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Abstract: Landslides are common in aquatic settings worldwide, from lakes and coastal environments to the
deep sea. Fast-moving, large-volume landslides can potentially trigger destructive tsunamis. Landslides damage
and disrupt global communication links and other critical marine infrastructure. Landslide deposits act as foci
for localized, but important, deep-seafloor biological communities. Under burial, landslide deposits play an
important role in a successful petroleum system. While the broad importance of understanding subaqueous
landslide processes is evident, a number of important scientific questions have yet to receive the needed atten-
tion. Collecting quantitative data is a critical step to addressing questions surrounding subaqueous landslides.
Quantitative metrics of subaqueous landslides are routinely recorded, but which ones, and how they are
defined, depends on the end-user focus. Differences in focus can inhibit communication of knowledge between
communities, and complicate comparative analysis. This study outlines an approach specifically for consistent
measurement of subaqueous landslide morphometrics to be used in the design of a broader, global open-source,
peer-curated database. Examples from different settings illustrate how the approach can be applied, as well as
the difficulties encountered when analysing different landslides and data types. Standardizing data collection for
subaqueous landslides should result in more accurate geohazard predictions and resource estimation.

The importance of subaqueous landslides
for society, economy and ecology

Terrestrial landslides are important agents for the
transport of sediment and organic carbon (Korup
et al. 2007; Hilton et al. 2008). They can dramati-
cally modify landscapes and ecosystems (Keefer
1984; Swanson et al. 1988; Walker et al. 2009), and
pose a hazard to critical infrastructure and human life
(Petley 2012). High-resolution and regular satellite
mapping, real-time monitoring, personal accounts,
news reports, and even social media trends are
used to record terrestrial landslide activity, thus pro-
viding valuable and temporally-constrained informa-
tion that forms the basis of extensive landslide
databases and catalogues (Malamud et al. 2004; Pet-
ley et al. 2005; Korup et al. 2007; Kirschbaum et al.
2010; Petley 2012; Klose et al. 2014; Pennington
et al. 2015; Taylor et al. 2015). These databases
can be interrogated to quantify preconditioning and
triggering mechanisms, understand risk profiles for
different regions, assess the extent and nature of
ancient events, calibrate numerical models of slope
stability, and inform forecasts of future landslide
activity. Indeed, many countries now have opera-
tional real-time terrestrial landslide forecast systems
in place (e.g. Chen & Lee 2004; Baum & Godt 2010).

Landslides that occur in subaqueous settings
(ranging from lakes and coastal regions to the deep
sea) are also societally, economically and ecologi-
cally important, yet our understanding of them is
much less well developed than for their onshore
equivalents (Talling et al. 2014). Subaqueous land-
slides can be many orders of magnitude larger than
terrestrial landslides (Korup et al. 2007), transport-
ing up to thousands of cubic kilometres of sediment
(Moore et al. 1989, 1994; Watts & Masson 1995;
Collot et al. 2001; Haflidason et al. 2004; Masson
et al. 2006; Day et al. 2015) and large volumes
of exhumed organic carbon (St-Onge & Hillaire-
Marcel 2001; Smith et al. 2015; Azpiroz-Zabala
et al. 2017). Submarine and sublacustrine landslides
often generate long runout flows, which damage
strategically important seafloor infrastructure includ-
ing telecommunication cables, production platforms
and hydrocarbon pipelines (Piper et al. 1999; Mosher
et al. 2010b; Thomas et al. 2010; Carter et al. 2014;
Forsberg et al. 2016; Pope et al. 2017). Tsunamis
generated by subaqueous landslides threaten many
coastal communities and have caused large numbers
of fatalities (Tappin ez al. 2001; Ward 2001; Harbitz
et al. 2014). Low-lying Small Island Developing
States, such as those in the South Pacific, are partic-
ularly at risk from locally-sourced tsunamis, but little
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is currently known about the scale, location and
recurrence of tsunamigenic landslides in those
areas (Goff & Terry 2016). Under burial, subaqueous
landslide deposits are recognized as an important
element of hydrocarbon systems: conditioning reser-
voir distribution (Armitage et al. 2009; Kneller et al.
2016), acting as seals (Cardona et al. 2016) and as
potential reservoirs (Meckel 2011; Henry et al.
2017). Furthermore, heterogeneous buried land-
slides can compromise seal integrity and rearrange
subsurface fluid plumbing systems (Gamboa et al.
2011; Riboulot et al. 2013; Maia et al. 2015). The
extent of submarine landslide deposits informs
the placement of international economic boundaries,
as defined by the United Nations Convention on Law
of the Sea (e.g. Mosher et al. 2016). The top surfaces
of mass failure deposits and areas of evacuation
scarring that result from subaqueous landslides are
increasingly being recognized as important habitats
for seafloor biological communities (Okey 1997;
De Mol et al. 2007; Paull er al. 2010; Chaytor
et al. 2016a; Huvenne et al. 2016; Savini et al.
2016). The direct impacts of subaqueous landslide
activity may also disturb and modify seafloor
ecology, and have been suggested as a mechanism
for the dispersal of species between isolated islands,
thus governing their local evolution (Caujapé-
Castells et al. 2017). Subaqueous landslides are
therefore relevant to a large number of disciplines,
governments and industries, as clearly underlined
in numerous papers in the predecessor volumes
to this special publication (Solheim 2006; Lykousis
et al. 2007; Mosher et al. 2010a; Yamada et al.
2012; Krastel et al. 2014; Lamarche et al. 2016).

Value of a global consistent database of
subaqueous landslides

Despite their importance, the study of subaqueous
landslides is challenging due to their hard-to-reach
nature: often in deep water and far from shore.
Step-increases in knowledge have been achieved
over the past few decades, however. These are
largely as a result of improvements in offshore sur-
veying technologies (enhanced coverage, resolution
and accuracy: Hughes Clarke 2018; Mountjoy &
Micallef 2018), coupled with increased offshore
resource exploration activities (Thomas et al. 2010),
and recognition of the need to quantify the risk posed
by subaqueous landslide hazards (Vanneste et al.
2014; Moore et al. 2018). Some of the major national
and international programmes that catalysed this
knowledge growth include GLORIA and STRATA-
FORM (offshore USA), Seabed Slope Process in
Deep Water Continental Margin (northwest Gulf of
Mexico), STEAM and ENAM II (European Atlantic
Margins), and COSTA (Mediterranean and NE
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Atlantic) (Nittrouer 1999; Locat & Lee 2002; Canals
et al. 2004; Mienert 2004).

The IGCP-585, IGCP-511 and IGCP-640 pro-
jects helped to build an international community of
subaqueous landslide researchers with diverse tech-
nical backgrounds who have documented a large
number of subaqueous landslide studies from a
range of physiographical, tectonic and sedimentary
settings (see papers in Lykousis e al. 2007; Mosher
etal. 2010a; Yamada et al. 2012; Krastel et al. 2014
Lamarche ez al. 2016). This community of scientists
recognizes the need for the compilation of a
global subaqueous landslide database, to effectively
integrate the wider community knowledge and tackle
outstanding scientific questions. This is with a view
to support the following activities:

* Provide the basis for statistical analysis to robustly
test hypotheses that are currently either only qual-
itatively addressed or supported by databases with
relatively small sample sizes, such as exploring
potential links between landslide frequency and
sea level/climate change (Geist & Parsons 2000,
2010; ten Brink et al. 2006; Clare et al. 2016b).

¢ Identify and quantify the physical controls on
landslide frequency—magnitude and triggering
between different margin types, and in different
settings (e.g. high to low sedimentation regimes,
lakes compared to deep-sea, etc.).

* Enable knowledge-gap analysis and to inform
future strategies for a more complete data collec-
tion (e.g. identify potential blind spots, reconcile
geographical, temporal and physiographical biases
in the available data, and inform future selection of
appropriate sampling and survey techniques).

* Quantitatively compare landslide parameters
across a range of scales (from experimental labo-
ratory models, lacustrine and fjord slope failures,
to prodigious continental slope collapses) to
determine if any scaling relationships exist. For
example, can we make informed inferences or
extrapolations about the largest events on Earth
from easier-to-access examples in lakes or fjords?
Can we assess spatial extent through the examina-
tion of a failure deposit width or thickness (e.g.
Moscardelli & Wood 2016)?

Existing subaqueous landslide databases

A number of subaqueous landslide databases already
exist, but the manner in which parameters are mea-
sured, and hence the consistency between studies,
varies between the discipline of the data-gatherer
(e.g. lacustrine or marine, ancient or recent stratigra-
phy) and the end-user focus (e.g. tsunami modelling,
seafloor hazard assessment, hydrocarbon explora-
tion, benthic habitat mapping). Existing databases
encompass: (i) the submarine landslide frequency
(which is generally biased towards events in the
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last 40 kyr; Owen et al. 2007; Urlaub et al. 2013,
2014; Brothers et al. 2013; Clare et al. 2014; Hunt
et al. 2014); (i) geotechnical properties (Day-Stirrat
et al. 2013; Sawyer & DeVore 2015); (iii) damage
to seafloor infrastructure (Pope et al. 2016, 2017);
and (iv) morphometrics (i.e. measurements that
record the geospatial dimensions of a landslide:
e.g. Moscardelli & Wood 2016). The latter is the
most commonly recorded information as morpho-
metrics are relevant to a wide range of applications,
including seafloor geohazard assessments (runout
distance, magnitude, spatial frequency), tsunami
modelling (failure volumes and directionality),
hydrocarbon exploration (extent of evacuation v.
depositional zones) and benthic ecology (nature of
scar and distribution of deposits). Morphometrics
have been compiled for deep-sea landslides in the
Mediterranean Sea (Urgeles & Camerlenghi 2013;
Dabson et al. 2016), the North Atlantic Ocean
(McAdoo et al. 2000; Hiihnerbach & Masson 2004;
Chaytor et al. 2009; Twichell et al. 2009) and the
Caribbean (ten Brink et al. 2006; Harders et al.
2011). Compilations also exist for landslides in
Alpine, Chilean and Alaskan lakes (e.g. Moernaut
& De Batist 2011; Strasser et al. 2013; Van Daele
et al. 2015; Kremer et al. 2017; Moernaut et al.
2017; Praet et al. 2017). The few global compendia
of morphometrics that exist (e.g. lakes — Moernaut
& De Batist 2011; deep-seas — ten Brink et al. 2009,
2016; largely based on outcrop and seismic data —
Moscardelli & Wood 2016) had very different
approaches in how the metrics were measured. So,
while these databases are useful for intra-regional or
intra-discipline comparisons, the lack of consistency
in what is measured, and how, hinders direct com-
parisons between different studies and thus inhibits
the broader, global understanding of subaqueous
landslides.

Aims

An IGCP-640-funded workshop held in January
2017 set out to discuss improved integration between
the disciplines for which subaqueous landslides have
relevance, and to propose a uniform method for their
measurement. A proposed long-term goal is the con-
struction of a global comparative landslide database
that will include morphometrics, as well as other
parameters. Disciplines represented at the workshop
included specialists in lacustrine and deep-water sed-
imentology, seafloor habitat mapping and ecology,
marine geophysics, marine geochemistry, hydrocar-
bon exploration and production, subsurface fluid
flow and storage, offshore and coastal geohazards,
and volcanology.

In this paper we tackle three overarching ques-
tions. First, what is the benefit of a global database
of subaqueous landslides? We discuss how such a
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database can provide valuable and consistent data
for scientific hypothesis testing (e.g. global to local
scaling relationships), societally-relevant applica-
tions (e.g. hazard assessments), to determine system-
atic biases and identify data gaps that require filling.

Secondly, we ask what are the challenges and
potential pitfalls in making morphometric measure-
ments of subaqueous landslides using different data
types, in different basins and in different ages of
deposits having undergone different diagenetic
changes? A global database should incorporate obser-
vations from the modern seafloor and lakes using
hull-mounted and higher-resolution (e.g. autonomous
underwater vehicle (AUV)) bathymetry, 2D and 3D
seismic reflection data imaging both the seafloor
and subsurface strata, and outcrop observations. But
what are the implications of comparing measurements
between these different data types? We aim to under-
stand what can be reliably understood and interpreted
from comparisons between morphometric studies.

Finally, we ask how do you measure and describe
the morphometry of both modern and ancient suba-
queous landslides in a consistent manner? No com-
mon method currently exists for the subaqueous
landslide community. Here we present, and test, a
method that can be widely adopted to enable consis-
tent comparisons between workers, and thus assist
in the development of a consistent ancient and
modern global database. We identify a number of
morphometric parameters to describe a subaqueous
landslide and assess the repeatability of measure-
ments made by different operators for the same land-
slide (Table 1).

How can a global database identify
and address systematic biases and
knowledge gaps?

We recognize that there are often a number of sys-
tematic biases in studies of subaqueous landslides.
We now discuss why these biases exist and how a
global database can be used to identify and address
those biases, to ensure that future studies can be
focused to fill outstanding data and knowledge gaps.

Scale bias

Many scientific studies have focused on large-scale
landslides as they are easier to image in detail than
small landslides that are close to the resolution limits
of the imaging tools. These larger events are also
often considered (e.g. Calves er al. 2015) to pose a
greater danger to public safety (e.g. higher tsunami-
genic potential) and are therefore the focus of atten-
tion. Furthermore, smaller landslides (<1 km®) may
be imaged in some surveys, but are often not the foci
of follow-up study as they may be less significant for
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Table 1. Metrics and metadata to be included within a global subaqueous landslide database

Metric /parameter Guidance for measurement or completion
D Sequential number of each landslide entry in the database
Parent ID Parent refers to the landslide complex; individual ID numbers are
for each mapped landslide
Name Published name for landslide
Aliases Other names for the landslide

Summary identifying information

Measured landslide morphometrics

Frontal confinement

Attachment
Object type

Depth below seafloor (m)

Depth below seafloor (TWTT in ms)

Latitude and longitude (WGS)

Water depth minimum (m)
Water depth maximum (m)

Total length, L; (m)

Deposit length, Ly (m)

Evacuated Length, L. (m)

Length metadata

Scar perimeter length, Ls (m)

Headscarp height, H; (m)
Evacuation height, H, (m)
Scar width, W, (m)

Scar surface nature
Maximum deposit width, Wy (m)

‘Frontally-confined’, ‘frontally-confined with overrunning flow’,
‘frontally-emergent’, ‘frontally unconfined’ or ‘not identified’
(Frey-Martinez et al. 2006).

Attached or detached as defined by Moscardelli & Wood (2008)

Single event (mass-transport deposit) or multiple events
(mass-transport complex). Multiple events should be linked to a
parent ID

For landslides measured from subsurface data, this is the depth to
the top of the landslide deposit. If calculated from seismic data,
the two-way travel time (TWTT) should also be referenced. If
mapped from seafloor data without seismic or core sample
calibration this will not be possible to complete

For landslides measured from subsurface geophysical data, this is
the depth in TWTT to the top of the landslide deposit

Centre-point of the mapped feature. It is recognized that the
entirety of a landslide may not be visible due to data coverage
limitations; hence, this is primarily intended to locate the feature
on a global database

Minimum water depth for mapped landslide (only possible from
multibeam data)

Maximum water depth for mapped landslide (only possible from
multibeam data)

Total mappable length of slide from the upslope limit of the
headscarp to the downslope limit of the connected deposit
(excludes outrunner blocks). This is measured along the axial
course of the landslide if possible (e.g. from multibeam
echosounder (MBES) data), otherwise this is a straight line (e.g.
measured from 2D seismic data) and is an ‘apparent’ length
measurement. Detail on the method should be listed as
accompanying metadata

Total mappable length of the slide deposit (excludes outrunner
blocks). This is measured along the axial course of the landslide
if possible and, hence, is not necessarily a straight line (e.g. from
MBES data); otherwise, this is a straight line (e.g. measured
from 2D seismic data) and is an ‘apparent’ length measurement.
Detail on the method should be listed as accompanying metadata

Length of the scar from the headscarp to the upslope limit of
deposit measured along the axial course of the landslide. Should
be equal to L, minus Ly

For example, is this measured from a section and is it an apparent
measurement (and thus may be an underestimate), or otherwise
how was the distance calculated?

Length of scar perimeter including side scarps. A spline should be
fitted to the mapped scarp to ensure consistency at different data
resolutions

Height difference from the maximum convex point at the top of the
headscarp to the maximum concave point at the bottom.

Height from the upslope limit of the landslide deposit to the
upslope limit of the headscarp

Maximum scar width

Descriptive explanation (e.g. concave, stepped, etc.)

Maximum deposit width (measured orthogonal to the deposit
length, Ly)

(Continued)
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Table 1. Metrics and metadata to be included within a global subaqueous landslide database (Continued)

Metric/parameter

Guidance for measurement or completion

Interpreted landslide metrics

Data source

Maximum deposit thickness,
Td max (m)

Maximum deposit thickness,
T4 max (TWTT in ms)
Maximum unconfined deposit
thickness, T}, max (M)
Maximum unconfined deposit
thickness, T, max (TWTT in ms)
Thickness metadata

Total height drop, H, (m)

Slope gradient, S (°)
Slope gradient metadata

Slope gradient of the headscarp,
S5 ()

Slope gradient of the headscarp
metadata

Slope gradient at the toe, S, (°)

Slope gradient at the toe metadata

Basal surface type
Upper surface type

Volume (km?)
Volume metadata

Age (years BP)

Age error
Age metadata

Seafloor features metadata

Data type

Data type metadata

Data source

Data repositories

Maximum measured deposit thickness in metres. Detail should be
provided in the accompanying metadata as to how this was
measured (e.g. from height on bathymetry or from seismic data)
(and where)

Maximum measured deposit thickness in TWTT

Maximum measured unconfined deposit thickness
Maximum measured unconfined deposit thickness in TWTT

How was the thickness calculated? For example, derived from
multibeam data, measured from seismic (with which assumed
seismic velocity?) or calibrated with core sampling data?

Height from the downslope limit of the landslide deposit and the
upslope limit of headscarp

Measured laterally away from the scar outside of the zone of
deformation. This is intended to give an estimate of the gradient
of the unfailed slope

Notes added here to indicate the distance of the lateral offset of the
measurement, distance over which the gradient was measured
and any uncertainties, etc.

Maximum slope of the headscarp

Notes added here to indicate where this was measured, the distance
over which the gradient was measured and any uncertainties, etc.

Measured in front of the toe outside of the zone of deformation.

Notes added here to indicate the distance of the lateral offset of the
measurement, the distance over which the gradient was measured
and any uncertainties, etc.

Description of the basal surface, if mappable (e.g. rugose, planar,
etc.)

Description of the upper surface, if mappable (e.g. rugose, smooth,
etc.)

Calculated deposit volume

How was the volume calculated? What are the assumptions? Which
published method was used (if any?)

If known, this is the age of the landslide in years. This may be an
absolute value or a constrained age (e.g. >45 ka)

Where available, the error ranges of the dates should be presented
Information on the dating method, uncertainties, where the sample
was taken (location and depth relative to the landslide deposit)
and any assumptions should be referenced. Here the source of

the age should also be referenced

Useful additional information about seafloor features in the vicinity
or in association with the landslide deposit, such as evidence of
fluid expulsion (e.g. pockmarks)

Data on which the mapping was based. High-level statement (e.g.
bathymetry, combined bathymetry and geophysics, core, deep
seismic).

Data on which the mapping was based — more details can be
provided here on combinations of sources (e.g. hull-mounted
multibeam data, AUV data, 2D /3D seismic, sediment cores,
etc.). This may be a combination of sources

Reference to where the data came from (e.g. the data provider and
the cruise, etc.). This should, ideally, include a hyperlink(s)

Where can the raw /processed data be found if they are available?
This should include a hyperlink if available

(Continued)
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Table 1. Metrics and metadata to be included within a global subaqueous landslide database (Continued)

Metric /parameter

Guidance for measurement or completion

Publication source

Where is the peer-reviewed source? If there is not one, then link to

a cruise report or equivalent. If not published, then this needs to
be flagged. This should include a hyperlink

Depth below seafloor metadata

Notes to accompany the depth. For instance, is it the only

measureable depth, an average depth or maximum depth? What
was the assumed (or calibrated) seismic velocity?

Data contact
Database entry attribution
Database entry notes

Who is the contact for this dataset?
Who entered the data in the database?
Any specifics to the data that were entered. For example, was the

length recalculated from that in the original published material?

Data horizontal resolution

What is the horizontal resolution of the data from which the

measurements were made?

Data vertical resolution

What is the vertical resolution of the data from which the

measurements were made?

Additional notes

Comments on any other information/considerations that should be

borne in mind when using these data

In the online database entry form (https://g00.g1/069UVY), a metadata field accompanies each of the measured metrics to record free text
commentary concerning uncertainties, errors and operator decision making.

sediment transport or petroleum systems. Thus,
there is often a tendency in scientific literature
towards the landslides on the largest end of the
scale (e.g. Masson 1996); however, even small land-
slides can pose a hazard to seafloor infrastructure
(Forsberg et al. 2016; Clare et al. 2017) and their
combined influence on net sediment transport may
be as significant as an individual large landslide
(Casas et al. 2016). Future efforts should be made
to integrate measurements of smaller landslides and
several recent studies have attempted to make this
integration (e.g. Baeten er al. 2013; Casas et al.
2016; Madhusudhan et al. 2017).

Preservational bias

We often make measurements based on surfaces pre-
served at seafloor or the lakebed, from seismic data
or in outcrops; however, recent repeated surveys
have shown that a dramatic reworking of landslide
scars and deposits can occur very soon after deposi-
tion in some settings. For instance, the volume of a
submarine landslide deposit in the head of Monterey
Canyon, California was reduced by 80%, while the
scar area increased by 40%, over the course of less
than 2 years due to current reworking (Smith ez al.
2007). The evidence of landslide morphology can
be entirely wiped out in weeks to years in regions
with high sedimentation rates, such as submarine
deltas (e.g. Biscara et al. 2012; Hughes Clarke
et al. 2014; Clare et al. 2016a; Kelner et al. 2016;
Obelcz et al. 2017). Thus, one must acknowledge
that studies of subaqueous landslide deposits record
only the preserved history and may not be a full
representation of all past events. The increasing use
of repeat surveys (Hughes Clarke 2018) and direct

monitoring of submarine landslides (Clare er al.
2017; Urlaub et al. 2018) provide valuable resources
from which to understand the limitations of analy-
sing the resultant features on the seafloor, in seismic
reflection data and from outcrop ancient deposits.

Temporal bias

There is currently a strong bias in published data-
bases and collations of subaqueous landslides to
those that are less than c. 40 kyr old (i.e. the limits
of radiocarbon dating: Brothers et al. 2013; Urlaub
et al. 2014). Current sampling and dating methods
limit the age controls we have on more ancient fail-
ure deposits. This temporal bias provides challenges
when testing hypotheses such as the influence of
sea level on failure frequency or linkages between
climate and failure, as the spread of landslide occur-
rence does not span sufficient sea-level stands or
climatic intervals (Pope er al. 2015). Future data-
bases should integrate modern seafloor studies with
studies of older landslides, which can be dated
using other multiproxy methods (e.g. oxygen iso-
topes, coccolithophore biostratigraphy, magneto-
stratigraphy and tephrochronology: Hunt er al.
2014; Clare et al. 2015; Coussens et al. 2016) and
imaged at depth using seismic data (e.g. Gamboa
& Alves 2016).

Geographical and economic bias

Until recent years, compilations of submarine land-
slide morphometrics largely focused on the NE
Atlantic, North American, Iberian and Mediterra-
nean continental margins (Pope et al. 2015), where
higher-resolution data were collected due to offshore
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exploration and scientific focus (e.g. Micallef et al.
2007). However, high-resolution data are now
being collected in other areas, such as South America
(Volker et al. 2012) and Australasia (Clarke et al.
2012; Micallef er al. 2012). A number of regions
are noticeably under-represented in subaqueous
landslide compilations, however; particularly those
where data is scarce (e.g. East Africa) and around
developing countries that are highly sensitive to
tsunami impact (e.g. South China Sea — Hu er al.
2009; He et al. 2014; Terry et al. 2017; South
Pacific — Goff & Terry 2016). A truly global database
will enable a more robust understanding of where
data are required to better understand which regions
are more and less prone to landslides (and of what
type/scale, etc.). Future research efforts should be
focused on such regions to develop appropriate
risk-management procedures for developing coun-
tries, and provide a more globally-balanced view of
subaqueous landslides. Information from a global
database could, however, be used to evaluate the
potential for landslide occurrence along data-limited
margins where conditions are analogous to other
better-studied margins (Adams & Schlager 2000;
Piper & Normark 2009). A consistent global data-
base can provide the basis for some initial likelihood
estimates in the absence of margin-specific data, thus
extending the use of available studies to vulnerable
communities.

What are the challenges and potential
pitfalls for the morphometric
characterization of subaqueous landslides?

We now outline the main issues encountered when
attempting to measure the morphometry of subaqu-
eous landslides.

Low data resolution relative to landslide scale

The accuracy of any morphometric landslide mea-
surement is a function of the resolution of the data
relative to the scale of the landslide (Fig. 1). In
many cases, it may be possible to make reliable mea-
surements of first-order morphometrics, such as
total landslide length or scar width, using relatively
coarse resolution (often hull-mounted) multibeam
data (e.g. in Fig. 2b, a similar landslide outline
could be mapped from 30 m binned data compared
to that from 0.5 m bin size). However, it is still pos-
sible that many small landslides will be missed using
such coarse-resolution data and more detailed
measurements of evacuation or deposit length are
often not feasible. It is unlikely that accurate mea-
surements would be made of the landslides shown
in Figure 2a or d using the 30 m bin size data
alone. We must recognize, therefore, that landslide
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catalogues and databases are incomplete (Malamud
et al. 2004; Urgeles & Camerlenghi 2013). Measure-
ment of landslides from older legacy data, that
are often very low resolution, is particularly prone
to this problem. The growing trend for using auton-
omous underwater vehicles (AUVs: Wynn et al.
2014) and remotely operated vehicles (ROVs: Huv-
enne er al. 2016, 2018) to map the seafloor will
enable us to tackle this issue and start populating
the missing lower end of the scale. This is compara-
ble to that encountered when mapping other seafloor
features, such as bedforms, where new high-
resolution AUV data have enabled an update of a
pre-existing classification system (Wynn & Stow
2002) to fill in some of the blanks (Symons et al.
2016).

Length measurements of irregular features, such
as scar perimeter, are often highly variable between
operators, depending on how complex the feature
is deemed to be by each individual and to what
level of detail they define it. Limited time availability
for measurement, coupled with a large number of
landslides, can lead to reduced detail in mapping
and, thus, resulting in smaller perimeter lengths com-
pared to a more detailed analysis. Furthermore, the
measured length of a complex feature will increase
if data resolution is enhanced, due to the improved
imaging of a greater morphological complexity.
This issue is comparable to the coastline paradox
of Mandelbrot (1967), wherein the coastline of Brit-
ain apparently lengthens as the resolution of mea-
surement becomes finer.

Large landslide scales relative to the
survey area

It is difficult to accurately define landslides whose
extents are at the limits of the data resolution (Gam-
boa & Alves 2016). However, it is also clear through
examining the distribution of landslide deposit sizes
that there are many events that extend beyond the
spatial limits of a survey or the lateral extent
of outcropping strata (Moscardelli & Wood 2016).
This latter issue is well illustrated by prodigious-
scale landslides, such as the Sahara Slide (offshore
NW Africa: Georgiopoulou et al. 2010), that are so
large it is usually impractical to survey their full
areal extent (Fig. 3e) (Li et al. 2017). Similarly, the
full extent of landslides is often not imaged in seis-
mic datasets where features are cropped at the limits
of the survey area or whose thickness is close to the
vertical resolution limits of the data (Alves & Cart-
wright 2009; Moscardelli & Wood 2016). In such
scenarios, it is possible to make measurements of
the partial scar or deposits, recognizing that measure-
ments are likely to be underestimated. Where such
measurements are recorded in a database, the limita-
tions of the available data coverage relative to the
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Fig. 1. (Left) Examples of attribute analysis applied to bathymetric datasets to assist in the measurements of landslide
morphometrics. Example shown is from the southern Tyrrhenian Sea based on 0.5 x 0.5 m bin size AUV bathymetry.
(Right and lowermost panel) Progressive downsampling of the same AUV bathymetry to demonstrate the
implications of data resolution for imaging landslides from seafloor data.
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Fig. 2. Example bathymetry from the Western Mediterranean illustrating how many small landslides observed in
AUV bathymetry (0.5 m bin size) cannot be clearly imaged from hull-mounted bathymetry (c. 30 m bin size). Inset
graph shows published morphometric data (area versus volume), highlighting the absence of smaller landslides.
Representative AUV CHIRP profiles are presented in the lower panels a—d to illustrate the nature of the sub-bottom
acoustic character for several of the small landslides.
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Distance [km]

Fig. 3. Subaqueous landslide case studies discussed in this contribution (a) Colourscale bathymetry overlain on a
greyscale slope map for relatively simple landslide (the Valdes Slide: Volker et al. 2012) oftshore Chile. Example of
the measured parameters for this study for the Valdes Slide are based on the plan view (b). (b) & (¢) Measurements
from a representative slope profile. (d) More complicated landslide example (Tuaheni Slide, New Zealand; modified
from Mountjoy et al. 2014). Note the cross-cutting relationship of the South and North Tuaheni slide components.
(e) Example of a large submarine landslide (Sahara Slide; Li et al. 2017), where only part of the scar is imaged.

scale of the landslide should be acknowledged in
accompanying metadata and must be considered in
comparative analysis.

Differentiating evacuation from
depositional zones

Assuming data are resolute enough and the entire
landslide is imaged, the measurement of landslide
length should be straightforward as it is defined
by the major morphological features of a landslide
(i.e. the distance from headscarp to toe: Fig. 4).
Thus, to a first order, the scale of a landslide should
be consistently recorded between operators. Incon-
sistencies may arise, however, when attempting to
demarcate where an evacuation zone ends and the
deposit begins, as a higher degree of interpretation
is required. Some of this subjectivity can be removed
where observations based on multibeam data can
be calibrated with seismic data (e.g. Figs 2 and 5).
Changes in acoustic character and breaks in the
continuity of seismic reflections provide valuable
information on defining limits of intact stratigraphy,
zones of removed sediment and disruption of trans-
ported sediment (e.g. Alves & Cartwright 2009;

Alves et al. 2014; Strupler et al. 2017). While this
enables better demarcation of evacuation and deposi-
tional zones, any measurement of length that is based
solely on coarsely-spaced 2D seismic data (or 2D
outcrops for that matter) will be an ‘apparent’ mea-
surement, and is thus likely to be an underestimate.
Seismic lines are rarely acquired perfectly along
the axis of runout (e.g. Fig. 2). Moscardelli &
Wood (2016) recognized this shortcoming in their
morphometric analysis of landslides and took a sim-
plistic approach to measure length (straight line dis-
tance measured from headscarp to downslope limit
of deposit). Thus, any comparison of measurements
based on coarsely-spaced 2D seismic with those
made from multibeam or 3D seismic data results in
an estimate that may be misleading unless the
line spacing is close enough. For this reason, it is
preferable that measurements are integrated where
complementary multibeam and seismic datasets are
available.

How and where to measure slope gradient

The measurement of slope gradient is important
given the sensitivity of slope stability analysis and
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Fig. 4. Schematic illustration of morphometric parameters defined in Table 1 showing (a) frontally-emergent and
(b) frontally-confined landslide cases in cross-section, and (¢) a plan view of the landslide.

volume calculations to slope gradients. This is also
crucial for seismic-based studies of buried land-
slides, as the velocities considered for distinct
overburden intervals will affect the measured slope
angles. The location and the distance over which

measurements of slope gradient are made will
greatly influence the result. Thus, it is important
that the location and length over which slope gradi-
ent is measured are well documented, otherwise
comparisons between studies may be meaningless.
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Fig. 5. Example of frontally-confined landslides in Lake Zurich (modified from Strupler et al. 2017). Volumes based
on thickness measurements from multibeam data are a factor of 3 less than those calculated from seismic data.

Competing subaqueous landslide classification
schemes

A large number of classification schemes exist for
terrestrial and subaqueous landslides (e.g. Varnes
1958; Hampton et al. 1996; Mulder & Cochonat
1996; Locat & Lee 2002; Masson et al. 2006;
Moscardelli & Wood 2008; Hungr et al. 2014).
There is a high degree of subjectivity in the interpre-
tation of failure mode or the nature of displacement,
however. Furthermore, the complex and often trans-
formative rheology of subaqueous mass movements
along their course (e.g. Talling ez al. 2007; Haughton
et al. 2009; Richardson ez al. 2011) makes a genetic
classification challenging. On a more simple level,
however, subaqueous landslides can be differenti-
ated by: (i) the nature of the landslide front (i.e. the
degree of frontal confinement); and (ii) the relation-
ship of the landslide to its source area (i.e. attached
or detached).

It is important to discriminate between landslides
with different degrees of frontal confinement, as
these are associated with different formative mecha-
nisms, downslope propagation, internal kinematics
and resultant deposits (Frey-Martinez et al. 2006).
Frontal confinement is classified by Frey-Martinez
et al. (20006) as either: (a) ‘frontally-confined’ land-
slides, where the landslide front abuts undisturbed
sediments; or (b) ‘frontally-emergent’ landslides
that ramp up from their original stratigraphic posi-
tion to move across the lake or seafloor unconfined
(Moernaut & De Batist 2011). Such a simple binary
classification does not take into account natural
complexity and only applies to translational failures

which start on an intact slope profile; hence, we sug-
gest that the following terms are also used: (c)
“frontally-confined with overrunning flow’, where a
debris flow or incipient failure may runout over the
confined toe of a landslide; (d) ‘frontally-unconfined’
landslides, where there is no downslope buttressing,
such as where the toe of a slope has been excavated
by erosion or in the case of rotational failures (Lacoste
etal. 2012); and (e) ‘not identified’, where the data do
not enable the classification to be made.

Moscardelli & Wood (2008) proposed a binary
classification for landslide attachment that includes:
(a) landslide deposits which are attached to their
source area, which are typically regionally extensive
features that occupy hundreds to thousands of square
kilometres in area; and (b) landslide deposits that
are detached from their scar, which are typically
much smaller. Whether or not landslides are attached
to their scar reveals information about the nature
of the failure, if landslides were potentially tsunami-
genic and has been suggested to provide an indication
of a potential triggering mechanism (Moscardelli &
Wood 2008). The use of both approaches ensures
that at least one classification can be made even
if only the source, or the front (terminal end), of a
landslide is imaged and avoids the high degree of
subjectivity in other more complicated genetic clas-
sification schemes.

Challenges in calculating landslide volumes

Numerous methods have been applied to the calcula-
tion of landslide volume from multibeam bathymetry
data. The first is based on an estimation of the
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missing volume from a scar: calculated from the dif-
ference between the scar topography and an interpo-
lated surface that connects the upper edges of the
scar. This approach thus aims to reconstruct the pre-
failure topography (ten Brink et al. 2006; Chaytor
et al. 2009; Katz et al. 2015; Chaytor et al. 2016a,
b). The second method is based on the measured
scar dimensions (McAdoo et al. 2000), wherein the
landslide volume is modelled as a wedge geometry
(volume = 1/2 x area x height). The lower plane of
the wedge is derived from slope angles of the runout
and/or scar, and the upper plane is based on the gra-
dient of the unfailed slope immediately adjacent
to the seafloor (assumed to be representative of
the pre-failure slope). The third method is based on
the measurements of the landslide deposit itself.
This approach is often used when the scar is not pre-
served or surveyed (e.g. Masson ez al. 2006; Alves &
Cartwright 2009). In such a scenario, volume is
determined as a function of landslide thickness and
area (in the case of the lower measured value, this
was estimated as volume = area x 2/3 maximum
deposit thickness).

Ideally, additional data should supplement
the calculation of landslide volume to calibrate the
accuracy of measurements based on multibeam
data alone. In Figure 5, we illustrate the value of
complementary seismic data to calculate volumes
of a frontally-confined lacustrine landslide in Lake
Zurich (Strupler ez al. 2017). First, we calculated vol-
umes based on the multibeam bathymetry. A missing
volume of 800 000 m® was derived from the scar
height (5 m) and its areal extent (using the method
of ten Brink ef al. 2006). This value is comparable
to the volume calculated from the deposit area
and its height above the adjacent seafloor (3.5 m)
mapped from bathymetry, which was calculated
as 740 000 m°>. High-resolution seismic profiles indi-
cate that the thickness of the landslide (19 ms =
14 m) is actually much greater than the measured
heights from multibeam bathymetry (3.5-5 m). The
calculated volume was revised upwards by a factor
of 3 to 2200 000 m>. This is a fundamental issue,
particularly when dealing with landslides that are
buttressed at their downslope limit (i.e. ‘frontally
confined’), as the sediment does not run over the
lakebed or seafloor: hence, its bathymetric expres-
sion is limited compared to the total thickness of
sediments that are displaced. This underlines the
importance of integrating seismic data (Alves &
Cartwright 2009). 3D seismic data can provide
more accurate landslide volume calculations if the
deposit is fully covered by the survey and adequate
time—depth conversions are made. Thus, landslide
volume should be calculated based on the integration
of multibeam and seismic data, where available.
However, if only multibeam data are available,
then the preferred volume estimates should be
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calculated based on scar morphometrics, following
the approach of ten Brink ez al. (2006).

Modification of landslide morphology
under burial

Modern multibeam bathymetry and high-frequency
sub-bottom profiling data enable high-resolution
mapping of modern landslides (i.e. those that can
be imaged at seafloor); however, additional chal-
lenges are faced when measuring older landslides
imaged in lower-frequency seismic data, besides
just resolution issues. Under burial, lithification
and compaction processes can change the original
morphology of landslide deposits. Mapping of
landslides from seismic data is typically based on
changes in the morphology, as well as the seismic
character within the landslide that is a function of
both lithology and internal deformation (Ogiesoba
& Hammes 2012; Alves et al. 2014). Thus, there
must be a recognition that any comparison of recent
landslide deposits with those that may have under-
gone significant post-depositional modification is
not necessarily like-for-like. Despite this, there is
considerable value in comparing recent landslides
with the range of events that have happened over a
longer timescale in Earth history. Such a comparison
may lead to the development of correction factors to
enable more effective integration between modern
and ancient studies.

Further complications caused by
natural complexity

Many subaqueous landslides are highly morpholog-
ically and structurally complex. Such complexity
increases the number of interpretative decisions
that must be made by the operator when measuring
morphometry. Many landslides do not fail as one
single event; instead, occurring in stages over both
short and long timescales (e.g. Cassidy et al. 2014:
Mastbergen et al. 2016). In such cases, the scar
may be highly irregular, stepped or feature smaller
incipient failures along the headscarp, complicating
the measurement of headscarp height and scar
dimensions (e.g. Georgiopoulou e al. 2013; Katz
et al. 2015) (Fig. 3e). Areas that are highly prone
to landslides may feature aggregated or cross-cutting
evacuation scars and deposits from multiple different
failure events. For instance, the Traenadjupet Slide
overlies and cuts into the older Nyk Slide, offshore
Norway (Lindberg et al. 2004). Figure 3d shows
the case of the Tuaheni landslide complex, where
multiple landslides intersect each other, and may
have caused reworking of both deposits and parts
of the scar (Mountjoy ez al. 2014).
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The large-scale Laurentian Fan landslide pre-
sented by Normandeau et al. (2018) is an example
of a complex failure that also shows localized varia-
tion in its frontal confinement; in places, the front
of the failure abuts the stratigraphy, while in others
it ramps up and becomes emergent. It is thus dif-
ficult to classify into just one category. Landslide
fronts can become frontally emergent at several
locations, such as the 900 km® Traenadjupet Slide,
offshore Norway (Laberg & Vorren 2000). In that
case, multiple lobes formed at the different emer-
gence points, thus providing several options for
measuring total landslide length. The interaction of
landslides with the underlying stratigraphy, particu-
larly where erosion, ploughing or stepped frontal
ramps occur, can further complicate the measure-
ment of thickness and, in turn, the associated cal-
culation of volume from deposits (e.g. Richardson
et al. 2011; Puzrin 2016).

How can the morphometry of subaqueous
landslides be measured consistently?

A standardized approach does not yet exist for con-
sistent morphometric characterization of subaqueous
landslides. Here, we present a method for measuring
key subaqueous landslide morphometrics that can be
applied to seafloor, subsurface and outcrop data in
their full range of settings. The morphometric param-
eters chosen are deemed to be relevant to a broad
suite of disciplines. We provide instructions on
how to measure each parameter (Table 1; Fig. 4).
Given variations in data limitations and extent of
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study area, it may not be possible to measure all of
these parameters in all cases; however, our intention
is to provide a comprehensive list to enhance the util-
ity of a global database and to ensure that measure-
ments are made consistent.

Testing a standardized approach

In order to test our approach for measuring landslide
morphometrics, we analysed data from the Valdes
Slide, offshore Chile (Fig. 3a) (Volker er al. 2012).
A relatively simple case study was chosen for this
applications test to first understand the limitations
of the method in a close-to-ideal scenario. The Val-
des Slide is considered to be a relatively simple land-
slide as it does not feature multiple lobes, the scar is
well imaged and it is of a scale such that most mor-
phometrics can be measured clearly. Each operator’s
analysis was performed in isolation to try to reduce
interpretational bias. Software packages used for
the analysis varied between operators, and included
ESRI ArcGIS, Global Mapper, Teledyne CARIS,
Fledermaus and Open Source QGIS. Operators
based their analysis of the bathymetry on a number
of different attribute tools, including contour, hill-
shaded illumination, slope angle and aspect tools
(e.g. Fig. 1), as well as 3D visualization. Results
from each of the individual operators were then
collated and compared to understand the variance
in outputs (Table 2; Fig. 6).

Consistency in measurement of first-order parame-
ters. Parameters that locate the Valdes Slide (lati-
tude, longitude and water depth) showed very good

Table 2. Results of morphometric analysis performed by the individual authors for the Valdes Slide (Fig. 3a)

Parameter Mean Standard ~ Minimum Maximum  Range Range (%
Deviation (actual) of mean)
Latitude centre point —35.5245 0.0033 —35.5321 —35.5206 0.0115 0.03
Longitude centre point —73.3625 0.0118 —73.3820 —73.3542 0.0278 0.04
Water depth minimum (m) 1063 16 1041 1090 49 4.61
Water depth maximum (m) 1739 15 1712 1762 50 2.88
Total length, L, (m) 6733 325 6243 7036 793 11.78
Deposit length, Ly (m) 5443 595 4813 6750 1937 35.59
Evacuated length, L. (m) 1469 182 1100 1741 641 43.64
Scar perimeter length, L (m) 7142 1455 3960 8000 4040 56.57
Scar height, H; (m) 366 10 355 385 30 8.19
Evacuation height, H, (m) 359 9 343 370 27 7.52
Height drop, H, (m) 664 32 617 697 80 12.05
Scar width, Wy (m) 3121 263 2581 3500 919 29.44
Maximum deposit width, Wy (m) 3153 471 2785 4200 1415 44.88
Maximum deposit thickness, 32 9 25 38 13 41.27
Td max (m)
Slope gradient, S (°) 7.10 1.43 5.70 10.10 4.40 62.00
Slope gradient of headscarp, S (°) 13.36 1.93 10.00 16.50 6.50 48.65
Slope gradient toe, S, (°) 2.68 0.39 2.00 3.17 1.17 43.70
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Fig. 6. Mean values (symbols) and total range (whiskers) from a morphometric analysis of the Valdes Slide (Fig. 3a)

performed by the authors based on data in Table 2.

agreement (<5% range from the mean measured
values (RMMYV): Table 2). Measurements of total
length measured along the landslide axis (L,) and
the height drop (H,: defined here as the difference
between the minimum and maximum water
depth) were comparable between operators (c. 12%
RMMYV). The headscarp height (H;) and evacuated
height (H.) also yielded comparable values (8—12%
RMMYV: Table 2). Landslide length (runout), height
drop and headscarp height are important first-order
parameters in quantifying the scale of a landslide.
It is therefore reassuring that the measured values
are similar between operators and provide a degree
of confidence for comparing other well-defined land-
slides using these first-order metrics. Thus, a global
database should provide useful and comparable mea-
surements of landslide location and scale.

Variance arising from increasing operator decision
making. As anticipated, evacuated length (L.) and
depositional length (Ly) yielded more disparate
results (44 and 36% RMMYV, respectively:
Table 2). This is attributed to the fact that the opera-
tor needs to make an interpretative judgement based
on the analysis of bathymetry data as to where evac-
uation ends and deposition starts. This subjectivity
could be reduced by integrating supplementary
datasets such as sub-bottom profiles; however, in
situations where further data are not available, it is
important that the potential error is made clear in
any metadata accompanying these measurements.
Measurements of scar width (W) and deposit
width (Wy) provided RMMYV of 29 and 45%, respec-
tively (Table 2). An even wider spread of values
(57% RMMV) was determined for scar perimeter
length (Ls). The variance in these parameters is
attributed to the fact that these measurements are
based on a higher degree of operator decision map-
ping, which introduces a large degree of subjectivity

to the analysis. We suggest a spline should be fitted
to the measured perimeter length to ensure consis-
tency in measurement to account for different levels
of data resolution. The least consistently measured
parameters were slope angles (S, S, S 44-62%
RMMYV). This relates to the distance over which
slopes were measured and variations in the specific
locations where those measurements were taken.

Only two operators attempted to calculate vol-
ume for the Valdes Slide, and provided highly
variable values of 0.3 and 1.3 km?. The highest mea-
sured value (1.3 km®) was based on an estimate of
the missing volume from the scar: calculated from
the difference between the scar topography and an
interpolated surface that connects the upper edges
of the scar (i.e. aiming to reconstruct the pre-failure
topography, following the approach of ten Brink
et al. 2006). The lower measured value (0.3 km®)
was based on the landslide deposit itself.

Importance of metadata to record uncertainty

An Open Source version of the morphometric
parameter inventory is hosted through a Google
Fusion database. This web-based access enables
the wider community to contribute morphometric
data to a growing global database. In light of the
challenges associated with data resolution and
operator decision making, a free text metadata field
accompanies the entry for each of the measured met-
rics to record comments on the uncertainties, errors
and operator decision making involved in the data
collection, analysis and measurement.

Conclusions

No common method exists for describing the mor-
phometry of subaqueous landslides. This hinders
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the effective integration of results from different
research groups, disciplines and based on disparate
data types. In this paper we presented and tested an
approach that can be adopted to enable consistent
global comparisons, and so form the basis for the
compilation of a global database to integrate studies
ranging from modern to ancient timescales and
lacustrine to marine settings. We identified a number
of challenges.

The first challenge is that a number of biases
exist in data collection and analysis, spanning spa-
tial, preservational, temporal, geographical and eco-
nomic issues. These and other biases can be better
recognized and addressed by a global database of
subaqueous landslides. Future data collection should
aim to address these issues, such as the limited data
availability in margins surrounding developing
countries. In the absence of margin-specific data, a
consistent global database of subaqueous landslides
can have a powerful role, however, by enabling the
inference of information (e.g. landslide likelihood)
from analogous, better-studied margins.

Second, we highlighted how the accuracy and
number of parameters that can be mapped is a
function of landslide scale relative to the data resolu-
tion and extents. Small landslides are difficult to map
accurately (if at all) from low-resolution data,
whereas large landslides may not be fully imaged
by high-resolution datasets with limited extents.
A global database should allow for the testing of
scaling relationships on a local and global scale to
provide guidance in both situations.

Finally, we presented and tested a method to
enable the consistent measurement of subaqueous
landslides. We found that as the degree of decision
making by the operator increased, so did the uncer-
tainty in the measured parameter. Basic parameters
that describe the overall landslide scale (e.g. width,
length) were most consistently measured. Parame-
ters that required increased operator judgement
(e.g. pre-failed slope, scar perimeter length) resulted
in a wider range of results. We introduced a stan-
dardized method of measuring morphometry, and
emphasized the importance of accompanying meta-
data to explain any decisions made in the measure-
ment process to inform future comparative analysis.
We feel this method of documenting subaqueous
landslides will provide substantial benefits to both
the research and applied community so that a con-
sistent global landslide database can be developed.

Acknowledgements The authors thank IGCP and
the S4SLIDE project (IGCP-640) for funding the workshop
‘A Global Database of Subaqueous Landslides’ held in
London on 23-24 January 2017, and for providing travel
bursaries to a number of attendees. The outcomes of the
workshop motivated this paper, and we hope that it will
stimulate thought, discussion and action among the broader

subaqueous landslide community. This is intended to be a
truly inclusive endeavour and all are invited to contribute.
Any use of trade, product, or firm names is for descriptive
purposes only and does not imply endorsement by the
United States Government. We thank reviewers Joshu
Mountjoy, Tiago Alves and the editor, Gywn Lintern, for
their critical and helpful reviews that improved the manu-
script and prompted useful discussions between co-authors.
The open access database contribution form is hosted at
https://goo.gl/069UVY

Funding M.Clare acknowledges support from Natural
Environment Research Council (grants NE/N012798/1
and NE/P009190/1). D. Gamboa acknowledges research
support from the Sér Cymru National Research Network
for Low Carbon Energy and Economy and publishes with
permission of the Executive Director, British Geological
Survey. A. Georgiopolou acknowledges research support
from the Geological Survey of Ireland Short Call grants.
A Micallef acknowledges support from the European
Research Council under the European Union’s Horizon
2020 Programme (grant agreement No. 677898
(MARCAN)). L. Moscardelli acknowledges support from
the International Geoscience Programme (IGCP) (grant
IGCP-640).

References

Apawms, E.W. & ScHLAGER, W. 2000. Basic types of subma-
rine slope curvature. Journal of Sedimentary Research,
70, 814-828.

ALVES, T.M. & CARTWRIGHT, J.A. 2009. Volume balance of
a submarine landslide in the Espirito Santo Basin, off-
shore Brazil: quantifying seafloor erosion, sediment
accumulation and depletion. Earth and Planetary Sci-
ence Letters, 2883, 572-580.

AvLves, T.M., Kurtev, K., Moorg, G.F. & STRASSER, M.
2014. Assessing the internal character, reservoir poten-
tial, and seal competence of mass-transport deposits
using seismic texture: a geophysical and petrophysical
approach. AAPG Bulletin, 98, 793-824.

ARMITAGE, D.A., Romans, B.W., CovauLT, J.A. & GRAHAM,
S.A. 2009. The influence of mass-transport-deposit
surface topography on the evolution of turbidite archi-
tecture: the Sierra Contreras, Tres Pasos Formation
(Cretaceous), southern Chile. Journal of Sedimentary
Research, 79, 287-301.

AzPIROZ-ZABALA, M., CARTIGNY, M.J. ET AL. 2017. Newly
recognized turbidity current structure can explain pro-
longed flushing of submarine canyons. Science
Advances, 3, €1700200.

BaEeTeEN, N.J., LABERG, J.S., Forwick, M., VorreNn, T.O.,
VANNESTE, M., ForsBerGg, C.F. & Ivanov, M. 2013.
Morphology and origin of smaller-scale mass move-
ments on the continental slope off northern Norway.
Geomorphology, 187, 122—134.

Baum, RL. & Gopor, J.W. 2010. Early warning of
rainfall-induced shallow landslides and debris flows in
the USA. Landslides, 7, 259-272.

Biscara, L., HanQuiez, V., LEynauD, D., MARIEU, V.,
MULDER, T., GALLISSAIRES, J.M. & GarrLan, T. 2012.
Submarine slide initiation and evolution offshore Pointe


https://goo.gl/o69UvY
https://goo.gl/o69UvY
http://sp.lyellcollection.org/

Downloaded from http://sp.lyellcollection.org/ by guest on January 12, 2022

472

Odden, Gabon — Analysis from annual bathymetric data
(2004-2009). Marine Geology, 299, 43-50.

BrotHERs, D.S., LUuTTRELL, K.M. & CHAYTOR, J.D. 2013.
Sea-level-induced seismicity and submarine landslide
occurrence. Geology, 41, 979-982.

CALVES, G., Huusg, M., CLirt, P.D. & BRrusser, S. 2015.
Giant fossil mass wasting off the coast of West India:
the Naranja submarine slide. Earth and Planetary Sci-
ence Letters, 432, 265-272.

CaNALs, M., LasTtrAS, G., URGELES, R., CASAMOR, J.L.,
MIENERT, J., CATTANEO, A. & Locar, J. 2004. Slope fail-
ure dynamics and impacts from seafloor and shallow
sub-seafloor geophysical data: case studies from the
COSTA project. Marine Geology, 213, 9-72.

CARDONA, S., Woob, L.J., DAY-STIRRAT, R.J. & MoscCAR-
pELLL, L. 2016. Fabric development and pore-throat
reduction in a mass-transport deposit in the Jubilee
Gas Field, Eastern Gulf of Mexico: consequences
for the sealing capacity of MTDs. In: LAMARCHE, G.,
Mountioy, J. er AL. (eds) Submarine Mass Movements
and their Consequences. Advances in Natural and
Technological Hazards Research, 41. Springer, Cham,
Switzerland, 27-37.

CARTER, L., Gavey, R., TaLLING, P.J. & Liu, J.T. 2014.
Insights into submarine geohazards from breaks in
subsea telecommunication cables. Oceanography, 27,
58-67.

Casas, D., CHioccr, F., CasaLBORE, D., ErciLLA, G. & DE
URrBINA, J.O. 2016. Magnitude-frequency distribution
of submarine landslides in the Gioia Basin (southern
Tyrrhenian Sea). Geo-Marine Letters, 36, 405-414.

Cassiby, M., TroriMovs, J., WaTT, S.F.L., PALMER, M.R.,
TayLor, R.N., GErnON, T.M. & LE Friant, A. 2014.
Multi-stage collapse events in the South Soufriere
Hills, Montserrat as recorded in marine sediment
cores. In: WADGE, G., RoBerTsON, R. & VoiGHT, B.
(eds) The Eruption of Soufriere Hills Volcano, Montser-
rat from 2000 to 2010. Geological Society, London,
Memoirs, 39, 383-397, hittps://doi.org/10.1144/
M39.20

CAUIAPE-CASTELLS, J., GARCiA-VERDUGO, C., MARRERO-
RODRIGUEZ, A., FERNANDEZ-PALACIOS, J.M., CRAWFORD,
D.J. & Mort, M.E. 2017. Island ontogenies, synga-
meons, and the origins and evolution of genetic diver-
sity in the Canarian endemic flora. Perspectives in
Plant Ecology, Evolution and Systematics, 27, 9-22.

CHAYTOR, J.D., Uri, S., SoLow, A.R. & ANnDREws, B.D.
2009. Size distribution of submarine landslides along
the US Atlantic margin. Marine Geology, 264, 16-27.

CHAYTOR, J.D., DEMoprouLos, A.W., Uri, S., BAXTER, C.,
QUATTRINI, A.M. & BROTHERS, D.S. 2016a. Assessment
of canyon wall failure process from multibeam bathy-
metry and Remotely Operated Vehicle (ROV) observa-
tions, US Atlantic continental margin. In: LAMARCHE,
G., MounTtioy, J. ET AL. (eds) Submarine Mass Move-
ments and their Consequences. Advances in Natural
and Technological Hazards Research, 41. Springer,
Cham, Switzerland, 103—-113.

CHAYTOR, J.D., Geist, E.L., PauLL, C.K., Caress, D.W.,
Gwiazpa, R., Fucucauchi, J.U. & VIEYRA, M.R.
2016b. Source characterization and tsunami modeling
of submarine landslides along the Yucatén Shelf/Cam-
peche Escarpment, southern Gulf of Mexico. Pure and
Applied Geophysics, 173, 4101-4116.

M. CLARE ET AL.

CHeN, H. & Leg, C.F. 2004. Geohazards of slope mass
movement and its prevention in Hong Kong. Engineer-
ing Geology, 76, 3-25.

CLARE, M.A., TALLING, P.J., CHALLENOR, P., MALGESINI, G.
& Hunr, J. 2014. Distal turbidites reveal a common dis-
tribution for large (>0.1 km®) submarine landslide
recurrence. Geology, 42, 263-266.

CLARE, M.A., TALLING, P.J. & HunT, J.E. 2015. Implications
of reduced turbidity current and landslide activity for
the Initial Eocene Thermal Maximum - evidence
from two distal, deep-water sites. Earth and Planetary
Science Letters, 420, 102-115.

CLARE, M. A., HUGHES CLARKE, J., TALLING, P.J., CARTIGNY,
M.J.B. & PraTomo, D.G. 2016a. Preconditioning and
triggering of offshore slope failures and turbidity cur-
rents revealed by most detailed monitoring yet at a
fjord-head delta. Earth and Planetary Science Letters,
450, 208-220.

CLARE, M.A., TALLING, P.J., CHALLENOR, P.G. & HunT, J.E.
2016b. Tempo and triggering of large submarine land-
slides: statistical analysis for hazard assessment. In:
LaMARCHE, G., MounTioy, J. ET AL. (eds) Submarine
Mass Movements and their Consequences. Advances
in Natural and Technological Hazards Research, 41.
Springer, Cham, Switzerland, 509-517.

CLARE, M.A., VArRDY, MLE. ET 4L. 2017. Direct monitoring
of active geohazards: emerging geophysical tools for
deep-water assessments. Near Surface Geophysics,
15, 427-444.

CLARKE, S., HUBBLE, T. ET AL. 2012. Submarine landslides
on the upper southeast Australian passive continental
margin — preliminary findings. n: YaAMADA, Y., KAwa-
MURA, K. ET AL. (eds) Submarine Mass Movements and
their Consequences. Advances in Natural and Techno-
logical Hazards Research, 31. Springer, Dordrecht, The
Netherlands, 55-66.

Covrvror, J.Y., LEwis, K., LAMARCHE, G. & LALLEMAND, S.
2001. The giant Ruatoria debris avalanche on the north-
ern Hikurangi margin, New Zealand: result of oblique
seamount subduction. Journal of Geophysical
Research: Solid Earth, 106, 19 271-19 297.

CouUsSENS, M., WALL-PALMER, D. Er AL. 2016. The relation-
ship between eruptive activity, flank collapse, and sea
level at volcanic islands: a long-term (>1 Ma) record
offshore Montserrat, Lesser Antilles. Geochemistry,
Geophysics, Geosystems, 17, 2591-2611.

DaBson, O.J.N., BarLow, J. & Moorg, R. 2016. Morpho-
logical controls on submarine slab failures. In:
LaMARcHE, G., MounTioy, J. ET AL. (eds) Submarine
Mass Movements and their Consequences. Advances
in Natural and Technological Hazards Research, 41.
Springer, Cham, Switzerland, 519-528.

Davy, S., LLANES, P., SILVER, E., HoremaANN, G., WARD, S. &
DriscoLL, N. 2015. Submarine landslide deposits of the
historical lateral collapse of Ritter Island, Papua New
Guinea. Marine and Petroleum Geology, 67, 419-438.

Day-StirrAT, R.J., FLEMINGS, P.B., You, Y. & VAN DER
PrLunm, B.A. 2013. Modification of mudstone fabric
and pore structure as a result of slope failure: Ursa
Basin, Gulf of Mexico. Marine Geology, 341, 58-67,
https://doi.org/10.1016/j.margeo.2013.05.003

Dt MoL, B., KozacHENKO, M., WHEELER, A., ALVARES, H.,
Henrier, J.P. & Ovru-LE Roy, K. 2007. Thérese
Mound: a case study of coral bank development in the


https://doi.org/10.1144/M39.20
https://doi.org/10.1144/M39.20
https://doi.org/10.1144/M39.20
https://doi.org/10.1016/j.margeo.2013.05.003
https://doi.org/10.1016/j.margeo.2013.05.003
http://sp.lyellcollection.org/

Downloaded from http://sp.lyellcollection.org/ by guest on January 12, 2022

MORPHOMETRICS OF SUBAQUEOUS LANDSLIDES

Belgica Mound Province, Porcupine Seabight. Interna-
tional Journal of Earth Sciences, 96, 103—120.

ForsBerG, C.F., HEYERDAHL, H. & SorLHEmM, A. 2016.
Underwater mass movements in lake Mjgsa, Norway.
In: LAMARCHE, G., MouUNTIOY, J. ET AL. (eds) Submarine
Mass Movements and their Consequences. Advances in
Natural and Technological Hazards Research, 41.
Springer, Cham, Switzerland, 191-199.

FrREY-MARTINEZ, J., CARTWRIGHT, J. & JamEs, D. 2006. Fron-
tally confined versus frontally emergent submarine
landslides: a 3D seismic characterisation. Marine and
Petroleum Geology, 23, 585-604.

GamBoa, D. & Avrves, T.M. 2016. Bi-modal deformation
styles in confined mass-transport deposits: examples
from a salt minibasin in SE Brazil. Marine Geology,
379, 176-193.

GAMBOA, D., ALVES, T. & CARTWRIGHT, J. 201 1. Distribution
and characterization of failed (mega) blocks along salt
ridges, southeast Brazil: implications for vertical fluid
flow on continental margins. Journal of Geophysical
Research, 116, B08103.

Geist, E.L. & Parsons, T. 2006. Probabilistic analysis of
tsunami hazards. Natural Hazards, 37, 277-314.

Geist, E.L. & Parsons, T. 2010. Estimating the empirical
probability of submarine landslide occurrence. In:
MosHER, D.C., MoscARDELLL L., SHipp, R.C., CHAYTOR,
J.D., BAXTER, C.D., LEg, H.J. & URGELES, R. (eds) Sub-
marine Mass Movements and their Consequences.
Advances in Natural and Technological Hazards
Research, 28. Springer, Cham, Switzerland, 377-386.

GEoRrGIOPOULOU, A., MassoN, D.G., WynN, R.B. & Kras-
TEL, S. 2010. Sahara Slide: age, initiation, and processes
of a giant submarine slide. Geochemistry, Geophysics,
Geosystems, 11, Q07014.

GEORGIOPOULOU, A., SHANNON, P.M., SaccHeTTI, F., HAUGH-
TON, P.D. & BENETTI, S. 2013. Basement-controlled
multiple slope collapses, Rockall Bank slide complex,
NE Atlantic. Marine Geology, 336, 198-214.

GorF, J. & TERRY, J.P. 2016. Tsunamigenic slope failures:
the Pacific Islands ‘blind spot’? Landslides, 13,
1535-1543.

HarLipasoN, H., Seirup, H.P. T aL. 2004. The Storegga
Slide: architecture, geometry and slide development.
Marine Geology, 213, 201-234.

Hawmpron, M.A., Leg, H.J. & Locar, J. 1996. Submarine
landslides. Reviews of Geophysics, 34, 33-59.

Harsitz, C.B., LovHoLT, F. & Buncum, H. 2014. Subma-
rine landslide tsunamis: how extreme and how likely?
Natural Hazards, 72, 1341-1374.

HARDERS, R., RANERO, C.R., WEINREBE, W. & BEHRMANN,
J.H. 2011. Submarine slope failures along the conver-
gent continental margin of the Middle America Trench.
Geochemistry, Geophysics, Geosystems, 12, Q05S32.

HaugHTON, P., DAvis, C., McCAFFREY, W. & BARKER, S.
2009. Hybrid sediment gravity flow deposits—classifica-
tion, origin and significance. Marine and Petroleum
Geology, 26, 1900-1918.

HE, Y., ZHONG, G., WANG, L. & Kuang, Z. 2014. Character-
istics and occurrence of submarine canyon-associated
landslides in the middle of the northern continental
slope, South China Sea. Marine and Petroleum Geol-
ogy, 57, 546-560.

Henry, L.C., WADSWORTH, J.A. & HANSEN, B. 2017. Visu-
alizing a sub-salt field with image logs: image facies,

473

mass transport complexes, and reservoir implications
from Thunder Horse, Mississippi canyon, Gulf of
Mexico. Search and Discovery Article #90291,
AAPG Annual Convention and Exhibition, 2-5 April
2017, Houston, Texas, USA.

HiLton, R.G., GALY, A. & Hovius, N. 2008. Riverine partic-
ulate organic carbon from an active mountain belt:
importance of landslides. Global Biogeochemical
Cycles, 22, GB1017.

Hu, G, Yan, T., Liu, Z., VANNESTE, M. & Dong, L. 2009.
Size distribution of submarine landslides along the
middle continental slope of the East China Sea. Journal
of Ocean University of China (English Edition), 8,
322-326.

HucHes CLARKE, J.E. 2018. Multibeam echosounders. In:
MIcCALLEF, A., KRASTEL, S. & Savini, A. (eds) Submarine
Geomorphology. Springer, Cham, Switzerland, 25-41.

HucHEs CLARKE, J.E., MARQUES, C.R.V. & PraTomo, D.
2014. Imaging active mass-wasting and sediment
flows on a fjord delta, Squamish, British Columbia.
In: KRASTEL, S., BEHRMANN, J.-H. ET AL. (eds) Submarine
Mass Movements and their Consequences. Advances in
Natural and Technological Hazards Research, 37.
Springer, Berlin, 249-260.

HunNERBACH, V. & Masson, D.G. 2004. Landslides in the
North Atlantic and its adjacent seas: an analysis of
their morphology, setting and behaviour. Marine Geol-
0gy, 213, 343-362.

HunGR, O., LEROUEL, S. & PicareLLI L. 2014. The Varnes
classification of landslide types, an update. Landslides,
11, 167-194.

Hunr, J.E., TALLING, P.J., CLARE, M.A., JARVIS, I. & WYNN,
R.B. 2014. Long term (17 Ma) turbidite record of the
timing and frequency of large flank collapses of the
Canary Islands. Geochemistry, Geophysics, Geosys-
tems, 15, 3322-3345.

Huvenng, V.A., GeorciorouLou, A., CHAUMILLON, L.,
Tacono, C.L. & WynN, R.B. 2016. Novel method to
map the morphology of submarine landslide headwall
scarps using Remotely Operated Vehicles. In:
LaMARcHE, G., MounTtioy, J. ET AL. (eds) Submarine
Mass Movements and their Consequences. Advances
in Natural and Technological Hazards Research, 41.
Springer, Cham, Switzerland, 135-144.

Huvenng, V.A., RoBerT, K., MaRsH, L., Iacono, C.L., LE
Bas, T. & WynN, R.B. 2018. ROVs and AUVs. In:
MICALLEF, A., KRASTEL, S. & SaviNg, A. (eds) Submarine
Geomorphology. Springer, Cham, Switzerland, 93—108.

KaTtz, O., REUVEN, E. & AHarRONOV, E. 2015. Submarine
landslides and fault scarps along the eastern Mediterra-
nean Israeli continental-slope. Marine Geology, 369,
100-115.

Keerer, D.K. 1984. Landslides caused by earthquakes.
Geological Society of America Bulletin, 95, 406-421.

KELNER, M., MIGEON, S., TrIc, E., CouBoULEX, F., DANoO, A.,
LEBOURG, T. & TaBoADA, A. 2016. Frequency and trig-
gering of small-scale submarine landslides on decadal
timescales: analysis of 4D bathymetric data from
the continental slope offshore Nice (France). Marine
Geology, 379, 281-297.

KirscuBaum, D.B., AprLer, R., Hong, Y., HwL, S. &
LerNEr-LAM, A. 2010. A global landslide catalog for
hazard applications: method, results, and limitations.
Natural Hazards, 52, 561-575.


http://sp.lyellcollection.org/

Downloaded from http://sp.lyellcollection.org/ by guest on January 12, 2022

474

Krosg, M., GRUBER, D., Damm, B. & GeroLD, G. 2014. Spa-
tial databases and GIS as tools for regional landslide
susceptibility modeling. Zeitschrift fiir Geomorpholo-
gie, 58, 1-36.

KNELLER, B., DYKSTRA, M., FAIRWEATHER, L. & MiLANA, P.
2016. Mass-transport and slope accommodation:
implications for turbidite sandstone reservoir. AAPG
Bulletin, 100, 213-235.

Korup, O., Cracug, J.J., HErRmaANNs, R.L., Hewrrt, K.,
StrROM, A.L. & WEIDINGER, J.T. 2007. Giant landslides,
topography, and erosion. Earth and Planetary Science
Letters, 261, 578-589.

KRASTEL, S., BEHRMANN, J.-H. ET AL. (eds). 2014. Submarine
Mass Movements and their Consequences. Advances in
Natural and Technological Hazards Research, 37.
Springer, Berlin.

KREMER, K., WIRTH, S.B. ET AL. 2017. Lake-sediment based
paleoseismology: limitations and perspectives from the
Swiss Alps. Quaternary Science Reviews, 168, 1-18.

LABERG, J.S. & VorreN, T.O. 2000. The Trenadjupet Slide,
offshore Norway — morphology, evacuation and trig-
gering mechanisms. Marine Geology, 171, 95-114.

LAcosTE, A., VENDEVILLE, B.C., MOURGUES, R., LONCKE, L.
& LEBACQ, M. 2012. Gravitational instabilities triggered
by fluid overpressure and downslope incision — insights
from analytical and analogue modelling. Journal of
Structural Geology, 42, 151-162.

LAMARCHE, G., MouNnTioy, J. T AL. (eds) 2016. Submarine
Mass Movements and their Consequences. Advances
in Natural and Technological Hazards Research, 41.
Springer, Cham, Switzerland.

Li, W., ALvEs, T.M. er aL. 2017. Morphology, age and sedi-
ment dynamics of the upper headwall of the Sahara
Slide Complex, Northwest Africa: evidence for a large
Late Holocene failure. Marine Geology, 393, 109-123,
https://doi.org/10.1016 /j.margeo0.2016.11.013

LINDBERG, B., LABERG, J.S. & VORREN, T.O. 2004. The Nyk
Slide — morphology, progression, and age of a partly
buried submarine slide offshore northern Norway.
Marine Geology, 213, 277-289.

Locar, J. & Leg, H.J. 2002. Submarine landslides: advances
and challenges. Canadian Geotechnical Journal, 39,
193-212.

Lykousis, V., SakeLLArRIOU, D. & Locat, J. (eds) 2007.
Submarine Mass Movements and their Consequences.
Advances in Natural and Technological Hazards
Research, 27. Springer, Cham, Switzerland.

MaADHUSUDHAN, B.N., CLArRE, M.A., CLayToN, CRI. &
Hunr, J.E. 2017. Geotechnical profiling of deep-ocean
sediments at the AFEN submarine slide complex. Quar-
terly Journal of Engineering Geology and Hydrogeology,
50, 148-157, https://doi.org/10.1144 /qjegh2016-057

Maia, A.R., CARTWRIGHT, J., ANDERSEN, E. & GamBoa, D.
2015. Fluid flow within MTDs: evidences of fluid stor-
age and leakage from 3D seismic data, offshore West
Africa. Presented at the 7th International Symposium
Submarine Mass Movements and their Consequences,
1-4 November 2015, Wellington, New Zealand.

Maramup, B.D., TurcottE, D.L., GuzzerTi, F. & REICHEN-
BACH, P. 2004. Landslide inventories and their statistical
properties. Earth Surface Processes and Landforms,
29, 687-711.

MANDELBROT, B.B. 1967. How long is the coast of Britain?
Science, 156, 636-638.

M. CLARE ET AL.

Masson, D.G. 1996. Catastrophic collapse of the volcanic
island of Hierro 15 ka ago and the history of landslides
in the Canary Islands. Geology, 24, 231-234.

MassoN, D.G., Harsitz, C.B., WyYNN, R.B., PEDERSEN, G.
& LovhoLr, F. 2006. Submarine landslides: processes,
triggers and hazard prediction. Philosophical Trans-
actions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 364,
2009-2039.

MASTBERGEN, D., vaN DEN HaMm, G. Er aL. 2016. Multiple
flow slide experiment in the Westerschelde Estuary,
The Netherlands. In: LAMARCHE, G., MounTiOY, J. ET
AL. (eds) Submarine Mass Movements and their Conse-
quences. Advances in Natural and Technological Haz-
ards Research, 41. Springer, Cham, Switzerland,
241-249.

McAboo, B.G., PraTson, L.F. & Orancg, D.L. 2000. Sub-
marine landslide geomorphology, US continental slope.
Marine Geology, 169, 103—136.

MECKEL, L., III. 2011. Reservoir characteristics and classi-
fication of sand-prone submarine mass-transport depos-
its. In: Suipp, R.C., WEIMER, P. & POSAMENTIER, H. (eds)
Mass-Transport Deposits in Deepwater Settings.
SEPM Special Publications, 96, 423-452.

MicaLLer, A., BErnDT, C., MassoN, D.G. & Stow, D.A.
2007. A technique for the morphological characteriza-
tion of submarine landscapes as exemplified by debris
flows of the Storegga Slide. Journal of Geophysical
Research: Earth Surface, 112, F02001.

MICALLEF, A., MounTioy, J.J., CANALS, M. & LASTRAS, G.
2012. Deep-seated bedrock landslides and submarine
canyon evolution in an active tectonic margin: Cook
Strait, New Zealand. In: YamMaDpa, Y., Kawamura, K.
ET AL. (eds) Submarine Mass Movements and their Con-
sequences. Advances in Natural and Technological
Hazards Research, 31. Springer, Dordrecht, The Neth-
erlands, 201-212.

MIeNERT, J. 2004. COSTA - continental slope stability:
major aims and topics. Marine Geology, 213, 1-7.
MoERNAUT, J. & DE Barist, M. 201 1. Frontal emplacement
and mobility of sublacustrine landslides: results from
morphometric and seismostratigraphic analysis. Marine

Geology, 285, 29-45.

MOERNAUT, J., VAN DAELE, M. Er AL. 2017. Lacustrine turbi-
dites produced by surficial slope sediment remobiliza-
tion: a mechanism for continuous and sensitive
turbidite paleoseismic records. Marine Geology, 384,
159-176.

Moorg, J.G., Cracug, D.A., HorLcomB, R.T., LipmaN,
P.W., NorMARK, W.R. & TorresaN, M.E. 1989. Pro-
digious submarine landslides on the Hawaiian Ridge.
Journal of Geophysical Research: Solid Earth, 94,
17 465-17 484.

Moorg, J.G., Normark, W.R. & Horcoms, R.T. 1994.
Giant hawaiian landslides. Annual Review of Earth
and Planetary Sciences, 22, 119-144.

Moorg, R., Davis, G. & Dasson, O. 2018. Applied geomor-
phology and geohazard assessment for deepwater
development. /n: MICALLEF, A., KRASTEL, S. & SAVINI,
A. (eds) Submarine Geomorphology. Springer, Cham,
Switzerland, 459-479.

MoscarpeLL, L. & Woob, L. 2008. New classification sys-
tem for mass transport complexes in offshore Trinidad.
Basin Research, 20, 73-98.


https://doi.org/10.1016/j.margeo.2016.11.013
https://doi.org/10.1016/j.margeo.2016.11.013
https://doi.org/10.1144/qjegh2016-057
https://doi.org/10.1144/qjegh2016-057
https://doi.org/10.1144/qjegh2016-057
http://sp.lyellcollection.org/

Downloaded from http://sp.lyellcollection.org/ by guest on January 12, 2022

MORPHOMETRICS OF SUBAQUEOUS LANDSLIDES

MoscarpeLLl, L. & Woop, L. 2016. Morphometry of
mass-transport deposits as a predictive tool. Geological
Society of America Bulletin, 128, 47-80.

MosHER, D.C., MoscarRDELLI, L., SHipp, R.C., CHAYTOR,
J.D., Baxter, C.D., Leg, H.J. & URrcGELEs, R. (eds)
2010a. Submarine Mass Movements and their Conse-
quences. Advances in Natural and Technological Haz-
ards Research, 28. Springer, Cham, Switzerland.

MosHEer, D.C., MoscarpELLI, L., SHipp, R.C., CHAYTOR,
J.D., Baxter, C.D., Leg, H.J. & URGELEs, R. 20105.
In: MosHer, D.C., MoscarpeLLl, L., Suwep, R.C.,
CHAYTOR, J.D., BAXTER, C.D., LEE, H.J. & URGELES, R.
(eds) Submarine Mass Movements and their Conse-
quences. Advances in Natural and Technological Haz-
ards Research, 28. Springer, Cham, Switzerland, 1-8.

MosHER, D.C., LABERG, J.S. & MurpHy, A. 2016. The role
of submarine landslides in the Law of the Sea. In:
LaMarcHE, G., MounTioy, J. ET AL. (eds) Submarine
Mass Movements and their Consequences. Advances
in Natural and Technological Hazards Research, 41.
Springer, Cham, Switzerland, 15-26.

MounTioy, J. & MICALLEF, A. 2018. Submarine landslides.
In: MicALLEF, A., KRASTEL, S. & SaviNi, A. (eds) Sub-
marine Geomorphology. Springer, Cham, Switzerland,
235-250.

MounTioy, J.J., PEcHER, I., HENRYS, S., CRUTCHLEY, G.,
BaRrNES, P.M. & Praza-Faverora, A. 2014. Shallow
methane hydrate system controls ongoing, down-
slope sediment transport in a low-velocity active sub-
marine landslide complex, Hikurangi Margin, New
Zealand. Geochemistry, Geophysics, Geosystems, 15,
4137-4156.

MULDER, T. & CocHONAT, P. 1996. Classification of offshore
mass movements. Journal of Sedimentary Research, 66,
43-57.

NitTrROUER, C.A. 1999. STRATAFORM: overview of its
design and synthesis of its results. Marine Geology,
154, 3-12.

NorRMANDEAU, A., CamPBELL, D.C. ET L. 2018. Extensive
submarine landslide on the west levee of the Laurentian
Fan: an exceptional deep-water event during the Qua-
ternary? In: LINTERN, D.G., MosHER, D.C. ET AL. (eds)
Subaqueous Mass Movements. Geological Society,
London, Special Publications, 477. First published
online 28 March 2018, https://doi.org/10.1144/
SP477.14

OBELCZ, J., XU, K., GEORGIOU, 1.Y., MALONEY, J., BENTLEY,
S.J. & MINER, M.D. 2017. Sub-decadal submarine land-
slides are important drivers of deltaic sediment flux:
insights from the Mississippi River Delta Front. Geol-
ogy, 45, 703-706.

OcIEsoBA, O. & HamMmEs, U. 2012. Seismic interpretation of
mass-transport deposits within the upper Oligocene
Frio Formation, south Texas Gulf Coast. AAPG Bulle-
tin, 96, 845-868.

OkEY, T.A. 1997. Sediment flushing observations, earth-
quake slumping, and benthic community changes in
Monterey Canyon head. Continental Shelf Research,
17, 877-897.

OWweN, M., DAy, S. & MasLIN, M. 2007. Late Pleistocene
submarine mass movements: occurrence and causes.
Quaternary Science Reviews, 26, 958-978.

PauLL, C.K., ScHLINING, B., UssLEr, W., III, LUNDSTE, E.,
Barry, J.P., Caress, D.W. & McGann, M. 2010.

475

Submarine mass transport within Monterey Canyon:
benthic disturbance controls on the distribution of
chemosynthetic biological communities. /n: MOSHER,
D.C., MoscarpeLLl, L., Suiep, R.C., CHAYTOR, J.D.,
BaxTEr, C.D., LEg, H.J. & URGELES, R. (eds) Submarine
Mass Movements and their Consequences. Advances in
Natural and Technological Hazards Research, 28.
Springer, Cham, Switzerland, 229-246.

PennINGTON, C., FREEBOROUGH, K., Dasuwoop, C., Duk-
STRA, T. & LAwrig, K. 2015. The National Landslide
Database of Great Britain: acquisition, communication
and the role of social media. Geomorphology, 249,
44-51.

PeTLEY, D. 2012. Global patterns of loss of life from land-
slides. Geology, 40, 927-930.

PerLey, D.N., Dunning, S.A. & Rosser, N.J. 2005.
The Analysis of Global Landslide Risk through the
Creation of a Database of Worldwide Landslide Fatal-
ities. Landslide Risk Management. A.A. Balkema,
Amsterdam.

PipER, D.J. & NorMaRrRK, W.R. 2009. Processes that initiate
turbidity currents and their influence on turbidites: a
marine geology perspective. Journal of Sedimentary
Research, 79, 347-362.

PipER, D.J., CocHONAT, P. & Morrison, M.L. 1999. The
sequence of events around the epicentre of the 1929
Grand Banks earthquake: initiation of debris flows
and turbidity current inferred from sidescan sonar. Sed-
imentology, 46, 79-97.

Porg, E.L., TALLING, P.J., UrLAUB, M., HUNT, J.E., CLARE,
M.A. & CHALLENOR, P. 2015. Are large submarine land-
slides temporally random or do uncertainties in avail-
able age constraints make it impossible to tell?
Marine Geology, 369, 19-33.

Popg, E.L., TALLING, P.J. & CARTER, L. 2016. Which earth-
quakes trigger damaging submarine mass movements:
insights from a global record of submarine cable
breaks? Marine Geology, 384, 131-146.

PopEg, E.L., TALLING, P.J., CARTER, L., CLARE, M.A. & HuUNT,
J.E. 2017. Damaging sediment density flows triggered
by tropical cyclones. Earth and Planetary Science Let-
ters, 458, 161-169.

PRAET, N., MOERNAUT, J. ET AL. 2017. Paleoseismic potential
of sublacustrine landslide records in a high-seismicity
setting (south-central Alaska). Marine Geology, 384,
103-119.

PuzriN, A.M. 2016. Simple criteria for ploughing
and runout in post-failure evolution of submarine
landslides. Canadian Geotechnical Journal, 53,
1305-1314.

RiBouLoT, V., CATTANEO, A., SULTAN, N., GARZIGLIA, S.,
KER, S., ImBERT, P. & Voisser, M. 2013. Sea-level
change and free gas occurrence influencing a submarine
landslide and pockmark formation and distribution in
deepwater Nigeria. Earth and Planetary Science Let-
ters, 375, 78-91.

RicHARDSON, S.E., Davies, R.J., ALLEN, M.B. & GraNT, S.F.
2011. Structure and evolution of mass transport depos-
its in the South Caspian Basin, Azerbaijan. Basin
Research, 23, 702-719.

SAVINI, A., MARCHESE, F., VERDICCHIO, G. & VERTINO, A.
2016. Submarine slide topography and the distribution
of vulnerable marine ecosystems: a case study in the
Tonian Sea (Eastern Mediterranean). In: LAMARCHE,


https://doi.org/10.1144/SP477.14
https://doi.org/10.1144/SP477.14
https://doi.org/10.1144/SP477.14
http://sp.lyellcollection.org/

Downloaded from http://sp.lyellcollection.org/ by guest on January 12, 2022

476

G., MounTioy, J. ET AL. (eds) Submarine Mass Move-
ments and their Consequences. Advances in Natural
and Technological Hazards Research, 41. Springer,
Cham, Switzerland, 163—-170.

Sawver, D.E. & DeVorg, J.R. 2015. Elevated shear
strength of sediments on active margins: evidence for
seismic strengthening. Geophysical Research Letters,
42, 10,216-10,221.

SwmitH, D.P., KviTek, R., IamPIETRO, P.J. & Wong, K. 2007.
Twenty-nine months of geomorphic change in upper
Monterey Canyon (2002-2005). Marine Geology,
236, 79-94.

SmitH, R.W., Bianchr, T.S., ArLisoN, M., Savace, C. & GALY,
V. 2015. High rates of organic carbon burial in fjord sed-
iments globally. Nature Geoscience, 8, 450-453.

SoLHEM, A. 2006. Submarine mass movements and their
consequences, 2nd international symposium: summary.
Norwegian Journal of Geology, 86, 151-154.

ST-ONGE, G. & HiLLAIRE-MARCEL, C. 2001. Isotopic con-
straints of sedimentary inputs and organic carbon burial
rates in the Saguenay Fjord, Quebec. Marine Geology,
176, 1-22.

STRASSER, M., MONECKE, K., SCHNELLMANN, M. & ANSEL-
METTI, F.S. 2013. Lake sediments as natural seismo-
graphs: a compiled record of Late Quaternary
earthquakes in Central Switzerland and its implication
for Alpine deformation. Sedimentology, 60, 319-341.

STRUPLER, M., HILBE, M., ANseLMETTI, F.S., Koprr, A.J.,
Freischmann, T. & STrASSER, M. 2017. Probabilistic
stability evaluation and seismic triggering scenarios of
submerged slopes in Lake Zurich (Switzerland). Geo-
Marine Letters, 37, 241-258.

Swanson, F.J., Kratz, T.K., CAINE, N. & WOODMANSEE,
R.G. 1988. Landform effects on ecosystem patterns
and processes. BioScience, 38, 92-98.

SyMons, W.O., SUMNER, E.J., TALLING, P.J., CARTIGNY, M.J.
& CLARE, M.A. 2016. Large-scale sediment waves and
scours on the modern seafloor and their implications for
the prevalence of supercritical flows. Marine Geology,
371, 130-148.

TALLING, P.J., WYNN, R.B. ET AL. 2007. Onset of submarine
debris flow deposition far from original giant landslide.
Nature, 450, 541-544.

TALLING, P.J., CLARE, M.L., UrLAUB, M., PoprE, E., HUuNT,
J.E. & Wartr, S.F. 2014. Large submarine landslides
on continental slopes: geohazards, methane release,
and climate change. Oceanography, 27, 32-45.

TappiN, D.R., WaTtTs, P., McMuRrTRY, G.M., LAFOY, Y. &
Matsumorto, T. 2001. The Sissano, Papua New Guinea
tsunami of July 1998 — offshore evidence on the source
mechanism. Marine Geology, 175, 1-23.

TAYLOR, F.E., MaLamup, B.D., FREEBOROUGH, K. & DEMER-
irT, D. 2015. Enriching Great Britain’s national land-
slide database by searching newspaper archives.
Geomorphology, 249, 52-68.

TEN BrINK, U.S., GEeist, E.L. & ANDREWS, B.D. 2006. Size
distribution of submarine landslides and its implication
to tsunami hazard in Puerto Rico. Geophysical
Research Letters, 33, L11307, https://doi.org/10.
1029/2006GL026125

TEN BRINK, U.S., BARKAN, R., ANDREWS, B.D. & CHAYTOR,
J.D. 2009. Size distributions and failure initiation of
submarine and subaerial landslides. Earth and Plane-
tary Science Letters, 287, 31-42.

M. CLARE ET AL.

TEN BriNk, U.S., ANDREWS, B.D. & MiLLER, N.C. 2016.
Seismicity and sedimentation rate effects on submarine
slope stability. Geology, 44, 563-566.

TERRY, J.P., WINSPEAR, N., GoFF, J. & TaN, P.H. 2017. Past
and potential tsunami sources in the South China Sea: a
brief synthesis. Earth-Science Reviews, 167, 47-61,
https://doi.org/10.1016/j.earscirev.2017.02.007

THoMmas, S., HOOPER, J. & CLARE, M. 2010. Constraining
geohazards to the past: impact assessment of submarine
mass movements on seabed developments. /n: MOSHER,
D.C., MoscarpeLLl, L., Suiep, R.C., CHAYTOR, J.D.,
Baxter, C.D., Leg, H.J. & URGELES, R. (eds) Submarine
Mass Movements and their Consequences. Advances in
Natural and Technological Hazards Research, 28.
Springer, Cham, Switzerland, 387-398.

TwicHELL, D.C., CHAYTOR, J.D., Ury, S. & Buczkowski, B.
2009. Morphology of late Quaternary submarine land-
slides along the US Atlantic continental margin. Marine
Geology, 264, 4-15.

URGELES, R. & CAMERLENGHI, A. 2013. Submarine land-
slides of the Mediterranean Sea: trigger mechanisms,
dynamics, and frequency—magnitude distribution. Jour-
nal of Geophysical Research: Earth Surface, 118,
2600-2618.

URrLAuB, M., TALLING, P.J. & Masson, D.G. 2013. Timing
and frequency of large submarine landslides: implica-
tions for understanding triggers and future geohazard.
Quaternary Science Reviews, 72, 63-82.

UrrauB, M., TaLLiNG, P. & CLARE, M. 2014. Sea-level-
induced seismicity and submarine landslide occurrence:
comment. Geology, 42, e337.

URrLAUB, M. ET AL. 2018. In situ monitoring of submarine
landslides using seabed instruments. [n: LINTERN,
D.G., MosHer, D.C. Er aL. (eds) Subaqueous Mass
Movements. Geological Society, London, Special Pub-
lications, 477, https: //doi.org/10.1144 /SP477.8

VAN DAELE, M., MOERNAUT, J. ET AL. 2015. A comparison of
the sedimentary records of the 1960 and 2010 great
Chilean earthquakes in 17 lakes: implications for quan-
titative lacustrine palaeoseismology. Sedimentology,
62, 1466—-1496.

VANNESTE, M., SULTAN, N., GARZIGLIA, S., FOrRsBERG, C.F. &
L’Heureux, J.S. 2014. Seafloor instabilities and sedi-
ment deformation processes: the need for integrated,
multi-disciplinary investigations. Marine Geology,
352, 183-214.

VarnEs, D.J. 1958. Landslide types and processes. Land-
slides and Engineering Practice, 24, 20-47.

VOLKER, D., GEERSEN, J., BEHRMANN, J.H. & WEINREBE,
W.R. 2012. Submarine mass wasting off Southern Cen-
tral Chile: distribution and possible mechanisms of
slope failure at an active continental margin. In:
YamaDpa, Y., KawaMura, K. Er AL, (eds) Submarine
Mass Movements and their Consequences. Advances
in Natural and Technological Hazards Research, 31.
Springer, Dordrecht, The Netherlands, 379-389.

WALKER, L.R., VELAZQUEZ, E. & SHIELs, A.B. 2009. Apply-
ing lessons from ecological succession to the restoration
of landslides. Plant and Soil, 324, 157-168.

Warp, S.N. 2001. Landslide tsunami. Journal of Geophys-
ical Research: Solid Earth, 106, 11201-11215.

Wartrs, A.B. & Masson, D.G. 1995. A giant landslide on the
north flank of Tenerife, Canary Islands. Journal of Geo-
physical Research: Solid Earth, 100, 24487-24498.


https://doi.org/10.1029/2006GL026125
https://doi.org/10.1029/2006GL026125
https://doi.org/10.1029/2006GL026125
https://doi.org/10.1016/j.earscirev.2017.02.007
https://doi.org/10.1016/j.earscirev.2017.02.007
https://doi.org/10.1144/SP477.8
https://doi.org/10.1144/SP477.8
http://sp.lyellcollection.org/

Downloaded from http://sp.lyellcollection.org/ by guest on January 12, 2022

MORPHOMETRICS OF SUBAQUEOUS LANDSLIDES 477

WynN, R.B. & Stow, D.A. 2002. Classification and charac-
terisation of deep-water sediment waves. Marine Geol-
ogy, 192, 7-22.

WyNN, R.B., HUvennE, V.A. ET AL. 2014. Autonomous
Underwater Vehicles (AUVs): their past, present and
future contributions to the advancement of marine geo-
science. Marine Geology, 352, 451-468.

Yamapa, Y., Kawamura, K. Er ar. 2012. Submarine

mass movements and their consequences. In:
YaMapa, Y., Kawamura, K. E7 ar. (eds) Submarine
Mass  Movements and  their  Consequences.
Advances in Natural and Technological Hazards
Research, 31. Springer, Dordrecht, The Netherlands,
1-12.


http://sp.lyellcollection.org/



