Optional Monitoring for Long-Lived Transactions

Joshua Ellul*
Gordon J. Pace®

joshua.ellul@um.edu.mt
gordon.pace@um.edu.mt
Centre for Distributed Ledger Technologies, University of Malta
Msida, Malta

Abstract

Runtime monitoring comes at a runtime cost. Overheads in-
duced by monitoring and verification code may be necessary,
and yet prohibitive in certain circumstances. When verifica-
tion is local to a single unit of execution in a system, one can
choose whether or not to monitor based on the risk of that
individual unit. In this paper, we propose a monitoring and
verification approach for a class of long-lived transaction-
based systems whose execution can be partitioned into sepa-
rate subtraces, one for each such transaction, and which are
independent of each other from a correctness perspective.
We focus on the use of this approach for the monitoring of
smart contracts on distributed ledger technologies to show
how we can reduce overheads in this manner.

CCS Concepts: - Software and its engineering — Formal
language definitions; Specification languages; Formal software
verification; Software defect analysis.

Keywords: formal methods, runtime verification, long-lived
transactions, smart contracts

ACM Reference Format:

Joshua Ellul and Gordon J. Pace. 2021. Optional Monitoring for Long-
Lived Transactions. In Proceedings of the 5th ACM International
Workshop on Verification and mOnitoring at Runtime EXecution
(VORTEX °21), June 12, 2021, Virtual, Denmark. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3464974.3468450

1 Introduction

Blockchain and other distributed ledger technologies (DLTs)
have enabled the possibility of having trusted code execu-
tion without the need for trusted parties. Smart contracts are

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VORTEX 21, June 12, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8546-6/21/06...$15.00
https://doi.org/10.1145/3464974.3468450

nothing but computer programs in the most traditional sense
of the word but differ, and take their name from the compu-
tational model they are executed on'. By ensuring that the
code is faithfully executed in an untampered manner without
a centralised party having control over its execution is the
key distinguishing element, making them ideal to regulate
behaviour between parties.

Being code, however, immediately raises the question of
correctness. Even more so when such code is meant to reg-
ulate parties’ behaviour. It is useless to have untampered
computation of incorrect code. Even worse is that a key as-
pect required for trusted execution is that the code cannot
be indiscriminately changed, and the immutability of the
code is an important feature of smart contracts. Immutable
code means that the effects of bugs are even more severe,
and although one can include code in a smart contract to
change its logic for instance by consensus of the parties, this
is not always a solution, since the party benefiting from a
bug may refuse to agree to a change.

Due to the importance of smart contract correctness, there
has been much work on their verification. Many approaches
use static analysis to ensure correctness a priori, an approach
justified by the need to deploy only correct contracts but
also, from a pragmatic point-of-view, by the fact that many
smart contracts are relatively small pieces of code [1, 8, 13].

However, static analysis does not always scale up to deal
with smart contract business logic, and runtime verification
solutions have also been built to allow for the monitoring
of related properties that cannot be proven statically [2, 12].
Given the immutable nature of smart contracts, synchronous
and online monitoring has to be planned and deployed before
the smart contract is instantiated on the blockchain?. How-
ever, this is not much different to monitoring of traditional
systems. The main Achilles heel of runtime verification re-
mains that of overheads induced by computation dedicated
to monitoring, and with smart contracts running on pub-
lic blockchains this becomes an even more serious concern

!Some add that smart contracts are also different in that they also interact
directly with the underlying blockchain transactions, handling the transfer
of digital assets. However, this is more a side effect of the execution model
using such platforms than part of their very nature.

2One can build in generic monitoring code into the immutable contract,
allowing for updateable monitors e.g. as discussed in [2], but the monitoring
infrastructure code would still have to be built in prior to instantiation on

the blockchain.

https://orcid.org/0000-0002-4796-5665
https://orcid.org/0000-0003-0743-6272
https://doi.org/10.1145/3464974.3468450
https://doi.org/10.1145/3464974.3468450

VORTEX ’21, June 12, 2021, Virtual, Denmark

firstPartyDelivers()

J. Ellul and G.)J. Pace

secondPartyDelivers() firstPartyCollects() secondPartyCoIIects()

@—proposeExchange —)O—acceptExchange()%(X ﬁ

secondPartyDelivers()

firstPartyDelivers() secondPartyCollects() firstPartyCollects()

Figure 1. Long-lived transaction of token exchange

since, typically, smart contract users are required to pay
(cryptocurrency) for the execution of invoked computational
logic — by doing so public DLTs avoid attacks and bugs that
would result in extensive computation which would keep
nodes busy and unable to attend to other pending transac-
tions [14]. Accompanied by an increase in these execution
costs makes runtime verification and other dynamic analy-
sis techniques less attractive, and means of lowering such
overheads have increased importance.

At this stage, it is worth noting how smart contract run-
time behaviour takes place and is typically structured. Smart
contracts are essentially made up of executable code, with
functions which can be invoked. In order to invoke such
functions from outside the blockchain, one initiates a type of
transaction on the blockchain instructing that function to be
executed by the miners. Although individual invocations of
smart contract functions happens through blockchain trans-
actions, many of them have the notion of logical transactions
whose lifetime involve the invocation of multiple blockchain
transactions. Such logic spanning multiple atomic trans-
actions (in our case, the invocations of functions through
blockchain transactions) is referred to as a long-lived trans-
action [10]. The following example should help clarify ter-
minology.

Example 1. For instance, a smart contract may allow parties
to initiate a token exchange and carry it out over multiple
function calls to the smart contract performed by the parties
involved. The lifetime of such an exchange can be visualised in
Figure 1. The transaction starts (in the state marked by S) by
one of the parties proposing an exchange, possibly identifying
the address of the party to trade with, and the amounts and
type of tokens to be exchanged between the two parties, after
which the second party may accept. The parties would then
be expected to submit to the smart contract the tokens they
promised in either order, only after which may the parties
take back their share before the full transaction ends (in the
state marked E). It is worth noting that using this notation we
will assume that from any state functions not appearing on
outgoing transitions should be refused. Also note that one can
have looping behaviour (e.g. if we want to allow the parties
to deposit or withdraw their tokens in part). Finally note that

we have kept the property simple and we do not cover certain
cases e.g. when one party deposits their share but the second
party fails to do so, in which case a timeout may have to be
imposed after which the first party may pull out of the deal.

It is worth noting that in the lifetime of a smart contract
regulating such exchanges one can have multiple such ex-
changes taking place, including ones being carried out con-
currently. This notion of transactions spanning over multiple
system execution units (e.g. function calls) has long been
used in systems such as financial transaction systems, and
are typically called long-lived transactions [10], as we will
refer to them in the rest of this paper.

One commonly found aspect of many such transaction-
based systems is that the execution and correctness of each
individual long-lived transaction is local i.e. independent
of that of others ongoing transactions, thus allowing for
verification at a per long-lived transaction approach. Note
that this is not always the case — for instance, if the smart
contract enforces a limit on the number of certain tokens to
transact per day for each party, two long-lived transactions
involving the same party would not be independent.

However, for independent long-lived transactions one can
choose to runtime verify or not upon the initiation of each
transaction without impacting the verification of others. On
traditional monolithic systems, this can be done, for instance,
by sampling transactions or using a risk assessment approach
to decide which to monitor, but in the context of smart con-
tracts this is a particularly attractive option. Different long-
lived transactions may involve different parties, and it can
be left up to them to decide whether they would like their
interaction to be runtime verified or whether they feel that
the additional cost is not worth paying for that particular
extended exchange.

In this short paper we present initial steps towards build-
ing such a selective monitoring framework. We present
a simplified model of independent long-lived transactions
and present how this can be implemented and optimised
for smart contracts written in Solidity and deployed on
Ethereum [14], with monitoring instrumented using the run-
time verification tool ContractLarva [2]. We see this as a first

Optional Monitoring for Long-Lived Transactions

step towards a richer model of dependent transactions en-
abling more flexible transaction monitoring, and integrating
the approach with earlier work we have done on optimisa-
tion of selective monitoring at a virtual machine level [6].

2 Localised Monitoring

Switching on and off monitoring can clearly result in moni-
toring to break for certain properties. For instance, consider
a property which states that a transfer of an asset may only
happen if a payment approval took place. If the two actions
are performed as required but the monitoring is switched
off when the payment approval takes place, the monitor
will highlight a violation. On the other hand, if the property
states that there lies an obligation to perform the transfer if
payment is approved and monitoring is switched off when
the approval takes place, the system failing to transfer the
asset would not be identified as a violation. Stateful speci-
fication languages may result in false positives (violations
flagged when there was no violation) and false negatives (no
violation flagged when one occurred). In order to address
this, we make an assumption that the monitoring mode can
only be changed between transactions and identify the class
of (trace-based) specification languages which ensure that
runtime violation identification is both sound and complete
for transactions during which monitoring is turned on. In
order to formalise these notions, we will make use of the
following notation.

Notation 1. We will write seq(X) to denote finite sequences
over items of type X, writing (x1, Xz . .. Xn) to write a particu-
lar trace. We will write x : xs to denote the list produced when
prepending x to xs, and xs; + xs, to denote the concatenation
of two lists. We write head(xs) and tail(xs) to denote the head
and the tail of the list, and dually last(xs) and init(xs) starting
from the end.

Definition 1. Given two lists of lists xssy, xss; € seq(seq(X)),
we say that the former is a prefix of the latter: xss; < xss,
if either (i) we can add more sequences to xss; to obtain xss,:
Txss| - xss+Hx8s] = x88y; or (ii) we can extend the last sequence
in xss; and also add more sequences to obtain xss,: 3xs, xss] -
init(xss;) + (last(xss;) : xs) + xs5] = x55,.

We identify sequential transaction-based systems whose
trace behaviour corresponds to a number of sequential trans-
actions i.e. transactions cannot occur concurrently.

Definition 2. Given a sequential transaction system S over
observable event alphabet 3, its runtime trace behaviour, writ-
ten [S], is a sequence of transactions, where each transaction is
a sequence of events from 3: [S]] C seq(seq(Z)). We will assume
that the set of traces of S is closed under prefixes i.e. for any
system S, if xss € [S] then Vxss’ - xss’ < xss = xss’ € [S].

The alphabet can correspond to what is of interest to
observe. It may, for instance, simply be function names to

VORTEX ’21, June 12, 2021, Virtual, Denmark

indicate the invocation of functions, or annotated function
names to allow the observation of entry and exit from a
function, or even variable assignments, denoting the value
of each variable in that snapshot.

Definition 3. We will characterise specification language I1
with a trace satisfaction relation + C II X seq(seq(X)). We will
use the term property to refer to instances of such a specifica-
tion language 7 € II.

Note that we do not limit ourselves to specification lan-
guages for which the extension of a failing trace always fails.
For instance, consider the case of I1;,, corresponding to in-
variants on variable values. If the alphabet corresponds to
variable assignments, we can characterise the property 7, <,
saying that the value of variable x never exceeds the value of
variable y, by defining 7, <, + xsstohold if o = last(last(xss))
is well-defined, and o(x) < o(y). Note that, with such a defi-
nition we would observe every time the invariant is violated.

Definition 4. A specification language Il with a trace sat-
isfaction relation + C II X seq(seq(X)), is said to be localised
if for any property r € Il: + ts + (t) holds if and only if
T+ (t).

It is easy to prove that the specification language of invari-
ants I1;,, as defined above is localised. However, it is worth
noting that richer logics which handle state within a trans-
action may also be shown to be localised. For instance, in
specification logics which allow for universal quantification
over a property such as Quantified Event Automata as used
in MarQ [11], or DATEs as used in Larva [3] one may have
properties which are to hold for all transactions (i.e. partition
the events per transaction), and as long as these transactions
do not share any state, it would be possible to prove that they
are localised. Similarly, if we know that each transaction will
start with an event in which startTransaction holds and ends
which one in which endTransaction holds, the subset of LTL
properties of the following form:3

O(startTransaction = W endTransaction)
i.e. from the moment a long-lived transaction starts, property
must hold until the end of the long-lived transaction, or forever
if it does not terminate, can also be shown to be localised.

Local specification languages allow us to drop whole trans-
actions without changing the verdict according to a property.

Theorem 2.1. Given a local specification language I1, not
observing (dropping) an earlier transaction does not change
the verdict of a trace: For any property m € Il, & + xss; +
(t) + xss; + (t') holds if and only if T + xss1 + x582 + (t').

3Using standard notation O indicating the always modality and W indicating
weak until.

VORTEX ’21, June 12, 2021, Virtual, Denmark

3 Applying to Long-Lived Transactions on
Smart Contracts

In order to illustrate the use of the approach we describe in
this paper, we will be using a token exchange smart contract
as described in Example 1. A smart contract has been built
which allows for any user to propose a token exchange by
specifying: (i) the counter-party; (ii) the type of and number
of tokens s/he is offering; and (iii) the type and number of
tokens s/he is expecting from the counter-party. Once the
counter-party accepts, both parties may then submit their to-
kens, only after which the parties may withdraw their share
of the exchange. Once a long-lived transaction terminates,
another can be triggered, by the same or different parties.
Needless to say, the possibility of bugs in the implementation
justifies that parties may wish to runtime verify such a long
lived transaction.

To illustrate the use of per long-lived transaction moni-
toring, we will use the automaton shown in Figure 1 as our
property — ensuring that any interaction allowed by the
implementation follows the presupposed protocol e.g. that
neither party can collect before both parties have delivered.
The semantics given to such an automaton (as a property) is
that (i) the property starts in the initial state when a long-
lived transaction starts; (ii) when in any state a function
appearing on an outgoing transition is successfully? called,
it will change the state of the property; and (iii) when ei-
ther a new long-lived transaction is triggered when another
is still active, or when in a state a function other than one
appearing on an outgoing transition is successfully called
there is a violation of the property. Branching transitions
from a state simply indicates that functions decorating either
outgoing transition are accepted and allow progress in the
automaton e.g. after accepting an exchange, both parties are
allowed to deliver first. For the sake of this paper we do not
go into how to resolve such violations. With these semantics,
since each long-lived transaction initiates a new monitor
with no memory of previous transactions, one can show that
the logic is local.

If we want to monitor every long-lived transaction, we
can see the specification as the property universally quanti-
fied over each such transaction. Each function invocation re-
ceived triggers any active transitions. Using ContractLarva [7],
it is straightforward to build such a fully runtime verified
version of the smart contract, with the property given in the
automaton being used directly as input to ContractLarva’.

However, we recognise that not every proposed exchange
of tokens is critical. Parties may know and trust each other,
or the value of the exchanged tokens may be so low that

4Function calls may revert, cancelling their effect altogether, which is con-
sidered unsuccessful.

>The current version of ContractLarva does not natively support replication
of monitors, but this was achieved through a straightforward change in the
monitoring code produced by ContractLarva.

J. Ellul and G.)J. Pace

paying additional overhead for verifying that particular long-
lived transaction may not be desirable. To handle such a
choice, we modify our runtime monitored artifact so that
the function(s) triggering a new instance of the property
(proposeExchange() in this case) are duplicated to allow
the party invoking them choosing between a monitored or an
unmonitored instance®. All monitoring specified in Contract-
Larva is simply guarded by a condition to trigger if and only
if monitoring is switched on for that long-lived transaction.
The check just involves verifying whether a monitored long-
lived transaction is currently active, making the overhead
for unmonitored instances very low.

In order to illustrate how the approach would work on
a more complex example, we modified the smart contract
to allow the parties to deposit and take out their tokens in
batches i.e. not necessarily in one go. The property used for
this case is similar to the previous one and is shown in Fig-
ure 2. Note that transitions are now annotated as f | ¢ — a,
which are triggered when function f is successfully executed
and condition c is satisfied. Action a will be additional code
to execute to support monitoring, for instance in this case
we use it to keep track of the total deposited and withdrawn
by each of the parties. This property can be used for a more
fine-grained token exchange contract, in which the parties
need not deposit (and collect) the tokens in one go. Rather,
they can do so in smaller batches. For example, consider an
agreed upon exchange between party A who will provide 9
tokens of type T, and party B who will provide 5 tokens of
type U. The two parties may provide their tokens in smaller
chunks, e.g, A delivering 5 of his tokens, then B delivers 3, A
delivers 2 then another 1, B delivers 2 (completing his deliv-
ery), and finally A delivers 1 token (completing her delivery).
Similarly, the collection of tokens can be similarly broken up
into steps e.g. B collects 6 tokens, A collects 5, and finally B
collects 3. The monitoring condition and action keep count
of who has still to deliver (or collect) how many tokens.

Evaluating the gains when one switches off runtime mon-
itoring is not as straightforward as it may seem. It is depen-
dent on multiple things — how expensive the monitoring
of the property is (the more expensive, the more we gain
when comparing monitored transactions vs. transactions
with monitoring switched off), how expensive the logic of
underlying system to carry out the long-lived transaction
(the more expensive it is, the lower the percentage cost of
switched off monitoring which is essentially of constant cost
per invocation) and the number of transactions in the long-
lived transaction (the more there are, the more times we
have to pay the constant boolean check whether monitoring
is required). In order to provide a feel to the cost, we have

®One can have more sophisticated means of deciding whether or not a
long-lived transaction is to be monitored e.g. by having all participating
parties take a vote to decide. We plan to investigate such policies in future
work.

Optional Monitoring for Long-Lived Transactions

firstPartyDelivers() — update delivery count

VORTEX ’21, June 12, 2021, Virtual, Denmark

firstPartyCollects() | collection valid
- update collection count

firstPartyCollects() | delivery complete

— update collection count

@—proposeExchange()-)O—accep\Exchange()

secondPartyDelivers() — update delivery count

firstPartyCollects() | collection complete Q
>

secondPartyCollects() | delivery complete’ secondPartyCollects() | delivery complete'
+ update collection count

secondPartyCollects() | collection valid
+— update collection count

Figure 2. Long-lived transaction of token exchange in parts

implemented a token management smart contract and instru-
mented the property shown in Figure 2. When executing the
exchange in chunks as described in the previous paragraph,
we observed that while monitoring would have increased
the cost of the full long-lived transaction by 7.8%, running
the transaction with monitoring switched off would reduce
the overheads to 2.8%. This is just over a third of the full
monitoring costs, and would not increase if the property
were to be more complex i.e. gains would be even higher.

4 Conclusions

In this short paper we have started looking at optional mon-
itoring of independent long-lived transactions. The work
presented here just scratches the surface of the opportunities
arising from such an approach. We are currently extending
this work in a multitude of ways.

Firstly, we are looking at enriching the domain of applica-
bility of the approach. By allowing for interleaved long-lived
transactions (i.e. multiple long-lived transactions can be trig-
gered at the same time), we would be able to handle a much
richer set of smart contracts. Also, we would like to develop
richer dependency models to be able to reason what parts
of the monitoring can be turned off without affecting oth-
ers. Such a dependency relation can be at the level of a full
long-lived transaction, but can also be a more fine-grained
partial order approach at the monitoring state level, thus
still allowing for reduction of overheads at a finer level of
granularity. For instance, in the example we gave in the intro-
duction which limited the number of a certain type of token
per user per day, one may still partially turn off monitoring
of certain long-lived transaction-level properties keeping
the monitoring machinery tracking token exchange counts
active.

We are also looking at other more effective means to allow
for switching on and off monitoring. As we have seen in this
paper, one solution is to context switch at the start of each
function call depending on whether monitoring is on or off
for the ongoing long-lived transaction. However, in previous
work [6], we have explored allowing for optional monitoring
at the underlying virtual machine level. We intend to look
into using such an approach for optional monitoring of long-
lived transactions.

An aspect of blockchain-based long-lived transactions
which we did not handle in this paper is that of undoing the
long-lived transaction as a whole in case of failure midway
through its lifetime — typically called compensations [9, 10].
In previous work, we have looked at how runtime verification
can integrate with such compensatory mechanisms in the
context of monolithic systems [4, 5], and we plan to integrate
those techniques in the approach we have hereby presented.

References

[1] Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. 2018. Smart
Contracts: A Killer Application for Deductive Source Code Verification.
In Principled Software Development - Essays Dedicated to Arnd Poetzsch-
Heffter on the Occasion of his 60th Birthday, Peter Miller and Ina
Schaefer (Eds.). Springer, 1-18. https://doi.org/10.1007/978-3-319-
98047-8_1
Shaun Azzopardi, Joshua Ellul, and Gordon J. Pace. 2018. Monitoring
Smart Contracts: ContractLarva and Open Challenges Beyond. In
Runtime Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11237), Christian Colombo and Martin Leucker (Eds.).
Springer, 113-137. https://doi.org/10.1007/978-3-030-03769-7_8
Christian Colombo and Gordon J. Pace. 2017. Runtime Verification
using LARVA. In RV-CuBES 2017. An International Workshop on Compe-
titions, Usability, Benchmarks, Evaluation, and Standardisation for Run-
time Verification Tools, September 15, 2017, Seattle, WA, USA (Kalpa Pub-
lications in Computing, Vol. 3), Giles Reger and Klaus Havelund (Eds.).
EasyChair, 55-63. http://www.easychair.org/publications/paper/Jwmr
Christian Colombo, Gordon J. Pace, and Patrick Abela. 2010.
Compensation-Aware Runtime Monitoring. In Runtime Verification -
First International Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6418),
Howard Barringer, Yliés Falcone, Bernd Finkbeiner, Klaus Havelund,
Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai
Tillmann (Eds.). Springer, 214-228. https://doi.org/10.1007/978-3-642-
16612-9_17
Christian Colombo, Gordon J. Pace, and Patrick Abela. 2012. Safer
asynchronous runtime monitoring using compensations. Formal Meth-
ods Syst. Des. 41, 3 (2012), 269-294. https://doi.org/10.1007/s10703-
012-0142-8
[6] Joshua Ellul. 2020. Towards Configurable and Efficient Runtime Verifi-
cation of Blockchain Based Smart Contracts at the Virtual Machine
Level. In Leveraging Applications of Formal Methods, Verification and
Validation: Applications - 9th International Symposium on Leveraging
Applications of Formal Methods, ISOLA 2020, Rhodes, Greece, October
20-30, 2020, Proceedings, Part III (Lecture Notes in Computer Science,
Vol. 12478), Tiziana Margaria and Bernhard Steffen (Eds.). Springer,
131-145. https://doi.org/10.1007/978-3-030-61467-6_9

[2

—

[3

[t

[4

flaa)

[5

—

https://doi.org/10.1007/978-3-319-98047-8_1
https://doi.org/10.1007/978-3-319-98047-8_1
https://doi.org/10.1007/978-3-030-03769-7_8
http://www.easychair.org/publications/paper/Jwmr
https://doi.org/10.1007/978-3-642-16612-9_17
https://doi.org/10.1007/978-3-642-16612-9_17
https://doi.org/10.1007/s10703-012-0142-8
https://doi.org/10.1007/s10703-012-0142-8
https://doi.org/10.1007/978-3-030-61467-6_9

VORTEX ’21, June 12, 2021, Virtual, Denmark

(7]

(8]

(10]

Joshua Ellul and Gordon J. Pace. 2018. Runtime Verification of
Ethereum Smart Contracts. In 14th European Dependable Comput-
ing Conference, EDCC 2018, Iasi, Romania, September 10-14, 2018. IEEE
Computer Society, 158-163. https://doi.org/10.1109/EDCC.2018.00036
Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static
Analysis Framework For Smart Contracts. CoRR abs/1908.09878 (2019).
arXiv:1908.09878 http://arxiv.org/abs/1908.09878

Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings
of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA,
May 27-29, 1987, Umeshwar Dayal and Irving L. Traiger (Eds.). ACM
Press, 249-259. https://doi.org/10.1145/38713.38742

Jim Gray. 1981. The Transaction Concept: Virtues and Limitations
(Invited Paper). In Very Large Data Bases, 7th International Confer-
ence, September 9-11, 1981, Cannes, France, Proceedings. IEEE Computer
Society, 144-154.

[11]

[12]

[13]

[14]

J. Ellul and G.)J. Pace

Giles Reger. 2016. An Overview of MarQ. In Runtime Verification -
16th International Conference, RV 2016, Madrid, Spain, September 23-
30, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 10012),
Yliés Falcone and César Sanchez (Eds.). Springer, 498-503. https:
//doi.org/10.1007/978-3-319-46982-9_34

Lars Stegeman. 2018. Solitor : runtime verification of smart contracts
on the Ethereum network. http://essay.utwente.nl/76902/

Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. 2018.
SmartCheck: Static Analysis of Ethereum Smart Contracts. In Ist
IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden,
May 27 - June 3, 2018. ACM, 9-16. http://ieeexplore.ieee.org/document/
8445052

Gavin Wood. 2014. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper (2014).

https://doi.org/10.1109/EDCC.2018.00036
https://arxiv.org/abs/1908.09878
http://arxiv.org/abs/1908.09878
https://doi.org/10.1145/38713.38742
https://doi.org/10.1007/978-3-319-46982-9_34
https://doi.org/10.1007/978-3-319-46982-9_34
http://essay.utwente.nl/76902/
http://ieeexplore.ieee.org/document/8445052
http://ieeexplore.ieee.org/document/8445052
https://www.researchgate.net/publication/352169447

	Abstract
	1 Introduction
	2 Localised Monitoring
	3 Applying to Long-Lived Transactions on Smart Contracts
	4 Conclusions
	References

