
Learning DFAs from Sparse Data

Kristian Guillaumier

Supervisor: Dr. John Abela

Department of Artificial Intelligence, Faculty of ICT

University of Malta

This dissertation is submitted for the degree of

Doctor of Philosophy

January 2020





Declaration of Authentication

Student Name and ID: Kristian Guillaumier, 69478M

Course: Doctor of Philosopy

Title of Thesis: Learning DFAs from Sparse Data

I hereby declare that I am the legitimate author of this thesis and that it is

my original work. Except where specific reference is made to the work of others,

the contents of this dissertation are original. No portion of this work has been

submitted in support of an application for another degree or qualification of this

or any other university or institution of higher education. I hold the University of

Malta harmless against any third party claims with regard to copyright violation,

breach of confidentiality, defamation, and any other third party right infringement.

As a Ph.D. student, as per Regulation 49 of the Doctor of Philosophy Regu-

lations, I accept that my thesis be made publicly available on the University of

Malta Institutional Repository. This dissertation contains 58,513 words excluding

appendices.

29th January 2020

Student’s Signature Date



Acknowledgements

Working on a Ph.D. involves quite a bit of work, and I have been fortunate

enough to have the support of my family and friends all along the way.

My sincerest gratitude goes to my supervisor and friend, Dr. John Abela, who

was always there when the seas got too deep. I cannot possibly count all the

Saturday afternoons he set aside for me to meet and discuss new ideas, and help

me move forward. I am forever thankful for his immense dedication.

Towards the end of my work, I suffered from a rather unfortunate health prob-

lem which prevented me from functioning on top of my game. During this ordeal, I

found the support of Prof. Alexiei Dingli, my Head of Department at the time, as

well as Ms. Jacqueline Fenech at Human Resources whose understanding helped

make my work possible.

It is no exaggeration to say that none of this would have been possible without

the support of my wife, Rita, who shared this trying experience (and my inces-

sant mood swings) without even a hint of complaint. Thank you for your grace,

patience, and for believing – there is truly no place like home. My heart belongs

to my son, Jamie, who never fails to put a smile on my face. Thank you for

understanding while daddy was ‘writing his book’, and for distracting me when I

needed it most. You are the overwhelming pride of my life.

Kindness and a good heart go a long way. This I learnt from my parents to

whom this thesis is dedicated. I know that you have been waiting for this for a

long, long time, and that it means to you as much as it means to me. It is done

now. I love you for everything.

Kristian



Abstract

Regular inference is the task of identifying a Deterministic Finite-State Au-

tomaton (DFA) from a training set of positive and negative strings of a regular

language. This problem is known to become increasingly more difficult as the size

of the target DFA grows larger and as the training data becomes sparser. One of

the most studied algorithms for this task is the Evidence-Driven State Merging

(EDSM) algorithm due to Rodney Price which emerged as a winning algorithm in

the international Abbadingo One competition of 1997.

We focus on ‘Abbadingo-style’ problems (learning DFAs over binary alphabets

with training sets of various densities), and we present the results of a compre-

hensive analysis of how, and more importantly when, EDSM succeeds or fails in

identifying either the exact target DFA, or a low-error hypothesis with respect to

a test set. We do this by creating thousands of problem instances to study their

characteristics, as well as the behaviour of the state merging process. To support

this analysis, we have developed an extensive software framework consisting of

highly optimised, and parallelised, implementations of state merging algorithms,

as well as several visual and statistical analysis tools.

Motivated by the results and insights we obtained following this analysis, we

propose three methods each having the aim of improving on the generalisation

rate of EDSM on Abbadingo-style problems when the training data is sparse.

Our first method involves the development of an ensemble of monotonic, greedy

heuristics which, together, are able to outperform EDSM. This method is inspired

by Wolpert and Macready’s No Free Lunch theorems which roughly state that,

in general, no single heuristic will dominate all others over all problem instances.

This is indeed supported by the empirical evidence we have gathered during our

experimentation on various problem configurations. Associated with the ensemble

of heuristics, we have also identified a method which enables us to predict, with

a high degree of confidence, which of the individual heuristics in the ensemble

results in a low or zero-error hypothesis.



Our second approach, which we call the Delta Graph method, is based on the

observation that when a greedy heuristic selects sequences of merges, the initial

ones are especially critical. When a wrong choice is made, finding the target DFA

becomes impossible and the likelihood of finding a low-error hypothesis will be

greatly reduced. This method involves constructing and non-monotonically search-

ing in a structure representing a highly condensed subspace of possible merges.

This structure contains several short sequences of merges, where, with high ex-

perimental probability, at least one of them will consist of correct merges leading

to the target. These merges establish enough constraints on a partial hypothesis

that, when extended with a label-matching heuristic, will lead to the target DFA

or a low-error hypothesis.

Typical evolutionary approaches in DFA learning operate by attempting to

evolve a target DFA either as a transition matrix or by partitioning the states of

a Prefix Tree Acceptor (PTA). In our third method, we present an alternative ap-

proach which, instead, evolves short sequences of merges selected from a subset of

high state-reduction merges. As in the Delta Graph method, these short sequences

of merges establish enough constraints on a hypothesis, that when extended with

a label-matching heuristic, will, with high experimental probability, lead to the

target DFA or a low-error hypothesis.

To ensure a common baseline for comparison, our methods are evaluated on

target DFAs and training sets which have been constructed according to the Ab-

badingo One competition procedures. Our results show that each of the methods

we have developed outperforms EDSM. For example, on 64-state target DFA prob-

lems and symmetrically structurally complete training sets at the sparsest density

set by the Abbadingo One competition, while EDSM identifies low-error DFAs

approximately 15% of the time, our ensemble, Delta Graph, and evolutionary

methods do so about 26%, 43%, and 56% of the time respectively. We also obtain

considerably better generalisation rates on problem instances which are highly

adversarial to EDSM.

ii



Contents

1 Introduction 1

1.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Grammatical Inference Competitions . . . . . . . . . . . . . . . . . 5

1.2.1 The Abbadingo One DFA Learning Competition . . . . . . . 6

1.3 Motivation and Research Hypotheses . . . . . . . . . . . . . . . . . 7

1.4 Overview of Results and Contributions . . . . . . . . . . . . . . . . 11

1.5 Organisation of this Document . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 21

2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Strings and Languages . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Ordering of Strings . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Formal Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Finite-State Automata . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Non-Deterministic Finite-State Automata . . . . . . . . . . 30

2.4.2 Deterministic Finite-State Automata . . . . . . . . . . . . . 34

2.4.3 The Depth of a DFA . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Canonical Automata . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 DFA Minimisation . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Characterising the Search Space of DFA Learning 45

3.1 Introductory Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Quotient Automata . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Structural Completeness and Characteristic Sets . . . . . . . 46

i



3.1.3 The Maximal Canonical Automaton . . . . . . . . . . . . . . 48

3.1.4 The Prefix Tree Acceptor . . . . . . . . . . . . . . . . . . . 50

3.1.5 The Augmented Prefix Tree Acceptor . . . . . . . . . . . . . 51

3.2 Derived Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Some Important Results . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 The Border Set and its Properties . . . . . . . . . . . . . . . . . . . 58

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 A Survey of State Space Search Algorithms 64

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Time and Space Complexity, Completeness, and Admissibility 65

4.1.3 Open and Closed Lists . . . . . . . . . . . . . . . . . . . . . 66

4.2 Blind Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Iterative Deepening . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.4 Uniform-Cost Search . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Informed Search Algorithms . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Greedy Search . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Iterative Deepening A* Search . . . . . . . . . . . . . . . . . 74

4.3.4 Branch and Bound Techniques . . . . . . . . . . . . . . . . . 75

4.3.5 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Observations So Far . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Estimating the Cost of Backtracking . . . . . . . . . . . . . . . . . 78

4.5.1 Pitfalls and Refinements . . . . . . . . . . . . . . . . . . . . 81

4.5.2 Ideas for Improvement . . . . . . . . . . . . . . . . . . . . . 82

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 DFA Learning Algorithms 87

5.1 State Merging Algorithms . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 A Simple State Merging Example . . . . . . . . . . . . . . . 88

ii



5.1.2 Merge Paths and Graphs . . . . . . . . . . . . . . . . . . . . 90

5.1.3 The State Merging Operation . . . . . . . . . . . . . . . . . 90

5.1.4 Trakhtenbrot-Bardzin’s and Gold’s Algorithm . . . . . . . . 95

5.1.5 Regular Positive and Negative Inference . . . . . . . . . . . 96

5.1.6 Price’s Evidence Driven State Merging . . . . . . . . . . . . 102

5.1.7 Variants of EDSM . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.8 DFA Learning using Minimum Description Length . . . . . . 118

5.1.9 Parallel Beam Search (PBS, SAGE) . . . . . . . . . . . . . . 119

5.1.10 Ed-Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.11 TBW-EDSM . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.12 Some Remarks Regarding ‘Search Wrappers’ . . . . . . . . . 124

5.2 Other DFA Learning Methods . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Genetic Search and Swarm Intelligence . . . . . . . . . . . . 124

5.2.2 DFA Learning as Constraint Satisfaction . . . . . . . . . . . 128

5.2.3 Graph (Vertex) Colouring . . . . . . . . . . . . . . . . . . . 129

5.2.4 Satisfiability Solvers . . . . . . . . . . . . . . . . . . . . . . 130

5.2.5 Connectionist Approaches . . . . . . . . . . . . . . . . . . . 133

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Properties of State Merging 135

6.1 DFAs are Partitions, States are Blocks . . . . . . . . . . . . . . . . 135

6.2 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.1 The Initial Partition . . . . . . . . . . . . . . . . . . . . . . 137

6.2.2 Properties of the Join and Merge Operations . . . . . . . . . 137

6.2.3 Permitting, Blocking, Included, and Root Merges . . . . . . 142

6.2.4 Orphaned States . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Properties of Merge Paths . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Some Remarks Regarding EDSM . . . . . . . . . . . . . . . . . . . 158

6.5 Colour-Compatible Merges . . . . . . . . . . . . . . . . . . . . . . . 162

6.6 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Baseline Experiments and Methodology 170

iii



7.1 How Heuristics or DFA Learning Algorithms are Evaluated and

Analysed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Oracle-Assisted Heuristics and Paths . . . . . . . . . . . . . . . . . 175

7.3 Glossary of Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 The Abbadingo One Setup . . . . . . . . . . . . . . . . . . . . . . . 177

7.4.1 Creating Target DFAs . . . . . . . . . . . . . . . . . . . . . 177

7.4.2 Creating Training Sets . . . . . . . . . . . . . . . . . . . . . 178

7.4.3 Creating Problem Instances . . . . . . . . . . . . . . . . . . 180

7.5 Baseline Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.5.1 Expected APTA Sizes and Merges . . . . . . . . . . . . . . . 181

7.5.2 Presentation of Results . . . . . . . . . . . . . . . . . . . . . 183

7.5.3 Baseline EDSM and W-EDSM Performance . . . . . . . . . 184

7.5.4 Analysis of Oracle-Assisted Heuristics . . . . . . . . . . . . . 184

7.5.5 Non-Structurally Complete Training Sets . . . . . . . . . . . 186

7.5.6 Getting the First Merges Right . . . . . . . . . . . . . . . . 186

7.5.7 Reduction Curves and DFA Compression . . . . . . . . . . . 188

7.5.8 The APTA Reduction Table . . . . . . . . . . . . . . . . . . 190

7.5.9 Overlap Between Ideal Merge Paths and Merges in the APTA

Reduction Table . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5.10 Colour-Compatible Merge Positions . . . . . . . . . . . . . . 195

7.5.11 Merge Path Lengths . . . . . . . . . . . . . . . . . . . . . . 197

7.5.12 Summary of Results . . . . . . . . . . . . . . . . . . . . . . 198

7.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.6.1 An Ensemble of Heuristics . . . . . . . . . . . . . . . . . . . 199

7.6.2 The Delta Graph . . . . . . . . . . . . . . . . . . . . . . . . 204

7.6.3 Evolving Initial Merge Sequences . . . . . . . . . . . . . . . 210

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8 Evaluation and Results 218

8.1 Overview of the Experimental Setup . . . . . . . . . . . . . . . . . 220

8.1.1 Adversarial Setups . . . . . . . . . . . . . . . . . . . . . . . 221

8.2 Evaluating the Ensemble of Heuristics . . . . . . . . . . . . . . . . 222

8.2.1 Adversarial Setups . . . . . . . . . . . . . . . . . . . . . . . 224

iv



8.2.2 Performance on Unrestricted Problem Instances . . . . . . . 226

8.2.3 Observations and Discussion . . . . . . . . . . . . . . . . . . 227

8.3 Evaluating the Delta Graph . . . . . . . . . . . . . . . . . . . . . . 233

8.3.1 Adversarial Setups . . . . . . . . . . . . . . . . . . . . . . . 237

8.3.2 Discussion and Observations . . . . . . . . . . . . . . . . . . 238

8.4 Evaluating the Genetic Algorithm . . . . . . . . . . . . . . . . . . . 244

8.4.1 Adversarial Setups . . . . . . . . . . . . . . . . . . . . . . . 248

8.4.2 Discussion and Observations . . . . . . . . . . . . . . . . . . 249

8.5 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9 Conclusions and Future Work 259

9.1 Achievements and Contributions . . . . . . . . . . . . . . . . . . . . 260

9.1.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . 261

9.1.2 An Ensemble of Heuristics . . . . . . . . . . . . . . . . . . . 263

9.1.3 Adversarial Problem Instances . . . . . . . . . . . . . . . . . 263

9.1.4 Label-Matching Heuristics . . . . . . . . . . . . . . . . . . . 264

9.1.5 Colour-Compatible Merges . . . . . . . . . . . . . . . . . . . 264

9.1.6 The APTA Reduction Table . . . . . . . . . . . . . . . . . . 264

9.1.7 Getting the First Merges Right . . . . . . . . . . . . . . . . 265

9.1.8 The Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . 265

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 270

A Complete Results 285

A.1 Glossary of Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 286

A.2 32-State Target DFA Instances . . . . . . . . . . . . . . . . . . . . 289

A.2.1 n32d607e1024.sqlite . . . . . . . . . . . . . . . . . . . . . . . 289

A.2.2 n32d607e128 GA.sqlite . . . . . . . . . . . . . . . . . . . . . 290

A.2.3 n32d607e512 EdsmFailing.sqlite . . . . . . . . . . . . . . . . 290

A.2.4 n32d607e64 EdsmFailing.sqlite . . . . . . . . . . . . . . . . . 291

A.2.5 n32d607e512 NotStructComp.sqlite . . . . . . . . . . . . . . 293

A.2.6 n32d607e64 NotStructComp.sqlite . . . . . . . . . . . . . . . 293

A.2.7 n32d607e512 NoLoops.sqlite . . . . . . . . . . . . . . . . . . 294

v



A.2.8 n32d607e64 NoLoops.sqlite . . . . . . . . . . . . . . . . . . . 295

A.3 64-State Target DFA Instances . . . . . . . . . . . . . . . . . . . . 296

A.3.1 n64d1e1024.sqlite . . . . . . . . . . . . . . . . . . . . . . . . 296

A.3.2 n64d1e64 GA.sqlite . . . . . . . . . . . . . . . . . . . . . . . 298

A.3.3 n64d1e512 Unrestricted.sqlite . . . . . . . . . . . . . . . . . 298

A.4 128-State Target DFA Instances . . . . . . . . . . . . . . . . . . . . 300

A.4.1 n128d1e512.sqlite . . . . . . . . . . . . . . . . . . . . . . . . 300

B State Reduction Rates 301

C State Space Search Algorithms 304

D Contents of the Submitted Media 310

vi



List of Abbreviations

APTA Augmented Prefix Tree Acceptor – a tree constructed from both the pos-

itive and negative examples in the training set. The tree corresponds to a

DFA containing accepting, rejecting, and unlabelled states. 51

AV-K Aldous-Vazirani/Knuth – a method due to Cloteaux and Valentin that

combines Knuth-estimation with the GWTW algorithm to estimate proper-

ties of search trees. 83

BFS Breadth-First Search – a tree or graph search algorithm. 68

BnB Branch and Bound – a technique to solve optimisation problems. 75

BS Border Set – a set of automata in a lattice or space of automata which cannot

be generalised further. 60

DFA Deterministic Finite-State Automaton. See also FSA. 34

DFS Depth-First Search – a tree or graph search algorithm. 67

EDSM Evidence-Driven State Merging – a state merging heuristic developed by

Rodney Price. 7

FSA A Finite-State Automaton – an abstract machine used to recognise or gen-

erate strings in a language. 29

FSM See FSA. 29

GA Genetic Algorithm – a metaheuristic for solving optimisation problems in-

spired by natural selection. 125, 210

vii



GWTW Go With the Winners – is a method due to Aldous and Vazirani that

requires a polynomial number of samples to estimate the deepest leaf node

in a tree. 83

IDA* Iterative Deepening A* Search – a tree or graph search algorithm. 74

IDS Iterative Deepening Search – a tree or graph search algorithm. 68

LAT Lattice – a lattice of automata constructed from an MCA. 52

MCA Maximal Canonical Automaton – corresponds to the automaton having

the largest number of useful states to recognise the strings in the training

set it has been constructed for. An MCA is typically non-deterministic. 48

NFA Non-Deterministic Finite-State Automaton. See also FSA. 30

NFL No Free Lunch – the no free lunch theorems for optimisation by Wolpert

and Macready. 199

PBS Parallel Beam Search – technique used by Juillé for DFA learning. 7

PTA Prefix Tree Acceptor – a tree constructed from only the positive examples

in the training set. The tree corresponds to a DFA containing accepting and

unlabelled states. 50

RPNI Regular Positive and Negative Inference – a state merging algorithm due

to Oncina and Garcia. 96

S-EDSM Shared Evidence-Driven State Merging – a state merging heuristic due

to Spina. 113

SAGE Self-Adaptive Greedy Estimate – a parallel beam search algorithm due to

Juillé and Pollack. 119

SAT Satisfiability – depending on the context, refers to the Boolean satisfiability

problem, or the property of a formula being satisfiable. 2

viii



SCD Smallest Consistent DFA – this a decision problem of whether there exists

a DFA having at most n states which recognises the positive strings and

rejects the negative strings in a given training set. 2

UCS Uniform-Cost Search – a tree or graph search algorithm. 70

W-EDSM Windowed-EDSM – uses a windowing technique to improve the run-

time performance of EDSM. 112

ix



Chapter 1

Introduction

Several real-world objects can be represented as sequences of symbols. For in-

stance, a musical composition can be thought of as a sequence of notes, and DNA

sequences are strings over the alphabet A, C, G, and T. Likewise, English sentences

are sequences of characters over an alphabet or words in a dictionary. Unfortu-

nately, in many cases we do not have a formal description of how these sequences

should be put together, but we instead have several examples of correctly con-

structed instances. For example, while we might not have an exact definition of

what makes baroque music what it is, we have large collections of musical com-

positions in that style. These ideas lead to the concept of grammatical inference1

which is the task of learning a formal grammar, or class description, from examples

of strings which belong and do not belong to the language that it specifies.

In this dissertation, we are specifically interested in regular inference where

we are concerned with identifying deterministic finite-state automata (DFAs) over

binary alphabets from training sets consisting of both positive and negative strings.

To concretise this idea with an example, suppose that we are told that the strings

ab, aab, aaab, and aaaab all belong to some unknown regular language L, and

the strings λ, a, b, aa, bb, and aaa do not belong to it. After examining this

information, we may reasonably deduce that the regular language is L = aa∗b while

noting that there are, in fact, infinitely many languages that are consistent with

1Sometimes referred to as Grammatical Induction, Language Identification, or Syntactic

Pattern Recognition.

1



our training data2. Nonetheless, for the time being, we will unburden ourselves

with this detail and just assume that the unknown language is vaguely defined as

the most ‘straightforward’ one.

At the risk of stating the obvious, the task of finding an automaton that is

consistent with a training set is usually trivial. All that needs to be done is to

construct one that exactly encapsulates the training set, and thereby learning it

by rote3. In the context of learning, however, such a result is of little use – the

automaton would be perfectly capable of correctly classifying all the strings in

the training set but would be unable to generalise to unseen examples. Using

Occam’s principle, a more interesting and useful problem is that of finding an

automaton which not only is consistent with the training data but also has the

minimum number of states. For typical problem instances, these minimum state

automata would necessarily contain cycles which would recognise infinite languages

that correspond to more general hypotheses. Unfortunately, this task is NP-

complete [Gol78, Ang78]. Reformulated as a decision problem, the question is:

given positive and negative sets S+ and S− respectively, does there exist a DFA

with at most n states such that S+ is in the language and S− is not? This decision

problem is generally referred to as the smallest consistent DFA problem (SCD)

[dlH10].

Showing that our problem is NP-complete involves (i) showing that the problem

is in the class NP, and (ii) that any NP-hard problem can be transformed into our

problem in polynomial time4. Showing that the the problem is in NP follows from

the fact that a set of strings S+ and S− can be checked for consistency with an

automaton having at most n states in polynomial time. The next step in showing

NP-completeness involves reducing the Boolean satisfiability (SAT) problem to our

decision problem. This is indeed possible, and the reader is referred to [dlH10] for

this reduction. We also suggest [Gol78], [Ang78], and [Pit89] for a comprehensive

study on the asymptotic complexity of the regular inference problem.

2Assuming that there is no bound on the language description.
3Depending on the context, such an automaton would be the Maximal Canonical Automaton

or the Prefix Tree Acceptor, whose purpose and construction will be discussed later on.
4By virtue of Cook’s theorem, showing that the Boolean satisfiability (SAT) problem can be

transformed into our problem in polynomial time is enough [GJ79].

2



1.1 A Simple Example

In this section we examine the basic method of how many algorithms operate with-

out introducing any complex notation or subtleties. The idea can be summarised

as follows:

• There is a target regular language L, specified by a DFA, which is unknown

to us.

• The language L is defined over a binary alphabet Σ = {a, b}.

• The only information we are given about the language L is a finite set of

strings that belong to it (positive training examples) and a finite set of strings

that do not (negative training examples). Together, these are referred to as

the training set.

• A prefix tree acceptor (an acyclic DFA, see Section 3.1.4) corresponding to

the most specific hypothesis is constructed from this training set.

• A pair of states is selected from this hypothesis (usually using a greedy

heuristic) and those states are merged together according to certain criteria

and constraints. This will create a new hypothesis that is more compact

and, typically, introduces cycles which make it more general than the one

we started with. The criteria by which a merge is performed, ensure that the

resulting hypothesis remains consistent with the training data (it does not

mislabel training strings). If the merge results in an inconsistent hypothesis,

we say that the merge is invalid, discard it, and choose a different one.

• This non-backtracking process of pair selection and merging will be repeated

until there are no more valid merges possible. At this point, we have con-

structed a final hypothesis which is, hopefully, either the target DFA or one

which has a low-error with respect to some test set.

We illustrate the process with the example shown in Figure 1.1. Starting

from (i) we have a very specific hypothesis that recognises a finite language, and

out of all the possible states that may be merged, we select the pair q1 and q3.

Merging them gives us DFA (ii) which is now more compact, more general, and

3



also recognises an infinite language due to the introduction of cycles. Furthermore,

and critical to our task, all the strings accepted by DFA (i) are also accepted by

that in (ii). At every step we ensure that our new hypothesis is consistent with

the training data, and continue until no further merge is possible. We hope that

the final hypothesis is the target DFA we are looking for.

Merge q1 with q3 

Merge q4 with q5 

Merge q1 with q2 

And so on...

q0

q1
a

q4

b

q5
a

q2
a

q3b

(i)

q0

q
1,3

a

q4

b

q5
a

q2
a

b (ii)

q0

q
1,3

a

q
4,5

b

q2
a

b

a

(iii)

q0

q
1,2,3

a

q
4,5

b

a,b

a

(iv)

Figure 1.1: A very simple state merging example.

4



1.2 Grammatical Inference Competitions

Learning DFAs from training data has been an active research area for over four

decades. During this time, a number of challenges were proposed by the academia

with the intention of promoting the development of state-of-the-art algorithms,

and to encourage new research in the area.

In 1997, the Abbadingo One DFA learning competition was made public by

Barak Pearlmutter and Kevin Lang [Abb97, LPP98]. This consisted of a set of

benchmark problems (of varying difficulty) for researchers to develop and test new

algorithms with. The two winning algorithms by Rodney Price and Hugues Juillé

represented a significant improvement over existing methods5. Soon after Ab-

badingo One, the Gowachin learning competition was launched in 1998 by Kevin

Lang, Barak Pearlmutter, and François Coste [Gow98]. The primary difference

between Gowachin and Abbadingo One was that Gowachin allowed researchers to

generate their own problem instances in terms of target DFA and training set size,

as well as to introduce noise in the training data. In 2004, the GECCO competi-

tion was organised by Simon Lucas to learn DFAs from noisy samples [GEC04].

David Combe, Colin de la Higuera, and Jean-Christophe Janodet organised the

Zulu competition for learning DFAs from membership queries [CdlHJ10]. The

aim of the competition was to develop methods which are able to obtain the best

classification rates from a fixed number of queries to an Oracle. The StaMinA

competition for learning DFAs with large alphabets was published in 2010 by

Walkinshaw et al., where the hardness of each benchmark problem was deter-

mined by the sparsity of the training data as well as the alphabet size [WBD+10].

The winning algorithm by Marijn Heule and Sicco Verwer represented a significant

improvement over the state-of-the-art on the challenging setting of large alphabets

[HV13].

The grammatical inference community has also organised other competitions

focusing on other types and classes of problems. In 2004, the Omphalos com-

petition was organised by Brad Starkie, François Coste, and Menno van Zaanen

to learn context-free languages. Tenjinno was organised by Bradford Starkie,

Menno Zaanen, and Dominique Estival which was held in conjunction with the

5These we will be covered in detail later in this dissertation

5



International Colloquium on Grammatical Inference (ICGI) in 2006 [SZE06]. The

primary aim of the competition was to promote the development of grammatical

inference algorithms for use in machine translation systems. The Sequence Pre-

diction Challenge, or SPiCe, was a competition organised in 2006 for guessing the

next symbol in a sequence [SPI16, BEL+17]. Specifically, the challenge involved

15 problems made up of a combination of synthetic and real-world data, where the

aim is to predict the five most likely next symbols in a prefix. Sicco Verwer, Rémi

Eyraud, and Colin de la Higuera organised the Probabilistic Automata Learning

Competition (PAutomaC) in 2012. This was the first online challenge for learning

non-deterministic probabilistic finite state machines from artificial data generated

using either Hidden Markov Chains or probabilistic automata [PAu12, VEdlH14].

1.2.1 The Abbadingo One DFA Learning Competition

In this dissertation, we are interested in learning DFAs over binary alphabets

from sparse training data. As such, the procedure we will use to generate prob-

lem instances for experimentation and analysis will follow that specified in the

Abbadingo One competition (the Gowachin challenge also used this procedure).

The Abbadingo One competition presented the experimental setup for sixteen

benchmark problems where the task is to infer a target DFA from a given training

set. A learner would be considered to have solved one of the problems if it is

able to identify a DFA which performs with an error rate of no more than 1%

on a test set6. This test set is, of course, kept secret – our hypothesis is sent

to an ‘Oracle’ which simply returns a pass/fail answer. Participants are allowed

multiple submissions to the Oracle as long as they do not “flood” the system with

more than 25 requests in a day [Abb97]. The difficulty of each of the sixteen

classes of problems is distinguished by the size of the target DFA and the density

or sparseness of the training set given. Large DFAs with sparse training sets are

harder to identify than small DFAs having denser training sets [LPP98]. Out of

the sixteen problems, four of them were already known to be easily solvable and

the competition focused on the remaining twelve harder ones. The following table

6From here onwards, any hypothesis which has an error of ≤ 1% on some test set will be

referred to as a low-error hypothesis.

6



shows the winning algorithms for each of these twelve problem instances.

Training Set Density

III dense II I sparse

DFA Size

64 states Juillé-PBS Juillé-PBS Juillé-EDSM+Search

128 states Juillé-PBS Juillé-PBS Unsolved

256 states Price-EDSM Juillé-EDSM Unsolved

512 states Price-EDSM Price-EDSM Unsolved

Table 1.1: Results of the Abbadingo One DFA learning competition [LPP98].

Juillé-PBS is a parallel beam search technique developed by Hugues Juillé et

al. [JP98b], Price-EDSM is an evidence-driven greedy heuristic by Rodney Price

[LPP98], Juillé-EDSM represents the case where both Juillé’s PBS and Price’s

EDSM solved the problem, and Juillé-EDSM+Search is a method that augments

Price’s EDSM with Juillé’s search technique to perform better on sparse data sets.

Both Juillé’s and Price’s methods will be described later on in Chapter 5.

1.3 Motivation and Research Hypotheses

Grammatical inference is a hard problem [Gol78, Ang78], and advances in the

area are bound to contribute to both the theoretial and applied machine learning

community. Moreover, the practical applications are many, with excellent surveys

conducted by de la Higuera [dlH05], Stevenson and Cordy [SC14], and Wieczorek

[Wie17]. A few highlights include:

• In robotics, work has been done in map learning [RS93, Rie99].

• Grammatical inference techniques have been applied to several structural

pattern recognition problems such as fingerprint identification, object recog-

nition in industrial settings, and image contour analysis [Mic86, BS90].

• Induction of automata has been applied to the task of speech recognition

and generating natural language models [GSVG90, TDH00, SZE06].

7



• In bioinformatics, identifying patterns in DNA or protein sequences is a

major area of study. Grammatical inference methods have been applied to

the task of DNA sequence classification and the analysis of protein structure

[SBH+94, WRS+99, PCD19].

• In data mining, we see grammar learning algorithms used to learn user be-

haviour from web navigational patterns [BL00].

• In software engineering, work has been done in the fields of inference of

general purpose or domain-specific programming languages, and the analysis

of execution traces [CRML73, ABL02, DJA08].

As recently as the StaMinA learning competition, EDSM is considered to be a

state-of-the-art algorithm for identifying DFAs over binary alphabets from sparse

training data [HV13]. As such, we will focus our attention on studying the be-

haviour of EDSM, as well as develop methods to improve on its generalisation

rate. Our two research hypotheses are:

1. Can EDSM be combined with other monotonic, greedy heuristics to

produce an ensemble that will out-perform EDSM on Abbadingo-style

problem instances?

Discussion: A monotonic, greedy heuristic makes merge choices starting from an

APTA until it reaches a final hypothesis which cannot be reduced further. These

choices represent a single, non-backtracking path in the search space of merges,

and different heuristics which reach different final hypotheses on the same problem

instance, correspond to different inductive biases in the search. We conjecture

that an ensemble of such heuristics is viable approach, since the size of the final

hypothesis (we are searching for the minimum state DFA) can be used to choose

which one of the hypotheses returned by the ensemble is most likely to be correct.

Furthermore, such a method is appealing since the computational overhead is a

linear function in the number of heuristics in the ensemble.

8



2. To what extent can non-monotonic search methods, such as ‘search

wrapper’ techniques and genetic algorithms, be further improved over

EDSM to perform better on Abbadingo-style problem instances?

Discussion: Non-monotonic search methods have been extensively investigated by

the regular inference community. For example, Oliveira and Silva’s BIC backtrack-

ing algorithm poses DFA learning as a constraint satisfaction problem [OMS98],

Juillé and Pollack’s SAGE wraps a stochastic search around a state merging algo-

rithm [JP98b], and Lang’s Ed-Beam wraps a deterministic search around EDSM

[Lan99]. As a result of both Cicchello’s work [Cic02], as well as our preliminary

experiments, we know that the initial merge choices made are especially critical

since they constrain a hypothesis in ways which will either considerably increase

the likelihood of finding a good solution, or make it much less likely (if not impos-

sible). To investigate this research hypothesis, we will study the characteristics

of merges in the entire space of merges to determine whether we can identify a

subspace of high-quality merges in which we can search for short sequences of

such high-quality merges. These sequences would then be extended with a label-

matching heuristic, such as EDSM, to obtain a final hypothesis.

Our work can be further broken down into the following sub-tasks:

1. Replicate the Abbadingo One procedure for creating target DFA instances

and training sets. Our procedure needs to be validated against published

results to ensure that we are comparing like with like.

2. In order to perform a comprehensive analysis of state merging algorithms

and EDSM, we need to experiment on a large number of problem instances of

various configurations. To support this, we need to develop highly optimised

implementations of these algorithms, as well as a suite of statistical analysis

and visualisation tools.

3. Implement the EDSM algorithm to establish a baseline for its generalisation

rate. Using this baseline, we can compare the behaviour and performance

of our methods.

9



4. Thoroughly investigate current state-merging techniques in DFA learning

with an emphasis on the EDSM heuristic. Under which condition does

EDSM work? When and why does it fail?

5. Study the search space of DFA learning in order to better understand how

the state merging process works.

6. Identify whether and which characteristics of the target DFAs and training

data affect the outcomes of a learning algorithm. For instance, to which

degree do training sets which are not structurally complete (see Section

3.1.2) negatively affect the generalisation rate of EDSM?

7. Whenever a state merging algorithm is converging to the target DFA (or a

close approximation of it), the number of states in the current hypothesis is

being reduced at each step. Is this rate of reduction consistent over different

problem instances? Can this rate of reduction be used to help prune the

number of state pairs that need to be considered at every step of the merging

process?

8. When EDSM is scoring merges for selection, several merges may be tied with

the same score, and a tie-breaking policy is required. If an ‘Oracle’ is used

to help break ties optimally, can we establish an experimental upper bound

on the performance of EDSM?

9. Every merge made, typically, assigns a labelling to a previously unlabelled

state in the hypothesis thereby establishing constraints on future merges. It

follows that selecting ‘good’ merges (an unlabelled state has been labelled

properly) during the initial steps of the merging process will increase the

likelihood of identifying the exact target DFA or a low-error hypothesis. To

which extent are these initial merges in a sequence important?

10. Is there a relationship between the length of a merge path (the sequence of

merges starting from the initial to the final hypothesis) and the likelihood

of identifying either the target DFA or a low-error hypothesis?

11. Compare the merge sequences selected by an ideal, Oracle-assisted heuristic

10



to those selected by EDSM to determine when, where, and why EDSM is

selecting an incorrect merge.

1.4 Overview of Results and Contributions

In this dissertation we have performed a comprehensive analysis of the behaviour

the EDSM state merging algorithm. To support this analysis, we have developed

an extensive software framework consisting of highly optimised implementations

of state merging algorithms as well as statistical analysis and visualisation tools.

Using our framework, we created thousands of Abbadingo-style problem instances

and investigated both their characteristics and the behaviour of many state merg-

ing algorithms when applied to them. Motivated by the results we have obtained

by this analysis, we developed three distinct methods which significantly improve

on the generalisation rate of EDSM.

Analysis of State Merging and EDSM

• We studied the proportion of labelled states in the prefix tree acceptors for

problem instances at the lowest Abbadingo density for target DFAs ranging

from 32 to 512 states. We determined that, as the size of the target DFA

increases, the proportion of labelled states decreases – even at the same

density (see Table 7.4). In other words, at the lowest Abbadingo density,

learners are, proportionally, given fewer strings to infer the target from as

the size of the target DFA increases.

• Each state in an APTA maps to a state in the target DFA of the correspond-

ing problem instance. This observation is the basis of graph colouring DFA

learning techniques such as Coste and Nicolas’ [CN97] and Costa Florêncio

and Verwer’s [CFV12] vertex colouring methods which attempt to find such

a mapping. Specifically, if we are searching for an n-state target, there are

n colours which need to be assigned to the states in the APTA subject

to constraints. Of course, during DFA learning, when the target DFA is

unknown to us, this mapping is not known. However, for the purpose of

analysis (rather than for learning), this mapping can be obtained from an

11



Oracle and is useful to determine when a heuristic such as EDSM makes an

incorrect, colour-incompatible merge choice – such a merge would be incor-

rect because we would be mapping distinct states in the target DFA to the

same state. While discussing colour-compatible merges in detail in Section

6.5, we emphasise that we are not using colour-compatibility for the pur-

poses of DFA learning like in [CN97] or [CFV12] but, rather, as a tool to

reason about what good and bad merges are (in the sense that a sequence

of colour-compatible merges represents the best-case behaviour, and always

leads from the APTA to the exact target DFA).

• Using ‘Oracle-assisted’ colour-compatible merges, we used an optimal, non-

deterministic, tie-breaking strategy for EDSM to empirically establish an

upper bound to its best-case performance. For instance, for 64-state target

DFA problems at the lowest density and a random tie-breaking strategy,

EDSM will identify a low-error hypothesis 15% of the time over 1024 prob-

lem instances. On the other hand, if an optimal tie-breaking strategy is used

(EDSM always selects a colour-compatible merge from the highest scoring

rank of merges), we obtain a rate of about 24% (see Table 7.5). This estab-

lishes a limit of how much we can (experimentally) expect EDSM to improve

if we focus on resolving ties more effectively.

• During analysis, we can use an Oracle to help is only select colour-compatible

merges which always lead to to the exact target DFA. This allows us to

construct what we refer to as ideal merge paths which can be compared to

the paths constructed by EDSM. This allows us to determine when, where,

and why EDSM selects a wrong pair of states to merge. Furthermore, we can

determine the likelihood with which the correct, colour-compatible merge is

outside of the first rank of highest EDSM scoring merges (i.e. EDSM has no

hope of ever selecting the correct merge).

• In [CK02, Cic02], Cicchello et al. discuss the importance of selecting the

first merges in a sequence of merges correctly. In Section 7.5.6, we develop

on this idea by using colour-compatible merges to determine the effect of

getting the first k merges in a sequence correct. For 32-state target DFA

12



problems at the lowest training set density, while EDSM finds low-error

hypotheses at a rate of about 16% over 1024 problem instances, ensuring

that the first eight merges are colour-compatible, increases our success rate

to about 55%. These results suggest that expending effort in ensuring that

the initial merges are correct, will considerably increase our likelihood of

discovering low-error hypotheses.

• We have identified three cases which adversely affect the performance of

EDSM. These cases are when (i) the training data is not symmetrically

structurally complete7 with respect to the target DFA, (ii) when the tar-

get DFA does not contain loop transitions from some state to itself, and

(iii) when the training data yields a prefix tree acceptor, where the high-

est EDSM scoring rank of tied merges does not contain a colour-compatible

merge (i.e. the first merge selected by EDSM is guaranteed to be wrong).

Our experiments show that there is a considerable likelihood that randomly

constructed problem instances (using the Abbadingo procedure) will result

in at least one of these adversarial scenarios (see Table A.13), and that any

of these cases negatively impact EDSM’s generalisation rate (see Chapter

8).

• Using a non-deterministic ‘Oracle-assisted’ heuristic, which always selects

colour-compatible merges, we experimentally determined that for problem

instances of n-state target DFAs, the exact target is never found in fewer than

n + 1 merge steps, and that low-error hypotheses are always found in close

to n+ 1 steps (see Sections 7.5.4 and 7.5.11). Moreover, we experimentally

determined that there is some merge path length n+ k for some k ≥ 1 after

which EDSM will never find a low-error hypothesis. This observation is

useful to us in two ways. Firstly, the length of a merge path is a good proxy

for the quality (in terms of error over a test set) of a hypothesis returned

by a state merging algorithm. Secondly, when performing a non-monotonic

search, we can confidently abandon path extensions (and save computational

7The concept of structural completeness will be covered later on. For the time being it is

sufficient to point out that training sets which are not structurally complete are quite likely to

occur and the situation is adversarial to heuristics such as EDSM.

13



effort) which have grown too long as they would, almost certainly, end with

high-error hypotheses.

• Whenever a merge is performed, the size of the hypothesis decreases. By

analysing the state reduction rates in merge paths which lead to the tar-

get DFA, we notice that the initial merges chosen in these paths are always

‘high state reduction’ merges. For example, in Section 7.5.7 and Table B.1,

we consider 64-state target DFA problems, and observe that when we are

converging to the correct target DFA, each of the first eight merges in the

path reduce the size of the hypothesis by at least an average of 200 states.

This result is useful to us because, in the set of all possible merges available

at any point, there are significantly more low reduction merges than there

are high reduction merges. This allows us to simply ignore these low re-

duction merges in the initial steps of the construction of a merge path and

concentrate our searches on the far smaller pool of high reduction merges.

• Determining the exact number of states which will be reduced at each and

every merge step is computationally expensive (as the merge needs to be

actually performed). To deal with this, we have developed the APTA Re-

duction Table structure which contains the set of merges in an APTA which

have reduced its size by at least some number of states (see Section 7.5.8).

While the merges in this structure do not correspond exactly to the high

reduction merges we discussed earlier, the process of constructing the table

is substantially more efficient than computing the ‘true’ reductions at each

step, the reduction table still contains far fewer merges than the set of all

possible merges, and, more importantly, our experiments show that the ta-

ble still contains enough good, colour-compatible, merges to get us past the

critical first merge steps when constructing a merge sequence (see Section

7.5.9).

14



An Ensemble of Heuristics8

The first method we have developed in this dissertation is inspired by Wolpert

and Macready’s No Free Lunch Theorems for Optimisation [WM97] which roughly

state that, in general, no single heuristic (inductive bias) will dominate all oth-

ers over all data sets. During our experimentation we realised that while cer-

tain greedy heuristics had worse success rates than others, they were still able

to identify low-error hypotheses when the ‘better’ ones could not and vice-versa.

Consider a heuristic called Reduction which scores merges according to how many

states have been reduced in the hypothesis (the more states reduced, the higher

the score). While this heuristic performs worse than EDSM, it is still able to

identify low-error hypothesis on problem instances where EDSM does not. When

experimenting with 1024 problem instances of 32-state target DFAs at the lowest

training set density, we observe that EDSM finds a low-error hypothesis in 161 out

of the 1024 cases (≈ 16%) while Reduction does so in only 64 cases (≈ 6%). How-

ever, either EDSM or Reduction manages to find a low-error hypothesis in 191

out of the 1024 experiments (≈ 19%). In other words, the symmetric difference is

not empty, and is illustrated in the Venn diagram in Figure 1.2 below.

129 32 30

EDSM
only

Reduction
only

EDSM and Reduction

191

EDSM or Reduction

Figure 1.2: Venn diagram showing the performance of EDSM and Reduction.

Furthermore, while we were studying the effects of target DFA and training

set structure on the learning process, we noticed that training sets extracted from

targets having certain characteristics were adversarial to some greedy heuristics.

For example, in Section 7.6.1, we see that when the target DFA does not contain

8Not to be confused with the ensemble of automata method used by Heule and Verwer in

dfasat [Die00, HV13].

15



loop transitions from a state to itself, the performance of EDSM is greatly reduced,

while in Table 8.8 we see that a carefully selected ensemble of heuristics mitigates

this problem. These observations led to the development of an ensemble of heuris-

tics which, together, outperform EDSM to varying, yet significant, degrees. For

example, for 64-state problems at the lowest density, EDSM can discover low-

error hypotheses in roughly 15% of 1024 problem instances, while the ensemble

of heuristics succeeds in 26% of the same problems. Moreover, the ensemble of

heuristics is much less negatively affected than EDSM when the training set is not

symmetrically structurally complete with respect to the target DFA.

The Delta Graph

Our second method is based on the observation that when a greedy, monotonic,

heuristic is selecting a sequence of merges, the initial ones are especially critical.

When a wrong choice is made, there will be no hope of ever finding the target DFA,

and the chances of finding a low-error hypothesis will also be greatly reduced. On

the other hand, getting the first few merges right can be shown to constrain the

hypothesis well enough to allow us to proceed with a much greater likelihood

of succeeding. Here, we present a non-monotonic algorithm which significantly

reduces the size of the search space, and allows us to focus our efforts on finding

a good sequence of initial merges. In brief, the method involves:

• Building a so called APTA Reduction Table (see Section 7.5.8) consisting

of high-reduction merges. This structure contains significantly fewer merges

than the entire space of possible merges for a problem instance.

• Building a subspace of short merge sequences, called the Delta Graph, con-

taining quotient DFAs (see Section 3.1.1). We do this by only considering

merges in the APTA reduction table and using problem-specific parameters

to constrain the size of the subspace.

• Searching in the Delta Graph (the subspace of merges) for a sequence of

merges which, when extended using a label matching heuristic, results in a

low-error hypothesis.

The exact method for constructing the Delta Graph is given in Section 7.6.2,

16



and the method is thoroughly evaluated in Section 8.3 where we observe that the

Delta Graph method gives significantly better results than EDSM. For example,

for 64-state target DFA problems at the lowest density, EDSM has a success rate

of around 15% over 1024 problem instances, while our method succeeds 43% of the

time. Moreover, this method is much less impacted by problem instances which

are highly-adversarial to EDSM. In our evaluation we also compare our results to

those reported for SAGE and Ed-Beam by Lang in [Lan99].

An Evolutionary Algorithm

Previous attempts at using evolutionary algorithms to deal with the grammatical

inference problem for regular languages focused on either directly evolving a repre-

sentation of the target DFA, or partitioning the states of an initial hypothesis into

a quotient DFA (see Definition 3.1). The literature suggests that these methods

do not perform especially well for target DFAs having many states [Dup94, LR05].

In our third method, we present an evolutionary approach which rather than

searching for the target DFA directly, evolves an initial, short sequence of high-

quality merges over a reduced, yet expressive, region of the search space. In

this method, a fixed-length chromosome is constructed representing a sequence of

merges selected from a high state reduction subspace of merges called the APTA

reduction table. The fitness of a chromosome is then measured by extending

the sequence of merges it contains using the W-EDSM (see Section 5.1.7) label

matching heuristic as shown in Figure 1.3 below. Specifically, the fitness is the

size of the resulting hypothesis, where smaller hypotheses correspond to fitter

chromosomes, and a fitness of zero indicates that we have identified a DFA equal

in size to the target DFA.

17



Merge
1

Merge
2

Merge
3

Merge
k

Chromosome k-sequence Hypo-
thesis

Chromosome is a set of
k merges selected from the

APTA reduction table

...
extended using W-EDSM

Figure 1.3: A chromosome consists of a sequence of k merges, and the fitness is

evaluated by extending it using W-EDSM.

While the properties of the state merging operator ensure that several opera-

tions such as crossover and mutation are straightforward and very efficient (merge

order is unimportant, see Chapter 6), the fitness function is computationally ex-

pensive and can hinder scalability for very large target DFAs. Notwithstanding

this, we observe very promising results. For 32-state problems at the lowest den-

sity, EDSM has a low-error hypothesis success rate of around 14%, while our

method succeeds in over 66% of the cases. The generalisation rate of our evolu-

tionary method also scales well (unlike other evolutionary methods found in the

literature) for 64-state target problems where we manage to find low-error hy-

potheses in around 56% of all our test cases, whereas EDSM manages to do so

around 14% of the time. This method is also significantly more resilient to prob-

lem instances which are highly adversarial to EDSM. These include, but are not

limited to, cases when the training data is not symmetrically structurally com-

plete, and when the target DFA does not contain any loop transitions from a state

to itself.

1.5 Organisation of this Document

This document is logically organised in two parts. The first chapters are ded-

icated to covering all the background concepts related to the regular inference

problem, reviewing the relevant literature, and describing the behaviour of several

state merging algorithms including EDSM and its variants. In the second part,

we describe our methodologies, their implementation details, provide a thorough

evaluation and discussion, and conclude this dissertation.

18



Chapter 2: Preliminaries

The mathematical notation and key concepts related to sets, strings, finite state

automata, and regular languages are covered here.

Chapter 3: Characterising the Search Space of DFA Learning

Here, we introduce important properties, theorems, and formal concepts related

to the search space of DFA learning.

Chapter 4: A Survey of State Space Search Algorithms

In this chapter, we examine several state space search techniques which will be

important both when describing existing state merging algorithms, as well as when

designing new ones. We also discuss methods which will be useful for understand-

ing the characteristics of search spaces.

Chapter 5: DFA Learning Algorithms

Here we give a detailed description of several state merging algorithms, heuristics,

and their variants. Algorithms including Trakhtenbrot+Bardzin [TB73], RPNI

[OG92], EDSM [LPP98], SAGE [JP98b], and Ed-Beam [Lan99] are covered here.

We also introduce techniques such as Blue-Fringe and windowing to improve search

performance. The second part of the chapter is dedicated to covering other meth-

ods including the application of evolutionary techniques, SAT solving, recurrent

neural networks, and graph colouring to our inference problem.

Chapter 6: Properties of State Merging

In this chapter, we expand on the properties of the state merging operation, as

well as on those of the EDSM scoring heuristic. We will also discuss the in-

teractions between merges, the characteristics of merge sequences, and describe

colour-compatible merges as a tool for understanding how merge selection works.

The concepts covered in this chapter will be important during the design of the

three methods we are proposing later in this dissertation.

Chapter 7: Baseline Experiments and Methodology

We describe the Abbadingo One experimental setup, create a number of baseline

data sets for evaluation, study the effectiveness and behaviour of EDSM, confirm

19



to which extent the first merges in a merge path are critical, analyse the behaviour

of merge paths, correlate low-error hypotheses to the length of merge paths, iden-

tify problem instances which are adversarial to EDSM, and introduce the APTA

reduction table structure. The remainder of the chapter is dedicated to providing

a detailed account of each of the three methods we develop in this dissertation.

Chapter 8: Evaluation and Results

Each of the three methods we have developed in this dissertation is evaluated

against large data sets of problem instances, where we use EDSM and W-EDSM

as baselines. Our methods are also evaluated against training sets which have

been designed to be highly adversarial to EDSM. Finally, our results are discussed

and summarised with respect to the strengths and weaknesses of each.

Chapter 9: Conclusions and Future Work

Our achievements and contributions are framed with respect to the research hy-

potheses we presented in this chapter. We conclude this dissertation by proposing

the future directions this work leads to.

20



Chapter 2

Preliminaries

Sets, strings, finite-state machines, and formal languages are the foundations upon

which most of our work will be based. Consequently, in this chapter, we will cover

the key concepts, operations, and notation which we will be using throughout this

document while ensuring that any notation we use is consistent with that found in

the literature. We highly recommend [Kel95], [Lin01], and [dlH10] for an excellent

and thorough exposition on these preliminary topics.

2.1 Sets

Capital Roman letters such as P , Q, S, and X will be used to refer to sets.

|S| denotes the cardinality or size of the set S.

P(S), P (S), 2S, or 2|S| are used to denote the power set of the set S.

Given the sets P and Q, set subtraction is denoted by P\Q or P − Q and yields

the set containing the elements in P but not in Q.

P ⊆ Q and P ⊂ Q denote that P is a subset of Q, and that P is a proper subset

of Q respectively.

Likewise, P ⊇ Q and P ⊃ Q denote that P is a superset of Q, and that P is a

proper superset of Q respectively.

A partition π of a set S is a collection of disjoint subsets, called blocks, whose

21



union is S. As an example, all the five partitions π1, . . . , π5 of the set S = {1, 2, 3}

are shown in Figure 2.1.

1 2

3

π1

1,2 3

π2

2,31

π3

1,3 2

π4

1,2,3

π5

Figure 2.1: All the partitions of the set S = {1, 2, 3}.

Definition 2.1: Partitions of a Set

A partition of a finite set S is a set of k subsets, called blocks, denoted by

π = {B1, . . . , Bk} such that:

S = B1 ∪B2 ∪ . . . ∪Bk

and

Bi ∩Bj = ∅ | 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j.

1,2 3

Partition

1-block2-block

Figure 2.2: Blocks in a partition.

A block containing n elements is called an n-block, and given some s ∈ S, the

block B that contains the element s for some partition π is denoted by B(s, π).

So if S = {a, b, c} and π = {{a} , {b, c}}, then B(b, π) = {b, c}.

22



Consider two partitions π1 and π2 of some set S. The partition π1 is said to

be finer than π2, if every block in π1 is a subset of some block in π2. This relation

is written as π1 � π2. Dually, the partition π2 is said to be coarser than π1 and

we write π1 � π2. In Figure 2.1, every block in the partition π1 is a subset of

some block in π2, so π1 is finer than π2. This ‘finer-than’ relation possesses the

characteristics of subset inclusion, where π � π is always true (reflexive), π1 � π2

and π2 � π3 implies that π1 � π3 (transitive), and π1 � π2 and π2 � π1 implies

π1 = π2 (antisymmetric). In other words, the relation is a partial order over the

set of all partitions of a set and gives rise to a lattice. An example of a lattice for

the partitions of the set S = {1, 2, 3, 4} is shown in the Hasse diagram in Figure

2.3 below.

{1},{2},{3},{4}

{1,2},{3},{4}{1,3},{2},{4}{1,4},{2},{3}{2,3},{1},{4} {2,4},{1},{3} {3,4},{1},{2}

{1,2,3},{4}{1,2,4},{3} {1,2},{3,4}{1,3,4},{2}{1,3},{2,4}{1,4},{2,3} {2,3,4},{1}

{1,2,3,4}

Figure 2.3: The lattice for the set S = {1, 2, 3, 4}.

2.2 Strings and Languages

Σ denotes a finite set of symbols and is called an alphabet.

λ denotes the empty string.

Σ∗ is called the Kleene closure and denotes the set of all strings including λ that

can be generated over the alphabet Σ, while Σ+ is called the positive closure and

denotes the set of all strings excluding λ. We elaborate on these operations in

Section 2.3.

The lower Roman letters such as a, b, and c denote symbols in the alphabet, while

23



the higher Roman letters such as u, v, and w denote strings in Σ∗.

|u| denotes the length of the string u.

The concatenation of the strings u and v is denoted by u · v or simply by uv.

The string u is a prefix of v if ∃w | uw = v, and u is a suffix of v if ∃w | wu = v.

A language L is a subset of Σ∗.

Given the languages L1 and L2, language subtraction denoted by L1\L2 or L1−L2

results in the language containing all the strings in L1 but not in L2.

Given the languages L1 and L2, language concatenation denoted by L1�L2 is the

language L = {xy | x ∈ L1, y ∈ L2}.

A positive sample of some language L denoted by S+ is a subset set of strings

belonging to L. In other words, S+ ⊆ L.

A negative sample of some language L denoted by S− is a subset set of strings not

belonging to L. In other words, S− ⊆ (Σ∗ − L).

Pref(s) denotes the set of all prefixes of the string s. Likewise, Pref(S) =

{u | ∃v, uv ∈ S} denotes the set of all prefixes of all the strings in S.

L/u = {v | uv ∈ L} denotes the left quotient of L by u. Then L/u 6= ∅ iff u ∈

Pref(L). As an example, consider L = {λ, a, aa, aaa, aaaa, . . .} and let u = a.

L/a is then {λ, a, aa, aaa, aaaa, . . .}. In other words, L/a is the set of all suffixes

that complete a to give a word in L (in this example, L and L/a happen to be

the same set).

2.2.1 Ordering of Strings

Let ≤alpha denote a total order on letters in the alphabet Σ. Various orders can

be defined over strings Σ∗. For example:

24



Definition 2.2: Prefix Ordering of Strings [dlH10]

Prefix order is denoted by ≤pref and is defined as:

x ≤pref y if ∃w ∈ Σ∗ | y = xw

In other words, x ≤pref y when x is a prefix of y. For example, a ≤pref
ab ≤pref abc ≤pref abcd. We note the limitation of prefix ordering: the string

ab and cd are incomparable.

Definition 2.3: Lexicographic Ordering of Strings [dlH10]

Lexicographic order is denoted by ≤lex and is defined as:

x ≤lex y if x ≤pref y or (x = uaw, y = ubz | a ≤alpha b)

In other words, x ≤lex y when the strings are in prefix order, or they share a

common prefix u and the next character a in x is ≤alpha the next character b

in y. Consider, ab ≤lex ac. Here the common prefix is a, the next characters

are b and c respectively, and b ≤alpha c. Both the tails w and z are λ.

Definition 2.4: Length-Lexicographic Ordering of Strings [dlH10]

Length-lexicographic order is denoted by ≤length−lex and is defined as:

x ≤length−lex y if |x| < |y| or (|x| = |y| and x ≤lex y)

Note that for strings aab and ab, we see that aab ≤lex ab but ab ≤length−lex aab.

2.3 Formal Languages

A language is called a formal language if the strings which belong to it are well-

formed with respect to a specific set of rules called a grammar. As an example,

consider the language defined over the alphabet Σ = {a, b} and the rule: contains

all the strings consisting of zero or more a’s followed by zero or more b’s. The

25



strings λ, a, b, aa, abb all belong to the language, whereas the string abbaa does not

because it does not conform to our grammar rule. Of course, for all but the most

trivial languages, using English (or any other natural language) descriptions to

define grammars may result in undesired ambiguity. To resolve this, our grammars

must be defined formally.

Definition 2.5: Formal Grammars [Cho56]

A grammar G is a 4-tuple G = (N,Σ, P, S) where:

• N is a finite set of non-terminal symbols. Non-terminal symbols are

ones which may be replaced or expanded, and are denoted by upper-

case letters such as A, B, and C.

• Σ is a finite set of terminal symbols. Terminal symbols are the alphabet

of our language and may not be replaced or expanded. Like alphabets,

terminal symbols are denoted by lower-case letters such as a, b, and c.

• P is a set of production rules. A production rule has the form (Σ ∪

N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗ where ∗ is the Kleene star (see Definition

2.6). The rule is read as: zero or more terminal or non-terminal sym-

bols, followed by a single non-terminal symbol, followed by zero or more

terminal or non-terminal symbols, may be rewritten as zero or more ter-

minal or non-terminal symbols. Each rule describes how to replace or

expand non-terminal symbols.

• S ∈ N is a non-terminal symbol which is distinguished as the starting

symbol.

26



Definition 2.6: Kleene Star [EFT96]

Kleene star, Kleene closure, or the Kleene operator is a unary operation on

a set of strings or on an alphabet which is denoted by the ∗ symbol, and is

defined as follows:

• Let S be a set of strings or symbols.

• Let S0 = {λ}, and let S1 = S (basis).

• Si+1 = {uv : u ∈ Si and v ∈ S} for i > 0 (recursion).

• The Kleene star S∗ on the set S is:

S∗ =
⋃
i≥0

Si = S0 ∪ S1 ∪ S2 ∪ . . .

In other words, S∗ is the set of strings obtained by concatenating zero or

more elements of S. We note that there are an infinite number of strings in

the set S∗ since there is no restriction on the length of the strings in it. As an

example, consider the set Σ = {a, b}. Then Σ∗ is the set of all possible strings

over the alphabet Σ and gives {λ, a, b, aa, ab, ba, bb, aaa, . . .}.

Definition 2.7: Kleene Plus [EFT96]

Kleene plus, or positive closure is a unary operation on a set of strings or on

an alphabet which is denoted by + and is defined similarly to Kleene star but

excludes the empty string λ. In other words, S+ = S∗ − {λ}, or equivalently:

S+ =
⋃
i≥1

Si = S1 ∪ S2 ∪ . . .

27



Consider the grammar G = (N,Σ, P, S) where N = {S,A}, Σ = {a, b}, and

the production rules are:

1. S → λ,

2. A→ λ,

3. S → aS,

4. S → bA, and

5. A→ bA.

The string aabbb may be generated by the following sequence of production

rule applications beginning with the non-terminal starting symbol: S
3−→ aS

3−→

aaS
4−→ aabA

5−→ aabbA
5−→ aabbbA

2−→ aabbbλ = aabbb where the numbers above

the arrows indicate which production was used to replace a non-terminal symbol.

This grammar is the formal specification of the contains all the strings consisting

of zero or more a’s followed by zero or more b’s rule we mentioned earlier.

In 1956, Chomsky described a containment hierarchy, called the Chomsky hi-

erarchy, which defines four classes of formal grammars in decreasing order of com-

plexity [Cho56]. This complexity is based on the forms the production rules of

the grammar are permitted to have. These four classes of grammars are called

Type 0, Type 1, Type 2, and Type 3 grammars which respectively recognise re-

cursively enumerable, context-sensitive, context-free, and regular languages. The

containment of these grammars is illustrated in Figure 2.4, and the forms that

the production rules for each class of grammar can take are shown in Table 2.1.

We note that there are two types of regular grammar forms: right-regular gram-

mars, and left-regular grammars. A regular grammar is strictly either right or

left-regular.

28



Regular

Context-free

Context-sensitive

Recursively enumerable

Type 3

Type 2

Type 1

Type 0

Figure 2.4: The Chomsky hierarchy.

Grammar Language recognised Production rule form

Type 0 Recursively enumerable αAβ → γ

Type 1 Context-sensitive αAβ → αγβ

Type 2 Context-free A→ α

Type 3
Regular (right) A→ x and A→ xB

Regular (left) A→ x and A→ Bx

Where:

- x is a single terminal symbol.

- A and B are non-terminal symbols.

- α and β are possibly empty strings of terminals and/or non-terminals.

- γ is a non-empty string of terminals and/or non-terminals.

Table 2.1: Production rule forms in the Chomsky hierarchy.

2.4 Finite-State Automata

A finite-state automaton (FSA), also called a finite-state machine (FSM), is an

abstract machine used to recognise or generate strings in a language. FSAs are

a mathematical model consisting of a finite number of states, transitions between

them, and actions. FSAs are usually illustrated as graphs where one of the states

is distinguished as the starting state and any state may be marked as an accepting

one. A starting state is visualised by a null arrow incident to it, and an accepting

state is drawn with a double outline. For instance, in the FSA shown in Figure

29



2.5, the starting state is q0, and the state q1 is labelled as an accepting state.

This FSA recognises the strings {a, aa, aaa, aaaa, . . .} since for every string in this

set, a walk in the graph starting at the starting state always reaches an accepting

state.

q0 q1
a

a

Figure 2.5: The finite-state automaton for the language a+.

When an FSA is used to recognise strings in a language (i.e. it is able to

answer a yes/no question as to whether a string is in a language or not) it is called

an acceptor. When an FSA is used to generate strings in a language it is called a

generator. It should be noted that while a generator can generate all the possible

strings in a language, this process will never terminate when the language under

consideration is infinite (as is typically the case).

We note that there exists a one-to-one correspondence between regular gram-

mars (described in Section 2.3) and the languages recognised by an FSA [HMU07].

Specifically, regular languages are equivalently defined by both regular grammars

and FSAs.

2.4.1 Non-Deterministic Finite-State Automata

A non-deterministic finite-state automaton (NFA) is an automaton where each

state may have zero, one, or more transitions corresponding to a symbol in the

alphabet. We can formally define NFAs as follows:

30



Definition 2.8: Non-Deterministic Finite-State Automata [Lin01,

dlH10]

A non-deterministic finite-state automaton is a 5-tuple A = 〈Σ, Q, q0, δ, F 〉

where:

• Σ is an alphabet, and Q is a finite set of states.

• q0 ∈ Q is the initial state (some NFAs define a set I ⊆ Q of initial states

whereas here we are only concerned with NFAs having one initial state).

• δ : Q × (Σ ∪ {λ}) → 2Q is a transition function (here we are including

empty transitions whereas in some applications, the transition function

of NFAs excludes the empty transition).

• F ⊆ Q is the set of final states.

In grammatical inference problems, it is common to label final states as being

of two types – final-accepting states FA and final-rejecting states FR. States which

are neither accepting states nor rejecting states are called unknown, neutral, or

unlabelled states. In these cases F = FA ∪ FR and our automaton would then

be defined as a 6-tuple A = 〈Σ, Q, q0, δ, FA, FR〉. Such automata are usually

called unbiased automata since they embed both positive and negative information

[AS94b]. In our diagrams, unknown states will be denoted by a single black outline,

final-accepting states will be denoted by a double black outline, and final-rejecting

states by a thick black outline. To illustrate, consider the NFA show in Figure

2.6, where:

• Σ = {a, b}

• Q = {q0, q1, q2}

• q0 = q0

• δ =


δ(q0, a)→ q1

δ(q1, b)→ q1

δ(q1, b)→ q2


• FA = {q2}, FR = ∅

31



q0 q1
a

b

q2
b

Figure 2.6: A non-deterministic finite-state automaton.

NFAs can also have λ-transitions. A λ-transition, sometimes called an empty

transition, allows the automaton to ‘move’ from one state to another without

consuming any input (when recognising) or without emitting any output (when

generating). An example NFA with a λ-transition is shown in Figure 2.7 below.

q0 q1
λ

Figure 2.7: A finite-state automaton with an empty transition.

Transition functions may be composed. With respect to the NFA shown in

Figure 2.6, processing the string abb starting from the state q0 leads us to the state

q2. This is equivalent to the composition δ(δ(δ(q0, a), b), b)→ q2. Since q2 is a state

in FA, we say that the string abb is accepted by the NFA. For conciseness, we also

use the notation δ(q, u) to represent the composition of transition functions when

starting from state q after processing the string u (i.e. we use recursion). Using

this notation for the example we just presented, we would write δ(q0, abb)→ q2.

Definition 2.9: Languages Recognised by an Automaton [dlH10]

The language LFA
(A) recognised by an automaton A is the set of all strings

u ∈ Σ∗ where δ(q, u) ∈ FA starting from q0. For brevity, L(A) is sometimes

used to denote LFA
(A).

Definition 2.10: Languages Recognised by Rejection [dlH10]

The language LFR
(A) recognised by rejection by an automaton A is the set

of all strings u ∈ Σ∗ where δ(q, u) ∈ FR starting from q0.

32



It should be noted that even though the sets FA and FR are disjoint, there

may still be strings that belong to both LFA
(A) and LFR

(A). An example of this

is shown in Figure 2.8 where the string ab is accepted and rejected by the same

NFA.

q0 q1
a

q3b

q2

b

Figure 2.8: The string ab is both accepted and rejected by the NFA.

Definition 2.11: Consistent NFAs [dlH10]

An NFA A is consistent if LFA
(A) ∩ LFR

(A) = ∅. The preceding example

shown in Figure 2.8, shows how the NFA is not consistent since the string ab

is ambiguously both accepted and rejected by it.

Definition 2.12: Equivalent NFAs [Lin01]

Two NFAs A and A′ are equivalent if LFA
(A) = LFA

(A′) and LFR
(A) =

LFR
(A′).

The acceptance of a string u = a1a2 . . . al by an automatonA defines a (possibly

non-unique) sequence of l+ 1 states q0, . . . , ql such that q0 is the starting state, ql

is a final state, and qi+1 ∈ δ(qi, ai+1) for 0 ≤ i ≤ l − 1 defines the successor state.

These l + 1 states are said to be reached by the path p = q0 → q1 → . . . → ql

for string u, whereas the l transitions are said to be exercised by it. Given a

set of strings S, the set of transitions exercised by the set is the union of all the

transitions exercised for each u ∈ S.

A language L(A) accepted by an automaton A is the set of strings accepted

by A. A state q ∈ Q of an automaton A is said to be useful if there is a string

u ∈ L(A) for which the state q can be reached for some acceptance of u. In

other words, q is on the state path that u takes when being accepted. The state is

33



otherwise said to be useless, meaning that it is not reached by any string u ∈ L(A).

2.4.2 Deterministic Finite-State Automata

A deterministic finite-state automaton (DFA) is an automaton A, where ∀q ∈ Q

and ∀a ∈ Σ, each transition δ(q, a) has at most one member for each symbol

a ∈ Σ. If each transition δ(q, a) has exactly one member, we call the deterministic

automaton complete.

Definition 2.13: Deterministic Finite-State Automata [Lin01, dlH10]

A deterministic finite-state automaton is a 5-tuple A = 〈Σ, Q, q0, δ, F 〉 where:

• Σ is an alphabet, and Q is a set of states.

• q0 ∈ Q is the initial state.

• δ : Q× Σ→ Q is a transition function.

• F ⊆ Q is the set of final states.

Again, it is useful to make a distinction between final-accepting states, and

final-rejecting states in DFAs which would then be defined as a 6-tuple A =

〈Σ, Q, q0, δ, FA, FR〉. Similarly, such an automaton would embed both positive and

negative information and is called an unbiased automaton [AS94b]. Additionally,

while the distinction between a DFA and an NFA has practical implications, they

both have exactly the same expressive power. Any NFA can be converted into a

DFA using the method of power set construction although it should be noted that

this construction could result in an exponential increase in the number of states

required [Lin01].

2.4.3 The Depth of a DFA

The depth of a DFA is the maximum over all states of the length of the shortest

string which leads to that state. More specifically, let q1, q2, . . . ∈ Q be the states

in a DFA, and let φ : Q→ N be a function which returns the length of the shortest

34



string from the starting state leading to some state in Q. The depth of a DFA is

max(φ(q1), φ(q2), . . .).

2.4.4 Canonical Automata

A canonical automaton A(L) is the deterministic automaton having the minimal

number of states required to recognise a language L. It should be noted that any

automaton recognising L having the same minimal number of states as A(L) is

isomorphic to A(L).

Definition 2.14: Canonical Automata [DMV94]

Let A(L) = 〈Σ, Q, q0, δ, F 〉 be the automaton having the minimal number

of states required to recognise the language L. A(L) is called the canonical

automaton of L and is defined as follows:

• Q = {L/u : u ∈ Pref(L)},

• q0 = L/λ,

• F = {L/u : U ∈ L}, and

• δ(L/u, a) = L/ua where u, ua ∈ Pref(L).

Any automaton can be reduced to its equivalent canonical form, and this re-

duction is useful for a variety of reasons. These include:

• The obvious computational and space efficiencies when dealing with au-

tomata having fewer states,

• It is unique, and

• It allows us to target only one automaton when learning a language.

2.4.5 DFA Minimisation

Minimisation is a technique used to obtain a canonical DFA from some input DFA.

The process involves removing and merging states from the original DFA such that

35



the language it accepts (or rejects) is not affected. The following types of states

are considered during this process:

1. Unreachable states – useless states that are are not reachable from the start-

ing state. A state q is unreachable if no string u ∈ Σ∗ exists such that

q = δ(q0, u).

2. Non-distinguishable states – two states p and q are indistinguishable if δ(p, u) ∈

F implies that δ(q, u) ∈ F , and δ(p, u) /∈ F implies that δ(q, u) /∈ F , for all

u ∈ Σ∗. Equivalently, if ∃u ∈ Σ∗ such that δ(p, u) ∈ F and δ(q, u) /∈ F then

p and q are distinguishable by the string u.

In the DFA shown in Figure 2.9, states q4 and q5 are unreachable from the

starting state q0. Clearly, a DFA without unreachable states is simply the original

DFA with the unreachable states as well as their incident and adjacent transitions

deleted. The algorithm to identify unreachable states is shown in Algorithm 2.1 at

the end of this section. We can now turn our attention to identifying states that

are indistinguishable. Distinguishability and indistinguishability have the proper-

ties of equivalence relations. That is, if states p and q are indistinguishable, and

states q and r are indistinguishable, then p and r must also be indistinguishable –

indeed, all the states p, q, r are indistinguishable. An algorithm called Mark that

finds all distinguishable states is adapted from [Lin01] to accommodate both ac-

cepting and rejecting final states in unbiased automata, and is given in Algorithm

2.2 at the end of this section. To improve readability, we make use of a helper

function TypeOf(State) → {Accepting,Rejecting,Unknown} that given

some state, tells us whether it is a final accepting state (i.e. state ∈ FA), a final

rejecting state (i.e. state ∈ FR), or otherwise.

36



q0 q1

q3

q2

q4 q5

a
a

b
b

a

b

b

a

Figure 2.9: A DFA having the unreachable states q4 and q5.

Consider the DFA shown in Figure 2.10 from [Lin01] to illustrate the behaviour

of Algorithm 2.2:

q0

q1

q2

q3

q4

a

b
a

b

b

b

a a

a,b

Figure 2.10: An example showing how the Mark algorithm works.

Mark starts by eliminating unreachable states from the DFA. This DFA has

no unreachable states, so it remains as it is. Next, Mark generates all unordered

and distinct pairs of states, and marks them as distinguishable when their states

have different types. In our example, Table 2.2 shows which pairs of states are

marked as distinguishable.

37



Pair State types Action

(q0, q1) (unlabelled, unlabelled)

Unmarked.(q0, q2) (unlabelled, unlabelled)

(q0, q3) (unlabelled, unlabelled)

(q0, q4) (unlabelled, accepting) Mark as distinguishable.

(q1, q2) (unlabelled, unlabelled)
Unmarked.

(q1, q3) (unlabelled, unlabelled)

(q1, q4) (unlabelled, accepting) Mark as distinguishable.

(q2, q3) (unlabelled, unlabelled) Unmarked.

(q2, q4) (unlabelled, accepting)
Mark as distinguishable.

(q3, q4) (unlabelled, accepting)

Table 2.2: State pairs in the DFA shown in Figure 2.10 are marked as distinguish-

able.

38



Finally, the algorithm iterates through all remaining unmarked pairs, and for

each one, generates new successor pairs using δ and a ∈ Σ. If a new pair is

marked as distinguishable, so is the original. The process is repeated until no new

pairs have been marked. To illustrate, we consider the unmarked pair (q0, q1) and

generate new successor pairs using δ for each possible symbol as shown in Table

2.3.

Sym Pair New Pair Action

a (q0, q1) (δ(q0, a), δ(q1, a)) = (q1, q2) (q1, q2) is unmarked, so the origi-

nal pair (q0, q1) remains unmarked

too.

b (q0, q1) (δ(q0, b), δ(q1, b)) = (q3, q4) (q3, q4) is marked, so we mark the

original pair (q0, q1) too.

Table 2.3: Generating successors for the pair (q0, q1).

This procedure can be proven to find all distinguishable pairs of states in any

DFA [Lin01], and yields the following pairs of distinguishable pairs of states in our

example: (q0, q1), (q0, q2), (q0, q3), (q0, q4), (q1, q4), (q2, q4), (q3, q4). The remaining

indistinguishable pairs are (q1, q2), (q1, q3), (q2, q3). Using our (in)distinguishability

equivalence relation, states q1, q2, q3 are then all indistinguishable from one an-

other. We can now wrap up our DFA minimisation task using a method called

Reduce. The basis for Reduce is the partitioning of our set of states Q into blocks

that satisfy the following partitioning properties :

1. Any state q ∈ Q appears in exactly one block, and

2. All the states in a block are indistinguishable from each other, and

3. States in a different block are distinguishable.

Since all the states in a block are indistinguishable, they can be ‘grouped’ into

one state without affecting the language recognised by our DFA. Continuing our

example where we found q1, q2, and q3 to be indistinguishable, we would then

get the following partition: {{q0}, {q1, q2, q3}, {q4}}. The procedure for Reduce is

39



presented in Algorithm 2.3 at the end of this section. Applying Reduce to our

example, we create the states for the blocks {q0}, {q1, q2, q3}, {q4} of our partition:

q0 q
1,2,3

q4

. . . and derive the following transitions for A′:

δ′ =



δ′(q0, a) → q1,2,3

δ′(q0, b) → q1,2,3

δ′(q1,2,3, a) → q1,2,3

δ′(q1,2,3, b) → q4

δ′(q4, a) → q4

δ′(q4, b) → q4



. . . to finally obtain our minimised DFA A′:

q0 q
1,2,3

q4

a

b

a a,b

b

We refer readers to [Lin01] for a proof of correctness for the Reduce procedure,

as well as to [Alq97] for a further discussion on the minimisation of unbiased

automata.

40



Algorithm 2.1 Finding unreachable states ([Lin01])

Input: A DFA A = 〈Σ, Q, q0, δ, FA, FR〉.

Output: A set of unreachable states in A from q0.

1: Reachable ← {q0}

2: Current ← {q0}

3: repeat

4: Next ← {}

5: for q ∈ current do

6: for c ∈ Σ do

7: Next ← Next ∪ {p : p = δ(q, c)}

8: end for

9: end for

10: // Don’t visit states we know to be reachable.

11: Current ← Next - Reachable

12: // States in Current are definitely reachable.

13: Reachable ← Reachable ∪ Current

14: until Current is empty

15: return Q\Reachable

41



Algorithm 2.2 Mark (adapted from [Lin01])

Input: A DFA A = 〈Σ, Q, q0, δ, FA, FR〉.

Output: A set of pairs of distinguishable states.

1: Remove all unreachable states. // Using Algorithm 2.1.

2: // Generate all unordered pairs (p, q) such that p 6= q.

3: // Note that we have n2+n
2 unordered pairs by the triangle number method.

4: // So we get n2+n
2 − n = n2−n

2 unordered pairs such that p 6= q.

5: // If the states in the pair (p, q) have different types, they are distinguishable.

6: for i = 1 . . . |Q| do

7: for j = i+ 1 . . . |Q| do

8: p ← Q[i]

9: q ← Q[j]

10: if typeOf(p) 6= typeOf(q) then

11: Mark the pair (p, q) as distinguishable.

12: end if

13: end for

14: end for

15: repeat // Mark remaining pairs.

16: for i = 1 . . . |Q| do // Loop through all unordered and distinct pairs.

17: for j = i+ 1 . . . |Q| do

18: p ← Q[i]

19: q ← Q[j]

20: if (p, q) is already marked then continue // Skip already marked.

21: for c ∈ Σ do

22: pc ← δ(p, c)

23: qc ← δ(q, c)

24: if (pc, qc) is marked as distinguishable then

25: Mark the pair (p, q) as distinguishable too.

26: end if

27: end for

28: end for

29: end for

30: until No new pairs have been marked as distinguishable

31: return All pairs that have been marked as distinguishable.

42



Algorithm 2.3 Reduce (adapted from [Lin01])

Input: A DFA A = 〈Σ, Q, q0, δ, FA, FR〉.

Output: A minimal DFA A′ = 〈Σ, Q′, q′0, δ′, F ′A, F ′R〉 where L(A) = L(A′).

1: Use Mark to find all the distinguishable and indistinguishable states.

2: Using our ‘partitioning properties’ Partition the state set Q into blocks B.

3: // Create a new state for each block of indistinguishable states.

4: for each block {qi, qj, . . . , qk} ∈ B do

5: Create a state qi,j,...,k in A′

6: end for

7: // Construct transitions.

8: for each transition δ(q, a)→ q′ in A do

9: {qi, qj, . . . , qk} ← the set that q belongs to

10: {ql, qm, . . . , qn} ← the set that q′ belongs to

11: // Without creating duplicate transitions. . .

12: Add the rule δ′(qi,j,...,k, a)→ ql,m,...,n to A′

13: end for

14: // Initial state.

15: The initial state in A′ is the one that contains q0 in A.

16: // Final states.

17: The accepting states in A′ are the ones that contain the states q ∈ FA in A.

18: The rejecting states in A′ are the ones that contain the states q ∈ FR in A.

19: return A′

43



2.5 Summary

In this section, we reviewed the notation and concepts relating to sets, strings,

and finite-state machines which we will use throughout this dissertation. We

also discussed regular languages, and described the types of finite-state machines

which are relevant to our work. The algorithm for reducing an automaton to its

canonical form has been elaborated on since it is one of the basic components

necessary for constructing and studying data sets conforming to the Abbadingo

One competition procedure.

44



Chapter 3

Characterising the Search Space

of DFA Learning

In this chapter, we investigate the search space associated with learning DFAs,

primarily referring to the work of Dupont et al. [DMV94] and de la Higuera

[dlH10], as well as that by Fu et al. [FB75]. The concepts covered in this section

constitute the ‘building blocks’ of DFA learning algorithms. We will be discussing:

• Derived and quotient automata: given an automaton and some partition of

its states, that partition can be used to derive another automaton from the

first.

• The structural completeness of a training set with respect to an automa-

ton: this property represents a condition which is required for the exact

identification of the automaton.

• The maximum canonical automaton: the most specific NFA (hypothesis)

embedding the positive strings in a training set.

• The prefix tree acceptor and the augmented prefix tree acceptor : the most

specific DFA (hypothesis) respectively embedding, either the positive strings

in a training set, or the positive and negative strings in a training set.

• The search space of automata and its border set (the deepest automata

in the search space such that no further generalisation would result in an

automaton consistent with the training set).

45



• We also discuss a number of important properties regarding these concepts

and structures.

3.1 Introductory Concepts

3.1.1 Quotient Automata

Consider an automaton A having states Q, as well as a partition π on those states.

This partitioning gives rise to an automaton A/π called a quotient automaton

which is formally defined as follows:

Definition 3.1: Quotient Automata [DMV94]

If A = 〈Σ, Q, q0, δ, F 〉 is an automaton, then A/π = 〈Σ, Q, q0, δ, F 〉 is an

automaton derived from A with respect to the partition π and is called a

quotient automaton. Quotient automata are defined as follows:

• Q′ = {B(q, π) | q ∈ Q},

• q′0 = B(q0, π),

• δ′ : Q′ × Σ → 2Q
′ | ∀B,B′ ∈ Q′ and ∀a ∈ Σ, B′ ∈ δ′(B, a) is defined iff

∃q, q′ ∈ Q, q ∈ B, q′ ∈ B′ and q′ ∈ δ(q, a).

• F ′ = {B ∈ Q′ | B ∩ F 6= ∅}.

The states in Q that are in the same block B of π are said to be merged

together. As an example, consider the automaton shown in Figure 3.1 (i) and the

partition π = {{q0}, {q1}, {q2}, {q3, q4}}. We say that the automaton 3.1 (ii) is

derived from 3.1 (i) with respect to π and the states q3 and q4 are merged together.

3.1.2 Structural Completeness and Characteristic Sets

A positive sample S+ is said to be structurally complete with respect to an au-

tomaton A if there exists an acceptance of the strings in S+ by A such that

[DMV94]:

46



q0

q1 q2

q3 q4

a
a

b
a

q0

q1 q2

q
3,4

a
a

b

a

(i) (ii)

Figure 3.1: A DFA (i) and the derived quotient automaton (ii) with respect to the

partition π = {{q0}, {q1}, {q2}, {q3, q4}}.

• Every transition of A is exercised, and

• Every final state of A is used as an accepting state.

Consider the DFA shown in Figure 3.2. The sample S+ = {aa, ba, aaa, aabaa}

is not structurally complete with respect to it since the final state q0 is not reached

by any string in the sample, and the sample S+ = {λ, aa, aaa, aab} is not struc-

turally complete either since the transition δ(q0, b) = q1 is never exercised. On

the other hand, S+ = {λ, aa, ba, aaa, aab} is structurally complete since all the

final states are reached and all the transitions in the DFA are exercised. We can

extend the concept of structural completeness to symmetrical structural complete-

ness1 where in the case of biased automata (see Section 2.4.2), we also take into

account a negative sample S−. Specifically, we require that every final rejecting

state is reached by some string in S− and that every transition is exercised by

some string in S = S+ ∪ S− [Alq97, dlH10].

q0

q1

q2

b

a

a

b

a

Figure 3.2: This DFA is structurally complete with respect to S+ =

{λ, aa, ba, aaa, aab} but not with respect to S+ = {λ, aa, aaa, aab}.

1From this point onwards, whenever we refer to the structural completeness of some DFA

with respect to a sample S = 〈S+, S−〉, we always mean it to be in the symmetrical sense.

47



Consider a class of languages C. The characteristic set for a learning algorithm

and a language L ∈ C is the set of strings S+ ⊆ L and S−∩L = ∅ such that when-

ever the algorithm runs with the input 〈S+, S−〉 it outputs a correct representation

of L [Gol67, Dup96, OG02]. Moreover, the representation found does not change

if new strings are added to S+ or S− [GLVdP12]. We note that the language iden-

tification in the limit model [Gol67] establishes that an algorithm identifies a class

of languages C in the limit2 if and only if every language in the class has associated

with it a characteristic set for that algorithm. An algorithm for constructing a

polynomial characteristic set3 for certain classes of state merging algorithms may

be found in [GLVdP12].

3.1.3 The Maximal Canonical Automaton

A maximal canonical automaton (MCA) with respect to a positive sample S+

is denoted by MCA(S+) and corresponds to the acyclic automaton having the

largest number of useful states that recognises the strings in S+ [DMV94].

One may observe that MCA(S+) is a star-shaped automaton having one

branch for each string in S+ and is almost always non-deterministic. As an ex-

ample, consider S+ = {aa, ab, bb, abb} which gives the MCA shown in Figure 3.3.

Note that each state in an MCA corresponds to every non-empty prefix of S+ plus

the state qλ.

2Language identification in the limit is a formalism due to Gold which roughly states that a

learner will make a finite number of mistakes before converging to a correct solution [Gol67].
3The size of the characteristic set is polynomial with respect to the size of the target DFA.

48



Definition 3.2: Maximal Canonical Automaton [dlH05]

Let S+ = {s1, s2, . . . , sn} be a positive sample. LetMCA(S+) = 〈Σ, Q, q0, δ, F 〉

denote the maximal canonical automaton of S+ which is defined as follows:

• Σ is the alphabet over which S+ is defined,

• Q = {qiu : u ∈ Pref(si) and u 6= λ} ∪ {qλ},

• q0 = qλ,

• δ(qλ, a) = {qia : a ∈ Pref(si)} , ∀i ∈ [n],∀a ∈ Σ,

• δ(qiu, a) = {qiua : ua ∈ Pref(si)} ,∀i ∈ [n],∀a ∈ Σ,

• F = {qsi} ,∀i ∈ [n].

qλ

qa1

qaa1

qb3

qbb3

qa2 qab2qa4qab4qabb4
a b

b

b

abb

a

a

Figure 3.3: The MCA for S+ = {aa, ab, bb, abb}. The superscript indicates the

index of the string in S+ that passes through the state, whereas the subscript

indicates the prefix of the string in S+ that passes through it.

49



3.1.4 The Prefix Tree Acceptor

A prefix tree acceptor (PTA) with respect to a positive sample S+ is denoted by

PT A(S+) and corresponds to the quotient automaton MCA(S+)/π where π is

defined as B(q, π) = B(q′, π) iff Pref(q) = Pref(q′). In other words, PT A(S+) is

obtained by merging the states inMCA(S+) that have a common prefix [Dup94],

[CN97]. An alternative and equivalent definition is shown in Definition 3.3 next.

It can be seen that this construction makes PT A(S+) a deterministic automaton.

The PTA for S+ = {aa, ab, bb, abb} is shown in Figure 3.4 and shows how the

states in the corresponding MCA are merged together.

qλ

qa1 qa2 qa4

qaa1

qb3

qbb3qab2 qab4

qabb4

b

b

b

b

a

a

Figure 3.4: The PTA for S+ = {aa, ab, bb, abb}. The superscript indicates the

index of the string in S+ that passes through the state, whereas the subscript

indicates the prefix of the string in S+ that passes through it.

50



Definition 3.3: Prefix Tree Acceptor [dlH05]

A prefix tree acceptor embedding a positive sample S+ is denoted by PT A(S+)

and is defined as follows:

• Q = {qu : u ∈ Pref(S+)},

• q0 = qλ,

• ∀ua ∈ Pref(S+) and ∀a ∈ Σ, δ(qu, a) = qua,

• F = {qu : u ∈ S+}.

3.1.5 The Augmented Prefix Tree Acceptor

Intuitively, an augmented prefix tree acceptor (APTA) is the superposition of

PT A(S+) and PT A(S−) and is denoted as APT A(S) where S = 〈S+, S−〉. The

example in Figure 3.5 shows the PTA (i) for S+ = {a, b, aab, abb}, the PTA (ii)

for S− = {ba, bba, baa}, and the APTA (iii) which is the superposition of (i) and

(ii). A formal definition of an APTA is given in Definition 3.4.

q0

q1 q2

q3

ba

a

q4

b

q7

b

q8

b

(i)

q0

q2

q5

b

a

q6

b

q10

a

q9

a

(ii)

q0

q1 q2

q3 q5

ba

a a

q4

b

q7

b

q8

b

q6

b

q10

a

q9

a

(iii)

Figure 3.5: The superposition of PT A(S+) and PT A(S−) is an APTA.

51



Definition 3.4: Augmented PTA, adapted from [dlH05]

The augmented prefix tree acceptor embedding a sample S = 〈S+, S−〉, denoted

by APT A(S) or APT A(S+, S−), is the DFA 〈Σ, Q, q0, δ, FA, FR〉 having:

• Q = {qu : u ∈ Pref(S+ ∪ S−)},

• q0 = qλ,

• ∀ua ∈ Pref(S+ ∪ S−) and ∀a ∈ Σ, δ(qu, a)→ qua,

• FA = {qu : u ∈ S+}.

• FR = {qu : u ∈ S−}.

3.2 Derived Automata

Let Π(MCA) = {π1, π2, . . . , πn} denote the set of all possible state partitions of

an MCA. We say that a partition πb directly derives from a partition πa and write

πa � πb whenever πb can be constructed from πa as follows [CF03, DMV94]:

∃b1, b2 ∈ πa, b1 6= b2, π2 = (π1 − {b1, b2}) ∪ {b1 ∪ b2}

We note that that the set of partitions Π is a complete lattice under the �

relation, and denote the lattice of partitions of an MCA by LAT (MCA). The

notation DFA(A) will be used to refer to the set of all DFAs derivable from a

automaton A. Coste and Fredouille remark that even though LAT (MCA) is a

lattice of partitions, DFA(A) is not a lattice under the � relation, and using the

term ‘lattice’ in this context is incorrect [CF03].

3.3 Some Important Results

Property 1 ([dlH05]). If A/πa � A/πb then L(A/πa) ⊆ L(A/πb). That is, if the

quotient automaton A/πb derives from A/πa, every string in L(A/πa) is also in

L(A/πb).

52



Proof. Let A/πa = 〈Σ, Q, q0, δ, F 〉, A/πb = 〈Σ, Q′, q′0, δ′, F ′〉, and consider any

string u = a1a2 . . . an in L(A/πa). For any such string:

• Clearly there must be a path q0
a1−→ q1

a2−→ · · · qn−1
an−→ qn in A/πa.

• By the construction of πb there must also be a path q′0
a1−→ q′1

a2−→ · · · q′n−1
an−→

q′n in A/πb.

• Furthermore, q0 ∈ B(q′0, πb), and qn ∈ B(q′n, πb) ∈ F ′.

• It then follows that any string in L(A/πa) is also in L(A/πb).

Theorem 1 ([DMV94]). Let S+ be a positive sample of any regular language L,

and A = 〈Σ, Q, q0, δ, F 〉 be an automaton accepting exactly L. If S+ is structurally

complete with respect to A, then A is in LAT (MCA(S+)).

Proof. We first show that there is some partition π such that MCA(S+)/π is

isomorphic to A, and secondly we show that the final states in MCA(S+)/π are

exactly the final states in A.

• Let S+ = {s1, s2, . . . , sm} be a sample which is structurally complete with

respect to A where m = |S+|.

• Let si = ai1a
i
2 · · · ai|si| where 1 ≤ i ≤ m be a string in S+.

• For each string si ∈ S+ we can construct a state sequence pi = qi0, q
i
1, · · · , qi|si|

consisting of (|si|+ 1) states where each qi0 corresponds to the starting state

in A, the states qi|si| each correspond to some final state in A, and qij+1 ∈

δ(qij, a
i
j+1) for 1 ≤ i ≤ m and 0 ≤ j ≤ |si| − 1. Observe how this sequence is

an acceptance (path) of the string si ∈ S+ by A.

• Construct MCA(S+) = 〈Σ, Q, q0, δ, F 〉 as follows:

– Create one initial state q0 embedding the states qi0 of each sequence pi

for si ∈ S+.

53



– The transition function δ is defined as qij+1 ∈ δ(qij, aij+1) ⇐⇒ qij+1 ∈

δ(qij, a
i
j+1) for 1 ≤ i ≤ m and 0 ≤ j ≤ (|si| − 1). In other words, there

is a transition in MCA(S+) for each ‘hop’ in our sequences pi.

– F is constructed as F =
{
qi|si| | 1 ≤ i ≤ m

}
.

• We next define a function φ that maps the states in MCA(S+) to those in

A as follows:

– φ : Q → Q where φ(qij) = q ∈ Q whenever q = qij for 1 ≤ i ≤ m and

0 ≤ j ≤ |si|.

• Define a partition π over the states of MCA(S+) as follows: B(q, π) =

B′(q′, π) iff φ(q) = φ(q′). In other words, two states are in the same partition

if they map to the same state in A.

• Result 1 : This definition of π implies that MCA(S+)/π is isomorphic to A

since the structural completeness of S+ guarantees that the transitions of

MCA(S+)/π correspond exactly to those in A.

• The final states F̂ inMCA(S+)/π are given by F̂ = {B ∈ π | ∃q ∈ B : φ(q) ∈ F}.

This means that the final states in the quotient automaton are those blocks

which have one of the states corresponding to a final state in A.

• The second part of our definition of structural completeness ensures that

∀q ∈ F, ∃i such that qi|si| = q for i ≤ i ≤ m (i.e. for every final state in A,

there is at least one string in S+ that reaches it).

• Result 2 : It therefore follows that F̂ is exactly equal to F .

• Results 1 and 2 complete the proof.

Theorem 2 ([DMV94]). Let S+ be a positive sample of any regular language L,

and A(L) = 〈Σ, Q, q0, δ, F 〉 be the canonical automaton that accepts L. If S+ is

structurally complete with respect to A(L), then A(L) is in LAT (PT A(S+)).

54



Proof. This proof is similar to the previous one but adapted to accomodate that

both the canonical automaton and the prefix tree acceptor are deterministic.

• Let S+ = {s1, s2, . . . , sm} be a sample which is structurally complete with

respect to A(L) where m = |S+|.

• Let si = ai1a
i
2 · · · ai|si| where 1 ≤ i ≤ m be a string in S+.

• For each string si ∈ S+ we can construct a state sequence pi = qi0, q
i
1, · · · , qi|si|

consisting of (|si|+ 1) states where each qi0 corresponds to the starting state

in A(L), the states qi|si| each correspond to some final state in A(L), and

qij+1 = δ(qij, a
i
j+1) for 1 ≤ i ≤ m and 0 ≤ j ≤ |si| − 1. Observe how this

sequence is an acceptance (path) of the string si ∈ S+ by A(L), and how

this sequence is unique because the canonical automation is deterministic.

• Construct PT A(S+) = 〈Σ, Q, qλ, δ, F 〉 as follows:

– Define an equivalence between states qij in a sequence pi of si ∈ S+

as: qij = qlk iff Pref(qij) = Pref(qlk) = ω and denote each grouping of

equivalent states by qω.

– The initial state in PT A(S+) is qλ.

– qij+1 = δ(qij, a
i
j+1) ⇐⇒ qω·aij+1

= δ(qω, a
i
j+1) where 1 ≤ i ≤ m and

0 ≤ j ≤ (|si| − 1).

– F = {qω|ω ∈ S+}.

• We next define a function φ that maps the states in PT A(S+) to those in

A(L) as follows:

– φ : Q→ Q where φ(qω) = q = δ(q0, ω).

• Define a partition π over the states of PT A(S+) as follows: B(qω, π) =

B′(qω′ , π) iff φ(qω) = φ(qω′). In other words, two states are in the same

partition if they map to the same state in A(L).

• Result 1 : This definition of π implies that PT A(S+)/π is isomorphic to

A(L) since the structural completeness of S+ guarantees that the transitions

of PT A(S+)/π correspond exactly to those in A(L).

55



• The final states F̂ in PT A(S+)/π are given by F̂ = {B ∈ π | ∃q ∈ B : φ(q) ∈ F}.

This means that the final states in the quotient automaton are those blocks

which have one of the states corresponding to a final state in A.

• The second part of our definition of structural completeness ensures that

∀q ∈ F, ∃i such that qi|si| = q for i ≤ i ≤ m (i.e. for every final state in A,

there is at least one string in S+ that reaches it).

• Result 2 : It therefore follows that F̂ is exactly equal to F .

• Results 1 and 2 complete the proof.

Theorem 3 ([DMV94]). If an automaton A belongs to LAT (MCA(S+)) then S+

is structurally complete with respect to A.

Proof. Consider:

• By construction, S+ is clearly structurally complete with respect toMCA(S+).

• By definition of LAT , any automaton A/π derived fromMCA(S+) for some

π is in LAT (MCA(S+)). Additionally, S+ will be structurally complete

with respect to any such derived quotient automaton by definition of how

quotient automata are constructed.

Theorem 4 ([DMV94]). Let S+ be a positive sample. Let A be the set of automata

such that S+ is structurally complete with respect to each A ∈ A. The set A is

equal to LAT (MCA(S+)).

Proof. We will use the standard procedure of showing that two sets A and B are

exactly equal by determining that any element in A is in B, and that any element

in B is in A. The results of Theorem 1 together with those of Theorem 3 are

sufficient to show this:

• By Theorem 1, if S+ is structurally complete with respect to an automaton

A then A is in LAT (MCA(S+)).

56



• By Theorem 3, if an automaton A belongs to LAT (MCA(S+)) then S+ is

structurally complete with respect to A.

Property 2 ([DMV94]). LAT (PT A(S+)) ⊆ LAT (MCA(S+)).

Proof. PT A(S+) may be defined (see Section 3.1.4) as a quotient automaton of

MCA(S+) where π is given by B(q, π) = B(q′, π) iff Pref(q) = Pref(q′).

Observation

It should be noted that LAT (PT A(S+)) is, in general, properly included in

LAT (MCA(S+)), so searching in it will result in a reduction in the size of

our search space.

Property 3 ([DMV94]). There exist positive samples S+ for which some languages

can only be represented as NFAs in LAT (MCA(S+)).

Proof. We show this by presenting a case. Consider the NFA shown in Figure 3.6

(ii) which accepts the language (ba∗a)∗. The sample S+ = {baa} is structurally

complete with respect to this NFA but not with the minimal DFA (iii) for the

same language.

a

q0 q1 q3
b a

q2
a

(i)

q0 q1
b

a

(ii)

(iii)

q0 q1
b

b

q2
a

a

Figure 3.6: MCA(S+), minimal NFA, and minimal DFA for S+ = {baa}.

57



Observation

As a consequence of Property 3, some languages cannot be identified from

S+ if we restrict our searches to DFAs only. This is because S+ may be

structurally complete with respect to the minimal NFA but not with respect

to the minimal DFA for the same language.

Property 4 ([DMV94]). There exist positive samples S+ for which the set of

languages in LAT (PT A(S+)) is properly included in the set of languages in

LAT (MCA(S+)).

Proof. From Property 2, we know that the set of languages in LAT (PT A(S+))

is included in the set of languages in LAT (MCA(S+)). We now need to show

that in some cases this inclusion is proper, and there may exist automata in

LAT (MCA(S+)) that have no equivalent automaton in LAT (PT A(S+)).

Consider the language L = (ba+b(aa)∗) which may be represented by the NFA

shown in Figure 3.7 (iii) and its corresponding canonical automaton A(L) shown

in Figure 3.7(iv). Also consider the sample S+ = {ba, baa} of the language, and

MCA(S+) shown in Figure 3.7 (i) and PT A(S+) shown in Figure 3.7 (ii).

The NFA may be derived fromMCA(S+) because S+ is structurally complete

with respect to it, and moreover it is obvious by merging the states (q1, q3) in

MCA(S+). Note, however, that it is impossible to derive the NFA from PT A(S+).

Also, since S+ is structurally complete with respect to the NFA but not with

respect to A(L), no derivation can exist to obtain it from PT A(S+).

3.4 The Border Set and its Properties

Recall that LAT (MCA(S+)), which also contains U , contains all the automata

that recognise languages for which S+ is a structurally complete sample. In this

sense, it would seem that U may be a candidate target automaton, although it

(and indeed many other automata) would clearly constitute an over-generalisation.

To deal with this, we introduce the notion of a negative sample S− ⊆ (Σ∗ − L)

giving S = 〈S+, S−〉. We now require our inference task to identify an automaton

58



(i)

q0 q1 q3
b a

q2
a

q4
b

q5
a

(ii)

q0 q
1,4 q3

b aq
2,5

a

(iii)

q0

q1
b

a

q2
a

q3

b

q4
a

(iv)

q0 q1 q3
b a

q2
a

q4
a

a

Merge states
q1 and q3

No merge
possible

Figure 3.7: MCA(S+), PT A(S+), NFA, and minimal DFA for S+ = {ba, baa}.

which is consistent4 with both S+ and S−, as well as having the minimal number

of states5.

Definition 3.5: Antistrings [DMV94]

An antistring as in a lattice or space of automata is a set of automata where

each element is not related by � to any other element in as. In other words,

no automaton in the antistring may be derived from any other one.

Definition 3.6: Maximal Depth [DMV94]

An automaton A is said to be at its maximal depth in a lattice or space

if there is no other automaton A′ which may be derived from A such that

L(A′) ∩ S− = ∅. In other words, we may not derive any other automaton

which is also compatible with the positive and negative sample.

4The automaton accepts the strings in S+ and rejects those in S−. A consistent automaton

is sometimes called a compatible automaton.
5We have remarked on the complexity of this task in Chapter 1.

59



Definition 3.7: The Border Set in an MCA [DMV94]

The border set BS〈S+,S−〉(MCA(S+)) of a lattice is the antistring in LAT (

MCA(S+)) where each element is at its maximal depth. For brevity, and

when the context is clear or irrelevant, we will refer to the border set by

BSMCA.

Definition 3.8: The Border Set in a PTA, adapted from [DMV94]

and [CF03]

The border set BS〈S+,S−〉(PT A(S+)) of a space of DFAs is the antistring in

DFA(PT A(S+)) where each element is at its maximal depth. For brevity,

and when the context is clear or irrelevant, we will refer to the border set by

BSPT A.

It is now apparent that the purpose of S− is to control generalisation, and

the minimal consistent automaton would be in the border set. Any automata

‘shallower’ than the border set would surely be an under-generalisation, and any

automata ‘deeper’ than the border set would be an over-generalisation since they

are inconsistent with S−.

Property 5 ([DMV94]). BSPT A ⊆ BSMCA for some S = 〈S+, S−〉.

Proof. From Property 2, we already know that any automaton inDFA(PT A(S+))

is in LAT (MCA(S+)). Now we wish to show that every automaton in BSPT A is

in BSMCA. Suppose an automaton A exists that is in BSPT A but not in BSMCA.

Since A ∈ BSPT A, then A is consistent with S, and no further derivations are

possible from A which would be consistent with S. If A /∈ BSMCA, then A is ei-

ther inconsistent with S, or some derivation must exist whose resulting automaton

would be consistent with S. This contradicts our assumption.

60



Observation

For emphasis, we note that the opposite result BSMCA ⊆ BSPT A is clearly

not always true. Since an automaton A ∈ BSMCA, while being consistent

with S as well as having no further derivations possible, might not be in

LAT (PT A(S+)) in the first place.

Property 6 ([DMV94]). There may be several distinct languages represented by

the automata belonging to BSMCA.

Proof. We prove this property by presenting an example. Consider the sample

S+ = {baa} and S− = {bb}. The maximal canonical automaton constructed from

S+ is shown in Figure 3.8 (i). The two automata shown in Figures 3.8 (ii) and

(iii) belong to the border set and represent the distinct languages (a|ba)∗ and

((a|b)a)∗(a|b) respectively.

q0 q1 q3
b a

q2
a

(i)

(ii)

q0 q1
b

a

a

(iii)

q0 q1
b

a

a

Figure 3.8: MCA(S+) constructed for S+ = {baa}, and two DFAs in the border

set.

Property 7 ([DMV94]). There may exist NFAs belonging to BSMCA that contain

fewer states than the minimal consistent DFAs.

Proof. This follows from the fact that given a minimal consistent DFA recognising

a language, there may exist NFAs having fewer states that recognise the same

language.

Property 8 ([DMV94]). All DFAs in BSMCA are minimal for the language they

accept.

61



Proof. Let A ∈ BSMCA be a DFA accepting the language L which is consistent

with a positive and negative sample. Assume that A is not isomorphic to the

canonical automaton A(L), then:

• Both A and A(L) are consistent with the sample.

• DFA minimisation involves merging non-distinguishable states defined by

some partitioning π.

• This means that ∃π | A/π = A(L).

• It then follows that A � A(L), and A(L) would be deeper in the lattice

than A.

• This is impossible because A is in the border set and there cannot be any

other consistent DFA derived from it that is deeper.

Observation

This property also holds for the DFAs in BSPT A due to Property 5.

3.5 Summary

In this chapter, we have described derived automata, quotient automata, struc-

tural completeness, prefix tree acceptors, lattices, search spaces, and the border

set. These concepts are the basis of many DFA learning algorithms. We also

covered some important results from [DMV94] and [dlH05] regarding the search

space of DFA learning. These include:

• Merging states in an automaton A to obtain A′, implies that the language

recognised by A is a subset of the language recognised by A′. Merging

generalises an automaton.

• If a positive sample is structurally complete with respect to a DFA, then

the DFA is guaranteed to be in the lattice constructed from the maximal

canonical automaton of the sample.

62



• If a positive sample is structurally complete with respect to the canonical

(minimal) DFA, then the canonical automaton is guaranteed to be in the

search space DFA constructed from the prefix tree acceptor of sample.

• If an automaton belongs to the lattice constructed from the maximal canoni-

cal automaton of a positive sample, then the sample is structurally complete

with respect to that automaton.

• Consider the set of all automata with which a positive sample is structurally

complete with. That set of automata is exactly equal to the lattice con-

structed from the maximal canonical automaton of that sample.

• The search space constructed starting from the prefix tree acceptor of a posi-

tive sample is included in the lattice constructed from the maximal canonical

automaton of that sample.

• The border set in the space of DFAs constructed from the prefix tree acceptor

of a sample is included in the border set of the lattice constructed from the

maximal canonical automaton of the same sample.

• The automata in a border set may represent distinct languages.

• All the DFAs in a border set are minimal for the language they recognise.

63



Chapter 4

A Survey of State Space Search

Algorithms

As discussed in the previous chapter, the task of identifying a target DFA can be

construed as a search in a space of DFAs starting from some initial hypothesis

until we reach our goal. In this chapter, we cover a variety of state space search

algorithms which involve searching for a goal in a space that is organised as a

tree or a graph. Focusing on properties such as scaleability, completeness, and

admissibility, we will pay special attention to the search techniques which are

relevant to several DFA learning algorithms including Oncina and Garćıa’s RPNI

[OG92], Juillé and Pollack’s SAGE [JP98b], and Lang’s Ed-Beam [Lan98]. We

suggest [RN03] as a good introduction on state space search as well as [CLRS09]

for a comprehensive description and analysis of these algorithms.

Note

Pseudo-code for all the algorithms referred to in this chapter may be found in

Appendix C.

64



4.1 Preliminaries

4.1.1 Costs

When searching through a state space (the set of all states reachable from an initial

state by any sequence of actions [RN03]) structured as a tree or graph, moving

from one node1 to another one involves traversing a path. This is analogous to

executing an action or a plan. These paths have a cost associated with them which

we shall denote by g(n), where n is the node our path is leading us to from the

initial state. Of course, if n is the initial state itself, g(n) = 0 since the cost of

travelling between a node and itself is zero. We illustrate the cost of an action in

Figure 4.1. The task of a state space search algorithm usually involves finding the

minimum cost path starting from an initial state to a goal state (the cost being

the sum of the edge weights in the path).

s1

s3

s2

1

1

1

1

1

g(s2) = 1+1+1=3

g(s3) = 1+1=2

g(s1) = 0

Figure 4.1: Path costs to the states s1, and s2 and s3.

4.1.2 Time and Space Complexity, Completeness, and Ad-

missibility

The time and space complexity of state space search algorithms is studied in

terms of the branching factor b of the tree, and the depth d of the goal we are

1When speaking of state space search algorithms, the objects we are searching for are typi-

cally called ‘states’. Here we will refer to them as nodes in order to avoid confusion with states

in automata.

65



seeking. Additionally, the properties of search completeness and admissibility are

important [RN03]:

• Completeness means that the algorithm will return a solution (the goal) if

one exists.

• Admissibility means that the algorithm is guaranteed to return the optimal

solution. Sometimes admissibility is referred to as optimality.

4.1.3 Open and Closed Lists

Typically, graph search algorithms maintain internal data structures that store

lists of nodes which are yet to be visited and/or nodes which have already been

visited. The data structure that stores the list of nodes to be visited is called

the open list and is used by the algorithm to determine which nodes to visit next

[CLRS09]. Certain spaces may involve nodes which are repeated or involve cycles

(the state space could very well be a graph instead of a tree). These repetitions or

cycles may cause an algorithm to enter infinite loops or cause the search to grow

exponentially in the size of the graph as shown in Figure 4.2. Because of this,

some implementations maintain a closed list of nodes which have already been

visited so as not to expand them again. [RN03] suggest three countermeasures to

deal with such repetitions in increasing order of effectiveness and computational

expense:

1. When considering the successors of a node (we are expanding the children

of the node), ignore the ones which are identical to the parent since we have

already processed it. While this approach is not sufficient in the general

case, there are several applications where this method is enough.

2. Do not create paths that contain cycles. This requires that the current path

is remembered (usually using a hash table) and reject children that already

appeared in the path.

3. Remember all the states that we have already visited and do not visit them

again. Special care must be taken as this requires bd memory to store the

66



visited nodes (where b and d are the branching factor and depth, respec-

tively).

A

B B

C C C C

A

B

C

…

n

State space Corresponding search tree

Figure 4.2: Failure to implement countermeasures can cause searches to consider

an exponential number of nodes.

4.2 Blind Search Algorithms

4.2.1 Depth-First Search

Depth-first search (DFS) is a tree or graph search algorithm that starts from some

initial state and explores as far along a path as possible before backtracking. This

process is repeated until a goal node is found. If the depth is bounded, DFS will

eventually enumerate all the nodes in the tree or graph. DFS may be expressed

as in Algorithm C.1 (in Appendix C). We can now make some observations about

the method. The algorithm is not complete when the state space is infinite. In

fact, DFS will only be complete when the state space is finite and we maintain a

closed list to protect from the infinite expansion of nodes along a path (because

of cycles). DFS is certainly not admissible as it is not complete. Since we are

enumerating all the nodes in the tree, the time complexity of DFS is bd. The

space complexity is b × d since we are only storing information related to one

single path down the tree. This is illustrated in Figure 4.3 below.

67



n

b

d

Figure 4.3: The space complexity of DFS is b× d. The open list is coloured.

4.2.2 Breadth-First Search

Breadth-first search (BFS) is similar to DFS but rather than expanding nodes in

a depth-wise manner, it expands nodes on a ‘level-by-level’ basis. As far as the

algorithm is concerned, it is identical to DFS with the exception that expanded

nodes are added to the back of the open list rather than at the front. In other

words, BFS uses a queue as an open list rather than a stack. This is shown in

Algorithm C.2. Since the goal state must exist at some level in the state space,

BFS will eventually reach it and is hence complete. Furthermore, if the costs of

the actions in the state space are all the same (i.e. all the edge weights have the

same value), BFS is admissible as it will terminate at the shallowest goal node

(i.e. cheapest path cost) in the space. A case where BFS is not admissible because

of varying cost values is shown in Figure 4.4. The time complexity of BFS is bd

and so is the space complexity: the open list in BFS maintains all the nodes at a

given level, and the level d containing the goal has bd nodes.

4.2.3 Iterative Deepening

BFS is both complete and admissible when all the costs are the same. This is at

the expense of exponential time and space complexity. Meanwhile DFS has the

promise of linear space complexity at the cost of completeness and admissibility.

The objective of iterative deepening search (IDS) is to combine aspects of both

methods to give us the completeness and admissibility of BFS but using much less

memory. The general idea is to perform a DFS in the state space up to some level

68



B

A

1
10

2 1

1

Optimal solution
g(A) = 1+2+1 = 4

Sub-optimal solution
found by BFS
g(B) = 10

Figure 4.4: BFS is not admissible when action costs are different.

n ≤ d. If we do not find the goal, we reiterate by performing another DFS up to

a deeper level (n+ 1) ≤ d. This process is repeated until the goal is found.

We can see that at every iteration n we would have to incur the expense of

redoing all the work we have already done to reach iteration (n − 1). While this

reasoning is correct, we note that it is not so detrimental. Consider a state space

with a branching factor b = 2. At level n, the algorithm has to contend with 2n

nodes. This necessitates redoing all the work at level (n− 1) which contains 2n−1

nodes. This, in turn, necessitates redoing the work at level (n− 2) which contains

2n−2 nodes, and so on until we reach the root node. This means that when working

on level n, the sum of the nodes in all the preceding levels (n− 1), (n− 2), . . . , 1 is

at most twice the number of nodes in level n. This overhead is then bounded by

a constant factor, and may be visualised in Figure 4.5 below. Extending this, we

may see that this overhead becomes even less significant when the branching factor

is higher. The pseudo-code for IDS is given in Algorithm C.3, and we conclude

our discussion by making the following observations:

• The time complexity, like BFS, is bd. However, like DFS, the space complex-

ity is b× d.

• Among other applications, IDS is very useful in online scenarios since early

iterations execute very quickly giving us results immediately with further

refinements as the algorithm iterates on.

69



• Like BFS, IDS is complete and only admissible when the action costs (edge

weights) are the same.

• Unless we implement cycle detection or maintain a closed list, IDS may be

trapped in an infinite loop.

Nodes

Nodes at level 1

Nodes at level n

Nodes at level n-1

Nodes at level n-2

Nodes at level n-3

Nodes

...

... }Same

Nodes

Nodes

Figure 4.5: The overhead of IDS is bound by a constant factor.

4.2.4 Uniform-Cost Search

If the cost of our actions is not the same, then algorithms such as BFS or IDS

will no longer be admissible. This can be dealt with by using a min-queue/heap

(described in [For64]) as an open list rather than a plain queue or stack where

the nodes are kept sorted by their lowest cost g. This modification is called

uniform-cost search (UCS), and we note that its behaviour is identical to Dijkstra’s

single-source shortest path algorithm [CLRS09]. The pseudo-code for the method

is given in Algorithm C.4, and we proceed to illustrate its behaviour using the

simple example shown in Figure 4.6. The min-queue is ordered by cost g which is

shown in superscript for each node in the example:

• Q = {A(0)}.

• Q is not empty, pop A, A is not goal.

• Expand A, Q = {B(1), C(10)}.

• Q is not empty, pop B, B is not goal.

• Expand B, Q = {E(2), D(3), C(10)}.

• Q is not empty, pop E, E is not goal.

70



• Expand E, Q = {D(3), C(10)}.

• Q is not empty, pop D, D is not goal.

• Expand D, Q = {F (4), C(10)}.

• Q is not empty, pop F , F is goal. Done.

A

B C

D E

F

1 10

2 1

1

g(A) = 0

g(B) = 1

g(D) = 1+2 = 3

g(F) = 1+2+1 = 4

g(C) = 10

g(E) = 1+1 = 2

Figure 4.6: An example to illustrate a uniform-cost search. The goal states C and

F are coloured.

Uniform cost search is complete (since all nodes are considered) and it is also

admissible [CLRS09]. Admissibility follows from the fact that we are always de-

queueing the node having the minimum path cost. If there are two goal nodes n

and n′ where n has a lower cost than n′, then n would be popped off and discov-

ered before the suboptimal goal n′. Unfortunately, while UCS is both complete

and admissible, both the time and space complexities of the algorithm are bd.

4.3 Informed Search Algorithms

4.3.1 Greedy Search

Greedy searching involves using a monotonic heuristic to guide a search. An

example of a greedy search applied to the travelling salesman problem would be to

always select the closest unvisited city from the current one. Some characteristics

of greedy searching include:

71



• It can get trapped oscillating between nodes unless a closed list is used.

• The quality of the results is arbitrary.

• If we have a perfect heuristic (which is unlikely) the algorithm will move

directly and optimally to the goal.

While such an algorithm is very efficient both in terms of time and space, it is

easy to see how, in practice, the technique is neither complete nor admissible. We

illustrate this using a simple example where we wish to find the lowest-cost path

in the tree shown in Figure 4.7. In this example, the greedy search immediately

makes a mistake by moving to the node C instead of the node B because it has

a lower cost. This mistake makes it impossible to identify the lowest-cost path

A→ B → D.

A

B C

D E F G

6 1

1
2 20 30

A

B C

D E F G

6 1

1
2 20 30

Greedy search

Path cost found = 20+1=21

True optimum

Path cost found = 6+1=7

Mistake made
here

Figure 4.7: Greedy search is neither complete nor admissible.

4.3.2 A* Search

A* search is an extension to UCS that uses a heuristic to make the search more

efficient. Unlike the case we have seen earlier, we note that A* still guarantees

completeness and admissibility under attainable conditions [CLRS09]. Recall that

UCS will expand all the nodes having a g value less than the cost of the optimal

goal g(opt), where opt is the optimal goal node. This causes the algorithm to

expand a great deal of nodes that ‘point away’ from the minimum cost goal.

72



These suboptimal paths will be eventually detected and discarded but only until

after we have paid the computational expense of visiting them.

Let h(n) be a heuristic function that estimates the cost of a search from the

node n to a goal. A heuristic is said to be admissible if it underestimates the true

cost of an action – in other words, it is a lower bound [RN03]. The following are

examples of scenarios and admissible heuristics from [Rum13]:

• Consider a map where each node located in Euclidian space represents a

city, and the edges represent connections between adjacent cities. A possible

heuristic is one which chooses the shortest distance between the node n and

the goal. Observe how this heuristic is admissible because it underestimates

the true cost of travelling between n and the goal (by triangle inequality).

• Consider a 3×3 tile game with 8 tiles and 1 empty slot. We wish to arrange

our tiles in a ‘winning’ arrangement (the goal). A heuristic would be to

count the number of misplaced tiles in our current state (tile arrangement).

This is admissible because a misplaced tile would need to move at least one

slot before finding its correct position in the winning arrangement.

• Consider the same 3 × 3 tile game. Yet another admissible heuristic would

be the sum of the Manhattan distances between all the tiles at their current

position and their target position in the winning arrangement. This heuris-

tic is still an underestimate because Manhattan distance allows for tiles to

slide over each other which is clearly not possible in the real world (i.e. the

Manhattan distance is a best case scenario). While this is also an underesti-

mate, it is an even stronger one than our previous tile-counting method. In

search terminology, we say that this heuristic dominates the other. Domi-

nant admissible heuristics result in more efficient implementations of the A*

algorithm.

Recall that UCS is designed to minimise the objective function f(n) = g(n). In

A* we instead minimise the objective function f(n) = g(n)+h(n). The algorithm

for A* is identical to that for UCS but uses the revised objective function. We

conclude by making the following observations:

73



• UCS can be thought of as a special case of A* where ∀n : h(n) = 0. Note how

this is a perfectly valid (but ineffective) admissible heuristic (underestimate).

• UCS expands all the nodes having f(n) = g(n) + 0 < g(opt) whereas A*

expands all the nodes having f(n) = g(n) +h(n) < g(opt). In general, there

will be much fewer nodes in the set g(n) + h(n) < g(opt) than there will be

in g(n) + 0 < g(opt) making A* more efficient.

• Using the same argument as BFS, we can show that A* is complete, and if

the heuristic is admissible, it can be shown that A* is admissible too [RN03].

• In the worst case, we could be given a heuristic h = 0 degenerating A* to

UCS. In this case, both the time and space complexity would be bd. We

emphasise that the time and space requirements of A* are highly dependent

on the quality of the heuristic.

4.3.3 Iterative Deepening A* Search

Like we did in IDS, we can use a similar iterative deepening strategy with A* to

give us iterative deepening A* (IDA*). Here, a number of iterations are performed,

where, for each iteration, we perform a depth-first search cutting off a path when

its total cost f(n) = g(n) + h(n) exceeds a path length threshold which is guided

by an admissible heuristic. This means that at every iteration of our depth-first

search we will not blindly explore all nodes up to a given depth but we will instead

only explore the most promising ones. The threshold is set up as follows:

• Initially the threshold is f(s) = g(s) +h(s) = 0 +h(s) = h(s) where s is the

starting node.

• If the goal is not found within the threshold, set it to the minimum value of

f(n) which exceeded the previous threshold. Repeat until the goal is found.

The advantage of IDA* over A* is that it always requires b×d space while still

being complete and admissible (when the heuristic is admissible). The pseudo-

code for IDA* is given in Algorithm C.5.

74



4.3.4 Branch and Bound Techniques

The idea behind branch and bound (BnB) is to make searches more efficient by

discarding paths in a search which we know will give worse results than a currently

known solution. Initially, BnB sets an upper bound U to∞ and discards any nodes

whose g(n) > U . This means that, at the start, all paths in the search tree are

considered. Whenever a goal is reached at a node n′, the upper bound is revised

to U = g(n′). This new upper bound follows since any open path that is more

expensive will certainly lead to a worse goal than n′. Whenever a goal whose cost

is cheaper than our current U , we update it to reflect this, and go on until the

search is complete. Consider the example shown in Figure 4.8 where we wish to

find the lowest cost path from the initial node S to the goal G. The following

illustrates the first steps that a BnB approach would take in this example:

• Initial path in min-queue Q = {S(g=0)}, and U =∞.

• Dequeue path, and add successors Q = {S → A(g=3), S → B(g=4)}.

• Dequeue path, and add successors Q = {S → B(g=4), S → A→ B(g=8), S →

A→ C(g=9)}.

• Dequeue path, and add successors Q = {S → B → D(g=6), S → A →

B(g=8), S → B → A(g=9), S → A→ C(g=9)}.

• Dequeue path, and add successors Q = {S → A → B(g=8), S → B →

A(g=9), S → A→ C(g=9), S → B → D → F (g=10), S → B → D → C(g=14)}.

• Continue dequeuing and adding successors until, eventually, we will dequeue

the path S → B → D → F → G(g=13) which reaches the goal. We now

update our upper bound U from∞ to 13, and discard any partial path that

is more expensive than 13 since it will certainly lead to a more expensive

path to the goal.

• We proceed and continuously revise U and prune the space until we exhaust

the queue.

It is also useful to introduce a lower bound to the idea of BnB to further prune

the search space. Given an admissible heuristic h(n), we can use f(n) = g(n)+h(n)

75



AS

B

C

D

E

F G

6

44 5

8

2

4 3

3

Figure 4.8: Branch and bound example.

as this lower bound like we have done in A* and IDA*. This means that the only

modification we have to make to the scheme we previously described is to base

the min-queue on g(n) + h(n) rather than on g(n) alone. The use of upper and

lower bounds to restrict the search space this way is called admissible pruning.

4.3.5 Beam Search

Beam search is a search technique that may be implemented as a variant of algo-

rithms such as BFS, UCS and A*. The primary advantage of beam search is that

it fixes a bound on memory usage to make searches scale better for large problems.

In its simplest form, beam search behaves like BFS where the algorithm expands

all the children of a given node and trims that list to a fixed, predetermined size.

The algorithm uses an objective function (whether it is g(n) or g(n) + h(n)) to

trim the open list to a size k called the beam width of best partial results. Hope-

fully, our objective function, which is likely based on a heuristic, will permit our

‘narrowing down’ process to still allow for a path to reach a good goal. Of course,

applying this trimming means that the search is neither complete nor admissible

and we will call this inadmissible pruning. We illustrate this in Figure 4.9, and

show the pseudo-code for beam searching in Algorithm C.6.

We can observe that setting the beam width to k = 1 makes our search a plain

greedy search, while setting k = ∞ makes our search complete. With regards

to space complexity, we can see that the variables beam and set in Algorithm

76



C.6 store k nodes and k × b nodes respectively. This makes our overall2 space

requirements k× b. The time complexity depends on the data structure we use to

implement the min-queue. Assuming that our queue and dequeue operations are

implemented in O(log2(n)) time, our overall requirements would be d × b × k ×

log2(k × b). For completeness, we describe a version of beam search in Algorithm

C.7 which also maintains a closed list.

In conclusion, we refer the reader to variants of beam search such as beam stack

search due to [ZH05] that combines backtracking with beam search to ensure both

completeness and admissibility, divide-and-conquer beam stack search, and beam

search using limited discrepancy backtracking [FK05].

Beam width
Keep k best children Discarded

Beam width
Keep k best children Discarded

Beam width
Keep k best children Discarded

Beam width
Keep k best children Discarded}

Beam

Figure 4.9: An illustration of a beam search.

2We are not keeping a closed list in this procedure.

77



4.4 Observations So Far

We can now list some useful observations that will guide us when developing our

own state space search methods:

• We can modify our algorithms to avoid exponential space complexity while

maintaining both completeness and admissibility.

• For an algorithm to be admissible it must be complete, and all complete

state space search algorithms have exponential time complexity. In order to

scale, we must prune the search space (such as what we did in beam search)

hoping that we have not discarded our goal. The design of our heuristics is

of paramount importance.

4.5 Estimating the Cost of Backtracking

In this section, we discuss the work of Knuth who proposes a Monte Carlo sam-

pling approach to estimate the complexity of backtracking searches [Knu74]. The

methods and results shown here are useful to us in two ways. Firstly, Juillé et

al.’s competition-winning parallel beam search is inspired by this idea to drive its

heuristic [JP98b]. Secondly, and more importantly, estimating properties of the

search spaces we are dealing with will help us develop a deeper insight into the

problem.

Knuth argues that it appears that many combinatorial optimisation problems

can only be handled by exhaustively searching through all possibilities. Of course,

the consequence of such an exhaustive search is that a slight increase in the size of

the parameters of the problem will likely result in the total running time increasing

by several orders of magnitude. The corollary is that slight optimisations could

very well result in substantial improvements in performance. As an example,

consider the game of Instant Insanity where we have four cubes each having one

of the colours red, green, blue, and white on their sides as shown in Figure 4.10.

The game is to arrange all the four cubes such that when put next to each other,

the top, bottom, front, and back faces have each of the four colours appearing

once. In Figure 4.10 below, the top face of the cubes has the colours WRGW

78



with the colour white appearing twice. This results in an invalid configuration

(the bottom face is RRGB with red appearing twice which is another violation).

B W

W
R

R

G R B

R
G

R

W W R

G
B

G

B G G

W
W

B

R

Figure 4.10: The Instant Insanity cubes.

A single six-sided cube may be arranged in 24 different ways laying on a table:

six sides each laying on the table and four rotations for each. Given that there

are four cubes in the game, a brute force search would require us to consider

244 = 331, 776 possible configurations. There are several strategies available to

reduce the size of the search. For instance, we may observe that, by symmetry,

each configuration is equivalent to one of seven others as shown in Figure 4.11.

1
Initial configuration

2
Rotate

3
Rotate

4
Rotate

5
Rotate

6
Rotate

7
Rotate

8
Rotate

Figure 4.11: Instant Insanity configurations are symmetrical.

In general, such a search problem is abstractly defined as finding all the se-

quences (x1, x2, . . . , xn) that satisfy some property Pn(x1, x2, . . . , xn).

For Instant Insanity n = 4, the value xk is the placement (configuration) of

the kth cube, and P4(x1, x2, x3, x4) is the property that all the four cubes have

colours appearing only once on each side. In other words, a configuration

(x1, x2, x3, x4) that satisfies the condition P4 is a sequence that represents a

path down the search tree to a valid configuration.

79



So (x1, x2, . . . , xk) for 0 ≤ k < n represents a partial solution (incomplete path

down the search tree), and Pk(x1, x2, . . . , xk) is the satisfaction property for the

partial solution up to xk. We now wish that, if Pk+1 holds, then Pk is implied. More

specifically, Pk+1(x1, x2, . . . , xk, xk+1) =⇒ Pk(x1, x2, . . . , xk). In other words, if a

solution (x1, x2, . . . xk) does not satisfy Pk, then no extension (x1, x2, . . . xk, xk+1)

of it can possibly satisfy Pk+1. By induction, no extension (x1, x2, . . . xk, . . . , xn)

up to n can satisfy the property Pn.

Suppose that the property Pk is designed in such a way so that it always

returns true when k < n, and only returns the correct true/false answer when

k = n. This is tantamount to the weakest possible definition of Pn and would

result in a brute force search. On the other hand, the strongest possible definition

would be when Pk(x1, x2, . . . , xk) is true if and only if there exists a sequence

xk+1, . . . , xn that satisfies Pn(x1, x2, . . . , xk, xk+1, . . . , xn). This means that the

partial solution (x1, x2, . . . , xk) is certainly a prefix of a valid solution. In the

general case, stronger properties are much more expensive to compute and/or are

not always evident. Unfortunately, the choice of these properties greatly affects

the running time of a search, so we proceed by discussing Knuth’s mechanism to

estimate this cost [Knu74].

Let c(x1, x2, . . . , xk) be the cost associated with executing the partial solu-

tion up to xk. So when k = n, we would obtain the cost for the complete

solution. Knuth uses c() to denote the cost when k = 0, and uses T to de-

note the tree of all possibilities explored by the algorithm. This gives T =

{(x1, x2, . . . , xk) | k ≥ 0 and Pk(x1, x2, . . . , xk) holds}. The total cost of comput-

ing the entire backtracking tree is given by cost(T ) =
∑

t∈T c(t). An estimation

of the entire backtracking cost is obtained using a Monte Carlo approach based

on random samplings of the tree. For each partial solution (x1, x2, . . . , xk) for

0 ≤ k < n, a random extension xk+1 is chosen from a set S of candidates where

Pk+1 holds, and the total cost is estimated as shown in Algorithm 4.1.

The algorithm will compute the estimate C = c()+d0c(x1)+d0d1c(x1, x2)+· · ·+

d0d1 . . . dk−1c(x1, x2, . . . , xk) where dk is a function of (x1, x2, . . . , xk) which gives

the number of extensions xk+1 satisfying the property Pk+1 (i.e. |S| in Algorithm

4.1). By the law of large numbers, if the mean result of multiple estimates is taken,

80



Algorithm 4.1 Estimating the cost of backtracking (adapted from [Knu74])

Input: A state space search tree.

Output: The estimated backtracking cost.

1: k ← 0 // Current depth of random walk.

2: D ← 1 // Auxiliary variable.

3: C ← c() // The estimated cost.

4: S ← All the extensions xk+1 such that Pk+1(x1, x2, . . . , xk, xk+1) holds

5: dk ← |S| // dk will be 0 when k = n because S would be empty.

6: if dk = 0 then

7: return C

8: end if

9: xk+1 ← A random element in S // Random walk.

10: D ← dk ×D // D will be the product of all edge degrees encountered.

11: C ← C + c(x1, x2, . . . , xk+1)×D

12: k ← k + 1

13: go to 4 // Extend solution.

we will approach the true expected value (the cost of the backtracking search). We

refer the reader to Knuth’s technical report [Knu74] for the proofs of the validity

of this estimate.

4.5.1 Pitfalls and Refinements

Trying to infer characteristics about an entire search tree based on knowledge

gathered by exploring a single path warrants skepticism. In fact, it is easy to

construct an adversarial scenario to demonstrate failure. Consider an experiment

proposed by Knuth which produces a result of 1 (99.9% of the time), and pro-

duces a result of 1,000,001 (0.1% of the time). The expected value is 1,001 while

sampling the space would almost invariably always yield a 1. As illustrated by

81



[Pur78], similar pathological cases would occur when the search tree is severely

unbalanced3.

A method to deal with this is to introduce a bias in our algorithm where, rather

than selecting an extension xk+1 at random, we choose one that “investigates

more interesting parts of the tree”. Specifically, we alter the procedure in step

9 in Algorithm 4.1 which selects an extension in S with a probability of 1
dk

with

one which selects the jth item in S with a probability of Pr(j) where Pr(1) +

Pr(2) + . . . + Pr(dk) = 1. Of course, determining the choices for Pr(j) is a

complex problem in itself but, irrespective of what the choices are, it can be

shown that (i) the expected value of C will still be cost(T ), and (ii) one of the

choices for Pr(j) will be the perfect choice. This idea forms the basis of importance

sampling in statistics, and again we refer the reader to [Knu74] for proofs regarding

these properties as well as other techniques for improving estimates such as tree

transformations and stratified sampling.

Out of all the methods attempted by the author, the one which was found

to be the most promising in terms of results, efficiency, and complexity is when

“stupid moves” which lead to underestimates are avoided. The gist is that all

terminal nodes that have non-terminal siblings are discarded ensuring that we

would never pick a node having dk = 0 unless all siblings also lead to such a

terminal situation. Even so, special care must be taken. Consider a ‘tall, skinny’

binary tree having depth d where every node has one terminal child and one non-

terminal child except at the deepest level. Such a tree would have exactly 2d+ 1

nodes. Unfortunately, using our strategy of eliminating ‘stupid moves’ would make

our estimator explore the deepest possible branch contributing an exponentially

large term to the estimator which would then result in a gross overestimate.

4.5.2 Ideas for Improvement

In [Pur78], Purdom suggests a method that allows for backtracking when the al-

gorithm reaches leaf nodes. While his results were very promising, and, in certain

3As opposed to some ideal scenario. For instance, Knuth’s method would be very accurate

in estimating the size of a complete binary tree of height h having 2h − 1 nodes after visiting

only 2h− 1 nodes [Pur78].

82



cases, represent an improvement by an order of magnitude, the method may re-

quire an exponential amount of backtracking to occur. Alternatively, Chen [Che92]

proposes a stratified sampling approach that reduces the variance in results over

what Knuth obtains at the cost of requiring domain-specific knowledge about the

problem at hand. In [CV11], Cloteaux and Valentin extend Knuth’s algorithm

with Aldous and Vazirani’s “Go with the Winners” (GWTW) method [AV94]

to obtain a fast estimator having low variance and high accuracy. Although an

exact analysis of the bounds regarding the variances produced by Cloteaux and

Valentin’s algorithm still seems to be an open problem, their results show a re-

markable improvement of between one and two orders of magnitude. We will

conclude this section by describing their AV-K4 algorithm starting with GWTW.

GWTW is designed to require a polynomial number of samples to determine the

deepest leaf node in a tree with high accuracy and works as shown in Algorithm

4.2 below. The behaviour of GWTW is shown for three ‘particles’ (described in

the algorithm) in Figure 4.12.

Figure 4.12: An example of the GWTW algorithm using three particles.

While GWTW is designed to determine the deepest nodes in the tree, we

are specifically interested in the subtree which has been sampled to use it to get

our size estimate from. Once AV-K has obtained the polynomially-sized sampled

subtree S from the original tree T using a polynomial number of particles, it

4Named after Aldous’ and Vazirani’s, and Knuth’s hybrid method.

83



Algorithm 4.2 “Go with the Winners” algorithm (adapted from [AV94])

Input: A tree T , and a number n of ‘particles’.

Output: The deepest leaf in the tree.

1: Place n particles (a token, or abstract counting object) on the root node of T

2: depth ← 0

3: if all n particles are on leaf nodes then

4: return depth

5: end if

6: I ← the set of non-leaf nodes containing any particles

7: L ← the set of leaf nodes containing any particles

8: Spread all the particles in L evenly among the nodes in I

9: Move each particle in I from its node to a random child node

10: depth ← depth+ 1

11: go to 3 // Next iteration.

proceeds by traversing S to obtain the size estimate. Let childT (v) be children of

node v in the original tree T , and childS(v) be children of node v in the GWTW

sampled tree S. The size estimator G(v) of a tree rooted at v is recursively defined

by the equation:

G(v) =

1, if v is a leaf node

|childT (v)|
|childS(v)|

∑
c∈childS(v)G(c), otherwise

The actual subtree that has been sampled from the previous example is shown in

Figure 4.13 with the subtree shaded and the node labels representing the estimate

of the number of leaves in the subtree at that node. We can now finish off making

the following observations:

84



• While Knuth proved that his method will approach the corrected expected

value (size of the tree), the variance can be exponentially large. In the ‘tall,

skinny’ tree case, an exponential number of trials are required to find the

deepest nodes and avoid an underestimate [Pur78].

• Knuth notes that variance may be lowered if we bias the sampling probabil-

ities of child nodes and, while a perfect importance function provably exists,

determining it is at least as hard as the tree sizing problem itself.

• In the AV-K method, using O(dc) particles where d is the depth of the tree

T and c is some constant, the size of the sampled tree S will be O(dc+1) thus

requiring polynomial time in the depth of T .

• We refer the reader to Cloteaux and Valentin’s technical report [CV11] for

more information regarding these observations and their experimental re-

sults.

6

2 4

1 4

3 1

1 2

1 1

Figure 4.13: The subtree sampled by GWTW and size estimates.

85



4.6 Summary

In this chapter we have covered a number of tree and graph searching algorithms

which are relevant to our work. The concepts behind breadth-first search, beam

search, and state space pruning are prevalent in many DFA learning algorithms.

We have also briefly discussed the idea of using heuristics to greedily guide our

search to find a goal as well as the pitfalls associated with the method. We will

return to Knuth’s ideas related to backtracking and estimating the complexity of

search spaces in the next chapter, where we cover the concept of wrapping greedy

heuristics with search to improve the likelihood of discovering good solutions.

86



Chapter 5

DFA Learning Algorithms

This chapter is organised in two main parts. In the first, we focus on a class

of algorithms called state merging algorithms as well as their augmentation with

various non-monotonic search strategies. The purpose of this chapter is to discuss

how these algorithms work, identify their strengths and weaknesses, and serve as

a platform on which to build our own methods. The general strategy behind state

merging algorithms is to construct an initial hypothesis from a training set, and

repeatedly merge pairs of states for compacting and generalisation until a final

hypothesis is reached.

In the second part of this chapter, we will cover some alternatives to state

merging. Our regular inference task involves searching in a space of DFAs which

are consistent with a training set. Based on some definition of optimality (e.g.

identifying the minimum state DFA), this task may then be construed as search-

ing for an optimal solution in a hypothesis space. This is the inductive learning

task in machine learning, where we have available to us an abundance of techniques

which deal with such problems. As such, it is natural that the grammatical infer-

ence community has considered these methods when designing better algorithms

and considering new approaches. Here, we survey the application of evolutionary

techniques, SAT solving, recurrent neural networks, and graph colouring to our

inference problem, and while we assume a general understanding of these topics,

we refer readers to [Gol89], [Mar09], [BBH+09], [HDB96], [Agg18], and [CLRS09]

for good introductions on them.

87



5.1 State Merging Algorithms

A state merging algorithm typically starts by constructing a PTA corresponding

to the most specific hypothesis which is consistent with the training data. The

algorithm then proceeds by repeatedly merging pairs of states together to ‘fold’

the automaton into a more compact and general hypothesis. A merge is said

to be valid, compatible, or consistent if the resulting DFA is consistent with the

training data. If a merge produces a DFA which is not consistent with the training

data, we say that that merge is invalid, incompatible, or inconsistent and it is

discarded. Whenever there are several valid merges in a DFA, a heuristic is used

to choose which one out of these to proceed with. After a choice is made, this

selection process is repeated until the algorithm reaches a DFA where all the merge

choices available to it are inconsistent with the training data (and thus would

constitute an over-generalisation). At this point, the algorithm has constructed a

final hypothesis in the border set (see Section 3.4) and it is returned. The role of

the negative training examples should be apparent: without negative examples, a

state merging algorithm would converge to the universal automaton.

5.1.1 A Simple State Merging Example

Consider the regular language L = a∗b∗ shown in the DFA in Figure 5.1 (i) below,

and the training set S+ = {λ, a, aa, ab, b, bb} and S− = {ba, baa, bab}. This training

set results in the APTA shown in Figure 5.1 (ii). The sequence of merges (q1, q3)→

(q2, q6)→ (q2, q4)→ (q5, q7)→ (q5, q8) starting from the APTA leads to the target

DFA and is illustrated in Figure 5.2.

88



b

a

b

b

b

a

a,b

q0

ba

q1

q3

a

q4

b

q5

a

q6

b

q2

q7

a

q8

b

(i) (ii)

Figure 5.1: The DFA (i) recognising the regular language L = a∗b∗, and the APTA

(ii) for the training set S+ = {λ, a, aa, ab, b, bb} and S− = {ba, baa, bab}.

q0

ba

q1

q3

a

q4

b

q5

a

q6

b

q2

q7

a

q8

b

q0

ba

q
1,3

a

q4

b

q5

a

q6

b

q2

q7

a

q8

b

q1,q3

q0

ba

q
1,3

a

q4

b

q5

a
b

q
2,6

q7

a

q8

b

q2,q6

1

2
q0

ba

q
1,3

a

b

q5

a
b

q
2,4,6

q7

a

q8

b

q2,q4

3

a

q0

ba

q
1,3

b

q
5,7

a
b

q
2,4,6

a

q8

b

q5,q74

q5,q8

5

q0

ba

q
1,3

b

q
5,7,8

a
b

q
2,4,6

a,b

Figure 5.2: The path from the APTA to the DFA for L = a∗b∗.

89



5.1.2 Merge Paths and Graphs

Suppose that, rather than making a single merge choice, we instead expand every

possible one available to us. We would obtain a merge graph where each vertex is

a hypothesis and each edge is a merge. A sequence of choices a greedy algorithm

makes is a merge path or merge sequence in this graph, starting from an initial

hypothesis to a final hypothesis in the border (see Chapter 3). We note that this

exercise of expanding each possible choice is a purely conceptual one as doing so

in practice would be infeasible. Figure 5.3 shows a hypothetical merge graph from

a PTA to the universal automaton showing several merge choices available. We

can clearly see that a sequence of merge choices defines a path in the graph from

the PTA to a DFA in the border set.

PTA

Final
Hypo-
thesis

{Merge choices

All merge choices beyond the border are 
incompatible with the training data

Σ*

The DFAs in the 
shaded region are
the border set

Figure 5.3: A hypothetical (and partial) merge graph showing a path from the

initial hypothesis to a DFA. Blue arrows represent the merge choices made along

the chosen path.

5.1.3 The State Merging Operation

Merging is usually described as an operation where two states qi and qj are merged

together in some DFA A. Equivalently, we may say that this involves merging two

blocks Bi and Bj in the partition π of some quotient automaton A/π to obtain

a partition π′ for the derived automaton A/π′. Clearly, not all pairs of states or

90



blocks can be merged together. A merge may be casually1 accepted or rejected

depending on either of these conditions being satisfied:

1. If the starting hypothesis is an APTA: a state in the resulting DFA cannot be

both accepting and rejecting. Equivalently, a block in the resulting partition

cannot contain both accepting and rejecting states.

2. If the starting hypothesis is a PTA: the resulting DFA must be consistent

with the training data. In other words, the resulting DFA cannot accept

strings in the negative training data.

Furthermore, merging two states may yield an automaton that is not deter-

ministic. We can see how naively merging the states q1 and q3 in Figure 5.4 results

in non-determinism. This non-determinism is not desirable, so our operation must

be designed to avoid this. We will call this procedure merging for determinism

where merging a pair of states qi and qj involves:

1. Finding all the transitions incident to qj and redirect them to qi.

2. Folding the state qj into qi.

3. Recursively merging their successors to correct any non-determinism.

q0

q
1,3 q2

q4

a

b

b

b

b

(i) (ii)

q0

q1

q3

q2

q4

a

b

b

b

b

Figure 5.4: Merging the state q1 and q3 causes non-determinism.

1A learning algorithm may accept or reject a merge based on additional criteria.

91



Consider the example shown in Figure 5.5 where we wish to merge the states q1

and q3. In step 1, we first redirect the transition δ(q0, b)→ q3 to q1. We next fold

the state q3 into q1 to obtain the non-deterministic automaton shown at step 2.

This needs to be corrected, so our final step is to recursively merge the successors

of q1 and q3 to obtain a deterministic automaton.

q0

q1

q3

q2

q4

a

b

b

b

b

(step 0 - initial DFA)

q0

q1

q3

q2

q4

a

b

b

b

b

(step 1 - redirect transition)

q0

q
1,3 q2

q4

a

b

b

b

b

(step 2 - fold states q1 and q3)

q0

q
1,3

q
2,4a

b

b

b

(step 3 - recursively merge successors)

Figure 5.5: A simple example showing a merge for determinism.

92



We can now formalise merging for consistency and determinism as follows2:

Definition 5.1: Merging for Determinism (adapted from [CN97])

Let A/π be a quotient automaton and Bi, Bj ∈ π be two blocks which we

wish to merge together. The merge for determinism operation M(π,Bi, Bj) =

π′ which merges the two blocks in π to obtain a new partition π′ of the

deterministic quotient automaton A/π′ is defined as follows:

• Let J be an operation which joins two blocks Bi and Bj in a parti-

tion π. This operation is defined as follows: J(π,Bi, Bj) = (π ∪ (Bi ∪

Bj))−{Bi, Bj}. We can see that the join operation simply replaces two

blocks by their union and the resulting quotient automaton may not be

deterministic.

• Deterministic merging:

– Let ; denote the binary relation over pairs of blocks in a partition

π where (Bi, Bj) ; (Bk, Bl) holds whenever there exists a ∈ Σ

and qi ∈ Bi and qj ∈ Bj such that Bk = B(δ(qi, a), π) and Bl =

B(δ(qj, a), π). In other words, if (Bi, Bj) ; (Bk, Bl), then merging

(Bi, Bj) implies that we also have to merge (Bk, Bl).

– Let ;∗ denote the transitive closure of ;.

– To merge the blocks (Bi, Bj) for determinism we then have to per-

form J(π,Bx, By) on all the blocks (Bx, By) in the set {(Bi, Bj)}∪

{(Bk, Bl) : (Bi, Bj) ; (Bk, Bl) ∈;∗}.

2We also refer the reader to [CN97] for more details regarding these constraints.

93



Definition 5.2: Valid Joins and Merges

A join or a merge is said to be invalid if in the resulting partition π, there

exists some block B such that ∃qi ∈ B and ∃qj ∈ B where qi ∈ FA and

qj ∈ FR. In other words, a join or a merge is invalid if the resulting partition

contains a block having mixed accepting/rejecting states. A join or a merge

is otherwise valid.

The pseudo-code for the deterministic merge operation (detmerge) is presented

in Algorithm 5.1 next. Unless explicitly specified, whenever we refer to a merge

in a DFA, we are always merging for determinism.

Algorithm 5.1 detmerge - deterministic merge (adapted from [LDD08])

Input: An APTA A = 〈Σ, Q, q0, δ, FA, FR〉, a state partition π of Q, and the blocks

Bi, Bj ∈ π to be merged.

Output: The updated partition with blocks Bi and Bj merged for determinism.

1: π ← (π ∪ (Bi ∪Bj))− {Bi, Bj} // Join Bi and Bj then validate.

2: if {Bi ∪Bj} has mixed accepting/rejecting states then return Invalid Merge

3: // The new block might cause non-determinism.

4: while FindNonDeterminism(A, π, {Bi ∪Bj})→ (Bk, Bl) exists do

5: π ← detmerge(A, π,Bk, Bl) // Recursive merge.

6: if π is an invalid merge then return Invalid Merge

7: end while

8: return π

9: function FindNonDeterminism(A, π, B)

10: for a ∈ Σ do

11: if ∃Bk, Bl ∈ π | p ∈ B, q ∈ B, δ(p, a)→ Bl, δ(q, a)→ Bk is defined then

12: return (Bk, Bl)

13: end if

14: end for

15: return Not Found

16: end function

94



5.1.4 Trakhtenbrot-Bardzin’s and Gold’s Algorithm

Trakhtenbrot and Bardzin [TB73] and Gold [Gol78] independently proposed an

algorithm which converges to a minimal DFA when the training data is uniformly

complete (that is, the training data consists of all strings whose length is less-

than-or-equal-to the depth of the target DFA). The algorithm shown in Algo-

rithm 5.2, follows Lopéz and Garćıa’s presentation and is commonly referred to

as TBG [LG16]. The procedure requires determining whether two states are obvi-

ously distinguishable. Given an APTA A constructed from the training data, the

distinctness of two states p and q is defined as follows:

od(p, q,A) = True⇔ ∃s ∈ Σ∗ :

φ(δ(p, s)), φ(δ(q, s)) ∈ {0, 1}, and

φ(δ(p, s)) 6= φ(δ(q, s))

Where:

φ(s) =


1, if s ∈ FA

0, if s ∈ FR

?, otherwise

It should be noted that the TBH algorithm is not deterministic. In Algorithm

5.2, this can be seen in line 4 which chooses any state in (R�Σ−R), and in line

14 which chooses any indistinguishable state. These operations are typically made

deterministic by selecting the first state in canonical order (length-lexicographic)

among the choices available.

Limitations of the Method

We conclude our discussion on the TBH algorithm by stating the obvious – while

the algorithm is guaranteed to find the minimum canonical DFA in polynomial

time, the requirement that the training data be uniformly complete makes it un-

suitable for many practical applications. Furthermore, if the training data is not

uniformly complete, the algorithm may fail to produce a consistent DFA in which

case the APTA is returned as a fallback (i.e. it fails to generalise).

95



Algorithm 5.2 TBG algorithm (adapted from [LG16])

Input: Two disjoint sets S+ and S−.

Output: An automaton consistent with S.

1: A ← APTA 〈Σ, Q, q0, δ, FA, FR〉 embedding S+ and S−

2: R ← {λ}

3: while ∃q ∈ R� Σ−R : ∀p ∈ R, od(p, q,A) = True do

4: Choose q

5: R ← R ∪ {q}

6: end while

7: Q ← R

8: q0 ← λ

9: for p ∈ R do

10: if p ∈ FA then FA ← FA ∪ {p}

11: if p ∈ FR then FR ← FR ∪ {p}

12: for a ∈ Σ do

13: if pa ∈ R then δ(p, a) = pa

14: else δ(p, a) = any q ∈ R such that od(pa, q,A) = False

15: end for

16: end for

17: A′ ← 〈Σ, Q, q0, δ, FA, FR〉

18: if A′ is consistent with 〈S+, S−〉 then return A′

19: else return A

5.1.5 Regular Positive and Negative Inference

Regular Positive and Negative Inference (RPNI) is a state merging algorithm due

to Oncina and Garćıa which returns a generalisation in all circumstances [OG92].

Moreover, the algorithm is guaranteed to output the target DFA when the sam-

ple S+ and S− is characteristic (see Section 3.1.2). The procedure, described in

96



Algorithm 5.3, starts from an APTA constructed from the positive and negative

samples 〈S+, S−〉 and greedily merges states until no further processing is possi-

ble. During processing, RPNI distinguishes states as being either red, blue, or

uncoloured (white) as shown below:

q
red

q
blue

q
white

Figure 5.6: Red, blue, and white states.

During initialisation, the starting state in the APTA is red, the states im-

mediately succeeding it are blue, and the rest are white3. It should also be

noted, that the states in the APTA are ordered and processed canonically (in

length-lexicographic order). This is shown in the APTA constructed from S+ =

{aaa, aaba, bba, bbaba} and S− = {a, aab, bb} in Figure 5.7.

q0

q1
q3 q5

q6 q8
q2

q4

q7 q9 q10

a
a a

b

a
b

b

a
b a

Figure 5.7: The APTA constructed from S+ = {aaa, aaba, bba, bbaba} and S− =

{a, aab, bb} showing red, blue, and white states.

3In practice, a white state is just one that is neither red nor blue.

97



Algorithm 5.3 RPNI (from [LG16])

Input: Positive and negative strings S+ and S−.

Output: A DFA A consistent with S+ and S−.

1: // The states q0, q1, . . . in A are in canonical order where q0 = λ.

2: A ← Build APTA from S+ and S−

3: RED ← {q0}

4: BLUE ← RED � Σ−RED

5: while BLUE 6= ∅ do

6: q ← First state in BLUE in canonical order

7: BLUE ← BLUE − {q}

8: merged ← false

9: for p ∈ RED in canonical order do

10: if detmerge(A, p, q) is valid then // Deterministic, Algorithm 5.1

11: merged ← true

12: A ← detmerge(A, p, q)

13: Break for loop

14: end if

15: end for

16: if merged = false then

17: RED ← RED ∪ {q}

18: end if

19: BLUE ← RED � Σ−RED

20: end while

21: return A

A Simple Example

We conclude our discussion of RPNI with an example adapted from [dlH10], where

we attempt to learn the DFA from the sample S+ = {aaa, aaba, bba, bbaba} and

S− = {a, bb, aab}. We first create the APTA, mark the initial state as red, and all

of its successors blue:

98



a
a a

b

a
b

b

a
b a

Figure 5.8: The APTA constructed from S+ = {aaa, aaba, bba, bbaba} and S− =

{a, bb, aab, }.

For convenience, we will label all the states in canonical order (length-lexicographic)

of the prefix they accept to help us visualise how states are chosen for merging:

q0

q1
q3 q5

q6 q8
q2

q4

q7 q9 q10

a
a a

b

a
b

b

a
b a

Figure 5.9: The states in the APTA labelled in canonical order.

Now, RED = {q0} and BLUE = {q1, q2} so using our state ordering we attempt

to merge q0 with q1. This merge is not valid, there are no further red states to

attempt, so we promote q1 to red and recompute the blue set:

q0

q1
q3 q5

q6 q8
q2

q4

q7 q9 q10

a
a a

b

a
b

b

a
b a

Figure 5.10: Merging the states q0 and q1 is inconsistent with S−.

99



Now RED = {q0, q1} and BLUE = {q2, q3}. Using our state ordering, we choose

the blue state q2 to merge into the red state q0. This merge is invalid, so we

attempt to merge the blue state q2 with the next red state q1. This merge is now

valid, so we accept it and recompute the blue set:

q0

q
1,2

q3 q5

q6 q8

q4

q7 q9 q10

a
a a

b

a
b

b

a
b a

Figure 5.11: Merging the states q1 and q2.

Now RED = {q0, q1/2} and BLUE = {q3, q4}. Using our state ordering, we

choose the blue state q3 to merge into the red state q0. This merge is invalid,

so we attempt to merge the blue state q3 with the next red state q1/2. Since this

merge is also invalid and there are no further red states, we promote the blue state

q3 to red and recompute the blue set:

q0

q
1,2

q3 q5

q6 q8

q4

q7 q9 q10

a
a a

b

a
b

b

a
b a

Figure 5.12: Promoted q3 to red and recomputed the blue set.

Now RED = {q0, q1/2, q3} and BLUE = {q4, q5, q6}. Using our state ordering, we

choose the blue state q4 to merge into the red state q0. This merge is invalid, so

we attempt to merge the blue state q4 with the next red state q1/2. This merge is

now valid, so we accept it and recompute the blue set:

100



q0

q
1,2,4

q
3,7 q5

q
6,9

q
8,10

a
a a

b

abb

Figure 5.13: Merging the states q1/2 and q4.

Now RED = {q0, q1/2/4, q3/7} and BLUE = {q5, q6/9}. Using our state ordering,

we choose the blue state q5 to merge into the red state q0. This merge is valid, so

we accept it and recompute the blue set:

q
0,5

q
1,2,4

q
3,7

q
6,9

q
8,10

a
a

a

b

abb

Figure 5.14: Merging the states q0 and q5.

Now RED = {q0/5, q1,2,4, q3/7} and BLUE = {q6/9}. Using our state ordering, we

choose the blue state q6/9 to merge into the red state q0/5. This merge is invalid,

so we attempt to merge the blue state q6/9 with the next red state q1/2/4. This

merge is now valid, so we accept it and obtain the final DFA with no more blue

states:

q
0,5

q
1,2,4,
6,9

q
3,7,
8,10a

a

a

b
bb

Figure 5.15: Merging the states q1/2/4 and q6/9.

We show the final DFA omitting state numbers and colours for clarity:

101



a a

a

b

b

b

Figure 5.16: The completed example omitting colours.

5.1.6 Price’s Evidence Driven State Merging

In this section we describe Rodney Price’s Abbadingo-winning Evidence Driven

State Merging (EDSM) algorithm [LPP98]. Several variants of EDSM have been

proposed since its development and will be discussed in a separate section.

Motivation

By examining the partial merge graph shown Figure 5.17 it is clear that:

• There may be more than one path from the initial hypothesis to the target

DFA.

• Selecting a ‘wrong’ merge is catastrophic since, once it has been made, a

path to the true target concept may not exist4.

The primary motivation behind EDSM is that, since making correct decisions

is so critical to our success, we should make them based on the most evidence

available to us. Unlike the merge selection strategy of the algorithms introduced

earlier, EDSM uses the training data to determine the merge order rather than

some predefined one (such as breadth-first in RPNI). In the next sections, we

define and describe the evidence used by Price in [LPP98].

4On the other hand, an unbounded backtracking strategy is foolish since it would imply an

exhaustive search.

102



APTA

Hypo-
thesis

Target 
DFA

...

...

...

Σ*

Found target DFA

Did not find target DFA

Figure 5.17: Merge paths from the APTA to hypotheses in the border set. The

dark arrows represent the merge choices made to reach the target DFA.

Transition Trees

Transition trees are structures which are useful for visualising the behaviour of

EDSM’s merge selection process. A transition tree can be constructed starting

from any state q in a DFA, and lists all the possible string suffixes following that

state. A transition tree T built from a state q in an automaton A, is recursively

constructed as follows:

• The root state of the tree is the state q.

• For every state t ∈ T connect the states {qa = δ(t, a) : ∀a ∈ Σ}. In other

words, for every state in the transition tree, connect the states in A that are

adjacent to that state in the tree (this is the recursive step).

• If a node is added to the tree but already appears in the tree, mark it as a

leaf node in the tree and return (this is the closure).

As an example, consider the true target concept L = ab∗a, and the training

set S+ = {aa, aba, abba, abbba} and S− = {λ, aaa, ba, abbb}. This training set is

symmetrically structurally complete and gives rise to the APTA shown in Figure

5.18. Typically, a transition tree is constructed and rooted at some state q. Each

unique path from that root node q to an accepting or rejecting state qf in the

103



tree represents a suffix of a string in the training set. If the ending state qf is an

accepting state then the path q → . . .→ qf represents the suffix of a string in S+,

whereas if qf is a rejecting state then the path q → . . .→ qf represents the suffix

of a string in S−. The transition tree rooted at the state q1 in the APTA shown

in Figure 5.18 is shown in Figure 5.19, and has the following paths from the root

to final leaf states:

1. q1 → q3 (suffix a in S+),

2. q1 → q3 → q6 (suffix aa in S−),

3. q1 → q4 → q7 (suffix ba in S+),

4. q1 → q4 → q8 → q9 (suffix bba in S+),

5. q1 → q4 → q8 → q10 (suffix bbb in S−), and

6. q1 → q4 → q8 → q10 → q11 (suffix bbba in S+).

q0

q1 q2

q3 q5

a b

a a

q6

a

q4

b

q7

a

q8

b

q9

a

q10

b

q11

a

Figure 5.18: The APTA for S+ = {aa, aba, abba, abbba}, S− = {λ, aaa, ba, abbb}.

104



q1

q3

a

q6

a

q4

b

q7

a

q8

b

q9

a

q10

b

q11

a

aa 
is a suffix in S-

ba
is a suffix in S+

bba
is a suffix in S+ bbba

is a suffix in S+

bbb
is a suffix in S-

a
is a suffix in S+

Figure 5.19: The transition tree from state q1.

The Evidence Metric

Price defined his evidence metric as follows: A merge’s score is the sum over

equivalence classes of the following quantity: if there are conflicting labels in the

class, minus infinity; if there are no labels in the class, zero; otherwise, the number

of labels minus one. We subtract one because the first label in the class establishes

the correct label for the class, but is not checked [LPP98].

We can visualise how the evidence score of the merge q1 with q4 in the APTA

shown in Figure 5.18 is computed by superposing the two transition trees and

count the number of state labels that match. These matches and the resulting

score is illustrated in Figure 5.20 below.

The intuition behind EDSM’s heuristic can now be summarised as follows: The

more labels a merge groups together, the more likely it will be that that merge is

correct. In practice, an implementation to compute the EDSM score of a merge

without needing to build and examine transition trees can be derived from Price’s

definition itself:

1. Merge the states in the DFA A.

2. If the merge is not compatible, return −∞.

3. This merge will give rise to a quotient DFA A′ where each state is an equiv-

alence class of the states in the original DFA A (the states are in the same

105



q4

q7

a

q8

b

q9

a

q10

b

q11

a

q1

q3

a

q6

a

q4

b

q7

a

q8

b

q9

a

q10

b

q11

a

+1 for matching suffix a

+1 for matching
suffix ba

+1 for matching
suffix bba

Transition tree from
q4

Transition tree from
q1

EDSM score = 3

Figure 5.20: Computing the EDSM score by superposing transition trees.

block of the partition).

4. Step 2 guarantees that there will never be any mixed accepting/rejecting

states in a single equivalence class.

5. Inspect the equivalence classes (blocks of states) in A′, and sum the following

value for each one:

(a) If the equivalence class contains only unlabelled states, contribute 0 to

the score, else

(b) Contribute number of labelled states minus one to the score.

To score the merge between the states q1 and q4 in the APTA shown in Figure

5.18, we start by actually performing the merge to get the DFA in Figure 5.21.

106



b

q0

q
1,4,8,10

q2

q
3,7,9,11

q5

a b

a a

q6

a

Figure 5.21: The DFA obtained after merging the states q1 and q4 in the APTA

shown in Figure 5.18.

The merge is consistent with the training data, and the resulting DFA has six

states which correspond to the following equivalence classes: {q0}, {q1, q4, q8, q10},

{q2}, {q3, q7, q9, q11}, {q5}, and {q6}. The computation of the sub-scores for each

equivalence class as well as the total EDSM score is shown in Table 5.1 below.

Equiv. class Label counting Score contribution

{q0} Only contains unlabelled state q0 0

{q1, q4, q8, q10} q1, q4, q8 are unlabelled, and q10 is re-

jecting (i.e. 1 labelled state)

1 labelled state -1 = 0

{q2} Only contains unlabelled state q2 0

{q3, q7, q9, q11} q3, q7, q9, q11 are all accepting (i.e. 4

labelled states)

4 labelled states -1 = 3

{q5} Only contains one rejecting state q5

(i.e. 1 labelled state)

1 labelled state -1 = 0

{q6} Only contains one rejecting state q6

(i.e. 1 labelled state)

1 labelled state -1 = 0

Score = Sum(0 + 0 + 3 + 0 + 0) = 3

Table 5.1: The computation of the EDSM score for the merge (q1, q4) in the APTA

shown in Figure 5.18.

107



The Algorithm

Algorithm 5.4 shows how EDSM is used to greedily construct a merge path starting

from an APTA to a final hypothesis.

Algorithm 5.4 EDSM (adapted from [LPP98])

Input: A positive sample S+ and a negative sample S−.

Output: A hypothesis DFA.

1: A ← Construct an APTA from S+ and S−

2: merges ← Compute all valid detmerges between all pairs of states in A

3: while merges 6= ∅ do

4: A ← Perform detmerge having the highest EDSM score

5: merges ← Compute all valid detmerges between all pairs of states in A

6: end while

7: return A

Tie-Breaking

When EDSM is selecting merges, it is quite possible that two or more merges

are tied with same score. Several tie-breaking strategies may be found in the

literature including breaking ties randomly, using a relative depth-based heuristic,

or a combination of both. In [Spi04], Spina describes the following relative depth-

based heuristic to resolve ties:

Score = Score + (0.9 + (−0.01×Max(Depth(qi),Depth(qj))))

A Simple Example

We illustrate a complete run of EDSM using training set S+ = {aaa, aaba, bba,

bbaba} and S− = {a, bb, aab, aba}. This training set results in the starting APTA

shown in Figure 5.22 below.

108



q0

q1 q2

q5

q9

q11

q12

q4

q8

q3

q7

q10

q6

a b

b

a

a

a b

a

b

a

b

a

Figure 5.22: The APTA constructed for S+ = {aaa, aaba, bba, bbaba} and S− =

{a, bb, aab, aba}.

Out of all the possible valid merges, we select the one between the states q2

and q3 which has the highest randomly tie-broken EDSM score of 2. The new

DFA would correspond to the state partition {{q0}, {q1}, {q2, q3}, {q4}, {q5, q7},

{q6}, {q8}, {q9, q10}, {q11}, {q12}}. This DFA is shown in Figure 5.23 where each

state is annotated with its EDSM score contribution, and are then renumbered in

breadth-first order for clarity.

109



q0

q1

q11

q12

q4

q8

q
2,3

q
5,7

q
9,10

q6

ab

b

a

a

a b

a

b

a

+0

+1

+1

q0

q1

q8

q9

q3

q6

q2

q5

q7

q4

ab

b

a

a

a b

a

b

a

Renumber
States

Figure 5.23: The current hypothesis after merging the states q2 and q3.

We proceed by examining all the possible valid merges available, and select the one

between the states q1 and q5 (in the renumbered DFA in Figure 5.23) which has the

highest randomly tie-broken EDSM score of 2. The new DFA would correspond to

the state partition {{q0}, {q1, q5, q8}, {q2, q7, q9}, {q3}, {q4}, {q6}} and is shown in

Figure 5.24 annotated with the EDSM score contribution, and the states, again,

renumbered for clarity.

q0

q
1,5,8

q3

q6

q
2,7,9

q4

ab

b

a

a

a

b

Renumber
States

q0

q1

q3

q5

q2

q4

ab

b

a

a

a

b

+1

+1

Figure 5.24: The current hypothesis after merging the states q1 and q5.

110



We next select the merge between the states q2 and q4 which has the highest

randomly tie-broken EDSM score of 1. The new DFA would correspond to the

state partition {{q0}, {q1}, {q2, q4}, {q3}, {q5}} and is shown in Figure 5.25 below

annotated with the EDSM score contribution.

Renumber
States

q0

q1

q3

q5

q
2,4

ab

b

a

a

a

b+1

q0

q1

q3

q4

q2

ab

b

a

a

a

b

Figure 5.25: The current hypothesis after merging the states q2 and q4.

Our final step is to select the merge between the states q0 and q3 which has the

highest randomly tie-broken EDSM score of 1. The final hypothesis is a three-state

DFA corresponding to the state partition {{q0, q3}, {q1, q4}, {q2}} and is shown in

Figure 5.26.

Renumber
States

q
0,3

q
1,4

q2

ab

b

a

a

b

+1

q0

q1

q2

ab

b

a

a

b

Figure 5.26: The final hypothesis obtained after merging the states q0 and q3.

We conclude by observing that, in this example, we used the same training

sample S+ and S− that we started with in the example for RPNI (Section 5.1.5).

Both algorithms inferred a DFA having three states albeit for different languages.

111



5.1.7 Variants of EDSM

Blue-Fringe

The reference implementation of EDSM considers all the pairs of states in the

current hypothesis as candidates for merging and picks the one having the highest

score. While this has the advantage that all possible pairings of states are taken

into account (we are not restricting the search), this procedure is computationally

expensive due to the large number of merge pairs to consider5. In [LPP98], Lang

et al. propose a variant of EDSM that places a restriction on the merge order

identical to blue-fringe state merging algorithms – that is, only pairs of red/blue

states are considered, scored and selected. The idea is twofold: (a) the set of

pairings is smaller, and (b) since blue states are always the root of a tree in the

DFA, the merge procedure can be implemented more efficiently. Lang et al. make

the following observations:

• The unrestricted, reference implementation is slightly more effective than

the blue-fringe variant. This is attributed to the fact that the reference

implementation works with a larger pool of candidates.

• There are still many instances where the blue-fringe variant succeeds and

the reference implementation fails. The failures of the two implementations

are “seemingly uncorrelated”.

• Because of this, both implementations may be made to work on the same

problem, and the smaller of the two resulting DFAs is returned.

Windowed EDSM (W-EDSM)

Another alternative suggested by Lang et al. in [LPP98] to minimise the computa-

tional expense incurred by evaluating each possible merge step, is a windowing ap-

proach referred to as Windowed-EDSM (W-EDSM). In W-EDSM, only the states

that lie within a distance w of the root in a breadth-first ordering of the states in

the hypothesis are considered. This distance w is referred to as the window size.

This change has the following effects:

5There are (n2−n)
2 pairings in an n-state hypothesis.

112



• Performance may be hurt by overlooking high-scoring merges which involve

states that are deeper than the window allows the algorithm to ‘see’. The

authors, however, argue that this event is “relatively rare”.

• The running time is much better than the reference implementation of

EDSM.

• The recommended window size w is twice the size of the target DFA. This

means that we would need to know the size of the target DFA a priori.

We adapt the W-EDSM procedure from [CK02] next and refer readers to [CK03],

and [Spi04] for further discussion on W-EDSM:

• In breadth-first order, create a window of nodes in the current DFA. The

recommended size of the window is twice the size of the target DFA.

• Evaluate all possible merge pairs within the window. Ties are broken ran-

domly.

• Merge the pair of nodes that has the highest calculated score.

• If the merge reduces the size of the window, in breadth-first order, include

the number of nodes needed to regain a window of size twice the target DFA.

• If a merge is not possible within the given window, increase the size of the

window by a factor of two.

• Terminate when no more merges are possible.

Shared Evidence Driven State Merging (S-EDSM)

The primary weakness of EDSM is that its merge ordering heuristic relies on a

score whose significance may be weak early in the run of the algorithm (support

for this was studied by Ciccello and Kremer when working on MW-EDSM in

[CK02] and confirmed by our experimental results presented later). S-EDSM, due

to Abela et al., attempts to address this by defining an alternative state ordering

based on the concept of shared evidence between different valid merges [ACS04].

The idea is to increase evidence in the situations where EDSM has little or none.

113



A central question in S-EDSM is concerned with how individual valid merges

affect other valid merges in a hypothesis. Specifically, if m1 and m2 are both valid

merges in a DFA A, and we first perform the merge m1 to obtain A′, does m2

remain a valid merge in A′? This question gives rise to the notion of pairwise

compatibility for merges which we proceed by defining next.

Definition 5.3: State Compatibility [ACS04, Spi04]

Two states q and q′ are said to be state incompatible if both the states are

labelled and those labels are different. Specifically, a state q is incompatible

with q′ if q ∈ FA and q′ ∈ FR, or if q ∈ FR and q′ ∈ FA. The states q and q′

are otherwise state compatible.

Definition 5.4: Pairwise Merge Compatibility [ACS04, Spi04]

Consider some DFA A, as well as two valid merges m1 and m2. Let A1 be

the hypothesis obtained after performing m1 in A, and A2 be the hypothesis

obtained after performing m2 in A. The merges m1 and m2 are said to be

pairwise compatible if for each q ∈ A, then q ∈ A1 is state compatible with

q ∈ A2. We denote this relation by m1 ↑ m2.

If two merges m1 and m2 are not pairwise compatible, we say that they are

pairwise incompatible and write m1 ↓ m2.

We will use the notation m1 ↑ {m2,m3, . . .} to express that m1 is pairwise

compatible with m2,m3, . . ..

An example of pairwise compatible merges is shown in Figure 5.27. Both the

merges (q2, q3) and (q4, q5) are valid in the DFA shown in (i), and if we perform

(q2, q3) first, the merge (q4, q5) is still possible and valid. The same is true if we

had started with (q4, q5). As a counterexample, consider Figure 5.28. Both merges

(q0, q1) and (q4, q6) are valid, but after performing (q0, q1), the merge (q4, q6) is no

longer possible. At this point, we may observe that the pairwise compatibility

induces a binary relation between merges and that the relation is symmetric (m1 ↑

114



m2 implies m2 ↑ m1) [ACS04, Spi04].

q0

q2

q1 q3

q4 q5

q6

b

a

b

b

a

a

q0

q1 q
2,3

q4 q5

q6

b

a
b

b

a

a

q0

q2

q1 q3

q
4,5 q6

b

a

b

a

a

b

(i)

(ii) - Merged (q2,q3)

(ii) - Merged (q4,q5)

Figure 5.27: Pairwise compatible merges in S-EDSM.

q0

q2

q1 q3

q4 q5

q6

b

a

b

b

a

a

(i)

(ii) - Merged (q0,q1)

(iii) - Merged (q4,q6)

q
0,1,3

q
2,4 q5

q6

a
b

ab

q0

q2

q1 q3

q
4,6 q5

b

a

b

b

a

a

q4 is
incompatible

Figure 5.28: Pairwise incompatible merges in S-EDSM.

Consider a scenario where there are six possible merges in some DFA. These

merges together with the other merges they are pairwise compatible with, as well

115



as their hypothetical EDSM scores are shown Table 5.2. If we had to use EDSM

as our heuristic, we would select m1 which has the highest score of 8 and proceed

along that merge path. By making this choice, the merges m3, m4, m5, and m6

become invalid as only m2 is pairwise compatible with the merge m1 we just made.

Merge ↑ EDSM score

m1 {m2} 8

m2 {m1,m4} 6

m3 {m4,m5} 5

m4 {m2,m3,m5} 4

m5 {m3,m4} 4

m6 {} 2

Table 5.2: Pairwise compatible merges.

S-EDSM makes its merge choice by taking into account the pairwise compat-

ibility of the available merges as follows: the S-EDSM score for a merge is equal

to the EDSM score of the merge plus the EDSM score of each other merge it is

pairwise compatible with. This is shown in Table 5.3 where the EDSM scores are

shown in superscript.

Merge ↑ S-EDSM score

m
(8)
1 {m(6)

2 } 8 + 6 = 14

m
(6)
2 {m(8)

1 ,m
(4)
4 } 6 + 8 + 4 = 18

m
(5)
3 {m(4)

4 ,m
(4)
5 } 5 + 4 + 4 = 13

m
(4)
4 {m(6)

2 ,m
(5)
3 ,m

(4)
5 } 4 + 6 + 5 + 4 = 19

m
(4)
5 {m(5)

3 ,m
(4)
4 } 4 + 54+ = 13

m
(2)
6 {} 2 = 2

Table 5.3: How merges are scored using S-EDSM.

Using this strategy, we see that m4 has the highest S-EDSM score of 19 and

would be selected as the next merge instead of m1 which would have been chosen

by EDSM. We can now proceed by making a few observations:

116



• S-EDSM tries to maximise the number of merges which remain valid after a

particular merge has been made. Recall that, earlier on we mentioned that

performing a merge implies that certain merges and paths no longer remain

possible. By maximising the options that remain open, we may say that

S-EDSM is a risk-averse search strategy.

• In practice, S-EDSM is actually performing a lookahead. To score a merge,

EDSM just needs to ‘look into’ its partition. In S-EDSM, in order to deter-

mine which merges are pairwise compatible with the one being considered,

we have to first execute the merge and then inspect its results in the next

level.

• Spina reports that, because of this lookahead, S-EDSM is much more com-

putationally expensive than EDSM [Spi04]. To alleviate this, the author

suggests considering a subset of the valid merges to work with. This can be

determined by:

– Either only considering valid merges that are within a percentage bracket

of the highest EDSM score, or

– Only considering a top percentage of merges from the valid ones ordered

in descending EDSM score.

• For sparse training sets, EDSM has to resolve many ties, whereas in S-EDSM,

Spina suggests that there are fewer. Spina also suggests that S-EDSM might

actually be useful as an EDSM tie-breaker [Spi04].

We conclude our discussion on S-EDSM by summarising the principal results in

[ACS04] and [Spi04]:

• It has been observed that, in several instances, the merge paths selected by

EDSM and S-EDSM are identical. Even when this is not the case, the paths

may still lead to the same final hypothesis.

• Abela et al. measured the performance of S-EDSM in terms of both the

classification rate of the hypotheses identified, as well as their sizes. On

average, the classification rate of S-EDSM is consistently better than EDSM.

117



Specifically, S-EDSM did not perform worse than EDSM, and in a number

of instances outperformed it.

• As training sets become sparser, S-EDSM performs better than EDSM.

• Spina also described and justified other merge interactions, including mutu-

ally compatible merges, merge coverage, and merge dominance. As published

in [ACS04] and [Spi04], S-EDSM only uses pairwise compatibility to support

merge selection. The other interactions suggested remain a matter for fur-

ther investigation.

5.1.8 DFA Learning using Minimum Description Length

In [AJ06], Adriaans and Jacobs describe an interesting study regarding the use

of the Minimum Description Length (MDL) principle for DFA induction6. The

method described by the authors is outlined as follows:

• An APTA is constructed from the positive and negative strings in the train-

ing set.

• Merge pairs are selected according to the blue-fringe method described in

Section 5.1.7 above.

• The algorithm uses MDL to determine which red/blue states will be merged

together – all the red/blue state combinations are scored using the MDL

heuristic, and the best one is chosen.

• This process is repeated until all the states in the hypothesis are red where

we would have converged to a final hypothesis.

So far, the method is identical to running the EDSM algorithm in the blue-

fringe framework with the exception that MDL is used to score merge pairs rather

than EDSM. While referring readers to [AJ06] for a complete derivation, the MDL

score computed as the sum of (i) the number of bits required to encode the model

(the model code), and (ii) the number of bits required to encode the sample

given that model (the data-to-model code). To approximate the model code, the

6We recommend [Grü04] as a good introduction to MDL.

118



authors use the following argument: Suppose an n-state DFA is defined over an

alphabet Σ, and is functionally complete (i.e. there is an outgoing transition for

each symbol for each state). There are then n × |Σ| transitions, each having n

possible destinations, giving nn×|Σ| possibilities. Each state can either be accepting

or rejecting, giving 2n possibilities. For each permutation of states 2 . . . n there

is an equivalent DFA. The length of an index identifying a specific DFA (model)

is then log2(2n×nn×|Σ|

(n−1)!
). Adriaans and Jacobs propose five variations to determine

the length of the data-to-model code. An example considering only the positive

strings in the training set is given by log2

(
m+
d+

)
, where m+ is the size of the model

(computed in the previous step), and d+ is the number of positive strings in the

training set. The heuristic can now be described as: the lower the sum of the

model code and the data-to-model code, the better the merge is assumed to be.

Using one or more variants of the data-to-model code computation proposed,

the MDL method was able to solve a subset of the Abbadingo One competition

problems that EDSM was also able to solve. Specifically, EDSM was able to solve

four more classes of problems which MDL was not able to.

5.1.9 Parallel Beam Search (PBS, SAGE)

In [JP98a, JP98b], Juillé and Pollack describe a stochastic search algorithm which

uses a beam search (see Section 4.3.5) to explore the most promising parts of the

search space and is inspired by Knuth’s ideas on estimating backtracking costs

(see Section 4.5). The algorithm considers several merge paths each starting from

an initial state, and follows a sequence of partial solutions (the DFAs obtained by

merging) that eventually lead to a final solution (the hypothesis DFA in the border

set). The method, called Self-Adaptive Greedy Estimate (SAGE), is described in

Algorithm 5.5, and is broken down into two components: the construction phase,

and the competition phase.

The Construction Phase

Let PE denote a processing element which performs the following task:

• Start from the PTA A0.

119



• Select a random merge to obtain some A1 from the set of all possible valid

merges (children) of A0.

• Select a random merge to obtain some A2 from the set of all possible valid

merges of A1.

• Repeat this process until we select some merge to get An which cannot be

expanded any further (no further merges are possible because An will be a

DFA in the border set). This sequence A0 → . . .→ An represents a random

merge path that identifies the hypothesis An.

• Assign a score to the hypothesis. This score is computed with respect to the

“problem objective function”. In our case, this is the size of the hypothesis

DFA An (this follows from the definition of the Abbadingo success criterion,

Section 1.2).

Given the starting PTA, a PE is created for each merge possible from it (i.e.

for each ‘child node’ of the PTA in the merge graph) to score that merge7. This

procedure is illustrated in Figure 5.29. Once all the nodes are scored by their

respective PEs, the construction phase for the current level is complete and we

proceed to the competition phase.

The Competition Phase

We now have scores for each merge available at a given level, and proceed by

selecting the best w alternatives (the beam width) from them. In Figure 5.29 we

would select the highest scoring w DFAs from those labelled 1, 2, 3, . . . n. We now

repeat the construction phase for each of the alternatives to process the next level.

This (construction→ competition) process is repeated until no further merges are

possible.

7The authors note that this procedure is highly parallelisable and is amenable to distributed

implementations.

120



PTA

1 2 3 n

Return score
of DFA 3

Return score
of DFA 2

Return score
of DFA n

Return score
of DFA 1

random merge

path from 3

Candidate merges
in level 1:

random merge

path from 2

random merge

path from 1

random merge

path from n

Figure 5.29: Constructing and scoring random merge paths in SAGE.

Algorithm 5.5 Self-Adaptive Greedy Estimate (adapted from [JP98a, JP98b])

Input: A prefix tree acceptor A, and a beam width w.

Output: A hypothesis DFA H.

1: candidates ← An empty max-queue of DFAs ordered by A.score

2: beam ← A list containing A

3: while beam 6= ∅ do

4: q ← A new max-queue // Queue is ordered by A.score.

5: for each A′ in beam do

6: merges ← validDetMergesOf(A′)

7: if |merges| = 0 then

8: candidates ← candidates ∪ {A′} // No more merges possible.

9: else

10: for Anext ∈ merges do // Score each merge.

11: Anext.score ← score(Anext); q.enqueue(Anext) // See Section 5.1.9

12: end for

13: end if

14: end for

15: beam ← ∅ // Populate the beam.

16: while q 6= ∅ and w > |beam| do

17: beam ← beam ∪ {q.dequeue()} // Dequeue max of A.score.

18: end while

19: end while

20: return bestOf(candidates)
121



5.1.10 Ed-Beam

In [Lan98] and [Lan99], Lang describes a method and implementation which com-

bines elements of Juillé and Pollack’s search strategy using Price’s EDSM heuristic

to obtain better generalisation rates using less computational resources. Straight

from Lang, the observation is that “Not only are Price’s improved merge ordering

and Juillé’s search over initial merges good ideas in isolation, but each idea bene-

fits from the other one when they are combined”. This led to the development of

a method which combines beam search and EDSM called Ed-Beam.

The first component in Ed-Beam is the function ed-fold which is a blue-fringe

implementation of EDSM that is guided by a binary control string which is in-

finitely right-padded with zeroes. At every merge step, the function consults the

next bit in the control string and if a 0-bit is encountered, the highest scoring

merge according to the heuristic will be chosen. If, on the other hand, a 1-bit is

encountered, that highest scoring merge will be marked as unusable for the re-

mainder of the path construction. When ed-fold completes a path, it returns the

size of the hypothesis it discovered as a score. Ed-Beam wraps this function in a

beam search where at each step, the algorithm has a population of p of control

strings of length l. Each of these p control strings is extended with a 0 or a 1

to give us 2p control strings of length l + 1. These control strings are evaluated

using ed-fold and trimmed to the best p for the next iteration. A Standard ML

implementation of this method may be found in [Lan99].

Evaluation was made on 810 benchmark problems having between 4 and 21

states used to label 20 binary strings of length 30. Rather than providing the labels

of the 20 strings (which would correspond to the labels of the states reached at

the end of the string), a label is provided for each of the states visited by any

given string. Due to the common prefixes between the strings, there would be

roughly 550 state labels in a given training set. During evaluation, Lang allotted a

maximum of 900 seconds8 to the algorithm which found provably optimal solutions

for each of the 810 benchmark problems. Ed-Beam is considered to be a state-of-

the-art technique for learning DFAs on Abbadingo-style problem instances [HV13].

8On a 450MHz Pentium II machine.

122



5.1.11 TBW-EDSM

In [Cic02], Cicchello describes a limited-search approach to learning DFAs and

studies its behaviour when training sets are sparse. The method is based on

the observation that, should the initial merge choices made by a state merging

algorithm be correct, they would be sufficient to constrain the hypothesis well

enough such that a heuristic such as EDSM can then proceed with a greater

likelihood of identifying the target DFA or a close approximation of it. The author

verifies this by using a modified version of W-EDSM (referred to as MW-EDSM)

to determine which levels in the merge path construction are the most crucial.

Supported by these findings, Cicchello presents the TBW-EDSM algorithm

(Trakhtenbrot-Barzdin + windowed EDSM) which attempts to correctly identify

the first merge to perform at the APTA level. After this first merge is selected,

the algorithm proceeds using standard W-EDSM. Algorithm 5.6 illustrates this

procedure.

Algorithm 5.6 TBW-EDSM ([Cic02])

Input: The training data S+ and S−, a window size t.

Output: A hypothesis DFA A.

1: for i ∈ {1, . . . , t} do

2: A ← The APTA from S+ and S−

3: m ← The ith valid detmerge in the breadth-first traversal of A

4: A ← Execute the detmerge m on the APTA A

5: A ← Complete A using W-EDSM

6: end for

7: return The smallest completed hypothesis A encountered

To evaluate the method, 300 Abbadingo-style problems were generated having

an average target DFA size of 63.75. In each case, a training set consisting of

1422 strings was used. This corresponds to a density which is slightly lower than

Abbadingo density 1 problems for a nominal size of 64 states. For comparison,

W-EDSM was given 30 attempts at each problem, and TBW-EDSM was set to

search in the first 30 breadth-first merges (t = 30 in Algorithm 5.6). TBW-EDSM

123



succeeded in finding low-error hypotheses in 24 out of the 300 problems, while

W-EDSM only managed to do so in 17 cases. The TBW-EDSM search strategy

also managed to outperform W-EDSM for identifying hypotheses having a more

lenient error rate of between 95% and 99% on a test set.

5.1.12 Some Remarks Regarding ‘Search Wrappers’

State merging algorithms driven by a greedy heuristic such as EDSM, are very

computationally efficient since they do not perform any search beyond scoring

the merges available at any current point along a merge sequence. As such, their

performance limited by the quality of heuristics used [BO05]. Juillé and Pollack’s

SAGE, Lang’s Ed-Beam, and Cicchello’s TBW-EDSM are usually described as

specialised procedures that ‘wrap’ a greedy heuristic (typically, EDSM) in a search

[Lan98, HV13]. For instance, SAGE wraps a stochastic search around a state

merging algorithm, and Ed-Beam wraps a deterministic search around EDSM.

Wrapping heuristics such as EDSM in a search has also been applied to the task

of identifying deterministic real-time automata9 [VdWW12]. We refer readers to

[BO05] for a survey of several other approaches to using search techniques (guided

by a heuristic) to explore the space of possible sequences of merges.

5.2 Other DFA Learning Methods

5.2.1 Genetic Search and Swarm Intelligence

Genetic search is widely understood to be a powerful metaheuristic, and has been

frequently deployed to tackle grammatical inference problems. We see several

attempts in [Dup94], [LR05], [BL05], [SB07], and [TE11]. Additionally, and of

special importance to us, there have been efforts to directly evaluate the perfor-

mance of evolutionary methods with respect to EDSM on Abbadingo-style prob-

lem instances [LR03]. Each of these approaches and corresponding conclusions

have their own nuances, and while we refer readers to the authors’ work for the

complete methods, we outline the implementation of a simple genetic algorithm

9Where the training data consists of sequences of events generated by a real-time system.

124



(GA) adapted from [Wie17].

Chromosome representation:

• Let {0, 1, . . . , n− 1} be the indices of the n states in our starting prefix tree

acceptor.

• A partition π is encoded as a sequence of (i0, i1, . . . , in−1) integers where each

integer ij ∈ {0, 1, . . . ,m − 1} | 0 ≤ j < n denotes the block assigned to the

state j, where m is the size of the target DFA. In other words, ip = iq ⇐⇒

B(p, π) = B(q, π). As an example, consider the chromosome (2, 2, 0, 1, 2, 1)

which represents the partition {{0, 1, 4}{2}{3, 5}}.

• We can see that this representation is closed for the mutation and crossover

operators defined next – i.e. the resulting chromosomes are representations

of valid partitions.

Mutation:

• Mutation simply involves selecting two random indices in a chromosome and

swapping their values. An example is shown next:

(2, 1, 2, 0, 5, 5) == {{0,2},{1},{3},{4,5}}

(2, 5, 2, 0, 1, 5) == {{0,2},{1,5},{3},{4}} 

Crossover:

• Crossover involves selecting a random index r common to both parents, and

the values at the indices ≤ r in both parents is swapped to obtain two

offspring. We, again, illustrate with an example:

(2, 1, 3, 0, 5, 5)

(2, 5, 2, 0, 1, 5)

(2, 5, 2, 0, 5, 5)

(2, 1, 3, 0, 1, 5)

125



The fitness function is defined as follows:

• Assign a fitness of ∞ if the quotient automaton induced by the partition is

inconsistent with the negative samples.

• Otherwise, since we want to minimise the size of the DFA induced by the

partition, the fitness is the number of distinct blocks in the partition (as

each block corresponds to a state in the hypothesis).

This approach essentially involves ‘packing’ states into a partition of a quotient

DFA, and forms the basis of many evolutionary methods for inferring regular

languages. An alternative would be to evolve the target DFA directly as can be

seen in [LR05]. Here, Lucas and Reynolds use the transition matrix of the target

DFA as the chromosome representation (they evolve an n-state DFA rather than

a partition) and apply several operators on it to explore the search space. We

note that, the transition matrix by itself is not sufficient to represent a DFA since

the final/accepting state labels would be missing. Rather than encoding the state

labels in the chromosome itself, which would increase the size of the search space

by a factor of 2n, they infer the types from the training set. Each state in the

candidate hypothesis encoded by the transition matrix is labelled according to how

many strings in the training set reach it. If more positive strings reach a state

in the candidate hypothesis than negative ones, the state is labelled as accepting.

Otherwise, the state is labelled as rejecting. The authors call this scheme smart

state labelling. The framework used by Lucas and Reynolds is that of a multistart,

random hill-climber which does not require a crossover operator. Several kinds of

mutation operators are described where the most basic one involves choosing a

random location in the transition table (the destination of a state) and replacing

it with another state selected from a uniform distribution of all states. The fitness

function is simply a measure of how many strings in the training set are classified

correctly by the candidate hypothesis.

We summarise this part by discussing some of the results obtained using vari-

ants of the methods we described earlier:

• For small Abbadingo-style DFAs, [LR03] report that their evolutionary ap-

proach outperforms EDSM for sparse data but is ‘clearly’ outperformed by

126



EDSM for automata having 32 states or more.

• Similar results may be found in [BL05] with EDSM performing better than

the GA on larger target DFA problems. Interestingly, their method allows

for hypotheses to expand (specify) and compress (generalise) throughout the

run of the algorithm, whereas EDSM only compresses. We concur with the

authors that the method warrants more study.

• The method presented in [LR05] allows for noise in the data set, but is again

outperformed by EDSM (and its variants) for target DFAs at or larger than

32 states.

In [CU12], Chivilikhin and Ulyantsev describe an Ant Colony Optimisation, or

ACO [CDM91], approach to learning finite state machines (FSMs). The proposed

method works as follows:

• Initially, the graph that the artificial ants search in is empty. A node corre-

sponding to a randomly constructed FSM is created and added to the graph,

and all the ants are placed on this node.

• Node expansion and selection:

– With some probability p, an ant constructs new edges in the graph by

performing a number of mutations (a change in transition end state

and/or change the transition action) of the current node/FSM it is on

(without replacement). The ant moves to the best new node it has

created.

– With a probability 1 − p, the ant will select a next node from the

existing successors. Selection is stochastic, based on the classical ACO

pheromone formula [CDM91].

• The size of the graph is controlled as follows:

– Each ant is given a maximum number of steps to perform without an

increase in fitness value.

– The whole colony is given a maximum number of steps to perform

without an increase in overall fitness value.

127



• As ants traverse the graph, the pheromone levels are being updated and

evaporated as in classical ACO.

• The fitness of a node in the graph is computed as the error over a test set.

The authors experimented with the “Alarm Clock Problem” on FSMs having

four states. The average number of fitness evaluations used to identify the target

FSM was measured over 1000 runs of their ACO algorithm, as well over 1000

runs of a GA for the same problem [Tsa10]. Their results show that the GA they

implemented required more than twice the number of fitness evaluations than

the ACO needed (117,977 vs. 53,944 fitness evaluations). A second “John Muir

food trail” scenario was evaluated on FSMs having seven states, where the ACO

identified two valid solutions after 143 and 221 million fitness evaluations. The

authors report that, on both the problems, their ACO either outperformed, or

worked as well as the GA they compared their method with.

5.2.2 DFA Learning as Constraint Satisfaction

BIC is an algorithm proposed by Oliveira and Silva which uses the principle

constraint satisfaction to identify the smallest DFA consistent with a training set

[OMS98]. The method is outlined as follows:

• Consider a target DFA having the states Q, and an APTA10, constructed

from some training set, having the states Q′.

• It follows that there exists a mapping f : Q′ → Q which determines which

state in the APTA corresponds to which state in the target DFA.

• Since we are looking for the minimum DFA, we want the set of states Q in

the mapping f to be of minimum cardinality.

• A search algorithm identifies a mapping function f subject to a number of

constraints:

10Oliveira and Silva refer to this as an LFDFA (loop free automaton).

128



– If two states in the APTA are type incompatible (accepting/rejecting),

then they do not correspond to the same state in the DFA obtained by

the mapping function.

– If two states qi and qj are mapped to the same state and have successor

states qk and ql for some symbol, then qk and ql must also be mapped

together in the same state (this is merging for determinisation).

• BIC is a search algorithm which explores a tree of mapping assignments and

backtracks when an assignment results in a conflict. The method improves

over earlier efforts (such as that by Biermann [BBP75]), by being able to

perform dependency directed backtracking [RN03] and thereby considerably

improve the efficiency of the algorithm.

On randomly constructed problem instances, BIC was able to identify the

target DFA in “very little time” for all problems where the target had up to

11-12 states, and became, progressively, less effective on larger ones. We note

that the exact nature of the method (in the sense that BIC identifies the exact

target DFA) makes its unsuitable for the types of Abbadingo-style problems we are

considering in this dissertation. Nonetheless, the authors argue that the techniques

they described will be “extremely effective in a variety of other situations”. This

is indeed the case. We see similar ideas being used when graph colouring and

Boolean satisfiability techniques are applied to the DFA learning problem next.

5.2.3 Graph (Vertex) Colouring

An interesting approach to deal with the regular inference problem is to transform

it into an instance of a graph colouring problem. In [CN97], Coste and Nicolas

describe such a method with encouraging results. The general idea is to:

• Assign a distinct colour to every state in the target DFA.

• Every state in the APTA constructed from some training set corresponds to

an unknown colour in the target DFA. Moreover, the states in the APTA

correspond to the nodes in the graph colouring problem.

129



• Two vertices in the graph are connected by an edge if they are not compatible

(i.e. they must have distinct colours). In other words, these edges represent

a number of inequality constraints.

• If two states are merged together, then their successors (for the same transi-

tion label) need to be merged too in order to satisfy merging for determinism

(see Section 5.1). This represents a number of equality constraints11.

• Inferring an n-state hypothesis is equivalent to finding an n-colouring of the

graph subject to these constraints.

• The authors use DSATUR [Bré79] for this task.

• Once a colouring is obtained, states in the APTA having the same colour

are merged together to return a hypothesis.

• Experimentation was made on very small target DFA instances with the

authors acknowledging that harder problems such as those in the Abbadingo

One competition still need to be studied.

In [CFV12], Costa Florêncio and Verwer note that while inequality constraints

translate to graph colouring “in a very natural way” (they are edges in the graph),

the equality constraints greatly complicate matters. Specifically, in the method

used by Coste and Nicolas, the equality constraints are propagated dynamically

and, as such, the graph colouring instance is being continuously modified on the

fly. Costa Florêncio and Verwer propose the first method to translate both types

of constraints into a pure graph colouring instance. They also discuss the com-

plexity bounds on the learning task, as well as a family of algorithms suitable for

identifying either the exact target DFA or an approximation of it.

5.2.4 Satisfiability Solvers

One of the primary motivators for using Boolean satisfiability (SAT) methods to

infer DFAs is that the techniques are well understood and mature. Specifically,

11We note that these constraints were mentioned earlier in Section 5.2.2 when discussing

Oliveira and Silva’s constraint satisfaction algorithm [OMS98].

130



SAT solvers exploit advanced search techniques such as conflict analysis and in-

telligent back-tracking [HV13].

The general approach is to translate a DFA learning problem into a conjunc-

tive normal form (CNF) formula and use a SAT solver to deal with it. In [HV10],

Heule and Verwer describe a direct encoding method to encode DFAs as CNF.

The procedure is outlined as follows: (i) translate DFA identification into a graph

colouring problem, (ii) translate the graph colouring problem into SAT, and (iii)

use a SAT solver on the problem instance. While, at the time of writing, the pro-

cedure used by the authors represented a state-of-the-art translation, the method

nonetheless results in an encoding of O(|C|2|V |2) clauses. The authors report that

this encoding is too hard for current SAT solvers to deal with (C is the number

of colours, and V is the number of vertices in the graph/DFA). An alternative

compact encoding is proposed and evaluated which requires O(|C|2|V |) clauses.

The algorithm is summarised as follows:

1. Find a large clique L of vertices in the graph representing an APTA.

2. Initialise a set of colours C such that |C| = |L|.

3. Construct a CNF formula by translating the APTA.

4. Use a SAT solver to solve the formula (the authors used PicoSAT [Pic]).

5. If the formula is unsatisfiable, add a colour to C and go back to step 3.

6. Return the DFA from the formula found in step 4.

We summarise the setup and results obtained by [HV10] next:

• At the time of writing, state-of-the-art SAT solvers can deal with problems

of up to 5 million clauses, whereas more difficult problems in Abbadingo

One require upwards of 100 million clauses to represent. Because of this, the

authors suggest applying a “few steps” of EDSM to compact the initial tree

(APTA) and proceed with their SAT method.

• Experiments were conducted for DFAs whose sizes range between 16 and 21

states, and compared their results against benchmark EDSM-based imple-

mentations. For target DFAs in this size class, their SAT method was found

131



to be very competitive with, and in some cases, outperformed the benchmark

implementations.

In [HV13], Heule and Verwer refine on their earlier work to develop the StaMinA

competition12 winning algorithm dfasat. The procedure is outlined as follows:

• The DFA identification problem is encoded into SAT.

• Since the resulting encoding is too large for state-of-the-art SAT solvers,

a number of greedy EDSM merge steps are performed. Each merge step

reduces the size of the DFA, and when the DFA is sufficiently small, the

SAT method can be applied.

• Of course, this makes the result dependent on the performance of EDSM.

Since EDSM is not well suited to the kind of problems described in the

StaMinA competition, a new heuristic is proposed which is more suitable

for these kinds of problem instances.

• Since greedy heuristics can lead to suboptimal solutions, the computed ev-

idence score is randomised and run several times before returning the best

solution found. In other words, the randomised evidence score is computed

as RandomisedScore = Random()×ActualScore, where Random()

is a function which returns a random value between 0.0 and 1.0.

• Using this randomised scoring procedure results in many possible candidate

solutions which the authors refer to as an ensemble of automata (inspired

by Dietterich [Die00]). The ensemble of automata are then used to classify

an unseen string s as follows:

Class(s) =

1 if ≥ 50% of automata accept s

0 otherwise

On the hardest problems in the StaMinA competition having a 50-symbol

alphabet, EDSM achieves an accuracy score of 52%, whereas dfasat improves

12Recall that the StaMinA competition was concerned with learning for DFAs having large

alphabets [WBD+10].

132



to 95%. This represents a substantial improvement over the state-of-the-art in

software model DFA identification.

5.2.5 Connectionist Approaches

Our research indicates that using recurrent neural networks (RNNs) and other

connectionist approaches mostly seem to work for inferring very simple languages.

The general idea is based on the fact that an RNN trained with a set of labelled

strings, not only learns the behaviour of the grammar (automaton), but also its

state representation. In other words, the RNN internally encodes a finite state

automaton [CSSM89]. Attempts to exploit this result may be found in the work

done by [GSC+90], [WK91], [ZGS93], and [AS94a]. The typical approach is:

• Train an RNN to classify the strings in some set S = 〈S+, S−〉. Usually, the

RNN has a one-bit output [0, 1] corresponding to whether the input string

is accepting or rejecting.

• Once the network is trained, a clustering (such as kNN or hierarchical) op-

eration is performed on the activations of the hidden units in the network.

• Starting with the initial single-point clusters, it can be shown that there is a

one-to-one correspondence between those initial cluster points and the states

in the prefix tree acceptor.

• The two closest clusters are merged together ([AS94a] uses centroid Eu-

clidean distance).

• This merging of clusters is performed repeatedly until we obtain an incon-

sistent automaton.

• The final automaton is then the last consistent automaton found.

Unfortunately, beyond a sense that the technique only works for small target

DFA instances, we cannot seem to find an extensive evaluation of these methods.

Nonetheless, we find the approach interesting, and a possible source of inspiration.

133



5.3 Summary

In the first part of this chapter, we have described a variety of state merging

algorithms which we classify as either monotonic, greedy heuristics (e.g. RPNI,

EDSM), or greedy heuristics augmented with search (SAGE, Ed-Beam, TBW-

EDSM). This distinction will be useful later on when we will be describing our

attempts at learning DFAs when training data is sparse. We note that in our sur-

vey we have excluded exhaustive backtracking algorithms such as mmm [BF72,

BBP75, OE96], bica [OMS98], and exbar [Lan99] due to their impracticality when

dealing with large DFAs such as those described in the Abbadingo One compe-

tition. We refer readers interested in these methods to [Cic02], where a good

overview of these methods may be found. Finally, we suggest [CK03] as an alter-

native survey of these methods and results, as well as [dlH05] for a more general

exposition. In [BO05], Bugalho and Oliveira also present a very good summary of

several search techniques which wrap greedy heuristics such as EDSM.

The second part of this chapter was dedicated to introducing a number of

techniques as alternatives to the state merging algorithms we have discussed ear-

lier. While being very innovative, a number of them seem to suffer from the fact

that their performance does not scale well for larger Abbadingo-style target DFAs.

Nonetheless, the principles behind several of them will be immensely useful to us.

For instance, the ideas behind the graph colouring methods discussed here allow

us to develop techniques which will help us better understand and visualise which

merges in a hypothesis are beneficial and which ones are not. Likewise, under-

standing how current evolutionary methods work allows us to develop alternative

approaches to deal with harder problems and obtain better results.

134



Chapter 6

Properties of State Merging

In this chapter, we are concerned with the properties of the state merging operator

used by many of the algorithms described in Chapter 5. These include merge iden-

tity, merge ordering, permitting and blocking merges, included and root merges,

and so called orphaned states. In this discussion, we also cover a number of prop-

erties related to the EDSM heuristic, as well as those of sequences or paths of

merges in the search space. We conclude by defining colour-compatible merges,

and investigating how these can be used to describe what ‘good’ merges are, and

also as a tool for analysing merge sequences. The properties investigated in this

chapter are relevant to the design of the three algorithms we are proposing in this

dissertation.

6.1 DFAs are Partitions, States are Blocks

Recall that a quotient automaton is an automaton induced by some partitioning

of states with respect to some reference automaton (quotient automata have been

defined in Section 3.1.1). As an example, suppose we have the DFA shown in

Figure 6.1 (i) and partition its states as follows: π = {{q0}, {q1}, {q2}, {q3, q4}}.

From this partitioning, we derive the corresponding quotient DFA shown in Figure

6.1 (ii) where we see that the states q3 and q4 are now in the same block.

135



q0

q1 q2

q3 q4

a
a

b
a

q0

q1 q2

q
3,4

a
a

b

a

(i) (ii)

Figure 6.1: A DFA (i) and its corresponding quotient DFA (ii) for the partition

π = {{q0}, {q1}, {q2}, {q3, q4}}. The states q3 and q4 have been merged together.

Quotient automata allow us to reason about DFAs, states, and merges as follows:

• A DFA is a partition with respect to some reference DFA (in most cases,

this reference DFA is the APTA). In the example shown in Figure 6.1, the

partition {{q0}, {q1}, {q2}, {q3, q4}} with respect to the APTA/DFA (i) is

the DFA (ii).

• In this sense, states in a DFA are synonymous with blocks in a partition.

• When discussing the merge operation in Section 5.1.3, we defined a merge

as the union of one or more pairs of blocks in a partition subject to some

constraints. Back to the example in Figure 6.1, we can say that merging the

states q3 and q4 maps the initial partition {{q0}, {q1}, {q2}, {q3}, {q4}} to

the partition {{q0}, {q1}, {q2}, {q3, q4}}.

Reasoning about DFAs, states, and merges this way has the following implications:

• Partitions and blocks are sets, and a merge corresponds to the union of

blocks in a partition. This allows us to rely on the algebraic properties of

set union when discussing merges and their properties.

• After a merge is executed, the derived DFA has a different set of states.

Using block notation, we can refer to the states in the derived DFA in terms

of the states in the initial DFA. For instance in Figure 6.1, the block B(π, q3)

corresponds to the state {q3} in (i) while also referring to the ‘compound’

state {q3, q4} in (ii). As a matter of fact, in DFA (ii) we can say that states

q3 and q4 are equivalent.

136



• This reasoning allows us to interchangeably refer to DFAs as partitions, and

states as blocks.

6.2 General Properties

6.2.1 The Initial Partition

The initial partition π of some DFA having states Q is the partition π = {{q} :

∀q ∈ Q}. In other words, the initial partition contains one distinct block per state

in the DFA. In the context of initial partitions, the DFA in question is usually an

APTA. As an example, consider the APTA shown in 6.1 (i). The initial partition

constructed from this APTA is π = {{q0}, {q1}, {q2}, {q3}, {q4}}, where every state

in the APTA is in its own block in the partition.

6.2.2 Properties of the Join and Merge Operations

A Recap of the Join and Merge Operations

Recall that, in Section 5.1.3, we defined the join operation on a pair of blocks

in a partition as the union of those blocks. Specifically, the join operation is

J(π,Bi, Bj) = (π ∪ (Bi ∪Bj))−{Bi, Bj}. As can be seen in Figure 6.2 below, the

quotient automaton arising following a join could very well be non-deterministic.

137



q0

q
1,3 q2

q4

a

b

b

b

b

(i) (ii)

q0

q1

q3

q2

q4

a

b

b

b

b

Figure 6.2: The DFA (i) corresponds to the initial partition π = {{q0}, {q1}, {q2},

{q3}, {q4}}. Joining the two blocks {q1} and {q3}, results in the partition π =

{{q0}, {q1, q3}, {q2}, {q4}} which corresponds to the NFA (ii).

To resolve this non-determinism, a merging for determinisation constraint was

defined in Section 5.1.3. In order to merge a pair of blocks such that the resulting

quotient automaton is deterministic, in addition to joining the pair of block in

question, we also have to recursively join all the pairs of blocks established by

the determinisation constraint. Back to the example in Figure 6.2, to resolve the

non-determinism caused by joining the blocks {q1} and {q3}, we also have to join

the blocks {q2} and {q4}. In other words, to merge a pair of blocks (Bi, Bj) for

determinism, we have to join all the block pairs in a set X = {(Bi, Bj), . . .} which

is defined by the deterministic merge operation.

Identity Joins

Joining a block in a partition with itself is a null operation, and will be referred to

as an identity join. Specifically J(π,Bi, Bi) = π. This follows from the definition

of the join operation which replaces a pair of blocks by their union, and that the

union of a set with itself is the same set.

Ordering of Blocks in a Join

Joining some block Bi with a block Bj results in the same partition as joining the

block Bj with Bi. Specifically, J(π,Bi, Bj) = J(π,Bj, Bi). This follows since set

138



union commutes.

Ordering of Join Operations is Unimportant

Starting with a partition π, and a number of join operations between blocks in

π, we would obtain the same partition regardless of the order in which the join

operations are performed. If Bi, Bj, Bk, and Bl are blocks in a partition, then

J(J(π,Bi, Bj), Bk, Bl) = J(J(π,Bk, Bl), Bi, Bj). This follows since the join opera-

tion is a union of two blocks (sets of states), and set union is associative. Moreover,

since set union is also associative on an arbitrary finite number of sets [Hal60],

this property will hold for any ordering of any number of join operations. This

behaviour is illustrated in Figure 6.3 below.

π

π'

π'''

π''

J(π,Bi,
Bj)

J(π,Bk,Bl)

J(π,Bk,Bl)

J(π,Bi,
Bj)

Figure 6.3: Ordering of join operations is unimportant.

Identity Merges

Merging1 a block in the partition of a quotient DFA with itself is a null operation,

and will be referred to as an identity merge. This follows from:

• A merge M(π,Bi, Bj) involves joining the blocks (Bi, Bj) as well as any

further blocks to resolve non-determinism.

• Since, in this case, Bi = Bj, the transitions outgoing Bi are the same as

those outgoing Bj. Moreover, since the partition π corresponds to a DFA, it

follows that there is no further non-determinism to correct for (i.e. we only

need to perform the first join and there are no further ones needed).

• Joining a block with itself results in the same partition.

1Whenever we refer to merge operations, we are always referring to deterministic merge

operations.

139



The Set of Joins Required by a Merge Remains Unchanged

Let X be the set of block pairs which need to be joined together in order to perform

a merge m for determinism. Suppose, that π is the partition obtained following

any number of merges starting at the partition of an APTA. The set of block pairs

X which need to be joined together by the merge m remains unchanged for any

π. In other words, the set of block pairs which need to be joined by a merge, does

not change after any sequence of merges. This is illustrated in Figure 6.4 where:

• The partition for DFA (i) is {{q0}, {q1}, {q2}, {q3}, {q4}, {q5}}.

• Should we wish to perform the mergem between the blocks {q1} with {q2} for

determinism, we need to join all the block pairsX = {({q1}, {q2}), ({q4}, {q5})}.

• Suppose, we instead merge the block {q1} with {q3} to obtain the DFA (ii)

having the partition {{q0}, {q1, q3}, {q2}, {q4}, {q5}}.

• Performing the merge m between the blocks {q1} with {q2} in this new

partition still requires us to join the same block pairs in X and gives the

DFA (iii).

(i)

q0

q1 q2

q5

a b

b ba

q3 q4

q0

q
1,3 q2

q5

a b

b b

a

q4

(ii)

q0

q
1,2,3

a,b

b

a

q
4,5

(iii)

Figure 6.4: The set of block pairs which need to be joined by a merge does not

change after any sequence of merges.

To show that this property holds, suppose that the set of joins X required

to perform some merge in a partition π does change should the same merge is

performed in some other partition π′. By definition of the merge operation, the set

of joins which needs to be performed by a merge is only affected by the transitions

140



in the quotient automaton. This means that X can only change if transitions

have been added and/or removed during the sequence of operations that led to

π′. This is impossible, by the construction of quotient automata (see Definition

3.1). As an example, consider the APTA shown in Figure 6.5 and note that all

the transitions in the APTA also exist in the derived DFA, and that no new ones

have been introduced.

q0

q1 q2

q3 q4 q5 q6

a

a a

b

b b

q0

q
1,2

q
3,5

q
4,6

a,b

a b

M(q1,q2)

Figure 6.5: All the transitions in an APTA also exist in a derived DFA.

Ordering of Merge Operations is Unimportant

Starting with a partition π, and a number of (deterministic) merge operations

between blocks in π, we would obtain the same partition regardless of the order in

which the merge operations are performed. If Bi, Bj, Bk, and Bl are blocks in a

partition, then M(M(π,Bi, Bj), Bk, Bl) = M(M(π,Bk, Bl), Bi, Bj). This follows

from the previous properties that join order is unimportant, and that the set of

joins which needs to be performed by a merge remains unchanged:

• Suppose thatX is the set of joins required to perform the mergeM(π,Bi, Bj),

and that Y is the set of joins required to perform the merge M(π,Bk, Bl).

• Since the sets of joins X and Y remain unchanged in any partitioning of the

same states, in any case, we are performing all the joins in X ∪Y which can

be applied in any order to arrive at the same partition.

The unimportance of merge ordering is illustrated in an example in Figure 6.24

at the end of this chapter. Here we see how different permutations of the same

merges lead us to exactly the same DFA.

141



6.2.3 Permitting, Blocking, Included, and Root Merges

Consider the DFA shown in Figure 6.6. Note that both the merges (q1, q2) and

(q1, q3) are valid in the DFA. However, if we first execute the merge (q1, q2), then

the merge (q1, q3) is now no longer possible since the compound state {q1, q2} in the

resulting DFA is accepting whereas the state q3 is rejecting. We say that the merge

(q1, q2) blocks the merge (q1, q3). On the other hand, after performing (q1, q2), the

merge (q3, q4) is still possible and we say that the merge (q1, q2) permits the merge

(q3, q4). Now, suppose that we perform the merge (q0, q1) in the same APTA to

obtain the partition {{q0, q1, q2}, {q3, q4}}. Note that to satisfy the determinisation

constraint, performing this merge implies that (q0, q2), (q1, q2), and (q3, q4) have

also been merged together. We say that these merges are included in the original

merge (q0, q1). Any merge out of all the possible merges in a DFA which is not

included in any other merge is referred to as a root merge.

q0

q1

q2

q3

q4

a

a

b

b

Figure 6.6: This DFA illustrates cases of permitting, blocking, included, and root

merges.

Definition 6.1: Permitting and Blocking Merges

Suppose that m1 and m2 are both valid merges in some DFA. If after merging

m1 the merge m2 remains a valid merge, we say that m1 permits m2 and write

m1 ( m2. On the other hand, if after performing m1 the merge m2 becomes

invalid, we say that m1 blocks m2 and write m1 6( m2. The set BLKm of all

merges blocked by some merge m is BLKm = {mk : m 6( mk}.

142



Definition 6.2: Included Merges

Let π1 be the partition obtained after merging m1 in π, and let m2 = (q, q′)

be some other merge. Merge m1 includes the merge m2, written as m1 � m2,

whenever m1 6= m2 and B(q, π) 6= B(q′, π) and B(q, π1) = B(q′, π1). In other

words, the merge m1 includes some other distinct merge m2 whenever the pair

of states m2 were not in the same block before the merge m1 but are in the

same block afterwards. Whenever a merge m1 does not include a merge m2,

we write m1 6� m2. INCm = {mk : m � mk} is the set of merges included

in the merge m.

Definition 6.3: Root Merges

Let M = {m1,m2, . . . ,mk} be the set of all the valid merges in some DFA.

The root merges RT of a DFA are a subset ofM which only contains merges

which are not included in any other merge in M. Specifically:

RT =M− (INCm1 ∪ INCm2 ∪ . . . ∪ INCmk
)

Consider the DFA shown in Figure 6.6 earlier. Its merges, blocks, inclusions,

and roots are shown in Table 6.1. Suppose we construct a graph where every

node is a valid merge, and edges are drawn between included merges and blocked

merges. We call such a graph a merge relation graph. An example of a merge

relation graph is shown in Figure 6.7 where blue edges with arrowheads denote

inclusion, red dashed edges denote blocking, and shaded nodes (merges) are root

merges. Inclusions are directed since the relation is not symmetric while blocks

are undirected since the relation is symmetric (discussed later).

143



Merge Partition Blocks Includes

(q0, q1)* {{q0, q1, q2}, {q3, q4}} (q0, q3), (q0, q4), (q1, q3), (q1, q4) (q0, q2), (q1, q2), (q3, q4)

(q0, q2) {{q0, q2}, {q1}, {q3}, {q4}} (q0, q3), (q0, q4) –

(q0, q3)* {{q0, q3}, {q1}, {q2}, {q4}} (q0, q1), (q0, q2), (q1, q3) –

(q0, q4)* {{q0, q4}, {q1}, {q2}, {q3}} (q0, q1), (q0, q2), (q1, q4) –

(q1, q2) {{q0}, {q1, q2}, {q3}, {q4}} (q1, q3), (q1, q4) –

(q1, q3)* {{q0}, {q1, q3}, {q2}, {q4}} (q0, q1), (q0, q3), (q1, q2) –

(q1, q4)* {{q0}, {q1, q4}, {q2}, {q3}} (q0, q1), (q0, q4), (q1, q2) –

(q2, q3) Invalid merge

(q2, q4) Invalid merge

(q3, q4) {{q0}, {q1}, {q2}, {q3, q4}} – –

Table 6.1: Partitions, blocks, roots, and inclusions for the merges in the DFA

shown in Figure 6.6. Asterisks denote root merges.

q0,q1 q0,q2 q0,q3

q0,q4 q1,q2 q1,q3

q1,q4 q3,q4

Figure 6.7: A merge relation graph. Blue edges with arrowheads denote inclusion,

red dashed edges denote blocking, and shading indicates a root merge.

Note

This idea of permitting and blocking merges was introduced earlier as pairwise

compatible and pairwise incompatible merges when we discussed S-EDSM in

Section 5.1.7.

Blocking is Symmetric

Suppose that m1 and m2 are two valid merges in a partition π. If m1 6( m2, then

m2 6( m1. This follows from the argument:

• Suppose we perform the merge m1 followed by the merge m2 to obtain π.

144



• By our hypothesis, the partition π must be invalid (sincem2 has been blocked

by m1).

• Since the order of merges is unimportant, performing the merges in reverse

order results in exactly the same invalid partition π.

Symmetry of the blocking relation is illustrated in an example in Figure 6.25

which may be found at the end of this chapter.

Blocking is Not Transitive

Suppose that m1, m2, and m3 are valid merges. If m1 6( m2 and m2 6( m3, it does

not follow that m1 6( m3. This property can be shown by constructing a simple

counterexample. Let m1 = (q1, q4), m2 = (q1, q3), and m3 = (q1, q2) in the DFA

shown in Figure 6.8 (i). Performing the merge m1 = (q1, q4) blocks m2 = (q1, q3),

and performing the merge m2 = (q1, q3) blocks m3 = (q1, q2). However, performing

the merge m1 = (q1, q4) does not block the merge m3 = (q1, q2).

(i)

q0

q1

q3

q2

q4

a

a

b

b

M(q
1,q

4)

M(q1,q3)

q0

q
1,4

q3

q2

a

a

b b
(ii)

q0

q
1,3

q2

q4

a

a

b

b

(iii)

Figure 6.8: The blocking relation is not transitive.

All Combinations of Merges in a Valid Sequence are Permitting

Suppose that h = π0 → . . . → πk is a valid sequence of merges (a merge path),

and let m and m′ be any two merges in h. m( m′ holds for any m,m′ ∈ h. This

145



follows from the fact that the order of merges is unimportant: any permutation

of merges in h starting from π0 will lead us to exactly the same partition πk. So

if the sequence of merges in h is valid, then so is any other permutation of it, and

no merge in the permutation will block any other one.

Merge Inclusion is Not Symmetric

Given any two valid merges m1 and m2, if m1 � m2, it does not follow that

m2 � m1. We can see that this property holds by examining the inclusions shown

in Table 6.1: the merge (q0, q1) includes (q0, q2) but not vice-versa.

Merge Inclusion is Transitive

If m1 � m2 and m2 � m3, then m1 � m3. This property follows from the

(transitive closure) definition of the state merging operation given in Definition

5.1.3. Any merges included in some merge m correspond to one or more join

operations required by m. If merging m1 requires us to also perform all the joins

in m2, and merging m2 requires us to also perform all the joins in m3, then the

merge m1 implies that we also have to perform all the joins in m3.

The Border Set w.r.t. Root Merges

Consider an APTA, the border set in the search space, and the set of root merges

in the APTA. There exist border set DFAs in the search space which cannot be

reached using only the root merges of the APTA. This can be shown by examining

the border set DFA 19 in Figure 6.9. The root merges in the APTA are (q0, q1),

(q0, q3), (q0, q4), (q1, q3), and (q1, q4). It is impossible to reach the border set DFA

19 without performing the included (non-root) merge (q0, q2). As a matter of fact,

(q0, q2) is only included in the root merge (q0, q1), but performing (q0, q1) excludes

the border set DFA from ever being reached. We also note that this border set

DFA is minimal (n = 2).

Furthermore, suppose that m1 � m2. Let BS(m1) be the set of border set

DFAs reachable after performing m1, and let BS(m2) be the set of border set

DFAs reachable after performing m2. There exist border set DFAs reachable after

m2 that are not reachable if we perform m1 even though m1 includes m2. In Figure

146



6.9, the border set DFA 20 is reachable by (q1, q2) but not by (q0, q1) even though

(q0, q1)� (q1, q2).

q
0,2

q
1,3,4a,b

a

b

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

q0,q1

q0,q3

q0,q4

q1,q2

q1,q3

q1,q4

q3,q4

q0,q1
q1,q3

q1,q4

q3,q4

q0,q4 q1,q2

q1,q4

q0,q3

q1,q2

q1,q3
q0,q1

q0,q3

q0,q4

q3,q4

q0,q4

q1,q4

q0,q3

q1,q3

q0,q1

q0,q3

q1,q2

q1,q3

q1,q4

q1,q3

q0,q1

q1,q3

q1,q2

q0,q4

q0,q3

q0,q1

q0,q3

q0

q1

q2

q3
q4

a

a

b

b

q0,q2

q0,q2

q0,q2

q0,q2

q0,q2

Figure 6.9: Merge graph with highlighted (thick) paths to the border set DFA 19.

Blocked Merges and Inclusion

If m1 � m2, then the set of merges blocked by m2 must be a subset of the

merges blocked by m1. To see that this property holds, suppose that the set of

merges blocked by m2 is not a subset of the merges blocked by m1. This means

that there exists some merge m which is invalid (blocked) after performing m2

but remains valid after performing m1. This is impossible since, by our hypoth-

esis, merging m1 implies that we also have to merge m2, and if m is blocked by

m2, then it must also be blocked by m1. We can see an example of this by ex-

amining the merges and blocks shown in Figure 6.7. The merge (q0, q1) blocks

147



the merges {(q0, q3), (q1, q3), (q0, q4), (q1, q4)}, and the merge (q0, q2) blocks the

merges {(q0, q3), (q0, q4)}. Observe that (q0, q1) � (q0, q2), and that {(q0, q3),

(q0, q4)} ⊆ {(q0, q3), (q1, q3), (q0, q4), (q1, q4)} holds.

It follows that, if m1 � m2 and m2 blocks some set of merges, then m1 must

also block those same merges. Consider, yet again, the merges and blocks shown

in Figure 6.7, where the merge (q0, q2) blocks the merges {(q0, q3), (q0, q4)}. Since

(q0, q1) includes (q0, q2), then (q0, q1) will also block {(q0, q3), (q0, q4)}. This result

also allows us to deduce that if some merge m1 blocks some other merge m2, then

m2 must also be blocked by any other merge that includes m1. Back to Figure

6.7, we can see that the merge (q1, q2) blocks the merges {(q1, q3), (q1, q4)}. Since

(q1, q2) is included in (q0, q1) then (q0, q1) will block {(q1, q3), (q1, q4)} as well.

6.2.4 Orphaned States

Examining the sequence of merges starting from an APTA to a border set DFA

(final hypothesis) shown in Figure 6.10, we can observe that the state q1 remains

unlabelled throughout.

q0

q1

q2

q5

q4

a

a

b

b

q3b

q
0,4

q1 q2

q5

a a

b

b

q3b

q
0,4,5

q1 q2a a

b

b

q3b

q
0,4,5

q1 q
2,3

a a

b

b
b

M(q0,q4) M(q0,q5)

M(q2,q3)

Figure 6.10: A path leading to a DFA having unlabelled states.

The merge relation graph constructed from the above APTA is shown in Figure

6.11 next, where we omit the inclusion relation as it is unnecessary in our current

argument. We also annotate the merge relation graph to show which merges would

label the state q1 as either accepting or rejecting.

148



q0,q4 q0,q5 q1,q3

q1,q4 q1,q5 q2,q3

q4,q5

Makes q1 rejecting

Makes q1 accepting Makes q1 accepting

Figure 6.11: The merge relation graph for the merges in the APTA shown in

Figure 6.10. The annotations show which merges would label the state q1 and

how.

In the merge sequence shown in Figure 6.10, we first choose to merge the states

(q0, q4). Doing so blocks the merge (q1, q4) so we:

1. Remove the merge (q0, q4) which we just performed, as well as all of its edges.

2. Remove the blocked merge (q1, q4), as well as all of its edges.

We note that, so far, it is still possible to label the state q1 as accepting via (q1, q5)

and rejecting via (q1, q3) as shown in Figure 6.12.

q0,q5 q1,q3

q1,q5 q2,q3q4,q5

Makes q1 rejecting

Makes q1 accepting

Figure 6.12: The merge relation graph after performing the merge (q0, q4).

In our path, we next merge the states (q0, q5). This blocks (q1, q5), so we:

1. Remove the merge (q0, q5) we performed, as well as its edges.

2. Remove the blocked merge (q1, q5), as well as its edges.

It is now impossible for q1 to become accepting, as the only merge left that would

label it is (q1, q3) which makes it rejecting. This is shown in Figure 6.13 below.

149



q1,q3

q2,q3q4,q5

Makes q1 rejecting

Figure 6.13: The merge relation graph after performing the merge (q0, q5). Now,

q1 can never become an accepting state.

In our path, we finally merge (q2, q3). This blocks (q1, q3), so we:

1. Remove the merge (q2, q3) we performed, as well as all its edges.

2. Remove the blocked merge (q1, q3), as well as all its edges.

We can now see that no remaining merge can ever assign a label to q1, as the

only merge that remains is (q4, q5) which does not affect its labelling. This means

that q1 would remain unlabelled no matter which other merges are made from this

point onwards. We say that the state is orphaned with respect to the sequence of

merges we chose.

Observation

Suppose we construct a merge relation graph, and to each merge (node) we

attach information about which unlabelled states that merge would label and,

also, whether each of those unlabelled states become accepting or rejecting by

that merge. If we perform a merge that makes an unlabelled state accepting,

we can simplify the graph by removing any merges (and their edges) which

would make that state rejecting (and vice-versa). Furthermore, suppose that

two merges m1 and m2 both label some unlabelled state q. If the label assigned

by m1 to q differs from the one assigned by m2, then m1 and m2 clearly block

each other.

6.3 Properties of Merge Paths

Consider a merge graph starting at an APTA and containing a border set of DFAs.

Furthermore, suppose that E is any one of the DFAs in the border set, and that

150



PE is the set of all paths in the merge graph starting at the APTA and leading to

the border set DFA E. Since merge ordering is unimportant, while each path in

PE is, nominally, a sequence of merges, we can actually treat any path as a set of

merges. Moreover, as discussed earlier, no two merges in a path are blocking.

Definition 6.4: The Fundamental Set

The fundamental set UE with respect to some border set DFA E is the set of

merges consisting of the union of all the merges m in all the paths PE that

lead to E:

UE =
⋃

m∈PE

m

There are n! permutations of a fundamental set containing n merges. Since

merge ordering is unimportant, while each of these permutations is a syntacti-

cally distinct path, each of them are equivalent (in the sense that they lead to

the same DFA). Clearly, any ordering of merges in UE will lead to the border

set DFA E.

The significance of the fundamental set is that it is representative of, and

executing its merges in any order serves as a substitute for, any of the paths in

PE that lead to a border set DFA E. It then follows that it is sufficient to execute

all the merges in a fundamental set (in any order) to reach the respective border

set DFA. We will elaborate on this property later.

151



Definition 6.5: A Fundamental Graph

Let BS be a border set, let E be some DFA in BS, let UE be the fundamental

set of merges leading to E, and let UE be any ordering of the merges in UE.

UE is then a path whose nodes are DFAs starting from the APTA leading

to the border set DFA E, and whose edges are the merges. Moreover, let

G = {UE | E ∈ BS} be the set of all paths starting from the APTA to each

of the DFAs in the border set.

A fundamental graph is a graph whose vertices are the set of all nodes

(DFAs) in the paths in G, and whose edges are the set of all edges (merges)

in the paths in G. In other words, a fundamental graph is constructed by

superposing all the paths in G. We note that, since we can have several

syntactically distinct paths UE to a border set DFA, there will, likewise, be

many syntactically distinct, yet equivalent, fundamental graphs. An example

of a fundamental graph is shown in Figure 6.16.

Definition 6.6: The Significant Set

The significant set IE with respect to some border set DFA E is a set of

merges consisting of the intersection of all the merges m in all the paths PE

that lead to E:

IE =
⋂
p∈PE

p

Similar to the observation we made for fundamental sets, there are n! per-

mutations of a significant set containing n merges. Since merge ordering is

unimportant, while each of these permutations is a syntactically distinct se-

quence of merges, each of them are equivalent (in the sense that they lead to

the same DFA).

The significant set represents the minimum set of merges, applied in any order,

which are necessary to reach the respective border set DFA. However, executing

all of them is not sufficient to reach it. We will elaborate on this property later.

152



Definition 6.7: The Common Set

Let Ui and Uj be two fundamental sets (paths) to the border set DFAs i and

j respectively. The common set, denoted by Ci,j is the set of merges obtained

by the intersection of Ui and Uj.

Definition 6.8: The Critical Merge

Let Ui and Uj be two fundamental sets whose common set is Ci,j. Suppose

that we perform all the merges Ci,j in any order. We call any merge following

these a critical merge due to the fact that this choice will certainly exclude

either of the border set DFAs i or j from ever being reached.

We will now concretise these concepts using an example. Consider the merge

graph shown below in Figure 6.14 which has five border set DFAs corresponding

to the DFAs 1, 14, 16, 19, and 20. In this example, the border set DFA 1 has the

following eight paths leading to it:

(q0, q1) (q0, q2)→ (q0, q1)

(q1, q2)→ (q0, q1) (q3, q4)→ (q0, q1)

(q0, q2)→ (q3, q4)→ (q0, q1) (q3, q4)→ (q0, q2)→ (q0, q1)

(q1, q2)→ (q3, q4)→ (q0, q1) (q3, q4)→ (q1, q2)→ (q0, q1)

153



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

q0,q1

q0,q2

q0,q3

q0,q4

q1,q2

q1,q3

q1,q4

q3,q4

q0,q1
q1,q3

q1,q4

q3,q4

q0,q4 q1,q2

q1,q4

q0,q3

q1,q2

q1,q3
q0,q1

q0,q3

q0,q4

q3,q4

q0,q2

q0,q4

q1,q4

q0,q2

q0,q3

q1,q3

q0,q1q0,q2

q0,q3

q1,q2

q1,q3

q1,q4

q1,q3

q0,q1

q1,q3

q1,q2

q0,q4

q0,q3

q0,q1

q0,q3

q0,q2

q0

q1

q2

q3
q4

a

a

b

b

Figure 6.14: A merge graph starting from APTA of S+ = {aa} and S− = {b, ab}.

Border set DFAs are shown in blue.

All these paths are the set P1, and the union of the individual merges in

these paths gives us the fundamental set U1 = {(q0, q1), (q0, q2), (q1, q2), (q3, q4)}.

Recall, that applying all the merges in U1 in any order is sufficient to reach

the border set DFA 1. The significant set is the intersection of the pairs in

P1 and results in I1 = {(q0, q1)}. Executing the merges in I1 in any order are

necessary but not always sufficient to reach the border set DFA 1. Finally,

consider the two fundamental sets U1 = {(q0, q1), (q0, q2), (q1, q2), (q3, q4)} and

U19 = {(q0, q2), (q1, q3), (q1, q4), (q3, q4)}. Their intersection is the common set

154



C1,19 = {(q0, q2), (q3, q4)}. Any merge following those in C1,19 is critical as illus-

trated in Figure 6.15 below.

DFA
M(q0,q2)q0

q1

q2

q3
q4

a

a

b

b DFA
M(q3,q4)

Merge choice is now
critical

Intersection (common merges 
between) of two 

fundamental paths

Figure 6.15: A critical merge.

Back to the example in Figure 6.14, we now construct the five fundamental

sets to their respective border set DFAs. After choosing any ordering of merges for

each of the five fundamental sets, we can construct the fundamental graph shown

in Figure 6.16 where we also show the resulting critical merges. The orderings

chosen in this example are:

• U1 = ((q0, q1), (q0, q2), (q1, q2), (q3, q4))

• U14 = ((q0, q3), (q1, q4))

• U16 = ((q0, q4), (q1, q3))

• U19 = ((q0, q2), (q1, q3), (q1, q4), (q3, q4))

• U20 = ((q0, q3), (q0, q4), (q1, q2), (q3, q4)

155



q0

q1

q2

q3
q4

a

a

b

b

q0,1,2
q3,4

a

b

q0,q1

q0,q2
q1,q2
q3,q4

q0,2
q1

q3
q4

a a

b
b

q0,q2
q0,2

q1,3
q4

a,b a
b

q1,q3
q0,2

q1,3,4
a,b a

b
q1,q4

q0,3
q1,4

b

a

b

q2
a

q0,q3

q0,3
q1

b

a

q2

a

q4
b

q1,q4

q0,3,4
q1

b

ab

q2
a

q0,q4

q0,3,4
q1,2

b

ab

a
q1,q2

U1

U19

q3,q4

U14

q3,q4

U20

q0,4
q1

a
q2

a

q3
b

b

q0,q4

q0,4
q1,3

a,b
q2

a

b
q1,q3

U16

Critical Merge

Figure 6.16: A fundamental graph constructed by superposing the paths to each

of the 5 border set DFAs in the merge graph in Figure 6.14. The red arrow shows

the point where a critical merge is about to be made. Dotted edges and loops are

redundant identity merges.

156



The Sufficiency of Fundamental Sets

The sufficiency of the merges in a fundamental set UE to reach a border set DFA

E follows from the following argument:

• Let P be the set of merges of some path starting from the APTA to the

border set DFA E.

• By definition of a fundamental set, P is a subset of UE.

• Since merge ordering is unimportant, we know that any permutation of UE

leads to the same DFA. This also includes the permutation starting with

the merges in P which lead to E (the remaining merges in the permutation

following the merges P will be identity merges).

• This means that any permutation of UE will lead to (and is therefore suffi-

cient to reach) E.

All Merges in a Fundamental Set are Permitting

If p and q are any two merges in a fundamental set UE, then p( q for all p, q ∈ UE.

This follows, since:

• By construction, the border set DFA E is a valid DFA (see Chapter 3), so

any sequence of merges leading to it consists of valid merges.

• The merges (in any order) in a fundamental set are sufficient to reach the

border set DFA E.

• As discussed in Section 6.2 earlier, any two merges in any permutation of a

valid sequence of merges are permitting.

The Necessity of Significant Sets

The merges in a significant set IE are always necessary to reach a border set DFA

E. This follows from the definition of significant sets: a significant set is the

intersection of merges in every path that leads to a border set DFA and, hence,

no path can ever lead to a border set DFA without using each of those merges.

157



The Insufficiency of Significant Sets

The merges in a significant set IE is not sufficient to reach a border set DFA E.

This property can be shown by example. Consider the merge graph in Figure 6.14

and the border set DFA 19. The significant set is I19 = {(q1, q3), (q0, q2)}. While

these two merges are required by any path that leads to the border set DFA 19,

they are not sufficient to reach it by themselves.

6.4 Some Remarks Regarding EDSM

When constructing a merge path, the EDSM heuristic scores all the candidate

merges2 at every step, and selects the one having the highest score. If there is more

than one merge having the highest score, the tie is, typically, broken randomly. In

[LPP98], we see two slightly different yet, for the purposes of how EDSM actually

selects merges, equivalent descriptions of how the score is computed:

1. “We award one point for each state label which, as a result of a merge,

undergoes an identity check and turns out to be okay. Any mismatch results

in a negative overall score.”, and later

2. “A merge’s score is the sum over equivalence classes of the following quantity:

if there are conflicting labels in the class, minus infinity; if there are no labels

in the class, zero; otherwise, the number of labels minus one. We subtract

one because the first label in the class establishes the correct label for the

class, but is not checked.”

Consider the example shown in Figure 6.17, which shows a sequence of merges

starting at an APTA:

• The first merge in APTA (i) is between the states (q3, q4), and gives the DFA

shown in (ii). This merge has an EDSM score of 1 since we have a single

label match between the rejecting states q3 and q4. This result is consistent

with both descriptions of how EDSM scores merges.

2If a windowing strategy is used, this scheme is slightly different. See Section 5.1.7.

158



• The second merge is between the states (q0, q2) in DFA (ii) resulting in the

DFA and partition (iii). Regarding this second merge:

– The state q0 is now merged with the state q2, and both of them are

accepting. Using the first description of the EDSM score above, the

score of this merge is 1 due to the single label-match.

– On the other hand, following the second explanation of how a merge is

scored, we would need to inspect all the equivalence classes (blocks in

the partition (iii)), and sum the counts (less 1) of the labelled states in

each equivalence class. This would give an EDSM score of 2.

q0

q1 q2

q3 q4

a
a

b
a

(i) (ii)

q0

q1 q2

q
3,4

a
a

b

a

q
0,2

q1

q
3,4

a

a

b

a

(iii)

{{q0},{q1},{q2},{q3},{q4}}

M(q3,q4) M(q0,q2)

{{q0},{q1},{q2},{q3,q4}} {{q0,q2},{q1},{q3,q4}}

One label match, score = 1
Examining equiv. classes, score = 1

One label match, score = 1
Examining equiv. classes, score = 2

Figure 6.17: The computation of EDSM scores along a merge path.

Recall that a merge for determinism involves joining several blocks of states

in the partition of a quotient DFA3. Assuming that a merge is valid, every block

in the resulting partition will not have mixed accepting/rejecting states. The

computed label of a block (which corresponds to the label of a ‘compound’ state

in the corresponding quotient DFA) is determined by its contents:

• If a block only contains unlabelled states, then the type of the block is

unlabelled too.

• If a block contains at least an accepting state, then the block is accepting

(since we are assuming that the merge is valid, there are no mixed labelling

in a block).

3The join operation and deterministic merging were defined in Section 5.1.3.

159



• If a block contains at least a rejecting state, then the block is rejecting.

Suppose that TypeMatch is a Boolean function which, given a pair of blocks,

returns True if the computed labels (as described above) of the blocks are either

both accepting or both rejecting, and returns False otherwise. Furthermore, letX

be the set of join operations between pairs of blocks which need to be performed by

a deterministic merge. The EDSM score of a merge following the first description

in [LPP98] may be computed as:

EDSM =
∑

(B,B′)∈X

1, if TypeMatch(B,B′)

0, otherwise

(6.1)

The second description of the EDSM scoring function in [LPP98] requires us

to inspect equivalence classes (blocks in a partition). Assuming that a merge is

valid (i.e. blocks do not contain mixed label states), the EDSM score of a merge,

resulting in a partition π containing our equivalence classes, may be given by:

EDSM(π) =
∑
B∈π

max((#labels in B)− 1, 0) (6.2)

EDSM and Cumulative EDSM

• For every join operation, the size of a partition (the number of blocks) de-

creases by 1 (since two blocks will become one), and the EDSM score will

increment by 1 when the computed labels of the blocks are, either both

accepting, or both rejecting. An illustration of this is shown in Figure 6.18.

• It then follows that the value given by Equation 6.2 may be equivalently

obtained by subtracting the total number of labelled states in a partition

by the total number of blocks whose computed label is either accepting or

rejecting. We also note that the total number of labelled states in a partition

is exactly equal to the size of the training set (by construction, there is one

labelled state in the APTA per string in the training set), and that this

160



number of labelled states does not change in any partitioning of those states

(the join operations simply group states together). In Figure 6.18, we can

see that the number and type of the labelled states (not blocks) in a partition

do not change after any number of join operations. If LabelledBlocks is

a function which takes a partition and returns the number of blocks whose

computed label is either accepting or rejecting, then Equation 6.2 may be

replaced by the Equation 6.3 below:

EDSM(π) = |Training Set| − LabelledBlocks(π) (6.3)

• Following our first observation, we can also deduce that, in a merge path

starting from an APTA up to some DFA/partition, the sum of the EDSM

scores given by Equation 6.1 at each merge step in the path, is equal to the

value we obtain by Equations 6.2 or 6.3. An example of this may be seen

on several permutations of merge sequences in Figure 6.26 at the end of this

chapter.

• In this sense, we will be referring to the score obtained by Equation 6.1 as

the EDSM score, and refer to the score obtained by Equation 6.2/6.3 as the

cumulative EDSM score up to the DFA/partition in the sequence.

{A} {A} {U} {A} {R} {U} {U} {R} {R} }{

{ {A,A} {A} {R} {U} {U} {R,R} }{U}

{ {A,A,U} {A} {R} {U} {U} {R,R} }

{ {A,A,U} {A} {R,R,R} {U} {U} }

{ {A,A,U,A} {R,R,R,U} {U} }

+1 EDSM, -1 Blocks +1 EDSM, -1 Blocks

+0 EDSM, -1 Blocks

+1 EDSM, -1 Blocks

+1 EDSM, -1 Blocks +0 EDSM, -1 Blocks

Figure 6.18: A number of joins performed in a partition. Only state labelings are

shown: A=Accepting, R=Rejecting, and U=unlabelled.

It should be noted that using, either the EDSM score given by Equation 6.1,

or the cumulative EDSM score given by Equation 6.2/6.3 results in exactly the

161



same inductive bias – the merge ordering obtained by both scoring methods is

identical. To see why, consider the merge sequence shown in Figure 6.19 where we

have two merge choices at the DFA X, and the sequence of merges up to X has a

cumulative EDSM score of C-Edsm. Suppose that the merge giving DFA A has a

score of ScoreA, and that the merge giving DFA B has a score of ScoreB. The

cumulative EDSM score up to DFA A will be C-Edsm + ScoreA, whereas the

cumulative EDSM score up to DFA B will be C-Edsm + ScoreB. In other words,

with respect to both merge choices, C-Edsm is a constant. Hence, although the

EDSM score and the cumulative EDSM score values are different, the ordering

given by both for the purposes of merge selection will be the same.

APTA X

A

B

Scor
eA

ScoreB

C-Edsm = Cumulative EDSM up to DFA X

Figure 6.19: EDSM and cumulative EDSM scores order merges identically.

Finally, suppose that we are given the task of identifying an n-state target DFA

from m training examples, and that all the states in the target DFA are labelled

(as required by Abbadingo One). Using Equation 6.3, we can deduce that the sum

of the EDSM scores (the cumulative EDSM score) starting from the partition of

the APTA to the partition of the target DFA (which contains n labelled blocks)

must be m− n.

6.5 Colour-Compatible Merges

By construction, each state in an APTA corresponds to exactly one state in the

target DFA. In other words, if we had to assign a distinct colour to every state in

the target DFA, then every state in the APTA will map to one of those colours.

We can see an example of this in Figure 6.20, where every state in the target (i) has

a distinct colour, and every state in the APTA (ii) constructed for S+ = {bb, abb}

and S− = {b, ba, aa} maps to the corresponding state and colour in the target

162



DFA. Crucially, the quotient automaton obtained by partitioning the states in the

APTA by colour corresponds exactly to the target DFA. Moreover, if the training

set is symmetrically structurally complete, the set of all states in the APTA of

any given colour (e.g. all the green states) will contain at least one labelled state

and, therefore, it is impossible to have mixed accepting/rejecting labels in a set

of states having the same colour. In Section 5.2.3, we have made reference to

how Coste and Nicolas [CN97], and Costa Florêncio and Verwer [CFV12] have

used this observation to pose DFA learning as a graph colouring problem, where

inferring an n-state hypothesis corresponds to the assignment of n colours to the

states of the APTA subject to constraints.

Red Green

Blue

b

a

a
a

b

b

Red

Green Blue

Blue Green

Green

Red Green

a

a a

b

b

b

b

(i)

(ii)

Figure 6.20: A coloured target DFA (i) and APTA (ii).

Suppose that, for the purpose of analysing DFA learning algorithms (i.e. not

in ‘real-world’ DFA learning), an Oracle reveals the correct APTA colours to us.

We can use this information to know whether a merge choice made by a heuristic,

such as EDSM, is the correct one or not. For example, in Figure 6.21, we can

see that while both the merges (q2, q5) and (q1, q4) are both valid merges, (q2, q5)

is colour-compatible and leads to the target DFA, while (q1, q4) is not colour-

compatible and, now, the target can never be identified. In this sense, the idea of

colour-compatibility can be used to determine which are the good and bad merge

choices.

163



q1
Red

q2
Green

q3
Blue

q4
Blue

q5
Green

q8
Green

q6
Red

q7
Green

a

a a

b

b

b

b

q1
Red

q
2,5,8
Green

q3
Blue

q4
Blue

q6
Red

q7
Green

a

a a

b

bb

q
1,4
Mixed

q2
Green

q3
Blue

q5
Green

q8
Green

q6
Red

q7
Green

a

a

b

b

b

b

a(i)

(ii)

(iii)

M(q2
,q5)

Colo
ur-C

ompa
tibl

e

M(q1,q4)

NOT Colour-Compatible

Figure 6.21: Both the merges resulting in (ii) and (iii) are valid. However, the

merge resulting in (iii) is not colour-compatible since red state q1 is ‘mixed’ with

the blue state q4.

To be clear, knowing whether a merge is colour-compatible or not, requires us

to consult an Oracle and, therefore, cannot be used for DFA learning. Nonetheless,

strictly in the context of analysing the behaviour of learning algorithms such as

EDSM, this colour-compatibility of merges is useful since it allows us to find

answers to the following questions4:

• During a merge step, we can determine whether a colour-compatible merge

exists in the set of highest EDSM-scoring merges. How often does this

happen? If a good, colour-compatible merge does not exist in the highest-

scoring merges, how ‘far away’ is it? An illustration showing this scenario is

shown in Figure 6.22.

• Can we construct a subspace of the space of all merges possible such that,

4In the next chapter, we describe several experiments that answer these questions.

164



with high experimental probability, that subspace still contains a large num-

ber of colour-compatible merges which lead to a good solution?

• Can we compare the merge sequences made by EDSM to the ‘ideal’ se-

quences of colour-compatible merges leading to the target DFA to identify

exactly when, and why, EDSM makes a mistake? An illustration showing

this scenario is shown in Figure 6.23.

• Which properties of colour-compatible merge sequences leading to the target

DFA can we discover? How can these properties be used to better understand

how EDSM works, and how can they be used to develop new DFA learning

methods?

Definition 6.9: Colour-Compatible Merges

A colour-compatible merge is a deterministic merge where all the states in

every block in the resulting partition have the same colour. Specifically:

Let C be the set of distinct target DFA colours, ρ : Q → C be the function

which maps the states Q in an APTA to a colour in C, and π be the partition

(quotient automaton) obtained after performing some merge m. The merge

m is colour-compatible if ∀b ∈ π,∀q, q′ ∈ b : ρ(q) = ρ(q′).

APTA ...
Merges

DFA

Merge 1
Merge 2
Merge 3
Merge 4
Merge 5
Merge 6
Merge 7

...

Merge n

Merge 8

DFA ... DFA

None of the highest-scoring
merges are colour-compatible

Colour-compatible merge is not
among the highest-scoring merges

Highest-scoring
merges

Mistake made here

Figure 6.22: An illustration showing how a colour-compatible merge could be

‘outside’ of the highest-scoring merges (merges are ordered by score).

165



APTA DFA
CC Merge

DFA
CC Merge

DFA

DFA

Non-
CC M

erge

CC Merge

Mistake made here

Figure 6.23: An illustration showing where a heuristic, such as EDSM, made the

wrong, colour-incompatible merge choice. The target DFA can never be reached

after this choice is made. The green path is a hypothetical sequence of merges

performed by EDSM, and the blue path is the sequence of colour-compatible

merges leading to the target.

6.6 Ending Remarks

The properties and concepts we have discussed in this chapter allow us to better

understand the structure of the search space, as well as the behaviour of the

EDSM heuristic. The unimportance of merge ordering, blocking and included

merges, the cumulative property of the EDSM score, and the colour-compatibility

of merges will be especially important. In the next chapter, we will perform

a number of experiments on Abbadingo-style problem instances which include

establishing baseline results for evaluation, studying the properties of so called

‘Oracle-assisted’ merges, estimating where good colour-compatible merges can be

found in a subspace of merges, and determining the extent to which the first

merges in a sequence are important. In this chapter we will also present the three

DFA learning methods we have developed in this dissertation.

166



q0

q1

q2 q3 q4

q6

q5 q7 q8

a

b

a

a b

b
b a

q0

q1

q
2,4 q3

q6

q5 q7 q8

a

b

a

a

b

b
b a

(q2,q4)

q0

q1

q
2,3,4

q6

q5 q7 q8

a

b

a

b
b a

a,b

(q2,q3)

q0

q1

q
2,3,4

q5 q
6,7 q8

a

b

a
b

b a

a,b

(q6,q7)

q0

q1

q
2,3,4

q5 q
6,7,8

a

b

a
b

b

a,b

a

(q6,q8)

q0

q
2,3,4

q5 q
1,6,7,8

a b

b
b

a,b

a

(q1,q6)

q0

q
1,6

q2 q3 q4

q5 q7 q8

a

b

a b

b
b a

a

(q1,q6)

q0

q
1,6

q
2,3 q4

q5 q7 q8

a

b

b

b
b a

a

a

(q2,q3)

P1

P1

P1

P1

P1

P2

P2

P2(q2,q4)

q0

q
1,6

q5 q7 q8

a

b

b
b a

a

q
2,3,4

a,b

(q6,q7) P2

(q6,q8) P2

q0

q1

q2 q3 q4

q
6,7

q5 q8

a

b

a

a b

b
b a

(q6,q7)P3

q0

q
1,6,7,8

q2 q3 q4

q5

a

b

a b

b
b

a

(q1,q6)P3

q0

q
1,6,7,8

q
2,4 q3

q5

a

b

a

b

b
b

a

(q2,q4)P3

(q6,q8)P3

(q2,q3)P3

P4

q0

q1

q
2,4 q3

q
6,7

q5 q8

a

b

a

a

b

b
b a

(q6,q7)P4

q0

q1

q
2,4 q3

q
6,7,8

q5

a

b

a

a

b

b
b

a

(q6,q8)P4

(q1,q6)

P4

P4

Start

Border element

P1 = (q2,q4) (q2,q3) (q6,q7) (q6,q8) (q1,q6) - initial path

P2 = (q1,q6) (q2,q3) (q2,q4) (q6,q7) (q6,q8) - permutation

P3 = (q6,q6) (q1,q6) (q2,q4) (q6,q8) (q2,q3) - permutation

P4 = (q2,q4) (q6,q7) (q6,q8) (q1,q6) (q2,q3) - permutation

Permutations of merge sequences

Figure 6.24: An example showing how merge ordering is unimportant. Dotted

loops are identity merges.

167



q0

q1

q2 q3 q4

q6

q5 q7 q8

a

b

a

a b

b
b a

Start

q0

q1

q2 q3 q4

q6

q5 q
7,8

a

b

a

a b

b
b

a

(q7,q8)

q0

q1

q2 q3 q4

q6

q
5,7,8

a

b

a

a b

b

a,b

(q5,q7)

q0

q1

q2 q3 q4

q
5,6,7,8

a

b

a

a b

b

a,b

(q5,q6)

q0

q1

q
2,3 q4

q
5,6,7,8

a

b

a

b

b

a,b

a

(q2,q3)

At this point, DFAs are the 
same and both (q2,q3) and 

(q1,q3) are possible

Now (q1,q3) is no 
longer possible

Symmetry

We choose (q2,q3)

q0

q1

q2 q3 q4

q6

q5 q7 q8

a

b

a

a b

b
b a

Start

q0

q1

q2 q3 q4

q6

q5 q
7,8

a

b

a

a b

b
b

a

(q7,q8)

q0

q1

q2 q3 q4

q6

q
5,7,8

a

b

a

a b

b

a,b

(q5,q7)

q0

q1

q2 q3 q4

q
5,6,7,8

a

b

a

a b

b

a,b

(q5,q6)

(q1,q3)

And so on...

We choose (q1,q3)

Now (q2,q3) is no 
longer possible

And so on...

a,b

q0
a

b

q
1,3

q
2,4

q
5,6,7,8

b

a

a

We are starting from the 
same place and performing 

the same merges

Figure 6.25: An example showing how the blocking relation is symmetric.

168



q0

q1

q2 q3 q4

q6

q5 q7 q8

a

b

a

a b

b
b a

Start

q0

q
1,7

q2 q3 q4

q
6,8

q5

a

b

a

a b

b
b

(q1,q7)P1EDSM=2

q0

q
1,7

q2 q4

q
3,6,8

q5

a

b

a

a b

b
b

(q3,q8)P1EDSM=0

q
0,2,4

q
1,3,6,
7,8

q5

a
b

b
b

a

(q0,q2)P1EDSM=2

(q3,q6)P1EDSM=0

(q3,q7)P1EDSM=0

(q1,q7)

P2 EDSM=2

q0

q
1,3,7

q
2,4

q
6,8

q5

a

b

a

a

b
b

(q3,q7) P2 EDSM=1

q0

q
1,3,6,
7,8

q
2,4

q5

a

b a

b
b

a

(q3,q6) P2 EDSM=1

(q3,q8)

P2 EDSM=0

(q0,q2) P2 EDSM=0

q0

q1

q2 q4

q
3,6

q5 q7 q8

a

b

a

a b

b
b a

(q3,q6) P3 EDSM=0

q0

q1

q2 q4

q
3,6,7

q4 q8

a

b

a

a b

b
b a

(q3,q7) P3 EDSM=1

(q0,q2) P3 EDSM=3

(q1,q7)

(q3,q8)

P3 EDSM=0

P3 EDSM=0

P1 = (q1,q7) (q3,q8) (q0,q2) (q3,q6) (q3,q7) - permutation

P2 = (q1,q7) (q3,q7) (q3,q6) (q3,q8) (q0,q2) - permutation

P3 = (q3,q6) (q3,q7) (q0,q2) (q1,q7) (q3,q8) - permutation

Permutations of merge sequences

SUM EDSM=4

Figure 6.26: The sum of EDSM scores. Dotted loops are identity merges.

169



Chapter 7

Baseline Experiments and

Methodology

In this chapter, we start by describing the exact Abbadingo One setup which will

be used to create target DFAs and benchmark training sets. We then proceed by

performing a number of experiments to help us better understand the behaviour of

the EDSM heuristic, as well as how the construction of target DFAs and training

sets affect our learning task. In these experiments we:

• Determine the typical sizes of APTAs, as well as the expected proportion of

labelled states in an APTA with respect to both the total number of strings

possible and the size of the APTA itself. This investigation is important to

determine whether the proportion of labelled strings (at density 1) is stable

across target DFA sizes. Furthermore, we study the effect on generalisation

rate should these proportions change.

• Describe so called Oracle-assisted heuristics, and how they will be used to

study the behaviour of ideal paths to the exact target DFA.

• Empirically identify the baseline performance of EDSM, W-EDSM, and a

variant of EDSM which uses an optimal, Oracle-assisted tie-breaking strat-

egy. The results of these experiments will be used to compare our methods

against.

• Study the experimental likelihood of randomly generating a training set

which is not structurally complete using the Abbadingo One competition

170



procedure. We also investigate to which extent structural incompleteness

negatively affects EDSM.

• Investigate the effect of getting the first k merges in a merge sequence correct

(i.e. the first k merges are colour-compatible).

• Whenever a merge is performed, the size (number of states) of the hypothesis

decreases. We study the rates at which a hypothesis is ‘compressing’ when

a state merging algorithm is converging to the true target DFA. Identifying

the rate of reduction is important to determine whether and which low state

reduction merges can be avoided when building a merge sequence.

• Develop the APTA Reduction Table structure which contains high state

reduction merges in an APTA. We further determine the expected number

of colour-compatible merges in the table. Our reasoning is that, while the

reduction table contains considerably fewer merges than the total number

of merges possible, it is still likely to contain several merges in common

with ideal merge paths to the target DFA (created using an Oracle-assisted

heuristic). Focusing the initial steps of a search in the space corresponding to

the merges contained in the table is likely to result in several short sequences

of colour-compatible merges which constrain a hypothesis well enough that,

when extending using a label matching heuristic, would perform better than

EDSM.

• Study the relationship between the length of a merge sequence constructed

using a greedy heuristic and the error of the resulting hypothesis with respect

to a test set. We determine that the exact n-state target DFA is never found

in fewer than n+1 merge steps, and that, using heuristics such as EDSM, the

error of a hypothesis is proportional to the length of a merge sequence (as the

length of a merge sequence increases, so does the error of the hypothesis).

Motivated by the results we have obtained following this analysis, the remain-

der of this chapter is dedicated to providing a detailed description of three DFA

learning methods we have developed in this dissertation. The performance of each

of these methods will be evaluated in the next chapter.

171



1. Our first method is the development of an ensemble of monotonic, greedy

heuristics which are, collectively, able to identify low-error hypotheses on

problem instances where EDSM does not. Each heuristic in the ensemble

has been identified experimentally and represents a different inductive bias

used in the search.

2. The second method, which we call the Delta Graph, involves constructing a

structure corresponding to a subspace of the merges in the space of quotient

DFAs for the problem instance. Experimentally, we find that this structure

contains several short sequences of colour-compatible merges which, when

extended using a label matching heuristic such as W-EDSM, results in a

much higher likelihood of identifying a lower error hypothesis compared to

EDSM.

3. Thirdly, we describe an evolutionary algorithm which, rather than attempt-

ing to evolve a representation of the target DFA directly or packing the

states of an APTA into the partition of a quotient automaton, attempts to

identify initial sequences of high-quality, colour-compatible merges. These

sequences constrain a hypothesis well enough to allow, with high experimen-

tal probability, a label matching heuristic to identify the exact target DFA

or a low-error hypothesis.

7.1 How Heuristics or DFA Learning Algorithms

are Evaluated and Analysed

The procedure used to evaluate the performance of a heuristic or DFA learning

algorithm is illustrated in Figure 7.1 and is outlined as follows:

• Create a large (representative) number of Abbadingo problem instances con-

sisting of target DFAs, and their corresponding training and test sets (the

exact procedure is described in Section 7.4 below).

• For each problem instance, construct an APTA from the training set.

172



• Use a heuristic (or DFA learning algorithm) such as EDSM to construct a

merge path from every APTA to a final hypothesis.

• Determine the error of a hypothesis with respect to the test set, as well as

other features such as the size of the hypothesis DFA. If test string reaches an

unlabelled (orphaned) state in a hypothesis, or is otherwise unparsable, that

test string is classified as being rejected by the hypothesis. This behaviour

is consistent with the principle that unparsable strings do not belong to the

language.

• Aggregate and analyse these features over all the problem instances. For

instance, an important metric is the number of hypotheses over the total

number of problem instances which have an error of ≤ 1% over the test set

(the Abbadingo winning criterion).

1

Target DFA 1

Target DFA 2

Target DFA 3

Target DFA n

Training +ve

Training -ve APTA
Algorithm 1

Algorithm 2

Algorithm k

Hypothesis 1

Hypothesis 2

Hypothesis k

Test Set

Error, DFA size, etc...

Error, DFA size, etc...

Error, DFA size, etc...

Create Abbadingo
target DFAs

Create training
and test sets

2
APTA from

training sets

3
Use heuristic/algorithm
to identify a hypothesis

4
Properties of hypothesis
e.g. Error wrt test set

5

Aggregate errors and other statistics for each 
algorithm+hypothesis over all target DFA instances 

6

Figure 7.1: Overview of how problem instances are constructed, and how heuristics

are evaluated.

To facilitate the aggregation and the analysis of results, all problem instances

and merge path extensions (one merge path per heuristic/algorithm) are stored in

SQLite database format [SQL].

• Each database contains an Experiments and a Paths table:

173



– The Experiments table contains all the problem instances including

target DFAs, as well as their corresponding training sets, test sets, and

the APTA. In this table, we also store other features about a problem

instance such as the proportion of positive and negative strings in the

training set.

– The Paths table contains a merge path extension for each merge heuris-

tic and for each experiment in the Experiments table (i.e. there is a

one-to-many relationship between the Experiments and the Paths ta-

ble). Again, in the Paths table, we store other features such as the

heuristic/algorithm used to construct the paths, and the error of the

final hypothesis identified by the heuristic.

• The exact schema of the database, including the actual database files them-

selves may be found in the media accompanying this dissertation.

• The databases containing all the experimental runs referred to in this dis-

sertation (problem instances, merge path constructions, and results) are de-

scribed in Table 7.1 below.

Database Description

32-state target DFAs, all training sets at density 1 (607 strings)

n32d607e1024.sqlite 1024 problem instances. Training sets are symmetri-

cally structurally complete.

n32d607e512 EdsmFailing.sqlite 512 problem instances. Training sets are chosen such

that none of the highest scoring EDSM merges (ties)

in the APTA are colour-compatible.

n32d607e512 NotStructComp.sqlite 512 problem instances. Trainings sets are at not sym-

metrically structurally complete.

n32d607e512 NoLoops.sqlite 512 problem instances. Target DFAs do not contain

loop transitions.

n32d607e64 EdsmFailing.sqlite 64 problem instances. Training sets are chosen such

that none of the highest scoring EDSM merges (ties)

in the APTA are colour-compatible.

174



n32d607e64 NotStructComp.sqlite 64 problem instances. Trainings sets are at not sym-

metrically structurally complete.

n32d607e64 NoLoops.sqlite 64 problem instances. Target DFAs do not contain

loop transitions.

n32d607e128 GA.sqlite 128 problem instances. Training sets are symmetrically

structurally complete

64-state target DFAs, all training sets at density 1 (1,521 strings)

n64d1e1024.sqlite 1024 problem instances. Training sets are symmetri-

cally structurally complete.

n64d1e512 Unrestricted.sqlite 512 problem instances. May or may not: be symmet-

rically structurally complete, have loops, have colour-

compatible in first EDSM-scoring rank.

n64d1e64 GA.sqlite 64 problem instances. Training sets are symmetrically

structurally complete.

128-state target DFAs, all training sets at density 1 (4,382 strings)

n128d1e512.sqlite 512 problem instances. Training sets are symmetrically

structurally complete.

Table 7.1: Description of databases containing the experiments referred to in this chapter.

7.2 Oracle-Assisted Heuristics and Paths

We will refer to any heuristic which uses any useful information not in the training

set as an Oracle-assisted heuristic. An example of such a heuristic would be one

which always selects colour-compatible merges (defined in Section 6.5) which lead

to the exact target DFA. In this sense, the merge choices made by the Oracle-

assisted heuristic are always ‘good’. Oracle-assisted heuristics are useful because

they allow us to identify exactly when and where a heuristic makes a wrong choice.

Any path constructed using such a heuristic will be called an Oracle-assisted merge

path, and any shortest merge path starting from an APTA to the exact target will

be called an ideal merge path.

175



7.3 Glossary of Heuristics

In this chapter, we will tabulate and discuss the performance of several heuristics.

For presentation purposes, we will be using the following short names to refer to

each of them. Heuristics prefixed with a † are those assisted by an Oracle.

EDSM Reference EDSM as described in [LPP98].

W-EDSM Reference EDSM with windowing as described in

[LPP98].

Reduction Selects merges which reduce the size of the current hy-

pothesis most.

W-Reduction Same as reduction but with windowing.

†EDSM-TieCC Reference EDSM where an Oracle breaks ties by select-

ing a colour-compatible merge if it exists.

†Full-EDSM Reference EDSM where an Oracle fully labels the states

in the starting APTA.

†Col-EDSM Reference EDSM where an Oracle fully colours each

state in the starting APTA.

†FullCol-EDSM Reference EDSM where an Oracle fully labels and

colours each state in the starting APTA.

†Colk-EDSM+W-

EDSM

An Oracle selects the highest EDSM scoring colour-

compatible merge for the first k merge steps, then pro-

ceeds with W-EDSM.

†Colk-W-EDSM+W-

EDSM

An Oracle selects the highest W-EDSM scoring colour-

compatible merge for the first k merge steps, then pro-

ceeds with W-EDSM.

176



7.4 The Abbadingo One Setup

7.4.1 Creating Target DFAs

The procedure described in [LPP98] for creating an n-state target DFA is sum-

marised as follows:

1. Create a graph containing 5
4
n nodes.

2. Label each node in the graph as either an accepting or rejecting state with

equal probability.

3. For each node in the DFA, create one transition per symbol to another

random node. In Abbadingo One, the alphabet is binary, and the symbols

are the letters a and b.

4. Randomly select a node from the graph and make it the starting state.

5. Minimise the graph (DFA) using the Moore minimisation method as de-

scribed in Section 2.4.5.

6. Accept the minimised graph as the target if its depth is exactly (2 log2 n− 2),

otherwise repeat the procedure until this condition is satisfied. The depth

of a DFA is defined in Section 2.4.3.

It should be noted that this method will yield a target DFA whose size is close

to, but not necessarily equal to, the desired target size n. The depth will, however,

always be exactly equal to (2 log2 n− 2). Lang et al. note that the size variation

is practically inconsequential, although any variance in depth would greatly com-

plicate the construction of a training set from our DFA [LPP98]. The complete

algorithm for creating ‘Abbadingo-style’ target DFAs is given in Algorithm 7.1.

177



Algorithm 7.1 Creating an Abbadingo-style target DFA ([LPP98]).

Input: The size n of the desired target DFA, and symbols the alphabet of the DFA.

Output: A minimised DFA A containing m states and a depth of exactly (2 log2 n− 2).

m is close to the desired input size n (i.e. roughly n states).

1: // Continue trying until the depth property is satisfied.

2: while true do

3: A ← A new DFA with 5
4 × n states

4: // Create the transitions (without replacement).

5: for each state s in A do

6: for each symbol a ∈ symbols do

7: s′ ← A random state in A

8: Create a transition in A from state s to s′ for symbol a

9: end for

10: end for

11: Let the starting state be a random state in A

12: Minimise A

13: if depthOf(A) = round(2× log2(n)− 2) then // Depth property.

14: return A

15: end if

16: end while

7.4.2 Creating Training Sets

Having created a target DFA of approximately size n, we now proceed to describe

the method used to generate a training set of a given density from it:

1. Uniformly, and without replacement, draw a training set D ⊆ S, where S is

the set of all binary strings having length 0 to 2 log2 n+ 3 inclusively.

2. Classify all the strings in D using the target DFA.

3. The size of the training set D is determined by using a density parameter

p = {1, 2, 3, 4} to linearly interpolate between two values L and U , these

178



respectively being the approximate lower and upper bounds on the sample

complexity. When p = 1, the training set is sparsest, and when p = 4, the

training set is densest. This gives us |D| = L+ p
4
(U − L).

4. The lower bound L is given by L = log2 ( 2nn2n

(n−1)!
), where 2nn2n

(n−1)!
is the number of

possible n-state DFAs. For completeness sake, we derive this bound thusly:

(a) Every state can be accepting or rejecting (×2).

(b) Every transition labelled with an a can go to any of the n states (×n).

(c) Every transition labelled with a b can go to any of the n states (×n).

(d) This gives us 2nn possibilities for each state.

(e) Repeated for n states, this gives us (2nn)n = 2nnnnn = 2nn2n possibil-

ities.

(f) However, the order in which we choose states is not important, hence

we get 2nn2n

(n−1)!
possibilities.

(g) It is worth noting that for practical considerations, L = log2 ( 2nn2n

(n−1)!
)

may be algebraically simplified to L =
n−1∑
k=1

log2

(
2n

1− k
n

)
+ log2(2n2).

5. The designers of Abbadingo use the learning curves for the Trakhtenbrot-

Barzdin algorithm (whose success depends on the training set being uni-

formly complete) to obtain the value for the upper bound U .

Note regarding DFA and training set construction

While our target DFAs and data sets are constructed according to published

specifications, there could still be the possibility of variances due to discrep-

ancies in implementation. As a sanity check, we measure our results against

those of Lang’s “Evidence Based State Merging with Search ” [Lan98] who,

in turn, measured his against previously published results. In various config-

urations, we can confirm that our implementation and results are well within

the ballpark.

179



Note regarding 32-state target problems

• The Abbadingo One competition does not specify the size bounds or

density values for 32-state problems.

• To obtain this, we select a training set size which would give roughly

the same EDSM performance as that for 64-state problems at density 1.

• The ‘density 1’ we get for 32-state problems is 607 strings which corre-

sponds to circa 3.7% of the 16n2 − 1 strings possible.

7.4.3 Creating Problem Instances

All the problem instances created for the experiments described in this chapter

will have the following characteristics:

• Recall that we may request a target DFA of size n but get one close to

n instead. In our experiments, all target DFA sizes generated will have

exactly the number of states n requested. The Abbadingo construction depth

requirement of (2 log2 n− 2) will always be honoured.

• Unless otherwise specified, all training sets will be symmetrically structurally

complete with respect to the target. Cases when the training set is not

symmetrically structurally complete will be studied separately.

• Unless otherwise specified, the number of positive and negative strings in any

training set will not be allowed to differ by more than 20%. This will avoid

pathological cases where a training set would be overwhelmed by strings of

a single class.

• All training sets are at Abbadingo density 1.

• Testings sets will consist of 1,800 strings which do not appear in the training

set.

• A low-error hypothesis is one which has a misclassification rate of no more

than 1% over the testing set.

180



7.5 Baseline Experiments

7.5.1 Expected APTA Sizes and Merges

In Table 7.3 we show the expected number of states in an APTA as well as the

number of possible merge pairs in it for various target DFA sizes at an Abbadingo

density of 1 (the minimum, maximum, and mean is computed over 1024 Abbadingo

problem instances). These figures emphasise the large number of state pairs avail-

able when merging. Recall that the Abbadingo One competition does not specify

the number of training strings at the sparsest density for 32-state problems. We

select a value of 607 strings that would result in approximately the same EDSM

generalisation rate for 64-state problems at density 1.

1024 Iterations, Density 1

Setup Minimum Maximum Mean

32 states States: 2,401 2,599 2,502

(607 strings) Merge Pairs: 2,881,200 3,376,101 3,129,399

64 states States: 7,036 7,323 7,180

(1,521 strings) Merge Pairs: 24,749,130 26,809,503 25,774,398

128 states States: 22,257 22,838 22,596

(4,382 strings) Merge Pairs: 247,675,896 260,775,703 255,275,186

256 states States: 64,355 65,365 64,761

(11,255 strings) Merge Pairs: 2,070,750,835 2,136,258,930 2,096,979,099

512 states States: 200,701 202,348 201,466

(32,500 strings) Merge Pairs: 20,140,345,350 20,472,255,378 20,294,369,699

Table 7.3: Expected APTA table sizes and merge pairs.

Table 7.4 shows the proportion of the mean size of an APTA and the labelled

states in it with respect to the 16n2 − 1 possible strings [LPP98] for an n-state

target DFA at density 1. The mean APTA sizes are computed over 1024 randomly

created Abbadingo problem instances. We observe that:

• As the size of the target DFA increases, the proportion of labelled states

(the size of the training set) in the corresponding APTA decreases with re-

spect to the total number of strings possible. For example, for 64-state target

problems, the Abbadingo One competition specifies that 1,521 (2.3%) strings

181



out of the 65,535 strings are labelled. On the other hand, for 512-state target

problems, the competition only specifies that 32,500 (0.8%) strings out of

the 4,194,303 strings are labelled.

• As the size of the target DFA increases, the proportion of the labelled states

in the APTA decreases with respect to the size of the APTA itself. For ex-

ample, for 64-state target problems, the Abbadingo One competition speci-

fies that 1,521 (21.2%) strings/states out of the 7,180 states in an average-

sized APTA are labelled. On the other hand, for 512-state target problems,

the competition only specifies that 32,500 (16.1%) strings/states out of the

201,466 states in the APTA are labelled.

1024 Iterations, Density 1

Target Size APTA Height Total Strings APTA Size Labelled States

n 2 log2(n) + 3 16n2 − 1 (mean) (in APTA)

32 states 13 16,383 2,502 607

15.3% of total 3.7% of total

24.3% of APTA

64 states 15 65,535 7,180 1,521

11% of total 2.3% of total

21.2% of APTA

128 states 17 262,143 22,596 4,382

8.6% of total 1.7% of total

19.4% of APTA

256 states 19 1,048,575 64,761 11,255

6.2% of total 1.1% of total

17.4% of APTA

512 states 21 4,194,303 201,466 32,500

4.8% of total 0.8% of total

16.1% of APTA

Table 7.4: Proportion of the labelled states in an APTA, and size of the APTA

with respect to the total number of strings.

182



7.5.2 Presentation of Results

The majority of the tables shown in this chapter (such as those in Tables 7.5 and

7.6), as well as those in the following ones will be presented as follows:

Header Table headers will show the size of the target DFA we

are searching for, the number of strings in the training

set (these would correspond to Abbadingo at density 1),

and the total number of experiments run to obtain the ag-

gregated results. The filename of the SQLite database file

which contains the experiments used is also shown in this

header1.

Heuristic This is the name of the heuristic used in the current row.

≤ 1% Error The percentage of experiments where hypotheses having

≤ 1% error on a testing set have been found. These would

correspond to solutions which have satisfied the Abbadingo

winning criterion.

±1 Target The percentage of experiments where hypotheses whose

sizes are within ±1 state of the target size have been found.

For instance, if the target size is 64 states, here we would

show the percentage of hypotheses found having between

63 and 65 states.

Exact Target The percentage of experiments where the hypotheses found

are exactly the target we are looking for.

Mean Size The mean size in states of the hypotheses found.

Median Size The median size in states of the hypotheses found.

1The SQLite databases are described in Table 7.1 above.

183



7.5.3 Baseline EDSM and W-EDSM Performance

In this section, we show the experimental likelihood of finding low-error hypothe-

ses, hypotheses which are close in size to the target (within ±1 state), and finding

the exact target when using EDSM and W-EDSM as a heuristic2. We also show

the mean and median sizes of the hypotheses discovered by each heuristic. Using

an Oracle-assisted tie breaker, we can empirically establish an upper bound on

the performance of EDSM and W-EDSM. In other words, this shows how EDSM

behaves if it always makes an optimal tie-breaking choice.

n32d607e1024.sqlite

32-State Target, 607 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 15.7% 19.6% 4.3% 75 90

W-EDSM 14.1% 17.78% 3.6% 77 92

EDSM-TieCC 25.5% 26.4% 16.6% 71 88

n64d1e1024.sqlite

64-State Target, 1,521 Strings, 1024 Experiments

EDSM 15.2% 17.7% 0.6% 162 200

W-EDSM 13.8% 16.5% 0.5% 170 207

EDSM-TieCC 24% 22.3% 9.2% 154 199

n128d1e512.sqlite

128-State Target, 4,382 Strings, 512 Experiments

W-EDSM 22.7% 15.4% 0% 377 511

W-EDSM-TieCC 27.5% 18.2% 7.4% 359 502

Table 7.5: Baseline EDSM and W-EDSM performance.

7.5.4 Analysis of Oracle-Assisted Heuristics

In Table 7.6, we show the results obtained when constructing merge sequences

using the Full-EDSM, Col-EDSM, and FullCol-EDSM Oracle-assisted heuristics on

1024 problem instances of 64-state target DFAs at density 1. By examining these

results, as well as inspecting the merge paths constructed using these heuristics,

we can make the following important empirical observations:

2For performance reasons, all 128-state target DFA problem instances will be evaluated using

windowed heuristics (as described in [LPP98]).

184



• Col-EDSM always finds the exact target in n + m merge steps where n is

the size of the target and m ≥ 1.

• Full-EDSM can over-generalise (finding a DFA smaller than the target) lead-

ing to situations where the target DFA is not found.

• Col-EDSM constrains merges more than Full-EDSM does. When the train-

ing set is symmetrically structurally complete, Col-EDSM encapsulates both

the correct label of every state in the APTA and also exactly which merges

must be merged in which.

• In our experiments, FullCol-EDSM always finds the exact target in n + 1

merge steps where n is the size of the target DFA.

• We observe that the exact target DFA is never found in fewer than n + 1

merge steps. We suspect that this is a strong lower bound.

• Low-error hypotheses are always found close to n+1 merge steps, and never

further than n+ n
2

steps.

• The length of a merge path is a very good proxy for whether the hypothesis

will be a low-error one. If the path is too long, we can be almost certain that

the hypothesis will have a high error against the testing set (we elaborate

on this observation in Section 7.5.11).

n64d1e1024.sqlite

64-State Target, 1,521 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

Full-EDSM 100% 98.6% 31.3% 64 64

Col-EDSM 100% 100% 100% 64 64

FullCol-EDSM 100% 100% 100% 64 64

Table 7.6: Analysis of Oracle-assisted heuristics.

Ideal Merge Paths

We call merge paths which find the target DFA in n + 1 merge steps, ideal

merge paths.

185



7.5.5 Non-Structurally Complete Training Sets

When creating a random Abbadingo-style training set, there is a considerable

likelihood that it is not symmetrically structurally complete with respect to its

corresponding target. In this section, we estimate this likelihood as well as its effect

on EDSM. In Table 7.7 we can see that as the size of the target DFA increases,

the likelihood of constructing a training set which is not structurally complete

increases noticeably. The experiments which follow in Table 7.8 also show that,

in such cases, the performance of EDSM is adversarially impacted. Moreover, and

as expected, when the training set is not structurally complete, the target DFA

can never be found since it is not in the search space to begin with (see Chapter

3). We could find exact targets using the FullCol-EDSM heuristic only when we

have been lucky enough that the full labelling caused the training set to become

symmetrically structurally complete.

Setup #Iterations #Struct. Incompl. Observed Likelihood

32 States, 607 Strings 2048 935 of 2048 46%

64 States, 1,521 Strings 2048 1255 of 2048 61%

128 States, 4,382 Strings 2048 1486 of 2048 73%

256 States, 11,255 Strings 1024 908 of 1024 89%

Table 7.7: The likelihood of generating a non-structurally complete training set.

32-State Target, 607 Strings, Aggregated Over 256 Problem Instances

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 8.2% 11.72% 0% 78 90

W-EDSM 7.81% 13.67% 0% 78 92

EDSM-TieCC 41.02% 42.19% 0% 62 51

Col-EDSM 98.83% 100% 0% 32 32

FullCol-EDSM 100% 100% 85.94% 32 32

Table 7.8: The effect of non-structurally complete training sets on EDSM.

7.5.6 Getting the First Merges Right

In [Cic02], Cicchello studies the importance of getting the initial sequence of

merges correct. Specifically, the author reports that selecting the first few merges

186



in a merge path correctly, increases the likelihood of identifying a low-error hypoth-

esis. We build on this idea by observing the expected performance improvement

when using an Oracle-assisted heuristic that selects the highest EDSM-scoring

colour-compatible merge for the first k merge steps. After these k merges have

been performed, the remainder of the path is extended using W-EDSM. As ex-

pected, as k increases so does the likelihood of discovering low-error hypotheses.

Every merge made will establish constraints on the following ones (unlabelled

states become labelled) and when these merges are correct, those constraints will

allow the heuristic to perform better. Table 7.9 shows how performance improves

as the first eight merges are guaranteed to be correct for 32-state target DFA

problems. The same improvement may be observed for 64 and 128-state target

DFAs (see Tables A.10 and A.14 in Appendix A).

n32d607e1024.sqlite

32-State Target, 607 Strings, 1024 Experiments

Heuristic ≤ 1% Err ±1 Tgt Exact Tgt Mean Size Median Size

EDSM (baseline) 15.7% 19.6% 4.3% 75 90

Col01-EDSM+W-EDSM 20% 25.9% 4.8% 69 84

Col02-EDSM+W-EDSM 28.8% 37.1% 8.1% 60 49

Col03-EDSM+W-EDSM 31.7% 41.3% 8.5% 54 38

Col04-EDSM+W-EDSM 39.1% 50.4% 9.9% 48 33

Col05-EDSM+W-EDSM 43.4% 57.9% 11.9% 43 32

Col06-EDSM+W-EDSM 51.2% 64.1% 14.8% 40 32

Col07-EDSM+W-EDSM 51.4% 66.6% 15.5% 38 32

Col08-EDSM+W-EDSM 54.9% 71.3% 17.3% 36 32

Table 7.9: The effect of getting the first merges right (the generalisation rate

improves as k increases).

A significant difference between our method and Cicchello’s is that Cicchello

used a limited search to identify the correct merge to perform at each level. Such a

search could very well have failed. We argue that just to analyse merge behaviour,

this risk and computational expense is not needed. In our case, since we are

using colour-compatibility, identifying a correct merge is trivial. Of course, colour-

compatibility depends on an Oracle which, while being useful in our analysis, is

not available in actual algorithms applied to real-world problems.

187



7.5.7 Reduction Curves and DFA Compression

Clarification

The ‘reduction’ and ‘compression’ terminology introduced in this chapter

should not be confused with similarly named principles in Minimum Descrip-

tion Length (MDL) as used by Adriaans and Jacobs in [AJ06].

In this section, we consider merge paths of length n + 1 from an APTA to

the exact target of size n which have been constructed using the FullCol-EDSM

heuristic. These correspond to the ‘best case’ shortest paths consisting of only

colour-compatible merges leading to the exact target DFA. We examine the fol-

lowing characteristics:

• The number of states reduced in the hypothesis at every one of the n + 1

merge steps.

• The rates at which hypothesis sizes are being ‘compressed’ starting from the

APTA to the final n-state target.

These experiments allow us to analyse paths in terms of both the number of

states reduced, and hypothesis sizes at each step of an ideal path. By examining

the results in Figures 7.2, 7.3, and 7.4 we can see that when a heuristic is success-

fully converging to the target there is an expected state reduction and hypothesis

size at each merge step (the exact values may be found in Table B.1 in Appendix

B). It follows that at every merge step, we only need to focus on the subset of

merges which will reduce the hypothesis size to roughly within the minimum and

maximum bounds (and close to the average value). The most important observa-

tion is possibly that merges which result in very low reductions are avoided in the

initial merges of successful paths. For example, by inspecting Figure 7.3, we can

see that merges reducing fewer than 64 states are never selected in the first eight

merge steps of an ideal path (i.e. the intersection between 64 on the y-axis and 8

on the x-axis is below the minimum, red-dotted plot).

188



0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

St
at
es
 R
ed
uc
ed
 a
t 
Me
rg
e 
St
ep

Merge Step

True Reduction from APTA to Target in n+1 Steps
64-State Target, 1,521 Strings, 1024 Experiments, Heuristic=FullCol-EDSM

Min Max Avg

Figure 7.2: Number of states reduced in n+ 1 steps in a FulCol-EDSM path.

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

St
at
es
 R
ed
uc
ed
 a
t 
Me
rg
e 
St
ep
, 
Lo
g 2

Sc
al
e

Merge Step

True Reduction from APTA to Target in n+1 Steps
64-State Target, 1,521 Strings, 1024 Experiments, Heuristic=FullCol-EDSM

Min Max Avg

Figure 7.3: Number of states reduced in n+1 steps in a FulCol-EDSM path (state

reduction on log2 scale).

189



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

DF
A 
Si
ze
 a
t 
Me
rg
e 
St
ep

Merge Step

DFA Size from APTA to Target in n+1 Steps
64-State Target, 1,521 Strings, 1024 Experiments, Heuristic=FullCol-EDSM

Min Max Avg

Figure 7.4: Hypothesis size compression in n+ 1 steps in a FulCol-EDSM path.

7.5.8 The APTA Reduction Table

The reduction in states at every merge step along an ideal merge path to the target

DFA allows us to determine which low reduction merges to ignore during merge

selection. Since there are considerably fewer high reduction merges than there are

low reduction ones (there are more states closer to the leaves of the APTA), we can

design algorithms which focus their search on this much smaller pool of merges.

Unfortunately, determining this reduction at each and every merge step comes at

a high computational cost as it requires us to actually perform the merge itself.

To deal with this, we propose the APTA reduction table structure which consists

of the set of valid merges in an APTA which have reduced its size by at least some

number of states and have at least some EDSM score. In the experiments which

follow, we observe that:

• While the merges in the APTA reduction table do not correspond exactly

to the ‘true’ high reduction merges we discussed earlier, the table needs to

be constructed only once for a problem instance as opposed to determining

the actual reductions for every single merge at every step along the merge

path.

190



• The APTA reduction table contains far fewer merges than the set of all

possible merges at every merge step.

• The table contains enough good, colour-compatible, merges to get us past

the critical first merge steps when constructing a merge sequence.

Definition 7.1: The True Reduction of a Merge

Let g be the size of a DFA, and h be the size of the DFA obtained by performing

some valid merge m. The true reduction of the merge m is (g − h).

Definition 7.2: The APTA Reduction Table

LetM be the set of valid merges in an APTA. Let R :M→ N be a function

which gives the true reduction of some merge, and E :M→ N be a function

which gives the EDSM score of some merge. The APTA reduction table for

parameters α and β is the set of merges {m ∈M : R(m) ≥ α and E(m) ≥ β}.

In Table 7.10, we show the expected sizes of the reduction tables for various

target size problems, and α and β configurations. We note the substantial reduc-

tion in the number of merges in the table compared to all the possible ones in

the APTA. For example, for 128-state target problems, there are about 255× 106

possible merges in the APTA (see Table 7.3), whereas in the reduction table for

α ≥ 160 and β ≥ 1 there are only 1,658 which correspond to roughly 0.001% of

these possible merges (see Table 7.10). The ‘Avg. CC Merges’ columns show the

average number of colour-compatible merges in the table for the corresponding

configuration. In the same example, out of the 1,658 merges, the table contains

an average of 63 colour-compatible ones. The implication is that there are still

a large number of high reduction colour-compatible (good) merges in this vastly

reduced search space. This idea is illustrated in Figure 7.5.

191



32-State Target, 607 Strings, 256 Iterations

Average merges in APTA: 3,129,399

α ≥ β ≥ 0 (min. EDSM) β ≥ 1 (min. EDSM)

(min. reduction) Avg. Merges Avg. CC Merges Avg. Merges Avg. CC Merges

30 2,313 (0.074%) 145 770 (0.025%) 78

25 3,520 (0.113%) 205 1,031 (0.033%) 99

20 5,982 (0.192%) 347 1,498 (0.048%) 137

64-State Target, 1,521 Strings, 256 Iterations

Average merges in APTA: 25,774,398

α ≥ β ≥ 0 (min. EDSM) β ≥ 1 (min. EDSM)

(min. reduction) Avg. Merges Avg. CC Merges Avg. Merges Avg. CC Merges

60 3,699 (0.014%) 132 1,291 (0.005%) 74

55 4,586 (0.018%) 159 1,496 (0.006%) 88

50 5,768 (0.022%) 198 1,752 (0.007%) 94

128-State Target, 4,382 Strings, 256 Iterations

Average merges in APTA: 255,275,186

α ≥ β ≥ 0 (min. EDSM) β ≥ 1 (min. EDSM)

(min. reduction) Avg. Merges Avg. CC Merges Avg. Merges Avg. CC Merges

200 1,774 (0.001%) 53 988 (0.000%) 46

180 2,369 (0.001%) 70 1,249 (0.000%) 54

160 3,461 (0.001%) 90 1,658 (0.001%) 63

Table 7.10: APTA reduction table sizes for various target sizes, and α and β

configurations.

192



The set of all possible merges
contains O(k2) merge pairs, where k
is the size of the APTA

The APTA reduction table contains 
significantly fewer merges. i.e. those 
having a reduction ≥ ! and an EDSM 
score ≥ "

Colour-compatible merges (intersection shows 
which ones are in the APTA reduction table)

Figure 7.5: An illustration of the APTA reduction table (not to scale).

7.5.9 Overlap Between Ideal Merge Paths and Merges in

the APTA Reduction Table

In this section we study the number of merges in an ideal path which also exist

in the APTA reduction table. Specifically:

• We construct a large number of problem instances.

• For each instance, we construct an ideal merge path leading to the exact

target DFA in n+ 1 merge steps using the FullCol-EDSM heuristic.

• For each instance, we construct the corresponding APTA reduction table for

some α and β.

• We count the number of merges in the ideal merge path which also exist in

the reduction table. This is illustrated in Figure 7.6.

The significance of this experiment is that if k merges in an ideal path also exist

in the APTA reduction table, then we know that only searching within the merges

of the reduction table would be enough to get us through the first k steps in a

merge path which leads to the target (recall that merge ordering is unimportant).

Of course, the number of merges in a path which will also be in the table is

dependent on the values of the α and β values we choose. The results we obtain

193



following this experiment are promising. In Table 7.11 we observe that there

is a very high likelihood that the reduction table constructed for some α and β

(which is considerably smaller than the number of all valid merges) contains a large

number of colour-compatible merges in the ideal FullCol-EDSM path which leads

to the target. For example, more than 96% of FullCol-EDSM paths constructed

for 32 and 64-state problems have at least 9 colour-compatible merges in their

corresponding APTA reduction table.

32 States, 607 Strings, 64 States, 1,521 Strings,

1024 Iterations, α ≥ 25 and β ≥ 1 1024 Iterations, α ≥ 60 and β ≥ 1

Min CC Merges in Table: 5 Min CC Merges in Table: 3

Max CC Merges in Table: 24 Max CC Merges in Table: 26

Avg CC Merges in Table: 16 Avg CC Merges in Table: 16

≥ 0 CC merges 1024/1024 (100.00%) ≥ 0 CC merges 1024/1024 (100.00%)

. . . . . .

≥ 7 CC merges 1016/1024 (99.22%) ≥ 7 CC merges 1012/1024 (98.83%)

≥ 8 CC merges 1014/1024 (99.02%) ≥ 8 CC merges 996/1024 (97.27%)

≥ 9 CC merges 1000/1024 (97.66%) ≥ 9 CC merges 986/1024 (96.29%)

≥ 10 CC merges 976/1024 (95.31%) ≥ 10 CC merges 967/1024 (94.43%)

≥ 11 CC merges 944/1024 (92.19%) ≥ 11 CC merges 946/1024 (92.38%)

≥ 12 CC merges 910/1024 (88.87%) ≥ 12 CC merges 915/1024 (89.36%)

. . . . . .

Table 7.11: Number of FullCol-EDSM colour-compatible merges which also exist

in the APTA reduction table.

194



Ideal merge path constructed using FullCol-EDSM has 
exactly n+1 merges leading to the target DFA

APTA DFA DFA DFA DFA Target

Merge
1

Merge
2

Merge
3

Merge
n+1

1

Co
ns
tr
uc
t 
th
e 
AP
TA

re
du
ct
io
n 
ta
bl
e 
fo
r 

so
me
 !

 an
d 

"

2

Merge m
...

Merge 2
Merge 1

APTA 
Reduction 
Table

DFA
Merge
4 DFA

Merge
5

Merges in the path which 
are also in the table

These merges are NOT in 
the APTA reduction table

The overlap is the number of merges
in the path that are also in the table3

Figure 7.6: Measuring the overlap of merges in an ideal merge path and its corre-

sponding APTA reduction table.

7.5.10 Colour-Compatible Merge Positions

We will refer to the highest scoring EDSM merges (ties) in an APTA reduction

table as rank 1 merges, the next highest scoring merges rank 2, and so on. When

EDSM makes a wrong choice it is because it has selected a merge which is not

colour-compatible. The problem is that if a colour-compatible merge exists in the

first rank, we do not know where it is, and breaking ties randomly may cause us to

select the wrong one. Moreover, a colour-compatible merge may not exist within

the first EDSM rank at all. To determine where a colour-compatible merge is in

the reduction table, at every merge step we sort our reduction table by EDSM

score (descending) and study the position of the first colour-compatible merge

in the table. To study this behaviour, we create 1024 Abbadingo-style problem

instances for 64-state target DFA problems at density 1 (1,521 strings). For each

of these instances, we:

1. Construct an ideal merge path using FullCol-EDSM,

2. Construct several APTA reduction tables for α ≥ {60, 50, 40, 30, 20} and

β ≥ {0, 1},

195



3. Sort the table by EDSM score descending, and

4. Analyse the position of a colour-compatible merge in the table (for each of

the α and β configurations we created).

In the configuration α ≥ 60 and β ≥ 1 we get:

• At merge step 1 (the very first merge in the APTA): a colour-compatible

merge can be found within the first 6 merges of the table (sorted by EDSM)

in 87% of the 1024 experiments.

• At merge step 2: a colour-compatible merge can be found within the first 6

merges of the table in 84% of the 1024 experiments.

• At merge step 3: a colour-compatible merge can be found within the first 6

merges of the table in 86% of the 1024 experiments.

• At merge step 4: a colour-compatible merge can be found within the first 6

merges of the table in 88% of the 1024 experiments.

In this experimental setup (64-state target DFAs), we also see that using β ≥ 0

gives slightly better colour-compatible positions (higher in the table) than when

β ≥ 1. However, the table is much bigger. Additionally, using lower values of

α (more merges, bigger tables) does not increase the likelihood that a colour-

compatible merge appears at a higher position. This is true when analysing posi-

tions at progressively deeper merge steps. These observations allow us to estimate

where we can expect colour-compatible merges to appear in the reduction table for

various problem setups (and within which EDSM rank). In other words, we can

determine α and β configurations which will result in a very high likelihood that

colour-compatible merges may be found within the first m merges in the table.

Note

This value m is used to guide our choice of branching factor when using the

Delta Graph method which we describe later on in Section 7.6.2.

196



7.5.11 Merge Path Lengths

Our experiments show that when EDSM manages to find low-error hypotheses, it

does so in close to n+ 1 merge steps where n is the size of the target DFA we are

looking for3. Conversely, when merge paths grow too long, we can be exceedingly

confident that they will lead to a high-error hypothesis. The following tables show

the minimum, maximum, and average path lengths (in merges) when the EDSM4

heuristic manages to find hypotheses with ≤ 1% error (low error), and ≥ 5% or

≥ 10% error (high error). This relationship can also be seen in Figure 7.7 where

we plot the path length against error for the EDSM heuristic on 64-state target

problems.

n32d607e1024.sqlite

32-State Target, 607 Strings, 1024 Experiments, Heuristic=EDSM

Error Min. Path Length Max Path Length Avg. Path Length

Low ≤ 1% 31 38 33

High ≥ 5% 43 107 90

High ≥ 10% 52 107 92

n64d1e1024.sqlite

64-State Target, 1,521 Strings, 1024 Experiments, Heuristic=EDSM

Error Min. Path Length Max Path Length Avg. Path Length

Low ≤ 1% 62 69 65

High ≥ 5% 89 223 194

High ≥ 10% 112 223 200

n128d1e512.sqlite

128-State Target, 4,382 Strings, 512 Experiments, Heuristic=W-EDSM

Error Min. Path Length Max Path Length Avg. Path Length

Low ≤ 1% 124 134 129

High ≥ 5% 192 543 477

High ≥ 10% 278 543 501

Table 7.12: Hypothesis error increases with path length.

3Also see Section 7.5.4.
4We use W-EDSM for 128-state target problems.

197



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235

Er
ro

r

Path Length in Merges

Path Length in Merges against Error
64-State Target, 1,521 Strings, 1024 Experiments, Heuristic=EDSM

Figure 7.7: Merge path length against hypothesis error for EDSM on 64-state

targets at density 1 (as path length grows, so does the error). Data summarised

from n64d1e1024.sqlite.

7.5.12 Summary of Results

In this section, we will summarise the results we obtained in the previous sections

and discuss both their implications and how they can be exploited:

• In our experiments, we have observed that low-error hypotheses are aways

found in close to n + 1 merge steps, and that whenever a merge sequence

gets too long, the likelihood of finding such a low-error hypothesis decreases

considerably. The implication is that candidate extensions which are getting

too long can be aborted early in order to improve the online performance of

non-monotonic search strategies.

• We have also observed that when creating random problem instances, there

is a considerable likelihood that the training set is not structurally complete

with respect to the target DFA. This allows us to study how algorithms

behave in this specific adversarial condition.

• In Section 7.5.6, we have studied the importance of getting the first merges

in an extension right. The implication is that designing methods which focus

on these initial merges will have an overwhelmingly positive impact in terms

of either finding the exact target DFA or a low-error hypothesis.

198



• We also studied the rate at which states are being reduced at each merge

step in a sequence which leads to the target DFA. This allowed us to deter-

mine that the initial merges in a sequence are always high-reduction merges.

Furthermore, these results directly contributed to the APTA reduction ta-

ble structure which is used in both the Delta Graph and genetic algorithm

approached which we will discuss in next sections.

• After defining the APTA reduction table, we have performed experiments to

determine its size, its composition, and the usefulness of the merges it con-

tains. This allowed us to ascertain that searching for short initial sequences

of merges within this subspace of merges is a promising approach.

• We also examined the positions of colour-compatible merges in the APTA

reduction table when its merges are ordered by EDSM score. This allowed

us to determine the likelihood that a colour-compatible merge is not among

the highest-scoring rank of merges and allows us to fine-tune the hyperpa-

rameters which will be needed in the Delta Graph.

7.6 Methodology

7.6.1 An Ensemble of Heuristics

The inspiration for this method comes from Wolpert and Macready’s No Free

Lunch Theorems for Search and Optimisation [WM96, WM97] supported by em-

pirical evidence we have gathered following several experiments. The No Free

Lunch (NFL) argument may be summarised as follows:

• A search algorithm attempts to find good solutions by evaluating candidates

in a search space.

• A specific search algorithm may perform well on a certain instance but poorly

on another.

• In general, the performance of two search algorithms will be identical when

‘averaged out’ over all possible problem instances.

199



• In other words, certain algorithms will perform better than others depending

on the characteristics of the problems they are confronted with.

Our DFA learning task involves identifying the smallest DFA which is consis-

tent with the training data. As such, it would seem reasonable to prefer merges

that reduce the size of the hypothesis most at each merge step. Consider a simple

heuristic, which we call Reduction (not to be confused with reduction or compres-

sion in MDL [AJ06]), that greedily selects the next merge in a hypothesis based on

how many states are reduced after that merge is performed. A greater reduction

in states gives a higher score and ties are broken randomly. Over 1024 problem

instances of 32-state target DFAs and training sets at density 1 (607 strings), we

obtain the results5 shown in Table 7.13.

n32d607e1024.sqlite

32-State Target, 607 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 15.7% 19.6% 4.3% 75 90

Reduction 6.1% 7.7% 1.8% 88 97

EDSM or Reduction 18.7% 22.8% 5.6% 73 89

Table 7.13: The performance of EDSM, Reduction, and EDSM or Reduction.

Concretely, EDSM finds hypotheses with ≤ 1% error in 161 out of the 1024

instances (15.7%), reduction does so in 62 instances (6.1%), and an ensemble

of either EDSM or reduction does so in 191 instances (18.7%). These results

arranged in a Venn diagram are shown in Figure 7.8 next. It is evident that, while

reduction performs worse than EDSM, the symmetric difference is not empty (i.e.

reduction manages to find low-error hypotheses in cases when EDSM cannot).

5Presented as described in Section 7.5.2.

200



129 32 30

EDSM
only

Reduction
only

EDSM and Reduction

191

EDSM or Reduction

Figure 7.8: Venn diagram showing the performance of EDSM and reduction.

We also study the effects of how the structure of the target DFAs and the sub-

sequent construction of training sets affects the performance of EDSM. Consider

two sets of 256 problem instances each. In one set, none of the target DFAs are

allowed to have loops (a transition from a state to itself), and in the other all

target DFAs have at least one loop. We now measure the performance of EDSM

on these two setups and tabulate the results in Table 7.14 below.

32-State Target, 607 Strings, Aggregated Over 256 Problem Instances Each

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM-No-Loop 10.55% 12.5% 1.17% 81 92

EDSM-All-Loop 16.41% 24.22% 4.3% 71 88

Table 7.14: Comparing the performance of EDSM when the target DFA has no

loop transitions against when the target DFA has at least one loop transition.

These results indicate that the absence of loops is highly adversarial to EDSM,

and it is beneficial to consider alternative heuristics which are able to perform

better in such cases. Concretely, we observe that the performance on targets

having no loop transitions drops to ≈ 64% compared to EDSM on targets having

at least one loop transition. This observation coupled with the results showing

that reduction can indeed find low-error hypotheses when EDSM cannot, supports

the idea of combining multiple heuristics together.

The Ensemble of Heuristics

201



Primitives

We will use Edsm to denote the EDSM score of a merge, C-Edsm denotes

the cumulative EDSM score of a merge starting from the APTA, Red denotes

the number of states reduced by a merge, and Size denotes the number of

states in (size of) the hypothesis after a merge.

Suppose we first order the merges in an APTA6 by EDSM score descending,

and then order them by the score from different heuristic H = (C-Edsm + 1) +

Loge(Red + 1). In Table 7.15 below, we list the top scoring 10 merges in the

APTA for each of these two orderings, and make the following observations:

• The highest EDSM score is 6, and there is only one merge (q36, q81) having

this score. Unfortunately, this merge is not colour-compatible, so using

EDSM, the first merge in the APTA will be wrong.

• On the other hand, we can see that using H as a heuristic orders the merges

differently. Now, the highest H-scoring merge (q0, q23) is colour-compatible.

Top scoring 10 merges in APTA a 32-state target DFAs at density 1

Merges ordered by EDSM Merges ordered by H

State Pair EDSM Score Col. Compat. State Pair H Score Col. Compat.

(q36, q81) 6 (q0, q23) 11.71 Yes

(q0, q23) 5 Yes (q36, q81) 11.63

(q80, q135) 5 (q80, q135) 11.48

(q45, q135) 5 Yes (q45, q135) 10.86 Yes

(q64, q146) 4 (q0, q81) 10.62

(q23, q81) 4 (q2, q22) 10.53

(q108, q109) 4 (q23, q81) 9.94

(q0, q81) 4 (q108, q109) 9.78

(q2, q22) 4 (q64, q146) 9.26

(q3, q108) 3 (q2, q108) 9.20

Table 7.15: The top scoring merges in an APTA ordered by EDSM and ordered

by the heuristic H. Dotted lines delineate EDSM ranks.

6Constructed from a density 1 training set drawn from a 32-state target DFA.

202



In a state merging algorithm, the score obtained by a heuristic is used to se-

lect merges (by ordering them) to build a merge path starting from the APTA to

a final hypothesis. A different heuristic will score merges differently and would,

potentially, build a merge path to another final hypothesis. In other words, differ-

ent heuristics correspond to different inductive biases of state merging algorithms.

While experimenting with various combinations of Edsm, C-Edsm, Red, and

Size scores, we observed that several of them were able to identify the exact tar-

get DFA or low-error hypotheses when EDSM was not able to (these results are

presented and discussed in the next chapter). The following list describes the

various combinations of EDSM with reduction which we will use in our ensemble

of heuristics.

Our search algorithm, based on the ensemble of heuristics, will denoted by

H1/H2/H3/ . . ., where the hypothesis returned would be the one having the

fewest number of states. In the case when there are multiple hypotheses having

the same minimum number of states, a random one among them is returned.

A1 : (Edsm + 1)× Log2(Size) B1 : (Edsm + 1) + Log2(Size)

A2 : (Edsm + 1)× Log10(Size) B2 : (Edsm + 1) + Log10(Size)

A3 : (Edsm + 1)× Loge(Size) B3 : (Edsm + 1) + Loge(Size)

C1 : (Edsm + 1)× Log2(Red + 1) D1 : (Edsm + 1) + Log2(Red + 1)

C2 : (Edsm + 1)× Log10(Red + 1) D2 : (Edsm + 1) + Log10(Red + 1)

C3 : (Edsm + 1)× Loge(Red + 1) D3 : (Edsm + 1) + Loge(Red + 1)

E1 : (C-Edsm + 1)× Log2(Size) F1 : (C-Edsm + 1) + Log2(Size)

E2 : (C-Edsm + 1)× Log10(Size) F2 : (C-Edsm + 1) + Log10(Size)

E3 : (C-Edsm + 1)× Loge(Size) F3 : (C-Edsm + 1) + Loge(Size)

G1 : (C-Edsm + 1)× Log2(Red + 1) H1 : (C-Edsm + 1) + Log2(Red + 1)

G2 : (C-Edsm + 1)× Log10(Red + 1) H2 : (C-Edsm + 1) + Log10(Red + 1)

G3 : (C-Edsm + 1)× Loge(Red + 1) H3 : (C-Edsm + 1) + Loge(Red + 1)

203



I1 : (Red + 1)× Log2(Edsm + 1) J1 : (Red + 1) + Log2(Edsm + 1)

I2 : (Red + 1)× Log10(Edsm + 1) J2 : (Red + 1) + Log10(Edsm + 1)

I3 : (Red + 1)× Loge(Edsm + 1) J3 : (Red + 1) + Loge(Edsm + 1)

K1 : (Red + 1)× Log2(C-Edsm + 1) L1 : (Red + 1) + Log2(C-Edsm + 1)

K2 : (Red + 1)× Log10(C-Edsm + 1) L2 : (Red + 1) + Log10(C-Edsm + 1)

K3 : (Red + 1)× Loge(C-Edsm + 1) L3 : (Red + 1) + Loge(C-Edsm + 1)

Teams and Ensembles of Automata

We note that our ensemble of heuristics should not be confused with either Garćıa

et al.’s teams of automata method [GVdPLR10] or the ensemble of automata

method used by Heule and Verwer in dfasat [Die00, HV13]. Both of these methods

rely on the approach of randomising the merge selection bias of an algorithm to

infer a team or ensemble of automata. Once a team of automata have been learnt

for a given problem instance, strings in a test set are classified by either taking a

fair vote, a weighted vote, or a using the smallest automaton in the team found. In

the fair vote case, a label is assigned to a test string according to the one assigned

by the majority of the votes in the team. In the weighted vote case, the vote is

weighted inverse to the size of the DFA found.

In contrast to the aforementioned approaches, the heuristics in our ensemble

are predetermined for all problem instances and there is no random component in

the selection of merges (with the exception of tie-breaking).

7.6.2 The Delta Graph

The Delta Graph method involves constructing and searching in a highly con-

densed (and much shallower) version of the search space of merges. Experimen-

tally, this subspace of merges can be shown to contain a sufficient number of

colour-compatible merge sequences that constrain hypotheses well enough to al-

low heuristics such as EDSM to perform better. The motivation for this method

follows from the results we have obtained earlier in Section 7.5 of this chapter.

Specifically:

204



• Short initial sequences of colour-compatible merges constrain partial hy-

potheses well enough to make a huge difference in the likelihood of discov-

ering low-error hypotheses.

• In greedy, monotonic heuristics such as EDSM, ties are usually broken at

random. It then follows that a colour-compatible merge may be (catastroph-

ically) missed during this tie break. Moreover, the set of highest scoring, tied

merges may not even contain a colour-compatible merge at all making even

the luckiest tie break futile.

• Exploring the entire merge space using backtracking is not feasible. However,

the much smaller pool of merges in the APTA reduction table has been

experimentally shown to contain a sufficient number of colour-compatible

merges to extract a good initial sequence from (see Section 7.5.9).

Delta Graph Construction

Our strategy will involve searching for an initial sequence of merges in a graph (a

subspace of quotient DFAs) which is constructed as follows:

• Every node in the graph is a partial hypothesis (quotient DFA) where the

root node is the APTA.

• Nodes are expanded by considering only merges in an APTA reduction table

constructed for some α and β. In other words, the edges in the graph are

merges selected from the APTA reduction table which lead to other partial

hypotheses.

• To keep the size of the graph in check:

– Graphs will be constrained to have a maximum depth δ.

– Not all valid merges in the APTA reduction table at a node are ex-

panded. The pool of valid merges at a node are sorted descending by

some score (such as EDSM) and only the top b merges are executed at

the node (also see Figure 7.10). The parameter b is an integer greater

than 0 and will be called the branching factor of the graph.

205



– The branching factor b is only honoured up to some depth limit f : 1 ≤

f ≤ δ. If a node is deeper than f only the highest scoring merges (ties)

are expanded. We call the parameter f the branching limit.

– Nodes/hypotheses are reused to save computation and keep the graph

as small as possible (if we do not reuse nodes, we would construct a

tree instead of a graph).

The parameters α, β, δ, b, and f are summarised next, and their relationship

is illustrated in Figure 7.9. An illustration of node expansion and the behaviour

of the branching factor is show in Figure 7.10. Figure 7.11 shows an annotated

partial Delta Graph constructed for a small example where we can see how a path

in the graph from an APTA to a colour-compatible leaf represents a sequence of

good colour-compatible merges. We can also observe that it is possible (and for

most setups, quite likely) for the graph to contain multiple colour-compatible leaf

hypotheses.

206



Merges are only chosen from APTA reduction table

1

APTA

Hypo-
thesis

Hypo-
thesis

Hypo-
thesis

Hypo-
thesis

Hypo-
thesis

Extended with W-EDSM

Extended with W-EDSM

Extended with W-EDSM

Extended with W-EDSM

Extended with W-EDSM

Branching factor
b=3

Branching factor honoured
until limit f=2

Delta graph constructed up to depth ẟ=3

Only highest scoring ties are 
expanded after the branching limit

2

3

4

5

6

Figure 7.9: The relationship between the δ, b, and f parameters of a Delta Graph.

α and β When constructing the Delta Graph, only merges in the

reduction table for the APTA associated with the prob-

lem instance are considered. α is the minimum state

reduction that a merge must make to be considered for

inclusion in the table. β is the minimum EDSM score

for the merge to be allowed into the table.

Graph depth δ The maximum depth in merges of the Delta Graph

which will be constructed.

207



Branching factor b The number of merges to expand at each node. At the

current node, the top scoring b merges in the APTA

reduction table are expanded to lead into the next nodes

in the graph.

Branching limit f This controls up to how many merge levels in the graph

the branching factor b will be considered (i.e. the first f

merge levels in the graph will have a branching factor b,

and partial hypotheses deeper than f will be expanded

using all the top-scoring ties at that node/hypothesis).

The Entire Space 
of Merges

APTA 
Reduction 
Table

Focus search
Filter for α and β

Rank 1

Rank 1

Rank 1

Rank 1

Rank 2

Rank 2

Rank 2

Rank n

…So
rt
ed
 b
y 
sc
or
e 
de
sc
en
di
ng

Hi
gh
 s
co
ri
ng
 t
ie
s

Position of first
colour-compatible

merge

Branching factor
hopefully includes
colour-compatible

merges

Expand Node

1

2

3

4

Figure 7.10: Illustration of how nodes are expanded in the Delta Graph.

Hypothesis Construction

Obtaining a hypothesis from a Delta Graph involves extending every leaf in the

graph (which represents an initial sequence of merges) with W-EDSM and remem-

bering the one which leads to, either the smallest hypothesis, or the one closest in

size to the target7. If a leaf is extended to a hypothesis which is exactly equal in

size to the target, that extension (sequence of merges) is immediately returned and

no further leaves are considered. Since the experiments in Section 7.5.11 show that

longer paths are likely to lead to high-error hypotheses, we abort paths which are

7Depending on whether we know the size of the target or not.

208



longer than n+ n
2

merge steps. This represents a pessimistic bound after which we

can confidently expect a merge sequence to perform badly. Should all the leaves

be aborted, we fall back to W-EDSM for that problem instance.

APTA

CC
Leaf

CC
Leaf

Good choice

Bad choice

Dead end

Good initial 
sequences

Figure 7.11: A partial Delta Graph constructed up to depth 6. Blue edges rep-

resent colour-compatible merges, and blue nodes represent colour-compatible hy-

potheses. Some nodes and edges have been omitted for clarity.

Delta Graph Sizes and Analysis

Since the computational cost associated with the Delta Graph method is highly

dependent on the size of the graph and the number of leaves it contains, we analyse

the characteristics of such graphs constructed for various problem instances and

graph configurations. Furthermore, recall that a colour-compatible leaf in a graph

represents a sequence of good colour-compatible merges starting from the APTA.

In Table 7.16, we show the mean values for graphs sizes, number of leaves, and

number of colour-compatible leaves. We also show the experimental likelihood of

a graph having at least one colour-compatible leaf. The results we obtain are very

promising. For the parameter configurations shown in the tables below, we not

only have a good chance of discovering a good colour-compatible sequence (the

‘any leaf is CC’ column) but we also, on average, discover many colour-compatible

209



sequences of length δ (the ‘mean CC leaves’) column. Moreover, the number of

leaves which need expansion is feasible on modest consumer-grade hardware.

Delta Graphs for 32-State Targets, 607 Strings, 256 Iterations

Delta Graph Mean Mean Mean Any Leaf

Construction Parameters Size Leaves CC Leaves is CC?

δ = 3, b = 6, f = 3, α ≥ 25, β ≥ 1 193 155 17 82%

δ = 3, b = 12, f = 3, α ≥ 25, β ≥ 1 1,232 1,103 84 93%

δ = 4, b = 10, f = 3, α ≥ 25, β ≥ 1 1,654 905 30 87%

Delta Graphs for 64-State Targets, 1,521 Strings, 256 Iterations

Delta Graph Mean Mean Mean Any Leaf

Construction Parameters Size Leaves CC Leaves is CC?

δ = 3, b = 8, f = 3, α ≥ 60, β ≥ 1 400 338 29 81%

δ = 3, b = 10, f = 3, α ≥ 60, β ≥ 1 725 634 43 82%

δ = 3, b = 12, f = 3, α ≥ 60, β ≥ 1 1200 1072 58 85%

δ = 4, b = 6, f = 3, α ≥ 60, β ≥ 1 388 205 9 67%

δ = 4, b = 8, f = 3, α ≥ 60, β ≥ 1 867 469 15 73%

δ = 4, b = 10, f = 3, α ≥ 60, β ≥ 1 1583 869 24 77%

Delta Graphs for 128-State Targets, 4,382 Strings, 256 Iterations

Delta Graph Mean Mean Mean Any Leaf

Construction Parameters Size Leaves CC Leaves is CC?

δ = 3, b = 12, f = 3, α ≥ 180, β ≥ 1 1029 910 66 90%

δ = 4, b = 10, f = 3, α ≥ 180, β ≥ 1 1309 677 30 79%

δ = 5, b = 10, f = 3, α ≥ 180, β ≥ 1 2226 961 22 78%

Table 7.16: Delta graph sizes for 32, 64, and 128-state target DFA problems for

various parameter configurations.

7.6.3 Evolving Initial Merge Sequences

Previous attempts at using evolutionary techniques for regular inference such as

those found in [Dup94], [LR05], and [Wie17] are based on either directly evolving

a DFA, or partitioning the states of an APTA. In this section, we propose a genetic

algorithm (GA) which, instead, evolves an initial sequence of high quality merges,

and see that this method reduces the problem to subset selection which is a well

210



explored area [YH98, Wol15]. The argument supporting this method is similar to

that for the Delta Graph method we described earlier. Getting the initial sequence

of merges is crucial for obtaining high quality hypotheses, and an analysis of the

contents of the APTA reduction table with respect to the merges in a FullCol-

EDSM path shows that a properly constructed reduction table contains a large

number of merges in common with the ideal FullCol-EDSM path for the instance.

Chromosome Representation

A chromosome is a vector of state pairs of length k where every state pair repre-

sents the states to be merged. Since merge order is irrelevant, the design of our

crossover and mutation operators is straightforward and efficient. The k merges in

the chromosome represent a subset of merges in the reduction table. Specifically,

if the APTA reduction table contains p merges where p� k, our task is to select

k merges out of p such that those k merges are an initial sequence which leads

to a low-error hypothesis. Note that executing some merge (qi, qj) in the chromo-

some may make another merge (qk, ql) an identity merge (see general properties

of merging in Chapter 6). This would happen when the partition π obtained af-

ter merging (qi, qj) would cause B(qk, π) = B(ql, π). Furthermore, if one of the

merges in a chromosome blocks another merge, then the entire merge sequence

represented by the chromosome is invalid (see Definition 6.1). Population setup,

crossover, and mutation operators are designed such that a chromosome would

never contain either identity merges or blocking merges.

The initial population then consists of chromosomes each filled with a random

selection of k valid, non-blocking, and non-identity merges selected from the

APTA reduction table.

Fitness Function

Starting from the APTA, all the k merges in a chromosome are executed resulting

in a partial hypothesis which is then completed/extended using W-EDSM to reach

a final hypothesis. The score of the chromosome is:

ABS(HypothesisSize−TargetSize)

211



This means that a hypothesis with a fitness of 0 is equal to the size of the target,

and the genetic algorithm attempts to minimise this score.

Merge
1

Merge
2

Merge
3

Merge
k

Chromosome k-sequence Hypo-
thesis

Chromosome is a set of
k merges selected from the

APTA reduction table

...
extended using W-EDSM

Figure 7.12: A chromosome consists of k merges selected from the APTA reduction

table. The fitness is evaluated by extending the chromosome using W-EDSM.

Selection

Deterministic tournament selection is used to select parents for crossover [BT97].

If t is the size of a tournament, t chromosomes are selected randomly from the

population and the fittest is returned. In the interest of diversity, if identical

parents are selected for crossover, the selection procedure is attempted again (up

to a limit).

Crossover and Mutation

Two parent chromosomes are selected using tournament selection. The k + k

merges from both parents are pooled into a set (eliminating duplicates) and an

offspring is constructed by randomly selecting k non-identity and non-blocking

merges from the pool. Mutation simply involves deleting a random merge from a

chromosome and replacing it with a different non-identity and non-blocking merge

from the APTA reduction table. Crossover is illustrated in Figure 7.13 below.

212



m1 m2 m3 m4 m5 m6 m7 m8

m1 m2 m3 m4 m5 m6 m7 m8

Parent 1:

Parent 2:

m1
m2 m3

m4
m5

m6

m7

m8

m1m2 m3

m4 m5
m6

m7
m8

Pool: m1 m2 m4 m8m3 m5 m6 m7

Offspring:

1

2

Figure 7.13: Illustration of the crossover operation.

Stopping Criterion

The GA terminates either when a chromosome has been extended to a hypothesis

whose size is equal to the size of the target DFA (the fitness of the chromosome is

0), or when a maximum number of generations have elapsed. In this latter case,

the best (smallest) hypothesis is returned as the final hypothesis.

Population Make Up

Populations are assembled for the next generation according to a crossover rate

c%, a mutation rate m%, and an elitism8 rate e%. Parents are selected using

tournament selection to contribute c% of the new population using crossover.

These new chromosomes are mutated at with a probability m. The top scoring

e% of the current population are copied into the new population. If c%+e% < 1.0,

the remainder of the new population is filled with randomly created chromosomes

to maintain the population size desired. A flowchart illustrating the entire process

is shown in Figure 7.14.

8Elitism involves carrying over a number of the best chromosomes from the current popula-

tion into the next.

213



1

Target DFA 1
Training +ve

Training -ve APTA

APTA 
Reduction

Table for !,"

Test Set

Create Abbadingo
target DFAs

Create training
and test sets

2
APTA from

training sets

3
Build APTA

reduction table

4
Create the initial

population

5

Initial
Pop.

Compute
fitness

6

Next generation

Convergence
criterion

7

8

Chrom 1

Chrom 2

Chrom p

Chrom 3

Extend and 
compute 
fitness

Converged
Return
fittest
hypothesis

Yes

Selection 
and 

crossover

No

MutateElitism Random new

New population

Figure 7.14: A flowchart illustrating the genetic algorithm.

Summary of Algorithm Parameters

α and β A chromosome consists of merges selected from the re-

duction table for the APTA associated with the prob-

lem instance. α is the minimum reductions that a merge

must make to be considered for inclusion in the table. β

is the minimum EDSM score for the merge to be allowed

into the table.

Population size p This is the number of candidate chromosomes in any

given population.

Max. generations g This corresponds to a pessimistic stopping criterion.

The genetic algorithm will terminate when it has either

discovered a merge path having a score of 0, or when

g generations have elapsed. In this case, the best path

found so far is returned.

Tournament size t The number of chromosomes which will ‘compete’ in a

tournament to select the best for crossover.

Chromosome size k The length in merges of a chromosome.

214



Crossover rate c The percentage of the new population which will be ob-

tained using crossover.

Mutation rate m The probability that an offspring generated using

crossover will be mutated.

Elitism rate e The percentage of the fittest chromosomes in the current

population which will be carried over into the next.

7.7 Summary

In this chapter, we have run several experiments whose results guided the devel-

opment of our ensemble of heuristics, Delta Graph, and genetic algorithm. The

following is a synopsis of our findings:

• When studying the structure of the APTAs constructed from Abbadingo-

style training sets, we observed that, as the size of the target DFA increases,

the proportion of labelled strings in the APTA decreases. In other words, at

the same training set density, larger DFAs have proportionally fewer labelled

strings to infer the target DFA from.

• We introduced the concept of Oracle-assisted heuristics and ideal merge

paths. We have used these ideas to:

– Determine the rates at which states are being reduced in a hypothesis

when a state merging algorithm is converging to the target DFA.

– Determine an experimental upper bound on the performance of EDSM

using a non-deterministic tie-breaking strategy (i.e. if it exists, a colour-

compatible merge is selected from the highest scoring EDSM merges).

– Observe that the exact n-state target DFA is never found in fewer than

n + 1 merge steps. Furthermore, we also observed that when EDSM

identifies a low-error hypothesis, it always does so in close to n + 1

merge steps and never further than n + n
2

merge steps. This result is

used by the Delta Graph to abandon leaf extensions which have grown

215



too long, since, in expectation, they would almost certainly lead to a

high-error hypothesis.

• We observed that likelihood of generating a training set which is not struc-

turally complete is high, and that it increases proportionally with the size of

the target DFA. We also determined that such training sets negatively affect

the performance of EDSM to a considerable degree. In the next chapter, we

will evaluate how well each of our three methods perform in this situation.

• We have experimentally established the performance of EDSM on Abbadingo

problem instances as a baseline for comparing our methods against.

• We established the positive effect of getting the first k merges in a merge

sequence correct (i.e. the first k merges are colour-compatible). Searching

for short sequences of colour-compatible merges is the basis for both the

Delta Graph and evolutionary methods we have developed.

• Inspired by the No Free Lunch theorems, and using a simple Reduction

heuristic (which assigns higher scores to merges which reduce the most states

in a hypothesis), we have determined that multiple heuristics can be suc-

cessfully combined in an ensemble.

• Our experiments on the expected state reduction at each merge step along

an ideal merge path show that, at each of these steps, low reduction merges

are avoided when a heuristic is converging to the target DFA. These results

inspired the APTA reduction table structure which we have shown to:

– Have considerably fewer merges than the entire set of merges possible

at each step along a merge path.

– Contain colour-compatible merges at high enough positions (in the re-

duction table when sorted, descending, by EDSM score) to be used as

branching factors in the Delta Graph method.

– Still contain a large number of colour-compatible merges which can be

identified by our Delta Graph and our genetic algorithm.

216



• We observed the relationship between the length of a merge sequence con-

structed using EDSM and the error of the resulting hypothesis with respect

to a test set. Specifically, the error of a hypothesis is proportional to the

length of a merge sequence (as the length of a merge sequence increases, so

does the error of the hypothesis).

217



Chapter 8

Evaluation and Results

In this chapter, we evaluate the performance of the ensemble of heuristics, Delta

Graph, and evolutionary methods we introduced in the previous chapter. We start

by describing the Abbadingo One experimental setup, specify how our results will

be presented, and describe the problem instances we will be evaluating with. We

will also evaluate our three methods on problem instances which are adversarial

to EDSM. The exact experiments we carry out for each of our three methods are

shown in Table 8.1, 8.2, and 8.3 respectively.

32-state target DFAs Symmetrically structurally complete training sets at density 1:

• 1024 problem instances.

Evaluate adversarial cases (see Section 8.1.1 below):

• 512 problem instances, training sets not structurally complete.

• 512 problem instances, immediately EDSM-failing training sets.

• 512 problem instances, no loops in target DFA.

64-state target DFAs Symmetrically structurally complete training sets at density 1:

• 1024 problem instances.

Evaluate unrestricted cases (see Section 8.2.2 below):

• 512 unrestricted problem instances.

128-state target DFAs Symmetrically structurally complete training sets at density 1:

• 512 problem instances.

Table 8.1: The problem instances used to evaluate the ensemble of heuristics method.

218



32-state target DFAs Symmetrically structurally complete training sets at density 1:

• 1024 problem instances.

Evaluate adversarial cases:

• 512 problem instances, training sets not structurally complete.

• 512 problem instances, immediately EDSM-failing training sets.

• 512 problem instances, no loops in target DFA.

64-state target DFAs Symmetrically structurally complete training sets at density 1:

• 1024 problem instances.

Evaluate unrestricted cases (also compare with Ed-Beam and SAGE):

• 512 unrestricted problem instances.

128-state target DFAs Symmetrically structurally complete training sets at density 1:

• 512 problem instances.

Table 8.2: The problem instances used to evaluate the Delta Graph method.

32-state target DFAs Symmetrically structurally complete training sets at density 1:

• 128 problem instances.

Evaluating adversarial cases:

• 64 problem instances, training sets not structurally complete.

• 64 problem instances, immediately EDSM-failing training sets.

• 64 problem instances, no loops in target DFA.

64-state target DFAs Symmetrically structurally complete training sets at density 1:

• 64 problem instances.

Table 8.3: The problem instances used to evaluate the genetic algorithm.

The data collected for each individual set of experiments are stored in SQLite

databases as described in Section 7.1, and may be found on the media accompa-

nying this dissertation (these results are also aggregated in Appendix A). Table

8.4 below shows which SQLite database corresponds to which problem configura-

tion we are evaluating in this chapter. After presenting the results we obtained,

we conclude with a discussion of these results, and highlight the strengths and

weaknesses of each method.

219



Database Ensemble Delta Graph Genetic Algorithm

Evaluation on symmetrically structurally complete training sets

n32d607e1024.sqlite • •

n64d1e1024.sqlite • •

n128d1e512.sqlite • •

n32d607e128 GA.sqlite •

n64d1e64 GA.sqlite •

Evaluation on adversarial setups

n32d607e512 EdsmFailing.sqlite • •

n32d607e512 NotStructComp.sqlite • •

n32d607e512 NoLoops.sqlite • •

n32d607e64 EdsmFailing.sqlite •

n32d607e64 NotStructComp.sqlite •

n32d607e64 NoLoops.sqlite •

Evaluation on unrestricted setups

n64d1e512 Unrestricted.sqlite • •

Table 8.4: The sets of experiments used to evaluate the ensemble of heuristics,

Delta Graph, and genetic algorithm.

8.1 Overview of the Experimental Setup

While our experimental setup is identical to that described in Chapter 7, we

reproduce it below for the reader’s convenience:

• The Abbadingo method will be used to generate target DFAs whose sizes will

be exactly the number of states n requested. The Abbadingo construction

depth requirement of (2 log2 n− 2) will always be honoured.

• Unless otherwise specified, training sets will be symmetrically structurally

complete with respect to the target. Cases when the training set is not

symmetrically structurally complete will be evaluated separately.

• Unless otherwise specified, the number of positive and negative strings in any

training set will not be allowed to differ by more than 20%. This will avoid

pathological cases where a training set would be overwhelmed by strings of

a single class.

220



• All training sets are at Abbadingo density 1 with the number of training

strings taken from [LPP98]. We define training sets for 32-state target DFA

problems at density 1 as having exactly 607 strings. Our motivation for this

was described in Chapter 7.

• The size of the testing sets for all problem instances (32, 64, and 128-states)

will be exactly 1,800 strings as in the Abbadingo One competition.

Presentation of Results

The results obtained for each experimental run are presented exactly as de-

scribed in Section 7.5.2. In summary, we show the percentage of experiments

where we have obtained ≤ 1% error on a testing set, the percentage of ex-

periments where we found hypotheses whose sizes are within ±1 states of the

target, the percentage of experiments where we found the exact target, and

the mean and median hypothesis sizes.

Hardware and Platform

All the experiments were run on a Mid-2015 MacBook Pro 15-inch, quad-

core, 2.5ghz Intel Core i7 with 16 GB DDR3 RAM running macOS High

Sierra 10.13. Algorithms are implemented in Go version 1.11.5 [GoL].

8.1.1 Adversarial Setups

To further analyse the behaviour and performance of our methods, we will also

be experimenting with data sets which are highly adversarial to EDSM. These

include:

1. Non-structurally complete training sets: training sets are constructed such

that either not all states in the target are reached, or not all transitions

are exercised. In Section 7.5.5, we have presented a number of experiments

showing the extent with which such training sets negatively affect EDSM.

2. Immediately EDSM-failing training sets: training sets are constructed such

221



that the set of highest EDSM scoring merges (ties) in the APTA does not

contain a colour-compatible merge. In other words, the first choice made by

EDSM will be guaranteed to be the wrong one.

3. No loops in target DFAs: target DFAs will not contain any loops (transi-

tions from a state to itself). As discussed in Section 7.6.1, we observe an

appreciable decrease in EDSM’s performance on problem instances where

the target DFA does not contain loops.

8.2 Evaluating the Ensemble of Heuristics

Our ensemble of heuristics will be evaluated as follows:

• Problem instances:

– 1024 × 32-state target DFA problem instances (n32d607e1024.sqlite),

1024 × 64-state target DFA problem instances (n64d1e1024.sqlite), and

512 × 128-state target DFA problem instances (n128d1e512.sqlite) each

having a symmetrically structurally complete training set at density 1

with respect to the target DFA size.

– 512 × 32-state target DFA problem instances where the training set is

not structurally complete (n32d607e512 NotStructComp.sqlite).

– 512 × 32-state target DFA problem instances where the target DFA

does not contain loop transitions from a state to itself (n32d607e512 No-

Loops.sqlite).

– 512 × 32-state target DFA problem instances where the set of highest

EDSM-scoring merges (ties) do not contain a colour-compatible merge

(n32d607e512 EdsmFailing.sqlite).

– 512 × 64-state target DFA problem instances with no restrictions on

structural completeness, presence of loop transitions, or colour-comp-

atible merges in the highest EDSM-scoring ties (n64d1e512 Unrest-

ricted.sqlite).

222



• The heuristics in the ensemble are described in Section 7.6.1, and are named

A1, A2, . . . , L3. Since the ensemble contains 33 heuristics, to improve online

performance, each heuristic is evaluated using a windowed implementation.

• A1/A2/A3/. . . will be used to denote the best result obtained from heuristic

A1 or A2 or A3. . . .

• For performance reasons, W-EDSM (rather than EDSM) is used as a baseline

for comparison and evaluation on 128-state target DFA problem instances.

An illustration of how the ensemble of heuristics is used to find a hypothesis is

shown in Figure 8.1, and its performance on symmetrically structurally complete

training data (showing EDSM and/or W-EDSM as a baseline) is tabulated in

Table 8.5.

1

Target DFA 1

Target DFA 2

Target DFA 3

Target DFA n

Training +ve

Training -ve APTA
Heuristic 1

Heuristic 2

Heuristic k

Hypothesis 1

Hypothesis 2

Hypothesis k

Test Set
Return
winning
hypothesis

Create Abbadingo
target DFAs

Create training
and test sets

2
APTA from

training sets

3
Run every heuristic in

the ensemble

4
Identify the ‘winning’
hypothesis wrt error

5

Aggregate errors and other statistics about the minimum
error (winning) heuristic over all problem instances6

Figure 8.1: An illustration showing how the ensemble of heuristics method will be

evaluated.

223



n32d607e1024.sqlite

32-State Target, 607 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM (E) 15.7% 19.6% 4.3% 75 90

W-EDSM (WE) 14.1% 17.78% 3.6% 77 92

Reduction (E) 6.1% 7.7% 1.8% 88 97

W-Reduction (WR) 5.9% 7.8% 1.3% 89 99

E/WE/R/WR 21.8% 24.7% 6.8% 71 88

A1/A2/. . . 28.4% 30.3% 13.4% 67 83

E/WE/R/WR/A1/. . . 29.5% 31.5% 14% 66 82

n64d1e1024.sqlite

64-State Target, 1,521 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM (E) 15.2% 17.7% 0.6% 162 200

W-EDSM (WE) 13.8% 16.5% 0.5% 170 207

Reduction (R) 2.4% 3% 0.1% 204 219

W-Reduction (WR) 2.5% 2.8% 0.1% 205 221

E/WE/R/WR 19% 20.7% 1% 158 199

A1/A2/. . . 24.3% 24.5% 4.1% 149 193

E/WE/R/WR/A1/. . . 25.8% 25.9% 4.2% 147 193

n128d1e512.sqlite

128-State Target, 4,382 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

W-EDSM (WE) 22.7% 15.4% 0% 377 511

W-Reduction (WR) 2% 1.6% 0% 519 558

WE/WR 23.2% 16.4% 0% 375 511

A1/A2/. . . 30.3% 22.9% 1.4% 342 455

WE/WR/A1/. . . 30.7% 23.4% 1.4% 340 521

Table 8.5: The performance of the ensemble of heuristics on 32, 64, and 128-state

target problems on symmetrically structurally complete training sets.

8.2.1 Adversarial Setups

The ensemble of heuristics is also evaluated against the adversarial setups de-

scribed in the previous section. Tables 8.6, 8.7, and 8.8 show the results obtained

224



by the ensemble of heuristics on training sets which are not structurally complete,

immediately failing training sets, and target DFAs with no loops respectively.

Non-Structurally Complete Training Sets (n32d607e512 NotStructComp.sqlite)

32-State Target, 607 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM (E) 8.4% 15.2% 0% 76 90

W-EDSM (WE) 9.6% 14.1% 0% 78 91

Reduction (R) 2.3% 5.3% 0% 91 97

W-Reduction (WR) 2.5% 4.7% 0% 92 99

E/WE/R/WR 12.9% 18.9% 0% 72 87

A1/A2/. . . 16.8% 21.7% 0% 70 85

E/WE/R/WR/A1/. . . 18.2% 23.2% 0% 68 83

Table 8.6: The performance of the ensemble of heuristics when training data is

not symmetrically structurally complete.

Immediately Failing Training Sets (n32d607e512 EdsmFailing.sqlite)

32-State Target, 607 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM (E) 0.2% 0.2% 0% 92 93

W-EDSM (WE) 0.2% 0.2% 0% 94 96

Reduction (R) 1.6% 2.3% 0.2% 96 98

W-Reduction (WR) 1.6% 2% 0.2% 97 100

E/WE/R/WR 1.8% 2.3% 0.4% 89 92

A1/A2/. . . 3.5% 3.9% 0.6% 85 90

E/WE/R/WR/A1/. . . 3.5% 4.1% 1% 85 90

Table 8.7: The performance of the ensemble of heuristics when the highest scoring

merges in the APTA do not contain a colour-compatible merge.

225



No Loops in Target DFA (n32d607e512 NoLoops.sqlite)

32-State Target, 607 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM (E) 8% 13.5% 2% 82 92

W-EDSM (WE) 8.4% 13.1% 1.2% 83 95

Reduction (R) 3.3% 5.1% 0.6% 93 99

W-Reduction (WR) 2.7% 4.9% 0.4% 94 100

E/WE/R/WR 12.3% 16.6% 2.3% 78 91

A1/A2/. . . 20.3% 22.5% 6.8% 74 89

E/WE/R/WR/A1/. . . 20.5% 22.7% 6.8% 73 88

Table 8.8: The performance of the ensemble of heuristics when the target DFA

does not contain any loops.

8.2.2 Performance on Unrestricted Problem Instances

In this section, we present the results obtained when applying the ensemble of

heuristics to problem sets which follow the Abbadingo specifications without any

restrictions. This means that: the training data may or may not be symmetrically

structurally complete, the highest scoring merges (first rank ties) in the APTAs

constructed from the training data may or may not contain colour-compatible

merges, the target DFAs may or may not contain loops, there is no requirement

on the proportions of positive and negative strings in the training set, the target

DFA has exactly the number of states n specified, and the target DFA has a

depth of exactly (2 log2 n− 2). An exact breakdown of the composition of these

experiments may be found in Section A.3.3 of Appendix A. As can be seen in the

results shown in Table 8.9 below, the ensemble of heuristics gives an improvement

of about 1.7× over EDSM.

226



Unrestricted Problem Instances (n64d1e512 Unrestricted.sqlite)

64-State Target, 1,521 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Median

EDSM (E) 12.1% 12.5% 0% 162 197

W-EDSM (WE) 9.8% 12.1% 0% 170 205

Reduction (R) 1.4% 0% 0% 205 218

W-Reduction (WR) 1.6% 0% 0% 207 219

E/WE/R/WR 14.1% 15.4% 0% 159 196

A1/A2/. . . 19.5% 18.9% 1% 156 196

E/WE/R/WR/A1/. . . 20.3% 19.7% 1% 153 193

Table 8.9: The performance of the ensemble of heuristics on unrestricted

Abbadingo-style problem instances.

8.2.3 Observations and Discussion

The observations drawn from these experiments are:

• In Table 8.5, we observe that, when training sets are symmetrically struc-

turally complete with respect to the target DFA, the ensemble of heuristics

considerably outperforms EDSM and W-EDSM in all cases. The experimen-

tal likelihood of identifying low-error hypotheses improves as follows:

– 32-states: EDSM 15.7% → Ensemble 29.5% ≈ 1.9×.

– 64-states: EDSM 15.2% → Ensemble 25.8% ≈ 1.7×.

– 128-states: W-EDSM 22.7% → Ensemble 30.7% ≈ 1.4×.

• While the ensemble of heuristics outperforms EDSM and W-EDSM in all

cases, its relative effectiveness decreases as the size of the target DFA in-

creases. While we conjecture that this phenomenon is related to the propor-

tion of labelled states in an APTA with respect to its size (see Table 7.4),

this matter needs to be investigated further.

• In the symmetrically structurally complete training set case, the likelihood of

the ensemble of heuristics finding the exact target increases considerably. For

instance, in Table 8.5 we see that, for 32-state problems, EDSM manages to

find the target in 4.3% of the cases, while the ensemble of heuristics manages

227



in 14% of the same problem instances. This represents an improvement of

≈ 3.3×. The same observation can be made for 64 and 128-state target

problems.

• Non-structurally complete training sets also adversarially affect the perfor-

mance of the ensemble of heuristics. However, we see that the ensemble of

heuristics still performs much better than either EDSM or W-EDSM in these

cases. In Table 8.6, we see that EDSM can identify low-error hypotheses in

8.4% of the cases, while the ensemble of heuristics can do so at a rate of

18.2% (≈ 2.2×).

• Recall that when training sets are randomly constructed, there is a high

likelihood that they are not symmetrically structurally complete (see Sec-

tion 7.5.5). Because of this, and the fact that the ensemble of heuristics

performs much better than EDSM both when the training data is and is not

symmetrically structurally complete, the ensemble of heuristics will perform

even better on unrestricted data sets. This is verified by the results shown

in Table 8.9.

• As expected, when the training sets are not structurally complete, neither

method can ever find the target (see Chapter 3).

• The immediately failing training set cases are designed such that a colour-

compatible merge would not exist in the highest EDSM-scoring rank (set of

ties). As such, EDSM’s first choice will always be wrong and the heuristic

never manages to identify the exact target, and only finds a low-error hy-

pothesis in 0.2% of 512 problem instances. In these cases, the ensemble of

heuristics performs better (3.5% out of 512 instances).

• We see a considerable improvement in the adversarial cases when the target

DFA does not contain any loops. In Table 8.8, we see that, for 32-state

target DFA problems, EDSM finds low-error hypotheses in 8% of all 512

problem instances, whereas the ensemble of heuristics does so in 20.5% of

the same cases.

228



• Figure 8.2 shows the experimentally derived likelihood with which each

heuristic in the ensemble finds low-error hypotheses over 1024 problem in-

stances for a 64-state target at density 1 setup. We note that several heuris-

tics, individually, perform better than EDSM, while the heuristics E1, E2,

and E3 never manage to find a low-error hypothesis. This anomaly requires

further investigation. Similar results are seen for 32 and 128-state problem

setups. Furthermore, in Figure 8.3, we see that performing the same analysis

on non-structurally complete data set shows that individual heuristics in the

ensemble perform better than EDSM to an even greater extent.

• Table 8.10 shows an extract of the error rates obtained for each of the 1024

problem instances per heuristic for 64-state target, density 1 problems. We

can clearly see instances where at least one of the heuristics manages to find

low-error hypotheses when EDSM, W-EDSM, Reduction, and W-Reduction

do not. On instances 11 and 37, we see that several heuristics in the ensemble

manage to identify a hypothesis with an error of ≤ 1% on the test set (and

EDSM does not), while on instance 70, none of them do. The complete set

of results may be found in the ‘n64d1e1024 Ensemble.xlsx’ Microsoft Excel

sheet on the accompanying media.

• Analysing these results in a correlation matrix in Figure 8.4, shows the inter-

relations between heuristics in the ensemble. For example, the heuristics A1,

A2, and A3 are very strongly correlated, and that there is a weaker, yet no-

table, correlation between each heuristic A1, A2, A3, . . . , L3 to either EDSM

or reduction. These strong correlations may allow us to optimise the runtime

performance of the ensemble by omitting heuristics which are highly corre-

lated with others (since we would expect almost identical performance be-

tween highly correlated heuristics). The complete data tables and correlation

matrices may be found in the file ‘n64d1e1024 Ensemble Correlation.xlsx’ on

the media accompanying this document.

• The computational cost compared to EDSM is a linear function of heuristics

in the ensemble.

229



15
.2

13
.8

2.
4

2.
5

13
.8

13
.9

13
.2 13
.8

13
.5 14

.5
15

.9
16

.1
15

.3 15
.7

15
.8

15
.3

0.
0

0.
0

0.
0

13
.9

13
.8

13
.3

6.
9

7.
0

7.
2

16
.0

14
.9

15
.0

8.
7

8.
6 9.
2

3.
0

2.
6 3.
1 3.
4

3.
1

3.
2

2.
4

2.
6

2.
7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

ED
SM

 W
-E

DS
M

 R
ed

uc
ti

on
W-

Re
du

ct
io

n
 A

1
 A

2
 A

3
 B

1
 B

2
 B

3
 C

1
 C

2
 C

3
 D

1
 D

2
 D

3
 E

1
 E

2
 E

3
 F

1
 F

2
 F

3
 G

1
 G

2
 G

3
 H

1
 H

2
 H

3
 I

1
 I

2
 I

3
 J

1
 J

2
 J

3
 K

1
 K

2
 K

3
 L

1
 L

2
 L

3

%

Figure 8.2: Abbadingo win success rate per ensemble heuristic. Showing results

for 64-state targets, density 1 (1,521 strings), 1024 problem instances per heuristic.

The heuristics in the ensemble which individually outperformed EDSM are shown

in green.

9.
4

10
.9

3.
1

3.
1

9.
4

9.
4

9.
4

9.
4

9.
4

12
.5

12
.5

10
.9

12
.5

10
.9

12
.5

10
.9

0.
0

0.
0

0.
0

9.
4

10
.9

12
.5

7.
8

4.
7

6.
3

10
.9

12
.5

14
.1

9.
4

6.
3

7.
8

4.
7

3.
1

3.
1

4.
7

4.
7

4.
7

3.
1

3.
1

3.
1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ed
sm

 W
Ed

sm
 R

ed
uc

ti
on

 W
Re

du
ct

io
n

 A
1

 A
2

 A
3

 B
1

 B
2

 B
3

 C
1

 C
2

 C
3

 D
1

 D
2

 D
3

 E
1

 E
2

 E
3

 F
1

 F
2

 F
3

 G
1

 G
2

 G
3

 H
1

 H
2

 H
3

 I
1

 I
2

 I
3

 J
1

 J
2

 J
3

 K
1

 K
2

 K
3

 L
1

 L
2

 L
3

%

Figure 8.3: Abbadingo win success rate per ensemble heuristic when training data

is not structurally complete. Showing results for 32-state targets, density 1 (607

strings), 64 problem instances per heuristic. The heuristics in the ensemble which

individually outperformed EDSM are shown in green.

230



Instance

A1

A2

A3

B1

B2

B3

C1

C2

C3

D1

D2
D

3

E1

E2

E3

F1

F2

F3

G1

G2

G3

H1

H2

H3

I1

I1

I3

J1

J2

J3

K1

K2

K3

L1

L2

L3

EDSM

W-EDSM

Reduction

W-Reduction

1
1

0
.4

6
0
.4

6
0
.4

5
0
.4

6
0
.4

7
0
.4

5
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

0
0
.4

6
0
.4

7
0
.4

8
0
.4

6
0
.4

5
0
.4

6
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

0
0
.0

1
0
.2

2
0
.2

2
0
.2

2
0
.4

6
0
.4

7
0
.4

7
0
.4

6
0
.4

6
0
.4

6
0
.4

6
0
.4

7
0
.4

6
0
.4

4
0
.0

7
0
.4

7
0
.4

5

3
7

0
.1

1
0
.1

2
0
.1

2
0
.1

2
0
.1

1
0
.1

2
0
.0

0
0
.0

0
0
.0

0
0
.1

0
0
.0

9
0
.1

0
0
.1

2
0
.1

1
0
.1

1
0
.1

2
0
.1

3
0
.1

2
0
.3

8
0
.3

7
0
.3

6
0
.1

0
0
.0

9
0
.1

0
0
.4

1
0
.4

0
0
.4

0
0
.4

3
0
.4

2
0
.4

2
0
.4

2
0
.4

3
0
.4

3
0
.4

3
0
.4

2
0
.4

2
0
.0

4
0
.2

1
0
.4

1
0
.4

3

4
3

0
.4

7
0
.4

7
0
.4

8
0
.4

7
0
.4

7
0
.4

7
0
.4

6
0
.4

9
0
.4

8
0
.4

6
0
.4

7
0
.4

9
0
.4

6
0
.4

7
0
.4

6
0
.4

7
0
.4

7
0
.4

7
0
.4

5
0
.4

5
0
.4

5
0
.4

7
0
.4

8
0
.4

8
0
.4

5
0
.4

6
0
.4

6
0
.0

0
0
.0

1
0
.0

1
0
.4

4
0
.4

6
0
.4

4
0
.0

1
0
.0

0
0
.0

1
0
.4

6
0
.4

7
0
.0

1
0
.0

0

5
0

0
.4

9
0
.4

9
0
.4

9
0
.4

8
0
.4

8
0
.4

8
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

0
0
.0

0
0
.5

0
0
.5

0
0
.4

9
0
.4

8
0
.4

9
0
.4

9
0
.0

5
0
.0

5
0
.0

5
0
.0

1
0
.0

1
0
.0

0
0
.4

9
0
.4

8
0
.4

8
0
.4

8
0
.4

8
0
.4

7
0
.4

9
0
.4

8
0
.4

9
0
.4

7
0
.4

8
0
.4

8
0
.3

8
0
.4

8
0
.4

8
0
.4

7

6
6

0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

5
0
.0

5
0
.0

5
0
.0

1
0
.0

1
0
.0

1
0
.0

5
0
.0

5
0
.0

5
0
.0

1
0
.0

1
0
.0

1
0
.2

7
0
.2

9
0
.2

7
0
.0

1
0
.0

1
0
.0

1
0
.1

8
0
.1

9
0
.1

9
0
.2

8
0
.2

9
0
.2

8
0
.2

8
0
.2

8
0
.2

7
0
.2

7
0
.2

7
0
.2

7
0
.0

1
0
.0

1
0
.2

9
0
.2

8

7
0

0
.5

0
0
.4

9
0
.4

9
0
.4

9
0
.4

8
0
.4

9
0
.5

0
0
.5

2
0
.5

1
0
.4

9
0
.5

0
0
.4

9
0
.4

9
0
.4

9
0
.4

8
0
.4

8
0
.4

9
0
.5

1
0
.4

7
0
.4

7
0
.4

6
0
.4

9
0
.4

9
0
.4

9
0
.4

9
0
.4

9
0
.4

7
0
.4

7
0
.5

0
0
.5

0
0
.5

0
0
.4

8
0
.4

8
0
.4

8
0
.4

9
0
.4

9
0
.4

9
0
.4

8
0
.4

8
0
.4

8

8
8

0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.0

1
0
.0

1
0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

7
0
.0

6
0
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

6
0
.0

6
0
.0

6
0
.0

0
0
.0

0
0
.0

1
0
.4

9
0
.4

7
0
.4

9
0
.4

9
0
.4

8
0
.4

7
0
.4

8
0
.4

9
0
.4

8
0
.4

8
0
.4

9
0
.4

8
0
.0

0
0
.0

1
0
.4

8
0
.4

9

1
0
9

0
.4

8
0
.4

8
0
.4

7
0
.4

8
0
.4

8
0
.4

9
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.4

8
0
.4

7
0
.4

9
0
.4

8
0
.4

9
0
.4

7
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.5

0
0
.5

0
0
.4

9
0
.4

9
0
.4

9
0
.5

0
0
.4

9
0
.4

8
0
.4

8
0
.5

0
0
.4

9
0
.4

9
0
.4

5
0
.0

1
0
.5

0
0
.5

0

T
ab

le
8.

10
:

E
x
tr

ac
t

fr
om

‘n
64

d
1e

10
24

E
n
se

m
b
le

.x
ls

x
’

sh
ow

in
g

th
e

er
ro

r
(r

ou
n
d
ed

to
2

d
ec

im
al

p
la

ce
s)

ob
ta

in
ed

p
er

h
eu

ri
st

ic
in

th
e

en
se

m
b
le

.
V

al
u
es

in
gr

ee
n

re
p
re

se
n
t

er
ro

rs
of
≤

1%
.

231



A1

A2

A3

B1

B2

B3

C1

C2

C3

D1

D2

D3

E1

E2

E3

F1

F2

F3

G1

G2

G3

H1

H2

H3

I1

I2

I3

J1

J2

J3

K1

K2

K3

L1

L2

L3

EDSM

W-EDSM

Reduction

W-Reduction

A1
1.
00

A2
1.
00

1.
00

A3
1.
00

1.
00

1.
00

B1
1.
00

1.
00

1.
00

1.
00

B2
1.
00

1.
00

1.
00

1.
00

1.
00

B3
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

C1
0.
81

0.
81

0.
82

0.
82

0.
81

0.
81

1.
00

C2
0.
82

0.
81

0.
82

0.
82

0.
82

0.
82

0.
98

1.
00

C3
0.
82

0.
82

0.
82

0.
82

0.
82

0.
82

0.
99

1.
00

1.
00

D1
0.
82

0.
82

0.
82

0.
82

0.
82

0.
82

0.
97

0.
98

0.
98

1.
00

D2
0.
83

0.
83

0.
83

0.
83

0.
83

0.
83

0.
95

0.
96

0.
96

0.
96

1.
00

D3
0.
82

0.
82

0.
82

0.
82

0.
82

0.
82

0.
97

0.
98

0.
98

0.
97

0.
98

1.
00

E1
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
81

0.
81

0.
81

0.
82

0.
83

0.
82

1.
00

E2
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
81

0.
81

0.
81

0.
82

0.
83

0.
82

1.
00

1.
00

E3
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
81

0.
81

0.
81

0.
81

0.
82

0.
82

1.
00

1.
00

1.
00

F1
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
81

0.
82

0.
82

0.
82

0.
83

0.
82

1.
00

1.
00

1.
00

1.
00

F2
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
81

0.
82

0.
82

0.
82

0.
83

0.
82

1.
00

1.
00

1.
00

1.
00

1.
00

F3
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
82

0.
82

0.
82

0.
82

0.
83

0.
82

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

G1
0.
76

0.
76

0.
77

0.
76

0.
76

0.
76

0.
87

0.
89

0.
89

0.
88

0.
86

0.
87

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

1.
00

G2
0.
76

0.
76

0.
77

0.
76

0.
76

0.
76

0.
87

0.
89

0.
89

0.
88

0.
86

0.
87

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

1.
00

1.
00

G3
0.
76

0.
76

0.
77

0.
77

0.
77

0.
76

0.
87

0.
89

0.
89

0.
88

0.
86

0.
87

0.
76

0.
76

0.
76

0.
77

0.
77

0.
77

1.
00

1.
00

1.
00

H1
0.
82

0.
82

0.
82

0.
82

0.
82

0.
82

0.
97

0.
98

0.
98

1.
00

0.
96

0.
97

0.
82

0.
82

0.
81

0.
82

0.
82

0.
82

0.
89

0.
89

0.
89

1.
00

H2
0.
83

0.
83

0.
83

0.
83

0.
83

0.
83

0.
95

0.
96

0.
96

0.
96

1.
00

0.
98

0.
83

0.
82

0.
82

0.
83

0.
83

0.
83

0.
86

0.
86

0.
86

0.
96

1.
00

H3
0.
82

0.
82

0.
82

0.
82

0.
82

0.
82

0.
97

0.
98

0.
98

0.
97

0.
98

1.
00

0.
82

0.
82

0.
81

0.
82

0.
82

0.
82

0.
87

0.
87

0.
87

0.
97

0.
98

1.
00

I1
0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
72

0.
72

0.
73

0.
73

0.
74

0.
70

0.
70

0.
70

0.
71

0.
71

0.
71

0.
80

0.
80

0.
80

0.
73

0.
72

0.
73

1.
00

I2
0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
72

0.
72

0.
73

0.
73

0.
74

0.
70

0.
70

0.
70

0.
71

0.
71

0.
71

0.
80

0.
80

0.
80

0.
73

0.
72

0.
74

1.
00

1.
00

I3
0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
72

0.
72

0.
73

0.
73

0.
74

0.
71

0.
70

0.
70

0.
71

0.
71

0.
71

0.
80

0.
80

0.
80

0.
73

0.
72

0.
74

1.
00

1.
00

1.
00

J1
0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
55

0.
55

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
56

0.
55

0.
56

0.
74

0.
74

0.
74

1.
00

J2
0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
55

0.
55

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
55

0.
55

0.
56

0.
74

0.
74

0.
74

1.
00

1.
00

J3
0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
56

0.
55

0.
56

0.
74

0.
74

0.
74

1.
00

1.
00

1.
00

K1
0.
63

0.
63

0.
64

0.
64

0.
63

0.
63

0.
63

0.
64

0.
63

0.
64

0.
63

0.
64

0.
62

0.
63

0.
62

0.
64

0.
64

0.
64

0.
74

0.
74

0.
74

0.
64

0.
63

0.
64

0.
85

0.
85

0.
85

0.
87

0.
86

0.
86

1.
00

K2
0.
64

0.
64

0.
64

0.
64

0.
63

0.
64

0.
63

0.
64

0.
63

0.
64

0.
64

0.
64

0.
63

0.
63

0.
63

0.
64

0.
64

0.
64

0.
74

0.
74

0.
74

0.
64

0.
63

0.
64

0.
85

0.
86

0.
85

0.
87

0.
86

0.
86

1.
00

1.
00

K3
0.
64

0.
64

0.
64

0.
64

0.
64

0.
64

0.
63

0.
64

0.
64

0.
64

0.
64

0.
64

0.
63

0.
63

0.
63

0.
64

0.
64

0.
64

0.
74

0.
74

0.
74

0.
64

0.
63

0.
64

0.
85

0.
85

0.
85

0.
87

0.
87

0.
87

1.
00

1.
00

1.
00

L1
0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
55

0.
55

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
56

0.
55

0.
56

0.
74

0.
74

0.
74

1.
00

1.
00

1.
00

0.
87

0.
87

0.
87

1.
00

L2
0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
55

0.
55

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
56

0.
55

0.
56

0.
74

0.
74

0.
74

1.
00

1.
00

1.
00

0.
87

0.
87

0.
87

1.
00

1.
00

L3
0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
55

0.
55

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
56

0.
55

0.
56

0.
74

0.
74

0.
74

1.
00

1.
00

1.
00

0.
87

0.
87

0.
87

1.
00

1.
00

1.
00

ED
SM

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
87

0.
86

0.
87

0.
86

0.
88

0.
87

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
79

0.
79

0.
79

0.
86

0.
88

0.
87

0.
72

0.
72

0.
72

0.
55

0.
54

0.
55

0.
63

0.
64

0.
64

0.
55

0.
55

0.
55

1.
00

W-
ED
SM

0.
91

0.
91

0.
91

0.
92

0.
91

0.
91

0.
85

0.
85

0.
85

0.
86

0.
87

0.
86

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
81

0.
80

0.
81

0.
86

0.
87

0.
86

0.
74

0.
74

0.
74

0.
58

0.
58

0.
58

0.
65

0.
65

0.
65

0.
58

0.
58

0.
58

0.
88

1.
00

Re
du
ct
io
n

0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
55

0.
55

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
64

0.
64

0.
64

0.
56

0.
55

0.
56

0.
73

0.
73

0.
73

0.
99

0.
99

0.
99

0.
86

0.
87

0.
87

0.
99

0.
99

0.
99

0.
54

0.
57

1.
00

W-
Re
du
ct
io
n

0.
56

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
56

0.
56

0.
56

0.
56

0.
56

0.
55

0.
55

0.
55

0.
56

0.
56

0.
56

0.
65

0.
65

0.
65

0.
56

0.
55

0.
56

0.
74

0.
74

0.
74

0.
99

0.
99

0.
99

0.
87

0.
87

0.
87

0.
99

0.
99

0.
99

0.
55

0.
57

1.
00

1.
00

Figure 8.4: The correlation matrix showing the relationship between in-

dividual heuristics in the ensemble and hypothesis error (rounded to 2

decimal places). The complete set of results may be found in the

‘n64d1e1024 Ensemble Correlation.xlsx’ Microsoft Excel sheet on the accompa-

nying media.

232



8.3 Evaluating the Delta Graph

The Delta Graph method will be evaluated as follows:

• Problem instances:

– 1024 × 32-state target DFA problem instances (n32d607e1024.sqlite),

1024 × 64-state target DFA problem instances (n64d1e1024.sqlite), and

512 × 128-state target DFA problem instances (n128d1e512.sqlite) each

having a symmetrically structurally complete training set at density 1

with respect to the target DFA size.

– 512 × 32-state target DFA problem instances where the training set is

not structurally complete (n32d607e512 NotStructComp.sqlite).

– 512 × 32-state target DFA problem instances where the target DFA

does not contain loop transitions from a state to itself (n32d607e512 No-

Loops.sqlite).

– 512 × 32-state target DFA problem instances where the set of highest

EDSM-scoring merges (ties) do not contain a colour-compatible merge

(n32d607e512 EdsmFailing.sqlite).

– 512 × 64-state target DFA problem instances with no restrictions on

structural completeness, presence of loop transitions, or colour-comp-

atible merges in the highest EDSM-scoring ties (n64d1e512 Unrest-

ricted.sqlite). We will also be using this data set to compare our results

with those reported for Ed-Beam and SAGE by Lang in [Lan99].

• The Delta Graph will be evaluated against several depth, branching factor,

branching limit, and APTA reduction table configurations.

• We will study the behaviour of a special case of the Delta Graph called the

‘GFirst’ variant. This enables us to measure the benefit of identifying sev-

eral colour-compatible initial merge sequences that the Delta Graph method

allows.

• For performance reasons, W-EDSM (rather than EDSM) is used as a baseline

for comparison and evaluation on 128-state target DFA problem instances.

233



• An illustration of how the Delta Graph is used to identify a heuristic is

shown in Figure 8.5.

1

Target DFA 1

Target DFA 2

Target DFA 3

Target DFA n

Training +ve

Training -ve APTA

APTA 
Reduction

Table for !,"

Test Set

Return
winning
hypothesis

Create Abbadingo
target DFAs

Create training
and test sets

2
APTA from

training sets

3
Build APTA

reduction table

4
Build the Delta Graph
and extend leaf nodes

5

Aggregate errors and other statistics about the minimum
size (winning) hypothesis over all problem instances7

Delta Graph 
for ẟ,b, and f

Leaf

Leaf

Leaf

Extend

Extend

Extend

Identify the ‘winning’
hypothesis wrt size

6

Delta Graph construction 
parameters

Figure 8.5: An illustration showing how the Delta Graph method will be evaluated.

As described in the previous chapter, the Delta Graph requires us to extend

leaf hypotheses in the graph using W-EDSM and score each leaf with:

Score = Abs(HypothesisSize−TargetSize)

. . . which we wish to minimise (a score of 0 means that we found a hypothesis

equal in size to the target). When running our experiments, we are in possession

of the target DFA. This means that during the construction of the Delta Graph

we are privy to the colour-compatibility of the merges and the hypotheses in it

(which is not available in the ‘real world’). As a runtime optimisation, we will only

expand leaves which are colour-compatible. This allows us to only consider good

leaves as starting points and avoid needlessly processing leaves which would, with

high probability, lead to high-error hypotheses. In the ‘real world’, we wouldn’t

be in possession of the target for colouring purposes and would therefore need

to extend all leaves. In the worst case, using this shortcut can only result in an

under estimate of the actual performance of the Delta Graph method since we

are only processing a subset of the actual leaves in the graph. Also recall that,

using this method, when we are expanding leaves using W-EDSM, we abort paths

longer than n + n
2

merge steps since it is virtually certain that they will lead to

234



a high-error hypothesis. Should all the leaves be aborted in such a manner, the

Delta Graph method would have failed and we fall back to W-EDSM to get a

result.

The performance of the Delta Graph method, compared to EDSM and/or W-

EDSM as a baseline, for various configurations is shown in Table 8.11. ‘GFirst’ is a

variant of the Delta Graph which only extends the first colour-compatible leaf it en-

counters (if any exists) rather than expanding them all1. Finally, Delta Graph con-

figurations will be named using the following scheme: Graph/δ/α/β/b/f , where b

is the branching factor, f is the branching limit, δ is the maximum depth of the

graph, α is the minimum reduction of merges in the APTA reduction table, and

β is the minimum EDSM score of merges in the APTA reduction table.

Delta Graph Parameter Selection

The parameters chosen to run the Delta Graph with (the reduction table α

and β, and the depth, branching factor, and branching limit) were selected

following an analysis similar to what we have done in Section 7.5.8. We chose

combinations of parameters to, experimentally, improve the likelihoods that

(i) the size of the Delta Graph is manageable (in terms of the number of nodes

and leaves it contains), (ii) there are several colour-compatible leaf nodes, and

(iii) when the APTA reduction table is sorted by EDSM, colour-compatible

merges may be found within the branching factor of the Delta Graph.

1The significance of this variation will be explored in the discussion section of this method.

235



n32d607e1024.sqlite

32-State Target, 607 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 15.7% 19.6% 4.3% 75 90

W-EDSM 14.1% 17.78% 3.6% 77 92

GFirst/3/25/1/6/3 28.9% 38.6% 7.3% 59 46

GFirst/3/25/1/12/3 31.3% 42.4% 8.8% 55 38

GFirst/4/25/1/10/3 35.3% 46.6% 9.6% 52 34

Graph/3/25/1/6/3 40.1% 52.2% 10.4% 55 33

Graph/3/25/1/12/3 50.7% 65.2% 14.4% 47 32

Graph/4/25/1/10/3 49% 62.2% 13.6% 49 32

n64d1e1024.sqlite

64-State Target, 1,521 Strings, 1024 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 15.2% 17.7% 0.6% 162 200

W-EDSM 13.8% 16.5% 0.5% 170 207

GFirst/3/60/1/12/3 27.3% 30.6% 1.7% 133 111

GFirst/4/60/1/10/3 31.2% 33.1% 1% 128 98

Graph/3/60/1/12/3 42.9% 47% 2.2% 113 65

Graph/4/60/1/10/3 40.1% 44.8% 1.7% 118 67

n128d1e512.sqlite

128-State Target, 4,382 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

W-EDSM 22.7% 15.4% 0% 377 511

GFirst/3/180/1/12/3 27.1% 18.6% 0% 341 388

GFirst/4/180/1/10/3 33.2% 23.6% 0.2% 309 241

Graph/3/180/1/12/3 48.6% 38.1% 0.4% 272 140

Graph/4/180/1/10/3 47.3% 36.3% 0.4% 280 148

Graph/4/180/1/12/3 49.4% 39.1% 0.4% 275 134

Table 8.11: The performance of various delta graph configurations on 32, 64, and

128-state target problems with symmetrically structurally complete training sets.

236



8.3.1 Adversarial Setups

We also evaluate the Delta Graph against the adversarial setups described earlier.

Tables 8.12, 8.13, and 8.14 show the results obtained by the Delta Graph when

training sets are not structurally complete, immediately failing training sets, and

target DFAs with no loops respectively.

Non-Structurally Complete Training Sets (n32d607e512 NotStructComp.sqlite)

32-State Target, 607 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 8.4% 15.2% 0% 76 90

W-EDSM 9.6% 14.1% 0% 78 91

Graph/3/25/1/6/3 25.2% 41.8% 0% 58 35

Graph/3/25/1/12/3 34.2% 57.6% 0% 48 32

Graph/4/25/1/10/3 31.8% 53.9% 0% 51 32

Table 8.12: The performance of the Delta Graph when training data is not sym-

metrically structurally complete.

Immediately Failing Training Sets (n32d607e512 EdsmFailing.sqlite)

32-State Target, 607 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 0.2% 0.2% 0% 92 93

W-EDSM 0.2% 0.2% 0% 94 96

Graph/3/25/1/6/3 20.9% 31.4% 4.1% 71 92

Graph/3/25/1/12/3 35.4% 50.6% 5.1% 56 34

Graph/4/25/1/10/3 32.6% 46.5% 5.5% 59 35

Table 8.13: The performance of the Delta Graph when the highest scoring merges

in the APTA do not contain a colour-compatible merge.

237



No Loops in Target DFA (n32d607e512 NoLoops.sqlite)

32-State Target, 607 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 8% 13.5% 2% 82 92

W-EDSM 8.4% 13.1% 1.2% 83 95

Graph/3/25/1/6/3 29.3% 42.6% 7.4% 63 41

Graph/3/25/1/12/3 41.8% 57.4% 9.2% 51 32

Graph/4/25/1/10/3 38.9% 54.3% 7% 54 32

Table 8.14: The performance of the Delta Graph when the target DFA does not

contain any loops.

8.3.2 Discussion and Observations

The observations drawn from these experiments include:

• In Table 8.11, we observe that, when training sets are symmetrically struc-

turally complete with respect to the target DFA, the Delta Graph consid-

erably outperforms EDSM and W-EDSM in all cases. The experimental

likelihood of identifying low-error hypotheses improves as follows (showing

the best-case Delta Graph configuration):

– 32-states: EDSM 15.7% → Graph/3/25/1/12/3 50.7% ≈ 3.2×.

– 64-states: EDSM 15.2% → Graph/3/60/1/12/3 42.9% ≈ 2.8×.

– 128-states: W-EDSM 22.7% → Graph/4/180/1/12/3 49.4% ≈ 2.2×.

• While the Delta Graph outperforms EDSM and W-EDSM in all cases, its

relative effectiveness decreases as the size of the target DFA increases. While

we conjecture that this phenomenon is related to the proportion of labelled

states in an APTA with respect to its size (see Table 7.4), this matter needs

to be investigated further.

• In the symmetrically structurally complete training set case, the likelihood of

the Delta Graph finding the exact target increases considerably. For exam-

ple, for 32-state problems, EDSM manages to find the target in 4.3% of the

cases, while the Delta Graph manages in 14.4% of the cases (Graph/3/25/1/12/3).

238



This represents an improvement of about 3.3×. A similar observation can

be made for 64 and 128-state target problems.

• Non-structurally complete training sets also adversarially affect the perfor-

mance of the Delta Graph. However, we see that the Delta Graph still

performs much better than EDSM or W-EDSM in these cases. In Table

8.12, we see that EDSM can identify low-error hypotheses in 8.4% of the

cases, while the Delta Graph can do so at a rate of 34.2% (≈ 4.1×) when

using the Graph/3/25/1/12/3 configuration.

• Recall that when training sets are randomly constructed, there is a high

likelihood that they are not symmetrically structurally complete (see Section

7.5.5). Because of this, and the fact that the Delta Graph performs much

better than EDSM both when the training data is and is not symmetrically

structurally complete, the Delta Graph method will perform even better on

unrestricted data sets. This is verified by the results shown in Table 8.15

where the Delta Graph is evaluated against unrestricted problem instances.

• As expected, when the training sets are not structurally complete neither

method can ever find the target (see Chapter 3).

• The immediately failing training set cases are designed such that a colour-

compatible merge would not exist in the highest EDSM-scoring rank (set of

ties). As such, EDSM’s first choice will always be wrong and the heuris-

tic never manages to identify the exact target, and only finds a low-error

hypothesis in 0.2% of 512 problem instances. In these cases, the Delta

Graph performs considerably better (35.4% out of 512 instances) using the

Graph/3/25/1/12/3 configuration. In this case, we can also see that the

Delta Graph outperforms the ensemble of heuristics by almost an order of

magnitude.

• The noticable improvement of the Delta Graph method on the immediately

failing problem instances may be attributed to the fact that the branching

factor chosen allows the search to explore merges beyond the highest EDSM-

scoring rank.

239



• In the adversarial data set which contains target DFAs without any loops,

we also see a notable improvement. In Table 8.14, we see that for 32-state

target DFA problems, EDSM finds low-error hypotheses in 8% of all 512

problem instances, whereas the Graph/3/25/1/12/3 does so in 41.8% of the

same cases.

• The computational cost of the Delta Graph method is primarily dependent

on the number of leaves which need to be extended. In turn, the number of

leaves depends on the graph construction parameters: the number of leaves

will increase as δ, b, and/or f increase. A worst case can be determined using

the δ and b parameters when f = δ and the graph is a tree. In practice,

however, we see that due to node reuse and the fact that the values for δ,

b, and f do not need to be large to obtain good results, the processing time

required by the method is well within what can be achieved on contemporary

consumer-level hardware.

Ordering Leaves for Extension

The Delta Graph returns a hypothesis by extending every leaf using W-EDSM,

and either returns the first extension which leads to a hypothesis equal in size to

the target, or the one closest2. It is then clear that we should extend the most

promising leaves first to avoid processing the remaining ones after having already

found a good extension. Consider problem instances consisting of 64-state target

DFA and training sets at density 1. In the Delta Graph size analysis in Section

7.6.2 we have seen that graphs constructed using the Graph/3/12/3/60/1 setup

have an average of 1072 leaves out of which 58 are colour-compatible. Should we

be able to order the leaves in such a way that those 58 colour-compatible ones are

close to the ‘top’, we can experimentally establish a window of leaves to consider

and discard the rest expecting that they will not be colour-compatible.

During our Delta Graph analysis we have identified that when Delta Graphs

are seven or more merges deep, the cumulative EDSM score at a leaf is highly

correlated with whether that leaf is colour-compatible or not. In other words,

2As an optimisation, the Delta Graphs aborts extensions longer than n + n
2 merges. If all

leaves are aborted, the Delta Graph falls back to W-EDSM for the instance.

240



sorting leaves by cumulative EDSM score descending has a very high likelihood of

moving the colour-compatible leaves towards the top. Unfortunately, constructing

Delta Graphs at such a depth is prohibitively expensive. At the depths of 3 or 4

we are working with, the cumulative EDSM is not sufficient to discriminate the

colour-compatibility of leaves. Identifying an alternative proxy for leaf quality

remains a matter for further investigation.

Cost/Benefit

A compromise exists when selecting the parameters to construct Delta Graphs.

Consider the results obtained in Table 8.11 for problem instances consisting of

64-state target DFAs with symmetrically structurally complete training sets at

density 1:

• Graph/3/60/1/12/3 finds low-error hypotheses in 42.9% of the 1024 problem

instances while Graph/4/60/1/10/3 does so in 40.1% of the same instances.

• On the same hardware, Graph/4/60/1/10/3 takes less than half the time to

find a hypothesis compared to Graph/3/60/1/12/3 (although the graph is

deeper, the branching factor is smaller).

• Additionally, a Graph/3/60/1/12/3 configuration has an average of 1072

leaves while a Graph/4/60/1/10/3 configuration has an average of 869 leaves.

This means that there are ≈ 20% fewer path extensions to process when

using the latter set of parameters.

• A compromise in terms of generalisation rate performance and online perfor-

mance may be made based on these observations. For instance, for a modest

decrease in performance over Graph/3/60/1/12/3, the other configuration

requires less than half the time to find a hypothesis.

Not all Colour-Compatible Sequences are Created Equal

Again, consider the results obtained in Table 8.11 for problem instances consisting

of 64-state target DFAs with symmetrically structurally complete training sets at

density 1:

241



• Col03-EDSM+W-EDSM guarantees a high EDSM-scoring initial sequence

of three colour-compatible merges and finds low-error hypotheses 27.4% of

the time with a median hypothesis size of 113 states (see Table A.10 in

Appendix A).

• Experimentally, Graph/3/60/1/12/3 can find an initial sequence of three

colour-compatible merges only 85% of the time (see Delta Graph size analysis

in Section 7.6.2) but, yet, can find low-error hypotheses at a rate of 42.9%

(shown in Table 8.11). This is much better compared to the 27.4% for

Col03-EDSM+W-EDSM. Additionally, it can find a median hypothesis size

virtually identical in size to the target.

• Moreover, Graph/3/60/1/12/3 finds low-error hypotheses at almost the same

rate (42.9%) that Col07-EDSM+W-EDSM does (43.8%, see Table A.10)

while only exploring three merges deep rather than seven. Median hypothe-

sis sizes are also almost identical.

• This phenomenon may be accounted for by the fact that, on average, about

58 leaves in the graph are colour-compatible partitions (see Delta Graph size

analysis in Section 7.6.2). This means that the graph contains at least 58

distinct colour-compatible sequences of length three. If one sequence of three

colour-compatible merges does not constrain the hypothesis well enough for

the remaining W-EDSM extension to do a good job, there is scope for the

remaining 57 to do so.

• This observation is supported by the fact that our alternative search strategy

GFirst/3/60/1/12/3 (which just picks any one out of the 58 three-sequence

of colour-compatible merges), while performing substantially better than

plain EDSM, performs worse than Graph/3/60/1/12/3 which, potentially,

explores all existing colour-compatible sequences of length 3.

Comparison to Ed-Beam/B SWET/SAGE

Lang’s Ed-Beam algorithm (discussed in Section 5.1.10) uses a similar approach

of sampling the search space in the hope of constructing extensions which lead

242



to smaller DFAs. Targets had between 4 and 21 states and training sets were

composed of roughly 550 strings. The actual data set (originally constructed by

Arlindo Oliveira) is referred to by a web link in the paper which, unfortunately,

no longer works. Although this testing setup makes comparing results with ours

very difficult, we note that the Ed-Beam method is functionally similar to the

earlier B SWET3 method by Lang himself in [Lan98]. This is of interest to us

since Lang’s evaluation of B SWET used the Abbadingo procedure to generate

problem instances. Moreover, the sizes of the target DFAs and training sets are

comparable to ours. Sampled over 500 Abbadingo-style 64-state target problem

instances at a density of 1, B SWET discovered low-error hypotheses in ≈ 21%

of the cases whereas the blue-fringe reference implementation of EDSM managed

to do so in ≈ 10% of the 500 cases4. Lang also compared his results to SAGE

(see Section 5.1.9), which, in its best configuration, managed to discover low-error

hypotheses in ≈ 14% of those cases.

To compare like with like, we constructed a suite of 512 experiments for 64-

state target problems at the same density as Lang’s experiments following the

Abbadingo specifications without any restrictions. This means that, like in Lang’s

case, the training data may be symmetrically structurally complete or not, it may

result in APTAs where the first rank EDSM scoring merges contain a colour-

compatible merge or not, the target DFAs may or may not contain loops, and

we place no requirement on the proportions of positive and negative strings in

a training set5. The only difference in setup between our method and Lang’s

is that we used the reference implementation of windowed EDSM as a baseline,

whereas he used the reference implementation of blue-fringe EDSM. As can be

seen in the results shown in Table 8.15, the baseline EDSM performance of both

our experimental setups are virtually identical ensuring that our results can be

compared reliably. Here we see that using a 10% generalisation rate for EDSM as

a baseline, the BSWET makes an improvement of about 2.1×, SAGE makes an

improvement of about 1.4%, and Graph/3/60/1/12/3 makes an improvement of

3Beam, Searching Wrapper, dETerministic.
4The results we show are approximations as we have parsed them out of charts in [Lan98].

Unfortunately, the results were not tabulated to get the exact values.
5An exact breakdown of the composition of these experiments may be found in Section A.3.3.

243



about 3.4×. We note that, as recently as [HV13], Ed-Beam/B SWET is considered

to be a state-of-the-art search strategy when applied to Abbadingo-style problems.

Unrestricted Problem Instances (n64d1e512 Unrestricted.sqlite)

64-State Target, 1,521 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Median

Results from [Lan98]

EDSM (baseline, blue-fringe) ≈ 10% – – – –

B SWET (p=32, r=8) ≈ 21% – – – –

SAGE (p=1024) ≈ 14% – – – –

Our Results

EDSM (baseline, windowed) 9.8% 12.1% 0% 170 205

Graph/3/60/1/12/3 34.2% 39.8% 0.2% 121 70

Graph/4/60/1/10/3 30.1% 35.6% 0.6% 128 77

Table 8.15: Comparing the performance of the Delta Graph method to Lang’s

B SWET/Ed-Beam, and his implementation of Juillé’s SAGE.

8.4 Evaluating the Genetic Algorithm

The genetic algorithm will be evaluated as follows:

• Problem instances:

– 128 × 32-state target DFA problem instances (n32d607e128 GA.sqlite),

and 64 × 64-state target DFA problem instances (n64d1e64 GA.sqlite)

each having a symmetrically structurally complete training set at den-

sity 1 with respect to the target DFA size.

– 64 × 32-state target DFA problem instances where the training set is

not structurally complete (n32d607e64 NotStructComp.sqlite).

– 64 × 32-state target DFA problem instances where the target DFA

does not contain loop transitions from a state to itself (n32d607e64 No-

Loops.sqlite).

– 64 × 32-state target DFA problem instances where the set of highest

EDSM-scoring merges (ties) do not contain a colour-compatible merge

(n32d607e64 EdsmFailing.sqlite).

244



• The fitness function used by the GA involves extending candidate solutions

to a final border hypothesis using W-EDSM. The resulting DFA size is then

used as the score we wish to minimise. The evaluation of this fitness turns

out to be a major computational bottleneck, and the application of this

method to 128-state problems is not feasible on the hardware available to

us.

• We will study the behaviour of a special case of the GA called the ‘Blind’

variant. This variant selects parents blindly (without considering their fit-

ness) and allows us to measure effectiveness of the fitness function.

• We will also compare the effectiveness of GA with a random search (merges

are selected randomly).

• An illustration of how the GA is used to identify a heuristic is shown in

Figure 8.6.

1

Target DFA 1

Target DFA 2

Target DFA 3

Target DFA n

Training +ve

Training -ve APTA

APTA 
Reduction

Table for !,"

Test Set

Return
fittest
hypothesis

Create Abbadingo
target DFAs

Create training
and test sets

2
APTA from

training sets

3
Build APTA

reduction table

4
Create the initial

population

5

Aggregate errors and other statistics about the fittest
hypothesis over all problem instances 9

Initial
Population

Chrom 1

Chrom 2

Chrom k

Compute
fitness

6

Fitness

Fitness

Fitness

Chrom 3 Fitness

Se
le
ct

Offspring 
by 

crossover Mu
ta
te Mutated 

offspring

Fittest
(Elitism)

New 
random

Next generation
or termination condition

Create new 
generation

7

8

Figure 8.6: An illustration showing how the genetic algorithm will be evaluated.

245



The collection of parameters used by the GA to evolve initial sequences are given

the following short names:

Random Randomly selects merges at each step to construct a

path (random search).

Blind/n32/v1 ‘Blind’ GA on 32-state target DFAs at density 1. Par-

ents are randomly (blindly) selected for mating without

using a fitness function. Starting pop. size = 100, final

pop. size = 5000, chrom. length = 8, α = 25, β = 1,

mutation rate = 1%.

GA/n32/v1 GA on 32-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 8,

tournament size = 5, α = 25, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n32/v2 Best of two runs of GA/n32/v1.

GA/n32/v3 GA on 32-state target DFAs at density 1. Pop. size

= 200, max. generations = 100, chrom. length = 8,

tournament size = 5, α = 25, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v1 GA on 64-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 8,

tournament size = 5, α = 25, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v2 GA on 64-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 8,

tournament size = 5, α = 60, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

246



GA/n64/v3 GA on 64-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 6,

tournament size = 5, α = 60, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v4 Best of GA/n64/v1, v2, and v3.

GA/n64/v5 GA on 64-state target DFAs at density 1. Pop. size

= 200, max. generations = 50, chrom. length = 6,

tournament size = 5, α = 60, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

Table 8.17 shows the performance of the GA using the various configurations

described above on 32 and 64-state target DFA problems on symmetrically struc-

turally complete training data.

n32d607e128 GA.sqlite

32-State Target, 607 Strings, 128 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 16.4% 21.1% 3.9% 72 86

Random 0% 0% 0% 776 776

Blind/n32/v1 0% 0% 0% 81 81

GA/n32/v1 46.9% 63.3% 9.4% 39 32

GA/n32/v2 62.5% 80.5% 16.4% 35 32

GA/n32/v3 68.8% 87.5% 16.4% 34 32

247



n64d1e64 GA.sqlite

64-State Target, 1,521 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 12.5% 21.9% 1.6% 161 199

GA/n64/v1 17.2% 21.9% 0% 113 105

GA/n64/v2 14.1% 25% 1.6% 131 113

GA/n64/v3 26.6% 32.8% 1.6% 110 94

GA/n64/v4 37.5% 42.2% 3.1% 94 79

GA/n64/v5 56.3% 59.4% 4.7% 85.6 64

Table 8.17: The performance of various GA configurations on 32, and 64-state

target problems on symmetrically structurally complete training sets.

8.4.1 Adversarial Setups

The GA is, again, evaluated against the adversarial setups described earlier. Ta-

bles 8.18, 8.19, and 8.20 show the results obtained by the GA when training sets

are not structurally complete, immediately failing training sets, and target DFAs

with no loops respectively.

Non-Structurally Complete Training Sets (n32d607e64 NotStructComp.sqlite)

32-State Target, 607 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 9.4% 14.1% 0% 75 86

W-EDSM 10.9% 15.6% 0% 76 89

GA/n32/v1 40.6% 57.8% 0% 41 32

GA/n32/v2 56.3% 73.4% 0% 36 32

Table 8.18: The performance of the GA when training data is not symmetrically

structurally complete.

248



Immediately Failing Training Sets (n32d607e64 EdsmFailing.sqlite)

32-State Target, 607 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 0% 0% 0% 90 92

W-EDSM 0% 0% 0% 93 95

GA/n32/v1 42.2% 56.3% 7.8% 43 32

GA/n32/v2 62.5% 79.7% 18.8% 37 32

Table 8.19: The performance of the GA when the highest scoring merges in the

APTA do not contain a colour-compatible merge.

No Loops in Target DFA (n32d607e64 NoLoops.sqlite)

32-State Target, 607 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 6.3% 6.3% 0% 84 92

W-EDSM 6.3% 6.3% 0% 89 96

GA/n32/v1 37.5% 45.3% 4.7% 46 36

GA/n32/v2 46.9% 62.5% 7.8% 41 32

Table 8.20: The performance of the GA when the target DFA does not contain

any loops.

8.4.2 Discussion and Observations

The observations drawn from these experiments include:

• In Table 8.17, we observe that, when training sets are symmetrically struc-

turally complete with respect to the target DFA, the GA considerably out-

performs EDSM in all cases. The experimental likelihood of identifying

low-error hypotheses improves as follows (showing the best-case GA config-

uration):

– 32-states: EDSM 14.1% → GA/n32/v3 68.8% ≈ 4.7×.

– 64-states: EDSM 12.5% → GA/n64/v5 56.3% ≈ 4.5×.

• Tuning the GA search parameters (at the cost of computational effort) highly

affects the performance of the method. This can be seen when comparing

the effectiveness of the GA/n64/v1 and GA/n64/v5 parameter sets.

249



• In the symmetrically structurally complete training set case, the likelihood

of the GA finding the exact target increases considerably. For example, for

32-state problems, EDSM manages to find the target in 3.9% of the cases,

while the GA manages in 16.4% of the cases (GA/n32/v3). This represents

an improvement of about 4.2×. A similar observation can be made for 64-

state target DFA problems.

• The fact that GA/n32/v2 performs noticeably better than GA/n32/v1 (best

of two runs with the same parameters) is a strong indicator that the pop-

ulation sizes and maximum generations we have chosen in the GA/n32/v1

configuration are too conservative and restrict the search. This is confirmed

by GA/n32/v3 which yields the best results after doubling the size of the

initial population and the maximum number of generations allowed to run.

• Training sets which are not structurally complete also adversarially affect

the performance of the GA. However, we see that the GA still performs

much better than EDSM in these cases. In Table 8.18, we see that EDSM

can identify low-error hypotheses in 9.4% of the cases, while the GA can

do so at a rate of 56.3% (≈ 6×) when using the GA/n32/v2 configuration.

These results are also better than what we have observed for the ensemble

of heuristics and Delta Graph methods.

• Recall that when training sets are randomly constructed, there is a high

likelihood that they are not symmetrically structurally complete (see Section

7.5.5). Because of this, and the fact that the GA performs much better than

EDSM both when the training data is and is not symmetrically structurally

complete, we can expect the GA to perform even better on unrestricted

data sets. This is a similar observation to what we made when discussing

the ensemble of heuristics and Delta Graph.

• As expected, when the training sets are not structurally complete, neither

method can ever find the target (see Chapter 3).

• In Table 8.19, we see that, unlike for EDSM, the GA is not negatively affected

in the adversarial case where none of the first rank merges do not contain

250



a colour-compatible merge. This can be attributed to the fact that the

GA has the opportunity to discover several sequences of colour-compatible

merges. A case for this has been made in the “Not all Colour-Compatible

Sequences are Created Equal” discussion earlier. Furthermore, the sequences

identified by the GA are longer (and thus establish more constraints) than

those identified by the Delta Graph method.

• Likewise, the GA performs much better than EDSM when the target DFA

does not contain any loops. In Table 8.20, we can see that while EDSM can

find low-error hypotheses at a rate of 6.3%, the configuration GA/n32/v2 can

do so 46.9% of the time. Moreover, in 7.8% of the same problem instances,

the GA is able to find the exact target DFA while EDSM can never do so.

• An analysis of the convergence rate of GA/n32/v1 in ‘n32d607e128 GA.sqlite’

shows that ≤ 1% error hypotheses can be found in as little as 5 generations

and in an average of 23 generations. Recall, that the GA terminates when

we either find a DFA which is exactly equal in size of the target or when the

maximum number of generations have elapsed. Interestingly, in 27% of the

cases, GA/n32/v1 managed to find a hypothesis exactly equal in size to the

target DFA but had an error greater than 1%. If our criterion for success

is finding DFAs equal to the size of the target, this method is even more

promising. Figure 8.7 shows the rates at which the GA converges for five

different problem instances. Here we can see that the 32-state target DFA

problems P1 and P4 have converged to a fitness of zero (i.e. the GA identi-

fied a 32-state hypothesis), problems P2 and P5 converged prematurely, and

P3 has been terminated before it had time to properly settle at some local

minimum.

• The computational cost associated with the GA is dependent on the pop-

ulation size p and the maximum number of generations g allowed. In the

worst case, we would need to perform p×g fitness evaluations (i.e. W-EDSM

extensions) until the algorithm terminates. On the hardware available to us,

problem instances much larger than 64 states are impractical.

251



0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

Be
st

 F
it

ne
ss

 (
Hy

po
th

es
is

 s
iz

e 
= 

Fi
tn

es
s+

32
)

Generations

Fitness of Best Chromosome Against Generations
32-State Target, 607 Strings, Structurally Complete

P1 P2 P3 P4 P5

Figure 8.7: Fitness against generations for five problem instances showing different

convergence scenarios.

Notes Regarding the ‘Blind’ Genetic Algorithm

The blind implementation of the GA works as follows:

• We start with a population of i randomly created chromosomes.

• Two parents are randomly selected for mating (i.e. a fitness function is not

used for selection). This process is illustrated in Figure 8.8.

• The resulting offspring is mutated according to the mutation rate parameter

specified.

• Unless the offspring already exists, it is added to the population (increasing

its size).

• The selection, crossover, and mutation procedure is repeated until the pop-

ulation grows up to a final size f .

• Each of the f chromosomes in the final population is extended with W-

EDSM and the smallest hypothesis is returned by the algorithm.

252



Population

Fittest

Fittest

Offspring
Crossover

(i) Deterministic tournament selection

Population

Offspring
Crossover

(ii) ‘Blind’ selection

Ra
nd

om
 

Random 

To
ur

na
me

nt
To

ur
na

me
nt

Figure 8.8: Deterministic tournament selection (i) vs. ‘blind’ selection (ii).

GA/n32/v1 has a population size of 100 chromosomes, and is allowed to run

for at most 50 generations. This means, that throughout the lifetime of the GA,

we would compute a maximum of 100 × 50 = 5000 W-EDSM extensions (fitness

evaluations). Blind/n32/v1 has a final size of 5000 chromosomes meaning that it

requires at least the same number of W-EDSM extensions as GA/n32/v1. The

primary difference between the two methods is that the selection procedure of

the ‘normal’ GA is directed by the fitness, whereas in the ‘blind’ GA, selection

is random. The fact that the fitness-directed GA performs significantly better

(46.9% low-error rate, GA/n32/v1, Table 8.17 ) than the blind variant (0% low-

error rate) enables us to, experimentally, confirm that the fitness function chosen is

indeed guiding our search efficiently. As a matter of fact, the blind GA performs

no better than a random search in the space of valid merges. Nonetheless, we

note that, while both the blind GA and a random search never find low-error

hypotheses (as shown in Table 8.17), the mean/median sizes of the DFAs found

by the blind GA (81/81 states) are much smaller than those found by a random

search (776/776 states). This indicates that starting searches with high-reduction,

non-zero EDSM-scoring merges6 biases the search towards smaller final DFAs.

6Chromosomes are an initial sequence of merges drawn from the APTA reduction table.

253



Comparison to Other Evolutionary Approaches

The evolutionary technique used by Dupont in [Dup94] involves searching for an

optimal partitioning of states of an initial hypothesis constructed from training

examples. Dupont attempted to identify 15 languages, 7 of which are the so

called Tomita languages [Tom82], while the remaining ones are languages having

similar complexity (in terms of minimum DFA size). The results obtained were

comparable to those using RPNI which was the state-of-the-art at the time. The

largest target DFAs that were dealt with had 5 states and 8 transitions which are

much smaller than the target DFAs we are considering in this dissertation. As

such, comparing our method to Dupont’s is not practical.

On the other hand, our results are most comparable to those obtained by

Lucas and Reynolds in [LR05] since we both use exactly the same Abbadingo

problem instance creation procedure, as well as a similar experimental protocol.

When applied to noise-free problem instances of between 4 and 16 states, their

method performed better than EDSM. Unfortunately, as the target DFA sizes

started growing to close to 32-state targets, their method was outperformed by

EDSM even at a density of 3,275 training strings. In contrast, we have shown

that our method considerably outperforms EDSM even on DFAs having up to 64

states7 and on much sparser training data (we ‘only’ used 607 training strings for

32-state problems, and 1,521 training strings for 64-state problems). Moreover,

we have also shown that our method is less sensitive to setups which are highly

adversarial to EDSM. We conclude this section by noting that Lucas and Reynolds’

implementation can deal noisy training sets, whereas this requirement was not

within the scope of our work.

8.5 Ending Remarks

In this chapter, we have evaluated the performance of each of the three methods

we proposed on data sets consisting of thousands of Abbadingo-style problem

7We have not tested our GA method on targets larger than 64 states only due to runtime

performance concerns, and not because we expect that the generalisation performance would

suffer.

254



instances. Our evaluation strategy was similar to that found in the literature (for

example [Lan99], [ACS04], and [LR05]). We have also created data sets which

are adversarial to EDSM to determine how our methods perform in these cases.

Using each of our three methods, we have observed appreciable improvements

over EDSM using symmetrically structurally complete training sets, as well as

on all the adversarial cases. We complete this summary with a discussion of the

strengths and weaknesses of each method.

The Ensemble of Heuristics

• Strengths:

– Considerably outperforms EDSM on symmetrically structurally com-

plete training sets, as well as in the adversarial cases when either the

training set is not structurally complete, or when the target DFA has

no loop transitions from a state and itself.

– The bounds on computational effort are well understood (it is a linear

function of the number of heuristics in the ensemble).

– We established that identifying new monotonic, greedy, heuristics is a

promising research direction.

– Parallelisation is straightforward.

• Weaknesses:

– In the adversarial case when the highest EDSM-scoring merges (ties)

in the APTA do not contain good, colour-compatible merges, the per-

formance of the ensemble of heuristics is underwhelming.

– This ensemble method gives a notable improvement over EDSM but is

weaker than the non-monotonic Delta Graph and GA methods (on the

other hand, the runtime performance of the ensemble of heuristics is

much better).

• Further notes:

– While the ensemble of heuristics outperforms EDSM and W-EDSM on

all data sets of Abbadingo-style problem instances we experimented

255



with, the relative decrease in performance as the size of the target DFA

increases needs to be further investigated.

The Delta Graph

• Strengths:

– Considerably outperforms EDSM on symmetrically structurally com-

plete training sets, as well as in all the three adversarial setups.

– The median size of the hypotheses identified by the Delta Graph is equal

to or very close to that of the target DFA. The significance of this is

that the Delta Graph is able to identify smaller DFAs than EDSM can.

– Parallelisation is straightforward.

• Weaknesses:

– For best performance, graph construction parameters need to be tuned

for each class of problem. A complete grid-search for the best parame-

ters is computationally expensive.

– While still being computationally feasible on consumer grade hard-

ware, the Delta Graph requires more time to evaluate than a monotonic

heuristic such as EDSM, or the ensemble of heuristics.

• Further notes:

– The Delta Graph method was partially inspired by the fact that getting

the initial merges in a sequence correct (colour-compatible), increases

the likelihood that extending the sequence using a label-matching heuris-

tic will lead to smaller or lower error hypotheses. Our results show that

we can obtain very good results in as few as three merges.

– We have experimentally shown that the Delta Graph contains several

initial sequences of colour-compatible merges (whose length is the depth

of the Delta Graph). In our “Not all Colour-Compatible Sequences are

Created Equal” discussion, we have seen how this is advantageous, and

results in an improvement beyond what we would expect should we

256



simply identify a single sequence of colour compatible-merges of the

same length.

– While the Delta Graph outperforms EDSM and W-EDSM on all data

sets of Abbadingo-style problem instances we experimented with, the

relative decrease in performance as the size of the target DFA increases

needs to be further investigated.

The Genetic Algorithm

• Strengths:

– Considerably outperforms EDSM on symmetrically structurally com-

plete training sets, as well as in all the three adversarial setups.

– The GA can, potentially, identify longer colour-compatible sequences

than the Delta Graph can.

– Multiple runs (random restarts) improve performance.

– The median size of the hypotheses identified by the GA is equal to or

very close to that of the target DFA. The significance of this is that the

GA is able to identify smaller DFAs than EDSM can.

– In the 32 and 64-state target DFA cases we evaluated, the size of the

search space is not affected by either the size of the target DFA we are

looking for, or the size of the training set (the APTA reduction table

sizes for suitable α and β values are almost identical).

– Parallelisation is straightforward.

• Weaknesses:

– On consumer-grade hardware, the method does not scale to very large

DFAs (more than 64 states) due to the computational cost of the fitness

function.

– For best performance, GA parameters need to be tuned for each class

of problem. Since the algorithm takes long to run, searching for the

good parameters is very computationally expensive.

257



– The GA requires much more time to evaluate than any of the other

methods we considered in this dissertation.

• Further notes:

– While the GA outperforms EDSM and W-EDSM on all data sets of

Abbadingo-style problem instances we experimented with, the relative

decrease in performance as the size of the target DFA increases needs

to be further investigated.

258



Chapter 9

Conclusions and Future Work

One of the primary aims of the Abbadingo One competition designers was to

promote the development of DFA learning algorithms that perform better than

the state-of-the-art on larger DFAs and sparser training sets [Abb97, LPP98]. In

this sense, their objective has been met with overwhelming success – the amount

of work and contributions to the area since the competition had been announced

is considerable, and has served as an inspiration to us.

A significant amount of our work was dedicated to taking a ‘from first princi-

ples’ approach to the DFA learning problem. This involved both understanding

the behaviour of state merging algorithms, and also developing an extensive frame-

work on which to implement and experiment with many existing algorithms as well

as our own. Creating all this scaffolding from scratch is worthwhile for several rea-

sons. It helps us to understand the minutiae of each learning algorithm, to finely

control and optimise the performance of our data structures and algorithms, and

to produce outputs for visualisation and examination in any format we wish (this

is extremely useful for understanding the conditions under which learning algo-

rithms succeed or fail). In this chapter, we conclude this dissertation by framing

our achievements and contributions in terms of the research hypotheses we set out

with. Notwithstanding the promising results we have achieved in the area, there

is future work to be done. We complete our dissertation by presenting a number

of ideas regarding the future directions our work can take.

259



9.1 Achievements and Contributions

The primary aims of this dissertation were to:

• Find heuristics which are able to identify low or zero-error hypotheses on

problem instances when EDSM does not, and

• Design non-monotonic, yet computationally feasible, DFA search algorithms,

and determine the extent with which they improve on EDSM.

We feel that main aims of this dissertation have been met successfully. A

number of heuristics, based on various combinations of EDSM and state reduction,

were proposed. These heuristics represent different inductive biases, and are able

to identify either the target DFA or a low-error hypothesis in cases when EDSM

does not. Subsequently, we used these heuristics in an ensemble which outperforms

EDSM. We have also developed two non-monotonic search strategies, namely the

Delta Graph and the genetic algorithm, that also outperform EDSM to an even

greater extent. While ensuring that our evaluation methodology is consistent with

the ones found in the literature (such as [Lan99], [Cic02], and [Spi04]), we have also

considered several types of problem instances which adversarially affect EDSM.

The subtasks we presented in Section 1.3 have been also tackled. We have

replicated the Abbadingo One procedure for creating problem instances, we have

performed many experiments on large sets of problem instances to reliably sup-

port the approaches that we proposed, we implemented EDSM as a baseline for

comparison and studied the conditions under which it succeeds or fails, and in

Chapters 6 and 7, we have studied important characteristics of state merging al-

gorithms and performed several experiments to better understand the problem at

hand. These included studying the characteristics of target DFAs and training

sets to determine which ones are adversarial to our learning task, observe state

reduction rates along ideal merge paths to help us focus non-monotonic searches

on a subspace of high reduction merges, determine the extent to which the first

merges in a sequence are critical, and performing other statistical tests on prob-

lem instances and sequences of merges (such as correlating the identification of

low-error hypotheses with the length of merge sequences).

260



9.1.1 Summary of Results

The results we obtained for each method, next to EDSM/W-EDSM as a baseline,

are summarised in Tables 9.1, 9.2, and 9.3 for comparison. Here we show the

outcomes for the best parameter configurations we have attempted for the Delta

Graph and the GA.

n32d607e1024.sqlite †, n32d607e128 GA.sqlite ‡

32-State Target, 607 Strings, 1024 Experiments †, 128 Experiments ‡

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM † 15.7% 19.6% 4.3% 75 90

W-EDSM † 14.1% 17.78% 3.6% 77 92

Ensemble † 29.5% 31.5% 14% 66 82

Delta Graph † 50.7% 65.2% 14.4% 47 32

GA ‡ 68.8% 87.5% 16.4% 34 32

Table 9.1: A summary of the results for 32-state target problems.

n64d1e1024.sqlite †, n64d607e64 GA.sqlite ‡

64-State Target, 1,521 Strings, 1024 Experiments †, 64 Experiments ‡

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM † 15.2% 17.7% 0.6% 162 200

W-EDSM † 13.8% 16.5% 0.5% 170 207

Ensemble † 25.8% 25.9% 4.2% 147 193

Delta Graph † 42.9% 47% 2.2% 113 65

GA ‡ 56.3% 59.4% 4.7% 85.6 64

Table 9.2: A summary of the results for 64-state target problems.

n128d1e512.sqlite

128-State Target, 4,382 Strings, 512 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

W-EDSM 22.7% 15.4% 0% 377 511

Ensemble 30.7% 23.4% 1.4% 340 521

Delta Graph 49.4% 39.1% 0.4% 275 134

Table 9.3: A summary of the results for 128-state target problems.

Tables 9.4, 9.5, and 9.6 below show the performance of each method when used on

261



our three adversarial data sets. Again, we present our results next to EDSM/W-

EDSM as a baseline.

Non-Structurally Complete Training Sets (n32d607e64 NotStructComp.sqlite)

32-State Target, 607 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 9.4% 14.1% 0% 75 86

W-EDSM 10.9% 15.6% 0% 76 89

Ensemble 21.9% 25% 0% 65 75

Delta Graph 35.9% 62.5% 0% 43 32

Genetic Algorithm 56.3% 73.4% 0% 36 32

Table 9.4: A summary of the performance of our methods when training data is

not symmetrically structurally complete.

Immediately Failing Training Sets (n32d607e64 EdsmFailing.sqlite)

32-State Target, 607 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 0% 0% 0% 90 92

W-EDSM 0% 0% 0% 93 95

Ensemble 1.6% 3.1% 1.6% 83 88

Delta Graph 39.1% 54.7% 9.4% 57 32

Genetic Algorithm 62.5% 79.7% 18.8% 37 32

Table 9.5: A summary of the performance of our methods when the highest EDSM-

scoring merges in the APTA do not contain a colour-compatible merge.

No Loops in Target DFA (n32d607e64 NoLoops.sqlite)

32-State Target, 607 Strings, 64 Experiments

Heuristic ≤ 1% Error ±1 Target Exact Target Mean Size Median Size

EDSM 6.3% 6.3% 0% 84 92

W-EDSM 6.3% 6.3% 0% 89 96

Ensemble 15.6% 15.6% 7.8% 77 90

Delta Graph 43.8% 60.9% 7.8% 49 32

Genetic Algorithm 46.9% 62.5% 7.8% 41 32

Table 9.6: A summary of the performance of our methods when the target DFA

does not contain any loops.

262



9.1.2 An Ensemble of Heuristics

During the experimentation phase of this dissertation, we established that vari-

ous combinations of EDSM and reduction can be used to create an ensemble of

monotonic, greedy heuristics which performs better than EDSM alone. Indeed,

individual heuristics in the ensemble actually performed better than EDSM by

themselves (over a large set of identical problem instances). Importantly, since

the number of heuristics in the ensemble is fixed, the method scales well for larger

target DFA sizes at their corresponding training set density. The ensemble of

heuristics was also able to considerably improve over EDSM’s generalisation rate

in several adversarial scenarios. These results are promising, and support the

search for other heuristics which are able to find low-error hypotheses on problem

instances when others (such as EDSM) do not.

9.1.3 Adversarial Problem Instances

When studying the characteristics of the structure of target DFAs and training

sets, we have described a number of scenarios which are highly adversarial to

EDSM. These arise when:

• The training set is not structurally complete with respect to the target DFA,

• The highest EDSM-scoring merges in the APTA (the first rank of ties) do

not contain a colour-compatible merge, and

• The target DFA does not contain loop transitions from a state to itself.

We have also observed that, using the Abbadingo method to create problem

instances, the likelihood of encountering these problematic situations is quite sig-

nificant. For example, in Table A.13 of Appendix A, we see that, on 64-state

target DFA problem instances, there is a 59% likelihood that a training set is

not symmetrically structurally complete, a 42% likelihood that there is no colour-

compatible merge in the first EDSM rank, and a 20% likelihood that the target

DFA does not contain loop transitions from a state to itself. Each of the three

methods we proposed in this dissertation is able to deal with these adversarial

scenarios better than EDSM.

263



9.1.4 Label-Matching Heuristics

It well understood that the performance of a label-matching heuristic such as

EDSM decreases as the training data becomes sparser [LPP98, Spi04]. In our

work, we have elaborated on this idea by determining to which extent tie-breaking

is critical (using the EDSM-TieCC heuristic in Section 7.5.3). Inspired by the

work in [Cic02], we further studied the significance and impact getting the initial

sequence of merges right. These observations supported the development of our

ensemble, Delta Graph, and genetic algorithm which perform better on sparse

training data.

9.1.5 Colour-Compatible Merges

We have used colour-compatible merges as a tool for defining what ‘good’ merges

are. In Chapter 7, this allowed us to pinpoint exactly where mistakes are being

made along a merge path (and study them), and where these colour-compatible

merges are expected to be found in our pool of candidate merges. Moreover,

Oracle-assisted heuristics, such as FullCol-EDSM, allow us to analyse the char-

acteristics of good merge sequences which lead to the exact target DFAs and

understand how merges are selected. Our Delta Graph and GA methods were

both inspired by the results we have obtained from these experiments.

9.1.6 The APTA Reduction Table

The analysis of the rate of reduction in states along ideal, FullCol-EDSM, paths

allows us to exclude merges from our search space which deviate from the ex-

pected rate of reduction. More specifically, our experiments show that the initial

merges in a path are almost never low reduction ones. Initially ignoring such low

reduction merges (of which there are overwhelmingly many) results in a prun-

ing of the search space which, nonetheless, has been shown to contain many

colour-compatible merges. The Delta Graph and GA methods we have devel-

oped would not be practical if we had to consider the entire space of merges

as candidates. Moreover, studying the contents of the reduction table in terms

of the colour-compatible merges it contains, allowed us to estimate where these

264



colour-compatible merges exist in the reduction table. This allows us to explore

beyond the first EDSM scoring rank. These results were also used to determine

the branching factor of the Delta Graph.

9.1.7 Getting the First Merges Right

Getting the initial merges in a path right is critical to reaching a low-error hypoth-

esis or the actual target DFA (see [Cic02], and Chapter 7). In this dissertation, we

have proposed the Delta Graph and GA methods to find such initial sequences.

The performance we obtained using both methods is considerably better than

what is possible using EDSM, SAGE, or Ed-Beam (results are shown in the dis-

cussion of the Delta Graph in Section 8.3.2, as well as in [Lan98]). Moreover, both

methods are highly resilient to problem configurations which are adversarial to

EDSM.

9.1.8 The Genetic Algorithm

In the literature, we have identified several attempts which use genetic algorithms

to find smallest consistent DFAs [Dup94, LR05, Wie17]. These methods involve

evolving a representation of the target DFA by either ‘packing’ the states of the

APTA into an n-block partition corresponding to a quotient of the target automa-

ton (where n is the size of the target DFA), or by constructing the transition

matrix of the target DFA. Based on the observation that the initial merges in a

sequence greatly affect the quality (in terms of size) of the hypothesis identified,

we have developed a technique which evolves short initial sequences of high-quality

merges. When these short sequences are extended, we observe a higher likelihood

of identifying the target DFA or a close approximation of it. Compared with

the results reported by previous attempts at using genetic algorithms on similar

Abbadingo-style problem instances, our method performs and scales (in terms of

target DFA and training set size) considerably better.

265



9.2 Future Work

Research in regular inference is ongoing and its application to real-world prob-

lems is far-reaching1. Consequently, our search for efficient monotonic, greedy

heuristics is ongoing with promise shown by our ensemble of heuristics method.

Additionally, while the augmentation of such heuristics with a more exhaustive,

non-monotonic search yields noticeably better results, the computational cost in

doing so is substantial. Based on the experiments, methods, and results we have

obtained in our work, we have determined the following areas which could result

in further important advancements in the field:

• Implementations of the state merging operator are computationally expen-

sive. It then follows that sets of experiments would have to be smaller,

experimenting on larger DFAs becomes harder, and broader searches be-

come impractical. At every step along a merge path, a large number of

merges need to be attempted to determine their validity and their score.

Whenever a merge is executed, the hypothesis modified by that merge needs

to be rolled back to its original state before another one of the candidates

is attempted. Efficient implementations of the state merging operator, typi-

cally, employ a book-keeping strategy to track changes and undo them before

the next merge is tried. This necessitates a significant amount of memory

allocations and writes. A low-level profiling of the costs associated with

constructing merge paths shows us that the majority of the effort is taken

up by these memory operations. While our implementation takes this into

account, it can be improved further on at least two fronts. Firstly, the out-

comes of a large number merges which are being evaluated at a current step

along a merge path remain unchanged during the next step. Consider two

states being merged: if the two subgraphs rooted at them do not change

after some other merge has been performed, their previous evaluation will

not be affected and can be carried forward. Secondly, it is much cheaper

to perform one large memory allocation and read/write operation rather

than making several smaller ones. Our implementation preallocates working

1We have covered several real world applications of grammatical inference in Section 1.3.

266



memory for merges so allocation is not an issue. However, tracking changes

and undoing them is still required. During experimentation, we notice that

changes are fragmented throughout the preallocated memory block which re-

quires scanning through the modifications and copying many small portions

of memory. We are considering a more efficient data structure to represent

partitions which minimises this fragmentation and allows for a single, larger

memory copy rather than many small ones.

• In many cases, parallelisation of merge path construction is trivial and, in-

deed, all of our implementations are concurrent. Unfortunately, since mem-

ory is typically a shared resource on a single machine, the overwhelming over-

head associated with allocation, and reading and writing, hinders scaleabil-

ity due to this bottleneck. In addition to the strategies described previously,

the distribution of computational effort across networks of possibly lower-

powered machines is compelling (rather than relying on single memory, and

multiple faster cores/CPUs).

• While the parameters we have chosen to construct Delta Graphs and run

our GAs with give us promising results, they may be suboptimal. A grid

search through the parameter space is impractical due to the large number

of experiments which would need to be run in order to identify them. In this

dissertation, we have performed several statistical tests to determine these

parameters and identify, in expectation, which ones would perform best (e.g.

colour-compatible merge positions, APTA reduction table analysis, etc. . . ).

Nonetheless, further statistical testing and analysis is almost certain to lead

to more focused search spaces which are both smaller, as well as contain

more good merges.

• When constructing deeper Delta Graphs, we have observed that the cumula-

tive EDSM score of a leaf hypothesis in the graph is a very strong indicator

of whether that hypothesis is good (colour-compatible) or not. This would

allow us to order leaf extension by the most promising ones first and im-

prove running time. Unfortunately, this property has been found to be true

at graph depths which are beyond practical (but still considerably shallower

267



than the depth of the entire search space). For instance, at the Delta Graph

depths of 3 and 4 which we have attempted, this correlation breaks down.

We are still actively searching for an alternative proxy for leaf/hypothesis

quality.

• Due to practical considerations, especially due to the computational cost

associated with the merge operation, we have not experimented with suf-

ficiently large data sets for target DFAs having 256 states and more. The

behaviour of our methods on such targets and large data sets needs ad-

dressing and may be possible by implementing the ideas we have discussed

previously.

• Our comparison to TBW-EDSM and Ed-Beam has been made with respect

to the results published by the respective authors. A more compelling analy-

sis can be made by implementing the actual algorithms and evaluating their

performance against the exact problem instances we have used ourselves.

• The results we obtained from the ensemble of heuristics methods clearly show

that there is scope for discovering new heuristics which are able to find low-

error hypotheses when others such as EDSM do not. We are currently in the

preliminary stages of designing genetic programs to evolve these heuristics

similarly to how they have been applied to SAT solving [BEDP08] and bin

packing [BHK06]. This technique has merit because the inference problems

we are dealing with have all the hallmarks [PLM08] of those where genetic

programs have performed well: (i) we can generate significant amounts of

test data, (ii) there is a straightforward way to measure the performance of a

hypothesis, (iii) small improvements can be measured (making evolutionary

based techniques possible), and (iv) approximate solutions are acceptable.

• A detailed investigation of merge relation graphs (blocking, inclusion, and

labelling), discussed in Chapter 3, can help us understand how merges inter-

act with each other and which ones carry high risk. For example, detecting

which and when merges will result in orphaned states (states which will

remain unlabelled in the final hypothesis) is exact and straightforward. Un-

fortunately, a preliminary investigation indicates, that, in the vast majority

268



of the cases, such orphaning happens very late in the merging process making

a backtracking strategy infeasible as it would be too deep. Rather than dis-

carding merges when we definitely know that they would result in orphaned

states (when it is too late), we are investigating an entropy-based metric to

determine the likelihood of a merge becoming so, and postpone it due to the

risk involved. A similar idea has been explored by Coste and Nicholas in

[CN98]. The relationships and constraints in the merge relation graph can

also be used to develop a constraint satisfaction system similar to the work

done by Oliveira and Silva in [OMS98].

• In 1998, shortly after the Abbadingo One competition was completed, the

Gowachin [Gow98] server was made available to provide on-demand bench-

mark problems for DFA learning algorithms2. In addition to allowing users

to request test problems for specific target DFA sizes and training set densi-

ties, Gowachin also allows for a degree of noise to be injected in the training

data. While in this dissertation, we have not considered noisy training sets,

algorithms such Habrard et al.’s ALERGIA [HBS03] may serve as a starting

point for extending our algorithms to support such scenarios.

• Inspired by Heule and Verwer’s work on the StaMinA competition-winning

algorithm, we are investigating the use of our methods to learning DFAs

having higher cardinality alphabets. Our Delta Graph and GA methods

are able (with high experimental likelihood) to identify good short initial

sequences of merges which can be used to compact the initial APTA as a

preprocessing step of an algorithm such as dfasat [HV13]. Likewise, we can

also experiment with the candidate hypotheses returned by the ensemble of

heuristics, Delta Graph, and genetic algorithm methods by treating them as

an ensemble of automata [Die00] to classify unseen strings.

2At the time of writing, the Gowachin service is no longer running.

269



9.3 Concluding Remarks

The grammatical inference community has been active for decades, and interest in

the area does not appear to be slowing down. This is evidenced by the number of

learning competitions that have been made public since Abbadingo One in 1997,

as well as the consistent output of researchers both in the International Conference

on Grammatical Inference (ICGI) and elsewhere.

Although a shift in focus from purely Abbadingo-style problems in the direc-

tion of practical applications of grammatical inference, studying other classes of

languages, and other types of problems is apparent, we felt that we could still

contribute more to the area. We have done this by taking a ‘from first principles’

approach by performing an extensive, experimental analysis on the behaviour of

state merging on Abbadingo-style problems. This enabled us to develop a number

of methods which outperform both EDSM as well as EDSM+Search methods that

are considered to be the state-of-the-art in DFA learning. In this sense, we feel

that we have successfully achieved our original goals. Of course, during the course

of our work, we have also raised more questions than we have answered. While

our work in the area of DFA learning is ongoing, it is our sincere hope that the

findings made in this dissertation will serve to inspire others.

270



Bibliography

[Abb97] Abbadingo One: DFA Learning Competition. http://abbadingo.

cs.nuim.ie, 1997. Accessed: 2017-05-19.

[ABL02] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining Spec-

ifications. In Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’02,

page 4–16, New York, NY, USA, 2002. Association for Computing

Machinery.

[ACS04] John Abela, François Coste, and Sandro Spina. Mutually Compati-

ble and Incompatible Merges for the Search of the Smallest Consis-

tent DFA. In International Colloquium on Grammatical Inference,

pages 28–39. Springer, 2004.

[Agg18] C.C. Aggarwal. Neural Networks and Deep Learning: A Textbook.

Springer International Publishing, 2018.

[AJ06] Pieter Adriaans and Ceriel Jacobs. Using MDL for Grammar In-

duction. In Yasubumi Sakakibara, Satoshi Kobayashi, Kengo Sato,

Tetsuro Nishino, and Etsuji Tomita, editors, Grammatical Infer-

ence: Algorithms and Applications, pages 293–306, Berlin, Heidel-

berg, 2006. Springer Berlin Heidelberg.

[Alq97] Rene Alquezar. Symbolic and Connectionist Learning Techniques

for Grammatical Inference. PhD thesis, Universitat Politécnica de

Catalunya, 1997.

[Ang78] D. Angluin. On the Complexity of Minimum Inference of Regular

Sets. Inform. Control, 39(3):337–350, 1978.

271

http://abbadingo.cs.nuim.ie
http://abbadingo.cs.nuim.ie


[AS94a] R. Alquezar and A. Sanfeliu. A Hybrid Connectionist-Symbolic Ap-

proach to Regular Grammatical Inference Based on Neural Learning

and Hierarchical Clustering, pages 203–211. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 1994.

[AS94b] R. Alquezar and A. Sanfeliu. Incremental Grammatical Inference

From Positive And Negative Data Using Unbiased Finite State Au-

tomata. In In Proceedings of the ACL’02 Workshop on Unsupervised

Lexical Acquisition, pages 291–300, 1994.

[AV94] D. Aldous and U. Vazirani. “Go with the winners” Algorithms. In

Proceedings 35th Annual Symposium on Foundations of Computer

Science, pages 492–501, Nov 1994.

[BBH+09] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Hand-

book of Satisfiability: Volume 185 Frontiers in Artificial Intelligence

and Applications. IOS Press, Amsterdam, The Netherlands, The

Netherlands, 2009.

[BBP75] A. W. Biermann, R. I. Baum, and F. E. Petry. Speeding up the Syn-

thesis of Programs from Traces. IEEE Transactions on Computers,

C-24(2):122–136, Feb 1975.

[BEDP08] Mohamed Bader-El-Den and Riccardo Poli. Generating SAT Local-

search Heuristics Using a GP Hyper-heuristic Framework. In Pro-

ceedings of the Evolution Artificielle, 8th International Conference

on Artificial Evolution, EA’07, pages 37–49, Berlin, Heidelberg,

2008. Springer-Verlag.

[BEL+17] Borja Balle, Rémi Eyraud, Franco M. Luque, Ariadna Quattoni,

and Sicco Verwer. Results of the Sequence PredIction ChallengE

(SPiCe): a Competition on Learning the Next Symbol in a Se-

quence. In Sicco Verwer, Menno van Zaanen, and Rick Smetsers,

editors, Proceedings of The 13th International Conference on Gram-

matical Inference, volume 57 of Proceedings of Machine Learning

272



Research, pages 132–136, Delft, The Netherlands, 05–07 Oct 2017.

PMLR.

[BF72] A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-

State Machines from Samples of Their Behavior. IEEE Transactions

on Computers, C-21(6):592–597, June 1972.

[BHK06] E. K. Burke, M. R. Hyde, and G. Kendall. Evolving Bin Packing

Heuristics with Genetic Programming. In Proceedings of the 9th

International Conference on Parallel Problem Solving from Nature,

PPSN’06, pages 860–869, Berlin, Heidelberg, 2006. Springer-Verlag.

[BL00] Jose Borges and Mark Levene. Data Mining of User Navigation

Patterns. In Web Usage Analysis and User Profiling, pages 92–112.

Springer, 2000.

[BL05] Josh Bongard and Hod Lipson. Active Coevolutionary Learning of

Deterministic Finite Automata. J. Mach. Learn. Res., 6:1651–1678,

December 2005.

[BO05] Miguel Bugalho and Arlindo Oliveira. Inference of Regular Lan-

guages using State Merging Algorithms with Search. Pattern Recog-

nition, 38:1457–1467, 09 2005.

[Bré79] Daniel Brélaz. New Methods to Color the Vertices of a Graph.

Commun. ACM, 22(4):251–256, April 1979.

[BS90] H. Bunke and A. Sanfeliu. Syntactic and Structural Pattern Recog-

nition: Theory and Applications. World Scientific Pub Co Inc, 1990.

[BT97] Tobias Blickle and Lothar Thiele. A Comparison of Selection

Schemes used in Evolutionary Algorithms. Evolutionary Compu-

tation, 4:361–394, 1997.

[CdlHJ10] David Combe, Colin de la Higuera, and Jean-Christophe Janodet.

Zulu: An Interactive Learning Competition. In Anssi Yli-Jyrä,

András Kornai, Jacques Sakarovitch, and Bruce Watson, editors,

273



Finite-State Methods and Natural Language Processing, pages 139–

146, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[CDM91] Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo. Distributed

Optimization by Ant Colonies. 01 1991.

[CF03] François Coste and Daniel Fredouille. What is the Search Space for

the Inference of Non Deterministic, Unambiguous and Deterministic

Automata? Research Report RR-4907, INRIA, 2003.

[CFV12] Christophe Costa Florêncio and Sicco Verwer. Regular inference as

vertex coloring. In Nader H. Bshouty, Gilles Stoltz, Nicolas Vay-

atis, and Thomas Zeugmann, editors, Algorithmic Learning Theory,

pages 81–95, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[Che92] Pang C. Chen. Heuristic Sampling: A Method for Predicting

the Performance of Tree Searching Programs. SIAM J. Comput.,

21(2):295–315, April 1992.

[Cho56] Noam Chomsky. Three Models for the Description of Language.

IRE Transactions on Information Theory, 2:113–124, 1956.

[Cic02] Orlando Cicchello. A New Limited Search Approach to Learning

Abbadingo-Style Finite State Automata. Master’s thesis, The Fac-

ulty of Graduate Studies, University of Guelph, 2002.

[CK02] Orlando Cicchello and Stefan C. Kremer. Beyond EDSM. In

Pieter W. Adriaans, Henning Fernau, and Menno van Zaanen, ed-

itors, ICGI, volume 2484 of Lecture Notes in Computer Science,

pages 37–48. Springer, 2002.

[CK03] Orlando Cicchello and Stefan C. Kremer. Inducing Grammars from

Sparse Data Sets: A Survey of Algorithms and Results. J. Mach.

Learn. Res., 4:603–632, December 2003.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to Algorithms, Third Edition. The MIT

Press, 3rd edition, 2009.

274



[CN97] François Coste and Jacques Nicolas. Regular Inference as a Graph

Coloring Problem. In In Workshop on Grammar Inference, Au-

tomata Induction, and Language Acquisition (ICML’ 97, pages 9–7,

1997.

[CN98] François Coste and Jacques Nicolas. Inference of Finite Automata:

Reducing the Search Space with an Ordering of Pairs of States. In

Claire Nédellec and Céline Rouveirol, editors, Machine Learning:

ECML-98, pages 37–42, Berlin, Heidelberg, 1998. Springer Berlin

Heidelberg.

[CRML73] S. Crespi-Reghizzi, M.A. Melkanoff, and L. Lichten. The Use

of Grammatical Inference for Designing Programming Languages.

Communications of the ACM, 16(2):83–90, 1973.

[CSSM89] Axel Cleeremans, David Servan-Schreiber, and James L. McClel-

land. Finite State Automata and Simple Recurrent Networks. Neu-

ral Comput., 1(3):372–381, September 1989.

[CU12] Daniil Chivilikhin and Vladimir Ulyantsev. Learning Finite-State

Machines with Ant Colony Optimization. In Marco Dorigo, Mauro

Birattari, Christian Blum, Anders Lyhne Christensen, Andries P.

Engelbrecht, Roderich Groß, and Thomas Stützle, editors, Swarm

Intelligence, pages 268–275, Berlin, Heidelberg, 2012. Springer

Berlin Heidelberg.

[CV11] B. Cloteaux and L. Valentin. Counting the Leaves of Trees. Con-

gressus Numerantium, 207:129–139, 2011.

[Die00] Thomas G. Dietterich. Ensemble methods in machine learning. In

Multiple Classifier Systems, pages 1–15, Berlin, Heidelberg, 2000.

Springer Berlin Heidelberg.

[DJA08] A. Dubey, P. Jalote, and S. K. Aggarwal. Learning Context-free

Grammar Rules from a Set of Programs. IET Software, 2(3):223–

240, June 2008.

275



[dlH05] Colin de la Higuera. A Bibliographical Study of Grammatical In-

ference. Pattern Recogn., 38(9):1332–1348, September 2005.

[dlH10] Colin de la Higuera. Grammatical Inference: Learning Automata

and Grammars. Cambridge University Press, New York, NY, USA,

2010.

[DMV94] P. Dupont, L. Miclet, and E. Vidal. What is the Search Space of

the Regular Inference? In Rafael C. Carrasco and Jose Oncina, edi-

tors, Grammatical Inference and Applications, volume 862 of Lecture

Notes in Computer Science, pages 25–37. Springer Berlin Heidel-

berg, 1994.

[Dup94] Pierre Dupont. Regular Grammatical Inference from Positive and

Negative Samples by Genetic Search: the GIG Method, pages 236–

245. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

[Dup96] Pierre Dupont. Incremental Regular Inference. In Proceedings of

the Third ICGI-96, pages 222–237. Springer, 1996.

[EFT96] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.

Undergraduate Texts in Mathematics. Springer New York, 1996.

[FB75] King-Sun Fu and Taylor L. Booth. Grammatical Inference: Intro-

duction and Survey. IEEE Transactions on SMC, 5:409–423, 1975.

[FK05] David Furcy and Sven Koenig. Limited Discrepancy Beam Search.

In Proceedings of the 19th International Joint Conference on Ar-

tificial Intelligence, IJCAI’05, pages 125–131, San Francisco, CA,

USA, 2005. Morgan Kaufmann Publishers Inc.

[For64] G. E. Forsythe. Algorithms. Commun. ACM, 7(6):347–349, June

1964.

[GEC04] GECCO: Learning DFAs from Noisy Samples. http://cswww.

essex.ac.uk/staff/sml/gecco/NoisyDFA.html, 2004.

276

http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html
http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html


[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness. W. H. Freeman &

Co., New York, NY, USA, 1979.

[GLVdP12] Pedro Garćıa, Damián López, and Manuel Vázquez de Parga. Poly-

nomial Characteristic Sets for DFA Identification. Theoretical Com-

puter Science, 448:41 – 46, 2012.

[GoL] The Go Programming Language. https://golang.org. Accessed:

2019-06-06.

[Gol67] E. Mark Gold. Language Identification in the Limit. Information

and Control, 10(5):447–474, 1967.

[Gol78] E. Mark Gold. Complexity of Automaton Identification from Given

Data. Inf. Control., 37(3):302–320, 1978.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization

and Machine Learning. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1st edition, 1989.

[Gow98] The Gowachin DFA Learning Benchmark. http://www.irisa.fr/

Gowachin/, 1998. Accessed: 2017-05-19.

[Grü04] Peter Grünwald. A Tutorial Introduction to the Minimum Descrip-

tion Length Principle. ArXiv, math.ST/0406077, 2004.

[GSC+90] C Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and

Dong Chen. Higher Order Recurrent Networks and Grammatical

Inference. In Advances in Neural Information Processing Systems,

pages 380–387, 1990.

[GSVG90] Pedro Garćıa, Encarna Segarra, Enrique Vidal, and Isabel Galiano.

On the use of the Morphic Generator Grammatical Inference

(MGGI) Methodology in Automatic Speech Recognition. Inter-

national Journal of Pattern Recognition and Artificial Intelligence,

04(04):667–685, 1990.

277

https://golang.org
http://www.irisa.fr/Gowachin/
http://www.irisa.fr/Gowachin/


[GVdPLR10] Pedro Garćıa, Manuel Vázquez de Parga, Damián López, and José

Ruiz. Learning Automata Teams. In José M. Sempere and Pe-

dro Garćıa, editors, Grammatical Inference: Theoretical Results and

Applications, pages 52–65, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg.

[Hal60] Paul Halmos. Naive Set Theory. Van Nostrand, 1960. Reprinted by

Springer-Verlag, Undergraduate Texts in Mathematics, 1974.

[HBS03] Amaury Habrard, Marc Bernard, and Marc Sebban. Improvement

of the State Merging Rule on Noisy Data in Probabilistic Gram-

matical Inference. In Proceedings of the 14th European Conference

on Machine Learning, ECML’03, pages 169–180, Berlin, Heidelberg,

2003. Springer-Verlag.

[HDB96] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural

Network Design. PWS Publishing Co., Boston, MA, USA, 1996.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-

duction to Automata Theory, Languages and Computation. Pearson

Addison-Wesley, Upper Saddle River, NJ, 3 edition, 2007.

[HV10] Marijn J. H. Heule and Sicco Verwer. Exact DFA Identification

Using SAT Solvers, pages 66–79. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[HV13] Marijn J. H. Heule and Sicco Verwer. Software Model Synthe-

sis using Satisfiability Solvers. Empirical Software Engineering,

18(4):825–856, 2013.

[JP98a] Hugues Juillé and Jordan B. Pollack. A Sampling-based Heuris-

tic for Tree Search Applied to Grammar Induction. In Proceed-

ings of the Fifteenth National/Tenth Conference on Artificial In-

telligence/Innovative Applications of Artificial Intelligence, AAAI

’98/IAAI ’98, pages 776–783, Menlo Park, CA, USA, 1998. Ameri-

can Association for Artificial Intelligence.

278



[JP98b] Hugues Juillé and Jordan B. Pollack. A Stochastic Search Approach

to Grammar Induction. In ICGI, pages 126–137. Springer Verlag,

1998.

[Kel95] Dean Kelley. Automata and Formal Languages: An Introduction.

Prentice Hall, 1995.

[Knu74] Donald E. Knuth. Estimating the Efficiency of Backtrack Programs.

Technical report, Stanford, CA, USA, 1974.

[Lan98] Kevin J. Lang. Evidence Driven State Merging with Search, 1998.

[Lan99] Kevin J. Lang. Faster Algorithms for Finding Minimal Consistent

DFAs. Technical report, 1999.

[LDD08] Bernard Lambeau, Christophe Damas, and Pierre Dupont. State-

Merging DFA Induction Algorithms with Mandatory Merge Con-

straints, pages 139–153. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2008.

[LG16] Damián López and Pedro Garćıa. On the Inference of Finite State

Automata from Positive and Negative Data, pages 73–112. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2016.

[Lin01] Peter Linz. An Introduction to Formal Languages and Automata.

Jones & Bartlett Publishers, 2001.

[LPP98] Kevin Lang, Barak Pearlmutter, and Rodney Price. Results of the

Abbadingo One DFA Learning Competition and a New Evidence-

Driven State Merging Algorithm, 1998.

[LR03] Simon M. Lucas and T. Jeff Reynolds. Learning DFA: Evolution

Versus Evidence Driven State Merging. In Proceedings of the IEEE

Congress on Evolutionary Computation, CEC 2003, 8 - 12 Decem-

ber 2003, Canberra, Australia, pages 351–358, 2003.

279



[LR05] S. M. Lucas and T. J. Reynolds. Learning Deterministic Finite

Automata with a Smart State Labeling Evolutionary Algorithm.

2005.

[Mar09] Victor W. Marek. Introduction to Mathematics of Satisfiability.

Chapman & Hall/CRC, 1st edition, 2009.

[Mic86] Laurent Miclet. Structural Methods in Pattern Recognition.

Springer-Verlag, 1986.

[OE96] Arlindo L. Oliveira and Stephen Edwards. Limits of Exact Algo-

rithms for Inference of Minimum Size Finite State Machines. In

Setsuo Arikawa and Arun K. Sharma, editors, Algorithmic Learn-

ing Theory, pages 59–66, Berlin, Heidelberg, 1996. Springer Berlin

Heidelberg.

[OG92] Jose Oncina and Pedro Garćıa. Identifying Regular Languages In

Polynomial Time. In Advances in Structural and Syntactic Pattern

Recognition, Volume 5 of the Series in Machine Perception and Ar-

tificial Intelligence, pages 99–108. World Scientific, 1992.

[OG02] Jose Oncina and Pedro Garćıa. A Polynomial Algorithm To Infer

Regular Languages. 08 2002.

[OMS98] Arlindo L. Oliveira and Joao P. Marques-Silva. Efficient Search

Techniques for the Inference of Minimum Size Finite Automata. In

In Proceedings of the 1998 South American Symposium on String

Processing and Information Retrieval, Santa Cruz de La Sierra,

pages 81–89. IEEE Computer Society Press, 1998.

[PAu12] Probabilistic Automata Learning Competition. http://ai.

cs.umbc.edu/icgi2012/challenge/Pautomac/, 2012. Accessed:

2019-10-10.

[PCD19] Mateusz Pyzik, François Coste, and Witold Dyrka. How to mea-

sure the topological quality of protein parse trees? In Olgierd Un-

old, Witold Dyrka, and Wojciech Wieczorek, editors, Proceedings of

280

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/
http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/


The 14th International Conference on Grammatical Inference 2018,

volume 93 of Proceedings of Machine Learning Research, pages 118–

138. PMLR, feb 2019.

[Pic] PicoSAT Solver. http://fmv.jku.at/picosat/. Accessed: 2017-

05-19.

[Pit89] Leonard Pitt. Inductive Inference, DFAs, and Computational Com-

plexity. In Proceedings of the International Workshop on Analogical

and Inductive Inference, AII ’89, pages 18–44, London, UK, UK,

1989. Springer-Verlag.

[PLM08] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee.

A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd,

2008.

[Pur78] Paul W Purdom. Tree Size by Partial Backtracking. SIAM Journal

on Computing, 7(4):481–491, 1978.

[Rie99] A. Rieger. Inferring Probabilistic Automata from Sensor Data for

Robot Navigation. Forschungsberichte des Lehrstuhls VIII, Fach-

bereich Informatik der Universität Dortmund. 1999.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Pearson Education, 2 edition, 2003.

[RS93] R.L. Rivest and R.E. Schapire. Inference of Finite Automata Using

Homing Sequences. Information and Computation, 103(2):299 –

347, 1993.

[Rum13] Wheeler Ruml. Greedy search, with an example. https://www.

youtube.com/watch?v=9Vx0m-YiCWg, 2013. Accessed: 2019-12-30.

[SB07] Hooman Shayani and Peter J. Bentley. A More Bio-plausible Ap-

proach to the Evolutionary Inference of Finite State Machines. In

Proceedings of the 9th Annual Conference Companion on Genetic

and Evolutionary Computation, GECCO ’07, pages 2937–2944, New

York, NY, USA, 2007. ACM.

281

http://fmv.jku.at/picosat/
https://www.youtube.com/watch?v=9Vx0m-YiCWg
https://www.youtube.com/watch?v=9Vx0m-YiCWg


[SBH+94] Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira

Mian, Kimmen Sjölander, Rebecca C. Underwood, and David Haus-

sler. Stochastic Context-Free Grammars for tRNA modeling. Nu-

cleic Acids Research, 22:5112–5120, 1994.

[SC14] Andrew Stevenson and James R. Cordy. A Survey of Grammat-

ical Inference in Software Engineering. Sci. Comput. Program.,

96(P4):444–459, December 2014.

[Spi04] Sandro Spina. Merge Interactions – A New Heuristic for Automata

Learning. Master’s thesis, Department of Computer Science and

A.I., Faculty of Science, University of Malta, 2004.

[SPI16] The Sequence PredictIction ChallengE (SPiCe). https://spice.

lis-lab.fr, 2016. Accessed: 2019-10-10.

[SQL] SQLite. https://www.sqlite.org. Accessed: 2019-12-30.

[SZE06] Bradford Starkie, Menno Zaanen, and Dominique Estival. The

Tenjinno Machine Translation Competition. In Yasubumi Sakak-

ibara, Satoshi Kobayashi, Kengo Sato, Tetsuro Nishino, and Etsuji

Tomita, editors, Grammatical Inference: Algorithms and Applica-

tions, pages 214–226. Springer Berlin Heidelberg, 09 2006.

[TB73] B. A. Trakhtenbrot and Ya. M. Barzdin. Finite Automata, Behavior

and Synthesis. North Holland, Amsterdam, 1973.

[TDH00] Franck Thollard, Pierre Dupont, and Colin de la Higuera. Proba-

bilistic DFA Inference Using Kullback-Leibler Divergence and Min-

imality. In Proceedings of the Seventeenth International Conference

on Machine Learning, ICML ’00, pages 975–982, San Francisco, CA,

USA, 2000. Morgan Kaufmann Publishers Inc.

[TE11] Fedor Tsarev and Kirill Egorov. Finite State Machine Induction

Using Genetic Algorithm Based on Testing and Model Checking. In

Proceedings of the 13th Annual Conference Companion on Genetic

282

https://spice.lis-lab.fr
https://spice.lis-lab.fr
https://www.sqlite.org


and Evolutionary Computation, GECCO ’11, page 759–762, New

York, NY, USA, 2011. Association for Computing Machinery.

[Tom82] M. Tomita. Dynamic Construction of Finite Automata from Ex-

amples using Hill-Climbing. In Proceedings of the Fourth Annual

Conference of the Cognitive Science Society, pages 105–108, Ann

Arbor, Michigan, 1982.

[Tsa10] F. Tsarev. Method of Finite-state Machine Induction from Tests

with Genetic Programming. pages 31–36, 2010.

[VdWW12] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. Efficiently

Identifying Deterministic Real-time Automata from Labeled Data.

Machine Learning, 86(3):295–333, 2012.

[VEdlH14] Sicco Verwer, Rémi Eyraud, and Colin de la Higuera. PAutomaC: a

Probabilistic Automata and Hidden Markov Models Learning Com-

petition. Machine Learning, 96(1):129–154, 2014.

[WBD+10] Neil Walkinshaw, Kirill Bogdanov, Christophe Damas, Bernard

Lambeau, and Pierre Dupont. A framework for the competitive

evaluation of model inference techniques. In Proceedings of the First

International Workshop on Model Inference In Testing, MIIT ’10,

page 1–9, New York, NY, USA, 2010. Association for Computing

Machinery.

[Wie17] Wojciech Wieczorek. Grammatical Inference - Algorithms, Routines

and Applications, volume 673 of Studies in Computational Intelli-

gence. Springer, 2017.

[WK91] Raymond L. Watrous and Gary M. Kuhn. Induction of Finite-state

Automata Using Second-order Recurrent Networks. In Proceedings

of the 4th International Conference on Neural Information Process-

ing Systems, NIPS’91, pages 309–316, San Francisco, CA, USA,

1991. Morgan Kaufmann Publishers Inc.

283



[WM96] David Wolpert and William Macready. No Free Lunch Theorems

for Search. 1996.

[WM97] D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for

Optimization. Trans. Evol. Comp, 1(1):67–82, April 1997.

[Wol15] Mark A. Wolters. A Genetic Algorithm for Selection of Fixed-Size

Subsets with Application to Design Problems. Journal of Statistical

Software, 68(c01), 2015.

[WRS+99] Jason Tsong-Li Wang, Steve Rozen, Bruce A. Shapiro, Dennis E.

Shasha, Zhiyuan Wang, and Maisheng Yin. New Techniques for

DNA Sequence Classification. Journal of Computational Biology,

6(2):209–218, 1999.

[YH98] Jihoon Yang and Vasant G. Honavar. Feature Subset Selection Us-

ing a Genetic Algorithm. IEEE Intelligent Systems, 13(2):44–49,

March 1998.

[ZGS93] Zheng Zeng, Rodney M. Goodman, and Padhraic Smyth. Learn-

ing Finite State Machines With Self-Clustering Recurrent Networks.

Neural Computation, 5(6):976–990, 1993.

[ZH05] Rong Zhou and Eric A. Hansen. Beam-Stack Search: Integrating

Backtracking with Beam Search, 2005.

284



Appendix A

Complete Results

In this appendix, we aggregate the results across several thousands of problem

instances for 32, 64, and 128-state target DFAs at a training set density of 1.

Running the genetic algorithm on 128-state target DFAs and larger is impractical,

so GA results are only available for target DFAs having 32 and 64 states. Ad-

versarial setups for 32-state target DFA problems are also shown here. For quick

reference, the captions of the subsections and tables in this appendix correspond

to the SQLite file names included in the media accompanying this dissertation.

General notes regarding the problem instances in this appendix:

• Abbadingo One does not specify density values for 32-state problems (the

number of strings in the training set). To obtain this, we experimentally

identify the percentage of the total 16n2−1 strings which would give roughly

the same EDSM performance as that for 64-state problems at density 1. This

corresponds to 607 training strings.

• Per the Abbadingo method, we may request a target of size n but get one

close to n instead. All target DFAs in our experiments will have exactly the

number of states n requested. The Abbadingo construction depth require-

ment of (2 log2 n− 2) will always be honoured.

• All training sets will be symmetrically structurally complete with respect to

the target. Cases when the training set is not symmetrically structurally

complete are tabulated separately.

285



• Unless otherwise specified, the proportion of positive and negative strings

in any training set will not be allowed to differ by more than 20%. This

will avoid pathological cases where a training set would be overwhelmed by

strings of a single class.

• All training sets are at Abbadingo density 1.

• Testings sets will consist of 1,800 strings which do not appear in the training

set.

A.1 Glossary of Heuristics

EDSM Reference EDSM implementation [LPP98].

W-EDSM Reference EDSM implementation with windowing as de-

scribed in [LPP98].

Reduction Selects merges which reduce the size of the current hy-

pothesis most.

W-Reduction Same as reduction but with windowing.

EDSM-TieCC Reference EDSM where an Oracle breaks ties by select-

ing a colour-compatible merge if it exists.

W-EDSM-TieCC Reference W-EDSM where an Oracle breaks ties by se-

lecting a colour-compatible merge if it exists.

Full-EDSM Reference EDSM where an Oracle fully labels the states

in the starting APTA.

Col-EDSM Reference EDSM where an Oracle fully colours each

state in the starting APTA.

FullCol-EDSM Reference EDSM where an Oracle fully labels and

colours colours each state in the starting APTA.

286



Colk-EDSM+W-

EDSM

An Oracle selects the highest EDSM scoring colour-

compatible merge for the first k merge steps, then pro-

ceeds with W-EDSM.

Colk-W-EDSM+W-

EDSM

An Oracle selects the highest W-EDSM scoring colour-

compatible merge for the first k merge steps, then pro-

ceeds with W-EDSM.

E/WE/R/WR Best of EDSM, W-EDSM, Reduction, and W-

Reduction.

A1/A2/. . . Best of the A1 . . . L3 ensemble heuristics.

E/WE/R/WR/A1/. . .Best of EDSM, W-EDSM, Reduction, W-Reduction and

the A1 . . . L3 ensemble heuristics.

GFirst/δ/α/β/b/f Delta Graph where only the first colour-compatible leaf

is expanded and δ is the depth of the graph, α, β are

the minimum reduction and minimum EDSM score to

build the APTA reduction table with, b is the branching

factor, and f is the branching limit.

Graph/δ/α/β/b/f Delta Graph where δ is the depth of the graph, α, β are

the minimum reduction and minimum EDSM score to

build the APTA reduction table with, b is the branching

factor, and f is the branching limit.

Random Randomly selects valid merges at each step to construct

a path (random search).

Blind/n32/v1 ‘Blind’ GA on 32-state target DFAs at density 1. Par-

ents are randomly (blindly) selected for mating without

using a fitness function. Starting pop. size = 100, final

pop. size = 5000, chrom. length = 8, α = 25, β = 1,

mutation rate = 1%.

287



GA/n32/v1 GA on 32-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 8,

tournament size = 5, α = 25, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n32/v2 Best of two runs of GA/n32/v1.

GA/n32/v3 GA on 32-state target DFAs at density 1. Pop. size

= 200, max. generations = 100, chrom. length = 8,

tournament size = 5, α = 25, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v1 GA on 64-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 8,

tournament size = 5, α = 25, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v2 GA on 64-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 8,

tournament size = 5, α = 60, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v3 GA on 64-state target DFAs at density 1. Pop. size

= 100, max. generations = 50, chrom. length = 6,

tournament size = 5, α = 60, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

GA/n64/v4 Best of GA/n64/v1, v2, and v3.

GA/n64/v5 GA on 64-state target DFAs at density 1. Pop. size

= 200, max. generations = 50, chrom. length = 6,

tournament size = 5, α = 60, β = 1, crossover = 80%,

mutation = 1%, and elite = 10%.

288



A.2 32-State Target DFA Instances

A.2.1 n32d607e1024.sqlite

Table A.2 shows the baseline, Oracle-assisted, first-merge assisted, ensemble, and

Delta Graph results obtained over 1024 problem instances having symmetrically

structurally complete training data.

1024 Experiments, n32d607e1024.sqlite

32-State Target, 607 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 15.7% 19.6% 4.3% 75 90

W-EDSM 14.1% 17.78% 3.6% 77 92

Reduction 6.1% 7.7% 1.8% 88 97

W-Reduction 5.9% 7.8% 1.3% 89 99

Oracle-Assisted

EDSM-TieCC 25.5% 26.4% 16.6% 71 88

Full-EDSM 98.9% 99.5% 56.1% 32 32

Col-EDSM 100% 100% 100% 32 32

FullCol-EDSM 100% 100% 100% 32 32

Getting the First Steps Right, Oracle-Assisted

Col01-EDSM+W-EDSM 20% 25.9% 4.8% 69 84

Col02-EDSM+W-EDSM 28.8% 37.1% 8.1% 60 49

Col03-EDSM+W-EDSM 31.7% 41.3% 8.5% 54 38

Col04-EDSM+W-EDSM 39.1% 50.4% 9.9% 48 33

Col05-EDSM+W-EDSM 43.4% 57.9% 11.9% 43 32

Col06-EDSM+W-EDSM 51.2% 64.1% 14.8% 40 32

Col07-EDSM+W-EDSM 51.4% 66.6% 15.5% 38 32

Col08-EDSM+W-EDSM 54.9% 71.3% 17.3% 36 32

Ensemble

E/WE/R/WR 21.8% 24.7% 6.8% 71 88

A1/A2/. . . 28.4% 30.3% 13.4% 67 83

E/WE/R/WR/A1/. . . 29.5% 31.5% 14% 66 82

Delta Graph, First CC Variant

289



GFirst/3/25/1/6/3 28.9% 38.6% 7.3% 59 46

GFirst/3/25/1/12/3 31.3% 42.4% 8.8% 55 38

GFirst/4/25/1/10/3 35.3% 46.6% 9.6% 52 34

Delta Graph

Graph/3/25/1/6/3 40.1% 52.2% 10.4% 55 33

Graph/3/25/1/12/3 50.7% 65.2% 14.4% 47 32

Graph/4/25/1/10/3 49% 62.2% 13.6% 49 32

Table A.2: Aggregated results from n32d607e1024.sqlite.

A.2.2 n32d607e128 GA.sqlite

Table A.3 shows the genetic algorithm results obtained over 128 problem instances

having symmetrically structurally complete training data.

128 Experiments, n32d607e128 GA.sqlite

32-State Target, 607 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline and Genetic Algorithm

EDSM 16.4% 21.1% 3.9% 72 86

Random 0% 0% 0% 776 776

Blind/n32/v1 0% 0% 0% 81 81

GA/n32/v1 46.9% 63.3% 9.4% 39 32

GA/n32/v2 62.5% 80.5% 16.4% 35 32

GA/n32/v3 68.8% 87.5% 16.4% 34 32

Table A.3: Aggregated results from n32d607e128 GA.sqlite.

A.2.3 n32d607e512 EdsmFailing.sqlite

Table A.4 shows the baseline, Oracle-assisted, ensemble, and Delta Graph results

obtained over 512 problem instances having adversarial training data which is

symmetrically structurally complete but none of the first merge ties contain any

colour-compatible merges.

290



Adversarial Setup, 512 Experiments, n32d607e512 EdsmFailing.sqlite

32-State Target, 607 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 0.2% 0.2% 0% 92 93

W-EDSM 0.2% 0.2% 0% 94 96

Reduction 1.6% 2.3% 0.2% 96 98

W-Reduction 1.6% 2% 0.2% 97 100

Oracle-Assisted

EDSM-TieCC 0.4% 0.2% 0% 91 93

FullCol-EDSM 100% 100% 95.9% 32 32

Ensemble

E/WE/R/WR 1.8% 2.3% 0.4% 89 92

A1/A2/. . . 3.5% 3.9% 0.6% 85 90

E/WE/R/WR/A1/. . . 3.5% 4.1% 1% 85 90

Delta Graph

Graph/3/25/1/6/3 20.9% 31.4% 4.1% 71 92

Graph/3/25/1/12/3 35.4% 50.6% 5.1% 56 34

Graph/4/25/1/10/3 32.6% 46.5% 5.5% 59 35

Table A.4: Aggregated results from n32d607e512 EdsmFailing.sqlite.

A.2.4 n32d607e64 EdsmFailing.sqlite

Table A.5 shows the baseline, Oracle-assisted, ensemble, Delta Graph, and genetic

algorithm results obtained over 64 problem instances having adversarial training

data which is symmetrically structurally complete but none of the first merge ties

contain any colour-compatible merges.

291



Note

The problem instances in this section are created and evaluated in exactly the

same way as those in the previous section. The only difference is that there

are 64 problem instances rather than 512 to accommodate for the fact that

the genetic algorithms take much longer to run.

Adversarial Setup, 64 Experiments, n32d607e64 EdsmFailing.sqlite

32-State Target, 607 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 0% 0% 0% 90 92

W-EDSM 0% 0% 0% 93 95

Reduction 0% 0% 0% 96 99

W-Reduction 0% 0% 0% 97 100

Oracle-Assisted

EDSM-TieCC 0% 0% 0% 90 94

FullCol-EDSM 100% 100% 100% 32 32

Ensemble

E/WE/R/WR 0% 0% 0% 88 91

A1/A2/. . . 1.6% 3.1% 1.6% 84 89

E/WE/R/WR/A1/. . . 1.6% 3.1% 1.6% 83 88

Delta Graph

Graph/3/25/1/6/3 23.4% 39.1% 4.7% 67 91

Graph/3/25/1/12/3 37.5% 59.4% 15.6% 51 32

Graph/4/25/1/10/3 39.1% 54.7% 9.4% 57 32

Genetic Algorithm

GA/n32/v1 42.2% 56.3% 7.8% 43 32

GA/n32/v2 62.5% 79.7% 18.8% 37 32

Table A.5: Aggregated results from n32d607e64 EdsmFailing.sqlite.

292



A.2.5 n32d607e512 NotStructComp.sqlite

Table A.6 shows the baseline, ensemble, and Delta Graph results obtained over

512 problem instances having adversarial training data which is not symmetrically

structurally complete.

Adversarial Setup, 512 Experiments, n32d607e512 NotStructComp.sqlite

32-State Target, 607 Strings, Not Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 8.4% 15.2% 0% 76 90

W-EDSM 9.6% 14.1% 0% 78 91

Reduction 2.3% 5.3% 0% 91 97

W-Reduction 2.5% 4.7% 0% 92 99

Ensemble

E/WE/R/WR 12.9% 18.9% 0% 72 87

A1/A2/. . . 16.8% 21.7% 0% 70 85

E/WE/R/WR/A1/. . . 18.2% 23.2% 0% 68 83

Delta Graph

Graph/3/25/1/6/3 25.2% 41.8% 0% 58 35

Graph/3/25/1/12/3 34.2% 57.6% 0% 48 32

Graph/4/25/1/10/3 31.8% 53.9% 0% 51 32

Table A.6: Aggregated results from n32d607e512 NotStructComp.sqlite.

A.2.6 n32d607e64 NotStructComp.sqlite

Table A.7 shows the baseline, ensemble, Delta Graph, and genetic algorithm re-

sults obtained over 64 problem instances on adversarial training data which is not

symmetrically structurally complete.

293



Note

The problem instances in this section are created and evaluated in exactly the

same way as those in the previous section. The only difference is that there

are 64 problem instances rather than 512 to accommodate for the fact that

the genetic algorithms take much longer to run.

Adversarial Setup, 64 Experiments, n32d607e64 NotStructComp.sqlite

32-State Target, 607 Strings, Not Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 9.4% 14.1% 0% 75 86

W-EDSM 10.9% 15.6% 0% 76 89

Reduction 3.1% 4.7% 0% 90 97

W-Reduction 3.1% 4.7% 0% 91 98

Ensemble

E/WE/R/WR 15.6% 20.3% 0% 70 84

A1/A2/. . . 20.3% 25% 0% 67 77

E/WE/R/WR/A1/. . . 21.9% 25% 0% 65 75

Delta Graph

Graph/3/25/1/6/3 28.1% 50% 0% 52 32

Graph/3/25/1/12/3 35.9% 62.5% 0% 43 32

Graph/4/25/1/10/3 34.4% 57.8% 0% 47 32

Genetic Algorithm

GA/n32/v1 40.6% 57.8% 0% 41 32

GA/n32/v2 56.3% 73.4% 0% 36 32

Table A.7: Aggregated results from n32d607e64 NotStructComp.sqlite.

A.2.7 n32d607e512 NoLoops.sqlite

Table A.8 shows the baseline, ensemble, and Delta Graph results obtained over

512 problem instances having adversarial training data where none of the target

DFAs have any loop transitions.

294



Adversarial Setup, 512 Experiments, n32d607e512 NoLoops.sqlite

32-State Target, 607 Strings

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 8% 13.5% 2% 82 92

W-EDSM 8.4% 13.1% 1.2% 83 95

Reduction 3.3% 5.1% 0.6% 93 99

W-Reduction 2.7% 4.9% 0.4% 94 100

Ensemble

E/WE/R/WR 12.3% 16.6% 2.3% 78 91

A1/A2/. . . 20.3% 22.5% 6.8% 74 89

E/WE/R/WR/A1/. . . 20.5% 22.7% 6.8% 73 88

Delta Graph

Graph/3/25/1/6/3 29.3% 42.6% 7.4% 63 41

Graph/3/25/1/12/3 41.8% 57.4% 9.2% 51 32

Graph/4/25/1/10/3 38.9% 54.3% 7% 54 32

Table A.8: Aggregated results from n32d607e512 NoLoops.sqlite.

A.2.8 n32d607e64 NoLoops.sqlite

Table A.9 shows the baseline, ensemble, Delta Graph, and genetic algorithm re-

sults obtained over 64 problem instances having adversarial training data where

none of the target DFAs have any loop transitions.

Note

The problem instances in this section are created and evaluated in exactly the

same way as those in the previous section. The only difference is that there

are 64 problem instances rather than 512 to accommodate for the fact that

the genetic algorithms take much longer to run.

295



Adversarial Setup, 64 Experiments, n32d607e64 NoLoops.sqlite

32-State Target, 607 Strings

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 6.3% 6.3% 0% 84 92

W-EDSM 6.3% 6.3% 0% 89 96

Reduction 1.6% 1.6% 0% 97 99

W-Reduction 1.6% 1.6% 0% 98 101

Ensemble

E/WE/R/WR 6.3% 6.3% 0% 81 92

A1/A2/. . . 15.6% 15.6% 7.8% 77 90

E/WE/R/WR/A1/. . . 15.6% 15.6% 7.8% 77 90

Delta Graph

Graph/3/25/1/6/3 26.6% 46.9% 4.7% 61 35

Graph/3/25/1/12/3 43.8% 60.9% 7.8% 49 32

Graph/4/25/1/10/3 42.2% 56.3% 9.4% 54 32

Genetic Algorithm

GA/n32/v1 37.5% 45.3% 4.7% 46 36

GA/n32/v2 46.9% 62.5% 7.8% 41 32

Table A.9: Aggregated results from n32d607e64 NoLoops.sqlite.

A.3 64-State Target DFA Instances

A.3.1 n64d1e1024.sqlite

Table A.10 shows the baseline, Oracle-assisted, first-merge assisted, ensemble, and

Delta Graph results obtained over 1024 problem instances having symmetrically

structurally complete training data.

296



1024 Experiments, n64d1e1024.sqlite

64-State Target, 1,521 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 15.2% 17.7% 0.6% 162 200

W-EDSM 13.8% 16.5% 0.5% 170 207

Reduction 2.4% 3% 0.1% 204 219

W-Reduction 2.5% 2.8% 0.1% 205 221

Oracle-Assisted

EDSM-TieCC 24% 22.3% 9.2% 154 199

Full-EDSM 100% 98.6% 31.3% 64 64

Col-EDSM 100% 100% 100% 64 64

FullCol-EDSM 100% 100% 100% 64 64

Getting the First Steps Right, Oracle-Assisted

Col01-EDSM+W-EDSM 19% 21% 1.3% 159 205

Col02-EDSM+W-EDSM 22.9% 26.7% 0.8% 144 172

Col03-EDSM+W-EDSM 27.4% 29.7% 1.2% 132 113

Col04-EDSM+W-EDSM 32.8% 35% 1.7% 121 86

Col05-EDSM+W-EDSM 36.3% 38.3% 2% 110 76

Col06-EDSM+W-EDSM 40.6% 43% 1.7% 102 67

Col07-EDSM+W-EDSM 43.8% 44.4% 1.2% 96 66

Col08-EDSM+W-EDSM 47.5% 49.2% 2.5% 89 65

Ensemble

E/WE/R/WR 19% 20.7% 1% 158 199

A1/A2/. . . 24.3% 24.5% 4.1% 149 193

E/WE/R/WR/A1/. . . 25.8% 25.9% 4.2% 147 193

Delta Graph, First CC Variant

GFirst/3/60/1/12/3 27.3% 30.6% 1.7% 133 111

GFirst/4/60/1/10/3 31.2% 33.1% 1% 128 98

Delta Graph

Graph/3/60/1/12/3 42.9% 47% 2.2% 113 65

Graph/4/60/1/10/3 40.1% 44.8% 1.7% 118 67

Table A.10: Aggregated results from n64d1e1024.sqlite.

297



A.3.2 n64d1e64 GA.sqlite

Table A.11 shows the genetic algorithm results obtained over 64 problem instances

having symmetrically structurally complete training data.

64 Experiments, n64d1e64 GA.sqlite

64-State Target, 1,521 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline and Genetic Algorithm

EDSM 12.5% 21.9% 1.6% 161 199

GA/n64/v1 17.2% 21.9% 0% 113 105

GA/n64/v2 14.1% 25% 1.6% 131 113

GA/n64/v3 26.6% 32.8% 1.6% 110 94

GA/n64/v4 37.5% 42.2% 3.1% 94 79

GA/n64/v5 56.3% 59.4% 4.7% 85.6 64

Table A.11: Aggregated results from n64d1e64 GA.sqlite.

A.3.3 n64d1e512 Unrestricted.sqlite

Table A.12 shows the results obtained over 512 problem instances where the tar-

get DFAs and the training sets are allowed to be created exactly following the

Abbadingo specifications without any restrictions. In other words, the training

data may be symmetrically structurally complete or not, it may result in APTAs

where the first rank EDSM scoring merges contain a colour-compatible merge or

not, the target DFAs may or may not contain loops, and we place no requirement

that the proportion of positive and negative strings in the training set is less than

or equal to 20%. The exact characteristics of this set of 512 problem instances are

shown in Table A.13 below.

298



512 Experiments, n64d1e512 Unrestricted.sqlite

64-State Target, 1,521 Strings

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

EDSM 12.1% 12.5% 0% 162 197

W-EDSM 9.8% 12.1% 0% 170 205

Reduction 1.4% 0% 0% 205 218

W-Reduction 1.6% 0% 0% 207 219

Ensemble

E/WE/R/WR 14.1% 15.4% 0% 159 196

A1/A2/. . . 19.5% 18.9% 1% 156 196

E/WE/R/WR/A1/. . . 20.3% 19.7% 1% 153 193

Delta Graph

Graph/3/60/1/12/3 34.2% 39.8% 0.2% 121 70

Graph/4/60/1/10/3 30.1% 35.6% 0.6% 128 77

Table A.12: Aggregated results from n64d1e512 Unrestricted.sqlite.

Characteristics of Unrestricted Experiments

64-State Target, 1,521 Strings, 512 Experiments

Property #Instances Likelihood

Training set is symmetrically structurally complete 212 of 512 41%

Training set is not symmetrically structurally complete 300 of 512 59%

CC merge exists in first EDSM rank in APTA 298 of 512 58%

No CC merge in first EDSM rank in APTA 214 of 512 42%

Target DFA contains loops 412 of 512 80%

Target DFA does not contain loops 100 of 512 20%

Proportion of +ve and -ve in training set ≤ 20% 383 of 512 75%

Proportion of +ve and -ve in training set > 20% 129 of 512 25%

Table A.13: Characteristics of the target DFAs and training data in

n64d1e512 Unrestricted.sqlite.

299



A.4 128-State Target DFA Instances

A.4.1 n128d1e512.sqlite

Table A.14 shows the baseline, Oracle-assisted, first-merge assisted, ensemble, and

Delta Graph results obtained over 512 problem instances having symmetrically

structurally complete training data.

512 Experiments, n128d1e512.sqlite

128-State Target, 4,382 Strings, Symmetrically Structurally Complete

Heuristic ≤ 1% Error ±1 Target Exact Mean Size Median Size

Baseline

W-EDSM 22.7% 15.4% 0% 377 511

W-Reduction 2% 1.6% 0% 519 558

Oracle-Assisted

W-EDSM-TieCC 27.5% 18.2% 7.4% 359 502

Getting the First Steps Right, Oracle-Assisted

Col01-W-EDSM+W-EDSM 23.2% 15.6% 0.4% 368 505

Col02-W-EDSM+W-EDSM 25.8% 17.6% 0.2% 345 406

Col03-W-EDSM+W-EDSM 30.5% 21.3% 0.4% 320 264

Col04-W-EDSM+W-EDSM 33.6% 23.6% 0.2% 296 213

Col05-W-EDSM+W-EDSM 38.5% 27.1% 0.8% 270 188

Col06-W-EDSM+W-EDSM 40.6% 27.7% 0.6% 256 173

Col07-W-EDSM+W-EDSM 43.4% 30.9% 0.8% 233 157

Col08-W-EDSM+W-EDSM 48% 33.2% 0.6% 207 146

Ensemble

WE/WR 23.2% 16.4% 0% 375 511

A1/A2/. . . 30.3% 22.9% 1.4% 342 455

WE/WR/A1/. . . 30.7% 23.4% 1.4% 340 521

Delta Graph, First CC Variant

GFirst/3/180/1/12/3 27.1% 18.6% 0% 341 388

GFirst/4/180/1/10/3 33.2% 23.6% 0.2% 309 241

Delta Graph

Graph/3/180/1/12/3 48.6% 38.1% 0.4% 272 140

Graph/4/180/1/10/3 47.3% 36.3% 0.4% 280 148

Graph/4/180/1/12/3 49.4% 39.1% 0.4% 275 134

Table A.14: Aggregated results from n128d1e512.sqlite.

300



Appendix B

State Reduction Rates

In this appendix, we consider 1024 problem instances having 64-state target DFAs

at the lowest Abbadingo density of 1,521 strings. We use the FullCol-EDSM

heuristic (see Section 7.3) to build merge paths leading to the exact target in

exactly n+ 1 merge steps (where n = 64 is the size of the target DFA). At each of

the n+ 1 = 65 merge steps, we show the minimum, maximum, and mean number

of states reduced over the 1024 runs. From these results, we observe that there is

an expected minimum number of states reduced at each merge step. For example,

we can see that for the first eight merge steps in the table (steps 0 to 7 delimited

by the dotted line), on average, merges having fewer than 200 states are never

considered.

1024 Experiments, Heuristic=FullCol-EDSM

64-State Target, 1,521 Strings

n+1 = 65 Merge Steps to Exact Target

Merge Step Minimum Maximum Mean

0 208 2539 749.19

1 171 2620 454.54

2 148 990 352.67

3 107 972 301.59

4 106 669 265.17

5 89 607 240.48

6 77 569 221.08

7 72 426 206.1

8 67 402 193.56

301



9 54 432 184.54

10 56 375 174.57

11 54 344 165.15

12 53 396 158.04

13 51 292 150.11

14 46 292 143.63

15 43 284 137.29

16 36 284 133.06

17 36 246 127.76

18 35 251 123.76

19 33 233 118.96

20 45 214 115.7

21 33 201 111.2

22 31 221 107.2

23 35 209 104.3

24 30 200 100.19

25 30 198 97.04

26 32 182 94.06

27 29 183 90.82

28 29 179 88.36

29 29 175 84.61

30 27 174 82.18

31 26 188 79.46

32 25 163 77.2

33 26 148 74.64

34 25 189 71.83

35 23 144 69.64

36 22 157 67.66

37 21 128 65

38 21 139 63.14

39 21 145 60.97

40 20 137 58.47

41 17 154 56.44

42 16 131 54.18

302



43 14 127 52.16

44 13 125 49.4

45 11 103 47.36

46 11 108 45.48

47 10 118 43.26

48 9 108 41.3

49 9 92 38.83

50 9 106 37.01

51 7 82 35.04

52 6 72 32.68

53 6 77 30.62

54 5 80 28.71

55 5 70 26.61

56 4 62 24.35

57 4 56 22.04

58 4 62 19.94

59 4 59 17.85

60 4 48 15.44

61 3 37 13.01

62 2 33 10.32

63 1 17 7.44

64 1 15 5.19

Table B.1: Minimum, maximum, and mean reduction of states at each merge step over

1024 experiments for 64-state target DFA problem instances.

303



Appendix C

State Space Search Algorithms

This appendix contains the pseudo-code for the state space search algorithms

described in Chapter 4.

Algorithm C.1 Depth-first search

Input: A tree T , root node s, and a goal node goal.

Output: A goal state, or not found.

1: S ← A new stack containing s // This is the open list.

2: while S 6= ∅ do

3: node ← S.pop()

4: if node = goal then

5: return goal // Or return the path to goal.

6: else

7: children ← node.expand()

8: S.push(children) // Push to the top of the stack.

9: end if

10: end while

11: return goal not found

304



Algorithm C.2 Breadth-first search

Input: A tree T , root node s, and a goal node goal.

Output: A goal state, or not found.

1: Q ← A new queue containing s

2: while Q 6= ∅ do

3: node ← Q.dequeue()

4: if node = goal then

5: return goal // Or return the path to goal.

6: else

7: children ← node.expand()

8: Q.enqueue(children) // Enqueue at the end of the queue.

9: end if

10: end while

11: return goal not found

Algorithm C.3 Iterative deepening search

Input: A tree T , root node s, and a goal node goal.

Output: A goal state, or not found.

1: for n = 1 to ∞ do

2: goal ← Perform a DFS up to level n

3: if goal is found then

4: return goal

5: end if

6: end for

305



Algorithm C.4 Uniform-cost search

Input: A tree T , root node s, and a goal node goal.

Output: A goal state, or not found.

1: Q ← A min-queue containing s // Queue is sorted by g(n).

2: while Q 6= ∅ do

3: node ← Q.popMin()

4: if node = goal then

5: return goal // Or return the path to goal.

6: else

7: children ← node.expand()

8: Q.push(children)

9: end if

10: end while

11: return goal not found

306



Algorithm C.5 Iterative deepening A* search

Input: A tree T , root node s, and a goal node goal.

Output: A goal state, or not found.

1: threshold ← g(s)

2: while true do

3: goal, threshold ← Ida Dfs(s, goal, threshold)

4: if goal is found then

5: return goal

6: end if

7: end while

8: return not found

9: function Ida Dfs(n, goal, threshold)

10: cost ← g(n) + h(n) // Returns a goal node, and the new threshold.

11: if cost > threshold then

12: return nil, cost

13: end if

14: if n = goal then

15: return n, threshold

16: end if

17: nextThreshold ← ∞

18: for each child in n.children() do

19: newNode, newThreshold ← IDA DFS(child, goal, threshold)

20: if newNode 6= nil then

21: return nodeNode, threshold

22: end if

23: nextThreshold ← min(nextThreshold, newThreshold)

24: end for

25: return nil, nextThreshold

26: end function

307



Algorithm C.6 Beam search

Input: A tree T , root node s, a goal node goal, and a beam width k.

Output: A goal state, or not found.

1: beam ← A list containing s

2: while beam 6= ∅ do

3: // Generate and test children.

4: set ← A new min-queue // Queue is sorted by f(n).

5: for each node in beam do

6: for each child in node.expand() do

7: if child = goal then

8: return child

9: else

10: set ← set ∪ {child}

11: end if

12: end for

13: end for

14: // Populate the beam.

15: beam ← ∅

16: while set 6= ∅ and k > |beam| do

17: beam ← beam ∪ {set.dequeue()} // Dequeue minimum f(n).

18: end while

19: end while

20: return goal not found

308



Algorithm C.7 Beam search with closed list

Input: A tree T , root node s, a goal node goal, and a beam width k.

Output: A goal state, or not found.

1: visited ← A hash table containing s // This is our closed list.

2: beam ← A list containing s

3: while beam 6= ∅ do

4: // Generate and test children.

5: set ← A new min-queue // Queue is sorted by f(n).

6: for each node in beam do

7: for each child in node.expand() do

8: if child = goal then

9: return child

10: else

11: set ← set ∪ {child}

12: end if

13: end for

14: end for

15: // Populate the beam.

16: beam ← ∅

17: while set 6= ∅ and k > |beam| do

18: state ← set.dequeue() // Dequeue minimum f(n).

19: if state /∈ visited then

20: if visited is not full then

21: visited ← visited ∪ {state}

22: beam ← beam ∪ {state}

23: else

24: return goal not found // Out of memory.

25: end if

26: end if

27: end while

28: end while

29: return goal not found

309



Appendix D

Contents of the Submitted Media

The attached media has the following structure and contents:

/Charts Charts and the corresponding data in Microsoft Excel

format showing the performance of each heuristic in the

ensemble over 1024 problem instances. Also includes

a correlation matrix showing the relationship between

different heuristics in the ensemble.

/Experiment Data SQLite databases containing problem instances and runs

for 32, 64, and 128-state target DFAs at density 1. The

contents of each SQLite database are described and sum-

marised in Appendix A.

/Report A PDF copy of this dissertation.

/Source Code All the source code that implements the experiments we

ran in this dissertation in Go Lang.

310


	Introduction
	A Simple Example
	Grammatical Inference Competitions
	The Abbadingo One DFA Learning Competition

	Motivation and Research Hypotheses
	Overview of Results and Contributions
	Organisation of this Document

	Preliminaries
	Sets
	Strings and Languages
	Ordering of Strings

	Formal Languages
	Finite-State Automata
	Non-Deterministic Finite-State Automata
	Deterministic Finite-State Automata
	The Depth of a DFA
	Canonical Automata
	DFA Minimisation

	Summary

	Characterising the Search Space of DFA Learning
	Introductory Concepts
	Quotient Automata
	Structural Completeness and Characteristic Sets
	The Maximal Canonical Automaton
	The Prefix Tree Acceptor
	The Augmented Prefix Tree Acceptor

	Derived Automata
	Some Important Results
	The Border Set and its Properties
	Summary

	A Survey of State Space Search Algorithms
	Preliminaries
	Costs
	Time and Space Complexity, Completeness, and Admissibility
	Open and Closed Lists

	Blind Search Algorithms
	Depth-First Search
	Breadth-First Search
	Iterative Deepening
	Uniform-Cost Search

	Informed Search Algorithms
	Greedy Search
	A* Search
	Iterative Deepening A* Search
	Branch and Bound Techniques
	Beam Search

	Observations So Far
	Estimating the Cost of Backtracking
	Pitfalls and Refinements
	Ideas for Improvement

	Summary

	DFA Learning Algorithms
	State Merging Algorithms
	A Simple State Merging Example
	Merge Paths and Graphs
	The State Merging Operation
	Trakhtenbrot-Bardzin's and Gold's Algorithm
	Regular Positive and Negative Inference
	Price's Evidence Driven State Merging
	Variants of EDSM
	DFA Learning using Minimum Description Length
	Parallel Beam Search (PBS, SAGE)
	Ed-Beam
	TBW-EDSM
	Some Remarks Regarding `Search Wrappers'

	Other DFA Learning Methods
	Genetic Search and Swarm Intelligence
	DFA Learning as Constraint Satisfaction
	Graph (Vertex) Colouring
	Satisfiability Solvers
	Connectionist Approaches

	Summary

	Properties of State Merging
	DFAs are Partitions, States are Blocks
	General Properties
	The Initial Partition
	Properties of the Join and Merge Operations
	Permitting, Blocking, Included, and Root Merges
	Orphaned States

	Properties of Merge Paths
	Some Remarks Regarding EDSM
	Colour-Compatible Merges
	Ending Remarks

	Baseline Experiments and Methodology
	How Heuristics or DFA Learning Algorithms are Evaluated and Analysed
	Oracle-Assisted Heuristics and Paths
	Glossary of Heuristics
	The Abbadingo One Setup
	Creating Target DFAs
	Creating Training Sets
	Creating Problem Instances

	Baseline Experiments
	Expected APTA Sizes and Merges
	Presentation of Results
	Baseline EDSM and W-EDSM Performance
	Analysis of Oracle-Assisted Heuristics
	Non-Structurally Complete Training Sets
	Getting the First Merges Right
	Reduction Curves and DFA Compression
	The APTA Reduction Table
	Overlap Between Ideal Merge Paths and Merges in the APTA Reduction Table
	Colour-Compatible Merge Positions
	Merge Path Lengths
	Summary of Results

	Methodology
	An Ensemble of Heuristics
	The Delta Graph
	Evolving Initial Merge Sequences

	Summary

	Evaluation and Results
	Overview of the Experimental Setup
	Adversarial Setups

	Evaluating the Ensemble of Heuristics
	Adversarial Setups
	Performance on Unrestricted Problem Instances
	Observations and Discussion

	Evaluating the Delta Graph
	Adversarial Setups
	Discussion and Observations

	Evaluating the Genetic Algorithm
	Adversarial Setups
	Discussion and Observations

	Ending Remarks

	Conclusions and Future Work
	Achievements and Contributions
	Summary of Results
	An Ensemble of Heuristics
	Adversarial Problem Instances
	Label-Matching Heuristics
	Colour-Compatible Merges
	The APTA Reduction Table
	Getting the First Merges Right
	The Genetic Algorithm

	Future Work
	Concluding Remarks

	Complete Results
	Glossary of Heuristics
	32-State Target DFA Instances
	n32d607e1024.sqlite
	n32d607e128_GA.sqlite
	n32d607e512_EdsmFailing.sqlite
	n32d607e64_EdsmFailing.sqlite
	n32d607e512_NotStructComp.sqlite
	n32d607e64_NotStructComp.sqlite
	n32d607e512_NoLoops.sqlite
	n32d607e64_NoLoops.sqlite

	64-State Target DFA Instances
	n64d1e1024.sqlite
	n64d1e64_GA.sqlite
	n64d1e512_Unrestricted.sqlite

	128-State Target DFA Instances
	n128d1e512.sqlite


	State Reduction Rates
	State Space Search Algorithms
	Contents of the Submitted Media

