Abstati had Suternational Enformen a Cellular and Milunlow Regulation of Henrylolin Switching His Britis Hum, Britis UA June 1980. IN VITRO SYNTHESIS OF HEMOGLOBIN IN BFU-e DERIVED COLONIES OF PERSONS

IN VITRO SYNTHESIS OF HEMOGLOBIN IN BFU-e DERIVED COLONIES OF PERSONS WITH AN α OR A β -THALASSEMIA, A. E. Felice, C. A. Altay, A. L. Reese, B. Webber, and T.H.J. Huisman, Department of Cell and Molecular Biology, Medical College of Georgia, Augusta, GA 30912

The synthesis of α and non- α chains of human Hb was studied in 14-day peripheral blood BFU-e derived colonies harvested 24 hrs after the addition of ³⁵S-methionine (colonies) and in blood reticulocytes (retice) incubated for 2 hrs with ¹⁴C leucine. The subjects were 7 **B-Thei traits**, 2 HPFH traits and 1 homozygote, 3 Hb G-Philadelphia traits of when ene was also homozygous for Hb S, 3 Hb G-Georgia traits, 1 Hb Leslie trait, and 2 Hb S traits. The proportions of the nascent α (Hb G) and β (Hb X) variants are markers for the presence of a mild or moderate α chain deficiency due to an α -Thal-2 heterozygosity or a homozygosity, respectively. The $\Sigma\alpha/non-\alpha$ ratios of β -Thal traits differed between retics (av. 1.89) and colonies (av. 0.88). Two HPFH traits gave values of 0.95 and 1.69 in retics and 0.87 and 0.95 in colonies. The α/γ ratios for the HFFH homosygote were 1.92 (retics) and 1.25 (colonies).

The $\Sigma\alpha/\text{non-}\alpha$ values in two Hb G-Georgia traits ($\alpha\alpha^G/\alpha\alpha$) were 0.90 and 1.01 (retics), and 0.75 and 0.86 (colonies) while the % Hb G was 39 (retics) and 13 (colonies). The father with Hb G-Georgia in association with an α -Thal-2 trait ($\alpha^0 \alpha / \alpha \alpha^G$) had ratios of 0.62 (retics) and 0.88 (colonies), while the % Hb G was 62 (retics) and 13 (colonies). Another a-Thal-2 trait, who had an associated Hb G-Phil. trait ($\alpha^0 \alpha^G / \alpha \alpha$) gave $\Sigma \alpha / \Sigma$ non-2 values of 0.72 (retics) and 0.93 (colonies) while the % Hb G was 35 (retics) and 36 (colonies). One α -Thal-2 homozygote with an associated Hb G Phil. trait $(\alpha^0 \alpha^G / \alpha^0 \alpha; \beta^A / \beta^A)$ gave: $\Sigma \alpha / \text{non} - \alpha = 0.63$ with 45% Hb G (retics) and $\Sigma\alpha/\text{non-}\alpha = 0.90$ with 52% Hb G (colonies). Another α -Thal-2 homozygote who had sickle cell anemia ($\alpha^0 \alpha^G / \alpha^0 \alpha$; β^S / β^S) gave $\Sigma \alpha / \text{non} - \alpha = 1.04$ with 56% Hb G (retics) and $\Sigma\alpha/\text{non-}\alpha = 1.14$ with 55% Hb G (colonies). One Hb Leslie trait $(\alpha\alpha/\alpha\alpha; \beta^A/\beta^L)$ had a $\Sigma\alpha/non-\alpha$ value of 1.69 and 71.5% Hb X (retics) and a $\Sigma\alpha/non-\alpha$ value of 0.76 with 33% Hb X (colonies). The two Hb S traits had an associated α -Thal-2 homozygosity ($\alpha^0 \alpha / \alpha^0 \alpha$; β^A / β^S). Although the percentages of Hb S were low, both in peripheral blood (30) and in colonies (31), the Δn non- α values in colonies (0.89, 0.84) were higher than in retics (< 0.74).

It seems that highly effective proteolytic mechanisms of immeture erythrocyte precursors produced by cultured BFU-e cells could explain the balanced synthesis of α and β chains in β -Thal and in α -Thal colonies while the synthesis of γ chains may decline during the <u>in vitro</u> maturation of these cells.