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Abstract

General user modelling has long been the holy grail of many domains within ar-
tificial intelligence, including affective computing and games research. General
affective user models in these fields could advance the understanding of human
emotion and serve as a basis for numerous practical applications. However, as
affective computing traditionally focuses on passive media, the transferability of
affective models to dissimilar tasks is rarely observed. While psychophysiolog-
ical signals used in affective computing can provide task-agnostic information,
they do not scale well outside of a lab environment. In contrast, games research
focuses on an inherently interactive medium that provides rich contextual in-
formation about the game-state and player behaviour. Unfortunately, most of
the work in games user research focuses on game-specific applications, and the
handful of studies on general affect modelling in the past have been limited by
small, ad-hoc testbeds. Numerous research questions in the field still remain
open, and it is clear that a more methodical approach is needed that examines
more comprehensive datasets and different levels of generality.

To which degree can we predict player affect in unseen games? Is it possi-
ble to find transferable characteristics between dissimilar games and genres?
This thesis asks these questions and attempts to answer them through a series
of experiments on predicting player arousal. Along the way, it presents sev-
eral contributions to affective computing and game research, including a robust
pipeline for first-person affect annotation for interactive elicitors; a comprehen-
sive online platform for data collection; the most extensive dataset to this date
that contains affective labels for multiple games and genres; and an ordinal mod-
elling pipeline using dynamic windowing, accounting for player memory. Studies
in this thesis highlight the strengths of heuristic general features and present a
thorough examination of the modelling of temporal dynamics of arousal through
preference learning. The resulting models can transfer between games and gen-
res with a high level of accuracy and the conclusions of this thesis point towards
the robustness of time-related game-agnostic features in the modelling of games.
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Chapter 1

Introduction

Towards the road to general Artificial Intelligence (AI) a vital stepping stone is the general
recognition, manifestation, and simulation of emotion. While general intelligence and ar-
tificial psychology define two critical long-term goals of AI, many domains of AI research
focus solely on general problem solving, knowledge transfer, or naturalistic language use.
However, the intersection of intelligence and emotion would not just enable a better un-
derstanding of human cognition in general but also empower artificial systems to perform
affect-based interactions across dissimilar settings. Even though affective states are often
depicted on a circumplex plane with a neutral baseline in the middle (Russell, 1980), we hu-
mans are rarely experiencing absolute neutral emotions. Emotions permeate our everyday
lives and interactions, and affective processes alter our basic cognitive functions and even
our subsequent emotional appraisals (Prinz, 2004). Damasio’s Somatic-Marker Hypothesis
postulates that physiological processes connected to visceral affective reactions facilitate
our behaviour and decision making at a fundamental level (Damasio, 1994). Therefore,
future AI applications have to recognise and adapt to these emotional and affective states
to reliably predict human action and behavioural patterns if they were to navigate our
social landscape and interact with humans in a naturalistic way. Completing an affective
loop through human-computer interaction (Togelius and Yannakakis, 2016; Yannakakis and
Togelius, 2018), such an AI could potentially enhance different human experiences, increase
learning capabilities, and carry out therapeutic healthcare tasks. To this end, general mod-
els of affect and emotion are needed, which perform well independently of domain and
context.

It is hard, however, to build these models from the ground up out in the wild. As a more
minor step towards general models of affect, this thesis focuses on the domain of videogames
as a testbed for general affect modelling. Games have been captivating the human mind
since the dawn of time, and with the advancement of technology, we now can realise self-
contained virtual worlds with their own rules and boundaries. While these microcosms
can facilitate a wide array of user experiences, they also provide an optimal test bed for
affective computing applications. Even though games have explicit constraints, they are
designed to support several affordances through different game mechanics. This bounded
freedom makes them ideal for observing dynamic interactions and naturalistic emotion
manifestation. Unfortunately, while videogames define the dominant application area for
the study of general AI, little emphasis has been given to the ways general AI systems are
possible in games beyond the task of gameplaying (Perez-Liebana et al., 2016a; Togelius
and Yannakakis, 2016), including systems that create or even model player experience in

1
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Figure 1.1: Illustration of the high-level general affect modelling pipeline presented in this
thesis. The top of the figure shows the data collection procedure, which includes a ro-
bust first-person annotation pipeline for videogame play. The bottom of the figure shows
the application of the constructed models on a previously unseen game and player base.
While the overall framework is easily adaptable, the annotation software, PAGAN, and the
compiled database, AGAIN, are specific to the thesis and introduced in Chapters 3 and 4,
respectively.

a general fashion (Yannakakis and Togelius, 2018). Arguably, studying general models of
player experience—which aims at predicting the experience of play in a game-independent
way—is still in its infancy. The handful of examples in this vein are limited by ad-hoc
testbeds and experience models built on small-scale game corpora (Shaker et al., 2015;
Shaker and Abou-Zleikha, 2016; Camilleri et al., 2017).

1.1 Problem Formulation

Motivated by the lack of a comprehensive study on general player experience modelling,
this thesis aims to fill this existing gap by creating an affective corpus for the purpose of
general player modelling. As mentioned above, the focus on games is motivated by their
unique structure; wherein games provide a well-bounded but interactive space. In contrast
to traditional affective computing applications focusing on passive media such as reacting to
video clips or sounds, games provide several points of interaction. As emotion manifestation
in the wild is more dynamic and often depends on our interactions with our environment
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and other people in said environment, games present the perfect test bed for studying the
temporal dynamics of emotions in a more naturalistic way. The central question which
defines the investigation in this thesis is as follows:

To which degree can we predict player affect in unseen games?

Answering this question, however, is far beyond the scope of this work. On the one hand,
the scope of possible affective responses is broad, and on the other hand, there are too many
possible paths towards predictive modelling to fit into one PhD thesis comprehensively.

Figure 1.1 illustrates the general approach of the presented work to affect prediction.
This thesis applies a data-driven approach to predictive modelling and focuses on transfer-
able characteristics of games. The work presented here assumes that there exist features of
play that can transfer aspects of player experience across games and different game genres
and that such features can be used to build accurate models of player experience in a general
fashion. While in the above inquiry, affect represents a complex underlying visceral mental
process that precedes all subsequent emotional responses, as a first step towards a compre-
hensive affective model of emotion in games, this thesis focuses on the arousal of players.
Arousal has been chosen over other affective and emotional dimensions and categories as it
carries high degrees of affective information within the domain of videogames. In games,
arousal can describe the intensity of the play experience, which has further implications for
the players’ engagement, attention, enjoyment, and other positive psychological and cogni-
tive outcomes. While some game research projects aim to measure these outcomes directly,
this thesis focuses on the underlying arousal because A) it captures a visceral underlying
dynamic of the player experience, and B) it ties the research more closely to affective com-
puting. This is an essential criterion because while the goals of games user research and
affective computing are often aligned, differences in the framing of research problems often
make it hard to compare and build on shared results. This thesis aims to close some of this
research gap and bring the two communities closer together.

The above inquiry undoubtedly necessitates a large and robust dataset with rich and
diverse features capturing gameplay. As the goal is general modelling, this dataset should
contain multiple games; these games should be similar enough to reasonably transfer models
between them but still have key differences with a realistic distance between games. With
the outline of this dataset, research presented here can be narrowed down to the context of
this corpus and traditional machine-learning methods based on game telemetry.

1.2 Research Questions

Following the problem formulation above, two sets of research questions emerge. The first
relates to general modelling, and the second relates to the pipelines used to gather, process,
and model information about the players’ arousal.

RQ1: Can arousal in games be reliably modelled in a general fashion?

RQ1.1: Can game-agnostic features perform comparably to specific features?

RQ1.2: Can models be transferred between games within a genre?

RQ1.3: Can models generalise over games from different genres?

RQ2: How to reliably capture and model arousal in games?
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RQ2.1: How can we capture the first-person impression of arousal during game-
play?

RQ2.2: Can temporal biases be mitigated during data processing?

RQ2.3: To what extent can the temporal dynamics of the annotation be mod-
elled?

The work presented here revolves around a large-scale dataset collected for this thesis,
the Affect Game AnnotatIoN (AGAIN) dataset, presented in Chapter 4. Because most of
the research into general modelling is based on ad-hoc datasets of a generally low number
of games, the creation of this dataset was necessary to answer any of the research questions
posed by this thesis. While creating the dataset posed some purely technical challenges
in designing and developing the elicitor games, collecting the annotations for the dataset
was not a trivial task either. To answer RQ2, data collection, processing, and modelling
pipelines had to be devised. Firstly, to answer RQ2.1, Chapter 3 introduces the Platform
for Audiovisual General-purpose ANnotation (PAGAN), which allows for the accessible,
crowd-sourced collection of first-person annotations of arousal. Because PAGAN includes
three different annotation methods for time-continuous annotation of multimedia content,
a usability study helped narrow down the choice of annotation protocol for the collection
of AGAIN. PAGAN served as a central platform to collect data seamlessly both in terms
of game telemetry and annotations. The final pipeline is inspired by stimulated recall tech-
niques and solves the conflict of interactive elicitors and first-person annotation by shifting
the annotation task immediately after gameplay. As outlined by RQ1, experiments pre-
sented here focus on game-agnostic general features on different levels of generality. While
the first experiments in Chaper 5 look at the robustness of game-based models built on
general features—answering RQ1.1—latter experiments extend the scope to two levels of
generality. Experiments in Chapter 6 attempt to answer RQ1.2 by looking at genre-based
arousal modelling, while Chapter 7 searches for the answers to RQ1.3 by investigating gen-
eral arousal modelling across genres. To answer RQ2.2 and RQ2.3 experiments in Chap-
ters 5-7 implement a method of dynamic time-windowing and model arousal both in terms of
relative change in the level of arousal and change in the gradient of the arousal trace, which
describes the temporal dynamic (acceleration and deceleration) of the change in arousal.

1.3 Contributions

The thesis makes several contributions to games user research and affective computing in
general. Beyond the experimental results, the work in this thesis also produced tools and
a dataset, the scope and possible applications of which point far beyond this thesis. This
section gives a short overview of the main contributions of the presented work and tools
created for and during the PhD work, which contributed to the completion of this thesis.
Projects in this thesis showcase preference learning for the general ordinal modelling of
arousal. This focus is motivated by a growing body of literature in both game research
and affective computing supporting the robustness and validity of ordinal modelling for
human-generated data (Yannakakis et al., 2018).

1.3.1 Platform for Audiovisual General-purpose ANnotation

A major contribution of this thesis is the development of a new interface for affect annota-
tion. The Platform for Audiovisual General-purpose ANnotation (PAGAN) was designed to
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enable first and third-person annotation of multimedia content in an accessible way. While
developed partially to fill the gap left behind by outdated software packages, in the wake
of the 2020 Coronavirus outbreak, crowd-sourcing became a necessity for the completion of
the project. The platform features a highly configurable interface, both popular and new
time-continuous labelling methods, and supports a crowd-sourcing solution for collecting
large amounts of annotation. Beyond introducing the tool, a small companion study also
showcases the accessibility of different annotation methods, highlighting the reliability of
labelling tasks aimed at collecting ordinal data.

1.3.2 Affect Game AnnotatIoN Dataset

The other primary outcome of this thesis work is the construction of the Affect Game
AnnotatIoN (AGAIN) dataset. The creation of the dataset was motivated by the lack of a
comprehensive videogame database, which also includes affective annotations. The AGAIN
dataset supports the research of general affect modelling with more than 1, 100 recorded
gameplay from 9 games from 3 genres. While the database was designed to address the needs
of the research presented here, the dataset also includes more than 37 hours of gameplay
footage. Even though this video data is not used during modelling in the presented studies,
it allows for future research involving deep-learning and computer vision. The dataset is
made openly available for all research purposes.

1.3.3 General Arousal Modelling Through Preference Learning

The last main contribution of this thesis is demonstrating a robust pipeline for first-person
annotation and modelling of arousal in videogames and showcasing the feasibility of general
arousal modelling on different levels. Studies presented here showcase the robustness of
heuristic general features derived from genre-specific game telemetry. Later projects focus
on general modelling in the contexts of genre-based and genre-agnostic modelling. Results
reveal the key features and processing methods, which lead to successful general models.

The presented research also outlines easy-to-adopt and cost-effective pipelines for the
general ordinal modelling of arousal from pre-processing to feature construction and mod-
elling. On the one hand, the presented research expands on existing pairwise learning
methods with a dynamic windowing method, on the other hand, the presented research
helped to shape —in part—the Python Preference Learning Toolbox (pyPLT). PyPLT is
an all-in-one software solution for data processing and modelling for preference learning.
Pipelines developed during this thesis work contributed to the development of pyPLT.

1.4 Publications

This section presents papers that have been published during the PhD studies. The first
part of the section includes works that are directly contributing to this thesis. The second
half of the section presents papers that are not part of this thesis work. During the PhD
studies, 7 papers have been published at the time of writing, 1 is accepted for publication
and 3 more are under review and submission. Out of these 11 papers, 2 are journal articles,
and 7 are published in conference proceedings; parts of the thesis outcomes have also been
published as a workshop and a demo paper. While all of the research published during the
PhD revolves around applying affective computing techniques to games user research, some
of the work is more exploratory that could fit neatly into this thesis work. Nevertheless,
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they contribute to the field of affective computing and games research and investigate how
players appraise games in terms of their perceptions of computer agents, game aesthetics,
and intrinsic motivation.

1.4.1 Part of the Thesis Work

Papers presented in this subsection are part of the thesis work. Works are listed alongside
the chapter to which they are contributing.

1. Melhart, David, Konstantinos Sfikas, Giorgos Giannakakis, Antonios Liapis, and Geor-
gios N. Yannakakis. ”A study on affect model validity: Nominal vs ordinal labels.”
In IJCAI Workshop on Artificial Intelligence in Affective Computing. Proceedings of
Machine Learning Research, 2020.

While the paper does not contribute to a specific chapter or chapters, lessons learned
here provide the backbone of the modelling tasks in this thesis work.

2. Melhart, David, Antonios Liapis, and Georgios N. Yannakakis. ”PAGAN: Platform
for Audiovisual General-purpose ANnotation.” In 2019 8th International Conference
on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).
IEEE, 2019.

This paper contributes to Chapter 3, with an overview of the PAGAN framework.

3. Melhart, David, Antonios Liapis, and Georgios N. Yannakakis. ”PAGAN: Video affect
annotation made easy.” In 2019 8th International Conference on Affective Computing
and Intelligent Interaction (ACII). IEEE, 2019.

This paper contributes to Chapter 2 and 3, with an overview of popular and contem-
porary annotation tools and a detailed introduction to PAGAN.

4. Camilleri, Elizabeth, Georgios N. Yannakakis, David Melhart, and Antonios Liapis.
”PyPLT: Python Preference Learning Toolbox.” In 2019 8th International Conference
on Affective Computing and Intelligent Interaction (ACII). IEEE, 2019.

The paper contributes to the description of the toolbox in Chapter 2.

5. Melhart, David, Antonios Liapis, and Georgios N. Yannakakis. ”The Affect Game An-
notatIoN (AGAIN) Dataset.” In IEEE Transactions on Affective Computing. IEEE,
under review.

The paper contributes to Chapters 2 and 4, with an overview of affective corpora,
and the description of the AGAIN dataset and a preliminary analysis of the data,
respectively.

6. Melhart, David, Antonios Liapis, and Georgios N. Yannakakis. ”Towards General
Models of Player Experience: A Study Within Genres.” In 2021 IEEE Conference on
Games (CoG). IEEE, 2021.

The paper contributes to the pipeline described in Chapter 3 and the models presented
in Chapter 5 and 6.
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1.4.2 Outside of the Scope of the Thesis Work

Papers presented in this section describe additional exploratory studies done under the PhD
studies but not included in this thesis work. As these works are not contributing to the
thesis, their content is summarised below.

1. Melhart, David, Georgios N. Yannakakis, and Antonios Liapis. ”I feel I feel you: A
theory of mind experiment in games.” in KI-Künstliche Intelligenz 34(1), 2020.

This paper on players’ emotional theory of mind (Schaafsma et al., 2015) investi-
gates how players appraise the emotions of game-playing agents based on the agent’s
behaviour and the player’s performance and emotions. The study focuses on the
perception of frustration as it is a prevalent affective experience in human-computer
interaction. Results show that the player’s observable emotions are not connected to
the perceived frustration of the agent, suggesting that the subject’s theory of mind is
a cognitive process based on the gameplay context.

2. Melhart, David, et al. ”Your gameplay says it all: modelling motivation in Tom
Clancy’s The Division.” In 2019 IEEE Conference on Games (CoG). IEEE, 2019.

This paper attempts to find a computational mapping between gameplay data and
aspects of player motivation in Tom Clancy’s The Division (Ubisoft, 2016). The study
was run in collaboration with Ubisoft Massive Entertainment. Experiments in this
paper explore the degree to which such data can be a powerful predictor of players’
survey responses. Core findings in this paper suggest that not only is it possible to
infer the mapping between high-level gameplay metrics and survey-based annotations
of complex emotional and cognitive states, but the inferred models have predictive
capacities that reach certainty levels.

3. Prager, Raphael Patrick, Laura Troost, Simeon Brüggenjürgen, David Melhart, Geor-
gios Yannakakis, and Mike Preuss. ”An Experiment on Game Facet Combination.”
In 2019 IEEE Conference on Games (CoG). IEEE, 2019.

This paper examines the emotional impact of game facet combination in terms of
matching and mismatching audio and visual facets. The study was run in collabo-
ration with the University of Muenster. Results show that players generally prefer
homogeneous facet combinations. These combinations also make more reliable elic-
itors, evidenced by higher accuracy of arousal models on these settings. It is also
revealed that the audio facet of the elicitor plays a more prominent role in the robust-
ness of predictive models of arousal. Finally, models trained on positive soundscapes
are generalising better over other configurations.

4. Makantasis, Konstantinos, David Melhart, Antonios Liapis, and Georgios N. Yan-
nakakis. ”Privileged Information for Modelling Affect In The Wild.” In 2021 9th
International Conference on Affective Computing and Intelligent Interaction (ACII).
IEEE, under review.

This paper investigates how affective models that are built in a controlled laboratory
(in vitro) setting can be extended to real-world applications (in vivo) through the use
of privileged information. The proposed privileged information framework is tested
in a game arousal corpus that contains physiological signals in the form of heart rate
and electro-dermal activity, game telemetry, and pixels of footage from two dissimilar
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games that are annotated with arousal traces. Arousal models are trained using
all modalities (in vitro) and tested using pixels (in vivo) solely. Constructed models
reach levels of accuracy obtained from models that fuse all modalities both for training
and testing. The findings of this paper make a decisive step towards realising affect
interaction in the wild.

5. Pacheco, Cristiana, David Melhart, Antonios Liapis, Georgios N. Yannakakis, and
Diego Pérez-Liébana. ”Trace It Like You Believe It: Towards Time-Continuous Be-
lievability Prediction.” In 2021 9th International Conference on Affective Computing
and Intelligent Interaction (ACII). IEEE, under review.

This paper presents a study on time-continuous non-player character believability
prediction and introduces a new approach to assess the performance of ranking ma-
chine learning models. The novelty of this paper is treating believability as a time-
continuous phenomenon. The research explores the suitability of two different affect
annotation schemes for this assessment. Results suggest that a discrete annotation
method leads to a more robust evaluation of the ground truth and subsequently better
modelling performance.

This paper also gives a minor contribution to Chapter 3 as it uses the same pipeline
described in this chapter.

1.5 Thesis structure

The thesis is structured in the following way:

• Chapter 2 gives an overview of the relevant literature of affective theories, player
modelling, annotation frameworks, affective corpora, and preference learning. The
section aims to provide a general theoretical background to ordinal affect modelling
and contextualise the created tools and dataset in the fields of games user research
and affective computing. The second half of the chapter is dedicated to the meth-
ods applied in this thesis and introduces a dynamic windowing method for pairwise
preference learning.

• Chapter 3 details the first-person gameplay and annotation pipeline for affective data
collection in videogames as well as the interface of the PAGAN annotation framework.
The chapter also includes the results of a small usability study tied to the development
of PAGAN to ground the choice of the annotation tool used for collecting the AGAIN
dataset.

• Chapter 4 presents the AGAIN dataset. Sections in the chapter detail the elicitors
and the process of data collection up to cleaning the dataset. The second half of the
chapter is dedicated to an overview of the pre-processing of the dataset for machine
learning and correlation analysis of the data.

• Chapter 5 deals with game-based baselines for the latter general modelling. This
chapter investigates the feasibility of representing a game through general features
when contrasted to genre-specific ones. Additional analysis in the chapter explores
the impact of the dynamic windowing method introduced in Chapter 2 on model
performance.
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• Chapter 6 focuses on genre-based modelling. The three genres included in AGAIN
are examined to see the robustness of general features against genre-specific ones in a
more general scenario. The chapter investigates both the modelling of unseen games
and augmenting game-based models with additional information from other games
within the genre. Finally, the chapter continues investigating the impact of individual
features and windowing methods on model performance.

• Chapter 7 completes the experimentation work by looking at general arousal mod-
elling in a genre- and game-independent way. In this chapter, previous models built
on general features are reexamined in terms of general robustness. Additionally, two
new scenarios are examined for genre- and game-agnostic modelling. In the first one,
models are built on games from two genres and predict the outcomes of games in an
unseen genre, while in the second one, experiments maximise the available information
by building models based on eight games to test the unseen one. This chapter also
concludes the investigation into feature importance and windowing methods started
in Chapter 5.

• Chapter 8 summarises the findings and main contributions of this thesis work, in-
cluding practical contributions such as the tools and dataset created during the devel-
opment of the thesis. The chapter also lists the limitations of the presented research
and concludes with an outline for future research.

1.6 Summary

This chapter outlined the main research question and primary challenges of this thesis while
drawing a clear roadmap to tackle them. The primary goal of the thesis is to find a way
for game-independent general arousal modelling in videogames while bridging some of the
research gaps between game user research and affective computing. To this end, this thesis
proposes the collection and analysis of a large corpus of gameplay telemetry and affective
annotation. A considerable portion of the work is dedicated to developing an annotation
platform and interactive elicitors to collect this dataset. For modelling the collected data,
this thesis relies on ordinal affect modelling through preference learning. The work focuses
on this approach as evidence has shown that preference learning frameworks closely mir-
ror cognitive and emotional processes, making them more robust and reliable for affect
modelling tasks (Yannakakis et al., 2018). For the modelling phase, pipelines are finalised
based on lessons learned while developing a comprehensive software package for preference
learning applications. The presented machine learning projects examine representing and
modelling gameplay through general features on three different levels: game, genre, and
general. Experiments focus on modelling both the change in the level of arousal and the
temporal dynamic of arousal. Subsequent analysis in each chapter investigates feature im-
portance for successful modelling and the impact of processing the data through dynamic
memory windows. Finally, this chapter showcased papers published during the PhD studies.
While some of these papers contribute directly to this thesis, others are out of the scope of
this investigation. The chapter concluded with an overview of the thesis structure.

The next chapter focuses on the related work and methodology used in the thesis. It
introduces the theoretical framework of the studies presented here, contextualises the thesis
in the fields of affective computing and game research, and gives an overview of popular
and contemporary annotation tools and affective datasets. The latter half of the chapter
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focuses on preference learning and random forests used in subsequent chapters to solve
ranking tasks.
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Chapter 2

Background

A core challenge of affective computing is the investigation of generality in the ways emo-
tions are elicited and manifested, in the annotation protocols designed, and ultimately in
the affect models created. Affective computing research requires access to corpora contain-
ing affect responses and annotations across dissimilar tasks, participants and annotators to
examine the degree to which general representations of affect are possible and meaningful.
Traditional large-scale affective computing datasets feature affect annotation of static im-
ages, videos, sounds and speech files within a narrow context through which affect is elicited
from a particular task. However, such datasets cannot advance research in general affective
computing, as stimuli used to elicit affect tend to be very similar. Even when the various
tasks under annotation may vary, those are still limited to a very specific context—such as
viewing a set of social interactions under a theme or playing sessions of the same game.

While affective computing mainly focuses on elicitation through non-interactive means,
the world is becoming more and more interactive by the minute. Recent years have pushed
videogames and game research into the spotlight (Hamdy and King, 2017; Aranha et al.,
2019), opening up new fields for the study of human-computer interaction, affective com-
puting, and interactive emotion elicitation. Videogames are robust elicitors that provide an
ideal test bed for affective computing applications: games are well-structured yet dynamic
environments with clear cues, goals, and feedback. While the field of game research is grow-
ing rapidly, there are no easily accessible datasets available. Instead, most player modelling
studies focus on either ad-hoc experiments (Mart́ınez et al., 2011) or involve large indus-
trial datasets (Bonometti et al., 2020) where the data is not accessible for a wider academic
audience (Yannakakis and Togelius, 2018).

This thesis takes a structured approach to general affect modelling by reviewing past
and contemporary annotation tools, affective datasets, and approaches to affect modelling.
This chapter provides background on concepts used in or related to the topics mentioned
above. Section 2.1 introduces the theoretical approaches to emotion representation and
outlines related work in player modelling. This section also motivates subsequent studies
on the dimensional representation of affect and contextualises the research in the field of
games research. Section 2.2 presents past and contemporary annotation frameworks used in
affective computing and the publicly available popular affective corpora they capture. This
section contextualises the research in affective computing and provides the necessary back-
ground to Chapters 3 and 4. Finally, Section 2.3 discusses the methodological background
for the preference learning models used in this thesis. While the section introduces the main
paradigms in preference learning, the main focus of the section is on pairwise preference
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learning through pairwise transformation and classification. This section briefly discusses
the Python Preference Learning Toolbox as well. Section 2.4 summarises the Chapter.

2.1 Theoretical Background

This section is dedicated to providing theoretical background on the affective state of arousal
by presenting an overview of frameworks of emotion representation (Section 2.1.1) and player
modelling in games research (Section 2.1.2), focusing on general modelling and an ordinal
approach to games user research.

2.1.1 Theoretical Frameworks of Emotion

Theories of emotions are generally represented in two main ways: as dimensions or as cat-
egories. The former focuses on emotions as emerging sentiments, which are functions of
simple affective dimensions (Schlosberg, 1954; Mehrabian, 1980; Russell, 1980). The latter
promotes an understanding in which basic emotions are distinct from one another in func-
tion and manifestation (Ekman, 1992; Lazarus and Lazarus, 1996). Although efforts are
being made to reconcile these two viewpoints (Cambria et al., 2012; Cowen and Keltner,
2017), most studies in the field of affective computing subscribe to either categorical or di-
mensional frameworks. Subsequent studies in this thesis use a dimensional representation of
emotion. This section presents the aforementioned frameworks, highlighting their strengths
and weaknesses, and motivates choosing a dimensional representation over a categorical
one.

Categorical Representation of Emotions

Categorical emotion representation is largely inspired by the work of Ekman (1992). It is
based on the assumption that humans elicit distinct emotions inherent to the human psyche
and universally understood. Classical theories following in Ekman’s footsteps generally
focus on the six emotions of anger, disgust, fear, happiness, sadness, and surprise (Ekman,
1992). While subsequent research often expanded this view to over twenty emotional labels
at times (Cowie and Cornelius, 2003; Cowen and Keltner, 2017), majority of the research still
focuses on the six core emotions (Barrett et al., 2019). In contrast to affective computing,
in videogame research, the focus of emotion detection is broader. While some studies do
observe basic emotions (Jones and Sutherland, 2008; Roohi et al., 2018; Kalantarian et al.,
2018; Yang et al., 2018), others focus on other emotional outcomes more generally associated
with a game playing experience, e.g. flow (Balducci et al., 2017), boredom, engagement,
and anxiety (Chanel et al., 2008, 2011; Balducci et al., 2017), frustration (Yang et al., 2018),
engagement, challenge, and frustration (Asteriadis et al., 2012; Shaker et al., 2013), and fun
(Shaker et al., 2010; Fortin-Côté et al., 2018). Although normative studies have confirmed
the generality of emotional categories to an extent (Diehl-Schmid et al., 2007; Westbury
et al., 2015), putting the theory into practice also brings about some conceptual limitations.
On the one hand, the underlying assumption of a clear division between basic emotional
responses is challenged by a criterion bias when categorising fuzzy responses (Aviezer et al.,
2008). On the other, the focus of emotion classification on facial morphology is undermined
by evidence pointing towards the subjective evaluation of emotions based on contextual cues
and body movements (Barrett et al., 2011; Aviezer et al., 2012; Barrett et al., 2019). These
issues present in games as well, often even magnified by the nature of games. Roohi et
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al. (2018) give a cautionary tale about facial recognition-based emotion detection; players
often react contradictory to in-game stimuli (e.g. smiling when missing a jump).

Dimensional Representation of Emotions

Alternatively, emotions can be represented through orthogonal affective dimensions. In
these frameworks emotions emerge from a two- or three-dimensional continuous space.
Most models of this kind typically follow Russell’s Circumplex Model of Emotions (Russell,
1980) or the Pleasure-Arousal-Dominance model (Mehrabian, 1980) and many contempo-
rary annotation tools (Morris, 1995; Cowie et al., 2000, 2013; Lopes et al., 2017b) use
one of these models for annotating one or more affective dimensions as well. Although
other dimensional theories of affect exist—for example the tension-arousal-valence model
of Schimmack and Grob (2000)—most of them recognise the goodness and the intensity
of emotions as the two core dimensions (sometimes expanded with “control over a given
emotion”). The aforementioned PAD model represents these aspects as pleasure, arousal
and dominance (Mehrabian, 1980); as a simplified version, the Circumplex Model presents
the same space on the arousal-valance axes (Russell, 1980). While the Circumplex Model is
a popular framework (Yannakakis and Togelius, 2018), it is not without critique. As men-
tioned above, Schimmack and Grob propose a tension-arousal-valence model instead, which
further differentiates between tension-relaxation and wokeness-tiredness in addition to va-
lence (Schimmack and Grob, 2000). However, it is evident from the literature that arousal
is one of the more consistent components of dimensional models of affect, representing the
intensity of an experience. In that regard, arousal defines one of the most important aspects
of player experience when it comes to videogames and videogame research. The intensity of
the game facilities the play dynamics and the perceived challenge of the game (Klarkowski
et al., 2016), which affects player engagement (Abbasi et al., 2019) and can lead to several
psychological outcomes, including tension (Lopes et al., 2017a), frustration (Melhart, 2018),
fun (Clerico et al., 2016), and flow (Seger and Potts, 2012). Hence, arousal can be viewed as
a fundamental building block of player experience and is the core affect dimension included
in the The Affect Game AnnotatIoN Dataset presented in Chapter 4. The main limitation
of these frameworks is that they cannot describe complex and self-reflexive emotions with-
out expert interpretation, reintroducing biases to the observations. However, this simplicity
also results in high face validity (Nevo, 1985), reducing guesswork and criterion bias of the
annotator (Martinez et al., 2014) even in the case of fuzzy responses, which otherwise would
be hard to categorise.

2.1.2 Player Modelling

Player modelling is a field of games user research that specialises in understanding and
simulating (Holmg̊ard et al., 2014) videogame play through AI techniques (Yannakakis and
Togelius, 2018). The two main areas within this field focus on profile aggregation and
predictive modelling. Player profile aggregation usually relies on clustering algorithms and
traditional user analytics (El-Nasr et al., 2016) to expose and visualise underlying patterns
in player behaviour and experience. This line of research applies different forms of aggre-
gation to create an abstract, higher-level representation of gameplay and player behaviour.
Common computational approaches use k-means clustering, self-organising maps (Drachen
et al., 2009), matrix factorisation (Lim et al., 2016), archetypal analysis (Bauckhage et al.,
2015; Drachen et al., 2012), and sequence mining (Mart́ınez and Yannakakis, 2011; Wallner,
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2015; Makarovych et al., 2018). The primary aim of these studies is to acquire a static profile
of general behavioural and psychological patterns which can describe the player population.

In contrast to player profiling, predictive modelling takes a more dynamic approach
and aims to actively predict certain behaviours or emotional shifts of the player experience
(Yannakakis and Togelius, 2018). This type of modelling often uses supervised learning and
relies on gameplay data instead of aggregation and abstraction. Notable applications of
player modelling include predicting player behaviour (Bakkes et al., 2012), such as churn
(Runge et al., 2014; Periáñez et al., 2016; Viljanen et al., 2018), playtime (Mahlmann et al.,
2010), or player experience (Makantasis et al., 2019; Yannakakis et al., 2018). Many studies
in the past relied on low granularity category-based prediction (Asteriadis et al., 2012) and
focusing on a gameplay session as one unit (Shaker et al., 2013; Shaker and Shaker, 2014);
however, there has been a shift towards a more granular evaluation of moment-to-moment
gameplay (Camilleri et al., 2017; Makantasis et al., 2019; Melhart et al., 2020a). This thesis
follows this trend as well and focuses on the moment-to-moment prediction of arousal in
games.

General Models in Games Research

While general gameplaying models have been investigated thoroughly thanks to popular
benchmark environments such as the Arcade Learning Environment (Bellemare et al., 2013)
or the General Video Game AI Competition (Perez-Liebana et al., 2016a), the same level
of investigation is not observed in of other fields of game research such as content gener-
ation and user modelling (Togelius and Yannakakis, 2016). While some studies have been
conducted on general modelling both in terms of behaviour (Vı́tek, 2020) and emotion
(Camilleri et al., 2017) prediction, most studies either focus on testbeds with a single game
(e.g. (Mahlmann et al., 2010; Periáñez et al., 2016; Viljanen et al., 2018; Makantasis et al.,
2019)) or emphasise the generality of the approach rather than the generality of specific
models (Liu et al., 2018; Snodgrass et al., 2019a; Makantasis et al., 2021). One possible
reason for this slow adoption is the lack of comprehensive datasets. Even in research into
creating general models that include multiple games, these studies predominantly use an
ad-hoc selection of a few games. Shaker et al. (2015) investigated manual and automated
feature mapping (Shaker and Abou-Zleikha, 2016) through transfer learning in just two
games. More recently, Camilleri et al. (2017) looked at using game-agnostic top-down fea-
tures for general affect modelling—such as playtime and encoded valence as goal oriented
and goal opposed—across three games to model arousal. Makantasis et al. (2021) investi-
gated a general approach to modelling arousal “from pixels and sounds to emotion” in four
games. However, a general limitation of these studies is the ad-hoc set of test-bed games,
which are often limited in scope or fall either too close or too far from each other. Studies
into behavioural modelling show a similar ad-hoc focus. As a recent example, Vitek (2020)
used three free-to-play games in their study into general churn prediction models. In one
of the most comprehensive studies in the field, Bonometti et al. (2020) used activity count
and diversity to abstract gameplay and model general engagement across six commercial
games from a diverse set of genres. Unfortunately, the latter dataset is not available for
open research use.

A central problem in general modelling—of any kind—is the definition of the models’
input features. As different games have different mechanics and characteristics, models
cannot rely on unprocessed telemetry. Models instead have to rely on a shared input space
on which all features can be mapped across several games to solve this issue. The most
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transparent approach is to use some form of heuristic abstraction of features. Many studies,
including this thesis work, opt for this approach as it provides a low-cost but robust way to
define general features. In an industry scenario, game designers could create these general
features or identify general elements during the design process. As the method relies on
expert knowledge, it provides a good level of robustness and flexibility. Shaker et al. and
Camilleri et al. showed the feasibility of this approach (Shaker et al., 2015; Camilleri et al.,
2017), with mixed results. In studies by Shaker et al., the heuristic approach arguably
showed more robustness compared to machine-constructed features (Shaker et al., 2015;
Shaker and Abou-Zleikha, 2016). While this type of feature construction can rely solely
on ad-hoc feature abstraction, formal systems can also help this process. One of the most
popular of these formal systems is the Video Game Description Language (VGDL) (Schaul,
2013) which is used for the games featured in the General Video Game AI Competition
(Perez-Liebana et al., 2016b). VGDL is a computer language that uses simple semantics to
describe games in a very conscience and uniform manner. The language defines sprites, lev-
els, interactions, and terminal states. The main limitation of VGDL is its simplicity. The
language was designed to describe simple 2D arcade-style games but unfortunately can-
not readily be applied to more complex games. Studies focusing on more complex games
generally find features in similar categories to the sections VGDL encodes, with some ad-
ditional contextual information (e.g. time and score) (Shaker et al., 2015; Camilleri et al.,
2017; Bonometti et al., 2020). Another framework for generalising gameplay features is
the Player, Environment, Agents, System (PEAS) framework by Snodgrass et al. (2019b).
Beyond the titular categories, PEAS offers a hierarchical view of game design elements.
Beyond game features, this framework also incorporates personality models into the input
space. However, as a theoretical design framework for personalisation, PEAS focuses more
on guiding the design process from abstract elements towards a concrete implementation
(Snodgrass et al., 2019a). Additionally, studies can adapt psychological frameworks as well
to abstract gameplay features. For example, using the Circumplex Model of Emotions (Rus-
sell, 1980) events can be classified as positive or negative valence and arousal or using the
theoretical framework of GameFlow by Sweetser and Wyeth (2005) can help the identifi-
cation of events that facilitate a flow experience. This type of encoding aims to capture
some of the affective aspects of games and encode them already in the input space; however,
it can be considerably more labour intensive and can introduce unforeseen biases into the
data.

While finding general features for a game designer is an easier task, user experience
models are often constructed by third party analytics teams who do not have access to the
same design insight. Another route towards general models is applying machine learning to
extract features from the games’ telemetry. While supervised feature learning still requires
some designer input in the form of feature labels, unsupervised feature learning provides a
more hands-off approach. As an example, Shaker et al. (2016) used unsupervised transfer
learning to map features from different games onto a shared input space. In that study, Prin-
cipal Component Analysis (PCA) was applied to find a matching representation between
games in terms of input dimensions. Shaker et al. applied subspace alignment (Fernando
et al., 2013) on these projections to create a shared feature space. One weakness of this
approach is that the mapping has to be learned and adjusted between the source and target
domains. While heuristic features are ready to use with multiple sources, adapting and
adjusting feature learning to multiple source domains at once is a more complicated task.

Finally, general models can be constructed based on completely game-agnostic features.
One of the most popular approach is to use physiological or other biometric signals for
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this purpose (Mart́ınez et al., 2011; Martinez et al., 2013; Fortin-Côté et al., 2018). This
approach has the obvious limitation of collecting bio-signals, which are generally out of
scope for commercial games. Additionally, studies have shown that ambiguities in facial
expressions often lead to unreliable models for game playing (Roohi et al., 2018; Melhart
et al., 2020c). Beyond peripheral signals, it is also possible to model player affect in an
end-to-end manner using deep-learning techniques. Makantasis et al. showed the feasibility
of this approach for affective computing by extracting general-purpose or game-agnostic
features from pixels and sounds (Makantasis et al., 2019, 2021). While their results have
not been tested as general models, Makantasis et al. (2021) showcased a robust method for
creating general features in multiple games.

Towards Ordinal Affect Modelling in Games Research

Studies in both games user research and user experience research still predominantly use
various types of absolute ratings both as part of statistical analysis (Phillips et al., 2018) or
by treating the responses as outputs for a supervised learning method (Frommel et al., 2018).
One of the most popular approaches is to collect Likert-like responses (Mekler et al., 2014)
through general survey tools such as the Self-Assessment Manikin (Bradley and Lang, 1994)
and the Intrinsic Motivation Inventory (Ryan et al., 1983), domain-specific questionnaires
like the Hexad (Tondello et al., 2016), the Game Experience Questionnaire (IJsselsteijn
et al., 2013), the Player Experience of Need Satisfaction survey (Ryan et al., 2006), and the
Ubisoft Player Experience Questionnaire (Azadvar and Canossa, 2018) or ad-hoc question-
naires (e.g. Asteriadis et al. (2012); Yang et al. (2018)). Despite Likert-like responses being
ordinal by nature (Yannakakis and Mart́ınez, 2015; Yannakakis et al., 2018), they are often
treated as either interval (Phillips et al., 2018) or nominal values (Frommel et al., 2018)
nevertheless. The traditional data processing approach in the field of games user research
is indeed interpreting survey answers as nominal labels and applying classification methods
to infer the function between in-game behaviour, affective experience (e.g. measured by
physiology), and the self-reported ground truth; for example, see Asteriadis et al. (2012);
Ko lakowska et al. (2013); Phillips et al. (2018); Frommel et al. (2018) among many. Due to
this approach, annotations are often discretised on a lower level of granularity, with models
predicting emotions on a game-session level.

While the focus on data aggregation and user profiles is still the dominant technique in
the games industry (El-Nasr et al., 2016; Drachen and Connor, 2018), in contrast, the field of
affective computing has been focusing more and more on continuous emotion representation
and prediction, modelling moment-to-moment dynamic changes (Yannakakis et al., 2016).
Although there have been recent shifts towards this approach in games research as well (e.g.
Yang et al. (2018); Makantasis et al. (2019); Melhart et al. (2020a); Makantasis et al. (2021)),
this approach has yet to see widespread adoption in the field. While many of these early
studies put more emphasis on time-continuous predictions, a lot of them still work based on
absolute ratings or apply classification (Periáñez et al., 2016; Yang et al., 2018; Makantasis
et al., 2019), which introduces several limitations both on a technical and theoretical level
(Yannakakis et al., 2017, 2018). Most of the issues arise from the discrepancy between a
player’s experience and the reported label through a rating scale. While ratings ask players
to evaluate their experience in an absolute fashion, a growing body of evidence suggests that
the human assessment of subjective value relies on relative comparisons which are based on
anchor (or reference) points of earlier experiences (Damasio, 1994; Seymour and McClure,
2008; Yannakakis et al., 2018). Human cognition is indeed prone to a number temporal
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biases (Damasio, 1994)—including anchoring (Seymour and McClure, 2008), habituation
(Solomon and Corbit, 1974), adaptation (Helson, 1964), and other recency-effects (Erk
et al., 2003)—which go unaccounted for in absolute rating tasks. However, since these
biases are still present, ratings become unreliable as there is no way to control for these
effects. Instead, focusing on the relative differences as opposed to absolute judgements can
lead to more reliable observations and more robust predictions (Yannakakis et al., 2018).
This robustness is so strong that it holds up even through second-order processing, in which
participant responses are recorded as absolute ratings but later converted into an ordinal
representation, focusing on their relative relationships (Yannakakis et al., 2018; Melhart
et al., 2020b). While absolute ratings can be converted to ordinal labels (Yannakakis et al.,
2018), bounded scales come with their own limitations (Yannakakis and Mart́ınez, 2015).
Nevertheless, collecting pairwise comparisons through forced-choice surveys can be labour
intensive (as the number of comparisons can grow quadratically when new options are
introduced) and often leads to lower granularity data (Shaker et al., 2013; Shaker and
Shaker, 2014). A good compromise is to collect unbounded ratings, which can still be
interpreted in an ordinal fashion but preserve the relative relationship between data points
(Yannakakis et al., 2017).

In the field of games user research, several papers contribute to a growing body of
research proving the effectiveness of ordinal affect modelling which is aimed to capture
these relative processes behind emotional responses (Yannakakis et al., 2018); see Martinez
et al. (2014); Yannakakis and Martinez (2015); Yannakakis and Mart́ınez (2015); Lotfian
and Busso (2016); Melhart et al. (2020b); Yannakakis et al. (2018) among many. This
approach evidently increases the inter-rater reliability and consistency of data annotations
(Yannakakis and Martinez, 2015; Yannakakis and Mart́ınez, 2015), and yields models which
have a higher generality across affective corpora (Melhart et al., 2020b) and dissimilar
videogames (Camilleri et al., 2017). While some of these studies rely solely on gameplay
data (Melhart et al., 2019a; Prager et al., 2019), others focus on multimodal player data that
fuse gameplay with physiological data (Mart́ınez et al., 2011; Georges et al., 2018; Camilleri
et al., 2017) or data from the video streams of players (Shaker et al., 2013). While these
multimodal signals are often shown to increase modelling accuracy, collecting physiological
data is currently too expensive and intrusive to be feasibly applied in large-scale industry
studies. Most studies in ordinal affect modelling in game research apply pairwise preference
learning (see Section 2.3.1) as it generally provides a simple but robust method to create
ordinal models. Similarly, this thesis also applies preference learning to create general
models.

2.2 Affect Annotation

This section discusses annotation frameworks and the affective corpora they capture in the
field of affective computing.

2.2.1 Annotation Frameworks

In recent years, tools for affect labelling have diversified. Earlier examples such as FeelTrace
(Cowie et al., 2000) (released in 2000), AffectButton (Broekens and Brinkman, 2013) (first
released in 2009), and AffectRank (Yannakakis and Martinez, 2015) (released in 2015)
aim to capture a complex phenomenon by measuring two or three affective dimensions at
once, while tools like ANVIL (Kipp, 2001) or ELAN (Wittenburg et al., 2006) (released
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in 2001 and 2006 respectively) measure discrete categorical emotions. In contrast, from
2013 on-wards, studies focus increasingly more on one-dimensional labelling of continuous
affect labels (Cowie et al., 2013; Girard, 2014; Lopes et al., 2017b; Melhart et al., 2019b).
The shift away from multi-dimensional labelling can be explained by concerns over the
increased cognitive load induced by these methods that comes with more complex tasks.
Increased cognitive load can undermine the strengths of dimensional emotion representation
(Cowie et al., 2013), as one emotional axis can take precedence over the other—which could
impact face validity. Despite this shift, many annotation tools still rely on multi-dimensional
annotation as evidenced by Table 2.1. While some modern annotation frameworks still
offer discrete categorical labels, most of the tools out there feature a bounded continuous
labelling method. Table 2.1 shows that the overwhelming majority of annotation tools focus
on collecting time-continuous labels, with the odd one out being AffectButton (Broekens
and Brinkman, 2013).

Two-dimensional tools are generally relying on the Circumplex Model of Emotions often
restricting labels to a circular two-dimensional space. Many of these studies use a modified
or customised version of FeelTrace (Cowie et al., 2000) (e.g. EmuJoy (Nagel et al., 2007),
DARMA (Girard and Wright, 2018), CASE (Sharma et al., 2019), RCEA (Zhang et al.,
2020)). Similarly, one-dimensional tools generally build on the GTrace annotation frame-
work (Cowie et al., 2013). GTrace was created as a bounded, continuous annotation tool
and quickly became popular for affect labelling in human-computer interaction and affective
computing (Baveye et al., 2015a; Müller et al., 2015; Dellandréa et al., 2016; Dhamija and
Boult, 2018). GTrace has limited memory and displays only the last few annotation values.
Treating these bounded continuous annotation traces as interval data and processing them
in an absolute fashion remains the prominent method of many studies (Gunes and Schuller,
2013; Metallinou and Narayanan, 2013). As this methodology necessitates that the trace is
bounded to ensure a standard scale among raters, interval processing of annotation traces
provides data in a form that can be analysed via a wide array of statistical and machine
learning approaches. However, both one and two-dimensional tools which feature bounded
tracing come with certain caveats. Since there is an upper and lower limit to the annotation
scale, the evaluation becomes objective and absolute. Such absolute evaluations are prone to
biases that primarily stem from inter-rater differences (Yannakakis and Mart́ınez, 2015; Yan-
nakakis et al., 2018). Supported by the adaptation level theory (Helson, 1964), habituation
(Solomon and Corbit, 1974), the somatic-marker hypothesis (Damasio, 1994), and numerous
studies within affective computing (Yannakakis et al., 2018) it appears that subjects expe-
rience stimuli in relation to their prior emotional and physiological states, experiences, and
memories. Thus, any annotation task is subject to a number of anchoring (Seymour and
McClure, 2008), framing (Tversky and Kahneman, 1981) and recency (Erk et al., 2003)
effects. Nevertheless, absolute values are often attributed and compared between raters
even if the given measurement framework defines them as ordinal (i.e. Likert-scale (Likert,
1932) and Self-Assessment Manikin (Morris, 1995)). Evidently, studies show time and time
again that the evaluation of absolute scales is participant-dependent and does not suppose
an underlying interval scale (Stevens et al., 1946; Ovadia, 2004; Yannakakis et al., 2018).
Due to concerns regarding traces that are processed as intervals, AffectRank was introduced
in 2015 as a real-time rank-based discrete labelling tool (Yannakakis and Martinez, 2015).
As a two-dimensional annotation tool, the main improvement of AffectRank over FeelTrace
was the focus on recording ordinal changes instead of absolute values. However, while Af-
fectRank managed to preserve the ordinal nature of subjective ratings, the discrete scale
sacrificed data resolution. As an answer to this issue, RankTrace was introduced in 2017 for
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unbounded and relative annotation (Lopes et al., 2017b). RankTrace caters to the subjects’
relative judgement models as the annotator effectively draws a graph of their experience
which also acts as the annotators’ reference point. RankTrace produces continuous and
unbounded traces which can be observed as ordinal changes and be processed in a relative
manner (Lopes et al., 2017b; Camilleri et al., 2017; Melhart et al., 2020c). Similarly to the
popular GTrace framework, the annotator sees their previous labelling history. Because
RankTrace is unbounded, it lets the annotator react to the situation compared to previous
experiences instead of forcing them to evaluate the stimuli in an absolute manner.

While there is a diverse set of tools out there, unfortunately, as evidenced by Table 2.1,
some of them are not well supported, unavailable, or require researcher oversight. This lim-
itation often restricts dataset sizes as experiments cannot be outsourced easily. Generally,
less configurable tools need less attention from researchers, but they also require more plan-
ning when setting up experiments as participants will have to load elicitors and save labels
on their own. A lesser but similar issue is the installation of annotation software. While
most popular frameworks have standalone versions, they often have to be calibrated or even
built from the source code if adapted (e.g. Yannakakis and Martinez (2015); Lopes et al.
(2017b); Xue et al. (2021)). This further restricts the wide adaptation of these frameworks.

This thesis work presents the Platform for Audiovisual General-purpose ANnotation
(PAGAN) to address the issues mentioned above in the field. PAGAN was developed as an
easy-to-use tool that supports fast prototyping through an online interface (Melhart et al.,
2019b). PAGAN implements three variations of one-dimensional affect labelling techniques,
representing different methods for measuring the ground truth of affect: GTrace, as bounded
and continuous; BTrace (binary trace), as real-time discrete; and RankTrace, as unbounded
and continuous annotation techniques. While other contemporary tools offer automated
labelling (Heimerl et al., 2019) and integration into mobile (Zhang et al., 2020) and virtual
reality (Xue et al., 2021) environments, the strength of PAGAN lies in its flexibility and
ability to collect a large amount of data online with relative ease (see Chapter 4 for more).
The PAGAN framework is detailed in Chapter 3.

2.2.2 Affective Corpora

The availability of large-scale corpora comprising affect manifestations elicited through ap-
propriate stimuli is a necessity for affect modelling. Therefore, creating datasets that are
annotated with reliable affect information is instrumental to the field of affective comput-
ing at large. This section reviews representative affective corpora that rely on audiovisual
elicitors and discuss the contribution of this thesis through the Affect Game Annotation
(AGAIN) dataset to the current list of databases that are enriched with affect labels. While
this section focuses on mapping out different affective corpora and positioning AGAIN in
the field of affective computing, Chapter 4 presents about the collected data in detail.

Table 2.2 presents the outcome of this survey1. The section follows a systematic ap-
proach for reviewing the state of the art in affective corpora and examine the following
factors that distinguish the surveyed datasets: the mode, type of the provided elicitors, the
number of possible elicitor items, and overall size of the available video database (see second
to fifth column of Table 2.2), the number of participants and their recorded modalities (see
columns six and seven of Table 2.2), the annotation protocol in terms of the mode and type
of the annotation (see columns eight and nine of Table 2.2), the affective labels (see column

1N/A indicates where the category is “not-applicable” (e.g. there are no participants when third-party
videos are used) and UNK indicates if an attribute is “unknown”.
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Chapter 2. Background

ten of Table 2.2), and finally the number of annotators and number of tasks each annotator
had to complete (see the eleventh and twelfth column of Table 2.2).

It is apparent from Table 2.2 that affective datasets have gradually—over the last decade
or so—drifted away from traditional induced elicitation and posed expressions and instead
turned towards soliciting spontaneous emotion manifestations. Most of these datasets have
focused mainly on affect elicitation through passive (i.e. non-interactive) audiovisual stimuli
(see second row of Table 2.2). Passive audiovisual elicitors are a popular choice as they do
not require any particular skill from the participants and are relatively easy to implement.
In contrast, one can also find datasets that make use of active elicitors involving tasks in
dyads and videogames—including RECOLA (Ringeval et al., 2013b) and player experience
datasets such as PED (Karpouzis et al., 2015), DAG (Yang et al., 2018) or the FUNii
Database (Beaudoin-Gagnon et al., 2019). These interactive tasks provide a more complex
and multifaceted affective stimulus while organically structuring the participants’ experience
compared to passive elicitors.

Most affective computing databases surveyed (see tenth row of Table 2.2) capture affec-
tive dimensions such as arousal and valence, with some datasets offering labels for additional
dimensions—such as dominance—and categorical labels. The surveyed datasets that have
used games as affect elicitors—Mazeball (Yannakakis et al., 2010), PED (Karpouzis et al.,
2015), and FUNii (Beaudoin-Gagnon et al., 2019)—tend to be less focused with regards
to the labels used and instead aim to capture more complex game-related user states such
as engagement, fun or challenge (except DAG (Yang et al., 2018)). This core difference
makes such player experience datasets distinctive to affective computing primarily because
any lessons learned on traditional affective databases are not directly applicable to player
experience datasets and vice versa.

The affective datasets surveyed here appear to be rather split in terms of the annotation
type used. While some (e.g. DEAP (Koelstra et al., 2012), MANHOB-HCI (Lichtenauer
and Soleymani, 2011)) opt for self annotation (first-person), many databases (e.g. RECOLA
(Ringeval et al., 2013b), SEWA (Kossaifi et al., 2019)) use only a few expert annotators in
a third-person manner. There is a clear trade-off between these approaches. First-person
annotations are ideal for capturing the subjective appraisal of emotional content, while
third-person annotations are better at labelling emotion manifestation through inter-rater
agreement (Afzal and Robinson, 2011).

The above systematic review of the literature highlights a lack of large-scale databases
implementing an active elicitation mode, using multiple elicitor types and adopting a first-
person annotation scheme. While datasets using passive elicitors are generally larger, the
cost associated with using active elicitation limits these datasets. As Table 2.2 shows, the
size of databases featuring active elicitors generally cannot reach the standard of datasets
featuring passive elicitors. However, the passive elicitors of these datasets are also less
diverse, generally limited to very similar annotation tasks. This does not advance research
on general affect modelling, as researchers have to examine dissimilar datasets (Camilleri
et al., 2017) that often comprise mismatching data collection methods and annotation tools
or do not offer enough context variety (e.g. the FUNii Database (Beaudoin-Gagnon et al.,
2019) features two similar games from the same franchise). AGAIN, the dataset collected for
this thesis work addresses the aforementioned limitations by offering a large-scale corpus
based on a set of dissimilar interactive affect elicitors annotated through a first-person
protocol. While the dataset at the time of writing is limited to 9 games and their annotated
arousal, the dataset is planned to be augmented through more affective dimensions and
enriched through more games. The resulting dataset leverages the strength of active emotion
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2.3. Machine Learning Methods

elicitation while producing data in amounts comparable to databases featuring passive affect
stimuli. Moreover, AGAIN provides a diverse database for general affect modelling research
that is not possible within any of the existing corpora.

This thesis positions AGAIN at the intersection of traditional affective computing cor-
pora and datasets focusing on player experience. Focusing on a core affect dimension (i.e.
arousal) instead of a game-related complex emotional outcome aims to make affective com-
puting research even more relevant for game user research and vice versa. As games are
highly interactive media, the captured data and annotations encode player affect, behaviour,
and game context. The focus on first-person annotations is motivated by a better capture
of the emotional intricacies of gameplay. Finally, continuous unbounded traces are cho-
sen as the annotation method of arousal using RankTrace (Lopes et al., 2017b) via the
PAGAN online annotation framework (see Chapter 3). Such traces can be processed and
machine-learned in several ways, including regression, classification and relational learning
(Yannakakis et al., 2018).

2.3 Machine Learning Methods

This section details the data-processing and machine learning methods used in this thesis.
Section 2.3.2 gives a short summary of the Python Preference Learning Toolbox as the
development of this tool aided the refinement of the data processing and machine learning
pipelines presented in this thesis.

2.3.1 Preference Learning

Preference Learning (PL) is a supervised learning paradigm in which an algorithm learns to
distinguish between datapoints in an ordinal manner (Fürnkranz and Hüllermeier, 2011).
The name of the method stems from early applications of PL, which involved recommender
systems and modelled actual user preferences (Joachims, 2002). PL algorithms, however,
are directly applicable to any supervised learning task in which the target outputs can be
treated as ordinal data. PL has been shown to be more robust when applied to emotional
data (Melhart et al., 2020b; Yannakakis and Togelius, 2018). The three main approaches to
PL are the point-wise, pairwise, and list-wise methods (Liu, 2011). This section introduces
all of these approaches along with their strengths and weaknesses.

Point-wise Preference Learning

In point-wise PL, the goal of the algorithm is to find a utility function f(x), which returns
higher scores for more preferred items. Formally if xi � xj (xi is preferred to xj) then
f(xi) > f(xj). In practice, this method involves fitting a regression function to every
(xi, yi) datapoint where x ∈ X is the input and y is the corresponding label. In the point-
wise case, the label y is generally an ordinal value, for example, the ordinal rank of item
x in set X. Depending on how the problem is formulated, a point-wise ranking problem
can be solved by many different algorithms, including regression, classification, and ordinal
regression (Liu, 2011). All of these methods leverage the information already encoded by
the label y regarding the relevance or ordinal ranking of the corresponding datapoint. Point-
wise PL is the easiest to integrate into existing machine-learning pipelines as it relies heavily
on existing techniques, and through the scoring function f(x), it can evaluate unseen items
separately. As they require less amount of data transformation and operate on one item at
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a time during the learning process, the time-complexity of point-wise PL problems can be
considerably lower than pairwise and list-wise approaches. Unfortunately, point-wise PL
considered sub-optimal as these algorithms are oblivious to the relative relationships in the
data. As the algorithm learns on one item at a time, the position of the datapoint in a
ranked order is invisible to the algorithm (Liu, 2011). In practice, it has been shown that
other methods (such as pairwise PL) are more robust, providing more stable predictions,
especially when the distribution of the labels is not normal or unknown (Fürnkranz and
Hüllermeier, 2003; Melnikov et al., 2016).

Pairwise Preference Learning

In pairwise PL, the goal of the algorithm is to learn to rank items in the dataset based on
pairwise comparisons. Some methods transform the data itself (Melhart et al., 2020b) (also
see pairwise transformation in Section 2.3.3), while others leverage Siamese neural network
architectures (Burges et al., 2005). The core of all these methods is the treatment of the
output of the data, which essentially discards the labels but conserves the relationships they
describe. The algorithm then learns to predict this relationship instead of any actual label
of the data. While pairwise PL algorithms require pairwise training, they can still output
ranking scores from unseen items independently. In the case of RankNet, LambdaRank,
and alike, the algorithm’s architecture already provides easy access to a point-wise scoring
function (Burges et al., 2005; Burges, 2010). In the case of binary classifiers relying on
data transformation for pairwise learning, getting the scoring function could be resource-
intensive, but nevertheless possible via cumulative scoring (Fürnkranz and Hüllermeier,
2003; Melnikov et al., 2016; Melhart et al., 2020b). The drawback of this method is the
increased time complexity of the task. Depending on the valid pairwise comparison the
algorithm evaluates, the computational complexity of the task grows considerably. When a
complete ranking is used, the complexity grows quadratically (Fürnkranz and Hüllermeier,
2003). Creating a point-wise scoring for items runs into the same conundrum, as calculating
a cumulative score based on pairwise comparisons can be similarly taxing (Fürnkranz and
Hüllermeier, 2003).

As briefly mentioned in Section 2.1.2, this thesis work focuses on pairwise PL. Most
studies into ordinal affect modelling in games research follow this path. The two main
approaches to pairwise PL are first-order and second-order processing of preferences. During
first-order PL, player annotations are already captured as relative preferences. This method
usually relies on forced-choice questionnaires and subsequently have less granularity. A
good example of such studies is (Shaker et al., 2013), where Shaker et al. are using neuro-
evolutionary algorithms to train models on first-order preference data. While this method
produces remarkably reliable labels, a long line of research supports the validity of second-
order processing as well (Yannakakis and Mart́ınez, 2015; Yannakakis and Martinez, 2015;
Lopes et al., 2017a; Camilleri et al., 2017; Melhart et al., 2020b; Yannakakis et al., 2018).
During second-order PL, annotation data is captured as real-valued ratings. These ratings
could be either bounded or unbounded, as subsequent processing discards their real value
and conserves only the relative relationships they describe. The strength of second-order
processing compared to first-order processing is the granularity and speed of the former.
Ratings can be collected in real-time with ease and later transformed into relative rankings,
supporting continuous affect modelling.
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List-wise Preference Learning

In list-wise PL, the goal of the algorithm is to learn the optimal ordering of a list of
items. List-wise PL is generally applied to information retrieval either by using information
retrieval measures directly to evaluate models (e.g. AdaRank (Xu and Li, 2007))—instead
of using pairwise metrics—or minimising a pairwise loss based on some unique relevancy
metric (e.g. ListNet (Cao et al., 2007)). Generally, list-wise approaches were shown to be
more robust (at least in the field of information retrieval) (Xu and Li, 2007; Cao et al.,
2007) and the computational complexity of the task is generally lower compared to pairwise
approaches. As an example, while the time complexity of RankNet is O(m · n2)2, the
complexity of ListNet is only O(m · n) (Cao et al., 2007). As finding an analogue to
a relevance score outside of information retrieval applications is not a trivial task, most
applications of list-wise PL algorithms remain in this field, although some examples do
exist. For example, Wang et al. used list-wise PL to model the emotional content of
documents by predicting the preferred nominal labels (Wang et al., 2011).

2.3.2 Python Preference Learning Toolbox

The Python Preference Learning Toolbox (PyPLT) is a toolset for pairwise PL. It was devel-
oped as an update to the outdated Preference Learning Toolbox written in Java (Farrugia
et al., 2015). As Python became more and more popular in data science, the reliance on
Java made the original toolbox less likely to be integrated into new projects. With much
of the community shifting towards Python, new libraries are being developed and shared.
This allows pyPLT to leverage well-constructed and well-maintained packages. However,
as PL techniques often leveraging on other machine learning paradigms, even extensive
Python libraries such as the Sci-Kit Learn toolbox3 omit out-of-box PL pipelines. PyPLT
is aimed to popularise and democratise ordinal label processing and PL. It is targeted to
researchers and practitioners in affective computing, user modelling, preference handling,
and human-computer interaction at large. The pyPLT toolbox may be used either as a
software application via its Graphical User Interface (GUI) or as a library via its Applica-
tion Programming Interface (API). Regardless of the interface used, pyPLT offers various
methods for each step in the preference data modelling process.

PyPLT consists of a standalone application with a graphical user interface (GUI) and
an underlying Python library. The GUI of pyPLT allows the user to select between two
modules: beginner mode and advanced mode. Both modes provide a help dialog containing
useful information to guide the user through using the application. While both modes of
operation work based on the same shared Python library, beginner mode hides some of the
more advanced features and implements automatic processes and best practices instead.
Figure 2.1 shows the interface of the beginner module, which simplifies the experiment
setup process into five quick and easy steps: 1) loading the data set; 2) automatic feature
extraction using auto-encoders (Hinton and Zemel, 1994); 3) automatic feature selection
using a sequential selection algorithm; 4) selection of a PL algorithm; and 5) running the
experiment. In the beginner module, the algorithms’ parameters are either set to default
values of the external libraries used (TensorFlow, scikit-learn, Keras), or where this is
inapplicable, or the default value of the underlying framework is not optimal the parameters

2Where m denotes the number of queries and n denotes the number of documents per query in an
information retrieval task.

3https://scikit-learn.org/

25

https://scikit-learn.org/


Chapter 2. Background

Figure 2.1: Screenshot of the beginner mode which hides the more detailed options available
in the advanced mode, offering a more simplified interface for setting up an experiment.

follow the earlier version of PLT (Farrugia et al., 2015).
The advanced module follows the same five steps as the beginner mode but expands the
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Figure 2.2: Screenshot of the PL tab (advanced mode) which offers three different algorithms
and evaluation methods.

number of options by extending each of the first four steps into its own detailed tab (e.g.,
the preference learning tab shown in Figure 2.2). Each of these tabs contains options and
parameters through which the user may fine-tune the experiment setup. The GUI includes
three algorithms to solve the PL task. The first one is a ranking Support Vector Machine
(rankSVM) based on the original implementation of ranking SVM in the Java PLT (Farrugia
et al., 2015), which leverages a one-class SVM. In general, SVMs work by using a predefined
kernel function to map the data instances onto geometric points in a high-dimensional
space according to the input features that define them (Cortes and Vapnik, 1995). The
second one is a Feedforward Neural Network with Backpropagation, which implements an
artificial neural network (ANN) with gradient-descent. This method adjusts an ANN’s
weights iteratively to minimise the error between the predicted network output and the
desired pairwise preferences over the given data instances. The error is calculated using the
Rank Margin function. Finally, the third one is RankNet (Burges et al., 2005), which is an
extension of the ANN backpropagation algorithm that uses a probabilistic cost function to
handle ordered pairs of data. RankNet uses the binary cross-entropy function (Burges et al.,
2005) as the error function. Additionally to these algorithms, the pyPLT library includes
another ranking SVM, which uses pairwise transformation to infer information about the
preference relations in the dataset. Section 2.3 introduces this method in detail. When
running an experiment via the GUI, a progress bar and training report are displayed during
execution. Upon completion, a report with the experiment’s details and its results is shown
to the user. Users can also save the experiment report and the model (for a given data fold,
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Figure 2.3: Difference between the pairwise transformation with consecutive windows and
dynamic memory windows. In both instances the third datapoint (green) is compared to
the previous data (blue striped).

if applicable) to a human-readable CSV file, either via the GUI or via the API.

2.3.3 Ranking through Random Forests Classifiers

This section presents the implementation of a Ranking Random Forest, which is used in
subsequent studies in this thesis (see Chapters 5-7). Models in this thesis rely on random
forests because they are simple yet robust algorithms that allow for fast training. The inher-
ent properties of the algorithm also allow for a reliable assessment of feature importance.
The work presented here relies on a method of pairwise transformation with which any
labelled dataset can be transformed into a representation suitable for PL. This procedure
reformulates the PL task in a way that any binary classifier can solve it.

Pairwise Transformation

Pairwise PL as introduced in Section 2.3.1, is a supervised learning paradigm in which an
algorithm learns to distinguish between datapoints in an ordinal manner (Fürnkranz and
Hüllermeier, 2011) through pairwise comparisons. Formally, through a pairwise transfor-
mation for every pair of data point (x, x′) ∈ X and label (λx, λx′) ∈ L two new points
(x− x′) and (x′ − x) and two new labels, y and y′ are created. In case of λx �Pt λx′ (x is
preferred to x′) y = 1 is assigned to (x− x′) and y′ = 0 to (x′− x), indicating the direction
of the preference relation. Pt is a preference threshold parameter (between 0 and 1) that
controls the required difference between two labels to be considered as a preference. The
resulting dataset can grow quadratically in size depending on the valid preference relations
in the dataset. The pairwise transformation is applied to each query, i.e. within each play
session separately. The reformulated problem can be solved by any binary classifier, and
due to keeping two observations per pairs, the baseline of the transformed dataset is always
50%.

Dynamic Memory Windows During Pairwise Transformation

While the pairwise transformation is often applied in an all-against-all strategy (Melhart
et al., 2019a, 2020c), in time-continuous data, it makes sense to preserve the continuity of
the data and only compare adjacent datapoints sequentially. At its basic level, this method
only cares about the proximal changes from one moment to the next. While increasing the
memory window by comparing more than two datapoints again in an all-against-all fashion
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has been proposed before (Camilleri et al., 2017), this method is simply producing a subset
of a dataset-wise all-against-all transformation.

Instead, this thesis work introduces a simple but effective way to transform the dataset
in such a way that the new datapoints encode the time-related dynamics of the original
dataset. To achieve this, a dynamic windowing method is applied where within a session
at each time-step, the current datapoint is compared not to the previous datapoint, but
all previous datapoints combined (see Figure 2.3). This method compares new points to
a smooth session history at each time step. In this thesis work, when this technique is
applied, the past window size is always set to include all available previous datapoints in
the session. This means that at time-step 3, this datapoint is compared to time-steps 1
and 2 combined, and at time-step 5, this datapoint is being compared to time-steps 1 to 4
combined. While a shorter window is possible, a preliminary exploration showed that larger
windows generally worked better. Although this implementation of information retention
from previous episodes is somewhat naive, unlike other algorithm-dependent pairwise PL
methods, the pairwise transformation with dynamic memory windows is algorithm-agnostic.
Hence, the parameter can be applied alongside any classifier.

Random Forrest Classifiers

This thesis uses Random Forest (RF) classifiers for PL. As has been briefly mentioned in
the intro to this section, a preliminary analysis showed the robustness of this algorithm
compared to ranking SVMs, Multi-layer Perceptrons, and RankNet for the specific task at
hand. RFs are widely used algorithms in affective computing due to their fast training and
robustness (Chatzakou et al., 2017; Hazer-Rau et al., 2020) often on par with deep learning
methods on certain tasks (Kratzwald et al., 2018). An RF is an ensemble learning method
used for classification and regression. As the name suggests, RFs operate by constructing
a multitude of randomly initialised independent decision trees during training and use the
mode of their predictions as a meta output. Decision trees themselves are simple yet pow-
erful machine learning algorithms for predictive modelling; they operate by constructing
an acyclical network of nodes, which split the features of the given dataset into simpler
decisions (Lewis, 2000). For experiments presented in this thesis Scikit-learn Python li-
brary (Pedregosa et al., 2011) is used. Scikit-learn implements decision trees through an
optimised Classification And Regression Tree (CART) algorithm first proposed by Breiman
(Breiman, 2017). The CART method uses a generalisation of the binomial variance to
evaluate the impurity (and thus splitting criterion) of nodes (Loh, 2011). It also relies
on a process of “overgrowing” and pruning trees (Lewis, 2000) to minimise training errors
without overfitting.

While RFs show surprising robustness, especially in the face of noisy data, another ben-
efit of using RFs is the possibility to calculate the feature importance of models to explain
the machine learning process better and understand both the data and the predictive re-
sults. In this thesis, feature importance is calculated as the Mean Decrease Impurity (MDI)
(Louppe et al., 2013), which measures the average amount by which a feature decreases the
weighted impurity across all trees in the forest. The MDI value is normalised between 1
and 0, the latter meaning the feature is irrelevant. The ordinal importance of the features
can be observed by ranking them by their corresponding MDI values.
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2.4 Summary

This chapter provided an overview of core concepts in emotion representation and player
modelling. Section 2.1 on the theoretical background of the thesis introduced affective
frameworks, emphasising the strengths of a dimensional understanding of affect when the
goal is continuous modelling of changes in fuzzy emotional states; general modelling in
games research, and ordinal affect modelling. Section 2.2 detailed contemporary annotation
tools and affective corpora, providing background for the following Chapters (3 and 4).
These sections also contextualise the thesis in the fields of game research and affective
computing. Finally, Section 2.3 gave an overview on preference learning, introduced the
Python Preference Learning Toolbox (pyPLT), and detailed the methodology behind the
work presented in this thesis. The thesis follows a pairwise approach to preference learning.
While pyPLT is not contributing directly to the modelling tasks in this thesis, work on
this project helped crystallise the machine-learning pipeline used in subsequent studies.
The section explained this pipeline on a high level, introducing the techniques of pairwise
transformation, dynamic memory windowing, and gave a brief overview on random forest
classifiers that will be used throughout this thesis.

The next chapter introduces the first-person affect annotation pipeline proposed by this
thesis and the annotation platform developed to realise it. The next chapter also presents a
usability study that evaluates the aforementioned annotation tool and the labelling methods
implemented within it.
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Chapter 3

First-Person Affect Annotation in
Videogames

The question of how to reliably collect affect annotations does not have a trivial answer.
Given the ever-increasing use of data-hungry affect modelling techniques, the need for larger
and more reliable affective corpora is growing. While video-based annotation—a popular
method in affective computing—is already a costly and cumbersome process, moving from
passive to interactive elicitors has other caveats as well. The primary challenge with these
types of elicitors—such as videogames—is that participants cannot both act and anno-
tate simultaneously. Affective computing datasets recording the emotional outcomes of
videogames have to devise pipelines where the gameplay and annotation tasks are shifted
to collect reliable labels. Ideally, the annotation process should be seamless and present
the least amount of cognitive load for participants. Unfortunately, most popular annota-
tion tools out there—including FeelTrace (Cowie et al., 2000), ANNEMO (Ringeval et al.,
2013a), AffectButton (Broekens and Brinkman, 2013), GTrace (Cowie et al., 2013), CARMA
(Girard, 2014), AffectRank (Yannakakis and Martinez, 2015), and RankTrace (Lopes et al.,
2017b)—require installation, calibration, and either trained expert annotators or constant
researcher oversight. This limited accessibility leads to sparse affective corpora both in
use and size. This limitation is even more severe for newly emerging fields, without large
established corpora—such as game user research—where data collection is necessary.

To address these limitations, democratise data collection, and make ordinal modelling
more accessible, developing a new pipeline for first-person affect annotation in videogames
was necessary. To support this pipeline a tool for general-purpose, online video labelling
was designed, the Platform for Audiovisual General-purpose ANnotation (PAGAN). PA-
GAN is publicly available at http://pagan.institutedigitalgames.com/ and free to use
for research purposes, and it provides researchers with an easy and accessible way to crowd-
source affect annotations for their videos. In contrast to other popular annotation tools, the
core functionalities of PAGAN do not require a local installation and are designed to help
researchers organise and disseminate their research projects to many participants. Inspired
by McDuff et al. (2013), the whole annotation process is done through a web interface op-
erating on any modern web browser. Outsourcing the labelling task is as simple as sharing
the corresponding project link.

PAGAN currently features three one-dimensional affect labelling techniques representing
different methods for measuring the ground truth of affect: GTrace (Cowie et al., 2013),
BTrace (a modified version of AffectRank (Yannakakis and Martinez, 2015)) and RankTrace
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Figure 3.1: Data collection and annotation pipeline for videogames enabled by PAGAN.
The central highlighted block of gameplay and annotation can be repeated multiple times.
With the exit survey a verification code can be set up to allow integration with popular
crowd-sourcing services.

(Lopes et al., 2017b). For advanced users with more familiarity with web technologies, an
open-source repository is available1 through which they can further customise the tool
and the collection method. Finally, the repository includes a module that allows for the
integration with games built-in Unity2.

Section 3.1 discusses a proposed pipeline for the first-person collection of gameplay
telemetry and affect annotation. This section also sets up Chapter 4, as the same methods
were used to create the presented dataset as well. Section 3.2 introduces the Platform
for Audiovisual General-purpose ANnotation (PAGAN). PAGAN was developed to allow
for a large-scale crowdsourced collection of affective labels. While the tool was specifically
designed with this thesis in mind, it has been released as an open-source tool (Melhart
et al., 2019b), and to date, PAGAN has over 30 registered users. Section 3.3 presents a
short study on the usability of the framework, which determines the annotation method
selected for future studies. Finally, Section 3.4 summarises the chapter.

3.1 First-Person Affect Annotation Pipeline

First- and third-person annotation in affective computing refers to the viewpoint of the
annotator from the perspective of the annotated subject (Yannakakis and Togelius, 2018).
Participants labelling their own emotions are considered first-person annotators, while if an
outside observer—usually an expert—is labelling the participants’ emotions are considered

1https://github.com/davidmelhart/PAGAN
2https://unity.com/
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third-person annotators. In the former case, the first-person annotation has high levels of
internal reliability as the participants are trusted to know about their own emotions and
label them in a self-consistent way. In the latter case, the third-person annotation has
a high level of external validity as expert annotators can be trusted to evaluate different
participants similarly. Repeated tests with third-person annotators can also increase the
inter-rater reliability of labels. While this view covers the participant-annotator relation-
ship, it does not consider the participants’ connection to the elicitor. This is because it is
a common practice in affective computing to collect annotations in reaction to a passive
elicitor (see the review of affective corpora in Section 2.2.2). These elicitors are generally
created by a third person, and the annotator has no agency in how they are configured.
This setup allows for repeated first-person annotations on the same elicitors, which can be
combined into a more stable ground truth later (Kächele et al., 2016).

However, the same experimental setup cannot be applied to interactive elicitors. Here,
first-person annotators are labelling their own emotions and shaping how the elicitor is
configured. In the case of videogames, each gameplay recording becomes a unique video
as players take different paths through the virtual space (this is true to even simple, linear
games). This unique setup comes with its own caveats. Firstly, first-person annotations
cannot be collapsed anymore into a ”gold standard” as there are no stable elicitors between
participants. Secondly, as participants are preoccupied with playing, they cannot also label
their experience; participants cannot generate both the elicitor and the annotation simul-
taneously. While the former problem could be sidestepped using third-person annotators
on the recorded gameplay videos, this results in a very different measurement. Collecting
annotations in this manner decouples the experience and the labelling task as annotators
no longer annotating the emotional content of an event they experienced but their own
interpretation of the context and the emotion manifestation of a third party. This thesis
instead posits that first-person annotations could be used reliably through the adaptation
of stimulated recall methods (Lankoski and Björk, 2015). This also offers the solution to the
latter problem outlined above by shifting the annotation task right after the game playing
task.

This thesis implements this pipeline through repeating gameplay and annotation blocks,
as illustrated by Figure 3.1. The setup leverages the PAGAN framework for capturing
gameplay videos and guiding the process. Gameplay videos are automatically recorded
then immediately played back to the player to minimise the loss of episodic memory about
the elicitor and the effect of semantic memory on the annotation task. In the complete
data collection cycle, participants are invited through PAGAN to an experiment. After an
introduction to the task, the system forwards the participants to a game. Games produced
in Unity communicate with the platform to initialise recording sessions and start and stop
video recordings. The telemetry logging is implemented independently on the game side;
however, PAGAN handles the broadcast telemetry as well. This ensures that the system
uses the same unique identifiers to store the raw telemetry submitted to the database as
the annotation module, making the synchronisation of the two signals trivial. After the
game playing task has finished, the recorded gameplay footage is submitted to the PAGAN
platform, automatically creating a new entry for annotation. From here, PAGAN loads up
the annotation task as described in Section 3.2.2. This block of gameplay-annotation can be
repeated as many times as needed. If the data collection is crowdsourced, a completion code
can be given out at the end of an exit survey to verify the completion of the experiment.
This pipeline of data collection has already been used for the AGAIN dataset and for a study
on the time-continuous prediction of non-player character believability (Pacheco et al., in
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Figure 3.2: RankTrace interface in the PAGAN platform. Apex Legends (Electronic Arts,
2019) gameplay footage. No copyright infringement intended.

review).

3.2 PAGAN Interface

This section describes the Platform for Audiovisual General-purpose ANnotation (PAGAN)
framework, its user interface and general usage. The user interface of PAGAN consists of
two separate sections. One is a web interface for researchers to prepare the annotation task
(Section 3.2.1) and the other is an interface for annotation by end-users (Section 3.2.2).
Section 3.2.3 details the three annotation methods incorporated currently in PAGAN.

3.2.1 Administration Interface

Researchers access and create their projects through a dedicated page. Each user has a
secure login with a username and a password. After login, the researcher accesses their
project summaries (Figure 3.3). Here, they can create new projects, view the progress of
their ongoing studies, and access their corresponding annotation logs. Each project has a
corresponding link, which is meant to be shared with potential participants. The annotation
application can also be run in test mode from here, in which case the annotation logs are
not saved.

The project creation screen can be seen in Figure 3.4. Projects are highly customisable
to accommodate different research needs. The project title identifies the study on the
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Figure 3.3: Project summaries on the administration interface.

project summary page and displays it to the participants as part of the welcome message.
The annotation target is the label for the y axis of the annotator (see Figure 3.2). The
project can be sourced from one or more uploaded videos or YouTube3 links. The videos
can be loaded either randomly or in sequence. If endless mode is selected, PAGAN rotates
the videos indefinitely, allowing a participant to complete all tasks multiple times. In
the case of a randomised video order, there is an option to limit the number of videos a
participant has to annotate. The videos can be played with or without sound; if videos are
played with sound, PAGAN reminds participants to turn on their speakers or headphones.
The researcher can optionally add information or instructions viewed before and after the
annotation tasks to help integrate the platform into the larger research project. Finally, a
survey link can be included and displayed to the participant at the end of the annotation
session.

3.2.2 Annotator Interface

The annotator application is a separate interface from the researcher site and meant to
be used by the study participants. The interface is designed to display only the neces-
sary information, thus eliminating potential distractions. Upon navigating to the project
link (see Section 3.2.1), the participant is greeted by a welcome message which concisely
explains the annotation procedure and provides some information about the annotation
target (Figure 3.5). After the video is loaded, the participant can start the annotation
process (Figure 3.2) at their leisure. While the original design of PAGAN eliminated the
use of a computer mouse in favour of the more readily-available keyboard (Melhart et al.,
2019b), an updated version of the platform uses a mouse scroll-wheel for the unbounded
continuous annotation method. This change was made to recreate the more intuitive feeling
of specialised annotation interfaces (Lopes et al., 2017b). In other tasks, the annotation
is performed with the up and down keys on the keyboard, and the session can be paused
by pressing space. The system only logs a session as “completed” if at least 25% is seen

3https://www.youtube.com/
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Figure 3.4: Project creation screen on the researcher interface.

and pauses if the browser tab is out of focus (i.e. if the participant leaves the annotation
interface open but switches to a different tab or window) to minimise the number of sessions
with insufficient annotation.
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Figure 3.5: Welcome message displayed to participants before annotation starts.

3.2.3 Annotation Methods

This section presents the annotation techniques included in the PAGAN framework: Rank-
Trace, GTrace, and BTrace.

3.2.4 RankTrace

The implementation of RankTrace closely follows the original by Lopes et al. (2017b) (see
PAGAN implementation on Figure 3.6a). The only major distinction to their version is
using a mouse scroll wheel to move the annotator cursor instead of the specialised interface
used with RankTrace. This change was made to approximate the feeling of the original
version of RankTrace—which uses a wheel interface to control the magnitude of change—
without any specialised equipment. As the annotation trace displays the entire history,
the participant has sufficient visual feedback, which acts as a reference (anchoring) point
(Yannakakis et al., 2018) for the subjective evaluation of the experience.

3.2.5 GTrace

Similarly to how the tool is used in Baveye et al. (2015a), the user interface is moved under
the video; vertical lines are added as an allusion to a traditional 7-item scale to provide
a visual aid for the absolute evaluation of the trace (see the PAGAN implementation on
Figure 3.6b). The main distinction from the original GTrace variant is that the cursor’s
movement is accelerated when a key is held down. This change was necessary as the
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(a) RankTrace

(b) GTrace

(c) BTrace

Figure 3.6: Interfaces for the annotation methods included in this study.

original implementation used a mouse cursor or joystick, allowing for higher speed while
retaining precision. When the participant stops the cursor, it leaves a mark that slowly
fades, providing limited memory of previous positions, to which the participant can compare
new labels. The limited memory from the fading mark differs from BTrace and RankTrace
that display the entire history of the session.

3.2.6 BTrace

Binary Trace (BTrace) is a new annotation tool introduced in PAGAN (Melhart et al.,
2019b) which is primarily based on AffectRank (Yannakakis and Martinez, 2015). BTrace
is designed as a simple alternative to relative annotation in a discrete manner, using two
nominal categories: +1 as the increase (or positive change) and −1 as the decrease (or
negative change). In that regard, it could be viewed as a one-dimensional version of Af-
fectRank. The design of the tool, however, is based on the benefits reference points have
on the reliability of the obtained annotation labels (Yannakakis et al., 2018; Lopes et al.,
2017b) and thus, it displays the entire history of the annotation session as red and green
blobs (see Figure 3.6c).

38



3.3. Usability Study

Table 3.1: Summary of participants’ choice of most and least interesting video and most
and least intuitive annotation tool

Most / Least Interesting Video

Apex GoT SEMAINE

11 / 6 15 / 1 3 / 22

Most / Least Intuitive Tool

RankTrace GTrace BTrace

16 / 4 8 / 8 5 / 17

Table 3.2: Number of annotation traces for each video and annotation type, the average
number of samples are shown in brackets

Annotation Type Apex GoT SEMAINE

RankTrace 11 (229) 10 (514) 10 (425)

GTrace 11 (429) 12 (358) 8 (133)

BTrace 9 (302) 8 (120) 14 (85)

3.3 Usability Study

To identify the best annotation method for subsequent data collection (see Chapter 4), a
small-scale study was conducted with 36 participants. This study focuses on the perceived
arousal level of different videos with emotional content and examines the effectiveness of
relative annotation methods (RankTrace and Btrace) compared to absolute affect labelling
(GTrace). For the sake of comprehensiveness, the study incorporates three different types
of elicitors: videogame footage, movie trailer, and a recorded conversation.

3.3.1 Collected Data

The collected data consists of 108 annotated videos from 36 participants. Participants were
found through the social and academic network of the researchers, while subsequent par-
ties were added through snowball sampling by participants sharing the project link. The
average age of the participants is 29 years old and 69% identified as male, 24% identified as
female, one subject identified as queer, and one did not want to identify themselves. The
majority of the participants were avid gamers, with 59% playing more than once a week.
Each participant was asked to annotate three videos with different but emotionally evoca-
tive content: (a) recorded gameplay from Apex Legends (Electronic Arts, 2019) (Apex),
a popular Battle Royale-style game; (b) the Season 8 trailer of the TV series Game of
Thrones (HBO, 2019) (GoT); (c) a conversation between a human participant and “Spike”,
the angry virtual agent in the SEMAINE database (McKeown et al., 2012). All videos are
approximately 2 minutes long. Each video was assigned a random annotation type, and the
order of videos was also randomised.

Participants were asked to name the most and least interesting of the three videos and
the most and least intuitive of the three annotation tools, effectively ranking them. The
results of their preferences are summarised in Table 3.1. The GoT trailer was the most
popular (only one participant rated it as the least interesting), while the video from the
SEMAINE database was by far the least liked (it collected 81% of “least interesting” votes).
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In terms of usability, participants ranked RankTrace the most intuitive (as it received 55%
of “most intuitive” votes), GTrace second, and BTrace the least intuitive.

3.3.2 Methodology

To measure the reliability of the different annotation techniques over the different videos,
we observe the inter-rater agreement between participants. Inspired by Yannakakis and
Martinez (Yannakakis and Martinez, 2015), the inter-rater agreement is measured with the
Krippendorff’s α coefficient (Krippendorff, 2004), which is a robust metric of the degree of
agreement corrected for a chance between any number of observers and any type of data.
Krippendorff’s α = 1 − Do/De, where De denotes the expected and Do the observed dis-
agreements between annotations. Krippendorff’s α is adjusted to the level of measurement
of the observations through the weighing of the expected and observed coincidences (see
Krippendorff (2011) for a complete explanation). This robustness allows for a fair com-
parison between different annotation methods. Krippendorff’s α has an upper bound of 1,
indicating absolute agreement, while 0 signifies no agreement or pure chance. At Krippen-
dorff’s α < 0, disagreements between annotators are systematic and go beyond chance-based
levels.

To compare discrete and continuous annotation and smooth out some of the surface
differences between individual traces, we compartmentalise the signals into equal length
time-windows. This method of preprocessing is often used in affective computing to prepro-
cess time-continuous signals (Yannakakis and Martinez, 2015; Camilleri et al., 2017; Lopes
et al., 2017b). We clean the dataset of traces which either had extremely few samples from
annotation (less than 3) or where viewing time was less than a minute. This cleanup pro-
cess removed 15% of traces, and the final datasets are comprised of 92 traces. Table 3.2
shows the number of traces and samples in each dataset and annotation method. In this
study, 3-second time-windows are considered without any overlap. Potentially the 3-second
processing provides approximately 40 windows per participant. As some participants did
not complete the entire annotation task, this number can vary. However, to maximise the
sample sizes, we decided to keep these traces as Krippendorff’s α can be applied to data
with missing observations.

As BTrace already encodes perceived change, similarly to AffectRank (Yannakakis and
Martinez, 2015), the values of time-windows are computed as the sum of annotation values
(ΣA) within each window, adding values in case of increase and subtracting them in case of
decrease. For RankTrace and Gtrace, both an absolute and a relative metric are considered
(Camilleri et al., 2017): the mean value (µA) and average gradient (∇A) of time-windows
based on the min-max normalised traces. The mean value is considered an absolute metric
because it denotes the general level of the participant’s response in a given time-window.
In contrast, the average gradient of a time-window considers the amount and direction of
the change that happened, as it is computed from the differences of adjacent datapoints of
the trace (Camilleri et al., 2017; Lopes et al., 2017b). The calculation of Krippendorff’s α
is adjusted to the observed metric. When the annotation trace is processed into a relative
metric (ΣA, ∇A), the annotation values are compared as ordinal variables. When the anno-
tation trace is processed into an absolute metric (µA), the annotation values are compared
as interval variables.
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Table 3.3: Krippendorff’s α across annotation traces processed as 3-second time-windows

Annotation Video

Tool Processing Apex GoT SEMAINE

RankTrace ∇A 0.2025 0.1760 -0.0043
µA 0.1542 -0.0227 0.0147

GTrace ∇A 0.1517 0.1224 -0.0347
µA 0.1857 0.0549 0.0926

BTrace ΣA 0.3193 0.0973 0.0249

3.3.3 Results

Table 3.3 shows the calculated inter-rater agreement. For comparing between RankTrace
and GTrace, the highest α value between ∇A and µA is used. The top α values for Rank-
Trace are 0.20 for Apex and 0.18 for GoT, which are higher than the highest α values for
GTrace (0.19 and 0.12, respectively). For both GoT and Apex videos, the highest α values
are found with ∇A in three of the four instances examined (except for annotations with
GTrace on the Apex dataset), which is further evidence that processing time-windows of
GTrace ratings through a relative measure yields more consistent results. Interestingly,
both GTrace and RankTrace have a higher α value with µA for the SEMAINE video (with
GTrace having superior performance), although generally these values are very low and any
inter-rater agreement could be chance-based. The general findings from these comparisons
are in line with a growing body of research promoting the relative collection and process-
ing of affective annotation traces (Yannakakis and Mart́ınez, 2015; Camilleri et al., 2017;
Yannakakis et al., 2018).

Based on Table 3.3, it seems that BTrace achieves the highest inter-rater agreement on
the Apex dataset while showing lower reliability on GoT and SEMAINE videos. As the
compartmentalised binary labels denote the rough amount of perceived change in a time-
window (but not its magnitude), the possibility of relatively high inter-rater agreement is
not surprising. However, results on the GoT and SEMAINE videos show the unreliability of
this method. A possible reason for the high variance in the inter-rater agreement is the low
face validity of the method. BTrace collected 59% of the “least intuitive” votes among the
three annotation methods. Therefore, despite its potential robustness in some instances,
BTrace has shown to be the least reliable and intuitive to use.

An unexpected finding of this analysis is the overall low inter-rater agreement of all
methods on the chosen SEMAINE video (ranked as the least interesting by the participants).
A plausible explanation of these results is a connection between the context and intensity of
the affective content and the reliability of the annotation traces. While games and trailers
are designed to elicit arousal, the slow pace of SEMAINE videos can be unappealing by
comparison. The differences in inter-rater agreements between the Apex and GoT datasets
also point towards the role of context in emotion elicitation. While the GoT video is
authored to elicit high arousal, the Apex footage presents a more organic scenario with
relative calm periods and high-octane action. Especially for frequent videogame players,
who have personal experiences with the dynamics of shooter games, this video is easier to
interpret, and the affective high-points are easier to recognise. This is also supported by a
recent study by Jaiswal et al. (2019), who observed an effect between the context of the
annotation task and the quality of labels.
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3.3.4 Conclusions

The usability study included three videos indicative of different sources of arousal: a game,
a TV series trailer, and a dialogue with a virtual agent. The analysis reveals low inter-rater
agreement on the SEMAINE database video, which raises the question of whether more en-
gaging forms of emotion elicitation such as games would offer more reliable benchmarks for
affective computing research. Results demonstrated the reliability of the supported anno-
tation techniques and showed the strength of relative annotation processing. While BTrace
can produce high reliability, RankTrace is the most intuitive tool to use for participants. As
BTrace is also limited in capturing more minor deviations in the user experience, subsequent
studies in this thesis will use RankTrace to capture annotations.

3.4 Summary

This chapter described a pipeline for the first-person annotation of gameplay. The presented
techniques are inspired by stimulated recall methods and extend the PAGAN annotation
framework into a complete data collection pipeline for games user research. The latter
half of the chapter detailed the PAGAN framework for multimedia annotation. This plat-
form was designed to enable the easy crowdsourcing of annotation tasks generally used in
affective computing. While the tool includes several popular one-dimensional and time-
continuous annotation techniques, through a small-scale usability study, it has been shown
that an unbounded continuous trace (RankTrace) has the most utility to annotate arousal
in videogames.

The next chapter presents the dataset collected using the PAGAN framework, and the
first-person affect annotation pipeline introduced early in this thesis. Later, the next chapter
focuses on the captured telemetry and annotation traces in a preliminary analysis, including
a qualitative and statistical overview.
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Chapter 4

The AGAIN Dataset

While much advancement has been made in general game playing (Perez-Liebana et al.,
2016b) with the advent of deep learning (Torrado et al., 2018), the use of general algorithms
to predict affective outcomes received much less attention so far (Togelius and Yannakakis,
2016). One significant barrier of entry to the field is the lack of large, reliable, and open
datasets. The handful of studies focusing explicitly on affect prediction have been using
ad-hoc datasets with relatively small sample sizes (Shaker et al., 2015; Shaker and Abou-
Zleikha, 2016; Camilleri et al., 2017). The lack of a publicly available database for general
affect modelling means that researchers have to allocate resources to building their own
corpus often using limited resources. While early studies showed some success in transferring
models between dissimilar games, their results are hard to compare and build upon in lieu
of a shared baseline. If general player affect modelling is to develop, it needs large open
datasets that are publicly available.

The creation of the Affect Game AnnotatIoN (AGAIN) dataset was motivated by the
lack of corpora for the study of general properties of affect across tasks and participants.
AGAIN contains data from over 120 participants who played and annotated over 1, 000
gameplay sessions. It is accessible online1 and features data collected from nine games
spanning across three dissimilar genres, which were developed specifically for the purposes
of the dataset (see Figure 4.1). As shown in Table 4.1, along with game telemetry and
self-annotated arousal labels, the dataset also features a video database of unique gameplay
sessions with over 37 hours of in-game footage. The diverse nature of the AGAIN affect
elicitors (games) provides a testbed for general affect detection in games Togelius and Yan-
nakakis (2016); Camilleri et al. (2017) and broadens the horizons for further research on
general-purpose AI representations Makantasis et al. (2019); Mnih et al. (2015) and artificial
general intelligence.

The design and creation of AGAIN was guided by the following factors: a) accessibil-
ity, which is achieved through an online crowdsourcing framework; b) scalability : AGAIN
is utilising the PAGAN online annotation framework (see Chapter 3) and, hence, one can
quickly populate the AGAIN database with more participants and annotators; c) extensibil-
ity : more affect dimensions and categories can be considered and integrated to the existing
dataset through the customisable PAGAN annotation tool, and; d) generality : any other
online game or interactive session can be easily integrated to the experimental protocol of
AGAIN. While at the time of writing, the dataset hosts nine games annotated for arousal
AGAIN is designed with all aforementioned factors in mind so that it can host data from

1http://again.institutedigitalgames.com/
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Table 4.1: Core Properties of the AGAIN Dataset

Properties Raw dataset Clean dataset

Number of Participants 124 122

Number of Gameplay Videos 1116 995

Number of Game-telemetry Logs 1116 995

Video database size 37+ hours 33+ hours

Number of Elicitors 9 games (3 genres)

Gameplay/Video duration 2 min

Annotation Perspective First-person

Annotation Type Continuous unbounded

Affective Labels Arousal

more games and user modalities, considering alternative affective labels.
The AGAIN dataset is unique in a number of ways. First, it is the largest and most

diverse publicly available affective dataset based on games as interactive elicitors. Given
the breadth of elicitors offered, the dataset can be used for testing specific affect models on
one particular task (i.e. a particular game) all the way to general models of affect across
tasks (game genres and games in general). Second, the dataset is annotated with the core
affective dimension of arousal, linking dominant annotation practices in affective computing
with player modelling and game user research. Finally, it employs a novel annotation
framework Lopes et al. (2017b) which captures subjective annotations in a continuous and
unbounded manner that can be further processed as labels for regression, classification or
ordinal learning affect modelling tasks Yannakakis et al. (2018, 2017). Section 4.1 discusses
the motivation and different considerations that were taken into account while building the
dataset. Section 4.2 introduces the games used in the dataset. Section 4.3 describes the
data collection process, the collected data, and the cleaning procedure applied to it. First,
Section 4.4.1 explores general trends in the cleaned AGAIN dataset. This section also
deals with the distribution of the output feature, arousal, and looks at the patterns in the
input features, focusing mainly on general features introduced in Section 4.3.4. Section 4.4.2
presents additional pre-processing steps which are necessary for subsequent machine learning
tasks. Finally, Section 4.4.3 presents a correlation analysis of the pre-processed features.
This section provides insights on the linear relationships within the data, which can also
help explain some of the more surprising results later. Section 4.5 provides a summary of
the Chapter.

4.1 From General Models of Affect to Games and Arousal

Traditional modelling approaches—both supervised and unsupervised (see Chapter 2)—rely
on large amounts of data to build reliable models. Apart from the raw data need, predictive
modelling also has to solve the issue of data labelling. However, with an ever-increasing need
for larger and larger datasets, supervised player modelling finds itself at a disadvantage as
collecting reliable data becomes more and more unfeasible. Beyond the feasibility, the utility
of game-based models is also limited. A clear drawback of this approach is that the resulting
models are only applicable to games that are already published or in an early-access phase,
where introducing large changes to the game is impossible. Not surprising then that most
of the industry application of player modelling focuses on market research (Viljanen et al.,
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2018). In contrast, general models can make valuable real-time predictions of the player
experience (Makantasis et al., 2019; Melhart et al., 2020a), behaviour (Bakkes et al., 2012),
motivation (Melhart, 2018), and affective state (Lopes et al., 2017a; Camilleri et al., 2017)
as well, which could inform processes varying from design decisions to monetisation. The
value of player modelling is clear; however, the resource need of building these models so far
prevented their large-scale industrial use. As the AAA industry shifts towards the“games as
a service” model, which introduces large content packs, often restructuring games in a major
way, the need for adaptable player models, which rely on minimal data, is greater than ever.
Consequently, general player modelling has been making advancements, especially in the
field of general-game playing (Togelius and Yannakakis, 2016; Torrado et al., 2018). While
these models have their uses, they tell less about how players interact with the game. To
answer this issue, general affect modelling (Togelius and Yannakakis, 2016) aims to create
pre-trained models, which can be applied to unseen games. If successful, such models can
reduce the data need of new projects. While research has been started in this field, studies
in the literature are still rather sparse.

Beyond industrial applications, general game-playing is also a major step towards the
understanding of a universal human experience, and subsequently, general artificial intelli-
gence (Togelius and Yannakakis, 2016). Affective player modelling can also provide value to
other fields of game research occupied with game-playing and content generation. Through
an affective loop, which connects emotion expression, elicitation, detection, prediction, and
reaction, a game system can facilitate different emotional states or mimic emotional human
behaviour (Yannakakis and Togelius, 2018). Such a system can use emotion prediction as
input for game-playing agents and procedural content generation systems, and other types
of facet-orchestration (Liapis et al., 2018). While there are a few studies (Yannakakis and
Hallam, 2009; Shaker et al., 2010; Melhart et al., 2020c) and commercial games (e.g. Façade
(Procedural Arts, 2005) and Nevermind (Flying Mollusk, 2016)) demonstrating the feasi-
bility of a fully realised affective loop, research in this direction is still in its infancy. One
way to break new ice in the field is to apply general affect models, which can jump-start
projects with reliable ”off the shelf” affect predictions for other generating and orchestrating
systems.

As discussed in Chapter 2, arousal is one of the main building blocks of human emotion.
In the affective literature, it is one of the more consistent components of dimensional emotion
models, and in the domain of videogames, arousal carries rich information about how the
players appraise the game. The intensity of the game described by arousal facilities the play
dynamics and the perceived challenge of the game (Klarkowski et al., 2016) which affects
cognitive and emotional engagement (Abbasi et al., 2019) and can lead to a number of
psychological outcomes including tension (Lopes et al., 2017a), frustration (Melhart, 2018),
fun (Clerico et al., 2016), and flow (Seger and Potts, 2012), as well as positive post-game
outcomes, such as increased creativity (Yeh, 2015) and working memory (Gabana et al.,
2017) performance. Due to this special relevance to videogames, the collected data for the
AGAIN dataset was labelled using arousal. Focusing on one affect dimension reduces the
cognitive load of the annotation task (Melhart et al., 2019b), which in turn increases the
reliability of the data; however, it limits the expressive range of affect annotation in the
dataset. Moreover, the focus on arousal assists the research community to build, extend
upon and advance studies that already have benchmarked the study of arousal in games
(Lopes et al., 2017b; Camilleri et al., 2017; Makantasis et al., 2019). Thus, it stands to
reason that a systematic overview of general affect modelling in games starts from arousal
as an information-rich background.
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Collecting a large dataset is not a trivial task. Developing testbed games, designing
and deploying the necessary software infrastructure, and recruiting participants all take
a considerable amount of time and resources. The collection process is then constrained
by the available time and resources and the experimental design of the collection process.
Because long annotation sessions increase participants’ cognitive load and stimulated recall
techniques rely on a rapid recall of recent episodic memory, the annotation process must
be kept relatively short. Therefore, there is a trade-off between how close we can model
real-life experiences, how much data we can collect and how intrusive the process can be.
Unfortunately, a AAA game experience cannot be emulated with the given constraints
as those games are far more ambitious in size and fidelity. This is especially true for
games in the adventure, role-playing, and strategy genres that require a considerable time
commitment from the players. Nevertheless, more casual experiences can be approximated
in simpler testbeds as well.

The games included in the dataset are approximations of popular genres of both the
PC and mobile markets. Nine games from three different genres have been designed and
developed exclusively for the AGAIN dataset. The genres chosen were Racing, Shooter, and
Platformer. It speaks to the popularity of these genres that in the top seller chart of Steam2

one can often see different iterations on the Shooter and Platformer genres. At the time of
writing, the third on the top seller list is a platformer, Ori and the Will of the Wisps (Moon
Studios, 2020) and fourth is a shooter, Counter-Strike: Global Offensive - Operation Broken
Fang (Valve & Hidden Path Entertainment, 2020). While the mobile market is dominated
by puzzle, simulation, and idle games, in the top downloads and top-grossing charts of Google
Play3, one can find multiple examples of casual shooters such as Brawl Stars (Supercell,
2017), platformers such as Super Mario Run (Nintendo, 2016) and racing games such as CSR
Racing 2 (Zynga, 2013). The main considerations when developing the games in the dataset,
was to create examples which are representative of their genre, easy to play and understand
with a rudimentary level of game literacy (Buckingham and Burn, 2007), and aesthetically
pleasing to get a close approximation of what players experience in the wild. Designing and
developing the games from the ground-up instead of relying on available testbed games—
such as Mazeball (Yannakakis et al., 2010) or Sonancia (Lopes et al., 2017a)—also had the
added benefit of control over the data logging procedure, resulting in a more coherent and
consistent database without the need of heavy pre-processing, which can introduce biases
into the dataset.

4.2 Game Descriptions

Games were designed in Unity 3D4 and built for the WebGL platform. The selected genres
represent a good cross-section of popular games (Yannakakis and Togelius, 2018; Sevin and
DeCamp, 2020; Vargas-Iglesias, 2020), which rely on fast-paced gameplay and hand-eye
coordination. While this focus omits other popular genres, such as role-playing or strategy
games, the included genres require substantially less time to learn and play successfully,
making them unfeasible for the proposed data collection procedure. The collected dataset
was published independently under the name, AGAIN (Affect Game Annotation) Database

2http://store.steampowered.com/
3https://play.google.com/
4https://unity.com/
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(a) TinyCars (b) Solid (c) ApexSpeed

(d) Heist! (e) TopDown (f) Shootout

(g) Endless (h) Pirates! (i) Run’N’Gun!

Figure 4.1: Start screens of the nine games included in the AGAIN dataset, showing the
game’s rules and players’ controls.

(Melhart et al., 2021)5.

4.2.1 Racing Games

The racing genre includes car-racing simulators or close approximations of the same experi-
ence. Games in this genre feature fast-paced gameplay and rely on dexterity. While driving
along a racetrack, players have fewer interactions with artificial opponents than in other
games included in the dataset, but some racing games still allow players to crash into and
push opponents off the track to force them into a worse position. In all included games, the
races are played in a closed loop. Players start from the last position and have to fight their
way to the top during the race. While there are no combat mechanics, opponents and the
environment can pose extra challenges to the player. If the player is stuck, they can reset
their position to the last checkpoint by pressing ‘R’.

• TinyCars is an isometric arcade-style racing game (see Fig. 4.1a). The player’s view
is fixed in a 45 deg top-down angle. The controls are relative to the player’s car.
The main challenge of the game is keeping the car on track, as going off-track comes
with a substantial speed penalty. While there are no large obstacles on the level, the
track does feature an overpass and a small jump-ramp. The game was inspired by the

5http://again.institutedigitalgames.com/
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retro-racer game, Super Cars II (Magnetic Fields, 1991).

• Solid is a rally game (see Fig. 4.1b), where the player’s view is fixed inside the car,
with the steering wheel and dashboard partially obstructing the player’s view. To
aid the player’s situational awareness, the UI features a rear-view mirror. The main
challenge of the game is posed by the opponents as they bump into the player and each
other. While there are no hefty penalties for leaving the track, there is a large loop on
the level. The player has to hit a high enough speed to clear the obstacle. The game
was inspired by games in the Colin McRae Rally series (Codemasters, 1998-2019).

• ApexSpeed is a speed racer-type game with a third-person view. As the camera
follows the car from an elevated angle, the player has improved situational awareness
compared to a first-person view. The main obstacles of the game are the fire-pits. On
collision, these obstacles reset the player to the last checkpoint. While opponents can
still be pushed aside, there is no speed penalty for Collision, and the level is closed,
making it impossible to go off-track. The game was inspired by games like Wipeout
(Psygnosis, 1995)—or more recently Redout (34BigThings, 2016).

4.2.2 Shooter Games

The shooter genre includes games that are characterised by action and combat. The goal
of these games is to eliminate opponents by shooting at them with projectile weapons.
Shooter games rely heavily on hand-eye coordination and fast reflexes. In all presented
shooter games, the player has to use keyboard keys to navigate (except Shootout, where
they are stationary) and the mouse to aim. These are the only games in the dataset that
require a mouse to play.

• Heist! is a first-person shooter game (see Fig. 4.1d). The game imitates modern
shooter games. The player can sprint and crouch behind covers. Their health is
automatically regenerated after a few seconds out of combat. The main challenge of
the game is managing the combat and ammunition. The player’s weapon is a semi-
automatic pistol, which has to be reloaded manually by pressing ‘R’. If the player
runs out of health, they are respawned at the beginning of the level. The game was
inspired by shooter games such as Call of Duty: Modern Warfare (Infinity Ward &
Sledgehammer Games, 2019).

• TopDown is a third-person isometric shooter (see Fig. 4.1e). The player’s view is
fixed at a 45 deg top-down angle. Instead of controlling the camera gaze, the player
moves the reticle with their mouse. The player’s weapon is an automatic rifle with
unlimited ammunition. The main challenge of the game is dodging enemy bullets
while engaging in combat. Health does not regenerate, but the player can pick up
health-packs to replenish some of it. Similarly to Heist!, when the player runs out of
health, they are respawned at the beginning of the level with full health. The game
was inspired by modern iterations on the top-down shooter genre, like Neon Chrome
(10tons Ltd. 2016).

• Shootout is an arcade shooter (see Fig. 4.1f). The player cannot move, only aim and
shoot with their mouse. The main challenge of the game is hand-eye coordination,
reflexes, and managing ammunition. The player’s weapon is a revolver that cannot be
reloaded manually. When the player runs out of ammunition, the gun is automatically
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reloaded (preventing shooting for 2 seconds). The game does not have a health system,
but the player loses points whenever they are hit. Enemies appear on screen at an
increasing rate and numbers, slowly overwhelming the player. The game was inspired
by classic shooting gallery games like Hogan’s Alley (Nintendo, 1984).

4.2.3 Platformer Games

The platformer genre focuses on traversal, often with light puzzles with gameplay that
requires dexterity and precision. Platformers often feature adversaries (just as in shooter
games); however, the goal in these games is just as often to avoid these enemies as to
eliminate them. The platformer set of the database is the most diverse among all genres,
with more diverse control schemes and game mechanics than the other sets.

• Endless is a casual endless-runner game (see Fig. 4.1g). The player controls the
character with just two keys and attacks with a third one. The goal of the game is
to stay alive as long as possible on an endlessly looping level with random enemy and
obstacle placement. The game moves forward (and accelerates) automatically; the
player can only move between two predetermined tracks. The game also features a
wide variety of pickups which can increase the player’s score or increase and decrease
the difficulty (making the game move faster or slower). The main challenge of the
game is to avoid incoming enemies. On collision with an obstacle or an enemy, the
player loses score, and the game’s speed is reset to the initial value. The game was
inspired by casual mobile games like Temple Run (Imangi Studios, 2013).

• Pirates! is a classical platformer (see Fig. 4.1h) which focuses on light traversal
puzzles in a 2D environment. The player controls the character using three keys (two
directions and one jumping). The game features one power-up, which gives the player
a bonus life. Enemies can be eliminated by jumping on their heads; however, the
player is respawned at the last checkpoint on a direct collision. The game was heavily
inspired by Super Mario Bros. (Nintendo, 1985).

• Run’N’Gun is a shoot ’em up platformer (see Fig. 4.1i). The player controls the
character with six keys (four-directional, one jump, and one attack). The game shares
many resemblances with shooter games, as the player has a projectile weapon to fight
enemies on the level, and the game features a health pack similarly to TopDown.
Unlike shooter games, enemies come in a wider variety with both melee and ranged
opponents and bosses with multiple health bars. Unlike other platformers in the set,
players can earn a score in the game by defeating enemies. Similarly to Pirates!, if
the player runs out of health, they are respawned at the last checkpoint. The game
was inspired by Metal Slug (SNK, 1996).

4.3 Data Collection

The games were integrated into the PAGAN annotation platform (Melhart et al., 2019b),
which allowed the large-scale crowd-sourcing of both the game playing and annotation tasks.
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Figure 4.2: Introduction screen of the experiment.

4.3.1 Protocol

The game-playing and annotation task was crowd-sourced using Amazon’s Mechanical Turk
service 6. To limit the noise in the dataset, only people with prior videogame purchase
were invited for the experiment. Using the PAGAN platform, participants were able to
play the games online from their browser. The games have been fully integrated into the
platform transitioning seamlessly from the gameplay to the annotation task. Participants
were greeted with short introduction and task description, which described high arousal as
a feeling of tension, excitement, exhilaration or readiness and low arousal as a feeling of
boredom, calmness or relaxation (see Figure 4.2). After the welcome message, participants
were thrust into a randomly selected game. Each game took a maximum of 2 minutes
to play. During their gameplay, telemetry logs and a video of their session were recorded.
After the game-playing session, participants were automatically forwarded to the annotation
task. After the annotation task had been completed, the participants were forwarded to
the next randomly selected game. This cycle was repeated nine times until all games had
been played. At the end of the experiment, a short exit survey recorded the biographical
details of the participants. Data collection took between 45 to 44 minutes per participant,
and each participant was compensated with 10 USD for their time and effort.

6https://requester.mturk.com/
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4.3.2 Participants

The final dataset contains 124 participants, who played 1, 116 gameplay sessions and gen-
erated over 37 hours of video footage. The gender distribution of the dataset is somewhat
skewed, with 1 participant identifying as non-binary, 43 as female, and 80 as male. The
average age of the participants was 33 years (between 19 and 55). The majority of the
respondents were from the USA (102 participants), while the rest were divided between
Brazil (10 participants), Italy (3), Canada (2), India (2), Czech Republic (1), Germany
(1), and Romania (1). Most of the participants (116) are self-described gamers and play-
ing videogames daily or weekly. Regarding gaming habits, participants had either a PC,
gaming console, or both and played a wide variety of games from casual and mobile games,
through platformers, role-playing games, to sports simulators. The collected biographical
data shows that the participants could have grasped the testbed games reasonably quickly.

4.3.3 Gameplay Footage

During the gameplay sessions, the participants’ gameplay was recorded. These videos were
used in the annotation task immediately after the gameplay but have also been published
as part of the AGAIN dataset (Melhart et al., 2021) to aid future research into pixel-based
affect modelling (Makantasis et al., 2019). The recorded gameplay footage amounts to over
37 hours of gameplay (more than 3× 106 frames of video). The games were recorded at 24
FPS with a resolution of 960× 600 pixels.

4.3.4 Game Telemetry

During the game-playing procedure, detailed telemetry has been recorded. Telemetry data
could be viewed as domain-specific privileged information (Vapnik and Vashist, 2009), which
encodes in-game events, player action and behaviour, and gameplay context. It generally
consists of ad-hoc features based on how gameplay elements and mechanics are implemented.
Fusing gameplay features with other user modalities has also been a dominant practice in
game-based affective computing (Mart́ınez and Yannakakis, 2014; Martinez et al., 2014);
however, subsequent experiments in this study only rely on the game telemetry, discussed
in this section.

All games implement the same data-logging strategy and use a similar method for record-
ing telemetry. Games within the same genre share the same feature labels. These features
are referred to as genre-specific features throughout the thesis. In addition to genre-specific
features the dataset includes 13 general gameplay features. AGAIN provides 33, 35, and
42 genre-specific features for the racing, shooter, and platformer games, respectively, when
redundancies between general and genre-specific features are eliminated. However, not all
features have a qualitative meaning for all games within a genre—in Heist!, for instance,
players move, but they are immobile in Shootout. To ease the data collection, aggregation,
and later modelling process, when features are absent from a game, they are given values
with zero-variance (zeroes or ones, depending on the feature). For example, a looping race-
track is only present in the Solid game (see Figure 4.1b); therefore, the Visible Loop Count
feature is always zero in the other racing games.

The recorded genre-specific telemetry encodes control events initiated by the player
(e.g. Player Steering), player status (e.g. Player Health), gameplay events outside of the
player’s control (e.g. Bot Aim at Player), bot status (e.g. Bot Off-road), and the proximal
and general game context (e.g Bot Player Distance and Pickups Visible). The gameplay is
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Table 4.2: The general gameplay features of AGAIN

feature description

Time Passed time counted from the start of the recording
Player Score points indicating goal completion
Input Intensity number of keypresses
Input Diversity number of unique keypresses
Player Activity ratio of time spent pressing keys
Player Movement distance travelled + reticle moved (in shooters)
Bot Count number of bots visible
Bot Movement bot distance travelled
Bot Diversity number of unique bots visible
Object Intensity number of objects of interest
Object Diversity number of unique objects
Event Intensity number of events
Event Diversity number of unique events

recorded at approximately 4Hz (every 250ms). Due to the limitations of the Unity engine
and the WebGL format, the logging rate is not consistent. The logging script aggregates
multiple ticks of the engine’s update loop and provides an average value to mitigate this
issue. Due to this processing technique, almost all events are represented by continuous
values. For example, Pickups Visible can take float values under 1 when a pickup just
became visible at the end of the given 250ms window. The only features represented by
integer values are Player Death and Objects Destroyed because of their sparsity. Due to
space constraints, genre-specific features are not listed here. Please read Appendix A.1 for
a full list of genre-specific features.

General features are derived from the genre-specific telemetry. These general features
are ad-hoc designed and are based on contemporary studies of general player modelling
(Camilleri et al., 2017; Bonometti et al., 2020). Events that require expert evaluation of
the game, such as the goal-oriented and goal-opposed events of Camillieri et al. (2017) are
omitted from these general features of AGAIN but may be considered as additional features.
Table 4.2 lists these features alongside their explanation.

4.3.5 Annotation

The annotation task was administered through the PAGAN platform (Melhart et al., 2019b),
using the RankTrace annotation method (Lopes et al., 2017b) (see Chapter 3). RankTrace
allowed for the collection of data in an unbounded fashion (see Fig. 4.3). This type of
data is best interpreted as subjective, ordinal labels as it preserves the relative relationships
between data points (Yannakakis et al., 2018). The unbounded trace means that users
can always adjust their annotations higher or lower than previous values, which alleviates
much of the guesswork compared to when users annotate on an absolute and objective scale
(Martinez et al., 2014). The ordinal nature of the annotation follows the cognitive process
of human evaluation, as it provides a trace of which factors in habituation (Solomon and
Corbit, 1974), anchoring bias (Damasio, 1994; Seymour and McClure, 2008) and recency-
effects (Erk et al., 2003).
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4.3. Data Collection

Figure 4.3: The PAGAN RankTrace annotation interface. The gameplay video is played in
the window above and the participant controls the annotation cursor (blue circle) below,
drawing a visible annotation trace.

4.3.6 Data Cleaning

To ease subsequent analysis and studies, the dataset is cleaned of unresponsive participants
and clear outliers. Through a multi-step process, 10.8% of the data points are removed.
The published AGAIN dataset (Melhart et al., 2021) contains both the raw and the cleaned
data that result from the process outlined here.

Since PAGAN only records annotations when there is a change in the signal and the
Unity engine loop is affected by hardware performance, as a first step, the dataset is resam-
pled at 4Hz to get a consistent signal. Duplicate values are removed from the dataset and
sessions that are either too short (less than 1 minute) or too long (more than 3 minutes)
due to software or technical errors during crowd-sourcing. Sessions that have less than 10
annotation points are pruned, assuming that the participant was unresponsive. This initial
cleanup phase removes 24 sessions (2.1% of the data).

To clean the dataset further, Dynamic Time Warping (DTW) is applied to get an
approximate similarity measure between traces. DTW is used in time-series analysis to
measure the similarity between temporal sequences that might be out of sync or vary in
speed (Berndt and Clifford, 1994). DTW works by calculating a warping path between two
signals using a similarity matrix. It provides a valuable metric that qualifies time-series
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Figure 4.4: Distribution of summed cumulative DTW distance values of each session com-
pared to every other session. The solid line shows the average score, while the dotted
lines show the first and second standard deviation. Values in the grey field (right tail) are
removed during data cleaning.

in the form of a cumulative DTW distance describing the similarity to a baseline trace
or other signals (Berndt and Clifford, 1994). Both of these strategies are applied when
cleaning the dataset. As a first step, the cumulative DTW distance to an artificial flat
baseline is calculated (arousal annotations at 0 in all time-windows). The resulting score
provides a similarity measure to an artificial session where the participant performed no
annotation; this allows the removal of unresponsive outliers. Sessions that fall more than
two standard deviations closer to zero from the average cumulative distance (the left tail
of the distribution) are removed. This step removes 28 additional sessions from the dataset
(2.5%). Finally, the cumulative DTW distance metric is applied between each data point,
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Table 4.3: Preliminary analysis of the clean AGAIN dataset. The table lists the number
of game sessions and their corresponding data points on a frame-by-frame basis (250 ms).
The table also lists the number of 3s time-windows within which the arousal value increases
(↑), decreases (↓) or stays stable within a 10% threshold bound (—).

Arousal (3 s interval)

Game Sessions Data (·103) ↑ ↓ —

TinyCars 109 52.75 543 461 3386
Solid 109 53.42 613 492 3346
ApexSpeed 114 56.10 607 462 3581

Racing 332 162.27 1763 1415 10313

Heist! 110 53.91 580 424 3479
TopDown 115 56.90 650 463 3614
Shootout 106 51.77 471 341 3496

Shooter 331 162.57 1701 1228 10589

Endless 112 55.11 559 438 3595
Pirates! 110 52.26 625 534 3186
Run’N’Gun 110 54.97 618 431 3521

Platformer 332 162.34 1802 1403 10302

Total 995 487.18 5266 4046 31204

and the resulting distances are summed up. This metric shows the relative similarity of a
session to every other session. All sessions which fall more than two standard deviations
away from the average summed cumulative distance (see Fig. 4.4) are removed. This step
removes an additional 69 sessions (6.2%), which are too dissimilar from the general trends
of the participants’ annotations; it is presumed that either the annotation was improper
or that this session’s elicitor was somehow not in line with how other players played the
same game. At the end of the cleaning process, 121 sessions—including all data from 2
participants—are removed (10.8%). The cleaned dataset consists of 122 participants, 995
sessions, and 490,494 data points.

4.4 Preliminary Analysis

This section presents a preliminary analysis of the collected data through a statistical lens.
The purpose of this investigation is to contextualise and help to explain the results of the
subsequent modelling efforts. The chapter highlights similarities and differences between
games and genres and examines input and output features, their relationship, and their
implications to the modelling tasks ahead. The first half of this section focuses on general
trends in the data, while the latter half focuses on correlation analysis between the features
and the annotated ground truth. To better connect the analysis to the subsequent modelling
tasks, the data is pre-processed for machine learning before the correlation analysis.

4.4.1 General Trends

Following the cleanup process presented in Section 4.3.6, this section performs a prelimi-
nary analysis of the clean version of the AGAIN dataset focusing on patterns in the arousal
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Figure 4.5: Average annotation traces (normalised per session) showing an increasing ten-
dency. The coloured area around the mean depicts the 95% confidence interval of the mean.

annotations and the AGAIN game context features. While some games receive more ag-
gressive data cleaning than others (TinyCars, Solid, and Shootout), overall, there is an even
distribution of data and sessions across genres as shown in Table 4.3.

Trends in the Annotations

Figure 4.5 shows the average annotation trace as calculated by averaging values in time-
windows of 250 ms of all sessions’ traces. It is evident that arousal annotation tends to have
an upward tendency. This is not surprising, as most games considered are action-oriented
with an ever-increasing challenge; for instance, Endless keeps increasing the game’s speed,
which makes it both more challenging and more arousing as time passes. Racing games
(top row of Figure 4.5), on the other hand, tend to have arousal converging to a maximum
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mean value after the first 30 seconds. This is likely because the player is initially rushing
to overtake the opponents’ cars (players always start last); after this initial excitement, the
race becomes repetitive, with players trying to either maintain the lead or slowly catch up
to the leader.

Trends in the Game Context Features

Observing the twelve general gameplay features shared across all nine games, one can detect
notable differences between games. In terms of the player’s input (control), games with more
complex interaction schemes appear to have higher input diversity and input intensity (see
Table 4.2 for details on these features). Even accounting for the games’ different control
schemes (i.e. the number of controls the player has available), ApexSpeed, Shootout, and
Endless have the lowest intensity (number of keypresses) and diversity (number of unique
keypresses) while Pirates! and TinyCars have the highest diversity. This discrepancy could
point to a more manageable control scheme for the former games, but it could also point
to a more frantic and engaging interaction in the latter games. The idle time and activity
features corroborate this observation, as racing games have less idle time without keypresses
(since in two of the games the player needs to press a button constantly to move forward).
In contrast, games where participants mainly reacted to stimuli (e.g. in Shootout, players
react to opponents popping up and in Endless players jump only when a gap or obstacle
is near) featured much higher idle times. In terms of other features, the number of bots
(opponents) visible on the screen varied wildly between games, with Tiny Cars and Shootout
having the highest number of visible enemies on average. Perhaps due to the many enemies
present, Shootout had the highest number of events (Event Intensity on Table 4.2), while
Solid had the fewest events per time-window.

In terms of comparing the general gameplay features across games, this requires some
normalisation to account for both discrepancies in value ranges between games (e.g. in
terms of score) and between players in the same game. Following the paradigm of treating
both input and output as relative (Camilleri et al., 2017), the gameplay features of each
time-window are normalised to the [0, 1] value range within each session. As a result, such
normalised features consider the dynamics of a single player in a given session (e.g. in
which time-window the player achieved the top score of their session), disregarding, for
example, whether other players reached higher scores in the same game. Since arousal
is similarly a deeply subjective notion, the player is expected to annotate arousal in the
context of their current session (e.g. whether their arousal might increase if they start
performing better than they were performing previously in the same session). After all
4.9·105 game context data was normalised in this fashion, we applied t-distributed Stochastic
Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) to map this data on a
two-dimensional space. Figure 4.6 shows the resulting data distributions. The visualised
distributions offer some important insights into the differences between games. In particular,
every game’s general features tend to exhibit different patterns than the other eight games.
Moreover, the compressed (game context) feature distributions across the three shooter
games (see the middle row of the figure) appear quite distinct from one another. In some
cases, however, there appears to be an overlap between games of the same genre (e.g. all
racing games) or games of different genres (e.g. see Pirates! and Solid). Even though this
type of data visualisation cannot shed light on all possible differences between games, it
indicates that the games impact the patterns of the data solicited from players (i.e. the
context influences the user behaviour). The t-SNE analysis also indicates that mapping
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Figure 4.6: Projections of general game features in a 2D space with t-distributed Stochastic
Neighbour Embedding.
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Figure 4.7: The aggregation of 3-second time-windows. The figure shows the application
of the 1-second lag on the annotation and an example of comparing the highlighted Time
Window 3 to the average of the Session History (Time Window 1 and Time Window 2).
The red highlights on the annotation signal show the segments which affect the calculation
of the average gradient. Note that although the mean values of Time Window 1 and Time
Window 2 are very different, their average gradient is very similar.

between game content and arousal seems to be easier for some games (and game genres)
than others.

4.4.2 Pre-Processing

Although the dataset was recorded at 4Hz, windows of 250ms are not meaningful intervals
in terms of human attention due to reaction time. Subsequently, the data is processed into
3-second time-windows using two distinct metrics. Inspired by the studies of Lopes et al.
(2017b) and Camilleri et al. (2017) arousal is processed firstly as the mean (µA) trace of
a selected time-window. A preference learning model trained on this ground truth predicts
the ordinal change in the level of player arousal. Secondly, arousal is processed as the
average gradient (∇A) of the trace within a selected window (see Figure 4.7). Preference
learning models trained on this ground truth predict the change in the acceleration of
player arousal. While this metric is less intuitive compared to µA, it gives an estimation
of the temporal dynamics of the player experience as it registers whenever a linear trend in
arousal changes. Because of this focus on the change in dynamics instead of the change in
absolute values, ∇A should also provide a trace that is more robust against recency effects
such as habituation (Yannakakis et al., 2018). Following standard practice in affective
computing (Metallinou and Narayanan, 2013; Lopes et al., 2017b; Camilleri et al., 2017),
a time offset of 1-second is also introduced to the annotation traces. Mariooryad and
Busso suggest that although an optimal annotation lag can be found algorithmically, an
ad-hoc value between 1 and 3 seconds is practically a good compromise when it comes to
similar annotation tasks (Mariooryad and Busso, 2013). Through a preliminary experiment
(set up similarly to experiments described in Chapter 5), it has been determined that an

59



Chapter 4. The AGAIN Dataset

Table 4.4: Top five Kendall’s τ correlations between input features and the output processed
as the mean (µA) and average gradient (∇A) of time-windows. Features marked with G
are general, while features marked with S are genre-specific features.

µA ∇A
Genre Feature τ Feature τ

R
ac

in
g

G Player Score 0.166 S Player Lap -0.069
G Time Passed 0.163 G Time Passed -0.068
S Player Lap 0.125 G Bot Count 0.066
G Bot Diversity -0.097 G Bot Diversity 0.065
S Player Speed 0.093 S Bot Grounded 0.065

S
h

o
ot

er

G Time Passed 0.363 S Bot Proj. Count 0.129
G Player Score 0.338 S Bot Proj. Player Dist. 0.119
S Bot Aim at Player 0.158 S Bot Shooting 0.113
G Event Diversity 0.151 S Player Damaged 0.089
S Bot Shooting 0.148 S Bot Rotation 0.085

P
la

tf
or

m
er

G Time Passed 0.271 S Player Health 0.120
G Player Score 0.269 G Bot Movement 0.099
S Bot Proj. Count 0.114 S Player Pickup (Boost) 0.097
S Bot Proj. Player Dis. 0.113 G Bot Diversity 0.079
G Bot Diversity 0.106 G Bot Count 0.074

annotation lag of 1 second is sufficient to correct for the participants’ reaction. As mentioned
above, to aid the subsequent modelling tasks, the dataset is normalised on a per session
basis. Figure 4.7 illustrates the relationship between the input features and the measured
ground truth in the dataset. After this 1-second lag correction, the dataset consists of
40836 datapoints. As discussed in Section 2.3.3, during the subsequent modelling tasks, the
number of observations can vary depending on how many valid comparisons can be found
during the pairwise transformation. Figure 4.7 also illustrates how the dynamic memory
windowing is applied when the full session history is considered (for more details on the
method see Section 2.3.3).

4.4.3 Correlation Analysis

Before concluding this chapter and moving on to preference learning models, this section
presents the results of a correlation analysis between individual input features and the two
different outputs discussed in Section 4.4.2. This type of analysis highlights the linear
feature importance, which can help explain some of the non-linear modelling results in
subsequent chapters. Correlations are measured using Kendall’s τ , which is a monotonic
measure of rank-correlation that has a great degree of robustness against outliers (Nelsen,
2001). Because of this robustness to noise and its applicability to non-parametric problems
and ordinal data, Kendall’s τ handles human-generated data (such as annotations) very
well. Significance is reported at a 95% confidence interval and adjusted using the Bonferroni
correction where applicable. Due to space constraints, the complete list of correlations is
listed in Appendix A.2.

Table 4.4 shows the top five correlations between and input features and both µA and
∇A for each genre discussed in this thesis. It is evident that the output processed as
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µA have stronger correlations with the input features. Looking at Figure 4.5, it is not
surprising that the top two features in each genre are Time Passed and Player Score. Player
Score also correlates with time in all games and hence can be considered a time-related
feature. Evidently, the µA processing of arousal can capture the temporal dynamics of the
presented games in a linear fashion to a good degree. While this dynamic might not be
true to all modern games, as the increase in arousal would hit a diminishing return (also
see the racing games on Figure 4.5 for an example), games in the dataset built similarly to
casual and mobile games, replicating fast-paced but short gameplay sessions more typical to
these domains. However, since time—which is a game-agnostic feature—is already a good
linear predictor of arousal across all games, it is expected that µA models will perform and
generalise well. Table 4.4 shows that this connection is the strongest in shooter games,
followed by platformers, and finally by racing games. This finding already foreshadows
the difficulty of the modelling task for each of these genres. General features have strong
correlations within each genre, however. When looking at the genre-specific features, an
interesting finding is the high correlation of Bot Projectile Count and Bot Projectile Player
Distance in platformer games which are features used only in Run’N’Gun. In contrast to
these results, ∇A show weaker correlations with the input features. While Time Passed
is still a prominent feature in racing games, it is missing from other games. Player Score,
another feature highly correlated with µA is also missing from the top five correlations of
∇A. While there is some overlap between the two outputs, genre-specific features are much
more prominent. This is true, especially in shooter games, where all the top features are
genre-specific. While with µA the most robust features were time-related, with ∇A most
of these features are related to the bots and in-game events except for racing games. The
diversity of the top features and their relatively weak correlation with arousal foreshadows
a more challenging task that is less linearly separable compared to µA.

4.5 Summary

The first half of this chapter detailed the AGAIN dataset, which was collected for the
subsequent studies in general affect modelling. In particular, the motivation for the dataset
was described, identifying a need for comprehensive and diverse game datasets for general
affective player modelling research. The bulk of the chapter described the produced games,
the collection process, and the different attributes of the dataset. Particular focus was given
to easily identifiable general features, which will be used in subsequent studies. The later
half of this chapter presented a preliminary analysis of the AGAIN dataset. This overview
aimed to uncover some underlying patterns and connections that can help contextualise
and interpret subsequent machine learning results. Section 4.4.1 a qualitative analysis of
emerging trends in the dataset regarding the annotation values and the distribution of
general features between games. Section 4.4.2 explained the pre-processing steps, which are
necessary for future machine learning tasks, and finally, Section 4.4.3 presented an analysis
of the linear connections between input and output features. This investigation uncovered
that when annotation traces are processed based on the mean value of time-windows, the
resulting output feature significantly correlates with time-related features.

The next chapter presents the preliminary results of game-based affect modelling with
game-agnostic features. The first sections focus on model validation and modelling results,
while the latter sections reevaluate the models in light of feature importance and time-
windowing technique.
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Chapter 5

Game-Based Arousal Modelling

This chapter presents the preliminary modelling results focusing on models trained and
tested on single games. The primary purpose of these models is two-fold. First, to show the
effectiveness of a general feature set compared to a genre-specific one. Second, to provide
a baseline for the subsequent experiments. Studies presented throughout this paper rely
on ordinal data processing and modelling, in accordance with contemporary research that
highlights the ordinal nature of human emotions and cognitive processes (Yannakakis et al.,
2018). A growing body of research is dedicated to the ordinal processing and modelling of
emotions—not merely in game research but in affective computing as a whole (Yannakakis
and Mart́ınez, 2015; Yannakakis and Martinez, 2015; Lopes et al., 2017a; Camilleri et al.,
2017; Melhart et al., 2020b; Yannakakis et al., 2018). These studies show that beyond a first-
order ordinal representation (where datapoints are already captured in a relative fashion),
a second-order processing (where datapoints captured as absolute values are translated into
an ordinal representation) improves the reliability and validity of the derived models (Yan-
nakakis et al., 2018). Studies presented in this thesis continue this line of inquiry by applying
preference learning methods to create ordinal affect models. Namely, a pairwise transfor-
mation (introduced in Section 2.3.3) is applied to the dataset prior to modelling. The goal
of this transformation to convert the data into an ordinal representation. Throughout this
chapter results with annotations based on the mean (µA) and average gradient (∇A) trace
of a selected time-window are discussed separately (see Section 4.4.2 for more information on
these metrics). As predicted during the correlation analysis of the features in Section 4.4.3,
the results obtained show that the ∇A task is considerably harder than µA.

This chapter is structured as follows: Section 5.1 discusses the considered hyperparame-
ters and the tuning process. Section 5.2 shows the results of models trained on genre-specific
and general features within individual games. Section 5.3 investigates the non-linear feature
importance of the input of the models. Before concluding the chapter, Section 5.4 reflects
on the effect of the dynamic memory window, applied during the pairwise transformation,
on model performance. Finally, Section 5.5 gives a summary of the chapter.

5.1 Model Validation and Parameter Tuning

As described in Section 2.3.3 studies in this thesis use preference learning via Random
Forests (RF) for predictive modelling. Because RFs are stochastic methods, all experiments
throughout the thesis are repeated 20 times, and the average of all runs is reported. To
test the results of each model, 10-fold cross-validation is used. The cross-validation folds

63



Chapter 5. Game-Based Arousal Modelling

0.0 0.1 0.2 0.3 0.4 0.5
Preference Threshold

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

TinyCars
Solid
ApexSpeed

(a) Racing Game µA Models

0.0 0.1 0.2 0.3 0.4 0.5
Preference Threshold

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

TinyCars
Solid
ApexSpeed

(b) Racing Game ∇A Models

0.0 0.1 0.2 0.3 0.4 0.5
Preference Threshold

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Heist!
TopDown
Shootout

(c) Shooter Game µA Models

0.0 0.1 0.2 0.3 0.4 0.5
Preference Threshold

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Heist!
TopDown
Shootout

(d) Shooter Game ∇A Models

0.0 0.1 0.2 0.3 0.4 0.5
Preference Threshold

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Endless
Pirates!
Run'N'Gun

(e) Platformer Game µA Models
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Figure 5.1: Performance of µA and ∇A models trained with different Preference Thresholds
(Pt). Figures on the left show µA models, while figures on the right show corresponding
∇A models. The coloured bands indicate a 95% confidence interval.
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Table 5.1: Information loss during the pairwise comparison due to an increased Pt compared
to Pt = 0. The bold values show the loss corresponding to the selected Pt values for
subsequent models.

Pt
Data Lost (%)
µA ∇A

0.05 14±2 35±3
0.1 28±2 53±2
0.15 40±2 66±2
0.2 51±2 74±2
0.25 61±2 81±1
0.3 69±1 86±1
0.35 76±1 89±1
0.4 82±1 92±0
0.45 88±1 94±0
0.5 91±1 96±0

are defined between subjects. Because 122 subjects cannot be divided evenly, each fold
encompasses either 12 or 13 players. The same cross-validation strategy is maintained
with both game-based models in this chapter and general models in subsequent chapters
to make the models comparable. This means that models are always predicting unseen
players. The reported statistical significance throughout the thesis is measured with two-
tailed Student’s t-tests with 95% confidence interval, adjusted with the Bonferroni correction
where applicable.

Parameter tuning focuses primarily on the Preference Threshold (Pt) of the pairwise
transformation (see Section 2.3.3). In particular, the best Pt value parameter is sought
between 0 and 0.5 with steps of 0.05. Figure 5.1 shows the results of the parameter tuning.
As is evidenced by these results, increasing Pt leads to an increase in performance in most
cases. Similarly to an uncertainty bound in classification, increasing Pt reduces the noise
in the dataset as higher Pt values filter out points that fall closer together. As the dataset
is normalised on a session level, a Pt = 0.05 means that pairs of points are only considered
if they have at least 5% difference during the pairwise transformation. While the Pt is
useful in reducing the surface level noise of the data, there are some caveats to the method.
As it is shown on Figure 5.1, µA models tend to become unstable with Pt values above
0.3. This phenomenon could be caused by high Pt values getting rid of useful datapoints
as well as noisy ones, decreasing the robustness of the models. This trade-off between
noise reduction and information loss could also decrease the reliability of models. As it
is shown on Table 5.1, compared to Pt = 0—that is only excluding datapoints with the
same outputs from the pairwise transformation—increasing Pt leads to a rapid information
loss. To contain the bias of the models, the best Pt is picked, given that at least 50%
of the available comparisons is maintained. Given this constraint, the extensive empirical
experiments presented here show that Pt = 0.15 and Pt = 0.05 yield the most accurate
models—for µA and ∇A, respectively.

As discussed in Section 2.3.3, a dynamic windowing method is introduced as an addi-
tional method to control for temporal effects. This method aims to naively approximate
the memory of a player as it pertains to previous time-windows. During the pairwise trans-
formation each consecutive datapoint is compared to the average of all previous datapoints
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Figure 5.2: Game-based modelling pipeline for modelling arousal. Both genre-specific and
general features are extracted from the raw telemetry. Preference learning is applied by
using a Pairwise Transformation, in which the ranking problem is reformulated as binary
classification of pairwise labels (see Section 2.3 for more details).

in the session. Models using this windowing method potentially encode more information
about past gameplay events. If not indicated otherwise, all models use this type of dy-
namic windowing technique. Section 5.4 reexamines this parameter and its impact on the
performance of the models.

5.2 Game-Based Model Performance

Figure 5.3 gives an overview of the best results reported in this section, while Table 5.2 shows
a more detailed account of the test accuracies of models trained and tested on the same
games. To measure the robustness of general features, genre-specific and general feature
sets are compared to each other and models using all available features. Game-based µA
models have the highest accuracies when the models are trained on a combined feature set
of genre-specific and general features in 5 out of 9 cases. Game-based ∇A models have
the highest accuracies when the models are trained on a combined feature set of genre-
specific and general features in 7 out of 9 cases. Notably, with µA models, shooter and
platformer games benefit from these combined feature sets, while in ∇A this trend is true
to all games except for TinyCars and Shootout. Interestingly, with µA models, most racing
games models based on general features outperform models based on both the combined
and genre-specific feature set. While the overall general features lead to better predictions
than specific features, in the case of µA models, there are some exceptions (see TinyCars,
Solid, and Endless).

With game-based µA models, differences between models with different inputs are not
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(a) Game-Based models trained with µA arousal.
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(b) Game-Based models trained with ∇A arousal.

Figure 5.3: Overview of the performance of game-based models trained on the best feature
set for each game in the dataset. Models are trained and tested on the same games (indicated
by the x-axis). The dotted line shows the natural baseline and the error bars indicate a
95% confidence interval.

significant—except for Solid, where models trained on general features significantly outper-
form ones that were trained on genre-specific features. The best performing µA models are
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Table 5.2: Testing accuracies (%) of game-based models trained and tested on the same
game. Bold values show the best models for the given game and target output.

µA

Features Specific General All

TinyCars 64.8±1.2 64.3±0.9 64.4±1.1
Solid 71.8±0.4 73.2±0.7 72.7±0.6
ApexSpeed 70.5±1.1 71.9±1.3 70.8±1.1

Heist! 79.4±0.6 79.4±0.7 79.8±0.7
TopDown 82.8±1.1 83.3±1.1 83.5±1.1
Shootout 85.8±0.8 85.8±0.8 85.8±0.8

Endless 69.5±1.8 69.1±1.8 68.9±1.7
Pirates! 69.5±1.6 68.9±1.7 70.0±1.7
Run’N’Gun 79.5±1.8 79.8±1.9 79.8±1.9

∇A
Features Specific General All

TinyCars 62.2±0.3 60.2±0.3 61.8±0.3
Solid 65.9±0.4 63.6±0.4 66.4±0.4
ApexSpeed 66.5±0.6 65.7±0.6 66.6±0.6

Heist! 69.5±0.3 69.5±0.3 70.3±0.3
TopDown 69.0±0.8 67.3±0.7 69.4±0.8
Shootout 54.2±0.4 52.5±0.3 54.0±0.5

Endless 71.9±1.1 71.1±0.9 72.0±1.0
Pirates! 58.7±0.5 59.1±0.5 59.3±0.5
Run’N’Gun 59.5±0.5 61.8±0.5 62.6±0.5

trained and tested on shooter games (with an average accuracy of 83%) followed by the plat-
formers then racing games (with an average accuracy of 73% and 70% respectively). With
game-based ∇A models, there are more significant differences between different feature sets.
Except for ApexSpeed, Endless, and Pirates!, all games have a significant performance in-
crease between their worst and best feature sets. However, ∇A models in all genres are
performing at 65% average accuracy. It is worth noting that the performance of models
trained and tested on Shootout is significantly worse than other shooter games, dragging
down the genre average.

The lack of significant difference between feature sets among µA models shows the
robustness of general features in capturing the complexity of gameplay within each genre.
On the other hand, the lack of significant performance increase when combining the feature
sets is possibly due to redundancies between genre-specific event telemetry and features
such as Event Intensity and Event Diversity (see Table 4.2), which accumulate gameplay
events. Conversely, the significant performance difference between features sets among ∇A
models show that genre-specific features are not redundant when it comes to capturing a
more complex temporal dynamics of the player experience beyond the absolute change in
arousal. This is also supported by the fact that in most cases, the best feature set for ∇A
models were the combined set of both genre-specific and general features.

Comparing the performance on the two tasks, it is evident that ∇A is a more complex
task than µA. As discussed in Chapter 4, ∇A correlates more with genre-specific features
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Table 5.3: Feature importance as derived from the Random Forests, averaged across games
of the same genre. Features are labelled as general (G) or specific (S). Features present in
top five features of all models with the same output are shown in bold.

Genre
µA ∇A

Feature Score Feature Score

R
a
ci

n
g

G Time Passed 0.089 S Player Collision 0.036
G Player Score 0.085 G Time Passed 0.036
S Player Gas Pedal 0.062 G Player Score 0.035
G Player Activity 0.045 S Player Speed 0.035
S Bot Score 0.033 S Player-Way Point Dist. 0.033

S
h

o
ot

er

G Time Passed 0.167 S Bot Shooting 0.056
G Player Score 0.126 S Bot Health 0.046
S Bot Health 0.054 G Bot Diversity 0.046
G Bot Count 0.051 G Bot Count 0.043
G Bot Diversity 0.050 S Player Damaged 0.042

P
la

tf
or

m
er

G Time Passed 0.106 G Bot Movement 0.043
G Player Score 0.104 S Bot Speed X 0.038
S Player Damaged 0.039 G Bot Count 0.037
G Bot Movement 0.037 S Player Health 0.036
G Player Movement 0.035 S Player Speed X 0.031

that are largely time-agnostic. It was hypothesised during this correlation analysis that ∇A
would pose a harder problem as it has a weaker connection to general gameplay features.
This observation is reaffirmed by the results presented in this section as well. While µA
models trained on different feature sets generally have no significant differences, making
models trained on general features a viable option with little to no trade-off, ∇A models
often do significantly worse on general features alone.

The presented results also highlight some challenges for future research in general. The
differences in performances between games show that the complexity of the affect modelling
task is dependent on the characteristics of the elicitor and the game context. It is unlikely
that general models will work equally well on all games. Finding new processing methods,
data treatment, algorithms, and model architectures that perform equally well across dif-
ferent games is an open problem. However, the robustness demonstrated by the µA models
trained on general features in section 4.3.4 point towards the possibility of general affect
modelling across games. While research has already begun investigating general affect mod-
elling in videogames, early results showed only moderate success. Subsequent chapters will
focus on investigating the robustness of these general features in genre-specific and truly
general setups.

5.3 Impact of Features on Model Performance

To better understand our results and the reason behind the unexpected robustness of general
features, the top five most important features are observed in every genre. Here, the Mean
Decrease Impurity (MDI) values of features are averaged from different training folds and
within a genre to get a bigger picture (read more on MDI in Section 2.3). For a detailed
breakdown of all features across game-based models, see the tables in Appendix A.3.1.
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Because there was no significant difference between the models trained on different feature
sets in the case of µA models, and in the case of ∇A, the best models were generally based
on a combined feature set of all features, this section uses models that are trained on all
(specific and general) features. This also has the additional benefit to maximise the number
of features observed.

Table 5.3 shows the top five features in each genre ranked by their MDI values. Across
all µA models, Time Passed and Player Score are the most important features. Because
Player Score is generally increasing as the games progress, just like Time Passed, it is also
a time-related feature. The prominence of these features across the board explains the
robustness of general features presented in Section 5.2. The importance of time makes
sense in the context of the games included in AGAIN as they are all intended to be casual
and arcade-like. Games like these are generally designed with an ever-increasing intensity.
When it comes to ∇A models, genre-specific features are much more prominent. Unlike
µA models, where the top two features are general features and given considerably more
weight, ∇A models rely on multiple features more evenly, and the most prominent features
are often genre-specific. In these models, time-related features are given less weight, to the
point where Time Passed and Player Score are only prominent in racing game models.

Analysing Table 5.3 by genre, it can be seen that features relating to player action are
more important in racing games. This makes sense as the competition in these games is
based more on the individual’s skill than adversary play. In many cases, the player swiftly
overtakes the bots (or is left behind), limiting their interaction. In shooter games, both µA
and ∇A models focus more on the bots and their avatars’ health. In platformer games, the
player’s status and the presence and movement of bots is more prominent. Unsurprisingly,
the health of the bots (important for shooting games) is replaced with the movement of the
bots as anticipating the bots’ position is important for winning in these games. In the case
of ∇A models, even more weight is put on horizontal movement (both for the player and
the bots), which is typical of 2D platformer games. It is worth noting that the best models
presented in Section 5.2 (µA shooter game models) all rely on time-related features to an
exceptional degree.

Compared to the linear correlation between the input and output features presented
in Table 4.4 in Chapter 4, while some features gain more prominence through non-linear
modelling, in µA models, the top features remain the same (Time Passed and Player Score).
In contrast to the correlation analysis, platformer models rely on some additional features
present in all platform games. Racing game ∇A models rely more on player-specific feautres
than anticipated, and shooter game models focus more on the bots’ status rather than on
projectiles. This is surprising as these features were among the top raking correlations
in Chapter 4. Finally, ∇A platformer models rely on horizontal speed rather than Bot
Diversity and Player Pickups, which were predicted by the correlation analysis.

5.4 Sensitivity to Memory

This section revisits the results of the previously constructed models to observe the effects of
dynamic memory windowing on model performance. To provide a complete picture of how
changing the memory from consecutive time-windows to the available session history (see
Figure 2.3 in Chapter 2) impacts performance in terms of accuracy, this section compares
the best models presented in Section 5.2 to models trained on different feature sets with
limited memory.
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Table 5.4: Testing accuracies (%) of game-based models trained and tested on the same game
with consecutive time-windows (consecutive windows) compared to best models trained with
a dynamic memory window (full history). Bold values show the best models for the given
game and target output.

µA

Test Game
Consecutive Windows

Full History
Specific General All

TinyCars 62.9±0.6 64.3±0.8 64.4±0.6 64.8±1.2
Solid 68.8±1.0 64.3±1.0 68.9±1.1 73.2±0.7
ApexSpeed 76.2±0.7 76±0.6 76.8±0.7 71.9±1.3

Heist! 73.8±0.7 73.7±0.8 79.0±0.8 79.8±0.7
TopDown 80.5±0.7 80.4±0.6 82.2±0.7 83.5±1.1
Shootout 58.7±1.4 59.0±1.1 58.5±1.3 85.8±0.8

Endless 73.6±1.1 72.4±1.2 75.2±1.2 69.5±1.8
Pirates! 66.2±0.5 64.4±0.5 65.8±0.4 70.0±1.7
Run’N’Gun 66.6±0.9 61.2±0.8 66.8±1.0 79.8±1.9

∇A

Test Game
Consecutive Windows

Full History
Specific General All

TinyCars 53.5±0.5 53.6±0.5 53.5±0.4 62.2±0.3
Solid 57.7±0.4 55.1±0.4 58.1±0.3 66.4±0.4
ApexSpeed 63.3±0.5 62.2±0.4 63.9±0.4 66.6±0.6

Heist! 61.7±0.4 62.1±0.4 62.9±0.4 70.3±0.3
TopDown 64.8±0.7 66.1±0.4 67.1±0.7 69.4±0.8
Shootout 55.2±0.7 55.2±0.6 55.9±0.8 54.2±0.4

Endless 62.4±0.5 59.5±0.4 62.1±0.5 72.0±1.0
Pirates! 59.2±0.5 58.1±0.4 59.4±0.4 59.3±0.5
Run’N’Gun 59.7±0.5 60.9±0.5 61.7±0.5 62.6±0.5

Using the dynamic windowing method for memory generally increases model accuracy.
In the case of µA models, in 4 out of 9 cases, using the session history significantly improves
the best models trained on consecutive time-windows. The average increase in accuracy
in these games is +12% on average. The most notable increases are Shootout with an
average of +27% and Run’N’Gun with an average of +13%. In TinyCars, Heist!, and
TopDown models, the performance is still improved, albeit not significantly. In these games,
the improvement is only +0.8% on average. In ApexSpeed and Endless, the best µA
models trained with consecutive time-windows are significantly better than the best models
presented in Section 5.2. Here using a dynamic memory window leads to a −5% decrease
in performance on average. The surprising improvement of µA Shootout models could
be explained by the gameplay dynamics, which ramps up the intensity of the game over
time. Since the game has just a few gameplay mechanics apart from aiming and shooting,
the arousal of the players correlates strongly with this perceived intensity. Similarly, in
Run’N’Gun, the level is designed to throw more and more enemies at the player with little
to no incentives to stray from a straight path, giving a more robust temporal structure
to the game. These results indicate that models that consider the entire session history
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can capture this well-structured temporal dynamic better. This observation is somewhat
undermined by the contrasting results on ApexSpeed and Endless. However, it is possible
that because these games have players react to proximal dangers with a minimal indication
of what comes next (Endless due to the random nature of items, and ApexSpeed due to
the low visibility of the track ahead), the long-term temporal dynamics of the games is less
important than the most recent episode in evaluating the experience.

In the case of ∇A models, in 6 out of 9 games, using the full session history significantly
improves the performance over the best models trained with consecutive time-windows. In
these cases, the improvement is +6% on average, with the best improvement achieved on
Endless (with +9%). From the remaining games, Run’N’Gun is improved only marginally,
and both Shootout and Pirates! models perform significantly worse when trained on data
using dynamic memory. In the latter cases, the decrease is −0.9% on average. It is in-
teresting to note that while in the µA case, Endless models trained with a full session
history performed significantly worse, in the case of ∇A they perform significantly better.
This observation, coupled with the poor overall performance of ∇A Shootout models, point
towards the ∇A output capturing the change in short-term play dynamics. Results pre-
sented here demonstrate that game-based models can generally benefit from increasing the
memory window when applying pairwise preference learning to time-continuous data. The
results make intuitive sense as an increased memory window would capture some of the
time-related biases of the player experience.

5.5 Summary

This chapter detailed the results of game-based arousal modelling experiments, which es-
tablish a baseline for future chapters. In particular, it was found that µA is an easier
task than ∇A, although algorithms performed relatively well in most cases (except for ∇A
Shootout). The comparative results between genre-specific, general, and combined feature
sets revealed that µA models trained of general features alone are quite robust and in the
case of ∇A, genre-specific features still carry valuable information which improves model
performance significantly in combined (genre-specific and general) feature sets. Section 5.3
revealed the non-linear importance of the most prominent features and Section 5.4 reex-
amined the results in light of the memory parameter. Results showed that µA models rely
heavily on time-related features, while ∇A models focus more on genre-specific ones. While
both outputs benefited from using dynamic time-windows, µA Shootout and Run’N’Gun
models showed a surprisingly high-performance gain.

The next chapter focuses on genre-based modelling. Models in this chapter pool games
together in the same genre and test the robustness of genre-specific and general features in
terms of generality. Similarly to this chapter, the latter sections evaluate the importance of
prominent features and the impact of the windowing technique on model performance.
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Chapter 6

Genre-Based Arousal Modelling

A general application of AI and machine learning is a core interest to not just affective com-
puting but computer science in general. However, in the field of emotion detection, many
studies and datasets are still focused on content-specific modelling (see Section 2.2.2 for
some examples), with fewer studies centred on personalised emotion recognition to create
general user models (Snodgrass et al., 2019b). Studies on model generality in the field are
often based on physiological (Mart́ınez et al., 2011) or multi-modal features (Mart́ınez and
Yannakakis, 2014) both in the input-space of models and as possible markers for affective
content. While these methods are often fruitful, they cannot be applied in real-world sce-
narios as they are costly and require researcher oversight. In the field of game research, the
study towards general AI is predominantly focused on game-playing (Perez-Liebana et al.,
2016a), with fewer user modelling applications (Togelius and Yannakakis, 2016; Yannakakis
and Togelius, 2018). Even less attention is given to the prediction of affective content.
Subsequently, general affect modelling—which aims to predict emotional outcomes of play
in a game-independent way—is still in its infancy. The handful examples investigating this
research avenue are often limited by ad-hoc testbeds and small datasets (Shaker et al., 2015;
Shaker and Abou-Zleikha, 2016; Camilleri et al., 2017). Motivated by this lack of a compre-
hensive study on general affect modelling, this thesis leverages the Affect Game AnnotatIoN
(AGAIN) dataset (see Chapter 4) to conduct a large-scale study of general affect modelling.
To this end, first, this chapter focuses on genre-based general affect modelling.

Similarly to Chapter 5, for each game, three different feature sets are examined. A
genre-specific, a general, and a combined set of the previous two. In addition, for every
game and feature set, two different models are built. In the first case, models are using the
mean of each annotation window to model the change in arousal (µA). In the second case,
models are using the average gradient of each annotation window to model changes in the
dynamics of the play experience (∇A); that is, the change in the acceleration of the arousal
signal. The chapter is structured as follows: Section 6.1 focuses on the results of genre-
based modelling. This section is divided between models aimed at unseen games within a
genre ( Section 6.1.1) and models aimed at unseen players of seen games within a genre
(Section 6.1.2) to provide a complete picture of the use cases and robustness of genre-based
modelling. Models use the same validation method and parameters as the baseline models
introduced in Section 5.1. This means that all models are evaluated on unseen players.
Additionally, in Section 6.2 RF feature importance is observed and in Section 6.3 the results
are reexamined in light of their sensitivity to the windowing method (i.e. consecutive time-
windows and dynamic memory windows). Finally, Section 6.4 summarises the results of
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Figure 6.1: Genre-based modelling pipeline for modelling arousal across different unseen
games of the same genre. Both genre-specific and general features are extracted from the
raw telemetry. Models for unseen games are trained on data from two games and tested
on an unseen game within the genre. Models for seen games are trained on all three games
within a genre. Preference learning is applied by using a Pairwise Transformation, in which
the ranking problem is reformulated as binary classification of pairwise labels (see Section 2.3
for more details).

this Chapter.

6.1 Genre-Based Model Performance

This section discusses the main results of genre-based modelling. Models are referred to
based on their test game. Models in Section 6.1.1 are built based on 2 games within
the same genre and tested on the unseen one (leaving one game out). For example, the
model for TinyCars is trained on Solid and ApexSpeed and tested on TinyCars. These
experiments focus on the generality of features when it comes to modelling unknown games.
Models in Section 6.1.2 are trained on all 3 games within a genre and predict arousal
of unknown players in seen games. For example, the model for TinyCars is trained on
TinyCars, Solid, and ApexSpeed and tested on unseen players of TinyCars. The purpose of
this investigation is to see the robustness of general features compared to genre-specific ones
and the effect of additional genre-level information on these models. Figure 6.1 illustrates
both pipelines. Figure 6.2 gives an overview of the best models discussed in this chapter,
while Tables 6.1 and 6.2 provide a more detailed report of the results.
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(a) Models trained with µA arousal.
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(b) Models trained with ∇A arousal.

Figure 6.2: Overview of the performance of genre-based models trained on the best feature
set for each game in the dataset. Models are trained on either 2 or 3 games. Models trained
on 2 games are tested on the unseen game (see Section 6.1.1); models trained on 3 games
are tested on games within their genre (see Section 6.1.2). The hue shows the number of
training games. The best models from Chapter 5 are included for comparison (1 Game
models). The dotted line shows the natural baseline and the error bars indicate a 95%
confidence interval.
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Table 6.1: Testing accuracies (%) of models trained on 2 games and tested on an unseen
game in the same genre compared to the best game-based models of Chapter 5. Bold values
show the best models for the given game and target output.

µA

Test Game
Genre models

Game models
Specific General All

TinyCars 66.3±1.6 66.2±1.5 66.9±1.7 64.8±1.2
Solid 70.6±0.6 72.2±0.5 72.3±0.6 73.2±0.7
ApexSpeed 67.2±1.0 71.9±1.4 69.9±1.2 71.9±1.3

Heist! 64.2±0.5 79.3±0.9 79.2±0.9 79.8±0.7
TopDown 76.3±1.0 83.5±1.1 83.7±1.1 83.5±1.1
Shootout 74.3±0.6 85.8±0.8 85.5±0.8 85.8±0.8

Endless 67.4±1.4 70.0±2.0 69.8±1.8 69.5±1.8
Pirates! 66.2±1.2 69.5±1.7 69.6±1.7 70.0±1.7
Run’N’Gun 62.1±0.9 74.6±1.4 78.0±1.7 79.8±1.9

∇A

Test Game
Genre models

Game models
Specific General All

TinyCars 61.8±0.4 60.6±0.4 61.3±0.4 62.2±0.3
Solid 61.7±0.4 60.6±0.5 61.7±0.4 66.4±0.4
ApexSpeed 61.6±0.6 62.3±0.7 62.3±0.7 66.6±0.6

Heist! 68.0±0.3 67.8±0.4 68.7±0.3 70.3±0.3
TopDown 67.1±0.7 62.2±0.7 65.4±0.7 69.4±0.8
Shootout 54.2±0.6 50.6±0.4 53.1±0.5 54.2±0.4

Endless 66.2±0.8 62.3±0.6 65.1±0.7 72.0±1.0
Pirates! 57.9±0.4 56.5±0.4 59.3±0.4 59.3±0.5
Run’N’Gun 51.0±0.4 53.5±0.5 52.0±0.4 62.6±0.5

6.1.1 Modelling Unseen Games

Table 6.1 shows the performance of genre models for unseen games in terms of accuracy. The
results of µA models reveal the robustness of general features in comparison to genre-specific
ones. In 6 out of the 9 games tested (all except TinyCars, Endless, and Pirates!), µA models
trained on genre-specific features perform significantly worse than ones trained on feature
sets containing general features. In these cases, models trained on the specific features have
an average of −8% drop in performance. The effect is most prominent in games that feature
enemy projectiles and some form of shooting mechanics (−11% on average). Interestingly,
Run’N’Gun—while it includes shooting and projectiles—does not feature mouse controls,
suggesting that the performance difference between genre-specific and general models is not
due to the different control scheme but the shooter-like gameplay dynamics. The difference
in racing games is more marginal (−1% on average) but still significant. While in 5 out
of 9 cases, game-based µA models perform better than genre-based models; there is no
significant difference between the best genre and best game models. There is no significant
difference between models trained on general, genre-specific and combined features. Fur-
thermore, there is no significant difference between these models and the best game models
of Section 5.2 (also included on Table 6.1). The average performance of the best genre
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models is the same as the game-specific models (70%, 83%, and 73% for racing, shooter,
and platformer games, respectively). Interestingly, some genre models perform better than
game models trained and tested on a single game. This is the case for TinyCars, ApexSpeed,
TopDown, and Endless. However, this improvement is marginal (+1% on average).

Similarly to game models, ∇A genre-based models trained on genre-specific features
show more robustness than models trained on general features. More specifically, models
trained on genre-specific features are significantly better in 7 out of 9 cases (except for
ApexSpeed, and Run’N’Gun) when compared to models trained on general features. More-
over, models trained on Heist! and Shootout and tested on TopDown perform better on
genre-specific features than general features and a combined set of both genre-specific and
general features. In the cases mentioned above, models trained on genre-specific features
show an average improvement of +2%. The average performance of the ∇A models is 62%,
63%, and 60% for racing, shooter, and platformer games, respectively. Except for TinyCars,
Shootout, and Pirates!, game-based models perform significantly better than genre-based
ones. This result makes sense in light of previous experiments presented in Chapter 5, as
∇A models showed a higher sensitivity to the specificities of singular games.

6.1.2 Modelling Unseen Players of Seen Games

The most apparent application of genre-based modelling is to predict the outcomes of unseen
games within the same genre. The intuitive expectation here is that even if we cannot make
predictions at the same level of accuracy as with specialised game-based models, there is
great utility in making snap predictions about unseen games. However, results presented in
Section 6.1.1 show that in some cases, genre-based models can be as (or even more) robust
as game-based models. Therefore it is worth investigating whether genre-based models
which include a set of games from the same genre, including the target game, can improve
the prediction performance.

Table 6.2 shows the comparative performance of these models and models from previ-
ous sections in terms of accuracy. Genre-based µA models for seen games show marginal
improvement over the corresponding game-based models in 7 out of the 9 cases. These
models unsurprisingly also improve on the genre-based models for unseen games in 6 out
of the 9 cases. However, the only significant increase is in the case of models tested on
Run’N’Gun (+2% accuracy on average). Interestingly, in the case of TinyCars and Endless,
the inclusion of the target game in the training set is detrimental to the model performance.
In the former case, this effect is a significant decrease of −2%.

In contrast, ∇A models only show marginal improvement over the game-based models
in 3 out of the 9 cases. This improvement is only significant in the case of TinyCars (+1%
accuracy on average). In contrast to using µA models, where some games were predicted
better by genre-based models trained on two games, similar∇A models are not as successful.
Except for Pirates! and Shootout, models trained on three games are significantly better
than models trained on two games. Due to the established reliance on genre-specific features
and game-specific dynamics, ∇A genre-based models are improved when the target game
is added to the training set with an average of +3%.

6.2 Impact of Features on Model Performance

Just as in Chapter 5 for game models, this section investigates the feature importance of
genre models to gain a better understanding of how the models operate on their own and
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Table 6.2: Testing accuracies (%) of models trained on 3 games and tested on an seen
game in the same genre compared to the best genre-based models trained on two games
from Section 6.1.1 and best game-based models from Chapter 5. Bold values show the best
models for the given game and target output.

µA

Test Game
Genre models Game models

3 games
2 games 1 game

Specific General All

TinyCars 64.2±1.4 65.4±1.3 64.8±1.3 66.9±1.7 64.8±1.2
Solid 73.1±0.5 73.0±0.5 73.3±0.5 72.3±0.6 73.2±0.7
ApexSpeed 70.8±1.3 72.2±1.3 71.2±1.2 71.9±1.4 71.9±1.3

Heist! 79.1±0.8 79.7±0.8 80.0±0.8 79.3±0.9 79.8±0.7
TopDown 82.3±1.1 83.5±1.1 83.7±1.1 83.7±1.1 83.5±1.1
Shootout 85.8±0.8 85.8±0.8 85.8±0.8 85.8±0.8 85.8±0.8

Endless 69.7±1.9 69.9±2.1 69.6±1.8 70.0±2.0 69.5±1.8
Pirates! 69.7±1.6 69.4±1.7 69.8±1.7 69.6±1.7 70.0±1.7
Run’N’Gun 79.6±1.9 80.0±1.9 80.0±1.9 78.0±1.7 79.8±1.9

µA

Test Game
Genre models Game models

3 games
2 games 1 game

Specific General All

TinyCars 62.9±0.3 60.5±0.3 62.0±0.3 61.8±0.4 62.2±0.3
Solid 64.8±0.5 62.3±0.5 65.7±0.4 61.7±0.4 66.4±0.4
ApexSpeed 67.0±0.6 65.7±0.7 66.6±0.6 62.3±0.7 66.6±0.6

Heist! 69.1±0.3 69.6±0.4 69.7±0.3 68.7±0.3 70.3±0.3
TopDown 69.0±0.8 67.1±0.7 69.2±0.7 67.1±0.7 69.4±0.8
Shootout 54.1±0.5 52.1±0.5 54.2±0.6 54.2±0.6 54.2±0.4

Endless 71.8±1.1 68.7±0.8 71.9±1.1 66.2±0.8 72.0±1.0
Pirates! 59.7±0.5 59.1±0.5 60.2±0.5 59.3±0.4 59.3±0.5
Run’N’Gun 59.5±0.5 60±0.5 61.5±0.5 53.5±0.5 62.6±0.5

in comparison to game-based models. Tables 6.3 and 6.4 show the top five features for
genre-based models built to predict unseen and seen games respectively. For a detailed
breakdown of all features across genre-based models, see the tables in Appendix A.3.2 for
models built to predict unseen and Appendix A.3.3 for models built to predict seen games.
With µA models, a familiar pattern emerges. Time Passed and Player Score remain—
unsurprisingly—the most prominent features in these models. Comparing game models to
the two genre models, we can see a steady shift in weights towards these top two features.
While models trained on one game had an average of 0.11 MDI score for these features,
models trained on two games have 0.15, and models trained on three games have 0.17. This
observation points towards less prominent features being filtered out as the variance of the
input space increases. Interestingly—as it is also evidenced by Table 6.2—this shift does
not have a clear diminishing return in µA models. This filtering effect also present in ∇A
models. The top features gain prominence as the input variance increases with new games
added to the training set. While there was a more substantial shift in weights between
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Table 6.3: Feature importance of genre models trained on 2 games, as derived from the
Random Forests, averaged across games of the same genre. Features are labelled as general
(G) or specific (S). Features present in top five features of all models with the same output
are shown in bold.

Genre
µA ∇A

Feature Score Feature Score

R
ac

in
g

G Time Passed 0.116 G Time Passed 0.046
G Player Score 0.110 S Player Collision 0.043
S Player GasPedal 0.066 G Player Score 0.042
G Player Activity 0.038 S Player Speed 0.038
S Bot Collision 0.038 G Player Movement 0.033

S
h

o
o
te

r

G Time Passed 0.225 S Bot Shooting 0.064
G Player Score 0.162 G Bot Diversity 0.052
S Bot Reloading 0.042 S Bot Proj. Count 0.049
S Player Health 0.040 S Bot Health 0.048
G Bot Diversity 0.037 S Player Damaged 0.043

P
la

tf
or

m
er

G Time Passed 0.137 G Bot Movement 0.053
G Player Score 0.132 S Player Health 0.042
S Player Damaged 0.046 G Bot Count 0.042
S Player Death 0.035 G Bot Diversity 0.033
G Bot Movement 0.032 S Bot SpeedX 0.030

Table 6.4: Feature importance of genre models trained on 3 games, as derived from the
Random Forests, averaged across games of the same genre. Features are labelled as general
(G) or specific (S). Features present in top five features of all models with the same output
are shown in bold.

Genre
µA ∇A

Feature Score Feature Score

R
ac

in
g

G Time Passed 0.136 G Time Passed 0.050
G Player Score 0.132 S Player Collision 0.049
S Player Gas Pedal 0.075 G Player Score 0.046
S Bot Collision 0.040 S Player Speed 0.041
S Player Lap 0.034 S Player Speed Boost 0.038

S
h

o
o
te

r

G Time Passed 0.259 S Bot Shooting 0.069
G Player Score 0.183 G Bot Diversity 0.054
S Bot Reloading 0.052 S Bot Proj. Count 0.054
S Player Health 0.037 S Bot Proj. Player Dist. 0.052
G Bot Diversity 0.037 S Bot Health 0.049

P
la

tf
or

m
er

G Time Passed 0.163 G Bot Movement 0.060
G Player Score 0.149 G Bot Count 0.048
S Player Damaged 0.058 S Player Health 0.046
S Player Death 0.039 G Bot Diversity 0.037
S Player Collision Left 0.029 S Bot Health 0.031
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Table 6.5: Testing accuracies (%) of genre models trained on 2 games and tested on an un-
seen game with consecutive time-windows (consecutive windows) compared to best models
trained with a dynamic memory window (full history). Bold values show the best models
for the given game and target output.

µA

Test Game
Consecutive Windows

Full History
Specific General All

TinyCars 59.9±0.8 59.3±0.9 60.5±0.9 66.9±1.7
Solid 61.5±0.8 56.1±0.5 60.9±0.5 72.3±0.6
ApexSpeed 64.5±0.9 67.0±1.0 67.2±0.9 71.9±1.4

Heist! 72.3±0.9 67.5±0.7 75.2±0.8 79.3±0.9
TopDown 80.4±0.7 75.9±0.5 82.7±0.6 83.7±1.1
Shootout 58.2±1.5 54.1±1.1 57.7±1.1 85.8±0.8

Endless 63.0±0.7 51.7±0.9 60.8±0.8 70.0±2.0
Pirates! 62.9±0.5 57.5±0.9 62.1±0.5 69.6±1.7
Run’N’Gun 56.3±0.7 54.2±0.6 58.0±0.7 78.0±1.7

∇A

Test Game
Consecutive Windows

Full History
Specific General All

TinyCars 54.4±0.5 53.3±0.5 54.1±0.4 61.8±0.4
Solid 57.4±0.4 53.6±0.4 56.1±0.3 61.7±0.4
ApexSpeed 51.3±0.3 53.1±0.4 53±0.4 62.3±0.7

Heist! 61.1±0.4 61.9±0.5 63.4±0.5 68.7±0.3
TopDown 63.8±0.5 62.6±0.6 65±0.5 67.1±0.7
Shootout 55±0.8 54.9±0.5 55.9±0.9 54.2±0.6

Endless 59.8±0.5 57±0.3 59±0.5 66.2±0.8
Pirates! 58.2±0.5 56.6±0.5 58.6±0.6 59.3±0.4
Run’N’Gun 55±0.3 54.5±0.4 55.5±0.3 53.5±0.5

models trained one and two games, adding a third game to the training set does not disrupt
the ranked order of the top features as much. In this regard, the most interesting results
are the shift away from Player Damaged in shooter game models and from horizontal speed
(both Bot and Player Speed X) in platformer game models.

6.3 Sensitivity to Memory

This section reexamines the results of genre-based models trained on 2 and 3 games in the
context of the windowing method used during the pairwise transformation. It has been
observed in Chapter 5 that expanding the memory window during the pairwise transforma-
tion of the dataset to encompass the whole available session history generally increases the
performance of the models. The same general pattern can be observed with genre models
as well to an even greater degree. Table 6.5 shows the results of models trained on 2 games
to predict arousal in unseen games, while Table 6.6 shows the results of models trained on
3 games to predict arousal in seen games.

The impact of dynamic memory windowing is the highest in genre-based µA models
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Table 6.6: Testing accuracies (%) of genre models trained on 3 games and tested on an un-
seen game with consecutive time-windows (consecutive windows) compared to best models
trained with a dynamic memory window (full history). Bold values show the best models
for the given game and target output.

µA

Test Game
Consecutive Windows

Full History
Specific General All

TinyCars 62.2±0.8 64.5±1.1 64.2±0.7 64.8±1.3
Solid 68.7±0.9 63.1±0.8 66.4±0.9 73.3±0.5
ApexSpeed 75.3±0.8 75±0.8 76.0±0.7 72.2±1.3

Heist! 73.5±0.7 72.6±0.7 78.6±0.9 80.0±0.8
TopDown 80.9±0.7 80.1±0.6 82.7±0.7 83.7±1.1
Shootout 60.4±1.5 58.2±1.5 60.6±1.6 85.8±0.8

Endless 70.6±1.0 67.4±1.1 73.0±1.1 69.9±2.1
Pirates! 66.3±0.6 62.7±0.6 66.8±0.4 69.8±1.7
Run’N’Gun 66.4±0.8 57.3±0.6 66.8±0.8 80.0±1.9

∇A

Test Game
Consecutive Windows

Full History
Specific General All

TinyCars 55.0±0.6 53.6±0.6 54.8±0.5 62.9±0.3
Solid 58.6±0.4 55.6±0.3 58.1±0.3 65.7±0.4
ApexSpeed 63.3±0.5 61.5±0.3 63.7±0.4 67.0±0.6

Heist! 62.0±0.4 62.5±0.5 63.7±0.5 69.7±0.3
TopDown 65.1±0.6 65.7±0.5 67.0±0.5 69.2±0.7
Shootout 55.1±0.8 55.5±0.6 55.9±0.8 54.2±0.6

Endless 61.9±0.4 58.4±0.3 62.0±0.4 71.9±1.1
Pirates! 58.8±0.5 58.3±0.5 59.4±0.5 60.2±0.5
Run’N’Gun 59.4±0.4 60.1±0.5 61.4±0.5 61.5±0.5

trained on 2 games to predict unseen games. Not only the models considering the entire
session history have higher performance than models only considering consecutive time-
windows, but this increase is also significant in almost all cases (except for TopDown).
The average increase in performance is +10%, with Shootout and Run’N’Gun showing an
average improvement of +28% and +20% respectively. The impact of dynamic memory
windowing is similar to the case of game-based models in genre-based ∇A models trained
on 2 games. Using a dynamic session history improves 6 out of the 9 models with an average
of +6%. The performance tested on Shootout and Run’N’Gun is lower by an average −2%,
and the difference is not significant in the case of Pirates!.

In contrast to genre-based models trained on 2 games, the weight of dynamic memory
windowing is lower in genre models trained on 3 games to predict seen games. Genre-
based µA model performance has improved significantly only in 4 out of 9 cases (by an
average of +12%). The performance of the racing genre and platformer genre models tested
on ApexSpeed and Endless respectively decrease by an average of −3.5% when dynamic
memory windows are applied. Additionally, racing genre models tested on TinyCars and
shooter genre models tested on Heist! and TopDown do not show a significant improvement.
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Genre-based ∇A models trained on 3 games also show an average improvement of +6%
with a dynamic memory windowing in 6 out of 9 cases. The only game where the model
performance decreases is Shootout (by −2%). Platformer genre models tested on Pirates!
and Run’N’Gun do not improve significantly.

These results show that genre-based preference learning models trained on multiple
games can benefit from an increased memory even more so than game-based models intro-
duced in Chapter 5. This is especially true for models trained on 2 games to predict arousal
in unseen games. The effect can be explained by the smoothing effect of the large memory
window, which could decrease the noise of the dataset. As the variance of training sets
including multiple games is higher compared to training sets including only a single game,
this de-noising is essential for increasing model performance above a 70% average accuracy
in most cases.

6.4 Summary

This chapter presented a robust approach to genre-based arousal modelling. Experiments
in the chapter focused on two use-cases. First, genre-based modelling of unseen games, in
which models are trained on two games and tested on an unseen one. Second, genre-based
modelling of seen games, in which models are trained on three games within a genre and
tested on a game also included in the training set. Models were compared to a baseline
of game-based models trained and tested on the same game and previously presented in
Chapter 5. Results show that µA genre models could not only match the performance of
game-based models but, in many cases, surpass them. This is especially true for models
predicting seen games. Feature importance in these models is shifted towards time-related
game-agnostic features. This weighting of features combined with a smoothing effect of
an extended memory window during the data processing leads to a surprising level of ro-
bustness (average performance of 70%, 83%, and 73% for racing, shooter, and platformer
games, respectively). On the other hand, due to the reliance on genre-specific features,
∇A models show worse performance when predicting unseen games and comparable perfor-
mance to game models when predicting seen games. In the former case, the average model
performance reaches 62%, 63%, and 60% and in the latter case 65%, 64%, and 65% for
the racing, shooter, and platformer games, respectively. However, as the ∇A output has
no strong correlation with time-related features, which contribute to the robustness of µA
models, these results make intuitive sense.

The next chapter concludes the investigation of general affect modelling by examining
genre- and game-agnostic models. The first half of this chapter reexamines models from
Chapter 5 and 6 in terms of how well they can be transferred to previously unseen games.
The latter half of the chapter focuses on models composed of games from different genres.
This chapter also concludes the investigation of feature importance in general models and
the impact of dynamic memory windows on model performance.
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Chapter 7

General Arousal Modelling

In previous chapters, models have been created based on data from single games and games
from the same genre. Even though analysis of RF model feature importance showed that
game-agnostic features are highly relevant to the modelling of arousal (especially in case of
modelling the change in the level of arousal—µA), the best performance was often attributed
to models which included genre-specific features. As the next step towards general affect
modelling, this chapter looks at truly general arousal models that rely solely on high-level
game-agnostic features to create models which can predict arousal in any game of any
genre. To test the feasibility of this method, general models that are presented here use
hand-crafted heuristic features (see also Section 4.3.4). The goal of these general features is
to create models which can be used to make snap predictions of completely unseen games.
While the industry application of such models is apparent, the study of affective computing
and artificial intelligence, in general, can benefit from such models as a step towards domain-
independent general models of affect and social intelligence (Togelius and Yannakakis, 2016).
As mentioned before in Chapter 2, studies have been done before on games from dissimilar
genres; however, as evidenced by results presented in Chapter 6, differences in individual
games used for training can lead to stark differences in model performance. This chapter
addresses this limitation by using a more methodical approach and a more complex dataset
than previous studies in the field. To get a more comprehensive picture of how robust
heuristic general features are, experiments in this chapter focus on building models based
on multiple games and testing models on unseen ones. This chapter examines general affect
modelling across different genres through two different use-cases. First, general modelling
of unseen genres, in which models are trained on 6 games from two genres and tested on the
games of the unseen genre. Second, general modelling of unseen games, in which models are
trained on 8 games and tested on the unseen game. The former models show the robustness
of the method by modelling games from unknown genres. The latter models show the
upper boundary of the performance of the method in terms of accuracy by maximising the
amount of information in the input space. All models presented in this section—including
genre- and game-based models presented in comparison to the general models—are trained
on general features (see Section 4.3.4). Just as in previous chapters, models presented here
use the same parameters and validation method as presented in Section 5.1.

The chapter is divided into six main sections. Section 7.1 and 7.2 reexamine models
constructed in previous chapters from the perspective of general modelling and look into
their performance across all games (regardless of genre). Section 7.3 presents the results of
general models trained on both 6 and 8 games compared to models from previous chapters.
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Feature importance of general models are observed in Section 7.4. Section 7.5 reexamines
the new results presented in this chapter in light of dynamic memory windowing to round
out the investigation started in Chapter 5. Finally, Section 7.6 gives a summary of the
Chapter.

7.1 Generality of Game-Based Models

As a preliminary step towards general modelling, this section investigates the robustness of
game-based models in game-agnostic arousal prediction. In this section, models are trained
on one game and tested on all games in the dataset. The section is structured by the genre of
the training games. Because models in this section predict games outside of their genre, all
models presented here are trained on general features only. Tables 7.1, 7.2, and 7.3 show the
results of these experiments. While it is expected that game-based models perform better
on the games they were trained on, results presented here show that this is not necessarily
the case.

7.1.1 Racing Games

Table 7.1 presents the performance of racing game models in terms of accuracy across all
games. Racing game µA models surprisingly perform significantly better when tested on a
different game than what they were trained on in many cases. In 7 out of 8 cases, models
trained on TinyCars, in 4 out of 8 cases models trained on Solid, and 5 out of 8 cases models
trained on ApexSpeed perform better on games other than what they were trained on. On
average racing game models have a 69% accuracy on racing games, 80% accuracy on shooter
games, and 71% accuracy on platformer games. Most interestingly, all racing game models
perform exceptionally well in shooter games. Overall there is a +11% improvement when
these games are tested on shooter instead of racing games. As subsequent sections will also
show, this robustness in predicting shooter games is true to most models. Interestingly,
the same effect can also be observed on Run’N’Gun (+7% on average compared to racing
games), which is a game also featuring projectiles, suggesting that the observed effect is due
to the play dynamics created by shooting mechanics rather than the control scheme unique
to shooter games (see a similar observation also in Section 6.1.1). While on average models
trained on Solid and ApexSpeed (75% and 74% respectively) perform similarly, models
trained on TinyCars are the weakest across the board (71% on average)—even though most
improvement can be seen on TinyCars models when tested on other games. This suggests
that TinyCars is an especially hard game to predict compared to others.

Racing game ∇A models unsurprisingly perform the best when tested on other racing
games. Models trained on these games have an average of 61% accuracy on racing games,
55% accuracy on shooter games, 54% accuracy on platformer games. The most robust of
∇A models is ApexSpeed with an overall average performance of 59% followed by Solid
with 56% and TinyCars with 55%. These results again show the difficulty of TinyCars
compared to other racing games.

7.1.2 Shooter Games

Table 7.2 presents the performance of shooter game models in terms of accuracy across
all games. Shooter game µA models mostly perform better on their own games as ex-
pected, with a few exceptions. Models trained on Heist! perform significantly better on
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Table 7.1: Testing accuracies (%) of racing game-based models across different games in the
dataset. Columns show the training games and rows show the testing games. Bold values
show results where models are performing significantly better than on the games they were
trained on. Underlined values show results where models are trained and tested on the
same game.

µA

Test Game TinyCars Solid ApexSpeed

TinyCars 64.3±0.9 65.8±1.4 66.2±1.1
Solid 67.4±0.6 73.2±0.7 73.5±0.6
ApexSpeed 67.7±1.2 72.3±1.3 71.9±1.3

Heist! 75.6±0.7 78.2±0.7 78.3±0.9
TopDown 76.4±0.8 80.5±1.0 81.4±1.0
Shootout 81.0±1.0 84.3±0.9 84.7±0.7

Endless 67.3±1.5 69.7±1.8 69.0±2.0
Pirates! 65.5±1.3 68.7±1.7 67.9±1.6
Run’N’Gun 71.9±1.3 78.7±1.9 77.1±1.8

∇A
Test Game TinyCars Solid ApexSpeed

TinyCars 60.2±0.3 60.6±0.4 57.7±0.4
Solid 59.9±0.3 63.6±0.4 58.7±0.5
ApexSpeed 60.6±0.6 62.5±0.7 65.7±0.6

Heist! 51.1±0.4 57.2±0.3 66.3±0.4
TopDown 54.4±0.3 54.8±0.5 60.7±0.5
Shootout 51.1±0.5 51.2±0.5 50.8±0.4

Endless 53.1±0.5 54.1±0.4 65.0±0.5
Pirates! 53.1±0.5 50.7±0.6 54.3±0.4
Run’N’Gun 53.1±0.4 51.3±0.3 54.7±0.6

the other two shooter games, and models trained on TopDown perform significantly better
on Shootout than on TopDown. On average shooter game models have a 68% accuracy on
racing games, 80% accuracy on shooter games, and 71% accuracy on platformer games. In
terms of robustness, Heist! and TopDown performs similarly well across all games (76% on
average) with models trained on Shootout doing significantly worse (68% on average). The
weakness of Shootout models is interesting bacause across all µA models (including racing
and platformer games as well) it is by far the easiest to predict. As Shootout has the least
amount of game mechanics (only look around and shoot, while reloading is automatic), this
result suggests that this game is too simple to capture more complex gameplay dynamics.
Models trained both on Heist! and TopDown could predict µA arousal in Run’N’Gun with
80% accuracy. This result reinforces the hypotesised similarity in the play experience in 3D
shooter games and 2D platformer-shooter hybrids.

On average, shooter game ∇A models have a 55% accuracy on racing games, 59%
accuracy on shooter games, and 57% accuracy on platformer games. Models trained on
Heist! and TopDown perform better on their own games than on other games. In contrast,
in 6 out of 8 cases, models trained on Shootout perform better on other games. This
shows the robustness of the temporal dynamics captured by ∇A as it can be learned from a
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Table 7.2: Testing accuracies (%) of shooter game-based models across different games in
the dataset. Columns show the training games, and rows show the testing games. Bold
values show results where models are performing significantly better than on the games
they were trained on. Underlined values show results where models are trained and tested
on the same game.

µA

Test Game Heist! TopDown Shootout

TinyCars 66.6±1.7 66.7±1.7 61.1±0.9
Solid 74.0±0.7 74.3±0.8 66.4±0.8
ApexSpeed 72.5±1.5 72.7±1.5 62.0±0.8

Heist! 79.4±0.7 79.3±0.9 67.0±0.7
TopDown 83.5±1.1 83.3±1.1 71.1±0.8
Shootout 85.0±0.9 85.8±0.8 85.8±0.8

Endless 70.9±2.0 70.8±2.1 64.7±1.2
Pirates! 69.6±1.8 69.7±1.8 63.4±0.8
Run’N’Gun 80.2±1.9 80.2±1.9 73.7±1.4

∇A
Test Game Heist! TopDown Shootout

TinyCars 53.3±0.5 55.8±0.4 54.6±0.5
Solid 54.9±0.7 55.5±0.6 54.3±0.4
ApexSpeed 55.8±0.6 59±0.5 54.8±0.4

Heist! 69.5±0.3 66.8±0.4 57.7±0.3
TopDown 61.5±0.6 67.3±0.7 58.2±0.4
Shootout 50.3±0.4 50.9±0.3 52.5±0.3

Endless 65.2±0.7 61.7±0.5 51.6±0.4
Pirates! 57.7±0.3 56.6±0.3 52.0±0.5
Run’N’Gun 54.7±0.5 56.6±0.4 54.7±0.3

relatively simple game such as Shootout. Additionally, ∇A models show less variance across
the board compared to µA models in terms of performance. Interestingly, while Shootout is
the easiest game to predict for µA models, ∇A models struggle with this simple game. An
explanation for this phenomenon could be that the relative change in the level of arousal
is more important in Shootout than the rate of change encoded by ∇A. In terms of the
overall robustness, models trained on TopDown lead the list with an average performance
of 59%, followed by Heist! with 58%, and finally Shootout with 54%.

7.1.3 Platformer Games

Table 7.3 presents the performance of platformer game models in terms of accuracy across
all games. Similarly to racing game models, some platformer game µA models also perform
significantly better on some shooter games than on platformer games, although to a lesser
extent. The overall performance increase between models trained and tested on platformer
games compared to ones tested on shooter games is +6% on average. On average, plat-
former game µA models have a 68% accuracy on racing games, 80% accuracy on shooter
games, and 71% accuracy on platformer games. Models trained on Endless, Pirates!, and
Run’N’Gun have an average performance of 69%, 71%, and 72% respectively across all
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Table 7.3: Testing accuracies (%) of platformer game-based models across different games
in the dataset. Columns show the training games and rows show the testing games. Bold
values show results where models are performing significantly better than on the games
they were trained on. Underlined values show results where models are trained and tested
on the same game.

µA

Test Game Endless Pirates! Run’N’Gun

TinyCars 65.6±1.5 64.6±1.0 64.7±0.9
Solid 71.2±0.9 62.9±0.6 68.5±0.7
ApexSpeed 65.8±1.1 66.8±1.2 67.1±1.4

Heist! 72.0±0.6 75.2±0.9 70.6±0.6
TopDown 73.9±1.0 75.3±1.1 77.0±1.0
Shootout 70.7±1.0 83.9±0.9 84.4±0.9

Endless 69.1±1.8 69.1±1.8 68.5±1.5
Pirates! 63.5±1.4 68.9±1.7 69.3±1.7
Run’N’Gun 68.7±1.5 69.4±1.0 79.8±1.9

∇A
Test Game Endless Pirates! Run’N’Gun

TinyCars 55.8±0.5 53.7±0.4 56.3±0.4
Solid 56.1±0.3 54.8±0.7 56.6±0.5
ApexSpeed 61.5±0.4 56.2±0.6 60.5±0.6

Heist! 61.1±0.5 67.5±0.5 63.7±0.4
TopDown 57.5±0.3 59.4±0.5 63.7±0.6
Shootout 50.0±0.3 51.0±0.5 52.0±0.5

Endless 71.1±0.9 62.9±0.6 58.6±0.4
Pirates! 53.8±0.2 59.1±0.5 55.2±0.6
Run’N’Gun 51.0±0.4 56.1±0.5 61.8±0.5

games. Interestingly, despite the surprisingly high performance of shooter games predicting
Run’N’Gun, models trained on Run’N’Gun do not match the performance of models trained
and tested on shooter games. It is possible that because Run’N’Gun is a 2D game, while
the 3D shooters could capture its dynamics, data based on the 2D environment does not
contain enough information to predict the gameplay experience of 3D games to the same
degree.

Platformer game ∇A models trained on Pirates! interestingly predict Heist! with higher
accuracy (+3% on average) than their own game. Similarly, models trained on Run’N’Gun
predict both Heist! and TopDown with higher accuracy (+2% on average). While the
connection between Run’N’Gun and shooter games has already been established, the con-
nection between Heist! and Pirates! is not clear. While Pirates! is a relatively linear 2D
game, Heist! has a fairly open-ended 3D map with very different gameplay mechanics. On
average, platformer game ∇A models have a 57% accuracy on racing games, 58% accuracy
on shooter games, and 59% accuracy on their own games. Models trained on Endless and
Pirates! have an average of 58% accuracy, while models trained on Run’N’Gun have an
average performance of 59% across all games.
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Table 7.4: Testing accuracies (%) of racing genre-based models across different games in
the dataset. Columns show the training games, and rows show the testing games. Models
titled “Racing Games” include all three racing games. Bold values show results where
models perform significantly better than on all of the games included in their training set.
Underlined values show results where the test game was included in the model’s training
set.

µA

Test Game
TinyCars
& Solid

TinyCars &
ApexSpeed

Solid &
ApexSpeed

Racing
Games

TinyCars 65.2±1.2 65.3±1.1 66.2±1.5 65.4±1.2
Solid 72.9±0.6 72.2±0.5 73.4±0.7 73.0±0.5
ApexSpeed 71.9±1.4 71.9±1.3 72.4±1.3 72.2±1.4

Heist! 78.7±0.8 78.9±0.9 79.2±0.8 79.2±0.9
TopDown 81.2±0.9 82.5±1.0 82.5±1.0 82.8±1.0
Shootout 83.0±1.0 84.4±0.8 85.5±0.8 84.6±0.9

Endless 70.2±1.9 70.1±2.0 70.3±2.0 70.6±2.0
Pirates! 69.0±1.7 68.6±1.6 69.3±1.8 69.3±1.7
Run’N’Gun 79.4±1.8 77.9±1.8 79.9±1.9 79.9±1.9

∇A

Test Game
TinyCars
& Solid

TinyCars &
ApexSpeed

Solid &
ApexSpeed

Racing
Games

TinyCars 60.6±0.3 60.0±0.3 60.6±0.4 60.5±0.3
Solid 62.8±0.4 60.6±0.5 63.0±0.5 62.3±0.5
ApexSpeed 62.3±0.7 65.4±0.6 65.9±0.6 65.7±0.7

Heist! 54.4±0.3 60.3±0.4 62.0±0.3 59.0±0.3
TopDown 55.0±0.4 60.0±0.5 57.6±0.5 57.2±0.5
Shootout 51.3±0.5 51.6±0.5 51.3±0.4 51.0±0.5

Endless 53.9±0.4 63.2±0.5 63.4±0.5 61.9±0.4
Pirates! 51.6±0.6 53.8±0.4 52.5±0.5 52.7±0.5
Run’N’Gun 53.1±0.3 55.4±0.5 53.8±0.4 54.3±0.4

7.2 Generality of Genre-Based Models

This section reexamines genre-based models in the context of general modelling. Just as
with game-based models in Section 7.1, this section looks at how well genre-based models
generalise to other genres. As in the previous section, all models presented here are trained
on general features only. Tables 7.4, 7.5, and 7.6 show the results of these experiments.
After learning about the robustness of game-based models, it is expected that games which
were easier to predict for all game-based models will be similarly easy to predict here as
well.

7.2.1 Racing Games

Table 7.4 presents the performance of racing genre-based models in terms of accuracy across
all games. Just as with game-based models, many genre-based µA models improve signif-
icantly on model performance compared to tests done on games that are included in the
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models’ training set. As it has been observed before, shooter games and Run’N’Gun are
the easiest to predict. The average performance of models is 70&, 82%, and 73% for the
racing, shooter, and platformer games, respectively. Unlike game-based models, the differ-
ence between individual models’ average performance is low. The average performance of
all racing genre models is 75%, which is a +2% overall improvement over the average of
game-based models.

Racing genre∇Amodels also show a similar picture as game-based models in Section 7.1.
These models are performing the best on games that were included in their training set. The
average performance of models is 62& for racing games, and 56%, for shooter and platformer
games. Interestingly, models trained on the combined set of TinyCars and Solid can predict
ApexSpeed significantly better than TinyCars (+1% on average). However, the performance
of the combined models is very close to models trained on Solid alone, which means that
adding TinyCars to these models does not increase the robustness. Similarly, models trained
on all racing games are significantly better at predicting Endless than TinyCars (+1% on
average). Here, the culprit behind the improvement is ApexSpeed. However, compared to
the game-based ApexSpeed model (69% accuracy on Endless), racing genre models perform
worse, indicating that adding new games is not always beneficial and can potentially confuse
the models. Looking at the average model performance, models trained on TinyCars and
Solid have an average accuracy of 56%, while models trained on the other two games have
59%. Including all racing games in the models results in an average accuracy of 58%,
again pointing towards TinyCars confusing the models. Nevertheless, overall the genre-
based models show some improvement over game-based models (+1% on average across all
games).

7.2.2 Shooter Games

Table 7.5 presents the performance of shooter genre models in terms of accuracy across all
games. Unsurprisingly, as shooter games are relatively easy to predict, in almost all cases
µA models are performing better on shooter games than games from other genres. Models
trained on Heist! and TopDown perform significantly better on Shootout than on their
respective training games. Models trained on Heist! and Shootout perform significantly
better on TopDown than on Heist!. On average shooter game models have a 71% accuracy
on racing games, 83% accuracy on shooter games, and 74% accuracy on platformer games.
This is an overall +3% improvement over game-based models. Similarly to racing genre
models, there is no variation between the performance of µA shooter game models either,
all models are performing at an average of 76%.

On average, shooter game ∇A models have a 57% accuracy on racing games, 62%
accuracy on shooter games, and 59% accuracy on platformer games. Just as with µA
models, this is an overall +3% improvement over game-based models. Individual model
performance is 60% on average. While models which include Shootout are doing marginally
worse, there is only 1% difference between these models and models not trained on Shootout.
However, it seems that including all shooter games in the models somewhat mitigates this
issue. As Shootout has proven to be very hard to capture by the ∇A of the arousal trace,
models have better performance on other games even if they were trained on Shootout.
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Table 7.5: Testing accuracies (%) of shooter genre-based models across different games in
the dataset. Columns show the training games and rows show the testing games. Models
titled “Shooter Games” include all three racing games. Bold values show results where
models perform significantly better than on all of the games included in their training set.
Underlined values show results where the test game was included in the model’s training
set.

µA

Test Game
Heist! &
TopDown

Heist! &
Shootout

TopDown
& Shootout

Shooter
Games

TinyCars 66.5±1.7 66.6±1.7 66.7±1.7 66.5±1.7
Solid 74.4±0.8 74.1±0.7 74.3±0.8 74.4±0.8
ApexSpeed 72.8±1.5 72.5±1.5 72.6±1.5 72.8±1.5

Heist! 79.5±0.8 79.5±0.7 79.3±0.9 79.7±0.8
TopDown 83.6±1.1 83.5±1.1 83.4±1.1 83.5±1.1
Shootout 85.8±0.8 85.8±0.8 85.8±0.8 85.8±0.8

Endless 70.8±2.1 70.8±2.1 70.7±2.1 70.8±2.1
Pirates! 69.7±1.8 69.6±1.7 69.7±1.8 69.6±1.7
Run’N’Gun 80.2±1.9 80.2±1.9 80.2±1.9 80.2±1.9

∇A

Test Game
Heist! &
TopDown

Heist! &
Shootout

TopDown
& Shootout

Shooter
Games

TinyCars 56.7±0.4 54.4±0.4 56.2±0.4 56.7±0.3
Solid 56.4±0.6 55.4±0.7 55.8±0.6 56.6±0.7
ApexSpeed 59.7±0.5 57.5±0.5 60.5±0.5 60.5±0.5

Heist! 69.3±0.4 69.4±0.3 67.8±0.4 69.6±0.4
TopDown 67.3±0.7 62.2±0.7 66.7±0.7 67.1±0.7
Shootout 50.6±0.4 52.1±0.4 52.2±0.4 52.1±0.5

Endless 63.3±0.6 65.3±0.6 61.8±0.5 63.3±0.5
Pirates! 57.3±0.3 58.1±0.3 57.2±0.4 57.7±0.3
Run’N’Gun 56.2±0.4 56.0±0.4 57.1±0.5 56.6±0.4

7.2.3 Platformer Games

Table 7.6 presents the performance of platformer genre models in terms of accuracy across all
games. Just as with game- and genre-based racing game models and game-based platformer
models µA platformer genre models also perform better on some shooter games. On average
platformer genre µA models have a 69% accuracy on racing games, 80% accuracy on shooter
games, and 73% accuracy on platformer games. Similarly to racing genre models, the
improvement over the overall performance of game-based platformer models is only +1%.
Interestingly, while in other genres pooling the games together did not increase performance
over the average accuracy of two-game models, there is a marginal gain with platformer
games. While Endless and Pirates! perform at 73% on average, and the other two-game
models perform at 74% on average, including all games in the models is increasing the overall
performance to 75%. In most cases, including all games do not improve the performance on
a single game significantly. However, in the case of TopDown, pooling all platformer games
together in the training set improves the performance of the best two-game model (Pirates!
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Table 7.6: Testing accuracies (%) of platformer genre-based models across different games
in the dataset. Columns show the training games, and rows show the testing games. Models
titled “Platformer Games” include all three racing games. Bold values show results where
models perform significantly better than on all of the games included in their training set.
Underlined values show results where the test game was included in the model’s training
set.

µA

Test Game
Endless &
Pirates!

Endless &
Run’N’Gun

Pirates! &
Run’N’Gun

Platformer
Games

TinyCars 66.4±1.6 66.7±1.6 64.8±1.2 66.5±1.6
Solid 68.4±0.9 73.6±0.8 71.4±0.4 73.6±0.8
ApexSpeed 69.5±1.4 71.0±1.5 69.6±1.4 71.0±1.5

Heist! 77.5±0.8 78.2±0.7 74.1±0.9 77.5±0.7
TopDown 79.8±1.1 73.0±1.1 81.4±1.0 83.1±1.1
Shootout 81.5±1.0 82.7±1.1 85.0±0.8 83.6±1.0

Endless 69.7±2.0 69.8±2.0 70.0±2.0 69.9±2.0
Pirates! 69.3±1.8 69.5±1.7 69.5±1.7 69.4±1.8
Run’N’Gun 74.6±1.4 79.5±1.9 80.1±1.9 80.0±1.9

∇A

Test Game
Endless &
Pirates!

Endless &
Run’N’Gun

Pirates! &
Run’N’Gun

Platformer
Games

TinyCars 54.6±0.6 55.7±0.5 56.4±0.3 54.6±0.5
Solid 55.2±0.5 56.8±0.4 56.6±0.6 56.6±0.6
ApexSpeed 60.5±0.4 63.4±0.5 59.1±0.7 62.8±0.5

Heist! 67.2±0.4 64.7±0.4 67.0±0.5 67.2±0.4
TopDown 58.4±0.4 60.2±0.6 62.4±0.7 60.7±0.6
Shootout 50.6±0.5 51.1±0.5 50.9±0.4 51.0±0.4

Endless 70.3±0.9 69.8±0.9 62.3±0.6 68.7±0.8
Pirates! 58.9±0.5 56.5±0.4 58.7±0.5 59.1±0.5
Run’N’Gun 53.5±0.5 60.9±0.4 60.6±0.4 60.0±0.5

and Run’N’Gun) by +2%. While in game-based models, shooter games were able to predict
Run’N’Gun with very high accuracy, this was not true vice versa. Surprisingly, including
at least one other game in the training set significantly improves the performance of models
featuring Run’N’Gun. From a 70% and 77% average accuracy on Heist! and TopDown,
respectively, the performance jumps to 77% and 79% on average. Interestingly, adding
Endless to Run’N’Gun increases the performance on Heist!, while adding Pirates! increases
the performance on TopDown. A possible explanation is the difference in gameplay dynamic
between these games. Both Heist! and Endless focus more on proximal goals as their levels
unfold without much look-ahead. In Pirates! and TopDown, on the other hand, the level is
more structured towards a linear progression, and due to the camera’s perspective, there is
more space visible to the player.

Platformer genre ∇A models have an average accuracy of 58%, 59%, and 62% for the
racing, shooter, and platformer games, respectively. The overall individual model perfor-
mance is 60% with models trained on sets featuring Pirates! doing slightly worse (−1% on
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Figure 7.1: General modelling pipeline for modelling arousal. Models for unseen genres are
trained on data from six games from two genres and tested on an unseen game of the unseen
genre. Models for unseen games are trained on all three games within the dataset except
one and tested on the unseen game. Preference learning is applied by using a Pairwise
Transformation, in which the ranking problem is reformulated as binary classification of
pairwise labels (see Section 2.3 for more details).

average). Similarly to game-based models, platformer genre ∇A models predict Heist! with
higher accuracy than some of the games they were trained on. Interestingly, ∇A models
trained on sets containing Pirates! are predicting Heist! with high accuracy, even though
µA models trained on similar sets were less successful in predicting Heist! than µA models
trained only Endless and Run’N’Gun.

7.3 General Model Performance

Table 7.7 shows the results of general modelling. Within general µA models trained on
6 games have a general performance of 71%, 82%, and 74% when tested on games of the
racing, shooter, and platformer genres, respectively. While models trained on 8 games have
a marginally higher accuracy on shooter games (83% on average), the two different types
of general models have no significant difference in performance. Compared to the genre
and game models, there is a significant improvement in the case of the Solid (average +2%
from 2 game genre-based models to general ones) and Run’N’Gun (average +6% from 2
game genre-based models to general ones) tests. Although none of the µA models improve
significantly on game-based models, the performance of general models is comparable and,
in some cases, marginally higher. These results show the robustness of general modelling as
games from different genres can reliably model the change in player arousal in most cases.
Unsurprisingly, the high performance in these instances is very close to the best matching
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Figure 7.2: Overview of the performance of general models for each game in the dataset.
Models are trained on either 6 or 8 games. Models trained on 6 games contain games from
two genres and tested on the games of the unseen genre; models trained on 8 games are
trained on all but one game and tested on the unseen game. The hue shows the number
of training games. Models trained on general features from Chapters 5 and 6 are included
for comparison (1 Game, 2 Game, and 3 Game models). The dotted line shows the natural
baseline and the error bars indicate a 95% confidence interval.
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Table 7.7: Testing accuracies (%) of general models trained on 8 and 6 games compared
to genre and game models from Chapters 6 and 5. General models trained on 8 games are
tested on the unseen game and models trained on 6 games are tested on games of an unseen
genre. All models were trained on general features. Bold values show the best models for
the given game and target output.

µA

Test Game
General Genre Game

8 games 6 games 3 games 2 games 1 game

TinyCars 66.6±1.7 66.5±1.7 65.4±1.3 66.2±1.5 64.3±0.9
Solid 74.2±0.7 74.3±0.8 73.0±0.5 72.2±0.5 73.2±0.7
ApexSpeed 72.7±1.5 72.8±1.5 72.2±1.3 71.9±1.4 71.9±1.3

Heist! 79.4±0.9 79.4±0.9 79.7±0.8 79.3±0.9 79.4±0.7
TopDown 83.6±1.1 83.2±1.0 83.5±1.1 83.5±1.1 83.3±1.1
Shootout 85.6±0.8 84.1±0.9 85.8±0.8 85.8±0.8 85.8±0.8

Endless 70.8±2.1 70.8±2.1 69.9±2.1 70.0±2.0 69.1±1.8
Pirates! 69.7±1.7 69.7±1.8 69.4±1.7 69.5±1.7 68.9±1.7
Run’N’Gun 80.2±1.9 80.2±1.9 80.0±1.9 74.6±1.4 79.8±1.9

∇A

Test Game
General Genre Game

8 games 6 games 3 games 2 games 1 game

TinyCars 59.0±0.3 55.9±0.3 60.5±0.3 60.6±0.4 60.2±0.3
Solid 57.7±0.5 56.1±0.7 62.3±0.5 60.6±0.5 63.6±0.4
ApexSpeed 64.5±0.7 63.0±0.5 65.7±0.7 62.3±0.7 65.7±0.6

Heist! 67.6±0.4 64.1±0.4 69.6±0.4 67.8±0.4 69.5±0.3
TopDown 61.5±0.6 60.4±0.6 67.1±0.7 62.2±0.7 67.3±0.7
Shootout 50.6±0.4 51.9±0.5 52.1±0.5 50.6±0.4 52.5±0.3

Endless 62.6±0.6 63.7±0.6 68.7±0.8 62.3±0.6 71.1±0.9
Pirates! 57.1±0.4 57.0±0.4 59.1±0.5 56.5±0.4 59.1±0.5
Run’N’Gun 56.4±0.6 58.0±0.5 60.0±0.5 53.5±0.5 61.8±0.5

game or game combinations from Sections 7.1 and 7.2. However, results here show that
adding more games to the training set does not confuse the models as they remain robust
predictors of arousal.

While adding more games to the training set of µA models leads to a steady increase in
performance in general, the same is not true for ∇A models. General ∇A models trained on
6 games have a general performance of 60%, 60%, and 59% and models trained on 8 games
have a general performance of 58%, 59%, and 60% when tested on games of the racing,
shooter, and platformer genres. The difference between these models is significant in 6 out
of 9 cases (except TopDown, Endless, and Pirates!). General ∇A models trained on 6 games
perform significantly worse than both type of genre-based models (−3% on average), with
the exception of ApexSpeed and Pirates!—in case of genre models trained on 2 games—and
Shootout—in case of genre models trained on 3 games. The difference between general ∇A
models trained on 8 games and genre-based ∇A models is less prominent. When comparing
between these general models and genre models trained on 2 games, general models show
a significant difference in accuracy only when tested on TinyCars (−2%), Solid(−3%),
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Table 7.8: Feature importance of genre models trained on 6 games (two genres) and 8 games
(3 genres), as derived from the Random Forests, averaged across games of the same genre.
Features present in top five features of all models with the same output are shown in bold.

Genre
µA ∇A

Feature Score Feature Score
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Time Passed 0.378 Bot Diversity 0.137
Player Score 0.261 Bot Count 0.102
Bot Diversity 0.051 Player Score 0.088
Player Activity 0.050 Time Passed 0.086
Event Diversity 0.044 Event Diversity 0.085
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Time Passed 0.322 Bot Count 0.124
Player Score 0.269 Bot Diversity 0.106
Player Movement 0.055 Bot Movement 0.104
Bot Movement 0.049 Player Movement 0.090
Player Activity 0.046 Object Diversity 0.084
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Time Passed 0.382 Bot Diversity 0.159
Player Score 0.272 Bot Movement 0.148
Bot Diversity 0.064 Bot Count 0.118
Event Diversity 0.047 Event Diversity 0.093
Event Intensity 0.041 Event Intensity 0.066
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Time Passed 0.377 Bot Diversity 0.140
Player Score 0.286 Bot Count 0.124
Bot Diversity 0.046 Bot Movement 0.110
Event Diversity 0.041 Event Diversity 0.082
Event Intensity 0.039 Player Movement 0.069

ApexSpeed(+2%) and Run’N’Gun(+3%). When comparing between general ∇A models
rained on 8 games and genre models trained on 3 games, general models show an average
−3% decrease in accuracy. This effect is significant in all tests except on ApexSpeed.
Finally, when comparing general ∇A models to game-based ones, general models show an
average −5% drop in accuracy. This decrease is significant in almost all cases (except models
trained on 8 games and tested on ApexSpeed and models trained on 6 games and tested
on Shootout). Results here show that predicting the change in a more complex temporal
dynamics of arousal through ∇A is considerably harder than predicting the overall change.
The results shown in Table 7.7 correspond to what could be expected from transferring
models to predict new elicitors. However, even if adding more games to the training sets
of these models do cause some confusion, the trade-off between the general application and
decrease in accuracy is relatively low.

7.4 Impact of Features on Model Performance

Similarly to Chapters 5 and 6, this section also examines the feature importance of the
models introduced in this chapter. Table 7.8 shows the top five features of general models
trained on 6 games—that is, games from two genres—and models trained on 8 games—that
is, games from all three genres available in the AGAIN dataset. Unlike in previous chapters,
the features presented here are all general features. For a detailed breakdown of all feature
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importance across general models, see the tables in Appendix A.3.4 for models trained on
6 games and Appendix A.3.5 for models trained on 8 games.

In µA models, a familiar pattern emerges. The absolute top features are Time Passed
and Player Score by a good margin over the other features. Similarly to what has been
observed in Chapter 6, adding more games to the training set increases the weight of these
features in the RF models. While models trained on 1 game had an average of 0.11, models
trained on 2 games had an average of 0.15, and models trained on 3 games had an aver-
age of 0.17 MDI score for these features, general µA models trained on 6 games have an
average of 0.314 and models trained on 8 games have an average of 0.331 score for these fea-
tures. This observation shows that in arcade-like casual games—such as the ones included
in AGAIN—the strong relationship between time and arousal creates a robust predictor
regardless of other hand-crafted features. The same shift is not true for ∇A models. How-
ever, for the first time, ∇A models also show consistent features between different models
with different inputs. Bot Diversity and Bot Count are the most consistently prominent
features in this case. While models presented in previous chapters were more reliant on the
player’s status (e.g. Player Damaged) and action (e.g. Player Speed X), general models
encompassing games from multiple genres evidently shift the focus to bot presence. As ∇A
measures the change in the temporal dynamics of gameplay, it makes sense that appearing
and disappearing enemies affect it.

7.5 Sensitivity to Memory

This section revisits general models presented in this chapter and observes how dynamic
memory windowing affects model performance. In Chapters 5 and 6 game and genre models
were generally improved when memory was extended to the whole session history with a
few exceptions. As evidenced by Table 7.9, this pattern continues with general models as
well. General µA models trained on both 6 and 8 games perform significantly better with
dynamic memory windowing. The average gain is +11%, +17%, and +15% for the racing,
shooter, and platformer games across all models. Just as with game and genre models, the
highest gain is with Shootout and Run’N’Gun (+32% and +24% on average, respectively).
The increase in accuracy here, however, is considerably higher than in the case of game and
genre models. This observation, coupled with the continuous shift in weight towards Time
Passed and Player Score features in general models, suggest that the player experience in
Shootout and Run’N’Gun are even more sensitive to time than previously hypothesised (see
Section 5.4).

While ∇A models also show an overall improvement with dynamic memory windowing,
the effect is much smaller and less consistent in a number of ways. First, any perfor-
mance difference shown on TopDown and Pirates! is not significant. Second, in the case
of Shootout and Run’N’Gun, using dynamic memory windows is detrimental to the perfor-
mance of general models (on average −1% in case of models trained on 6 games and −3%
in case of models trained on 8 games). In other cases, the overall average gain when using
dynamic memory windowing is +5% across all models. The best improvement is achieved
on ApexSpeed (on average +8% when models are trained on 6 games and +10% when
models are trained on 8 games). This is a surprising result as both in the case of game-
based models and genre-based models trained on 3 games, models trained with consecutive
windowing performed better on ApexSpeed. However, in those cases, the training set of
the models also included this game. This observation suggests that general models not
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Table 7.9: Testing accuracies (%) of general models trained on 6 and 8 games and tested on
an unseen game with consecutive time-windows (consecutive windows) compared to best
models trained with a dynamic memory window (full history). Bold values show the best
models for the given game, training set, and target output.

µA

Test Game
8 games 6 games

Consecutive Full History Consecutive Full History

TinyCars 59.0±0.8 66.6±1.7 58.5±0.9 66.5±1.7
Solid 62.8±0.9 74.2±0.7 60.9±0.7 74.3±0.8
ApexSpeed 62.7±0.9 72.7±1.5 59.0±1.1 72.8±1.5

Heist! 70.7±0.7 79.4±0.9 68.9±0.7 79.4±0.9
TopDown 76.9±0.5 83.6±1.1 74.7±0.6 83.2±1.0
Shootout 52.6±1.0 85.6±0.8 52.2±0.9 84.1±0.9

Endless 61.8±1.0 70.8±2.1 63.3±1.0 70.8±2.1
Pirates! 58.1±0.8 69.7±1.7 56.8±0.8 69.7±1.8
Run’N’Gun 56.8±1.0 80.2±1.9 56.3±1.0 80.2±1.9

∇A

Test Game
8 games 6 games

Consecutive Full History Consecutive Full History

TinyCars 52.9±0.4 59.0±0.3 51.5±0.3 55.9±0.3
Solid 52.6±0.3 57.7±0.5 52.0±0.3 56.1±0.7
ApexSpeed 54.9±0.4 64.5±0.7 55.4±0.4 63.0±0.5

Heist! 62.1±0.4 67.6±0.4 61.2±0.4 64.1±0.4
TopDown 62.6±0.6 61.5±0.6 61.5±0.5 60.4±0.6
Shootout 54.1±0.5 50.6±0.4 53.4±0.5 51.9±0.5

Endless 57.4±0.3 62.6±0.6 56.8±0.2 63.7±0.6
Pirates! 57.3±0.4 57.1±0.4 56.9±0.4 57.0±0.4
Run’N’Gun 58.0±0.4 56.4±0.6 58.9±0.4 58.0±0.5

trained on the target game can benefit greatly from the dynamic memory window during
the pairwise transformation in preference learning models. All in all, these experiments
have shown the robustness of the asymmetric and dynamic memory windowing method.
While the improved results of µA could be attributed to this output’s strong correlation
with time, results of ∇A models show that a dynamic memory window can be beneficial
regardless of this connection.

7.6 Summary

This chapter started with an overview of the generality of game-based and genre-based
models. Results showed that gameplay dynamics play a prominent role in what games are
compatible regardless of genre. While in some cases stacking more games in the training
set led to lower performance compared to models training on single games, overall, adding
more games to the training set had been proven to be beneficial. The second half of this
chapter presented two approaches to general arousal modelling. In the first case, one genre
has been left out of training sets to test the general robustness of models across different
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genres. In the second case, one game has been left out of training sets to test the upper
limit of the performance of general models on unseen games. While the former method
shows how general models can be applied to entirely new games, the latter maximises
the information fed to the models. Just as before, models were tested with two different
outputs. In the case of general µA models trained on games from two genres (6 games)
had a general performance of 71%, 82%, and 74% when tested on games of the racing,
shooter, and platformer genres respectively. General µA models trained on 8 games could
only improve the model performance on shooter games significantly (83% on average).
General ∇A models trained on 6 games had an average accuracy of 60%, 60%, and 59%
and models trained on 8 games had a average accuracy of 58%, 59%, and 60% when tested
on games of the racing, shooter, and platformer genres, respectively. Subsequent analysis of
feature importance revealed an even stronger reliance on time-related features than shown
in Chapters 5 and 6 in the case of µA models. The same analysis also showed that in the
case of ∇A models, Bot Diversity and Bot Count emerges as consistently robust features.
Finally, a sensitivity analysis of the windowing method applied to the data showed that
general models could largely benefit from using dynamic memory windows to encompass the
available session history in preference learning models leveraging a pairwise transformation.

The next chapter concludes this thesis by revisiting the research questions posed in
Chapter 1. This chapter also presents the main contributions of the work, limitations of
the projects, and future extensibility of the research presented here.
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Discussion and Conclusions

This thesis set out to investigate the feasibility of reliably predicting player affect in unseen
games. To this end, studies presented here focused on modelling player arousal through
game telemetry data in a set of casual games designed for this purpose. This work included
tools enabling a robust pipeline for first-person affect annotation in videogames, a large
dataset of gameplay telemetry and player arousal, and predictive models across different
levels of generality. Because there were no datasets in the field containing multiple games
within the same genres, collecting new data was necessary to complete the thesis. The result
of this project and a main contribution of the thesis is the Affect Game Annotation Dataset
(see Chapter 4), which includes gameplay telemetry and arousal annotation that allowed to
address the core research question. Based on the collected data, preference learning models
have been constructed using pairwise transformation and Random Forests. Early on in
Chapter 1 the investigation was framed by two sets of research questions relating to these
aforementioned models and procedures. This chapter reexamines these research questions
and attempts to answer them in light of the key findings of this thesis.

The first research question, “Can arousal in games be reliably modelled in a general
fashion?” is composed of three sub-questions that led the exploration on three different
levels of generality: game-based modelling using game-agnostic features; genre-based mod-
elling leveraging genre-specific and general features; and finally general models, which can
be applied to previously unseen games of any genre.

• RQ1.1: Can game-agnostic features perform comparably to specific fea-
tures? Chapter 5 set out to answer this question. Results of this chapter showed the
robustness of hand-crafted heuristic features. Game-based models trained on general
features showed comparable performance to models trained on genre-specific features.
This was true for models both predicting a change in the level of arousal and—to a
lesser extent—a change in the gradient of the arousal curve.

• RQ1.2: Can models be transferred between games within a genre? Chaper 6
aimed to answer this question by investigating genre-based modelling. Models in this
chapter were trained on multiple games within a genre and tested on both seen and
unseen games. Results showed that models trained on multiple games within a genre
could reliably predict games of the same genre regardless of whether the algorithm
saw them during training. In some cases, using multiple games in the training set
improved the performance beyond that of game-based models. Chapter 7 followed
up on this investigation by looking at the transferability of game-based and genre-
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based models. Results showed that shooter games (except for Shootout) were the
most robust predictors among both game- and genre-based models. An explanation
for this phenomenon is the relative complexity of these games compared to others in
the dataset.

• RQ1.3: Can models generalise over games from different genres? Chapter 7
focused primarily on answering this question. Results in this chapter showed great
potential for general arousal modelling across different genres by investigating both
genre- and game-agnostic approaches. The best results were comparable to the game-
based model baselines. Analysis of feature importance in this and previous chapters
showed that the models predicting the change in the level of arousal rely primarily
on time-related features, while models predicting the change in the gradient of the
arousal trace rely more on telemetry features relating to bots.

The second research question, “How to reliably capture and model arousal in games?”
was also sub-divided into three smaller questions, which focused on the pipeline of mod-
elling, mitigating memory effects, and modelling more complex temporal dynamics beyond
a relative change in affect.

• RQ2.1: How can we capture the first-person impression of arousal dur-
ing gameplay? Chapter 3 aimed to answer this question by proposing an affect
annotation pipeline for videogame research using stimulated recall techniques and
first-person time-continuous annotation. This pipeline builds on the Platform for
Audiovisual General-purpose ANnotation, which was developed for the collection of
affective labels. The proposed procedure consists of blocks of gameplay followed im-
mediately by an annotation task of the same play session. This setup allows for the
easy crowd-sourcing of both gameplay and labelling tasks while also minimising in-
terruptions during the process. As the data is collected within the same framework,
it can be easily synchronised and pre-processed for subsequent modelling.

• RQ2.2: Can temporal biases be mitigated during data processing? This
question is answered through the analysis presented in Chapters 5-7. It was shown
that through a dynamic time-windowing method introduced in Chapter 2, the accu-
racy of models could be greatly improved. The proposed methodology builds on a
standard pairwise transformation; a pre-processing step applied in particular ranking
approaches. As many models rely on time-related features, this processing method
can mitigate some of the recency effects of annotation. Through a subsequent analysis
of the results it was shown that applying a dynamic memory window is beneficial for
models where there is no strong correlation between time and the affective output as
well.

• RQ2.3: To what extent can the temporal dynamics of the annotation be
modelled? To answer this question, models throughout Chapters 5-7 have been
constructed to predict both the change in the level of arousal and the change in the
gradient of the arousal trace. As the gradient of a signal describes the direction and
the rate of the increase or decrease of the trace, it carries more complex information
about the temporal dynamics of gameplay than the mean values of time-windows.
Results throughout the thesis showed that predicting the change in the gradient of
arousal is a significantly more challenging task than predicting just the increase or
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decrease in arousal. As this ground-truth did not have any temporal bias, these models
could not rely on game-agnostic time-related features. Subsequently, the models were
not as successful in generalising to games other than what they were trained on.

While answering the primary question of this thesis—“How to reliably predict player
affect in any unseen game?”—is still an open question for the future, the first-person an-
notation, pre-processing, and modelling pipeline presented in this thesis takes a good step
towards answering this inquiry. The rest of this chapter is dedicated to a discussion on the
primary contributions of this thesis (Section 8.1), the limitations of the presented projects
(Section 8.2), and the extensibility of the work presented here through future research
(Section 8.3). Finally, Section 8.4 summarises the discussion and concludes the thesis.

8.1 Contributions

This section provides an overview of the different contributions of this thesis to the fields
of player modelling and affective computing. While the work presented here focuses on
videogame play, the tools produced and lessons learned can easily be adapted in other
domains where the goal is time-continuous affect or emotion prediction. The following list
details the main contributions of this thesis in more detail:

• Pipelines for First-Person Affect Annotation in Videogames: This thesis
presented a streamlined pipeline for the first-person affect annotation in videogames.
The Platform for Audiovisual General-purpose ANnotation (PAGAN) (Melhart et al.,
2019b) was designed to enable the crowd-sourcing of the game playing and annotation
tasks in this thesis work. PAGAN offers an open-source online annotation tool featur-
ing multiple popular labelling methods for any multimedia content. It was designed
to be user-friendly and does not require any programming knowledge to allow for the
tool’s adoption in fields beyond affective computing. Since its introduction PAGAN
has already been used in a diverse array of studies from deep-learning (Makantasis
et al., 2021) through musical sentiment-analysis (Gulati et al., 2020) and attention
research in linguistics (Ravelli et al., 2020) to annotation processing in affective com-
puting (Booth, 2020). This thesis built on this system to develop a first-person affect
annotation pipeline for videogame research, which minimises the interruptions during
the process. The procedures presented in Chapter 3 show this robust pipeline from
data collection to pre-processing. This pipeline was used to collect the dataset pre-
sented in Chapter 4 and is being already adapted in studies like the aforementioned
(Makantasis et al., 2021) and time-continuous believability modelling (Pacheco et al.,
in review).

• Affect Game Annotation Dataset: This thesis also introduced the Affect Game
Annotation Dataset (AGAIN) (Melhart et al., 2021). This database was created in
response to the lack of comprehensive and well-structured datasets, including multiple
games or interactive elicitors in affective computing. AGAIN contains 9 games from
3 genres, 124 participants, and over 1, 100 annotated gameplay sessions. While the
fields of games user research and affective computing often work on similar problems,
the ad-hoc nature of game datasets made it hard to bridge some of the gaps between
these fields. As most datasets generally focused on one or two games, they were
unfeasible for the comprehensive study of general modelling. Beyond this motivation,
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AGAIN also enables future research into the application of deep-learning in the field
of affective computing and player modelling as the database also contains more than
37 hours of gameplay video footage.

• General Preference Learning Models: Studies presented in this thesis work pro-
vide a comprehensive overview of hand-crafted general features, their robustness and
prominence in player models from game-based through genre-based to general appli-
cations. Analysis throughout the presented chapters shows some of the opportunities
and pitfalls of focusing on casual and arcade-like testbed games. The strong corre-
lation between the time passed in games and the intensity of the gameplay can help
the modelling effort of similarly structured games and proves the feasibility of general
modelling in this domain. However, it also highlights some of the limitations of the
AGAIN dataset and a large portion of general game AI and experimental player re-
search as these studies often employ similar arcade-style and small-scale casual games.

This thesis work used pairwise Preference Learning (PL) to build general models for
the time-continuous prediction of player arousal. While PL has been applied to similar
problems before, this thesis work introduced a novel processing method for pairwise
PL. The dynamic windowing of past time-windows to represent the session history
during the transformation of the dataset has proven to be especially useful for general
modelling. The presented methodology is very cost-effective, easy to implement, and
can be used with virtually any binary classifier. The final results of this thesis show
the feasibility of general modelling and provide a clean pipeline and strong baseline
for future studies.

8.2 Limitations

This section details the limitations of the work presented throughout the thesis. One general
limitation of the work comes from the wicked nature of design and development work; that
is, there is no correct answer to a technical problem, just one that is good enough. During
the development of the tools and elicitors included in this thesis, decisions had to be made
to prioritise certain elements and cut others. Because the dataset had to be collected online
(partially due to the 2020 Coronavirus outbreak), there were limitations on the breadth of
the data that could be collected. While an effort has been made to deliberate on each of the
design choices, they still encode some unseen biases that contribute to the inherent noise of
the collected data and the constructed models.

• Platform for Audiovisual General-purpose ANnotation: While the tool has
already integrated three different kinds of annotation frameworks, all of these methods
are time-continuous and one-dimensional approaches. As the tool was designed with
the first-person annotation of affect in mind, there is no categorical labelling or video-
scraping feature in the tool, which would allow expert annotators to move forward
and backward on the video, adding, removing, and updating both continuous and
categorical labels. While there is support for integrating Google Forms1 at the end
of an annotation protocol, currently, there is no support for using survey methods
between annotation sessions within the same protocol. Finally, although the online
interface provides an out-of-box solution using the YouTube API2, the open format

1https://www.google.com/forms/about/
2https://developers.google.com/youtube/
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comes with some caveats. Namely, there is no way for handling confidential data,
for example, the participants’ likeness or footage under non-disclosure agreements.
While it is possible to set up a custom version of the platform on a private server
using the source code of the application3, setting up a version of the system like this
does require at least a rudimentary knowledge of web development.

• Affect Game Annotation Dataset: Even though the AGAIN dataset is one of the
largest open-source videogame databases with affective annotations out there, it also
has several limitations. While the games included in the dataset cover a good portion
of casual games, major popular genres are missing from the dataset. While popular
on the console, PC, and mobile markets, role-playing, strategy, and puzzle games are
all absent from AGAIN. As it has been mentioned before in Chapter 4, the omission of
these genres from the dataset was partly a technical decision. However, as it has been
shown in Chapters 5-7, the focus on casual games come with some caveats. While
these games can be considered approximations of some mobile games, which are meant
to be played in short bursts, games in the console and PC market have a very different
dynamic. In these games, there are more robust gameplay mechanics, often with a
more pronounced learning curve. Unfortunately, as gameplay sessions in AGAIN are
constrained to a two-minute length, they cannot capture these dynamics. Another
major limitation of AGAIN is the focus on only one affective dimension. While other
datasets generally include at least two affective dimensions (see Chapter 2), AGAIN
only includes arousal. Even though arousal as an approximation of perceived gameplay
intensity makes sense as the primary focus of such a dataset, it also makes AGAIN
less diverse than its counterparts. While the dataset includes telemetry and gameplay
video, peripheral and physiological signals are missing. This was an unfortunate
drawback of the necessary crowd-sourced collection of the data. Finally, as AGAIN
focuses on interactive elicitors, each session is unique. Because AGAIN uses first-
person annotation, this also means that there is only one annotation trace per elicitor.
While the first-person annotation does provide a certain level of reliability and validity
to the dataset, it also prevents the usage of a wide array of techniques commonly used
in affective computing to clean and process labels.

• Affect Modelling: The presented arousal models, while often reach a surprising level
of accuracy, are somewhat simplistic. Firstly, the input space of the models is based on
hand-crafted telemetry features. While this focus allows for a transparent feasibility
study as each feature is human-readable and meaningful, collecting telemetry data in
the wild is often costly or unfeasible. Secondly, while Random Forests (RF) are shown
to be robust predictors, looking at the performance of different models, it is clear that
results likely cannot be improved further through fine-tuning RF parameters. Finally,
the presented models do not use the recorded video footage included in the AGAIN
dataset either.

8.3 Extensiblity

This section focuses on the possibilities to extend the presented tools and the research as a
whole to different domains and applications.

3https://github.com/davidmelhart/PAGAN
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8.3.1 Extending PAGAN

Future work on PAGAN includes improving the system’s flexibility with options for video-
scraping, categorical labels, forced-choice questionnaires, and other survey steps. These
extensions would allow a larger number of options which would open up more complex
research protocols. As it has been demonstrated in Chapter 2, while there is a need for
flexible tools for both dimensional and categorical labelling, many of these tools are out
of date. This gap could be filled more sustainably with PAGAN as the tool is based on
web technology, making it easier to access, modify, and share than many other program
packages. While some annotation tools move towards more robust machine learning modules
(Heimerl et al., 2019), future extensions would push the features of PAGAN as a lightweight
but comprehensive annotation framework for traditional labelling and quick prototyping. As
web cameras are readily available in almost all devices, another extension of PAGAN could
focus on gathering additional information like gaze direction and facial action units. This
extension would allow for the collection of additional peripheral information not just in a
lab setting but also in a crowd-sourced manner. Finally, issues with confidential information
can be solved by creating an offline version of PAGAN, which would allow an out-of-box
deployment in a local lab environment. This would allow for even more widespread adoption
of PAGAN.

Instead of extending PAGAN itself with machine learning capabilities, the output of
the platform could be connected to the Python Preference Learning Toolbox (pyPLT) (see
Chapter 2). While PAGAN and pyPLT are written in different languages, synchronising
the data formatting and pre-processing and implementing a shared web API could go a long
way towards integrating these systems. In the future, data captured by PAGAN could be
reached directly in pyPLT, and with a shared pipeline in place, acquiring a trained model
would be as easy as pressing a button, with no additional processing needed.

8.3.2 Extending AGAIN

Some of the current limitations of AGAIN can be addressed with additional data collection,
while others need new elicitors and collection protocol to be implemented. Such as the
issue of new game genres and games which mimic a console or PC-game experience better
with longer sessions and more varied intensity. Fortunately, both the lack of other affective
dimensions in the dataset and the uniqueness of the elicitors can be solved to some degree
by simply collecting more data using the existing videos. Third-person annotators can label
sessions with arousal, valence, and additional affective dimensions to create a more robust
dataset.

With the extension of PAGAN, new opportunities arise to update AGAIN as well. A
new AGAIN dataset would include gaze information and facial action units as well, and an
in-lab version of PAGAN could facilitate the collection of psychophysiological signals. Such
a dataset would be a more rounded version of AGAIN with more possibilities for affective
computing research into visual attention, emotion elicitation and recognition, and affective
physiology.

8.3.3 General Deep-Learning and Temporal Modelling

Many possibilities of extending the presented research to other areas would rely on finding
new general features. While physiological signals are commonly used in affective comput-
ing as elicitor-agnostic features, they are often unfeasible to collect. Therefore, finding
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generalised end-to-end solutions should also focus on more readily available raw data. An
excellent solution to address the limitations of the current affective models in this light
would be applying deep-learning via neural networks using the video data included in the
AGAIN dataset. Deep learning applications could learn from the pixel information to build
end-to-end models of the presented games. Deep-learning models could still use privileged
information encoded by telemetry features; however, they would make the models more
feasible for industrial application. Additionally, general features can also be found using
unsupervised transfer learning to find a better mapping between different games. While the
models presented in this thesis work all use similar features (even genre-specific features
across genres), raw visual input is far more varied. Even though general pipelines have
been investigated before (Makantasis et al., 2021), successful general end-to-end emotion
modelling is still an open problem.

Even though the presented models are not geared towards computer vision, a possi-
ble contribution of the research presented here lies in the approach to pairwise preference
learning. Studies in this thesis showed that aggregating past datapoints to an abstract
anchor could significantly improve model performance. While preference learning long- and
short-term memory (LSTM) neural networks might provide a more complex representation
of how the users’ long-term preferences develop (Wu et al., 2020), the presented research
shows a simple, cost-effective, and robust approach that can be easily adapted in more
naive algorithms as well. Future research should focus on testing the proposed temporal
aggregation method against and in combination with LSTM systems.

8.3.4 Procedural Content Generation and Adaptive Design

Within game research, the study of general affect modelling can be extended to more imme-
diate game-related emotional outcomes, such as engagement or tension. Such predictions
are easier to use for designers as input for adaptive and generative systems. General models
could also help jump-start more extensive research into procedural systems using an affec-
tive loop (Yannakakis and Togelius, 2018). These systems could produce content and adapt
to personal experiences based on the predicted emotional outcome of players or could be
used to author emotional content to the designer’s specification. Unfortunately, there is
a high cost associated with such solutions. On top of creating a traditional game, emo-
tional models have to be developed and connected to the larger design of the product. This
investment is often too high for commercial application of these models, but it also slows
down academic research. With reliable general models, the cost of developing these affective
systems could decrease. A largely plug-and-play model, which can provide reliable emo-
tional predictions of unseen games, could lead to a more widespread adaptation of affective
systems in videogame development and research.

8.3.5 Domains of Affective Computing

As the presented research focuses on time-continuous behavioural telemetry, the same ap-
proach can be adapted to other domains of human-computer interaction with relative ease.
Even though traditional affective computing applications often focus on passive multimedia
elicitors (see Chapter 2), a time-continuous model of affect can be built using physiolog-
ical and peripheral signals as input for the models. While studying the emotional effects
of multimedia clips presents a more homogeneous domain than games, models based on
physiological and peripheral signals could virtually bridge different media types.
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End-to-end pixel-to-emotion models trained on videogames can be used to predict the
emotional outcome of passive audiovisual experiences, while models trained on psychophys-
iological signals could predict the emotional content of a text as well. These general models
can also provide a baseline prediction for other affective computing applications in educa-
tion (Wu et al., 2016; Yadegaridehkordi et al., 2019) and healthcare (Yannakakis, 2018).
In the former case, general models of arousal can be used to monitor learners’ engagement
and attention cost-effectively. This is especially important in today’s world of distance ed-
ucation, where traditional methods of monitoring and interacting with the learner is not
available. Similarly to how the affective models are built in this thesis, general models of
cognitive processes can also be developed. Generalised models of motivation and attention
could enhance and help personalise educational content over a broad spectrum of domains
and different types of learning material. In research into healthcare and rehabilitation, a
general baseline model of arousal can be used to detect outliers signifying potential health
issues. As generalised models can adapt to different elicitors in the wild, they could signifi-
cantly enhance stress detection as well. In areas where games have already been proven to
be valuable tools for therapy (e.g. post-traumatic stress disorder (Holmg̊ard et al., 2013)),
general models can be trained in game-like environments and applied in the wild. Similarly,
general models can be put to use helping people with autism or similar developmental disor-
ders (El Kaliouby et al., 2006). These models can adapt to unexpected situations and either
help interpret dissimilar scenarios or communicate the user’s state to others (Han et al.,
2018). Finally, the domain of social robots can also benefit from a generalised understand-
ing of affective human behaviour (Van de Perre et al., 2018). These general models could be
adapted in different robots, alleviating the need for specialised implementations. Through
a general understanding, robots can assess the emotional content of a situation under differ-
ent circumstances and communicate with humans about different emotional elicitors. These
applications would work similarly to the concept of affective loop in game research, where
an independently trained emotion processing module could be fit into a complex system,
which makes use of the emotion prediction by adapting its behaviour to either facilitate or
shift the predicted emotional response.

8.4 Summary

This thesis asked the question: to which degree can we predict player affect in unseen
games? and presented a comprehensive data collection, annotation, and modelling pipeline
to answer this question. During this thesis, work tools have been developed to capture the
first-person impression of arousal from players. These tools helped the collection of one
of the most extensive affective datasets in games to this day. This dataset allowed for a
methodical approach to player modelling, where the question of generality was observed on
three different levels. The presented studies showed that player arousal could be modelled
reliably in a general fashion in casual games. This chapter concluded this investigation by
detailing the main contributions of this thesis (Section 8.1), which involved the development
of first-person annotation pipelines for interactive elicitors; the design of PAGAN, an online
annotation framework for the crowd-sourced collection of time-continuous labels; AGAIN, a
sizeable comprehensive dataset of videogame footage, telemetry, and affective labels; and an
analysis of the feasibility of general arousal modelling in videogames. Section 8.2 presented
some of the limitations of this research, most prominently, the focus on one affective di-
mension and reliance on telemetry and hand-crafted features. Finally, Section 8.3 aimed to
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8.4. Summary

address these limitations and show new avenues for the extensibility of the research beyond
this thesis.

107



Chapter 8. Discussion and Conclusions

108



Appendix A

Appendices

A.1 Genre-Specific Game Telemetry Features

This section contains the full list of the genre-specific features in AGAIN. Tables A.1, A.2,
and A.3 show the racing, shooter, and platformer genre-specific features, respectively. Fea-
tures marked with ’x’ on tables in this section have a non-zero variance in the given game.

Table A.1: Racing genre-specific features.

Feature TinyCars Solid ApexSpeed

Player Standing x x x
Player Speed x x x
Player Speed Boost - - x
Player Grounded x x x
Player Mid Air x x x
Player Looping - x -
Player Collision x x x
Player Off Road x x -
Player Gas Pedal x x x
Player Steering x x x
Player Lap x x x
Player Distance To Way Point x x x
Player ∆ Rotation x x x
Player Respawn x x x
Bot Standing x x x
Bot Player Score x x x
Bot Speed x x x
Bot Speed Boost - - x
Bot Grounded x x x
Bot Looping - x -
Bot Off Road x x -
Bot Collision x x x
Bot Gas Pedal x x x
Bot Steering x x x
Bot Lap x x x
Bot Distance To Way Point x x x
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Bot ∆ Rotation x x x
Bot Player Distance x x x
Bot Respawn x x x
Jump Count x - x
Speed Boost Count - - x
Obstacle Count - - x
Loop Count - x -

Table A.2: Shooter genre-specific features.

Feature Heist! TopDown Shootout

Player Kill Count x x x
Player Speed X x x -
Player Speed Y x x -
Player Speed Z x x -
Player ∆ Rotation x x x
Player Health x x -
Player Healing x - x
Player Damaged x x x
Player Shooting x x x
Player Reloading x - x
Player Projectile Count x x x
Player Projectile Distance x x x
Reticle ∆ Distance x x x
Player Crouching x - -
Player Sprinting x - -
Player Aim (Enemy) x x x
Player Aim (Destructible) - x -
Pickup (Health) - x -
Bot Speed X x x -
Bot Speed Y x x -
Bot Speed Z x x -
Bot ∆ Rotation x x -
Bot Health x x x
Bot Damaged x x x
Bot Shooting x x x
Bot Reloading - - x
Bot Projectile Count x x -
Bot Projectile Player Distance x x -
Bot Aim (Player) x x x
Pickup Count - x -
Pickup Distance - x -
Destructible Count - x -
Objects Destroyed - x -
Player Death x x -
Player Shoot On Reload x - x
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A.1. Genre-Specific Game Telemetry Features

Table A.3: Platformer genre-specific features.

Feature Endless Pirates! Run’N’Gun

Player Collision x x x
Player Collision Above x x x
Player Collision Below x x x
Player Collision Left - x x
Player Collision Right - x x
Player Falling x x x
Player Grounded x x x
Player Jumping - x x
Player Speed X x x x
Player Speed Y x x x
Player Health x x x
Player Damaged x x x
Player Shooting x - x
Player Projectile Count - - x
Player Projectile Distance - - x
Pickup (Health) - - x
Pickup (Point) x x -
Pickup (Power) - x -
Pickup (Boost) x - -
Pickup (Slow) x - -
Player on Power - x -
Player Kill Count x x x
Bot Has Collision - x x
Bot Collision Above - - x
Bot Collision Below x x x
Bot Collision Left x x x
Bot Collision Right - x x
Bot Falling - x x
Bot Grounded x x x
Bot Jumping - - x
Bot Speed X x x x
Bot Speed Y - x x
Bot Health x x x
Bot Damaged - - x
Bot Shooting - - x
Bot Projectile Count - - x
Bot Charging - - x
Bot Player Distance x x x
Bot Projectile Player Distance - - x
Pickup Count x x x
Pickup Distance x x x
Player Death x x x
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A.2. Correlation Analysis
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A.2. Correlation Analysis
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Appendix A. Appendices
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A.3. Feature Importance
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A.3. Feature Importance

G
B

o
t

D
iv

er
si

ty
0
.0

1
9

0
.0

1
8

0.
01

8
0.

01
9

G
E

ve
n
t

In
te

n
si

ty
0
.0

2
1

0
.0

2
4

0
.0

2
2

0
.0

1
9

G
E

ve
n
t

In
te

n
si

ty
0
.0

1
8

0
.0

1
6

0.
01

5
0.

02
2

S
B

ot
S

te
er

in
g

0
.0

2
1

0
.0

2
3

0
.0

2
1

0
.0

2
0

S
B

o
t

S
p

ee
d

0
.0

1
7

0
.0

1
9

0.
01

9
0.

01
3

S
B

ot
S

p
ee

d
0
.0

2
1

0
.0

2
2

0
.0

2
3

0
.0

1
9

S
B

o
t

D
el

ta
R

o
t.

0
.0

1
7

0
.0

1
5

0.
01

8
0.

01
8

G
B

ot
M

ov
em

en
t

0
.0

2
1

0
.0

2
1

0
.0

2
2

0
.0

2
1

G
E

ve
n
t

D
iv

er
si

ty
0
.0

1
7

0
.0

1
6

0.
01

4
0.

02
0

G
P

la
ye

r
A

ct
iv

it
y

0
.0

2
1

0
.0

2
4

0
.0

2
1

0
.0

1
9

S
P

la
ye

r
M

id
A

ir
0
.0

1
7

0
.0

1
9

0.
01

6
0.

01
5

S
P

la
ye

r
O

ff
R

oa
d

0
.0

2
1

0
.0

3
2

0
.0

1
7

0
.0

1
4

S
P

la
ye

r
G

ro
u

n
d

ed
0
.0

1
6

0
.0

1
8

0.
01

6
0.

01
5

S
J
u

m
p

C
ou

n
t

0
.0

2
1

0
.0

1
2

0
.0

2
8

0
.0

2
2

S
B

o
t

G
as

P
ed

al
0
.0

1
6

0
.0

1
7

0.
01

8
0.

01
3

S
P

la
ye

r
L

o
op

in
g

0
.0

2
1

0
.0

3
4

0
.0

0
0

0
.0

2
9

G
P

la
ye

r
M

ov
em

en
t

0
.0

1
5

0
.0

2
1

0.
01

4
0.

01
0

S
B

ot
D

is
t.

T
o

W
P

0
.0

2
1

0
.0

1
9

0
.0

2
4

0
.0

1
9

S
P

la
ye

r
D

el
ta

R
ot

.
0
.0

1
3

0
.0

1
8

0.
01

1
0.

01
1

G
E

ve
n
t

D
iv

er
si

ty
0
.0

2
1

0
.0

2
2

0
.0

2
1

0
.0

1
9

G
In

p
u

t
D

iv
er

si
ty

0
.0

1
2

0
.0

1
5

0.
01

2
0.

01
0

S
B

ot
S

ta
n

d
in

g
0
.0

2
0

0
.0

2
1

0
.0

2
1

0
.0

1
9

S
P

la
ye

r
O

ff
R

oa
d

0
.0

1
2

0
.0

1
5

0.
01

3
0.

00
9

S
P

la
ye

r
G

as
P

ed
al

0
.0

2
0

0
.0

2
1

0
.0

2
1

0
.0

1
6

S
B

o
t

O
ff

R
o
ad

0
.0

1
1

0
.0

1
6

0.
00

6
0.

01
1

G
In

p
u

t
D

iv
er

si
ty

0
.0

1
9

0
.0

2
1

0
.0

1
9

0
.0

1
8

G
In

p
u

t
In

te
n

si
ty

0
.0

1
1

0
.0

1
3

0.
01

0
0.

00
8

G
In

p
u

t
In

te
n

si
ty

0
.0

1
9

0
.0

2
0

0
.0

1
8

0
.0

1
8

S
P

la
ye

r
D

is
t.

T
o

W
P

0
.0

1
0

0
.0

1
2

0.
01

1
0.

00
9

S
P

la
ye

r
G

ro
u

n
d

ed
0
.0

1
8

0
.0

1
7

0
.0

1
9

0
.0

1
9

G
O

b
je

ct
In

te
n

si
ty

0
.0

1
0

0
.0

1
1

0.
01

2
0.

00
7

S
P

la
ye

r
M

id
A

ir
0
.0

1
8

0
.0

1
7

0
.0

1
9

0
.0

1
9

S
P

la
ye

r
L

o
op

in
g

0
.0

1
0

0
.0

1
5

0.
00

0
0.

01
4

S
B

ot
S

co
re

0
.0

1
7

0
.0

1
9

0
.0

1
8

0
.0

1
5

S
J
u

m
p

C
ou

n
t

0
.0

1
0

0
.0

1
3

0.
01

1
0.

00
5

S
P

la
ye

r
L

ap
0
.0

1
6

0
.0

1
7

0
.0

1
2

0
.0

1
9

G
O

b
je

ct
D

iv
er

si
ty

0
.0

0
9

0
.0

1
1

0.
01

1
0.

00
7

S
O

b
st

ac
le

C
ou

n
t

0
.0

1
2

0
.0

0
0

0
.0

2
0

0
.0

1
7

S
P

la
ye

r
S

te
er

in
g

0
.0

0
9

0
.0

0
9

0.
00

9
0.

00
7

S
S

p
ee

d
B

o
os

t
C

ou
n
t

0
.0

1
2

0
.0

0
0

0
.0

1
8

0
.0

1
8

S
S

p
ee

d
B

o
os

t
C

o
u

n
t

0
.0

0
7

0
.0

0
0

0.
01

1
0.

00
9

S
P

la
ye

r
R

es
p

aw
n

0
.0

1
0

0
.0

0
9

0
.0

1
2

0
.0

0
9

S
P

la
ye

r
S

p
ee

d
B

o
os

t
0
.0

0
6

0
.0

0
0

0.
01

0
0.

00
8

S
L

o
op

C
ou

n
t

0
.0

0
9

0
.0

1
6

0
.0

0
0

0
.0

1
2

S
B

o
t

L
o
op

in
g

0
.0

0
6

0
.0

0
8

0.
00

0
0.

00
9

S
B

ot
L

ap
0
.0

0
9

0
.0

1
0

0
.0

0
7

0
.0

0
8

S
B

o
t

S
p

ee
d

B
o
os

t
0
.0

0
6

0
.0

0
0

0.
01

0
0.

00
7

S
B

ot
O

ff
R

oa
d

0
.0

0
8

0
.0

1
3

0
.0

0
4

0
.0

0
8

S
L

o
op

C
o
u

n
t

0
.0

0
4

0
.0

0
8

0.
00

0
0.

00
6

S
B

ot
L

o
op

in
g

0
.0

0
6

0
.0

1
0

0
.0

0
0

0
.0

0
8

S
O

b
st

a
cl

e
C

o
u

n
t

0
.0

0
4

0
.0

0
0

0.
00

7
0.

00
5

S
B

ot
S

p
ee

d
B

o
os

t
0
.0

0
4

0
.0

0
0

0
.0

0
7

0
.0

0
7

S
B

o
t

R
es

p
aw

n
0
.0

0
3

0
.0

0
0

0.
00

4
0.

00
4

S
B

ot
R

es
p

aw
n

0
.0

0
1

0
.0

0
0

0
.0

0
2

0
.0

0
2

125



Appendix A. Appendices
T

a
b

le
A

.1
1:

M
D

I
fe

a
tu

re
im

p
or

ta
n

ce
in

sh
o
ot

er
ga

m
e

m
o
d

el
s

tr
ai

n
ed

on
2

g
am

es
.

µ
A

∇
A

F
e
a
tu

re

Shooter
Average

Heist! &
TopDown

Heist! &
Shootout

TopDown &
Shootout

F
e
a
tu

re

Shooter
Average

Heist! &
TopDown

Heist! &
Shootout

TopDown &
Shootout

G
T

im
e

P
as

se
d

0.
22

5
0.

22
8

0.
22

2
0.

22
5

S
B

ot
S

h
o
ot

in
g

0.
06

4
0
.0

7
3

0
.0

5
5

0
.0

6
3

G
P

la
ye

r
S

co
re

0.
16

2
0.

17
9

0.
15

0
0.

15
7

G
B

ot
D

iv
er

si
ty

0.
05

2
0
.0

5
7

0
.0

6
1

0
.0

3
8

S
B

ot
R

el
oa

d
in

g
0.

04
2

0.
00

0
0.

06
9

0.
05

6
S

B
ot

P
ro

j.
C

ou
n
t

0.
04

9
0
.0

5
9

0
.0

4
3

0
.0

4
5

S
P

la
ye

r
H

ea
lt

h
0.

04
0

0.
06

3
0.

03
2

0.
02

6
S

B
ot

H
ea

lt
h

0.
04

8
0
.0

4
9

0
.0

5
7

0
.0

3
9

G
B

ot
D

iv
er

si
ty

0.
03

7
0.

01
2

0.
03

5
0.

06
4

S
P

la
ye

r
D

am
ag

ed
0.

04
3

0
.0

4
0

0
.0

3
6

0
.0

5
3

G
E

ve
n
t

D
iv

er
si

ty
0.

02
9

0.
02

0
0.

04
2

0.
02

4
S

B
ot

P
ro

j.
P

la
y
er

D
is

t.
0.

04
2

0
.0

4
8

0
.0

4
0

0
.0

3
9

S
B

ot
H

ea
lt

h
0.

02
7

0.
01

3
0.

02
7

0.
04

1
S

P
la

ye
r

A
im

(E
n

em
y
)

0.
04

1
0
.0

5
1

0
.0

3
2

0
.0

3
9

S
P

la
ye

r
P

ic
k
u

p
(H

ea
lt

h
)

0.
02

3
0.

02
7

0.
00

0
0.

04
3

G
B

ot
C

ou
n
t

0.
03

7
0
.0

3
9

0
.0

4
3

0
.0

2
9

G
E

ve
n
t

In
te

n
si

ty
0.

02
3

0.
02

4
0.

02
5

0.
02

1
S

B
ot

A
im

(P
la

ye
r)

0.
03

6
0
.0

3
7

0
.0

3
4

0
.0

3
7

S
B

ot
S

p
ee

d
X

0.
02

1
0.

02
5

0.
02

0
0.

01
9

G
B

ot
M

ov
em

en
t

0.
02

9
0
.0

2
7

0
.0

3
8

0
.0

2
2

S
P

la
ye

r
P

ro
j.

C
ou

n
t

0.
01

8
0.

02
7

0.
01

3
0.

01
5

G
E

ve
n
t

D
iv

er
si

ty
0.

02
8

0
.0

2
8

0
.0

1
9

0
.0

3
5

S
P

la
ye

r
D

am
ag

ed
0.

01
8

0.
02

0
0.

01
9

0.
01

5
S

B
ot

S
p

ee
d

Z
0.

02
3

0
.0

2
1

0
.0

3
1

0
.0

1
8

S
B

ot
S

h
o
ot

in
g

0.
01

7
0.

02
0

0.
01

4
0.

01
8

S
B

ot
D

am
ag

ed
0.

02
2

0
.0

2
4

0
.0

2
2

0
.0

2
1

S
P

la
ye

r
R

el
oa

d
in

g
0.

01
7

0.
01

3
0.

03
0

0.
00

8
S

P
la

ye
r

P
ro

j.
C

ou
n
t

0.
02

2
0
.0

2
0

0
.0

2
3

0
.0

2
3

G
P

la
ye

r
A

ct
iv

it
y

0.
01

7
0.

02
7

0.
00

7
0.

01
7

G
T

im
e

P
as

se
d

0.
02

2
0
.0

1
9

0
.0

2
4

0
.0

2
2

S
B

ot
A

im
(P

la
ye

r)
0.

01
7

0.
02

2
0.

01
6

0.
01

2
S

B
ot

S
p

ee
d

X
0.

02
1

0
.0

2
1

0
.0

2
7

0
.0

1
6

G
B

ot
C

ou
n
t

0.
01

5
0.

01
2

0.
01

9
0.

01
6

S
P

la
ye

r
P

ro
j.

D
is

t.
0.

02
1

0
.0

1
8

0
.0

2
3

0
.0

2
2

S
P

la
ye

r
K

il
l

C
ou

n
t

0.
01

5
0.

02
0

0.
01

3
0.

01
2

S
P

la
ye

r
K

il
l

C
ou

n
t

0.
02

1
0
.0

1
9

0
.0

2
2

0
.0

2
3

S
B

ot
S

p
ee

d
Y

0.
01

5
0.

01
6

0.
02

3
0.

00
5

S
B

ot
D

el
ta

R
ot

.
0.

02
1

0
.0

1
9

0
.0

1
8

0
.0

2
5

S
B

ot
D

el
ta

R
ot

.
0.

01
4

0.
01

0
0.

02
6

0.
00

6
G

E
ve

n
t

In
te

n
si

ty
0.

02
0

0
.0

1
8

0
.0

1
8

0
.0

2
6

S
P

la
ye

r
P

ro
j.

D
is

t.
0.

01
4

0.
01

5
0.

01
1

0.
01

6
G

In
p

u
t

D
iv

er
si

ty
0.

02
0

0
.0

1
7

0
.0

2
3

0
.0

1
9

S
P

la
ye

r
H

ea
li

n
g

0.
01

4
0.

01
4

0.
02

3
0.

00
4

G
In

p
u

t
In

te
n

si
ty

0.
01

9
0
.0

1
7

0
.0

2
2

0
.0

1
9

S
B

ot
S

p
ee

d
Z

0.
01

3
0.

00
9

0.
01

4
0.

01
6

G
P

la
ye

r
A

ct
iv

it
y

0.
01

9
0
.0

1
8

0
.0

2
1

0
.0

1
9

S
B

ot
D

am
ag

ed
0.

01
3

0.
01

8
0.

01
1

0.
01

0
S

P
la

ye
r

R
el

oa
d

in
g

0.
01

9
0
.0

1
2

0
.0

2
8

0
.0

1
7

126



A.3. Feature Importance
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Appendix A. Appendices

A.3.3 Feature Importance in Genre-Based Models for Seen Games

Tables A.13, A.14 and A.15 show µA and ∇A models for racing, shooter, and platformer
games respectively. Models are trained on a combined feature set of general and genre-
specific features. Rows marked with ’G’ indicate general features, and rows marked with
’S’ indicate genre-specific features throughout the tables in this section.

Table A.13: MDI feature importance in racing game models trained on 3 games.

µA ∇A

Feature

T
in

y
C

a
rs

&
S

o
li
d

&
A

p
e
x
S

p
e
e
d

Feature

T
in

y
C

a
rs

&
S

o
li
d

&
A

p
e
x
S

p
e
e
d

G Time Passed 0.136 G Time Passed 0.050
G Player Score 0.132 S Player Crashing 0.049
S Player Gas Pedal 0.075 G Player Score 0.046
S Bot Crashing 0.040 S Player Speed 0.041
S Player Lap 0.034 S Player Speed Boost 0.038
G Player Activity 0.033 S Bot Crashing 0.036
S Bot Score 0.029 G Player Movement 0.034
S Player Speed 0.025 G Object Diversity 0.030
S Player Standing 0.024 G Object Intensity 0.030
G Bot Count 0.023 G Bot Count 0.028
S Bot Dist. To WP 0.023 S Bot Grounded 0.026
S Bot Standing 0.022 S Player Standing 0.025
S Bot Grounded 0.021 S Player Dist. To WP 0.025
S Bot Lap 0.021 S Bot Gas Pedal 0.024
S Player Crashing 0.019 G Bot Diversity 0.024
S Bot Steering 0.019 S Player Delta Rot. 0.023
G Bot Movement 0.018 S Bot Standing 0.022
G Bot Diversity 0.017 S Player Looping 0.021
G Event Intensity 0.017 S Player Steering 0.021
S Player Respawn 0.016 S Bot Player Dist. 0.021
S Bot Speed 0.016 S Jump Count 0.020
G Event Diversity 0.016 G Event Intensity 0.020
S Bot Player Dist. 0.016 S Player Off Road 0.020
S Player Grounded 0.014 G Bot Movement 0.020
S Player Mid Air 0.014 S Bot Delta Rot. 0.020
S Bot Gas Pedal 0.014 G Event Diversity 0.019
S Bot Delta Rot. 0.014 S Bot Speed 0.019
G Player Movement 0.012 G Player Activity 0.019
S Player Delta Rot. 0.011 S Bot Dist. To WP 0.019
S Player Off Road 0.011 S Bot Steering 0.019
G Input Diversity 0.010 S Player Gas Pedal 0.018
S Bot Off Road 0.009 G Input Diversity 0.017
S Jump Count 0.009 S Player Mid Air 0.017
S Player Looping 0.009 S Player Grounded 0.017
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G Input Intensity 0.009 G Input Intensity 0.017
S Player Dist. To WP 0.009 S Player Lap 0.016
G Object Intensity 0.009 S Bot Score 0.015
G Object Diversity 0.009 S Obstacle Count 0.015
S Player Steering 0.007 S Speed Boost Count 0.013
S Speed Boost Count 0.007 S Player Respawn 0.010
S Player Speed Boost 0.006 S Loop Count 0.010
S Bot Speed Boost 0.006 S Bot Off Road 0.008
S Bot Looping 0.006 S Bot Lap 0.008
S Loop Count 0.005 S Bot Looping 0.006
S Obstacle Count 0.004 S Bot Speed Boost 0.005
S Bot Respawn 0.002 S Bot Respawn 0.001

Table A.14: MDI feature importance in shooter game models trained on three game.
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G Time Passed 0.259 S Bot Shooting 0.069
G Player Score 0.183 G Bot Diversity 0.054
S Bot Reloading 0.052 S Bot Proj. Count 0.054
S Player Health 0.037 S Bot Proj. Player Dist. 0.052
G Bot Diversity 0.037 S Bot Health 0.049
G Event Diversity 0.028 S Player Damaged 0.047
G Event Intensity 0.023 S Player Aim (Enemy) 0.044
S Player Damaged 0.023 S Bot Aim (Player) 0.038
S Bot Health 0.021 G Bot Count 0.035
S Bot Speed X 0.021 G Bot Movement 0.031
S Bot Aim (Player) 0.019 G Event Diversity 0.026
S Player Pickup (Health) 0.018 S Bot Speed Z 0.022
S Player Reloading 0.017 S Bot Damaged 0.021
S Player Proj. Count 0.016 S Player Proj. Count 0.021
S Bot Shooting 0.015 S Bot Speed X 0.021
S Player Healing 0.014 S Bot Delta Rot. 0.020
S Player Kill Count 0.013 G Time Passed 0.020
S Bot Delta Rot. 0.013 S Player Proj. Dist. 0.019
S Player Proj. Dist. 0.012 S Player Health 0.019
G Player Activity 0.012 S Player Reloading 0.019
S Bot Proj. Count 0.011 S Player Kill Count 0.019
S Bot Speed Z 0.011 G Input Diversity 0.018
S Bot Speed Y 0.011 G Event Intensity 0.018
S Bot Proj. Player Dist. 0.010 G Input Intensity 0.017
S Bot Damaged 0.010 G Player Activity 0.017
S Player Aim (Enemy) 0.010 G Player Score 0.017
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G Bot Movement 0.010 S Player Shooting 0.017
G Bot Count 0.010 S Player Delta Rot. 0.016
S Player Shooting 0.009 S Reticle Delta Dist. 0.016
S Player Death 0.007 G Player Movement 0.016
S Player Speed Y 0.007 S Player Speed Z 0.013
G Input Intensity 0.007 S Player Speed X 0.013
G Input Diversity 0.006 S Player Healing 0.012
S Player Delta Rot. 0.005 S Bot Speed Y 0.010
S Player Speed Z 0.005 S Player Death 0.010
S Reticle Delta Dist. 0.004 S Player Speed Y 0.010
S Player Speed X 0.004 S Pick UP Disctance 0.010
S Pick UP Disctance 0.004 G Object Intensity 0.008
G Player Movement 0.004 S Player Pickup (Health) 0.008
S Objects Destroyed 0.004 S Player Aim (Destructible) 0.008
G Object Diversity 0.003 S Pickups 0.008
S Destructible Count 0.003 G Object Diversity 0.008
G Object Intensity 0.003 S Destructible Count 0.007
S Player Crouching 0.003 S Bot Reloading 0.007
S Player Aim (Destructible) 0.003 S Objects Destroyed 0.006
S Pickups 0.003 S Player Crouching 0.005
S Player Sprinting 0.002 S Player Sprinting 0.003
S Player Shoot On Reload 0.001 S Player Shoot On Reload 0.002

Table A.15: MDI feature importance in platformer game models trained on three game.
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G Time Passed 0.163 G Bot Movement 0.060
G Player Score 0.149 G Bot Count 0.048
S Player Damaged 0.058 S Player Health 0.046
S Player Death 0.039 G Bot Diversity 0.037
S Player Coll. Left 0.029 S Bot Health 0.031
S Bot Coll. Left 0.029 S Bot Player Dist. 0.028
G Player Movement 0.025 S Player Speed X 0.028
S Player Health 0.024 S Player Death 0.027
G Bot Diversity 0.022 S Player Pickup (Boost) 0.025
G Bot Movement 0.022 S Bot Speed X 0.024
S Player Coll. Right 0.022 S Bot Grounded 0.023
S Player Pickup (Health) 0.021 G Event Diversity 0.023
S Bot Speed X 0.019 S Bot Coll. Below 0.022
S Bot Speed Y 0.016 G Player Movement 0.021
S Player Speed X 0.016 S Pick UP Disctance 0.019
S Player Coll. Above 0.015 G Time Passed 0.019
S Bot Grounded 0.014 S Player Damaged 0.019
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S Bot Health 0.013 G Object Diversity 0.019
S Bot Player Dist. 0.012 S Player Speed Y 0.019
S Bot Coll. Below 0.012 S Bot Falling 0.018
S Player Pickup (Point) 0.011 S Bot Shooting 0.018
S Bot Proj. Player Dist. 0.011 S Bot Speed Y 0.018
S Player Kill Count 0.011 S Player Falling 0.018
G Event Diversity 0.011 S Player Pickup (Point) 0.017
G Bot Count 0.011 G Event Intensity 0.017
S Pick UP Disctance 0.010 G Input Intensity 0.017
G Event Intensity 0.010 S Player Kill Count 0.017
S Bot Coll. Right 0.010 S Pickups 0.016
S Bot Proj. Count 0.009 G Player Score 0.016
G Object Intensity 0.009 G Player Activity 0.016
G Object Diversity 0.009 G Object Intensity 0.016
S Player Speed Y 0.009 G Input Diversity 0.016
S Bot Falling 0.009 S Bot Coll. Left 0.016
S Pickups 0.009 S Bot Coll. 0.015
S Bot Shooting 0.009 S Player Coll. 0.015
G Player Activity 0.009 S Player Jumping 0.015
G Input Intensity 0.009 S Player Coll. Above 0.015
S Player Coll. 0.009 S Player Coll. Right 0.014
S Bot Coll. 0.008 S Player Grounded 0.014
S Player Pickup (Power) 0.008 S Player Coll. Below 0.014
S Bot Coll. Above 0.008 S Player Shooting 0.013
S Player Shooting 0.008 S Player Coll. Left 0.012
G Input Diversity 0.008 S Bot Proj. Count 0.010
S Player Falling 0.008 S Bot Charging 0.010
S Player Pickup (Boost) 0.007 S Bot Damaged 0.010
S Player Coll. Below 0.007 S Player Pickup (Health) 0.009
S Player Grounded 0.007 S Player Pickup (Slow) 0.008
S Player Pickup (Slow) 0.006 S Player Proj. Dist. 0.008
S Player on Power 0.006 S Bot Coll. Right 0.008
S Player Jumping 0.006 S Player Proj. Count 0.008
S Bot Charging 0.005 S Bot Proj. Player Dist. 0.008
S Bot Damaged 0.005 S Player Pickup (Power) 0.008
S Player Proj. Count 0.003 S Player on Power 0.007
S Player Proj. Dist. 0.003 S Bot Coll. Above 0.005
S Bot Jumping 0.000 S Bot Jumping 0.000
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