0.50191485 0.25 0.3350501 0 0.75341078 0.35
8 0.577080912 0.402777778 0.554004895 0.25 0.50191485 0.25 0.3350501 0 0.75341078 0.35
9 0.5720216 0.069444444 0.4216133 0.25 0.523848613 0.25 0.346181665 0 0.87578933 0.55
10 0.5720216 0.073529412 0.4216133 0.25 0.46675503 0.25 0.33422192 0 0.87108038 0.45
11 0.604114365 0.296875 0.57729139 0.333333333 0.50550698 0.375 0.282968 0 0.865837091 0.5
12 0.604114365 0.397058824 0.57729139 0.291666667 0.50550698 0.375 0.282968 0 0.858546414 0.65
13 0.638117335 0.558823529 0.569474277 0.5 0.46041324 0.291666667 0.8438745 0 0.934646319 0.5
14 0.638117336 0.558823529 0.569474277 0.5 0.46041324 0.25 0.8438745 0.416666667 0.934646319 0.5
15 0.620584613 0.578125 0.5843821 0.6 0.54673306 0.291666667 0.90855179 0.833333333 0.84207603 0.55
16 0.620584613 0.566666667 0.5843821 0.6 0.53355297 0.666666667 0.90855179 0.583333333 0.52655178 0.2

Correlation 0.3876642 Correlation 0.3862481 Correlation -0.0389277 Correlation 0.8223281 Correlation 0.9689049

Table 5.3: Automated Player Scores vs Human Player Scores for GA with random initialization
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5.2.3.2 Constructive Initialization

Using the constructive algorithm to initialize the GA increase the overall level playability
from 90% to reach 100% by expanding the search space to find better levels than the
constructive approach. Figure 5.11 and Figure 5.12 show the evolution of the max fitness
and the average fitness respectively. The slow increase in the max fitness score is due to:

• The high quality of the generated levels by the constructive algorithm.
• The limited search space of the initial population.

The second point is the main reason for the drop in the average score at the beginning.
GA uses mutation operator only to expand the search space to find different levels, while
crossover has a small effect as all the levels have the same format as the constructive
algorithm. Due to the limited search space, the generated levels are very similar to the
constructive approach. For examples, Sokoban level presented in Figure 5.13 has crates at
the most empty spaces and targets at the borders like the constructive algorithm.

Figure 5.11: Maximum fitness for GA with constructive initialization
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Figure 5.12: Average fitness for GA with constructive initialization

Figure 5.13 shows different generated levels from different games. All the generated
levels are playable. 46.25% of the generated levels are identical due to the elitism and the
small search space. Table 5.4 shows the automated player scores with the human player
scores and calculates the correlation between both of them. The correlation is the same
like the constructive approach as most of the generated levels have the same structure of
the constructive algorithm levels.

Figure 5.13: Examples of the generated levels using GA with constructive initialization
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Sokoban LavaGame BlockFaker GemGame DestroyGame
Levels Automated

Player
Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

1 0.616362 0.480769231 0.6191616 0.3 0.674457 0.541666667 0.8730908 0.5 0.8769583 0.55
2 0.615881 0.395833333 0.6191616 0.3 0.674457 0.541666667 0.8730908 0.5 0.8769583 0.55
3 0.71161371 0.653846154 0.6521912 0.5 0.640292 0.458333333 0.957772 0.666666667 0.927642 0.5
4 0.71161371 0.634615385 0.6121912 0.5 0.640292 0.458333333 0.957772 0.666666667 0.927642 0.5
5 0.6813152 0.5 0.6261598 0.7 0.613533 0.166666667 0.9541082 0.583333333 0.9201257 0.6
6 0.6813152 0.5 0.6260663 0.55 0.60379 0.166666667 0.9541082 0.583333333 0.9201257 0.6
7 0.692882 0.75 0.650007 0.5 0.75497 0.791666667 0.92124517 0.666666667 0.94662662 0.45
8 0.692882 0.711538462 0.650007 0.5 0.75497 0.791666667 0.92124517 0.666666667 0.94332112 0.45
9 0.690599 0.5 0.765587 0.85 0.80884 0.708333333 0.9003137 0.666666667 0.928826 0.6
10 0.690599 0.5 0.765587 0.8 0.80884 0.708333333 0.9003137 0.666666667 0.928826 0.6
11 0.702111 0.615384615 0.80019 0.6 0.827012 0.916666667 0.9340367 0.75 0.9418921 0.5
12 0.69881 0.576923077 0.80019 0.6 0.827012 0.916666667 0.9340367 0.75 0.9418921 0.5
13 0.672561 0.666666667 0.7755379 0.5 0.810844 0.791666667 0.9438273 0.583333333 0.93639401 0.85
14 0.672561 0.673076923 0.7755379 0.5 0.766883 0.75 0.9438273 0.583333333 0.93639401 0.85
15 0.703393 0.673076923 0.697292 0.45 0.817545 0.541666667 0.923987 0.416666667 0.9321509 0.8
16 0.703393 0.653846154 0.697292 0.45 0.817545 0.5 0.923987 0.416666667 0.9321509 0.8

Correlation 0.6095415 Correlation 0.4865985 Correlation 0.7975041 Correlation 0.2908096 Correlation 0.0770555

Table 5.4: Automated Player Scores vs Human Player Scores for GA with constructive initialization
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5.2.3.3 Hybrid Initialization

Hybrid initialization is used to ensure more diversity by exploring more of the search
space. 25% of population is initialized using the constructive algorithm, another 25% with
mutated versions of the constructive algorithm levels, while the rest are the same like the
random initialization (mutated versions of the empty level layout). The mutated levels are
constructed by subjecting a level to the mutation operator for twenty times.

Figure 5.14 and Figure 5.15 shows the evolution of the max fitness and the average
fitness respectively. The average fitness increases steadily along the generations, while the
max fitness increases with a very slow rate. Games with high unplayable percentage in
the constructive algorithm have the highest increase rate in the maximum fitness such as
LavaGame.

Figure 5.14: Maximum fitness for GA with hybrid initialization
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Figure 5.15: Average fitness for GA with hybrid initialization

Figure 5.16 shows different generated levels using hybrid initialization. The generated
levels have different structure than the constructive algorithm. For example, LavaGame
level in Figure 5.16 have a lot of crates around the goal entity instead of the empty spaces
on the right side of the level. All the generated levels are playable with 42.5% identical
levels. Table 5.5 shows the automated player scores and human players scores.

Figure 5.16: Examples of the generated levels using GA with hybrid initialization
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Sokoban LavaGame BlockFaker GemGame DestroyGame
Levels Automated

Player
Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

Automated
Player

Human
Player

1 0.654089218 0.615384615 0.5989727 0.45 0.5658553 0.458333333 0.82325022 0.5 0.680589 0.3
2 0.654089218 0.557692308 0.5989727 0.45 0.5658553 0.458333333 0.82325022 0.5 0.680589 0.3
3 0.64291055 0.538461538 0.5544389 0.7 0.6580676 0.541666667 0.9621 0.625 0.9132655 0.5
4 0.64291055 0.519230769 0.5544389 0.7 0.6580676 0.541666667 0.9621 0.625 0.9132655 0.5
5 0.68702434 0.403846154 0.5526414 0.55 0.62174446 0.541666667 0.9430214 0.6875 0.9396707 0.65
6 0.68702434 0.403846154 0.5526414 0.55 0.62174446 0.583333333 0.9430214 0.6875 0.9390626 0.65
7 0.68636698 0.4375 0.6992303 0.25 0.68210815 0.625 0.8828038 0.4375 0.933516 0.5
8 0.6863669 0.4375 0.6992303 0.25 0.68210815 0.625 0.8824508 0.4375 0.933516 0.5
9 0.6894032 0.576923077 0.718745 0.7 0.7304408 0.541666667 0.924357 0.625 0.9286588 0.4
10 0.6894032 0.576923077 0.718745 0.7 0.7304408 0.541666667 0.924357 0.625 0.9286588 0.4
11 0.6994754 0.615384615 0.654869 0.65 0.7425093 0.708333333 0.931827 0.625 0.933017 0.85
12 0.6994754 0.615384615 0.654869 0.65 0.7425093 0.833333333 0.931827 0.625 0.933017 0.85
13 0.67699273 0.576923077 0.7309346 0.5 0.65543165 0.541666667 0.950839 0.5 0.9321156 0.65
14 0.67699273 0.576923077 0.7309346 0.5 0.65543165 0.541666667 0.950839 0.5 0.9321156 0.65
15 0.65561072 0.673076923 0.7776904 0.85 0.745198 0.791666667 0.93151312 0.75 0.9451245 0.55
16 0.65561072 0.692307692 0.7586242 0.85 0.745198 0.791666667 0.93151312 0.75 0.9451245 0.55

Correlation -0.2750102 Correlation 0.1465936 Correlation 0.7747938 Correlation 0.5326768 Correlation 0.6169169

Table 5.5: Automated Player Scores vs Human Player Scores for GA with hybrid initialization
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5.2.4 Comparison of Different Techniques
The scores in the tables Table 5.2, Table 5.3, Table 5.4, and Table 5.5 are aggregated and a
general correlation is calculated for each game. Sokoban and BlockFaker have a very good
correlation which can be seen in Figure 5.17 and Figure 5.18 due to the high performance
of the automated player in playing them..

Figure 5.17: Correlation between all automated player scores and human player scores for
Sokoban

Figure 5.18: Correlation between all automated player scores and human player scores for
BlockFaker
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GemGame and DestroyGame have also a high correlation, but since the collected data
is very small so Figure 5.19 and Figure 5.20 looks more flat.

Figure 5.19: Correlation between all automated player scores and human player scores for
GemGame

Figure 5.20: Correlation between all automated player scores and human player scores for
DestroyGame

LavaGame has a very small correlation in Figure 5.21 because of the bad performance
of the automated player and the small amount of the collected data.
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Figure 5.21: Correlation between all automated player scores and human player scores for
LavaGame

Figure 5.22 shows a comparison between all the proposed techniques for all different
games. GA with constructive initialization scores the best in all games, followed by GA
with hybrid initialization and constructive approach. Both have almost same score but
the hybrid initialization has a higher playability percentage which makes it better. The
worst technique is GA with random initialization which needs more generations to reach
a playable level. The random initialization performs the worst in both GemGame and
DestroyGame due to the difficulty of the rules to reach the winning condition. GA with
constructive initialization achieves the highest score due to the fact that it uses constructive
approach to initialize its population.
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Figure 5.22: Max fitness of all proposed techniques for all different games

From the previous figure, it can be deduced that Constructive Approach always gener-
ates challenging playable levels regardless of the input rules. In addition the constructive
approach is a fast generation technique, this is why it is used in Rule Generation.

5.3 Rule Generation
This section shows the results of the rule generation technique introduced in Chapter 4.
The new automated player is used with a fixed number of explored states. It is limited to
1500 explored states to ensure fast execution.

GA is used using 50 chromosomes for 50 generations, with crossover rate equals
65%, mutation rate equals 10%. Different experiments are done on the technique. The
constructive approach is used to generate 25 levels where the best five levels are selected.

Different experiments are tested on the system. These experiments are:

• No Restriction: The system has no restriction on the levels, the rules, nor the
winning condition.

• Fixed Level: The system uses a fixed level instead of generating one.

• Fixed Winning Condition: The system fixes the winning condition and searches
for rules.

• Fixed Playing Rules: The system has a fixed set of playing rules and searches for
winning condition.

Figure 5.23 and Figure 5.24 show the maximum and average fitness respectively for
all the experiments. The graphs show a very slow increase rate due to the vast majority of
unplayable games found in the search space. The max fitness and average fitness of Fixed
Rules experiment are the highest due to the small search space of winning conditions. The
other experiments have lower fitness due to the huge search space of the playing rules.
The difference in the fitness between the other experiments will be explained in the results
of each experiment.
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Figure 5.23: Maximum fitness for Rule Generation experiments

Figure 5.24: Average fitness for Rule Generation experiments

The following subsections explain the required input data for each experiments, fol-
lowed by the special input and the results for each one.

5.3.1 Input Description
The inputs for rule generation are the objects and the collision layers. Eight different
objects are used over 4 different collision layers. Figure 5.25 shows the different objects
distributed on the collision layers. Background is alone in the lowest layer, while Player
and Wall are in the highest layer.
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Figure 5.25: Collision layers for Rule Generation objects

Figure 5.26 shows the level outline used in the level generation. The outline is small
with no internal structure to ensure fast execution with a wide variety of generated levels.

Figure 5.26: The level outline used for Rule Generation

5.3.2 No Restriction
The output games are playable but they are very trivial. The best generated game has the
following rules:

[ action Player ] -> [ ∧ Object4 ]

Some Object4 on Object1

The rules in this game are related with the winning condition. That is not the case with
lower score generated games where rules have no relation with the game goal. These
games have different rules but all have the same winning condition:

Some Player on Object1

This winning condition is the main reason for making them playable regardless of the
rules involved.

5.3.3 Fixed Level
Figure 5.27 shows the selected level for the experiment. This level is one of the hand
crafted levels from Sokoban. The main reason for that experiment is to make sure that the
level generator is not the cause of low performance of the Rule Generation process.
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Figure 5.27: Fixed level used for Rule Generation

The output games are winnable but not playable. The winning condition is satisfied as
soon as the game starts. Most of them have these rules:

[ Object4 ] -> [ Object1 ]

[ Player | | Object2 ] -> [ Object3 | ∨ Object5 | ]

All Object4 on Player

The first rule is the main reason that the game is winnable. As it destroy all Object4 in
the level as the level starts. These bad results can be noticed from the low fitness for this
experiment in Figure 5.23 and Figure 5.24.

5.3.4 Fixed Winning Condition
The winning condition is fixed to Sokoban’s winning condition:

All Object1 on Object4

The output games are playable which is better relative to the previous experiment. The
best generated rules are:

[ Object1 | ∨ Player ] -> [ | ∨ Player ]

This rule destroys Object1 when the player moves beside it. Destroying all Object1 causes
the satisfaction of the winning condition. Other generated games are winnable games but
not playable, as they have the same previous rule but without having the Player in the left
hand side.

5.3.5 Fixed Playing Rules
This experiment is easier than all the previous experiments as the search space for winning
condition is much smaller. The playing rules were fixed to Sokoban rule:

[ > Player | Object4 ] -> [ > Player | > Object4 ]
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The best output winning condition was Sokoban which was predicted:

All Object1 on Object4

Other win rules are all the same like sokoban but with swapping Object1 and Object4 or
having Object2 / Object3 instead of Object1. Also one interesting winning condition was

No Object1 on Object4

which is easier than Sokoban. That is why it has lower fitness than Sokoban.
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Chapter 6: Conclusion & Future Work
This research presented a system to generate levels and rules for Puzzle Script. It proposed
several metrics to evaluate puzzle levels and games based on their solution sequence. It
enhanced the output of Lim et al. automated player[29].

The proposed system generates levels regardless of the game rules. It uses two different
techniques (Constructive and Genetic approach). The constructive approach results in 90%
playable levels which is enhanced in the genetic approach to reach 100%. However, GA
requires more processing time. Genetic approach uses GA with three different initializa-
tion methods (Random initialization, Constructive initialization, and Hybrid initialization).
Random initialization produces levels with different configuration from the constructive
approach with low playability (equals to 75%). The constructive initialization produces
levels with up to 100% playability, but with similar structure to the constructive approach.
The hybrid initialization produces the same playability percentage with less similarity to
the constructive approach but less challenging than the constructive initialization.

The generated levels are tested using human players1 and a score is given to each
level. Comparing the human player scores with the automated player scores indicates a
high correlation. This high correlation is a good indication that the proposed metrics can
actually measure level’s playability and challenge.

Based on the results, the constructive approach is used in rule generation. Rule gen-
eration is an extension to the work by Lim et al.[29]. The results show the possibility of
generating rules without having a predefined level or a predefined winning condition. All
experiments generate winnable games with some playable ones. The playable games are
trivial due to the huge search space for the playing rules. Decreasing the search space in
Fixed Rules experiment results in higher quality games.

This work is a first step in general level and rule generation for Puzzle Games. There
is plenty to be done to expand and enhance it. Some aspects of future extensions are:

• use a better model for the solution length score and the applied rule scores.
• analyze the effect of each metric on the level generator.
• utilize the metrics to analyze the search space for the level generator.
• test different techniques other than plan GA to increase the level diversity like in

Sorenson and Pasquier work[53].
• generate levels with a specific difficulty.
• generate levels with a certain solution.
• generate rules with specific properties.
• more exploration of rule generation search space to decrease its size.
• improve the time and the quality of the automated player to decrease the time for

level and rule generation.

1http://www.amidos-games.com/puzzlescript-pcg/
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 الملخص
 

و اللعبة تخزين مساحة لتقليل بكثرة يستخدم للمحتوى الأتوماتيكي الإنتاج كان الألعاب صناعة بداية                منذ
للمحتوى الأتوماتيكي الإنتاج أن إلا ولت قد الصعوبات هذه أن من الرغم على و المحتوى. من كبيرة كمية                    تقديم
الكلفة و الوقت تقليل على يساعدنا الأتوماتيكي الإنتاج الألعاب. مجال في العلمي البحث إتجاهات أهم من يزال                   لا
إنتاج كيفية لفهم الطريق يمهد أنه كما مبدعا، الألي الحاسب جعل على يساعدنا و الألعاب، إنتاج في                   اللازمة
المراحل إنتاج يتم الذكاء. لألعاب قواعد و مراحل تصميم في يساعد نظاماً تقترح الرسالة هذه للألعاب.                  محتوى
و البناءة) (الطريقة السرعة بين المفاضلة مع مختلفتان طريقتان تطبيق تم اللعبة. قواعد على قيود أي                  بدون
بإستخدام الكومبيوتر بواسطة أتوماتيكياً المنتجة المراحل تقيم الطريقتين من كلا الوراثية). (الطريقة الحل               إمكانية
قبل من أيضا تقيمها تم المنتجة المراحل الحل. إمكانية و التحدي حيث من المراحل جودة لحساب المراحل                   مقيم
الطريقة تصل بينما للحل، قابلة البناءة بالطريقة المنتجة المراحل من %۹۰ أن النتائج توضح بشر.                 لاعبين
كفاءة على يدل مما اللاعبين تقيم و المراحل مقيم تقييم بين طردية علاقة وجود النتائج تبين .%۱۰۰ إلى                    الوراثية
قدرة النتائج أثبتت بعينها. مرحلة على الإعتماد بدون الذكاء لألعاب قواعد لإنتاج البناءة الطريقة استخدمت                 المقيم.
تفتقر لكن للعب بقابليتها تتميز القواعد هذه مسبقة. إفتراضات على الإعتماد بدون القواعد إنتاج على الجديد                  النظام
كفاءة ذات قواعد إنتاج النظام استطاع البحث، نطاق بتصغيير قمنا عندما البحث. نطاق كبر بسبب ذلك و                   للتحدي

 عالية مثل المنتجة من قبل البشر.
 

  
  
 

   

 



 

  أحمد عبد السميع حسن خليفة مهنــــــــــــــــــدس:
 ۲۲ / ۲ / ۱۹۸۹ تاريــخ الميــــلاد:
 مصرى الجنسيـــــــــــــــة:
 ۱ / ۱۰ / ۲۰۱۰ تاريخ التسجيل:

     /     / ۲۰۱٥ تــــاريخ المنــــح:
 هندسة الحاسبات القســـــــــــــــــــــم:
   ماجستير العلوم الدرجــــــــــــــــــــة:

  المشرفون:
 أ.د. ماجدة بهاء الدين فايق 

  الممتحنـــــــون :
 أ.د. ماجدة بهاء الدين فايق             (المشرف الرئيسي) 

 أ.د. نفين محمود درويش               (الممتحن الداخلي)
 أ.د. سامية عبد الرازق مشالي        (الممتحن الخارجي)

   
  عنـــــوان الرسالــة :

 كتابة سيناريوهات الألعاب أتوماتيكياً
 

  ​الكلمات الدالة :     إنتاج محتوى للألعاب أتوماتيكياً؛ الإبداع بالحاسب؛ إنتاج قواعد للألعاب؛ إنتاج مراحل
 للألعاب؛ مخطوطة ألعاب الذكاء؛ ألعاب الذكاء

 
 ملخـــــص البحــــــث :

تقديم و اللعبة تخزين مساحة لتقليل بكثرة يستخدم للمحتوى الأتوماتيكي الإنتاج كان الألعاب صناعة بداية                 منذ
لا للمحتوى الأتوماتيكي الإنتاج أن إلا ولت قد الصعوبات هذه أن من الرغم على و المحتوى. من كبيرة                    كمية
الكلفة و الوقت تقليل على يساعدنا الأتوماتيكي الإنتاج الألعاب. مجال في العلمي البحث إتجاهات أهم من                  يزال
إنتاج كيفية لفهم الطريق يمهد أنه كما مبدعا، الألي الحاسب جعل على يساعدنا و الألعاب، إنتاج في                   اللازمة
المراحل إنتاج يتم الذكاء. لألعاب قواعد و مراحل تصميم في يساعد نظاماً تقترح الرسالة هذه للألعاب.                  محتوى
و البناءة) (الطريقة السرعة بين المفاضلة مع مختلفتان طريقتان تطبيق تم اللعبة. قواعد على قيود أي                  بدون
بإستخدام الكومبيوتر بواسطة أتوماتيكياً المنتجة المراحل تقيم الطريقتين من كلا الوراثية). (الطريقة الحل               إمكانية
قبل من أيضا تقيمها تم المنتجة المراحل الحل. إمكانية و التحدي حيث من المراحل جودة لحساب المراحل                   مقيم
الطريقة تصل بينما للحل، قابلة البناءة بالطريقة المنتجة المراحل من %۹۰ أن النتائج توضح بشر.                 لاعبين
كفاءة على يدل مما اللاعبين تقيم و المراحل مقيم تقييم بين طردية علاقة وجود النتائج تبين .%۱۰۰ إلى                    الوراثية
قدرة النتائج أثبتت بعينها. مرحلة على الإعتماد بدون الذكاء لألعاب قواعد لإنتاج البناءة الطريقة استخدمت                 المقيم.
تفتقر لكن للعب بقابليتها تتميز القواعد هذه مسبقة. إفتراضات على الإعتماد بدون القواعد إنتاج على الجديد                  النظام
كفاءة ذات قواعد إنتاج النظام استطاع البحث، نطاق بتصغيير قمنا عندما البحث. نطاق كبر بسبب ذلك و                   للتحدي

  عالية مثل المنتجة من قبل البشر.

 



 

 كتابة سيناريوهات الألعاب أتوماتيكياً
 

  اعداد

 أحمد عبد السميع حسن خليفة
 

 رسالة مقدمة إلى كلية الهندسة ­ جامعة القاهرة

 كجزء من متطلبات الحصول على درجة ماجستير العلوم

 في

 هندسة الحاسبات

 

 يعتمد من لجنة الممتحنين:
 

  الاستاذ الدكتور:  ماجدة بهاء الدين فايق                                           المشرف الرئيسي
 

 الاستاذ الدكتور:  نفين محمود درويش                                              الممتحن الداخلي
 

 الاستاذ الدكتور:  سامية عبد الرازق مشالي                                     الممتحن الخارجي

 أستاذ بمعهد بحوث الإلكترونيات ­ المركز القومي للبحوث

 

 
 

 كليــة الهندســة ­ جامعــة القاهــرة
 الجيـزة ­ جمهوريـة مصـر العربيــة

۲۰۱٥ 
 



 

 كتابة سيناريوهات الألعاب أتوماتيكياً

 

  اعداد

 أحمد عبد السميع حسن خليفة
 

 

 رسالة مقدمة إلى كلية الهندسة ­ جامعة القاهرة

 كجزء من متطلبات الحصول على درجة ماجستير العلوم

 في

 هندسة الحاسبات
 

 
 

 تحت اشراف

 أ.د. ماجدة بهاء الدين فايق
 أستاذ بقسم هندسة الحاسبات

 كلية الهندسة ­ جامعة القاهرة

 

 

 

 

 كليــة الهندســة ­ جامعــة القاهــرة
 الجيـزة ­ جمهوريـة مصـر العربيــة

۲۰۱٥ 

 



 

  

 

 

 كتابة سيناريوهات الألعاب أتوماتيكياً

 

  اعداد

 أحمد عبد السميع حسن خليفة
 

 

 رسالة مقدمة إلى كلية الهندسة ­ جامعة القاهرة

 كجزء من متطلبات الحصول على درجة ماجستير العلوم

 في

 هندسة الحاسبات

 

 

 

 

 

 

 كليــة الهندســة ­ جامعــة القاهــرة
 الجيـزة ­ جمهوريـة مصـر العربيــة

۲۰۱٥ 
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